TW202235997A - Litho-aware source sampling and resampling - Google Patents

Litho-aware source sampling and resampling Download PDF

Info

Publication number
TW202235997A
TW202235997A TW110122447A TW110122447A TW202235997A TW 202235997 A TW202235997 A TW 202235997A TW 110122447 A TW110122447 A TW 110122447A TW 110122447 A TW110122447 A TW 110122447A TW 202235997 A TW202235997 A TW 202235997A
Authority
TW
Taiwan
Prior art keywords
tcc
operator
source
reticle
illumination source
Prior art date
Application number
TW110122447A
Other languages
Chinese (zh)
Inventor
力鍵 何
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Publication of TW202235997A publication Critical patent/TW202235997A/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/36Masks having proximity correction features; Preparation thereof, e.g. optical proximity correction [OPC] design processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/70433Layout for increasing efficiency or for compensating imaging errors, e.g. layout of exposure fields for reducing focus errors; Use of mask features for increasing efficiency or for compensating imaging errors
    • G03F7/70441Optical proximity correction [OPC]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70025Production of exposure light, i.e. light sources by lasers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70125Use of illumination settings tailored to particular mask patterns
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/705Modelling or simulating from physical phenomena up to complete wafer processes or whole workflow in wafer productions

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

A method includes determining a first transmission cross coefficient (TCC) operator of an optical system of a lithographic system based on an illumination source. The method includes sampling the illumination source by a first number of sampling points to produce a first discrete source and determining a second TCC operator based on the first discrete source. The method also includes determining an error between the first TCC operator and the second TCC operator. The method includes recursively adjusting the first number of sampling points to re-sample the illumination source and to re-determine the second TCC operator until the error is below a threshold level and a final discrete source and a final second TCC operator is determined.

Description

微影感知源取樣及重新取樣Lithography-aware source sampling and resampling

本發明實施例係關於一種微影感知源取樣及重新取樣。Embodiments of the present invention relate to sampling and resampling of lithography sensing sources.

光學微影製程將光罩的佈局圖案轉移到晶圓,而將蝕刻、佈植或其他步驟僅應用於晶圓的預定區域。將光罩的佈局圖案轉移到晶圓上的光阻層可能會導致光阻圖案缺陷,這是半導體製造中的主要挑戰。可以將光學鄰近校正(optical proximity correction, OPC)操作應用於光罩的佈局圖案以減少光阻圖案缺陷。OPC可以在微影製程之前修改光罩的佈局圖案以補償微影製程的影響。另外,可以對光罩的佈局圖案執行反向式微影轉換(inverse lithographic transformation ILT)以進一步補償微影製程的影響。需要對光罩的佈局圖案進行有效的OPC或ILT操作。Photolithography transfers the layout pattern of the mask to the wafer, while etching, implanting or other steps are applied only to the intended areas of the wafer. Transferring the layout pattern of the photomask to the photoresist layer on the wafer can lead to photoresist pattern defects, which is a major challenge in semiconductor manufacturing. An optical proximity correction (OPC) operation may be applied to the layout pattern of the reticle to reduce resist pattern defects. OPC can modify the layout pattern of the mask before the lithography process to compensate for the influence of the lithography process. In addition, an inverse lithographic transformation (ILT) can be performed on the layout pattern of the mask to further compensate for the influence of the lithographic process. An efficient OPC or ILT operation is required on the layout pattern of the reticle.

根據本發明的一實施例,一種關於設計佈局的方法,包括:根據一微影系統的一光學系統的一照明源確定該微影系統的該光學系統的一第一透射交叉係數(TCC)運算子;通過一第一數量的取樣點對該光學系統的該照明源進行取樣以產生一第一離散源;根據該第一離散源來確定該微影系統的該光學系統的一第二TCC運算子;確定該第一TCC運算子和該第二TCC運算子之間的一誤差;遞迴地調節該第一數量的取樣點以重新取樣該照明源並根據該重新取樣照明源以重新確定該第二TCC運算子,直到該誤差低於一閾值水平並且一最終離散源以及一最終第二TCC運算子被確定;及執行一光罩的一第一佈局圖案的一光學鄰近校正(OPC)操作,其中該OPC操作使用該最終離散源和該最終第二TCC運算子來確定一晶圓上的該光罩的該第一佈局圖案的一經投影影像。According to an embodiment of the present invention, a method for designing a layout includes: determining a first transmission cross coefficient (TCC) operation of an optical system of a lithography system according to an illumination source of the optical system of the lithography system The illumination source of the optical system is sampled by a first number of sampling points to generate a first discrete source; a second TCC operation of the optical system of the lithography system is determined according to the first discrete source determine an error between the first TCC operator and the second TCC operator; recursively adjust the first number of sampling points to resample the illumination source and re-determine the illumination source based on the resampled illumination source second TCC operator until the error is below a threshold level and a final discrete source and a final second TCC operator are determined; and performing an optical proximity correction (OPC) operation of a first layout pattern of a reticle , wherein the OPC operation uses the final discrete source and the final second TCC operator to determine a projected image of the first layout pattern of the reticle on a wafer.

根據本發明的一實施例,一種關於設計佈局的方法,包括:根據一微影系統的一光學系統的一照明源和該微影系統的該光學系統的一出射光瞳確定該微影系統的該光學系統的一第一透射交叉係數(TCC)運算子;在一第一數量的取樣位置通過一第一數量的取樣點對該光學系統的該照明源進行取樣以形成一第一離散源;根據該第一離散源和該光學系統的該出射光瞳確定該微影系統的該光學系統的一第二TCC運算子;確定該第一TCC運算子和該第二TCC運算子之間的一誤差;遞迴地調節該第一數量的取樣點和該第一數量的取樣位置以重新取樣該照明源並根據該重新取樣照明源以重新確定該第二TCC運算子直到該誤差在一閾值誤差範圍內且一最終離散源和一最終第二TCC運算子被確定,其中該閾值誤差範圍具有一上限和一下限;對一光罩的一第一佈局圖案執行一反向式微影轉換(ILT)操作,其中該ILT操作使用該最終離散源和該最終第二TCC運算子來確定一晶圓上的該光罩的該第一佈局圖案的一經投影影像,用於確定該第一佈局圖案的一ILT增強;及在一光罩基底上產生該 ILT 經增強第一佈局圖案以製作一光罩。According to an embodiment of the present invention, a method for designing a layout includes: determining the lithography system according to an illumination source of an optical system of a lithography system and an exit pupil of the optical system of the lithography system a first transmission cross coefficient (TCC) operator of the optical system; sampling the illumination source of the optical system by a first number of sampling points at a first number of sampling positions to form a first discrete source; Determine a second TCC operator of the optical system of the lithography system according to the first discrete source and the exit pupil of the optical system; determine a distance between the first TCC operator and the second TCC operator error; recursively adjust the first number of sampling points and the first number of sampling positions to resample the illumination source and re-determine the second TCC operator based on the resampled illumination source until the error is within a threshold error within range and a final discrete source and a final second TCC operator are determined, wherein the threshold error range has an upper bound and a lower bound; performing an inverse lithography transformation (ILT) on a first layout pattern of a reticle operation, wherein the ILT operation uses the final discrete source and the final second TCC operator to determine a projected image of the first layout pattern of the reticle on a wafer for determining a of the first layout pattern ILT enhancement; and generating the ILT enhanced first layout pattern on a reticle substrate to fabricate a reticle.

根據本發明的一實施例,一種微影系統,包括:一主控制器;一光罩;一光罩增強器,其耦合到該主控制器;一光學系統,其包括一照明源並耦合到該主控制器;一光罩投影器,其耦合到該主控制器和該光罩增強器,並且經配置以在一晶圓上的該光罩產生一投影;一分析器模組,其耦合到該主控制器,其中該分析器模組經配置以接收要在該晶圓上的該光罩生產一第一佈局圖案;該光罩增強器通過該主控制器耦合到該分析器模組,並且經配置以從該分析器模組接收該第一佈局圖案,並且執行該第一佈局圖案的一光學鄰近校正(OPC)操作或一反向式微影轉換(ILT)操作其中之一;該光罩增強器進一步經配置以通過以下方式確定一最終離散源和一最終第二TCC運算子:從該分析器模組接收一第一數量的取樣點;根據該光學系統的該照明源和該光學系統的一出射光瞳以確定該微影系統的該光學系統的一第一透射交叉係數(TCC)運算子;通過該第一數量的取樣點對該光學系統的該照明源進行取樣以製作一第一離散源;根據該第一離散源和該光學系統的該出射光瞳確定該微影系統的該光學系統的一第二TCC運算子;確定該第一TCC運算子和該第二TCC運算子之間的一誤差;遞迴地調節該第一數量的取樣點以對該照明源重新取樣並根據該重新取樣照明源重新確定該第二TCC運算子,直到該誤差低於一閾值水平以及確定一最終離散源和一最終第二TCC運算子;及其中該光罩投影器經配置以使用該最終離散源和該最終第二TCC運算子執行到該晶圓上的該光罩的該投影,用於該OPC操作或該ILT操作,以確定該晶圓上的該光罩的該第一佈局圖案的一經投影影像。According to an embodiment of the present invention, a lithography system includes: a main controller; a reticle; a reticle intensifier coupled to the main controller; an optical system including an illumination source and coupled to the main controller; a reticle projector coupled to the main controller and the reticle intensifier and configured to produce a projection on the reticle on a wafer; an analyzer module coupled to to the main controller, wherein the analyzer module is configured to receive the reticle to be produced on the wafer to produce a first layout pattern; the reticle booster is coupled to the analyzer module through the main controller , and configured to receive the first layout pattern from the analyzer module and perform one of an optical proximity correction (OPC) operation or an inverse lithography transformation (ILT) operation of the first layout pattern; the The reticle booster is further configured to determine a final discrete source and a final second TCC operator by: receiving a first number of sampling points from the analyzer module; the illumination source and the an exit pupil of the optical system to determine a first transmission cross coefficient (TCC) operator of the optical system of the lithography system; the illumination source of the optical system is sampled by the first number of sampling points to produce a first discrete source; determining a second TCC operator of the optical system of the lithography system according to the first discrete source and the exit pupil of the optical system; determining the first TCC operator and the second TCC An error between operators; recursively adjusting the first number of sample points to resample the illumination source and re-determining the second TCC operator based on the resampled illumination source until the error is below a threshold level and determining a final discrete source and a final second TCC operator; and wherein the reticle projector is configured to execute the reticle onto the wafer using the final discrete source and the final second TCC operator Projecting, for the OPC operation or the ILT operation, to determine a projected image of the first layout pattern of the reticle on the wafer.

以下揭露提供用於實施所提供標的之不同特徵之諸多不同實施例或實例。下文將描述組件及配置之特定實例以簡化本揭露。當然,此等僅為實例且不意在產生限制。例如,在以下描述中,在第二構件上方或第二構件上形成第一構件可包含其中形成直接接觸之第一構件及第二構件的實施例,且亦可包含其中可在第一構件與第二構件之間形成額外構件使得第一構件及第二構件可不直接接觸的實施例。另外,本揭露可在各個實例中重複參考元件符號及/或字母。此重複係為了簡單及清楚且其本身不指示所討論之各種實施例及/或組態之間的一關係。The following disclosure provides many different embodiments or examples for implementing different features of the provided subject matter. Specific examples of components and configurations are described below to simplify the present disclosure. Of course, these are examples only and are not meant to be limiting. For example, in the following description, forming a first member over or on a second member may include embodiments in which the first member and the second member are formed in direct contact, and may also include embodiments in which the first member and the second member are formed in direct contact. An embodiment in which an additional component is formed between the second component so that the first component and the second component may not be in direct contact. Additionally, the present disclosure may repeat reference element symbols and/or letters in various instances. This repetition is for simplicity and clarity and does not in itself indicate a relationship between the various embodiments and/or configurations discussed.

此外,為便於描述,諸如「下面」、「下方」、「下」、「上方」、「上」及其類似者之空間相對術語在本文中可用於描述一元件或構件與另一(些)元件或構件之關係,如圖中所繪示出。除圖中所描繪之定向之外,空間相對術語亦意欲涵蓋裝置在使用或操作中之不同定向。設備可依其他方式定向(旋轉90度或依其他定向)且亦可因此解譯本文中所使用之空間相對描述詞。另外,術語「由…製成」可以表示「包括」或「由…組成」。在本揭露中,用語「 A、B及C之一」表示「A、B及/或C」(A、B、C,A及B,A及C,B及C或A、B及C),除非另有說明,否則不表示來自A的一個元素、來自B的一個元素及來自C的一個元素。In addition, for ease of description, spatially relative terms such as "below", "below", "under", "above", "upper" and the like may be used herein to describe the relationship between an element or component and another(s) The relationship of elements or components, as drawn in the figure. Spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly. Additionally, the term "consisting of" can mean "comprising" or "consisting of". In this disclosure, the term "one of A, B and C" means "A, B and/or C" (A, B, C, A and B, A and C, B and C or A, B and C) , does not denote one element from A, one element from B, and one element from C unless otherwise stated.

在一些實施例中,將OPC操作或ILT操作中的一或兩者應用於光罩的佈局圖案以減少光阻圖案缺陷。在一些實施例中,OPC和ILT操作都被迭代地執行。OPC和ILT修改光罩的佈局圖案,通過微影系統的光學系統將修改後的光罩的佈局圖案經投影為晶圓上的光阻材料層上的圖案。將光阻材料上的經投影圖案與目標佈局圖案進行比較,並且計算光阻材料上的經投影圖案與目標佈局圖案之間的誤差。依據計算出的誤差及/或某些缺陷(例如,橋接或窄化)的存在,通過OPC及/或ILT操作進一步修改光罩的佈局圖案。重複應用迭代方法,直到缺陷經校正及/或經計算的誤差低於閾值水平為止。在一些實施例中,通過模擬投影來執行光罩的佈局圖案在晶圓的光阻層上的投影,並且計算在晶圓的光阻層上的投影圖案。在模擬投影中,通過取樣網格對微影系統的光學系統的照明源,例如光源或雷射源進行取樣。取樣網格的解析度直接影響模擬投影的複雜性和準確性。如果以低解析度執行照明源取樣,模擬投影可能很快速,但是模擬投影可能會失去準確性。相反地,如果以高解析度執行照明源取樣,則模擬投影可能較慢且耗時,但是模擬投影可能更準確。因此,照明源取樣的解析度限定了OPC和ILT操作的速度以及OPC和ILT操作的準確度。所以,期望能找到用於對照明源進行取樣的合適解析度。In some embodiments, one or both of OPC operations or ILT operations are applied to the layout pattern of the reticle to reduce photoresist pattern defects. In some embodiments, both OPC and ILT operations are performed iteratively. OPC and ILT modify the layout pattern of the photomask, and project the modified layout pattern of the photomask into the pattern on the photoresist material layer on the wafer through the optical system of the lithography system. The projected pattern on the photoresist is compared to the target layout pattern, and an error between the projected pattern on the photoresist and the target layout pattern is calculated. Depending on the calculated errors and/or the presence of certain defects (eg, bridging or narrowing), the layout pattern of the reticle is further modified by OPC and/or ILT operations. The iterative method is repeatedly applied until the defect is corrected and/or the calculated error is below a threshold level. In some embodiments, the projection of the layout pattern of the reticle onto the photoresist layer of the wafer is performed by simulating the projection, and the projected pattern on the photoresist layer of the wafer is calculated. In analog projection, an illumination source, such as a light source or a laser source, of the optical system of the lithography system is sampled through a sampling grid. The resolution of the sampling grid directly affects the complexity and accuracy of the simulated projection. Simulated projections can be fast if lighting source sampling is performed at low resolutions, but simulated projections can lose accuracy. Conversely, if lighting source sampling is performed at high resolution, simulated projection may be slower and time-consuming, but simulated projection may be more accurate. Therefore, the resolution at which the illumination source is sampled defines the speed and accuracy of OPC and ILT operations. Therefore, it is desirable to find a suitable resolution for sampling the illumination source.

