TW202235938A - Mitigation of polarization impairments in optical fiber link - Google Patents

Mitigation of polarization impairments in optical fiber link Download PDF

Info

Publication number
TW202235938A
TW202235938A TW110142005A TW110142005A TW202235938A TW 202235938 A TW202235938 A TW 202235938A TW 110142005 A TW110142005 A TW 110142005A TW 110142005 A TW110142005 A TW 110142005A TW 202235938 A TW202235938 A TW 202235938A
Authority
TW
Taiwan
Prior art keywords
optical
polarization
fiber
data communication
polarization maintaining
Prior art date
Application number
TW110142005A
Other languages
Chinese (zh)
Inventor
約翰 菲尼
晨 孫
Original Assignee
美商爾雅實驗室公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商爾雅實驗室公司 filed Critical 美商爾雅實驗室公司
Publication of TW202235938A publication Critical patent/TW202235938A/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2569Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to polarisation mode dispersion [PMD]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4216Packages, e.g. shape, construction, internal or external details incorporating polarisation-maintaining fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4216Packages, e.g. shape, construction, internal or external details incorporating polarisation-maintaining fibres
    • G02B6/4218Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2572Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to forms of polarisation-dependent distortion other than PMD
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/381Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres
    • G02B6/3812Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres having polarisation-maintaining light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4213Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being polarisation selective optical elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

An optical data communication system includes an optical transmitter and an optical receiver. A polarization-maintaining optical data communication link extends from an optical output of the optical transmitter to an optical input of the optical receiver. The polarization-maintaining optical data communication link includes at least two sections of polarization-maintaining optical fiber optically connected through an optical connector. The at least two sections of polarization-maintaining optical fiber have different lengths. The optical connector is configured to optically align a fast polarization axis of a first polarization-maintaining optical fiber to a slow polarization axis of a second polarization-maintaining optical fiber. The optical connector is also configured to optically align a slow polarization axis of the first polarization-maintaining optical fiber to a fast polarization axis of the second polarization-maintaining optical fiber.

Description

光纖鏈路中偏極化折損的減輕Mitigation of Polarization Loss in Optical Fiber Links

本發明係關於光學數據通訊。This invention relates to optical data communication.

光學數據通訊系統之操作藉由調變雷射光以編碼數位數據圖案。經調變之雷射光係自發送節點經由光學數據網路而傳輸至接收節點。已到達接收節點之經調變之雷射光受到反調變以獲得原始的數位數據圖案。因此,光學數據通訊系統之施行及操作係取決於具有調變光學訊號及接收光學訊號用之可靠及有效裝置。Optical data communication systems operate by modulating laser light to encode digital data patterns. The modulated laser light is transmitted from the sending node to the receiving node via the optical data network. The modulated laser light that has reached the receiving node is reverse modulated to obtain the original digital data pattern. Therefore, the implementation and operation of optical data communication systems depend on having reliable and efficient means for modulating and receiving optical signals.

絕大部分之光纖通訊鏈路係使用非維持偏極化的光纖。構成商用光纖通訊系統的典型元件(如光纖、光學偵測器)係充分地對偏極化不敏感,以提供有效率的數據通訊並同時使光纖鏈路中的偏極化能隨機改變而不受控制。然而,某些整合光學裝置在光纖中的光的偏極化受到控制時可更有效率地處理經由光纖接收到的光。本發明係於此背景下產生。The vast majority of fiber optic communication links use non-polarization-maintaining fibers. Typical components (e.g., optical fibers, optical detectors) that make up commercial fiber optic communication systems are sufficiently polarization insensitive to provide efficient data communication while enabling random changes in polarization in fiber optic links without controlled. However, certain integrating optics can more efficiently process light received via an optical fiber when the polarization of the light in the optical fiber is controlled. It is against this background that the present invention was produced.

在一例示性實施例中,揭露一種光學數據通訊系統。該光學數據通訊系統包含一光學發射器、一光學接收器、及自該光學發射器之一光學輸出延伸至該光學接收器之一光學輸入的一偏極化維持光學數據通訊鏈路。該偏極化維持光學數據通訊鏈路包含經由一光學連接器光學連接之偏極化維持光纖的至少兩區段。該偏極化維持光纖的該至少兩區段具有不同長度。In an exemplary embodiment, an optical data communication system is disclosed. The optical data communication system includes an optical transmitter, an optical receiver, and a polarization maintaining optical data communication link extending from an optical output of the optical transmitter to an optical input of the optical receiver. The polarization maintaining optical data communication link includes at least two sections of polarization maintaining optical fiber optically connected by an optical connector. The at least two sections of the polarization maintaining fiber have different lengths.