圖1繪示出示例積體電路(IC)製造流程100之示意圖。IC製造流程100開始於IC設計模組102,提供佈局圖案M,例如目標佈局圖案,將被生產為晶圓上的IC產品的光阻圖案。IC設計模組102根據IC產品的規格用於處理IC產品的不同步驟,生成各種佈局形狀,例如幾何圖案。在一些實施例中,佈局圖案M由具有幾何圖案的信息的一或多個數據檔呈現。在一些實施例中,在微影製程中將光罩的佈局圖案光學地投影到晶圓上會降級光罩的佈局圖案並在晶圓的光阻層上產生圖案缺陷。可以將光學鄰近校正(OPC)操作應用於光罩的佈局圖案,以減少晶圓上的圖案缺陷。OPC可以在微影製程之前修改光罩的佈局圖案,以補償微影及/或蝕刻製程的影響。IC製造流程100還示出光罩增強器104。如將在下文關於圖2A更加詳細描述的,在一些實施例中,光罩增強器104執行OPC。光罩增強器104在光罩上製作經OPC處理(例如,經校正或經增強)佈局圖案M'。在一些實施例中,由具有增強的幾何圖案的信息的一或多個數據檔來呈現經增強佈局圖案M'。FIG. 1 depicts a schematic diagram of an example integrated circuit (IC) manufacturing flow 100 . The IC manufacturing process 100 begins with the IC design module 102 providing a layout pattern M, such as a target layout pattern, to be produced as photoresist patterns for IC products on a wafer. The IC design module 102 is used in different steps of processing the IC product according to the specifications of the IC product to generate various layout shapes, such as geometric patterns. In some embodiments, the layout pattern M is represented by one or more data files with information about geometric patterns. In some embodiments, optically projecting the layout pattern of the reticle onto the wafer during the lithography process degrades the layout pattern of the reticle and creates pattern defects on the photoresist layer of the wafer. Optical proximity correction (OPC) operations can be applied to the layout pattern of the reticle to reduce pattern defects on the wafer. OPC can modify the layout pattern of the mask before the lithography process to compensate for the influence of the lithography and/or etching process. IC fabrication flow 100 also shows reticle booster 104 . As will be described in more detail below with respect to FIG. 2A , in some embodiments, reticle booster 104 performs OPC. The reticle enhancer 104 produces an OPC-processed (eg, corrected or enhanced) layout pattern M' on the reticle. In some embodiments, the enhanced layout pattern M' is represented by one or more data files with enhanced geometric pattern information.

IC製造流程100進一步示出光罩投影系統106。在一些實施例中,光罩投影系統106在光罩上產生經增強佈局圖案M'。在一些實施例中,光罩投影系統106執行兩個函數。作為第一函數,光罩投影系統106使用經增強佈局圖案M'的數據檔,並使用電子束在光罩基底(本文未示出)上生成經增強佈局圖案M',以產生用於ICs的光罩。另外,作為第二函數,光罩投影系統106將光罩的經增強佈局圖案M'光學地投影到晶圓108上,以在晶圓108上產生IC佈局。The IC manufacturing flow 100 further illustrates a reticle projection system 106 . In some embodiments, the reticle projection system 106 generates the enhanced layout pattern M' on the reticle. In some embodiments, reticle projection system 106 performs two functions. As a first function, the reticle projection system 106 uses the data file of the enhanced layout pattern M' and uses an electron beam to generate the enhanced layout pattern M' on a reticle substrate (not shown here) to produce a pattern for the ICs. mask. Additionally, as a second function, the reticle projection system 106 optically projects the enhanced layout pattern M′ of the reticle onto the wafer 108 to generate the IC layout on the wafer 108 .

圖2A和圖2B繪示出示例光罩增強器和與目標佈局圖案相關聯的OPC經增強佈局圖案示意圖。圖2A繪示出光罩增強器104的示意圖,該光罩增強器104在OPC增強器122的輸入處接收目標佈局圖案M,並在步驟150的輸出處產生經增強佈局圖案M'。光罩增強器104執行迭代處理過程。在一些實施例中,光罩增強器104包括OPC增強器122,其從IC設計模組102接收將在晶圓108上產生的目標佈局圖案M。OPC增強器122對目標佈局圖案M執行增強,並產生經OPC處理(例如,經校正或經增強)佈局圖案M'。如上所述,OPC是一種微影技術,用於校正或增強佈局圖案M並向目標佈局圖案M添加改進的成像效果,從而使經OPC處理佈局圖案M'在晶圓108上再現目標佈局圖案M。例如,OPC用於補償由於光學繞射引起的影像失真。在一些實施例中,目標佈局圖案M是具有要在晶圓108上產生的幾何圖案的信息的數據檔,且OPC增強器122修改該數據檔,並產生代表經增強佈局圖案M'的經校正的數據檔。在一些實施例中,目標佈局圖案M和經增強佈局圖案M'由數據檔中的佈局圖案的頂點表示。因此,在一些實施例中,圓角和彎折由具有多個頂點和連接這些頂點的多個線段的曲線形狀表示,並且該曲線形狀由數據檔中的多個頂點表示。2A and 2B depict schematic diagrams of example reticle intensifiers and OPC enhanced layout patterns associated with target layout patterns. FIG. 2A depicts a schematic diagram of reticle intensifier 104 that receives target layout pattern M at the input of OPC intensifier 122 and generates enhanced layout pattern M′ at the output of step 150 . The reticle enhancer 104 performs an iterative process. In some embodiments, the reticle booster 104 includes an OPC booster 122 that receives the target layout pattern M to be generated on the wafer 108 from the IC design module 102 . The OPC enhancer 122 performs enhancement on the target layout pattern M, and generates an OPC-processed (eg, corrected or enhanced) layout pattern M′. As mentioned above, OPC is a lithography technique for correcting or enhancing the layout pattern M and adding an improved imaging effect to the target layout pattern M, so that the OPC-processed layout pattern M′ reproduces the target layout pattern M on the wafer 108 . For example, OPC is used to compensate for image distortion caused by optical diffraction. In some embodiments, the target layout pattern M is a data file having information of a geometric pattern to be produced on the wafer 108, and the OPC enhancer 122 modifies the data file and produces a corrected pattern representing the enhanced layout pattern M′ data file. In some embodiments, the target layout pattern M and the enhanced layout pattern M' are represented by vertices of the layout patterns in the data file. Thus, in some embodiments, the rounded corners and bends are represented by a curvilinear shape having a plurality of vertices and a plurality of line segments connecting the vertices, and the curvilinear shape is represented by a plurality of vertices in the data file.

圖2A進一步示出光罩投影器130,例如用於光罩投影的模擬器,該光罩投影器130經應用到經增強佈局圖案M'上以在晶圓上產生經投影光阻圖案101。在一些實施例中,經增強佈局圖案M'是數據檔,並且光罩投影器130模擬經增強佈局圖案M'在晶圓上的投影並產生模擬的經投影光阻圖案101。經投影光阻圖案101由OPC驗證器140檢查是否存在誤差。在一些實施例中,OPC驗證器140除了接收經投影光阻圖案101之外還接收目標佈局圖案M,並且將經投影光阻圖案101與目標佈局圖案M進行比較以找到目標佈局圖案M和經投影光阻圖案101之間的誤差。在一些實施例中,當目標佈局圖案M和經投影光阻圖案101之間的誤差低於閾值水平並且經投影光阻圖案中沒有缺陷(例如,圖3中所示的橋接或窄化)時,OPC驗證器140驗證經增強,例如經OPC處理,的佈局圖案M'。在一些實施例中,在驗證了經增強佈局圖案M'之後,OPC驗證器140生成並發送驗證信號103。在一些實施例中,OPC驗證器140將經增強佈局圖案M'儲存在數據庫中。在一些實施例中,代替模擬結果,通過使用經增強佈局圖案M'製造的光罩形成光阻圖案,並且測量該光阻圖案的形狀和尺寸並將其反饋給OPC增強器。關於光罩投影器130,圖7A和7B有更詳細地描述。FIG. 2A further illustrates a reticle projector 130 , such as a simulator for reticle projection, which is applied onto the enhanced layout pattern M' to produce the projected photoresist pattern 101 on the wafer. In some embodiments, the enhanced layout pattern M′ is a data file, and the reticle projector 130 simulates the projection of the enhanced layout pattern M′ on the wafer and generates the simulated projected photoresist pattern 101 . The projected photoresist pattern 101 is checked by the OPC verifier 140 for errors. In some embodiments, the OPC verifier 140 receives the target layout pattern M in addition to the projected photoresist pattern 101, and compares the projected photoresist pattern 101 with the target layout pattern M to find the target layout pattern M and the projected photoresist pattern M. The error between the projected photoresist patterns 101 . In some embodiments, when the error between the target layout pattern M and the projected photoresist pattern 101 is below a threshold level and there are no defects in the projected photoresist pattern (eg, bridges or narrowings as shown in FIG. 3 ). , the OPC verifier 140 verifies the enhanced, eg, OPC-processed, layout pattern M′. In some embodiments, after verifying the enhanced layout pattern M′, the OPC verifier 140 generates and sends a verification signal 103 . In some embodiments, OPC validator 140 stores enhanced layout pattern M' in a database. In some embodiments, instead of simulation results, a photoresist pattern is formed by using a photomask manufactured by enhancing the layout pattern M′, and the shape and size of the photoresist pattern are measured and fed back to the OPC booster. Regarding the reticle projector 130, FIGS. 7A and 7B are described in more detail.

在步驟150中測試驗證信號103,並且如果驗證信號103不成功,例如,誤差高於閾值水平或經投影光阻圖案101中存在缺陷,則通過OPC增強器122應用進一步的OPC增強來繼續迭代。迭代持續進行直到驗證信號103成功為止。當驗證信號103成功時,提供經增強佈局圖案M'作為光罩增強器104的輸出。在一些實施例中,目標佈局圖案M和經投影光阻圖案101之間的誤差被限定為目標佈局圖案M的邊界和經投影光阻圖案101的邊界之間的距離。The verification signal 103 is tested in step 150 and if the verification signal 103 is unsuccessful, eg, an error above a threshold level or a defect in the projected photoresist pattern 101 , further OPC enhancements are applied by the OPC enhancer 122 to continue the iteration. The iterations continue until the verification signal 103 is successful. When the verification signal 103 is successful, the enhanced layout pattern M′ is provided as an output of the reticle enhancer 104 . In some embodiments, the error between the target layout pattern M and the projected photoresist pattern 101 is defined as the distance between the boundary of the target layout pattern M and the boundary of the projected photoresist pattern 101 .

如圖所示,除了光罩增強器104之外,圖2A還包括光罩產生器141和光學系統145。在一些實施例中,經增強佈局圖案M'作為數據檔被發送到光罩產生器141。光罩產生器141在光罩基底上產生經增強佈局圖案M',以生成光罩143。在一些實施例中,光微影系統的光學系統145使用光罩143以在晶圓108的光阻層上產生光阻圖案。As shown, FIG. 2A includes a reticle generator 141 and an optical system 145 in addition to the reticle intensifier 104 . In some embodiments, the enhanced layout pattern M′ is sent to the mask generator 141 as a data file. The photomask generator 141 generates the enhanced layout pattern M′ on the photomask substrate to generate the photomask 143 . In some embodiments, the optical system 145 of the photolithography system uses the mask 143 to create a photoresist pattern on the photoresist layer of the wafer 108 .

圖2B繪示出連接線的目標佈局圖案303和OPC增強,例如經校正的佈局圖案301。在一些實施例中,圖2B的OPC經增強佈局圖案301形成在光罩上,並且光罩通過圖1的光罩投影系統106經投影到晶圓,例如晶圓108上。FIG. 2B depicts the target layout pattern 303 and OPC enhancements, such as the corrected layout pattern 301 , of the connection lines. In some embodiments, the OPC enhanced layout pattern 301 of FIG. 2B is formed on a reticle, and the reticle is projected onto a wafer, such as wafer 108 , by the reticle projection system 106 of FIG. 1 .

圖3繪示出具有兩個缺陷區域的示例佈局輪廓。圖3繪示出具有兩個缺陷區域302和304的光阻圖案300。當在OPC處理之後將經校正光罩佈局M'投影到晶圓108的光阻層上時,可以由光罩投影器130產生光阻圖案300,如本文所揭露。如圖所示,兩個缺陷區域302、304分別包括橋接部312和橋接部314(例如,短路),它們是在缺陷區域302和304的中間的相鄰佈局線之間的連接部。在一些實施例中,缺陷區域302和304被反向投影到經校正光罩佈局M'中的兩個對應的熱點區域。在一些實施例中,在經校正光罩佈局M',例如,在經校正光罩佈局M'中的熱點區域上,上執行ILT操作,以校正在晶圓108的光阻層中產生的光阻圖案的對應缺陷區域302和304。Figure 3 depicts an example layout profile with two defect regions. FIG. 3 illustrates a photoresist pattern 300 with two defect regions 302 and 304 . When the corrected reticle layout M′ is projected onto the photoresist layer of wafer 108 after OPC processing, photoresist pattern 300 may be generated by reticle projector 130 as disclosed herein. As shown, the two defect regions 302 , 304 respectively include a bridge 312 and a bridge 314 (eg, short circuit), which are connections between adjacent layout lines in the middle of the defect regions 302 and 304 . In some embodiments, defect regions 302 and 304 are back-projected to two corresponding hot spot regions in corrected reticle layout M'. In some embodiments, ILT operations are performed on the corrected reticle layout M′, e.g., on hotspot regions in the corrected reticle layout M′, to correct light generated in the photoresist layer of wafer 108 The corresponding defect regions 302 and 304 of the resist pattern.

圖4繪示出示例佈局校正器的示意圖。圖4經配置以執行ILT增強。圖4示出光罩增強器104,其在ILT增強器452的輸入處接收目標佈局圖案M,並且在步驟460的輸出處產生經增強光罩佈局462。在一些實施例中,ILT增強器452在OPC操作之後接收經校正光罩佈局M'。當將經校正光罩佈局M'或目標佈局圖案M投影在晶圓108的光阻層上時,經校正光罩佈局M'或目標佈局圖案M包括與光阻層上的缺陷相對應的熱點區域。FIG. 4 depicts a schematic diagram of an example layout corrector. Figure 4 is configured to perform ILT enhancement. FIG. 4 shows the reticle booster 104 which receives the target layout pattern M at the input of the ILT booster 452 and produces an enhanced reticle layout 462 at the output of step 460 . In some embodiments, the ILT enhancer 452 receives the corrected reticle layout M' after the OPC operation. When the corrected reticle layout M' or target layout pattern M is projected onto the photoresist layer of wafer 108, the corrected reticle layout M' or target layout pattern M includes hot spots corresponding to defects on the photoresist layer area.

ILT增強器452對經校正光罩佈局M'或目標佈局圖案M的熱點區域執行增強,例如約束反濾波操作,並產生迭代結果,即經增強光罩佈局462。通過光罩投影器130將經增強光罩佈局462投影在晶圓108的光阻層上,以製作經投影光阻圖案458。在一些實施例中,光罩投影器130執行模擬投影並且與由圖7A的配置執行的操作一致。經投影光阻圖案458由ILT驗證器456檢查缺陷區域。在步驟460測試驗證結果468,並且如果驗證結果468不成功,例如存在缺陷區域,則通過修改ILT增強器452的佈局增強來繼續迭代。迭代一直持續到驗證結果468成功並且經投影光阻圖案458沒有任何缺陷區域為止。當驗證結果468成功時,在步驟460提供經增強光罩佈局462。The ILT enhancer 452 performs enhancement, such as a constrained inverse filtering operation, on the corrected reticle layout M′ or the hot spot region of the target layout pattern M, and generates an iterative result, the enhanced reticle layout 462 . The enhanced mask layout 462 is projected onto the photoresist layer of the wafer 108 by the mask projector 130 to produce the projected photoresist pattern 458 . In some embodiments, reticle projector 130 performs analog projection and is consistent with operations performed by the configuration of FIG. 7A . The projected photoresist pattern 458 is inspected for defective areas by an ILT verifier 456 . The verification result 468 is tested at step 460 , and if the verification result 468 is not successful, eg, there is a defective area, the iteration continues by modifying the layout enhancement of the ILT enhancer 452 . The iteration continues until the verification result 468 is successful and the projected photoresist pattern 458 is free of any defect areas. When the verification result 468 is successful, an enhanced reticle layout 462 is provided at step 460 .

如圖所示,除了光罩增強器104之外,圖4還包括光罩產生器141和光學系統145。如上所述,光罩產生器141從經增強光罩佈局462生成光罩143,並且光微影系統的光學系統145投影到光罩143,並在晶圓108的光阻層上產生光阻圖案。關於圖7A和7B有更詳細地描述光罩投影器130。As shown, in addition to the reticle intensifier 104 , FIG. 4 also includes a reticle generator 141 and an optical system 145 . As described above, mask generator 141 generates mask 143 from enhanced mask layout 462 and optical system 145 of the photolithography system projects onto mask 143 and produces a photoresist pattern on the photoresist layer of wafer 108 . The reticle projector 130 is described in more detail with respect to Figures 7A and 7B.

圖5繪示出用於最佳化透射交叉係數(TCC)運算子的示例源取樣器系統500的示意圖。圖5示出輸入源402,例如照明源,以及TCC產生器模組421。在一些實施例中,輸入源402,例如照明源,是微影系統的光學系統(例如,圖8A和8B的光學系統800和850)的參數照明源。在一些實施例中,輸入源402是雷射源。在一些實施例中,輸入源402具有高斯輪廓 ,其標準差在大約1公分至大約20公分之間。在一些實施例中,輸入源402具有圓形輪廓,該圓形輪廓的半徑在1公分和20公分之間並且具有均勻的振幅。在一些實施例中,輸入源402是同調或部分同調源之一。在一些實施例中,輸入源402是非同調源。在一些實施例中,輸入源402是具有約250奈米至約100奈米的波長的深紫外線(DUV),或具有約100奈米至約10奈米的波長的極紫外線(EUV)源。在一些實施例中,輸入源402具有約1公分×1公分(直徑約2公分)至約20公分×20公分(直徑約40公分)的尺寸。圖5還示出了離散化源運算子406和TCC產生器模組423。離散化源運算子406對輸入源402進行取樣,並提供離散源420。如圖5所示,TCC產生器模組421使用輸入源402和包括與圖8A和8B的出射光瞳830或831一致的出射光瞳的光學參數411,並生成,例如計算,TCC運算子404。TCC產生器模組423使用離散源420和光學參數411,並生成(例如計算)TCC運算子408。在一些實施例中,TCC產生器模組421和423使用下面的方程式(2)來生成TCC運算子404和408。而且,如圖5所示,源取樣器系統500提供TCC運算子404和408以及離散源420作為輸出。5 depicts a schematic diagram of an example source sampler system 500 for optimizing a transmission cross coefficient (TCC) operator. FIG. 5 shows an input source 402 , such as an illumination source, and a TCC generator module 421 . In some embodiments, input source 402, such as an illumination source, is a parametric illumination source of an optical system of a lithography system (eg, optical systems 800 and 850 of FIGS. 8A and 8B ). In some embodiments, input source 402 is a laser source. In some embodiments, the input source 402 has a Gaussian profile with a standard deviation between about 1 cm and about 20 cm. In some embodiments, the input source 402 has a circular profile with a radius between 1 cm and 20 cm and a uniform amplitude. In some embodiments, input source 402 is one of a coherent or partially coherent source. In some embodiments, input source 402 is a non-coherent source. In some embodiments, the input source 402 is a deep ultraviolet (DUV) source having a wavelength of about 250 nm to about 100 nm, or an extreme ultraviolet (EUV) source having a wavelength of about 100 nm to about 10 nm. In some embodiments, the input source 402 has dimensions from about 1 cm by 1 cm (about 2 cm in diameter) to about 20 cm by 20 cm (about 40 cm in diameter). FIG. 5 also shows the discretized source operator 406 and the TCC generator module 423 . The discretized source operator 406 samples the input source 402 and provides a discretized source 420 . As shown in FIG. 5 , TCC generator module 421 uses input source 402 and optical parameters 411 including an exit pupil consistent with exit pupil 830 or 831 of FIGS. 8A and 8B and generates, e.g., computes, TCC operator 404 . TCC generator module 423 uses discrete source 420 and optical parameters 411 and generates (eg, computes) TCC operator 408 . In some embodiments, TCC generator modules 421 and 423 generate TCC operators 404 and 408 using equation (2) below. Also, as shown in FIG. 5 , source sampler system 500 provides TCC operators 404 and 408 and discrete source 420 as outputs.

因此,在一些實施例中,TCC運算子404取決於輸入源402,例如輸入源402的形狀和大小,而TCC運算子408取決於離散源420,例如輸入源402的取樣點的分佈。如下方程式(2)所示,TCC運算子取決於輸入源的空間傅立葉轉換。另外,TCC運算子404和408取決於微影系統的光學參數411,例如,微影系統的光學系統的光學參數411。因此,TCC運算子404和408可以取決於光學系統的照明源的波長、照明源的同調量、光學系統的數值孔徑、光學系統的出射光瞳的形狀和大小、和光學系統的像差。在一些實施例中,誤差計算器410確定TCC運算子404和TCC運算子408之間的錯誤。在一些實施例中,誤差計算器410生成誤差422,該誤差是TCC運算子404和TCC運算子408之間的平方差的和,例如,L2範數、弗比尼斯(Frobenius)範數,是TCC運算子404和TCC運算子408對應點之間的平方差之和。Thus, in some embodiments, the TCC operator 404 depends on the input source 402 , such as the shape and size of the input source 402 , and the TCC operator 408 depends on the discrete source 420 , such as the distribution of sampling points of the input source 402 . As shown in equation (2) below, the TCC operator depends on the spatial Fourier transform of the input source. In addition, the TCC operators 404 and 408 depend on the optical parameters 411 of the lithography system, eg, the optical parameters 411 of the optical system of the lithography system. Thus, TCC operators 404 and 408 may depend on the wavelength of the illumination source of the optical system, the coherence amount of the illumination source, the numerical aperture of the optical system, the shape and size of the exit pupil of the optical system, and the aberrations of the optical system. In some embodiments, error calculator 410 determines an error between TCC operator 404 and TCC operator 408 . In some embodiments, error calculator 410 generates error 422 which is the sum of squared differences between TCC operator 404 and TCC operator 408, e.g., L2 norm, Frobenius norm, is The sum of the squared differences between the corresponding points of the TCC operator 404 and the TCC operator 408 .

在一些實施例中,投影影像的強度I,例如圖2A的經投影光阻圖案101或圖4的經投影光阻圖案458由以下方程式(1)和(2)定義: I(x)= M(α)T(α,α') M *(α')e 2πi(α-α' )xdadα' 方程式(1) T(α,α')=∫S(α s)P(α+α s)P *(α'+α s)dα s 方程式(2) 其中α是空間頻率座標,M是光罩的佈局圖案的空間傅立葉轉換,P是光學系統的出射光瞳函數,S是照明源的強度分佈的空間傅立葉轉換,T是是TCC運算子。在一些實施例中,TCC運算子包括出射光瞳函數P和照明源S的空間傅立葉轉換,如方程式(2)所示。另外,TCC運算子合併了方程式(1)的積分運算。在一些實施例中,光學系統的出射光瞳是虛擬孔徑,使得只有穿過出射光瞳的光線才可以出射光學系統。在一些實施例中,出射光瞳函數P(α)是出射光瞳作為變數α的函數的表示,其中α是2D座標系統中的二維(2D)變數,例如2D點(α=(F x和F y))在頻率平面中。在一些實施例中,TCC產生器模組421和423根據方程式(2)當作兩個變數α和α'的函數,以及使用TCC運算子404和TCC運算子408分別對方程式(1)的強度I的函數進行數值評估,生成TCC運算子404和TCC運算子408。對兩個變數α和α'進行取樣,並且在變數的取樣點處計算TCC運算子404、TCC運算子408和方程式(1)的強度I。在一些實施例中,在空間頻率座標中兩個變數α和α'的取樣解析度高於輸入源402的對應取樣解析度,並且因此在方程式(1)的計算中,對變數α和α'的取樣以評估TCC運算子404和408以及方程式(1)的強度I引起的誤差可忽略不計,例如小於百分之一。在一些實施例中,出射光瞳函數是由振幅表示的實數函數,該振幅在圓內為1,在圓外為0。如上所示,TCC運算子取決於出射光瞳函數和照明源分佈。在一些實施例中,出射光瞳函數是複數函數,由出射光瞳函數的每個點處的振幅和相位表示,其中,光瞳函數的相位包括光學系統的像差。關於圖8A和8B描述出射光瞳。在一些實施例中,TCC運算子是對稱且正定的,因此可以用非負的膨脹係數λ n展開為可分離的核心φ n和φ n *,如以下方程式(3)所示: T(α,α')=∑ nλ nφ n(α)φ n*(α') , 𝝀 𝒏≥𝟎, 𝒏=𝟏, 𝟐, 𝟑,…   方程式(3) In some embodiments, the intensity I of a projected image, such as the projected photoresist pattern 101 of FIG. 2A or the projected photoresist pattern 458 of FIG. 4 is defined by the following equations (1) and (2): I(x)= M(α)T(α,α') M * (α')e 2πi(α-α' )x dadα'Equation (1) T(α,α')=∫S(α s )P(α+ α s )P * (α'+α s )dα s Equation (2) where α is the spatial frequency coordinate, M is the spatial Fourier transform of the layout pattern of the reticle, P is the exit pupil function of the optical system, and S is the illumination The spatial Fourier transform of the intensity distribution of the source, T is the TCC operator. In some embodiments, the TCC operator includes a spatial Fourier transform of the exit pupil function P and the illumination source S, as shown in equation (2). In addition, the TCC operator incorporates the integral operation of equation (1). In some embodiments, the exit pupil of the optical system is a virtual aperture such that only light rays passing through the exit pupil can exit the optical system. In some embodiments, the exit pupil function P(α) is the representation of the exit pupil as a function of the variable α, where α is a two-dimensional (2D) variable in a 2D coordinate system, such as a 2D point (α = (F x and F y )) in the frequency plane. In some embodiments, TCC generator modules 421 and 423 act as functions of two variables α and α' according to equation (2), and use TCC operator 404 and TCC operator 408 respectively to the intensity of equation (1). The function of I is evaluated numerically, generating TCC operator 404 and TCC operator 408 . Two variables α and α′ are sampled, and the intensity I of the TCC operator 404, TCC operator 408 and equation (1) is calculated at the sampling points of the variables. In some embodiments, the sampling resolution of the two variables α and α′ in the spatial frequency coordinates is higher than the corresponding sampling resolution of the input source 402, and thus in the calculation of equation (1), for the variables α and α′ The error caused by sampling to evaluate the intensity I of TCC operators 404 and 408 and equation (1) is negligible, eg, less than one percent. In some embodiments, the exit pupil function is a real function represented by an amplitude that is 1 inside the circle and 0 outside the circle. As shown above, the TCC operator depends on the exit pupil function and the illumination source distribution. In some embodiments, the exit pupil function is a complex function represented by the amplitude and phase at each point of the exit pupil function, wherein the phase of the pupil function includes aberrations of the optical system. The exit pupil is described with respect to Figures 8A and 8B. In some embodiments, the TCC operator is symmetric and positive definite, and thus can be expanded into separable cores φ n and φ n * with a non-negative expansion coefficient λ n , as shown in equation (3) below: T(α, α')=∑ n λ n φ n (α)φ n *(α') , 𝝀 𝒏 ≥𝟎, 𝒏=𝟏, 𝟐, 𝟑,… Equation (3)

在一些實施例中,在變數α和α'的取樣點處對核心進行數值評估。另外,在一些實施例中,TCC運算子404和TCC運算子408被近似為核心的有限數量的加權和。在一些實施例中,TCC運算子404或TCC運算子408被離散化並以矩陣表示,例如2D正定TCC矩陣。在一些實施例中,TCC運算子404和TCC運算子408在數變α和α'的相同範圍內展開,因此,對應於TCC運算子404和TCC運算子408的TCC矩陣具有相同的維度。另外,方程式(1)的積分表示為TCC矩陣的矩陣乘法和光罩的佈局圖案M的離散空間傅立葉轉換。在一些實施例中,源取樣器系統500的TCC產生器模組421和423進一步執行離散化,並且在輸出處提供TCC運算子404和408為TCC矩陣。另外,誤差計算器410生成誤差422作為TCC矩陣的對應元素之間的平方差的和。In some embodiments, the kernel is evaluated numerically at sampling points of the variables α and α′. Additionally, in some embodiments, TCC operator 404 and TCC operator 408 are approximated as a weighted sum of a finite number of cores. In some embodiments, TCC operator 404 or TCC operator 408 is discretized and represented by a matrix, such as a 2D positive definite TCC matrix. In some embodiments, TCC operator 404 and TCC operator 408 are expanded over the same range of variables α and α′, thus, the TCC matrices corresponding to TCC operator 404 and TCC operator 408 have the same dimensions. Additionally, the integral of Equation (1) is expressed as a matrix multiplication of the TCC matrix and a discrete-space Fourier transform of the layout pattern M of the reticle. In some embodiments, the TCC generator modules 421 and 423 of the source sampler system 500 further perform discretization and provide the TCC operators 404 and 408 as TCC matrices at output. In addition, error calculator 410 generates error 422 as the sum of squared differences between corresponding elements of the TCC matrix.