在一例示性實施例中,揭露一種光學數據通訊系統。該光學數據通訊系統包含一偏極化維持光學數據通訊鏈路,該偏極化維持光學數據通訊鏈路包含光學耦合至一第二偏極化維持光纖的一第一偏極化維持光纖,俾使該第一偏極化維持光纖之一快速偏極化軸係與該第二偏極化維持光纖之一慢偏極化軸對準、及該第一偏極化維持光纖之一慢偏極化軸係與該第二偏極化維持光纖之一快速偏極化軸對準。In an exemplary embodiment, an optical data communication system is disclosed. The optical data communication system comprises a polarization maintaining optical data communication link comprising a first polarization maintaining optical fiber optically coupled to a second polarization maintaining optical fiber such that aligning a fast polarization axis of the first polarization maintaining fiber with a slow polarization axis of the second polarization maintaining fiber, and a slow polarization axis of the first polarization maintaining fiber The polarization axis is aligned with a fast polarization axis of the second polarization maintaining fiber.

在一例示性實施例中,揭露一種光學數據通訊系統操作方法。該方法包含將來自一光學發射器之一輸出的複數光學訊號經由一偏極化維持光學數據通訊鏈路傳輸至一光學接收器之一光學輸入,其中該偏極化維持光學數據通訊鏈路包含經由一光學連接器光學連接之偏極化維持光纖的至少兩區段。該偏極化維持光纖的該至少兩區段具有不同長度。In an exemplary embodiment, a method for operating an optical data communication system is disclosed. The method includes transmitting a plurality of optical signals from an output of an optical transmitter to an optical input of an optical receiver via a polarization maintaining optical data communication link, wherein the polarization maintaining optical data communication link comprises At least two sections of polarization maintaining optical fiber are optically connected via an optical connector. The at least two sections of the polarization maintaining fiber have different lengths.

在一例示性實施例中,揭露一種光學數據通訊系統操作方法。該方法包含經由一偏極化維持光學數據通訊鏈路傳輸複數光學訊號,該偏極化維持光學數據通訊鏈路包含光學耦合至一第二偏極化維持光纖的一第一偏極化維持光纖。該第一偏極化維持光纖係光學耦合至該第二偏極化維持光纖,俾使該第一偏極化維持光纖之一快速偏極化軸係與該第二偏極化維持光纖之一慢偏極化軸對準、及該第一偏極化維持光纖之一慢偏極化軸係與該第二偏極化維持光纖之一快速偏極化軸對準。In an exemplary embodiment, a method for operating an optical data communication system is disclosed. The method includes transmitting a plurality of optical signals over a polarization maintaining optical data communication link comprising a first polarization maintaining optical fiber optically coupled to a second polarization maintaining optical fiber . The first polarization maintaining fiber is optically coupled to the second polarization maintaining fiber such that a fast polarization axis of the first polarization maintaining fiber is aligned with one of the second polarization maintaining fibers Slow polarization axes are aligned, and a slow polarization axis of the first polarization maintaining fiber is aligned with a fast polarization axis of the second polarization maintaining fiber.

自下列藉由本發明實例例示之詳細說明及附圖將更明白本發明之其他態樣及優點。Other aspects and advantages of the present invention will become clearer from the following detailed description and accompanying drawings exemplified by examples of the present invention.

在下列的說明中列舉特定細節以提供對本發明實施例的全面瞭解。然而熟知此項技藝者當可在缺乏某些或全部此些特定細節的情況下實施本發明。在其他情況中,不詳細說明已知的處理操作以免不必要地模糊本發明。In the following description, specific details are set forth in order to provide a thorough understanding of embodiments of the invention. However, one skilled in the art will be able to practice the present invention without some or all of these specific details. In other instances, well known process operations have not been described in detail in order not to unnecessarily obscure the present invention.

光學數據通訊系統之操作藉由調變雷射光以編碼電域中的數位數據圖案成為光域內之經調變的光訊號。經調變之光訊號係經由光纖而傳輸至光電接收器,在光電接收器處偵測經調變之光訊號並將其解碼而獲得回到電域中之原始經編碼之數位數據圖案。在許多光學數據通訊系統中,光纖內之光的偏極化狀態並未受到控制,當系統操作時可能會受到光纖的微小移動及/或周遭溫度中的變化擾動。在此些系統中,整合光學裝置,尤其例如是光電接收器,必須處理隨著時間具有任意偏極化變動之進入光訊號。因此在某些實施例中,期望使用維持偏極化(PM)光鏈路如光纖、光導等與此類整合光學裝置相互配合。在數據通訊用之理想PM光鏈路中,僅激發光的單一偏極化以避免因光之另一偏極化所造成及/或相關之光之該單一偏極化的折損。然而在實際的光學數據通訊系統中,光纖區段通常需要連接且此些連接係光學不完美的,因此會導致兩偏極化之間的交叉耦合。Optical data communication systems operate by modulating laser light to encode digital data patterns in the electrical domain into modulated optical signals in the optical domain. The modulated optical signal is transmitted through an optical fiber to an optoelectronic receiver where it is detected and decoded to obtain the original encoded digital data pattern back in the electrical domain. In many optical data communication systems, the polarization state of the light in the optical fiber is not controlled, and the operation of the system may be disturbed by small movements of the optical fiber and/or changes in the ambient temperature. In these systems, integrated optical devices, such as optoelectronic receivers in particular, must process incoming optical signals with arbitrary polarization variations over time. Thus in certain embodiments it is desirable to use polarization maintaining (PM) optical links such as optical fibers, light guides, etc. to interface with such integrated optics. In an ideal PM optical link for data communication, only a single polarization of light is excited to avoid loss of this single polarization of light by and/or associated with another polarization of light. However, in practical optical data communication systems, fiber optic sections usually need to be connected and these connections are not optically perfect, thus causing cross-coupling between the two polarizations.

在PM光學數據通訊鏈路中,偏極化之間的交叉耦合會導致光傳輸的折損,尤其是並不存在於非PM光學數據通訊鏈路中的損失及多路徑干擾。文中說明之經由PM光學數據通訊鏈路減輕及/或管理光傳輸中與偏極化相關之折損的實施例包含下列之一或多者:插入及使用偏極化裝置、管理偏極化模式分散(如經由選擇光纖類型、光纖長度、及/或以相反位向耦合經選擇之光纖)、及管理偏極化之間的交叉耦合(如經由選擇光學連接器及/或光纖接頭)。In PM optical data communication links, cross-coupling between polarizations can lead to optical transmission losses, especially losses and multipath interference that do not exist in non-PM optical data communication links. Embodiments described herein for mitigating and/or managing polarization-related impairments in optical transmission over PM optical data communication links include one or more of the following: insertion and use of polarization devices, management of polarization mode dispersion (eg, by selecting fiber type, fiber length, and/or coupling selected fibers in opposite orientations), and managing cross-coupling between polarizations (eg, by selecting optical connectors and/or fiber splices).

在某些實施例中,第一整合光學裝置將經偏極化之光訊號發射至PM光學數據通訊鏈路中,PM光學數據通訊鏈路將第一整合光學裝置光學連接至第二整合光學裝置。經偏極化之光訊號行經 PM光學數據通訊鏈路並被第二整合光學裝置接收。當經偏極化之光訊號行經第一整合光學裝置與第二整合光學裝置之間之PM光學數據通訊鏈路時,經偏極化之光訊號通過多個偏極化路徑並經歷多路徑干擾(MPI)。在各種實施例中,MPI為PM光學數據通訊鏈路之一或多個特性的函數,此些特性包含下列的一或多者:PM光學數據通訊鏈路內之PM光纖區段的特性(尤其例如是PM光纖區段長度、群組索引、PM光纖區段的熱係數)、PM光學數據通訊鏈路內之PM光纖之間之光學連接器的特性(如光學連接器及/或接頭之失準角度及/或交叉耦合)、PM光纖與第一整合光學裝置之間的對準、及PM光纖與第二整合光學裝置之間的對準。In some embodiments, the first integrated optics device transmits a polarized optical signal into a PM optical data communication link that optically connects the first integrated optics device to the second integrated optics device . The polarized optical signal travels through the PM optical data communication link and is received by the second integrated optical device. When the polarized optical signal travels through the PM optical data communication link between the first integrated optical device and the second integrated optical device, the polarized optical signal passes through multiple polarization paths and experiences multipath interference (MPI). In various embodiments, the MPI is a function of one or more properties of the PM optical data communication link, such properties including one or more of the following: properties of the PM fiber section within the PM optical data communication link (especially For example, the length of the PM fiber section, the group index, the thermal coefficient of the PM fiber section), the characteristics of the optical connector between the PM fibers in the PM optical data communication link (such as the failure of the optical connector and/or splice alignment angle and/or cross-coupling), the alignment between the PM fiber and the first integrated optics device, and the alignment between the PM fiber and the second integrated optics device.