另外,分別將核心φ n和φ n *離散化,並表示為水平或垂直向量,例如,一維(1D)水平或1D垂直矩陣。在一些實施例中,誤差計算器410生成誤差422作為TCC矩陣的對應元素之間的平方差的和。在一些實施例中,當TCC矩陣為正定時,將係數λ n作為加權,將TCC矩陣展開為多個矩陣的加權和,其中,生成每一矩陣作為每一垂直向量和與核心φ n和φ n *之一相關聯的對應水平向量的乘積。加權和是方程式(3)的矩陣形式。在一些實施例中,如方程式(3)所示,將TCC運算子404或TCC運算子408展開為核的加權和。在一些實施例中,通過選擇核心φ n和φ n *的子集來近似TCC運算子404及/或TCC運算子408。另外,通過近似的TCC運算子404和408近似微影光罩的經投影影像。在一些實施例中,通過對非負係數λ n排序,然後選擇大於閾值的係數λ n以及與大於閾值的係數相關聯的核心,來選擇有限數量的核心。丟棄小於閾值的係數λ n和與小於閾值的係數λ n相關聯的核心。 Additionally, the kernels φn and φn* are discretized, respectively, and represented as horizontal or vertical vectors, eg, one-dimensional (1D) horizontal or 1D vertical matrices. In some embodiments, error calculator 410 generates error 422 as a sum of squared differences between corresponding elements of the TCC matrix. In some embodiments, when the TCC matrix is positive, the coefficient λ n is used as a weight, and the TCC matrix is expanded into a weighted sum of multiple matrices, wherein each matrix is generated as each vertical vector sum with the core φ n and φ n * One of the products associated with the corresponding horizontal vectors. The weighted sum is the matrix form of equation (3). In some embodiments, TCC operator 404 or TCC operator 408 is expanded as a weighted sum of cores, as shown in equation (3). In some embodiments, TCC operator 404 and/or TCC operator 408 are approximated by selecting a subset of cores φ n and φ n * . Additionally, the projected image of the lithography mask is approximated by the approximated TCC operators 404 and 408 . In some embodiments, the limited number of cores is selected by sorting the non-negative coefficients λ n and then selecting coefficients λ n greater than a threshold and the cores associated with coefficients greater than the threshold. Coefficients λ n smaller than the threshold and kernels associated with coefficients λ n smaller than the threshold are discarded.

在由誤差計算器410計算出誤差422之後,在操作412中將誤差與下(第一)閾值和上(第二)閾值進行比較。如果誤差422在上閾值和下閾值之內,則離散源420是可接受的,並且提供離散源420為輸出。在一些實施例中,離散源420和對應的TCC運算子408用於計算圖2A和圖4的光罩投影器130中的光罩的投影。在一些實施例中,使用奇異值分解來限定核心並選擇具有最高能量的核心。在一些實施例中,確定TCC運算子404或TCC運算子408包括,確定方程式(2)中所示的兩個具有不同的偏移α和α′的出射光瞳P之間的橫截面。 在一些實施例中,當照明源是部分同調的時,確定TCC運算子404或TCC運算子408包括確定兩個出射光瞳之間的橫截面以及半徑等於照明源的同調長度的圓,從而限制照明源的空間傅立葉轉換S。After the error 422 is calculated by the error calculator 410 , the error is compared to a lower (first) threshold and an upper (second) threshold in operation 412 . If the error 422 is within the upper and lower thresholds, then the discrete source 420 is acceptable and the discrete source 420 is provided as an output. In some embodiments, the discrete source 420 and corresponding TCC operator 408 are used to compute the projection of the reticle in the reticle projector 130 of FIGS. 2A and 4 . In some embodiments, a singular value decomposition is used to define the cores and select the core with the highest energy. In some embodiments, determining the TCC operator 404 or the TCC operator 408 includes determining a cross-section between two exit pupils P having different offsets α and α′ as shown in equation (2). In some embodiments, when the illumination source is partially coherent, determining the TCC operator 404 or the TCC operator 408 includes determining a cross-section between the two exit pupils and a circle with a radius equal to the coherence length of the illumination source, thereby limiting Spatial Fourier transform S of the illumination source.

在一些實施例中,如果誤差422大於第二閾值,則取樣點的數量增加(例如根據誤差422),且離散源420被重新取樣。由重新離散化源414運算子執行重新取樣,並且根據重新取樣的離散源重新確定TCC運算子408。在一些實施例中,通過增加取樣點的數量,減小了誤差422。在一些實施例中,如果誤差422小於第一閾值,則取樣點的數量減少(例如根據誤差422),離散源420由重新離散化源414運算子重新取樣,並且根據重新取樣的離散源重新確定TCC運算子408。在一些實施例中,通過減少取樣點的數量,減少了光罩投影器130的計算時間,並且計算經投影影像變得更快。在減少或增加取樣點的數量之後,由誤差計算器410重新計算誤差422,以確定誤差422是否保持在第一閾值和第二閾值之間。在一些實施例中,誤差422由諸如L-無窮範數(最大值)或線性代數範數(例如,弗比尼斯範數或核範數)的其他範數所限定,其中線性代數範數用於TCC矩陣。In some embodiments, if the error 422 is greater than a second threshold, the number of sampling points is increased (eg, based on the error 422 ) and the discrete source 420 is resampled. The re-sampling is performed by the re-discretization source 414 operator, and the TCC operator 408 is re-determined from the re-sampled discretization source. In some embodiments, by increasing the number of sampling points, error 422 is reduced. In some embodiments, if the error 422 is less than a first threshold, the number of sampling points is reduced (e.g., according to the error 422), the discretized source 420 is resampled by the re-discretized source 414 operator, and re-determined based on the re-sampled discretized source TCC operator 408 . In some embodiments, by reducing the number of sampling points, the computation time of the reticle projector 130 is reduced and computation of the projected image becomes faster. After reducing or increasing the number of sampling points, the error 422 is recalculated by the error calculator 410 to determine whether the error 422 remains between the first threshold and the second threshold. In some embodiments, the error 422 is bounded by other norms such as the L-infinity norm (maximum) or a linear algebraic norm (e.g., a Phoebenes norm or a nuclear norm), where the linear algebraic norm is expressed in terms of in the TCC matrix.

圖6A、6B和6C繪示出用於對照明源進行取樣和重新取樣並生成TCC運算子的示例系統的示意圖。圖6A示出用於對輸入源402進行取樣的圖。在一些實施例中,輸入源402是如上所描述的參數照明源。輸入源402由取樣器630進行取樣,取樣器630確定取樣點的數量和取樣點的分佈。在一些實施例中,取樣器630使用如上所描述的光學參數411來確定輸入源402的取樣點的數目,例如取樣解析度,以產生離散源420。在一些實施例中,取樣器630根據輸入源402的空間頻率含量使用奈奎斯取樣率(Nyquist rate)來確定取樣點的數量。另外,離散源產生器632接收取樣點的數量,並確定取樣點如何(例如均勻或不均勻地)在輸入源402中分佈。在一些實施例中,取樣器630和離散源產生器632的組合與圖5的離散化源運算子406一致。6A, 6B, and 6C depict schematic diagrams of example systems for sampling and resampling illumination sources and generating TCC operators. FIG. 6A shows a diagram for sampling an input source 402 . In some embodiments, input source 402 is a parametric illumination source as described above. The input source 402 is sampled by the sampler 630, which determines the number of sampling points and the distribution of the sampling points. In some embodiments, the sampler 630 uses the optical parameters 411 as described above to determine the number of sampling points of the input source 402 , such as the sampling resolution, to generate the discrete source 420 . In some embodiments, the sampler 630 uses a Nyquist rate to determine the number of sampling points according to the spatial frequency content of the input source 402 . In addition, the discrete source generator 632 receives the number of sampling points and determines how (eg, evenly or unevenly) the sampling points are distributed in the input source 402 . In some embodiments, the combination of the sampler 630 and the discrete source generator 632 is identical to the discretized source operator 406 of FIG. 5 .

圖6B示出用於對離散源420進行重新取樣的圖。離散源420由重新取樣器624重新取樣,該重新取樣器624確定經修改數量的取樣點634和經修改取樣點的分佈。在一些實施例中,重新取樣器624使用如上所描述的光學參數411和誤差422來確定離散源420的經修改數量的取樣點634,例如修改的取樣解析度,以產生修改的離散源。在一些實施例中,離散源產生器626接收經修改數量的取樣點634,並確定經修改取樣點如何分佈。在一些實施例中,重新取樣器624和離散源產生器626的組合與圖5的重新離散化源414一致。在一些實施例中,局部或全域運算子用於重新取樣。 在一些實施例中,離散傅立葉轉換運算子用於重新取樣,使得離散源420的原始取樣點被傅立葉轉換到頻域。然後,將傅立葉逆轉換應用於頻域,以在空間域中生成連續傅立葉逆轉換函數。傅立葉逆轉換函數是在離散源產生器626限定的位置通過經修改數量的取樣點所取樣的。FIG. 6B shows a graph for resampling a discrete source 420 . Discrete source 420 is resampled by resampler 624, which determines a modified number of sample points 634 and a distribution of the modified sample points. In some embodiments, resampler 624 uses optical parameters 411 and errors 422 as described above to determine a modified number of sampling points 634 of discrete source 420, eg, a modified sampling resolution, to produce a modified discrete source. In some embodiments, the discrete source generator 626 receives the modified number of sampling points 634 and determines how the modified sampling points are distributed. In some embodiments, the combination of resampler 624 and discretization source generator 626 is consistent with rediscretization source 414 of FIG. 5 . In some embodiments, local or global operators are used for resampling. In some embodiments, a discrete Fourier transform operator is used for resampling such that the original sample points of the discrete source 420 are Fourier transformed into the frequency domain. Then, the inverse Fourier transform is applied to the frequency domain to generate a continuous inverse Fourier transform function in the spatial domain. The inverse Fourier transform function is sampled at locations defined by the discrete source generator 626 by a modified number of sample points.

圖6C示出用於分佈經修改數量的取樣點並限定經修改數量的取樣點的位置之圖。強度位置初始化器642接收經修改數量的取樣點,並且均勻地分佈經修改數量的取樣點。離散化源運算子406找到經修改數量的取樣點的強度,例如通過執行上述傅立葉轉換/傅立葉逆轉換找到。離散化源運算子406生成新的離散源420。在操作621處,在TCC運算子408和TCC運算子404之間計算使用新的離散源420生成新的TCC運算子408時的誤差422。強度位置調節器625遞迴地修改經修改數量的取樣點的位置,直到將誤差422最小化為止。當誤差422被最小化時,生成新的離散源420。在一些實施例中,當誤差422在關於圖5限定的第二閾值之間時,誤差422被最小化。FIG. 6C shows a graph for distributing and defining a location of a modified number of sampling points. The intensity position initializer 642 receives the modified number of sample points and evenly distributes the modified number of sample points. The discretization source operator 406 finds the intensity of a modified number of sample points, for example by performing the Fourier Transform/Inverse Fourier Transform described above. The discretized source operator 406 generates a new discretized source 420 . At operation 621 , an error 422 is calculated between the TCC operator 408 and the TCC operator 404 when the new TCC operator 408 is generated using the new discrete source 420 . Intensity position adjuster 625 recursively modifies the position of the modified number of sample points until error 422 is minimized. When the error 422 is minimized, a new discrete source 420 is generated. In some embodiments, error 422 is minimized when error 422 is between a second threshold defined with respect to FIG. 5 .

圖7A和7B繪示出用於使用TCC運算子來計算投影影像的示例系統之示意圖。圖7A和7B示出了圖2A和4的光罩投影器130與圖5的光罩投影器130一致的不同實施方式。圖7A示出經投影影像計算器702,其與方程式(1)一致,生成對光罩143的佈局圖案執行TCC運算子404的結果,而產生與圖2A的經投影光阻圖案101或圖4的經投影光阻圖案458一致的經投影影像706。圖7B示出經投影影像計算器702,其與方程式(1)一致,生成對光罩143的佈局圖案執行TCC運算子408的結果,而產生與圖2A的經投影光阻圖案101或圖4的經投影光阻圖案458一致的經投影影像708。如圖7B所示,在一些實施例中,可通過核心訊號產生器704將TCC運算子分解為核心,並且由經投影影像計算器703使用核心710以產生經投影影像708。7A and 7B illustrate schematic diagrams of example systems for computing projected images using TCC operators. FIGS. 7A and 7B illustrate different embodiments of the reticle projector 130 of FIGS. 2A and 4 consistent with the reticle projector 130 of FIG. 5 . FIG. 7A shows a projected image calculator 702 that, consistent with equation (1), generates the result of executing the TCC operator 404 on the layout pattern of the reticle 143 to produce the projected resist pattern 101 of FIG. 2A or FIG. 4 Projected image 706 consistent with projected photoresist pattern 458 of . FIG. 7B shows a projected image calculator 702 that, consistent with equation (1), generates the result of executing the TCC operator 408 on the layout pattern of the reticle 143 to produce the projected resist pattern 101 of FIG. 2A or FIG. 4 Projected image 708 consistent with projected photoresist pattern 458. As shown in FIG. 7B , in some embodiments, the TCC operator may be broken down into cores by core signal generator 704 and cores 710 are used by projected image calculator 703 to generate projected image 708 .

圖8A和8B繪示出微影系統的光學系統的示例光學系統的示意圖。圖8A示出在一些實施例中的微影系統中使用的光學系統800。光學系統800示出距鏡片804的距離808處的照明源802。鏡片804通過光罩143透射光源的輻射束。透射的輻射束810使用物鏡系統806收斂,以生成收斂束812並在晶圓108上製作光罩143的經投影影像。如圖所示,葉片814阻擋在光學系統800的出射光瞳830之外的任何輻射。圖8B示出在一些實施例中的微影系統中使用的光學系統850。光學系統850示出照明源802。鏡片804透射照明源802的輻射束。輻射束被鏡面820反射,並被引導向光罩843,例如反射光罩,並產生從光罩843反射的反射輻射束811。反射的輻射束811使用物鏡系統806收斂,以生成收斂束812並在晶圓108上產生反射光罩843的經投影影像。圖8B還示出光學系統850的出射光瞳831。8A and 8B depict a schematic view of an example optical system of an optical system of a lithography system. Figure 8A illustrates an optical system 800 used in a lithography system in some embodiments. Optical system 800 shows illumination source 802 at distance 808 from lens 804 . The mirror 804 transmits the radiation beam of the light source through the mask 143 . Transmitted radiation beam 810 is converged using objective lens system 806 to generate convergent beam 812 and make a projected image of reticle 143 on wafer 108 . As shown, the blades 814 block any radiation outside the exit pupil 830 of the optical system 800 . Figure 8B shows an optical system 850 used in a lithography system in some embodiments. Optical system 850 shows illumination source 802 . Mirror 804 transmits the radiation beam of illumination source 802 . The radiation beam is reflected by the mirror 820 and directed towards a reticle 843 , eg a reflective reticle, and produces a reflected radiation beam 811 that reflects from the reticle 843 . Reflected radiation beam 811 is converged using objective lens system 806 to generate convergent beam 812 and produce a projected image of reflective reticle 843 on wafer 108 . FIG. 8B also shows exit pupil 831 of optical system 850 .