當光學數據通訊系統包含能操作而傳輸經高帶寬調變而調變至數個波長分波多工(WDM)波長中之每一者之複數光學訊號的整合光學發射器時,吾人尤其關切避免經由PM光學數據通訊鏈路之光傳輸中與偏極化相關的折損。當光學數據通訊系統包含能操作而偵測僅自PM光纖偏極化中之單一偏極化入射之光的整合光學接收器時,吾人亦尤其關切避免經由PM光學數據通訊鏈路之光傳輸中與偏極化相關的折損。當光學數據通訊系統不提供經傳輸之經調變之光學訊號之光波長的實質調整/控制以尤其回應光學數據通訊系統操作期間觀察到之光傳輸波長光譜時,吾人亦尤其關切避免經由PM光學數據通訊鏈路之光傳輸中與偏極化相關的折損。When the optical data communication system includes an integrated optical transmitter operable to transmit a plurality of optical signals modulated by high bandwidth modulation to each of several wavelength division multiplexed (WDM) wavelengths, we are particularly concerned about avoiding via Polarization-dependent impairments in optical transmission of PM optical data communication links. We are also particularly concerned about avoiding in-transmission of light over PM optical data communication links when the optical data communication system includes an integrated optical receiver operable to detect light incident from only a single polarization of the PM fiber polarization. Polarization-related impairments. We are also particularly concerned about avoiding the transmission via PM optics when the optical data communication system does not provide substantial adjustment/control of the optical wavelength of the transmitted modulated optical signal in response to, inter alia, the spectrum of optically transmitted wavelengths observed during operation of the optical data communication system. Polarization-related impairments in optical transmission of data communication links.

對於大於約每秒20G次取樣的鮑率(baud rate),與經由PM光學數據通訊鏈路之光傳輸之偏極化相關之折損相關的挑戰尤其嚴重,對於大於約每秒45G次取樣的鮑率,此類折損相關的挑戰甚至更嚴重,因為在此類光學數據傳輸速度下,與偏極化相關之折損和頻域中之訊號頻帶有更高的機率相交 。又,隨著每一光纖之數據通訊波長通道之數目增加,至少一數據通訊波長通道經歷無法接受之偏極化相關折損的機率增加。又,隨著附接至整合光學發射器及/或整合光學接收器之每一者的光纖數目增加,至少一數據通訊波長通道經歷無法接受之偏極化相關折損的機率增加。The challenges associated with polarization-related impairments of optical transmission over PM optical data communication links are especially acute for baud rates greater than about 20 Gsamples per second, and for baud rates greater than about 45 Gsamples per second. The challenges associated with such impairments are even more severe at such optical data rates, since polarization-related impairments intersect with signal bands in the frequency domain with a higher probability at these optical data transmission speeds. Also, as the number of data communication wavelength channels per optical fiber increases, the chance that at least one data communication wavelength channel experiences unacceptable polarization-dependent impairments increases. Also, as the number of optical fibers attached to each of the integrated optical transmitter and/or integrated optical receiver increases, the chance that at least one data communication wavelength channel experiences unacceptable polarization-dependent impairments increases.

例如連接至少量光纖(如少於四條光纖)及/或以每一光纖具有少量WDM通道(如每一光纖具有少於五條WDM通道)操作的發射器及/或接收器的整合光學裝置,可能會因為光傳輸中與偏極化相關之折損而苦於中度的產出損失。然而,包含許多光纖(如四或更多條光纖)及/或每一光纖具有許多WDM通道(如每一光纖具有五或更多WDM通道)的光學數據通訊系統,可能會因為光傳輸中與偏極化相關之折損而苦於嚴重的產出損失,因此需要更仔細地管理光傳輸中與偏極化相關之折損。For example, integrated optics connected to transmitters and/or receivers operating with a small number of optical fibers (e.g., less than four optical fibers) and/or with a small number of WDM channels per optical fiber (e.g., fewer than five WDM channels per optical fiber), may Can suffer from moderate yield loss due to polarization-related impairments in light transmission. However, an optical data communication system that includes many optical fibers (such as four or more optical fibers) and/or each optical fiber has many WDM channels (such as five or more WDM channels per optical fiber) may suffer due to optical transmission and Polarization-related impairments suffer from severe yield loss, so more careful management of polarization-related impairments in optical transmission is required.

文中所述之經由PM光學數據通訊鏈路減輕及/或管理光傳輸中之與偏極化相關之折損的實施例可用於基本上具有任何數目之PM光纖光學連接至一特定整合光學裝置的光學數據通訊系統中。文中所述之經由PM光學數據通訊鏈路減輕及/或管理光傳輸中之與偏極化相關之折損的實施例尤其可應用至具有四或更多條PM光纖附接至單一整合光學裝置的光學數據通訊系統,甚至更可應用至包含九或更多條光纖附接至單一整合光學裝置的光學數據通訊系統,尤其可應用至包含五或更多條光纖附接至單一整合光學裝置的光學數據通訊系統,其中該單一整合光學裝置包含一或多個光學接收器元件/裝置/零件/系統及/或一或多個光學發射器元件/裝置/零件/系統。Embodiments described herein for mitigating and/or managing polarization-related impairments in optical transmission via PM optical data communication links may be used in optical systems having substantially any number of PM fibers optically connected to a particular integrated optical device. in the data communication system. Embodiments described herein for mitigating and/or managing polarization-related impairments in optical transmission over PM optical data communication links are particularly applicable to systems having four or more PM fibers attached to a single integrated optical device Optical data communication systems, even more applicable to optical data communication systems comprising nine or more optical fibers attached to a single integrated optical device, especially applicable to optical data communication systems comprising five or more optical fibers attached to a single integrated optical device A data communication system, wherein the single integrated optical device comprises one or more optical receiver elements/devices/parts/systems and/or one or more optical transmitter elements/devices/parts/systems.

文中所述之經由PM光學數據通訊鏈路減輕及/或管理光傳輸中之與偏極化相關之折損的實施例可使用於實質上每一光纖具有任何數目之WDM波長通道的光學數據通訊系統中。文中所述之經由PM光學數據通訊鏈路減輕及/或管理光傳輸中之與偏極化相關之折損的實施例尤其可應用至每一光纖包含五或更多條WDM波長通道的光學數據通訊系統,甚至可應用至每一光纖包含八或更多條WDM波長通道的光學數據通訊系統,尤其可應用至每一光纖包含12或更多條WDM波長通道的光學數據通訊系統。Embodiments described herein for mitigating and/or managing polarization-related impairments in optical transmission over PM optical data communication links can be used in optical data communication systems having virtually any number of WDM wavelength channels per optical fiber middle. Embodiments described herein for mitigating and/or managing polarization-related impairments in optical transmission over PM optical data communication links are particularly applicable to optical data communication where each fiber comprises five or more WDM wavelength channels The system can even be applied to an optical data communication system in which each optical fiber contains eight or more WDM wavelength channels, and especially can be applied to an optical data communication system in which each optical fiber contains 12 or more WDM wavelength channels.