圖9繪示出根據本揭露的一些實施例用於增強光罩的示例處理過程的流程圖。處理過程900可以由圖2A和11的系統執行。在一些實施例中,處理過程900或處理過程900的一部分由下面參考圖10A和10B描述的計算機系統1000執行及/或控制。在一些實施例中,處理過程900由圖11的系統1100執行。該方法包括操作S902,其根據光學系統的照明源來確定微影系統的光學系統的第一TCC運算子。在一些實施例中,圖7A的TCC運算子404是根據輸入源402(例如,照明源)產生的。在操作S904中,通過第一數量的取樣點對光學系統的照明源,例如輸入源402進行取樣,以產生離散源420。在操作S906中,根據離散源確定微影系統的光學系統的第二TCC運算子。在一些實施例中,根據離散源420來確定圖7B的TCC運算子408。9 depicts a flowchart of an example process for enhancing a reticle according to some embodiments of the present disclosure. Process 900 may be performed by the systems of FIGS. 2A and 11 . In some embodiments, process 900 or a portion of process 900 is performed and/or controlled by computer system 1000 described below with reference to FIGS. 10A and 10B . In some embodiments, process 900 is performed by system 1100 of FIG. 11 . The method includes operation S902 of determining a first TCC operator of an optical system of the lithography system according to an illumination source of the optical system. In some embodiments, the TCC operator 404 of FIG. 7A is generated from an input source 402 (eg, an illumination source). In operation S904 , an illumination source of the optical system, such as the input source 402 , is sampled by a first number of sampling points to generate a discrete source 420 . In operation S906, a second TCC operator of the optical system of the lithography system is determined according to the discrete source. In some embodiments, the TCC operator 408 of FIG. 7B is determined from a discrete source 420 .

在操作S908,確定第一TCC運算子和第二TCC運算子之間的誤差。在一些實施例中,分別離散化第一TCC運算子和第二TCC運算子,並生成第一TCC矩陣和第二TCC矩陣。在第一TCC矩陣和第二TCC矩陣之間確定誤差。在操作S910中,遞迴地調節第一數量的取樣點,直到誤差低於閾值水平,並且確定最終離散源和最終第二TCC運算子408。在一些實施例中,關於圖11所描述的調節第一數量的取樣點。在一些實施例中,迭代持續進行直到誤差小於或等於閾值為止。在一些實施例中,誤差為正,並且修改第一數量的取樣點,以使誤差保持在誤差範圍內,使得誤差小於正的第二閾值水平,但大於正的第一閾值水平,小於第二閾值水平。在一些實施例中,如果誤差大於第二閾值水平,則增加第一數量的取樣點以提高確定例如計算圖2A、4、7A和7B的光罩投影器130的經投影影像的準確性。相反的,如果誤差小於第一閾值水平,則減少第一數量的取樣點以提高確定(例如計算)圖2A、4、7A和7B的光罩投影器130的經投影影像的速度。In operation S908, an error between the first TCC operator and the second TCC operator is determined. In some embodiments, the first TCC operator and the second TCC operator are discretized respectively, and the first TCC matrix and the second TCC matrix are generated. An error is determined between the first TCC matrix and the second TCC matrix. In operation S910, the first number of sampling points are recursively adjusted until the error is below a threshold level, and a final discrete source and a final second TCC operator 408 are determined. In some embodiments, the first number of sampling points are adjusted as described with respect to FIG. 11 . In some embodiments, iterations continue until the error is less than or equal to a threshold. In some embodiments, the error is positive, and the first number of sample points are modified to keep the error within the error range such that the error is less than a positive second threshold level, but greater than a positive first threshold level, less than a second threshold level. In some embodiments, if the error is greater than a second threshold level, the first number of sampling points is increased to increase the accuracy of determining, eg, computing the projected image of reticle projector 130 of FIGS. 2A , 4, 7A and 7B. Conversely, if the error is less than the first threshold level, the first number of sampling points are reduced to increase the speed of determining (eg, calculating) the projected image of the reticle projector 130 of FIGS. 2A , 4, 7A and 7B.

圖10A和10B繪示出根據本揭露的一些實施例用於增強光罩的設備。在一些實施例中,計算機系統1000用於增強光罩。因此,在一些實施例中,計算機系統1000執行圖2A的OPC增強器122、光罩投影器130和OPC驗證器140的函數。在一些實施例中,如將在圖11中描述的,計算機系統1000執行分析器模組1130、主控制器1140、光罩增強器1104和光罩驗證器1108的函數。在一些實施例中,計算機系統1000執行光罩投影器1106和光學系統1105的模擬。圖10A是執行光罩增強的計算機系統的示意圖。可以使用在其上執行的計算機硬體和計算機程式來實現前述實施例的全部或部分處理過程、方法及/或操作。在圖10A中,計算機系統1000具有計算機1001,計算機1001包括唯讀記憶體光碟(例如,CD-ROM或DVD-ROM)機1005和磁碟機1006、鍵盤1002、滑鼠1003、和顯示器1004。10A and 10B illustrate an apparatus for enhancing a reticle according to some embodiments of the present disclosure. In some embodiments, computer system 1000 is used to enhance a reticle. Thus, in some embodiments, computer system 1000 performs the functions of OPC enhancer 122, reticle projector 130, and OPC verifier 140 of FIG. 2A. In some embodiments, computer system 1000 performs the functions of analyzer module 1130 , master controller 1140 , reticle intensifier 1104 , and reticle validator 1108 , as will be described in FIG. 11 . In some embodiments, computer system 1000 performs simulations of reticle projector 1106 and optical system 1105 . 10A is a schematic diagram of a computer system performing reticle enhancement. All or part of the processing procedures, methods and/or operations of the foregoing embodiments can be realized by using computer hardware and computer programs executed thereon. In FIG. 10A , a computer system 1000 has a computer 1001 including a read-only memory (eg, CD-ROM or DVD-ROM) drive 1005 and a disk drive 1006 , a keyboard 1002 , a mouse 1003 , and a display 1004 .

圖10B是示出計算機系統1000的內部配置的圖。在圖10B中,除了光碟機1005和磁碟機1006之外,計算機1001還具有一或多個處理器,例如微處理器(MPU)1011、唯讀記憶體(ROM)1012其中儲存諸如啟動程式之類的程式、連接到MPU1011的隨機存取記憶體(RAM)1013其中暫時儲存應用程式的指令並提供暫時儲存區域、硬碟1014其中儲存應用程式、系統程式和數據、匯流排1015其連接MPU1011、ROM 1012等等。注意,計算機1001可以包括用於提供到LAN的連線的網路卡(本文未示出)。FIG. 10B is a diagram showing the internal configuration of the computer system 1000 . In Fig. 10B, in addition to the optical disk drive 1005 and the magnetic disk drive 1006, the computer 1001 also has one or more processors, such as a microprocessor (MPU) 1011, a read-only memory (ROM) 1012 which stores programs such as startup program, random access memory (RAM) 1013 connected to MPU1011, which temporarily stores the instructions of the application program and provides a temporary storage area, hard disk 1014, which stores application programs, system programs and data, and bus 1015, which connects to the MPU1011 , ROM 1012 and so on. Note that computer 1001 may include a network card (not shown here) for providing a connection to a LAN.

在前述實施例中,用於使計算機系統1000執行用於增強光罩的設備的函數可以儲存在光碟1021或磁碟1022中,被插入到光碟機1005或磁碟機1006中,並被傳輸到硬碟1014。可替代地,程式可以經由網絡(未示出)傳輸到計算機1001並存儲在硬盤1014中。在執行時,程式被加載到RAM1013中。可以從光碟1021或磁碟1022或直接從網路加載程式。該程式不必一定包括例如作業系統(OS)或第三方程式,以使計算機1001執行前述實施例中的用於增強光罩的函數。該程式可能僅包括指令部分,以在受控模式下調用適當的函數(模組)並取得所需的結果。In the aforementioned embodiments, the functions for causing the computer system 1000 to execute the device for enhancing the mask may be stored in the optical disc 1021 or the magnetic disc 1022, inserted into the optical disc drive 1005 or the magnetic disc drive 1006, and transmitted to hard drive 1014. Alternatively, the programs may be transferred to the computer 1001 via a network (not shown) and stored in the hard disk 1014 . At execution time, the program is loaded into RAM 1013 . Programs can be loaded from CD 1021 or floppy disk 1022 or directly from the Internet. The program does not necessarily include, for example, an operating system (OS) or a third-party program, so that the computer 1001 executes the function for enhancing the mask in the foregoing embodiments. The program may consist only of instructions to call the appropriate functions (modules) in a controlled mode and achieve the desired result.

圖11繪示出根據本揭露的一些實施例的增強光罩的示例系統1100。系統1100包括彼此耦合的分析器模組1130和主控制器1140。分析器模組1130接收與圖1和圖2A的目標佈局圖案M一致的佈局圖案1110。分析器模組1130可以將佈局圖案1110發送到耦合到主控制器1140的光罩增強器1104。在一些實施例中,與圖5的離散化源運算子406和重新離散化源414一致的分析器模組1130確定取樣點的初始數量和取樣點的初始位置。取樣點的初始位置可以均勻分佈在照明源1107的強度或震幅輪廓分佈中,這與圖8A和8B的照明源802一致。主控制器1140還耦合到與圖1和圖2A的光罩投影器130一致的光罩投影器1106、光學系統1105和光罩檢驗器1108。光學系統1105與圖8A和8B的光學系統800和850一致,並且光罩檢驗器1108與圖2A的OPC檢驗器140和圖4的ILT檢驗器456一致。FIG. 11 depicts an example system 1100 for enhancing a reticle according to some embodiments of the present disclosure. The system 1100 includes an analyzer module 1130 and a main controller 1140 coupled to each other. The analyzer module 1130 receives the layout pattern 1110 consistent with the target layout pattern M of FIGS. 1 and 2A . Analyzer module 1130 may send layout pattern 1110 to reticle booster 1104 coupled to master controller 1140 . In some embodiments, an analyzer module 1130 consistent with the discretization source operator 406 and the re-discretization source 414 of FIG. 5 determines an initial number of sampling points and an initial location of the sampling points. The initial locations of the sampling points may be uniformly distributed in the intensity or amplitude profile distribution of the illumination source 1107, which is consistent with the illumination source 802 of FIGS. 8A and 8B. Master controller 1140 is also coupled to reticle projector 1106, optical system 1105, and reticle inspector 1108 that are consistent with reticle projector 130 of FIGS. 1 and 2A. Optical system 1105 is identical to optical systems 800 and 850 of FIGS. 8A and 8B , and reticle inspector 1108 is identical to OPC inspector 140 of FIG. 2A and ILT inspector 456 of FIG. 4 .

在一些實施例中,光罩增強器1104對佈局圖案1110執行OPC或ILT操作,並且光罩增強器1104與圖4的ILT增強器452或圖2A的OPC增強器122一致。在一些實施例中,代替光罩增強器1104,分析器模組1130對佈局圖案1110執行OPC或ILT操作,因此,分析器模組1130進一步與圖4的ILT增強器452或圖2A的OPC增強器122一致。在一些實施例中,光罩增強器1104或分析器模組1130確定微影系統的光學系統1105的TCC運算子,例如TCC運算子404或TCC運算子408,並且,因此,光罩增強器1104或分析器模組1130以及主控制器1140一起進一步與源取樣器系統500一致。在一些實施例中,光學系統1105與圖8A和8B的光學系統800和850一致。在一些實施例中,光罩增強器1104或分析器模組1130根據照明源,例如圖8A或8B的照明源802或圖11的照明源1107,確定微影系統的光學系統1105的TCC運算子,例如TCC運算子404。另外,光罩增強器1104或分析器模組1130根據光學系統的出射光瞳,例如,如方程式(2)所示,圖8A和8B的出射光瞳830和831,來確定微影系統的光學系統1105的TCC運算子。光罩增強器1104或分析器模組1130還根據離散源(例如,取樣源)和出射光瞳830或831來確定光學系統1105或圖8A和圖8B的光學系統800和850的其他TCC運算子,例如TCC運算子408。In some embodiments, reticle booster 1104 performs OPC or ILT operations on layout pattern 1110 , and reticle booster 1104 is identical to ILT booster 452 of FIG. 4 or OPC booster 122 of FIG. 2A . In some embodiments, instead of the reticle booster 1104, the analyzer module 1130 performs OPC or ILT operations on the layout pattern 1110, thus, the analyzer module 1130 further cooperates with the ILT booster 452 of FIG. 4 or the OPC booster of FIG. 2A Device 122 is consistent. In some embodiments, reticle intensifier 1104 or analyzer module 1130 determines a TCC operator, such as TCC operator 404 or TCC operator 408, of optical system 1105 of a lithography system, and, accordingly, reticle intensifier 1104 Or analyzer module 1130 and master controller 1140 together further correspond to source sampler system 500 . In some embodiments, optical system 1105 is identical to optical systems 800 and 850 of FIGS. 8A and 8B . In some embodiments, the reticle intensifier 1104 or the analyzer module 1130 determines the TCC operator of the optical system 1105 of the lithography system based on an illumination source, such as the illumination source 802 of FIG. 8A or 8B or the illumination source 1107 of FIG. 11 , such as the TCC operator 404 . Additionally, the reticle intensifier 1104 or the analyzer module 1130 determines the optical lithography system's optical output pupils based on the optical system's exit pupils, eg, exit pupils 830 and 831 of FIGS. 8A and 8B as shown in Equation (2). TCC operator for system 1105 . Reticle booster 1104 or analyzer module 1130 also determines other TCC operators for optical system 1105 or optical systems 800 and 850 of FIGS. , such as the TCC operator 408 .

如系統1100中所示,光罩增強器1104通過主控制器1140耦合到分析器模組1130。在一些實施例中,光罩增強器1104與圖2A的OPC增強器122一致。系統1100包括光罩投影器1106,其通過主控制器1140耦合到分析器模組1130。在一些實施例中,光罩投影器1106與圖2A的光罩投影器130一致。系統1100還包括光罩驗證器1108,其通過主控制器1140耦合到分析器模組1130。在一些實施例中,光罩投影器1106與圖2A的光罩投影器130一致。系統1100還包括光罩驗證器1108,其通過主控制器1140耦合到分析器模組1130。在一些實施例中,如所註記的,光罩驗證器1108與圖2A的OPC驗證器140一致。在一些實施例中,光罩增強器1104,光罩投影器1106和光罩檢驗器1108包括在主控制器1140中。在一些實施例中,通過分析器模組1130或光罩增強器1104中的任一個來執行對第一數量的取樣點的調整。在一些實施例中,光罩投影器1106與圖7A和7B中執行的操作的組合一致。As shown in system 1100 , reticle booster 1104 is coupled to analyzer module 1130 through master controller 1140 . In some embodiments, reticle intensifier 1104 is identical to OPC intensifier 122 of FIG. 2A . System 1100 includes reticle projector 1106 coupled to analyzer module 1130 through master controller 1140 . In some embodiments, reticle projector 1106 is identical to reticle projector 130 of FIG. 2A . System 1100 also includes reticle validator 1108 coupled to analyzer module 1130 through master controller 1140 . In some embodiments, reticle projector 1106 is identical to reticle projector 130 of FIG. 2A . System 1100 also includes reticle validator 1108 coupled to analyzer module 1130 through master controller 1140 . In some embodiments, reticle validator 1108 is identical to OPC validator 140 of FIG. 2A as noted. In some embodiments, reticle intensifier 1104 , reticle projector 1106 and reticle inspector 1108 are included in master controller 1140 . In some embodiments, the adjustment to the first number of sampling points is performed by either the analyzer module 1130 or the reticle intensifier 1104 . In some embodiments, the reticle projector 1106 is consistent with a combination of the operations performed in FIGS. 7A and 7B .

在一些實施例中,照明源,例如圖5和圖6A的輸入源402,是偏極照明源。因此,輸入源402的每一個點處的電場或磁場中的每一個可以由在垂直於光的行進方向的平面中的向量表示。在一些實施例中,在輸入源402的每一個點處的光在Z方向上行進,因此,光的電場或磁場在XY平面中,並且可以由在X方向和Y方向上的分量來表示。在一些實施例中,在每個空間頻率α s處,輸入源402的強度分佈的空間傅立葉轉換S經表示為下面的方程式(4)中的2乘2矩陣S 2 × 2,其中S xy= S * yx

Figure 02_image001
In some embodiments, the illumination source, such as input source 402 of FIGS. 5 and 6A , is a polarized illumination source. Accordingly, each of the electric field or magnetic field at each point of the input source 402 can be represented by a vector in a plane perpendicular to the direction of travel of the light. In some embodiments, the light at each point of the input source 402 travels in the Z direction, therefore, the electric or magnetic field of the light is in the XY plane and can be represented by components in the X and Y directions. In some embodiments, at each spatial frequency α s , the spatial Fourier transform S of the intensity distribution of the input source 402 is expressed as a 2 by 2 matrix S 2 × 2 in equation (4) below, where S xy = S * yx .
Figure 02_image001

在一些實施例中,輸入源402的偏極化隨時間連續變化,並且,因此,代替輸入源402的時間值,使用兩個X方向(s xx)和Y方向(s yy)上的電場或磁場的時間平均方差和兩個方向(s xy或s yx)上電場或磁場的時間平均協方差。在一些實施例中,方程式(4)的矩陣元素是在空間頻率α s下的方差函數和協方差函數的空間傅立葉轉換。 In some embodiments, the polarization of the input source 402 varies continuously over time, and, therefore, instead of the temporal value of the input source 402, an electric field in both the X direction (s xx ) and the Y direction (s yy ) or The time-averaged variance of the magnetic field and the time-averaged covariance of the electric or magnetic field in two directions (s xy or s yx ). In some embodiments, the matrix elements of equation (4) are the spatial Fourier transforms of the variance and covariance functions at the spatial frequency α s .

圖12示出了用於最佳化向量光學的TCC運算子的示例源取樣器系統的示意圖。圖12示出了向量源,例如偏極照明源1202。如上所描述,確定(例如,計算)偏極照明源1202的方差和協方差。如圖所示,第一源分量1204是偏極照明源1202的方差s xx,第二源分量1206是偏極照明源1202的方差s yy,第三源分量1208是偏極照明源1202的協方差s xy。由於協方差的對稱性,因此使用s xy或s yx之一。第一、第二和第三源分量1204、1206和1208用作圖12的三個源取樣器系統500的獨立照明源。如圖5所示,每個源取樣器系統500在輸出處提供取樣/重新取樣的離散源420。在操作430,按分量地添加取樣/重新取樣的離散源420,並且生成偏極取樣/重新取樣的照明源1210。在一些實施例中,偏極照明源1202尚未被取樣,並且每個源取樣器系統500提供取樣源。在一些實施例中,偏極照明源1202已經被極樣,並且每個源極樣器系統500提供重新極樣源。在一些實施例中,為第一、第二和第三源分量1204、1206和1208選擇單一取樣解析度。在一些實施例中,為所有三個源取樣器系統500選擇由三個源取樣器系統500提供的最高取樣解析度。對具有低於最高取樣解析度的取樣解析度的源分量進行重新取樣,以使第一、第二和第三源分量1204、1206和1208具有相同的最高取樣解析度。第一、第二和第三源分量1204、1206和1208被組合以產生單一偏極取樣照明源1210。然後,使用單一偏極取樣照明源1210的分量,使用方程式(2)的通則化來計算與單一偏極取樣照明源1210對應的TCC運算子或TCC矩陣,以確定TCC運算子或TCC矩陣,然後使用TCC運算子或TCC矩陣通過方程式(1)的通則化來確定經投影影像的強度I。 12 shows a schematic diagram of an example source sampler system for a TCC operator optimized for vector optics. FIG. 12 shows a vector source, such as a polarized illumination source 1202 . The variance and covariance of the polarized illumination sources 1202 are determined (eg, calculated) as described above. As shown, the first source component 1204 is the variance s xx of the polarized illumination source 1202 , the second source component 1206 is the variance s yy of the polarized illumination source 1202 , and the third source component 1208 is the covariance of the polarized illumination source 1202 . Variance s xy . Due to the symmetry of the covariance, one of s xy or s yx is used. The first, second and third source components 1204, 1206 and 1208 serve as independent illumination sources for the three source sampler system 500 of FIG. As shown in FIG. 5, each source sampler system 500 provides a sampled/resampled discrete source 420 at the output. At operation 430 , the sampled/resampled discrete source 420 is component-wise added and the polarized sampled/resampled illumination source 1210 is generated. In some embodiments, polarized illumination source 1202 has not been sampled, and each source sampler system 500 provides a sampled source. In some embodiments, polarized illumination sources 1202 have already been sampled, and each source sampler system 500 provides a re- sampled source. In some embodiments, a single sampling resolution is selected for the first, second and third source components 1204 , 1206 and 1208 . In some embodiments, the highest sampling resolution provided by the three source sampler systems 500 is selected for all three source sampler systems 500 . The source components having a lower sampling resolution than the highest sampling resolution are resampled such that the first, second and third source components 1204, 1206 and 1208 have the same highest sampling resolution. The first, second and third source components 1204 , 1206 and 1208 are combined to produce a single polarized sampled illumination source 1210 . Then, using the components of the single polarized sampling illumination source 1210, the TCC operator or TCC matrix corresponding to the single polarized sampling illumination source 1210 is calculated using a generalization of equation (2) to determine the TCC operator or TCC matrix, and The intensity I of the projected image is determined by generalization of equation (1) using the TCC operator or TCC matrix.

根據本揭露的一些實施例,一種增強佈局圖案的方法包括根據微影系統的光學系統的照明源確定微影系統的光學系統的第一透射交叉係數(TCC)運算子。該方法包括通過第一數量的取樣點對光學系統的照明源進行取樣以產生第一離散源,並根據第一離散源來確定微影系統的光學系統的第二TCC運算子。該方法進一步包括確定第一TCC運算子和第二TCC運算子之間的誤差。該方法進一步包括遞迴地調節第一數量的取樣點以重新取樣照明源並根據重新取樣的照明源重新確定第二TCC運算子,直到誤差低於閾值水平並且確定最終離散源以及最終第二TCC運算子。該方法包括執行光罩的第一佈局圖案的光學鄰近校正(OPC)操作,該OPC操作使用最終離散源和最終第二TCC運算子來確定晶圓上的光罩的第一佈局圖案的經投影影像。在一實施例中,光罩的第一佈局圖案包括一或多個特定特徵,並且使用最終離散源和最終第二TCC運算子來確定第一佈局圖案的經投影影像在晶圓上的光阻層上生成一或多個特定特徵。在一實施例中,特定特徵包括曲率、垂直線或水平線其中之一或多個。在一實施例中,該方法進一步包括接收照明源的照明輪廓並且在等於第一數量的取樣點的一些位置處對照明源的照明輪廓進行取樣。在一實施例中,對照明源進行取樣是非均勻取樣且對照明源重新取樣是均勻取樣。在一實施例中,照明輪廓是照明源的振幅輪廓或強度輪廓其中之一。在一實施例中,該方法進一步包括在光罩基底上產生OPC經校正的第一佈局圖案以製作光罩。According to some embodiments of the present disclosure, a method of enhancing a layout pattern includes determining a first transmission cross coefficient (TCC) operator of an optical system of a lithography system according to an illumination source of the optical system of the lithography system. The method includes sampling an illumination source of the optical system by a first number of sampling points to generate a first discrete source, and determining a second TCC operator of the optical system of the lithography system based on the first discrete source. The method further includes determining an error between the first TCC operator and the second TCC operator. The method further includes recursively adjusting the first number of sampling points to resample the illumination source and redetermining the second TCC operator based on the resampled illumination source until the error is below a threshold level and determining a final discrete source and a final second TCC operator. The method includes performing an optical proximity correction (OPC) operation of the first layout pattern of the reticle, the OPC operation using a final discrete source and a final second TCC operator to determine a projected projection of the first layout pattern of the reticle on the wafer. image. In one embodiment, the first layout pattern of the reticle includes one or more specific features, and the photoresist of the projected image of the first layout pattern on the wafer is determined using a final discrete source and a final second TCC operator. Generate one or more specific features on a layer. In one embodiment, the specific features include one or more of curvature, vertical lines or horizontal lines. In an embodiment, the method further comprises receiving an illumination profile of the illumination source and sampling the illumination profile of the illumination source at positions equal to the first number of sampling points. In an embodiment, sampling the illumination source is non-uniform sampling and resampling the illumination source is uniform sampling. In one embodiment, the illumination profile is one of an amplitude profile or an intensity profile of the illumination source. In one embodiment, the method further includes generating the OPC corrected first layout pattern on the reticle substrate to fabricate the reticle.

根據本揭露的一些實施例,一種增強佈局圖案的方法包括根據微影系統的光學系統的照明源和微影系統的光學系統的出射光瞳確定微影系統的光學系統的第一透射交叉係數(TCC)運算子,該方法包括在第一數量的取樣位置通過第一數量的取樣點對光學系統的照明源進行取樣以形成第一離散源,且根據第一離散源和光學系統的出射光瞳確定微影系統的光學系統的第二TCC運算子。該方法進一步包括確定第一TCC運算子和第二TCC運算子之間的誤差。該方法進一步包括遞迴地調節第一數量的取樣點和第一數量的取樣位置以重新取樣照明源並根據重新取樣的照明源重新確定第二TCC運算子直到誤差在閾值誤差範圍內且最終離散源和最終第二TCC運算子被確定,閾值誤差範圍具有上限和下限。該方法包括對光罩的第一佈局圖案執行反向式微影轉換(ILT)操作,ILT操作使用最終離散源和最終第二TCC運算子來確定晶圓上光罩的第一佈局圖案的經投影影像,用於確定第一佈局圖案的ILT增強並在光罩基底上產生ILT增強的第一佈局圖案以製作光罩。在一實施例中,誤差高於閾值誤差範圍的上限並且對照明源重新取樣包括,將第一數量的取樣點增加到第二數量的取樣點,用第二數量的取樣點對照明源進行均勻地取樣,遞迴地調節第二數量的取樣點的取樣位置,以對照明源進行重新取樣,並根據重新取樣的照明源重新確定第二TCC運算子,直至誤差最小為止。在一實施例中,誤差低於閾值誤差範圍的下限並且對照明源重新取樣包括,將第一數量的取樣點減少到第二數量的取樣點,用第二數量的取樣點對照明源進行均勻地取樣,遞迴地調節第二數量的取樣點的取樣位置,以對照明源進行重新取樣,並根據重新取樣的照明源重新確定第二TCC運算子,直至誤差最小為止。在一實施例中,該方法進一步包括通過核心空間中的多個核心的加權和來表示最終第二TCC運算子,通過多個核心中的兩個或更多個核心的加權和來近似最終第二TCC運算子,並且使用近似的最終第二TCC運算子和第一離散源來確定晶圓上光罩的第一佈局圖案的經投影影像。在一實施例中,第一TCC運算子和第二TCC運算子分別被離散化以生成第一TCC矩陣和第二TCC矩陣,並且該方法進一步包括通過確定第一TCC矩陣和第二TCC矩陣之間的弗比尼斯範數誤差來確定誤差。在一實施例中,該方法進一步包括在對第一佈局圖案進行ILT操作之前:對第一佈局圖案執行光學鄰近校正(OPC)操作,ILT操作使用最終離散源和最終第二TCC運算子以確定晶圓上光罩的第一佈局圖案的經投影影像,並且使用最終離散源和最終第二TCC運算子執行OPC校正的第一佈局圖案的ILT操作以確定晶圓上光罩的OPC校正的第一佈局圖案的經投影影像。在一實施例中,該方法進一步包括接收微影系統的光罩的不同於第一佈局圖案的第二佈局圖案,並使用最終離散源和最終第二TCC運算子執行第二佈局圖案的ILT以確定晶圓上光罩的第二佈局圖案的經投影影像。According to some embodiments of the present disclosure, a method for enhancing a layout pattern includes determining a first transmission cross coefficient ( TCC) operator, the method includes sampling the illumination source of the optical system through a first number of sampling points at a first number of sampling positions to form a first discrete source, and according to the first discrete source and the exit pupil of the optical system A second TCC operator of an optical system of the lithography system is determined. The method further includes determining an error between the first TCC operator and the second TCC operator. The method further includes recursively adjusting the first number of sample points and the first number of sample positions to resample the illumination source and re-determining the second TCC operator based on the resampled illumination source until the error is within a threshold error and eventually discrete The source and final second TCC operators are determined with a threshold error range having upper and lower bounds. The method includes performing an inverse lithography transformation (ILT) operation on a first layout pattern of the reticle, the ILT operation using a final discrete source and a final second TCC operator to determine a projected projection of the first layout pattern of the reticle on the wafer. The image is used to determine the ILT-enhanced first layout pattern and generate the ILT-enhanced first layout pattern on the reticle substrate to fabricate the reticle. In one embodiment, the error is above the upper limit of the threshold error range and resampling the illumination source includes increasing the first number of sampling points to a second number of sampling points, using the second number of sampling points to homogenize the illumination source sampling, recursively adjust the sampling position of the second number of sampling points to re-sample the illumination source, and re-determine the second TCC operator according to the re-sampled illumination source until the error is minimized. In one embodiment, the error is below the lower limit of the threshold error range and resampling the illumination source includes reducing the first number of sampling points to a second number of sampling points, using the second number of sampling points to homogenize the illumination source sampling, recursively adjust the sampling position of the second number of sampling points to re-sample the illumination source, and re-determine the second TCC operator according to the re-sampled illumination source until the error is minimized. In an embodiment, the method further comprises representing the final second TCC operator by a weighted sum of a plurality of cores in the core space, approximating the final second TCC operator by a weighted sum of two or more of the plurality of cores two TCC operators, and using the approximated final second TCC operator and the first discrete source to determine a projected image of the first layout pattern of the reticle on the wafer. In one embodiment, the first TCC operator and the second TCC operator are discretized to generate the first TCC matrix and the second TCC matrix, respectively, and the method further includes determining the difference between the first TCC matrix and the second TCC matrix The error is determined by the Forbinis norm error between . In one embodiment, the method further includes before performing the ILT operation on the first layout pattern: performing an optical proximity correction (OPC) operation on the first layout pattern, the ILT operation using the final discrete source and the final second TCC operator to determine A projected image of the first layout pattern of the reticle on the wafer, and performing an ILT operation of the OPC corrected first layout pattern using the final discrete source and the final second TCC operator to determine the OPC corrected first layout pattern of the reticle on the wafer A projected image of a layout pattern. In an embodiment, the method further includes receiving a second layout pattern of a reticle of the lithography system different from the first layout pattern, and performing an ILT of the second layout pattern using the final discrete source and the final second TCC operator to A projected image of the second layout pattern of the reticle on the wafer is determined.