圖1顯示根據某些實施例之光學數據通訊系統100的圖,光學數據通訊系統100包含經由PM光學數據通訊鏈路103光學連接至光學接收器105(Rx)的光學發射器101(Tx)。自光學發射器101經由PM光學數據通訊鏈路103行進至光學接收器105之光的行進方向係由箭頭102表示。例示性之PM光學數據通訊鏈路103包含PM光纖(複數光纖)107-1、107-2、107-3、107-4、107-5的五個區段。在某些實施例中,PM光纖(複數光纖)107-1、107-2、107-3、107-4、107-5的每一區段皆包含複數光纖。在某些實施例中,PM光纖107-1、107-2、107-3、107-4、107-5之每一區段中的複數光纖共同形成為光纖陣列如光纖帶。PM光纖區段107-1具有光學連接至光學發射器101之光學輸出的第一端。PM光纖區段107-1 具有光學連接至光學連接器109-1的第二端。PM光纖區段107-2具有光學連接至光學連接器109-1的第一端及光學連接至光學連接器109-2的第二端。PM光纖區段107-3具有光學連接至光學連接器109-2的第一端及光學連接至光學連接器109-3的第二端。PM光纖區段107-4具有光學連接至光學連接器109-3的第一端及光學連接至光學連接器109-4的第二端。PM光纖區段107-5具有光學連接至光學連接器109-4的第一端及光學連接至光學接收器105之光學輸入的第二端。在某些實施例中,PM光纖區段107-3比其他PM光纖區段107-1、107-2、107-4、107-5更長。1 shows a diagram of an optical data communication system 100 comprising an optical transmitter 101 (Tx) optically connected to an optical receiver 105 (Rx) via a PM optical data communication link 103 according to some embodiments. The direction of travel of light traveling from optical transmitter 101 to optical receiver 105 via PM optical data communication link 103 is indicated by arrow 102 . The exemplary PM optical data communication link 103 includes five sections of PM optical fibers (plurality of optical fibers) 107-1, 107-2, 107-3, 107-4, 107-5. In certain embodiments, each section of PM fiber (plurality of fibers) 107-1, 107-2, 107-3, 107-4, 107-5 includes a plurality of fibers. In some embodiments, the plurality of fibers in each section of PM fibers 107-1, 107-2, 107-3, 107-4, 107-5 are collectively formed into an array of fibers such as a fiber optic ribbon. PM fiber segment 107 - 1 has a first end optically connected to the optical output of optical transmitter 101 . PM fiber segment 107-1 has a second end optically connected to optical connector 109-1. PM fiber segment 107-2 has a first end optically connected to optical connector 109-1 and a second end optically connected to optical connector 109-2. PM fiber segment 107-3 has a first end optically connected to optical connector 109-2 and a second end optically connected to optical connector 109-3. PM fiber segment 107-4 has a first end optically connected to optical connector 109-3 and a second end optically connected to optical connector 109-4. PM fiber segment 107 - 5 has a first end optically connected to optical connector 109 - 4 and a second end optically connected to the optical input of optical receiver 105 . In certain embodiments, the PM fiber segment 107-3 is longer than the other PM fiber segments 107-1, 107-2, 107-4, 107-5.

光學數據通訊系統100亦包含雷射111,雷射111係用以產生在一或多個波長下的連續波雷射光並經由光學鏈路113將連續波雷射光傳輸至光學發射器101。光學鏈路113包含光纖區段 115-1、115-2、及115-3。光纖區段115-1 具有光學連接至雷射111之光學輸出的第一端。光纖區段115-1具有光學連接至光學連接器117-1的第二端。光纖區段115-2具有光學連接至光學連接器117-1的第一端及光學連接至光學連接器117-2的第二端。光纖區段115-3具有光學連接至光學連接器117-2的第一端及光學連接至光學發射器101之雷射供給光學輸入的第二端。在某些實施例中,每一光纖區段115-1、115-2、115-3皆為單一光纖。在某些實施例中,每一光纖區段115-1、115-2、115-3包含複數光纖。在某些實施例中,每一光纖區段115-1、115-2、115-3係由非PM光纖(複數光纖)所形成。在此些實施例中,光學發射器101(或包含光學發射器101的光學收發器)係用以切分進入之連續波雷射光的複數偏極化,以藉由光學發射器101產生用以經由PM光學數據通訊鏈路103傳輸至光學接收器105用之具有單一偏極化之經調變之光學訊號。在某些實施例中,雷射111係用以輸出單一偏極化下之(一或多個波長的)連續波雷射光。在此些實施例中,每一光纖區段115-1、115-2、115-3係由PM光纖(複數光纖)所形成。The optical data communication system 100 also includes a laser 111 for generating continuous wave laser light at one or more wavelengths and transmitting the continuous wave laser light to the optical transmitter 101 via the optical link 113 . Optical link 113 includes fiber optic sections 115-1, 115-2, and 115-3. Fiber segment 115 - 1 has a first end optically connected to the optical output of laser 111 . The fiber optic segment 115-1 has a second end optically connected to an optical connector 117-1. Fiber segment 115-2 has a first end optically connected to optical connector 117-1 and a second end optically connected to optical connector 117-2. Fiber segment 115 - 3 has a first end optically connected to optical connector 117 - 2 and a second end optically connected to the laser feed optical input of optical transmitter 101 . In some embodiments, each fiber section 115-1, 115-2, 115-3 is a single fiber. In certain embodiments, each fiber segment 115-1, 115-2, 115-3 includes a plurality of optical fibers. In some embodiments, each fiber segment 115-1, 115-2, 115-3 is formed of non-PM fiber (plurality of fiber). In these embodiments, the optical transmitter 101 (or an optical transceiver including the optical transmitter 101) is used to split the complex polarization of the incoming continuous wave laser light to be generated by the optical transmitter 101 for The modulated optical signal with a single polarization is transmitted via the PM optical data communication link 103 to the optical receiver 105 . In some embodiments, the laser 111 is configured to output continuous wave laser light (of one or more wavelengths) under a single polarization. In these embodiments, each fiber section 115-1, 115-2, 115-3 is formed of PM fiber (plurality of fiber).

在某些實施例中,光學發射器101係施行於包含光學發射器與光學接收器元件兩者的光學收發器內。類似地,在某些實施例中,光學接收器105係施行於包含光學發射器與光學接收器元件兩者的光學收發器內。在光學接收器105係施行於光學收發器內的實施例中,雷射111係經由光學鏈路119而光學連接至包含光學接收器105的光學收發器。光學鏈路119包含光纖區段 121-1、121-2、及121-3。光纖區段121-1具有光學連接至雷射111之光學輸出的第一端。光纖區段121-1具有光學連接至光學連接器123-1的第二端。光纖區段121-2具有光學連接至光學連接器123-1的第一端及光學連接至光學連接器123-2的第二端。光纖區段121-3具有光學連接至光學連接器123-2的第一端及光學連接至包含光學接收器105之光學收發器之雷射供給光學輸入的第二端。在某些實施例中,每一光纖區段121-1、121-2、121-3皆為單一光纖。在某些實施例中,每一光纖區段121-1、121-2、121-3包含複數光纖。在某些實施例中,每一光纖區段121-1、121-2、121-3係由非 PM光纖(複數光纖)所形成。在此些實施例中,包含光學接收器105的收發器係用以切分進入之連續波雷射光的複數偏極化,以產生具有單一偏極化之經調變之光學訊號。在某些實施例中,雷射111係用以輸出在單一偏極化下之(一或多個波長之)連續波雷射光。在此些實施例中,每一光纖區段121-1、121-2、121-3係由PM光纖(複數光纖)所形成。In some embodiments, the optical transmitter 101 is implemented within an optical transceiver that includes both optical transmitter and optical receiver elements. Similarly, in some embodiments, the optical receiver 105 is implemented within an optical transceiver that includes both optical transmitter and optical receiver elements. In embodiments where the optical receiver 105 is implemented within an optical transceiver, the laser 111 is optically connected via an optical link 119 to the optical transceiver including the optical receiver 105 . Optical link 119 includes fiber optic sections 121-1, 121-2, and 121-3. The fiber section 121 - 1 has a first end optically connected to the optical output of the laser 111 . The fiber optic segment 121-1 has a second end optically connected to an optical connector 123-1. Fiber segment 121-2 has a first end optically connected to optical connector 123-1 and a second end optically connected to optical connector 123-2. Fiber segment 121 - 3 has a first end optically connected to optical connector 123 - 2 and a second end optically connected to a laser supply optical input of an optical transceiver comprising optical receiver 105 . In some embodiments, each fiber section 121-1, 121-2, 121-3 is a single fiber. In some embodiments, each fiber segment 121-1, 121-2, 121-3 includes a plurality of optical fibers. In some embodiments, each fiber section 121-1, 121-2, 121-3 is formed of non-PM fiber (plurality of fiber). In these embodiments, a transceiver including optical receiver 105 is used to split the complex polarizations of incoming continuous wave laser light to generate modulated optical signals having a single polarization. In some embodiments, the laser 111 is configured to output continuous wave laser light (of one or more wavelengths) under a single polarization. In these embodiments, each fiber section 121-1, 121-2, 121-3 is formed by PM fiber (plurality of fiber).