根據本揭露的一些實施例,微影系統包括主控制器、光罩、耦合到主控制器的光罩增強器、包括照明源並耦合到主控制器的光學系統、以及耦合到主控制器和光罩增強器的光罩投影器,並且在晶圓上的光罩產生投影。該系統進一步包括耦合到主控制器的分析器模組,分析器模組接收要在晶圓上的光罩生產第一佈局圖案,光罩增強器通過主控制器耦合到分析器模組,並執行第一佈局圖案的光學鄰近校正(OPC)操作或反向式微影轉換(ILT)操作其中之一。光罩增強器還通過以下方式確定最終離散源和最終第二TCC運算子,從分析器模組接收第一數量的取樣點,根據光學系統的照明源和光學系統的出射光瞳確定微影系統的光學系統的第一透射交叉係數(TCC)運算子,通過第一數量的取樣點對光學系統的照明源進行取樣以形成第一離散源,根據第一離散源和光學系統的出射光瞳確定微影系統的光學系統的第二TCC運算子,確定第一TCC運算子和第二TCC運算子之間的誤差,並且遞迴地調節第一數量的取樣點以重新取樣照明源並根據重新取樣的照明源重新確定第二TCC運算子,直到誤差低於閾值水平以及確定最終離散源和最終第二TCC運算子。光罩投影器使用最終離散源和最終第二TCC運算子執行到晶圓上的光罩的投影,用於OPC操作或ILT操作,以確定晶圓上的光罩的第一佈局圖案的經投影影像。在一實施例中,照明源是雷射源。在一實施例中,照明源是同調源或部分同調源其中之一。在一實施例中,照明源的輪廓是半徑在1公分至20公分之間的並且具有恆定振幅的圓形輪廓,或者是標準差在1公分至20公分之間的高斯輪廓。在一實施例中,光學系統的照明源是偏極照明源,具有在第一方向和垂直於第一方向的第二方向上的兩個時變電或磁分量。第一方向和第二方向垂直於偏極照明源的光束的行進方向。分析器模組進一步確定分量在第一方向上的第一方差輪廓,分量在第二方向上的第二方差輪廓,以及偏極照明源的第一和第二方向的分量之間的協方差輪廓。光罩增強器還將第一方差輪廓、第二方差輪廓或協方差輪廓其中之一分配給照明源的輪廓,確定經分配的第一方差輪廓、第二方差輪廓或協方差輪廓的最終離散輪廓,並且確定經分配的第一方差輪廓、第二方差輪廓或協方差輪廓的最終第二TCC運算子。光罩投影器還使用確定的最終離散輪廓和最終第二TCC運算子,通過在晶圓上用於OPC操作或ILT操作的偏極照明源的經分配輪廓來執行光罩的第一佈局圖案的投影。在一實施例中,照明源是深紫外線或極紫外線照明源其中之一。According to some embodiments of the present disclosure, a lithography system includes a main controller, a reticle, a reticle intensifier coupled to the main controller, an optical system including an illumination source and coupled to the main controller, and a light source coupled to the main controller and the light source. The reticle projector of the mask intensifier, and produces projections on the reticle on the wafer. The system further includes an analyzer module coupled to the main controller, the analyzer module receives the reticle to produce the first layout pattern on the wafer, the reticle booster is coupled to the analyzer module through the main controller, and One of an optical proximity correction (OPC) operation or an inverse lithography transformation (ILT) operation of the first layout pattern is performed. The reticle booster also determines a final discrete source and a final second TCC operator by receiving a first number of sampling points from the analyzer module, determining the lithography system based on the illumination source of the optical system and the exit pupil of the optical system The first transmission cross coefficient (TCC) operator of the optical system, samples the illumination source of the optical system through the first number of sampling points to form the first discrete source, determined according to the first discrete source and the exit pupil of the optical system A second TCC operator of the optical system of the lithography system, determining an error between the first TCC operator and the second TCC operator, and recursively adjusting the first number of sampling points to resample the illumination source and based on the resampled The illumination source re-determines the second TCC operator until the error is below a threshold level and determines the final discrete source and the final second TCC operator. The reticle projector performs projection onto the reticle on the wafer using a final discrete source and a final second TCC operator for an OPC operation or an ILT operation to determine a projected first layout pattern of the reticle on the wafer image. In one embodiment, the illumination source is a laser source. In one embodiment, the illumination source is one of a coherent source or a partially coherent source. In one embodiment, the profile of the illumination source is a circular profile with a radius between 1 cm and 20 cm and a constant amplitude, or a Gaussian profile with a standard deviation between 1 cm and 20 cm. In an embodiment, the illumination source of the optical system is a polarized illumination source having two time-varying electrical or magnetic components in a first direction and a second direction perpendicular to the first direction. The first direction and the second direction are perpendicular to the direction of travel of the light beam of the polarized illumination source. The analyzer module further determines a first variance profile of the components in the first direction, a second variance profile of the components in the second direction, and a covariance between the components of the first and second directions for the polarized illumination source contour. The reticle enhancer also assigns one of the first variance profile, the second variance profile, or the covariance profile to the profile of the illumination source, determining a final result of the assigned first variance profile, second variance profile, or covariance profile The profiles are discretized and a final second TCC operator of the assigned first variance profile, second variance profile or covariance profile is determined. The reticle projector also uses the determined final discrete profile and the final second TCC operator to perform mapping of the first layout pattern of the reticle with an assigned profile of polarized illumination sources on the wafer for OPC operation or ILT operation. projection. In one embodiment, the illumination source is one of deep ultraviolet or extreme ultraviolet illumination.

在一些實施例中,實施上述過程和方法,通過使用投影模擬使目標佈局圖案適應經修改的目標佈局圖案。模擬投影的照明源是經取樣的微影系統的光學系統的照明源。調整取樣點的數量,使得取樣點的數量不會太多而造成計算負擔,並且取樣點的數量不會太少而使模擬投影和實質投影之間生成差異。因此,上述方法提供了有效取樣點的數量,以將模擬投影和實質投影之間的誤差保持在所需範圍內,而不會造成不必要的計算。In some embodiments, the processes and methods described above are implemented to adapt the target layout pattern to the modified target layout pattern by using projection simulations. The illumination source of the simulated projection is the illumination source of the optical system of the sampled lithography system. The number of sampling points is adjusted so that the number of sampling points is not too large to cause a computational burden, and the number of sampling points is not too small to cause a difference between the simulated projection and the real projection. Therefore, the method described above provides an effective number of sampling points to keep the error between simulated and real projections within a desired range without causing unnecessary calculations.

上文已概述若干實施例之特徵,使得熟習技術者可較佳理解本揭露之態樣。熟習技術者應瞭解,其可易於將本揭露用作設計或修改其他程序及結構以實施相同於本文中所引入之實施例之目的及/或達成相同於本文中所引入之實施例之優點的一基礎。熟習技術者亦應認識到,此等等效建構不應背離本揭露之精神及範疇,且其可在不背離本揭露之精神及範疇的情況下對本文作出各種改變、替換及變更。The features of several embodiments have been summarized above so that those skilled in the art can better understand aspects of the present disclosure. Those skilled in the art will appreciate that they can easily use the present disclosure to design or modify other programs and structures to achieve the same purpose and/or achieve the same advantages as the embodiments introduced herein a foundation. Those skilled in the art should also realize that such equivalent constructions should not depart from the spirit and scope of the present disclosure, and that they can make various changes, substitutions and changes herein without departing from the spirit and scope of the present disclosure.

100:積體電路製造流程 101:光阻圖案 102:積體電路設計模組 103:驗證信號 104:光罩增強器 106:光罩投影系統 108:晶圓 122:光學鄰近校正(OPC)增強器 130:光罩投影器 140:OPC驗證器 141:光罩產生器 143:光罩 145:光學系統 150:步驟 300:光阻圖案 301:佈局圖案 302:缺陷區域 303:佈局圖案 304:缺陷區域 312:橋接部 314:橋接部 402:輸入源 404:TCC運算子 406:離散化源 408:TCC運算子 410:誤差計算器 411:光學參數 412:步驟 414:重新離散化源 420:離散源 421:TCC產生器模組 422:誤差 423:TCC產生器模組 452:反向式微影轉換(ILT)增強器 456:ILT驗證器 458:光阻圖案 460:步驟 462:光罩佈局 468:驗證結果 500:源取樣器 621:步驟 624:重新取樣器 625:強度位置調節器 626:離散源產生器 630:取樣器 632:離散源產生器 634:取樣點 642:強度位置初始化器 702:投影影像計算器 703:投影影像計算器 704:核心訊號產生器 706:投影影像 708:投影影像 710:核心 800:光學系統 802:照明源 804:鏡片 806:物鏡系統 808:距離 810:輻射束 811:反射輻射束 812:收斂束 814:葉片 820:鏡面 830:出射光瞳 831:出射光瞳 843:光罩 850:光學系統 900:處理程序 S902:步驟區塊 S904:步驟區塊 S906:步驟區塊 S908:步驟區塊 S910:步驟區塊 1000:計算機系統 1001:計算機 1002:鍵盤 1003:滑鼠 1004:顯示器 1005:光碟機 1006:磁碟機 1011:微處理器 1012:唯讀記憶體 1013:隨機存取記憶體 1014:硬碟 1015:匯流排 1021:光碟 1022:磁碟 1100:系統 1104:光罩增強器 1105:光學系統 1106:光罩投影器 1107:照明源 1108:光罩驗證器 1110:佈局圖案 1130:分析器模組 1140:主要控制器 1202:向量源 1204:第一源分量 1206:第二源分量 1208:第三源分量 1210:取樣/重新取樣向量源 M:目標佈局圖案 M':增強或校正佈局圖案 100: Integrated circuit manufacturing process 101: Photoresist pattern 102:Integrated circuit design module 103: Verification signal 104: Reticle intensifier 106: Mask projection system 108: Wafer 122:Optical Proximity Correction (OPC) Enhancer 130: Mask projector 140: OPC validator 141: Mask generator 143: mask 145: Optical system 150: step 300: photoresist pattern 301: Layout pattern 302: defect area 303: Layout pattern 304: Defect area 312: bridge part 314: bridge part 402: input source 404: TCC operator 406: Discretization source 408: TCC operator 410: Error Calculator 411: Optical parameters 412: Step 414:Rediscretize source 420: Discrete Source 421: TCC generator module 422: error 423: TCC generator module 452: Inverse Lithography Transformation (ILT) Enhancer 456:ILT validator 458: Photoresist pattern 460: step 462: Mask layout 468: Verification result 500:Source sampler 621: Step 624:Resampler 625: Intensity Position Regulator 626: Discrete Source Generator 630: Sampler 632: Discrete Source Generator 634: Sampling point 642:Intensity position initializer 702: Projection Image Calculator 703: Projection Image Calculator 704: core signal generator 706: Projection image 708: Projection image 710: core 800: Optical system 802: Lighting source 804: Lens 806: Objective lens system 808: Distance 810: Radiation Beam 811: Reflecting Radiation Beams 812: Convergent Beam 814: blade 820: mirror surface 830: exit pupil 831: exit pupil 843: mask 850: Optical system 900: Handler S902: Step block S904: step block S906: Step block S908: Step block S910: Step block 1000: computer system 1001: computer 1002: keyboard 1003: mouse 1004: display 1005:CD player 1006:Disk drive 1011: Microprocessor 1012: ROM 1013: random access memory 1014: hard disk 1015: busbar 1021:CD 1022: Disk 1100: system 1104: Reticle Enhancer 1105: Optical system 1106: Mask projector 1107: lighting source 1108: Mask validator 1110: layout pattern 1130: Analyzer module 1140: Main controller 1202: vector source 1204: the first source component 1206: the second source component 1208: The third source component 1210: Sample/resample vector source M: target layout pattern M': Enhance or correct layout patterns

自結合附圖閱讀之以下詳細描述最佳理解本揭露之態樣。應注意,根據行業標準做法,各種構件未按比例繪製。實際上,為使討論清楚,可任意增大或減小各種構件之尺寸。Aspects of the present disclosure are best understood from the following detailed description when read in conjunction with the accompanying drawings. It should be noted that, in accordance with the standard practice in the industry, various components are not drawn to scale. In fact, the dimensions of the various components may be arbitrarily increased or decreased for clarity of discussion.

圖1繪示出示例積體電路(IC)製造流程示意圖。FIG. 1 depicts a schematic diagram of an example integrated circuit (IC) fabrication process.

圖2A和圖2B繪示出與目標佈局圖案相關聯的示例光罩增強器和OPC增強佈局圖案示意圖。2A and 2B depict schematic diagrams of example reticle boosters and OPC booster layout patterns associated with target layout patterns.

圖3繪示出具有兩個缺陷區域的示例佈局輪廓。Figure 3 depicts an example layout profile with two defect regions.

圖4繪示出示例佈局校正器示意圖。FIG. 4 illustrates a schematic diagram of an example layout corrector.

圖5繪示出用於最佳化透射交叉係數(TCC)運算子的示例源取樣器系統示意圖。5 depicts a schematic diagram of an example source sampler system for optimizing a transmission cross coefficient (TCC) operator.

圖6A、6B和6C繪示出用於對照明源進行取樣和重新取樣並生成TCC運算子的示例系統示意圖。6A, 6B, and 6C depict example system schematics for sampling and resampling illumination sources and generating TCC operators.

圖7A和7B繪示出根據本揭露一些實施例用於使用TCC運算子來計算投影影像的示例系統示意圖。7A and 7B are schematic diagrams illustrating an exemplary system for computing projected images using TCC operators according to some embodiments of the present disclosure.

圖8A和圖8B繪示出微影系統的光學系統的示例光學系統示意圖。8A and 8B illustrate exemplary optical system diagrams of an optical system of a lithography system.

圖9繪示出根據本揭露一些實施例用於增強光罩的示例處理流程圖。9 depicts an example process flow diagram for enhancing a reticle according to some embodiments of the present disclosure.

圖10A和10B繪示出根據本揭露一些實施例用於增強光罩的設備。10A and 10B illustrate an apparatus for enhancing a reticle according to some embodiments of the present disclosure.

圖11繪示出根據本揭露一些實施例增強光罩的示例系統。FIG. 11 depicts an example system for enhancing a reticle according to some embodiments of the present disclosure.

圖12繪示出用於最佳化向量光學的TCC運算子的示例源取樣器系統示意圖。12 depicts a schematic diagram of an example source sampler system for a TCC operator optimized for vector optics.

100:積體電路製造流程 100: Integrated circuit manufacturing process

102:積體電路設計模組 102:Integrated circuit design module

104:光罩增強器 104: Reticle intensifier

106:光罩投影系統 106: Mask projection system

108:晶圓 108: Wafer

M:佈局圖案 M: layout pattern

Claims (10)

一種設計佈局的方法,包括: 根據一微影系統的一光學系統的一照明源確定該微影系統的該光學系統的一第一透射交叉係數(TCC)運算子; 通過一第一數量的取樣點對該光學系統的該照明源進行取樣以產生一第一離散源; 根據該第一離散源來確定該微影系統的該光學系統的一第二TCC運算子; 確定該第一TCC運算子和該第二TCC運算子之間的一誤差; 遞迴地調節該第一數量的取樣點以重新取樣該照明源並根據該重新取樣照明源以重新確定該第二TCC運算子,直到該誤差低於一閾值水平並且一最終離散源以及一最終第二TCC運算子被確定;及 執行一光罩的一第一佈局圖案的一光學鄰近校正(OPC)操作,其中該OPC操作使用該最終離散源和該最終第二TCC運算子來確定一晶圓上的該光罩的該第一佈局圖案的一經投影影像。 A method of designing a layout comprising: determining a first transmission cross coefficient (TCC) operator of an optical system of a lithography system based on an illumination source of the optical system of the lithography system; sampling the illumination source of the optical system by a first number of sampling points to generate a first discrete source; determining a second TCC operator of the optical system of the lithography system based on the first discrete source; determining an error between the first TCC operator and the second TCC operator; recursively adjusting the first number of sampling points to resample the illumination source and re-determining the second TCC operator based on the resampled illumination source until the error is below a threshold level and a final discrete source and a final a second TCC operator is determined; and performing an optical proximity correction (OPC) operation of a first layout pattern of a reticle, wherein the OPC operation uses the final discrete source and the final second TCC operator to determine the first of the reticle on a wafer A projected image of a layout pattern. 如請求項1之方法,其中該光罩的該第一佈局圖案包括一或多個特定特徵,並且其中使用該最終離散源和該最終第二TCC運算子來確定該第一佈局圖案的該經投影影像在該晶圓的一光阻層上生成一或多個特定特徵。The method of claim 1, wherein the first layout pattern of the reticle includes one or more specific features, and wherein the final discrete source and the final second TCC operator are used to determine the economics of the first layout pattern The projected image creates one or more specific features on a photoresist layer of the wafer. 如請求項1之方法,進一步包括: 接收該照明源的一照明輪廓並且在一數量的位置處對該照明源的該照明輪廓進行取樣,其中該數量等於該第一數量的取樣點。 The method of claim 1, further comprising: An illumination profile of the illumination source is received and the illumination profile of the illumination source is sampled at a number of locations, wherein the number is equal to the first number of sampling points. 一種設計佈局的方法,包括: 根據一微影系統的一光學系統的一照明源和該微影系統的該光學系統的一出射光瞳確定該微影系統的該光學系統的一第一透射交叉係數(TCC)運算子; 在一第一數量的取樣位置通過一第一數量的取樣點對該光學系統的該照明源進行取樣以形成一第一離散源; 根據該第一離散源和該光學系統的該出射光瞳確定該微影系統的該光學系統的一第二TCC運算子; 確定該第一TCC運算子和該第二TCC運算子之間的一誤差; 遞迴地調節該第一數量的取樣點和該第一數量的取樣位置以重新取樣該照明源並根據該重新取樣照明源以重新確定該第二TCC運算子直到該誤差在一閾值誤差範圍內且一最終離散源和一最終第二TCC運算子被確定,其中該閾值誤差範圍具有一上限和一下限; 對一光罩的一第一佈局圖案執行一反向式微影轉換(ILT)操作,其中該ILT操作使用該最終離散源和該最終第二TCC運算子來確定一晶圓上的該光罩的該第一佈局圖案的一經投影影像,用於確定該第一佈局圖案的 一ILT增強;及 在一光罩基底上產生該ILT經增強第一佈局圖案以製作一光罩。 A method of designing a layout comprising: determining a first transmission cross coefficient (TCC) operator of an optical system of a lithography system based on an illumination source of an optical system of the lithography system and an exit pupil of the optical system of the lithography system; sampling the illumination source of the optical system at a first number of sampling locations through a first number of sampling points to form a first discrete source; determining a second TCC operator of the optical system of the lithography system based on the first discrete source and the exit pupil of the optical system; determining an error between the first TCC operator and the second TCC operator; recursively adjusting the first number of sampling points and the first number of sampling positions to resample the illumination source and re-determine the second TCC operator based on the resampled illumination source until the error is within a threshold error range and a final discrete source and a final second TCC operator are determined, wherein the threshold error range has an upper bound and a lower bound; performing an inverse lithography transformation (ILT) operation on a first layout pattern of a reticle, wherein the ILT operation uses the final discrete source and the final second TCC operator to determine the reticle on a wafer a projected image of the first layout pattern used to determine an ILT enhancement of the first layout pattern; and The ILT enhanced first layout pattern is generated on a reticle substrate to fabricate a reticle. 如請求項4之方法,其中該誤差高於該閾值誤差範圍的該上限,並且其中對該照明源重新取樣包括: 將該第一數量的取樣點增加到一第二數量的取樣點; 用該第二數量的取樣點對該照明源進行均勻地取樣;及 遞迴地調節該第二數量的取樣點的取樣位置以對該照明源進行重新取樣,並根據該重新取樣照明源重新確定該第二TCC運算子,直至該誤差最小為止。 The method of claim 4, wherein the error is above the upper limit of the threshold error range, and wherein resampling the illumination source comprises: increasing the first number of sampling points to a second number of sampling points; uniformly sample the illumination source with the second number of sampling points; and The sampling position of the second number of sampling points is adjusted recursively to re-sample the illumination source, and the second TCC operator is re-determined according to the re-sampled illumination source until the error is minimized. 如請求項4之方法,其中該誤差低於該閾值誤差範圍的該下限,並且其中對該照明源重新取樣包括,將該第一數量的取樣點減少到該第二數量的取樣點; 用該第二數量的取樣點對該照明源進行均勻地取樣;及 遞迴地調節該第二數量的取樣點的取樣位置,以對該照明源進行重新取樣,並根據該重新取樣照明源重新確定該第二TCC運算子,直至該誤差最小為止。 The method of claim 4, wherein the error is below the lower limit of the threshold error range, and wherein resampling the illumination source includes reducing the first number of sampling points to the second number of sampling points; uniformly sample the illumination source with the second number of sampling points; and The sampling positions of the second number of sampling points are recursively adjusted to re-sample the illumination source, and the second TCC operator is re-determined according to the re-sampled illumination source until the error is minimized. 如請求項4之方法,進一步包括: 通過一核心空間中的多個核心的一加權和來表示該最終第二TCC運算子; 通過該多個核心中的兩個或更多個核心的一加權和來近似該最終第二TCC運算子;及 使用該近似最終第二TCC運算子和該第一離散源來確定該晶圓上的該光罩的該第一佈局圖案的該經投影影像。 The method of claim 4, further comprising: representing the final second TCC operator by a weighted sum of cores in a core space; approximating the final second TCC operator by a weighted sum of two or more cores of the plurality of cores; and The projected image of the first layout pattern of the reticle on the wafer is determined using the approximate final second TCC operator and the first discrete source. 一種微影系統,包括: 一主控制器; 一光罩; 一光罩增強器,其耦合到該主控制器; 一光學系統,其包括一照明源並耦合到該主控制器; 一光罩投影器,其耦合到該主控制器和該光罩增強器,並且經配置以在一晶圓上的該光罩產生一投影;及 一分析器模組,其耦合到該主控制器,其中該分析器模組經配置以接收要在該晶圓上的該光罩生產一第一佈局圖案, 其中該光罩增強器通過該主控制器耦合到該分析器模組,並且其中經配置以從該分析器模組接收該第一佈局圖案,並且執行該第一佈局圖案的一光學鄰近校正(OPC)操作或一反向式微影轉換(ILT)操作其中之一,及 其中該光罩增強器進一步經配置以通過以下方式確定一最終離散源和一最終第二TCC運算子: 從該分析器模組接收一第一數量的取樣點; 根據該光學系統的該照明源和該光學系統的一出射光瞳以確定該微影系統的該光學系統的一第一透射交叉係數(TCC)運算子; 通過該第一數量的取樣點對該光學系統的該照明源進行取樣以製作一第一離散源; 根據該第一離散源和該光學系統的該出射光瞳確定該微影系統的該光學系統的一第二TCC運算子; 確定該第一TCC運算子和該第二TCC運算子之間的一誤差; 遞迴地調節該第一數量的取樣點以對該照明源重新取樣並根據該重新取樣照明源重新確定該第二TCC運算子,直到該誤差低於一閾值水平以及確定一最終離散源和一最終第二TCC運算子;及 其中該光罩投影器經配置以使用該最終離散源和該最終第二TCC運算子執行到該晶圓上的該光罩的該投影,用於該OPC操作或該ILT操作,以確定該晶圓上的該光罩的該第一佈局圖案的一經投影影像。 A lithography system comprising: a master controller; a photomask; a reticle intensifier coupled to the master controller; an optical system including an illumination source coupled to the master controller; a reticle projector coupled to the main controller and the reticle intensifier and configured to produce a projection on the reticle on a wafer; and an analyzer module coupled to the main controller, wherein the analyzer module is configured to receive the reticle to produce a first layout pattern on the wafer, wherein the reticle booster is coupled to the analyzer module through the master controller, and wherein is configured to receive the first layout pattern from the analyzer module and perform an optical proximity correction of the first layout pattern ( OPC) operation or an Inverse Lithography Transformation (ILT) operation, and Wherein the reticle booster is further configured to determine a final discrete source and a final second TCC operator by: receiving a first number of sampling points from the analyzer module; determining a first transmission cross coefficient (TCC) operator of the optical system of the lithography system according to the illumination source of the optical system and an exit pupil of the optical system; sampling the illumination source of the optical system by the first number of sampling points to produce a first discrete source; determining a second TCC operator of the optical system of the lithography system based on the first discrete source and the exit pupil of the optical system; determining an error between the first TCC operator and the second TCC operator; recursively adjusting the first number of sampling points to resample the illumination source and redetermining the second TCC operator based on the resampled illumination source until the error is below a threshold level and a final discrete source and a final discrete source are determined the final second TCC operator; and wherein the reticle projector is configured to perform the projection of the reticle onto the wafer using the final discrete source and the final second TCC operator for the OPC operation or the ILT operation to determine the wafer A projected image of the first layout pattern of the reticle on a circle. 如請求項8之該微影系統,其中該照明源是一雷射源。The lithography system of claim 8, wherein the illumination source is a laser source. 如請求項8之該微影系統,其中該照明源是一同調源或一部分同調源其中之一。The lithography system according to claim 8, wherein the illumination source is one of a coherent source or a part of a coherent source.
TW110122447A 2021-03-05 2021-06-18 Litho-aware source sampling and resampling TW202235997A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/193,254 US11256176B1 (en) 2021-03-05 2021-03-05 Litho-aware source sampling and resampling
US17/193,254 2021-03-05

Publications (1)

Publication Number Publication Date
TW202235997A true TW202235997A (en) 2022-09-16

Family

ID=80322200

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110122447A TW202235997A (en) 2021-03-05 2021-06-18 Litho-aware source sampling and resampling

Country Status (3)

Country Link
US (1) US11256176B1 (en)
CN (1) CN115032858A (en)
TW (1) TW202235997A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220078124A (en) * 2020-12-03 2022-06-10 삼성전자주식회사 Method for OPC and method for manufacturing semiconductor device using the same
US11435670B1 (en) * 2021-02-26 2022-09-06 Taiwan Semiconductor Manufacturing Co., Ltd. Multi-component kernels for vector optical image simulation

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004030961B4 (en) * 2004-06-26 2008-12-11 Infineon Technologies Ag A method of determining a matrix of transmission cross-coefficients in an optical approximation correction of mask layouts
WO2017091339A1 (en) * 2015-11-25 2017-06-01 International Business Machines Corporation Tool to provide integrated circuit masks with accurate dimensional compensation of patterns
US11092899B2 (en) * 2018-11-30 2021-08-17 Taiwan Semiconductor Manufacturing Co., Ltd. Method for mask data synthesis with wafer target adjustment

Also Published As

Publication number Publication date
US11256176B1 (en) 2022-02-22
CN115032858A (en) 2022-09-09

Similar Documents

Publication Publication Date Title
JP6824999B2 (en) Methods and equipment for determining patterning process parameters
KR101043016B1 (en) Methods and system for lithography process window simulation
JP2020126279A (en) Separation of contributions to metrology data
JP5180359B2 (en) Flow of optimization of light source, mask and projection optics
JP2715895B2 (en) Light intensity distribution simulation method
CN101738872B (en) Methods and system for lithography calibration
KR102352673B1 (en) computational metrology
JP5650626B2 (en) Method for optimizing lithography process
US8065636B2 (en) System and method for creating a focus-exposure model of a lithography process
JP5491480B2 (en) Pattern-dependent neighborhood matching / adjustment including light manipulation by projection optics
US8285030B2 (en) Determining calibration parameters for a lithographic process
US8918743B1 (en) Edge-based full chip mask topography modeling
US8219942B2 (en) Pattern verification-test method, optical image intensity distribution acquisition method, and computer program
KR101001219B1 (en) Mask data generation method, mask fabrication method, exposure method, device fabrication method, and storage medium
JP2021508078A (en) Compensation and control based on computational metrology
JP2012109568A (en) Pattern-independent hybrid matching/tuning including light manipulation by projection optics
JP2007535135A (en) An emulation method for lithographic projection tools.
TW202235997A (en) Litho-aware source sampling and resampling
US20100067777A1 (en) Evaluation pattern generating method, computer program product, and pattern verifying method
US11754930B2 (en) Multi-component kernels for vector optical image simulation
JP5052625B2 (en) Method and program for designing mask layout
US20080304029A1 (en) Method and System for Adjusting an Optical Model
US7966580B2 (en) Process-model generation method, computer program product, and pattern correction method
TWI851904B (en) Method of enhancing a layout pattern and lithographic system thereof
JP3025269B1 (en) Pattern line width simulation method and pattern line width simulator