應瞭解,圖1為了便於說明以概略方式顯示了光學連接。然而在某些實施例中,在光學數據通訊系統100的實際實施中,載帶雷射光至光學發射器101之光學鏈路113的複數光纖係以複數光纖之單一陣列的方式附接至包含光學發射器101之整合光學裝置(整合光學收發器)。又,在某些實施例中,在光學數據通訊系統100的實際實施中,載帶離開光學發射器101之經調變之光學訊號之PM光學數據通訊鏈路103的複數光纖係以複數光纖之單一陣列的方式附接至包含光學發射器101之整合光學裝置(整合光學收發器)。又,在某些實施例中,在光學數據通訊系統100的實際實施中,載帶經調變之光學訊號進入光學接收器105之PM光學數據通訊鏈路103的複數光纖係以複數光纖之單一陣列的方式附接至包含光學接收器105之整合光學裝置(整合光學收發器)。It should be appreciated that Figure 1 shows optical connections in a diagrammatic manner for ease of illustration. In some embodiments, however, in the actual implementation of the optical data communication system 100, the plurality of optical fibers carrying the optical link 113 of the laser light to the optical transmitter 101 is attached in a single array of optical fibers to the The integrated optics device of the transmitter 101 (integrated optical transceiver). Also, in some embodiments, in the actual implementation of the optical data communication system 100, the plurality of optical fibers of the PM optical data communication link 103 carrying the modulated optical signal leaving the optical transmitter 101 are separated by the plurality of optical fibers A single array is attached to an integrated optics device (integrated optical transceiver) including optical transmitters 101 . Also, in some embodiments, in the actual implementation of the optical data communication system 100, the plurality of optical fibers carrying the modulated optical signal into the PM optical data communication link 103 of the optical receiver 105 is a single optical fiber of the plurality of optical fibers. The array is attached to an integrated optics device (integrated optical transceiver) comprising optical receivers 105 .

在某些實施例中,在PM光學數據通訊鏈路103內之光學連接器109-1、109-2、109-3、109-4的每一者處存在著小的光纖對光纖失準。光學連接器109-1、109-2、109-3、109-4處之每一光纖對光纖失準造成偏極化之間的光學耦合。又,在某些實施例中,PM光學數據通訊鏈路103內之PM光纖(複數光纖) 107-1、107-2、107-3、107-4、107-5的每一區段造成偏極化之間之與波長相關的差異相。又,在某些實施例中,每一光纖對晶片的光學耦合,如光學發射器101與PM光纖(複數光纖) 107-1之區段之間、如光學接收器105與PM光纖(複數光纖) 107-5之區段之間的光學耦合具有光學偏極化裝置的功能。In some embodiments, there is a small fiber-to-fiber misalignment at each of the optical connectors 109-1 , 109-2, 109-3, 109-4 within the PM optical data communication link 103 . Each fiber-to-fiber misalignment at optical connectors 109-1, 109-2, 109-3, 109-4 causes optical coupling between polarizations. Also, in some embodiments, each section of the PM optical fiber (plurality of optical fibers) 107-1, 107-2, 107-3, 107-4, 107-5 within the PM optical data communication link 103 causes deflection. The wavelength-dependent difference between the polarization phases. Also, in some embodiments, the optical coupling of each fiber to the wafer, such as between the optical transmitter 101 and a section of PM fiber (plural fiber) 107-1, such as between the optical receiver 105 and the PM fiber (plural fiber) ) The optical coupling between segments of 107-5 has the function of an optical polarization device.

在某些實施例中,偏極化抑制裝置係光學耦合至PM光學數據通訊鏈路103。例如,圖1顯示光學耦合至位於光學發射器101之光學輸出與第一光學連接器109-1之間之位置處之第一PM光纖 107-1的第一偏極化抑制裝置108-1。圖1亦顯示光學耦合至位於第一光學連接器109-1與第二光學連接器109-2之間之位置處之第二PM光纖 107-2的第二偏極化抑制裝置108-2。圖1亦顯示光學耦合至位於第二光學連接器109-2與第三光學連接器109-3之間之位置處之第三PM光纖 107-3的第三偏極化抑制裝置108-3。圖1亦顯示光學耦合至位於第三光學連接器109-3與第四光學連接器109-4之間之位置處之第四PM光纖 107-4的第四偏極化抑制裝置108-4。圖1亦顯示光學耦合至位於第四光學連接器109-4 與光學接收器105之光學輸入之間之位置處之第五PM光纖 107-5的第五偏極化抑制裝置108-5。應瞭解,在各種實施例中,PM光學數據通訊鏈路103可包含第一偏極化抑制裝置108-1、第二偏極化抑制裝置108-2、第三偏極化抑制裝置108-3、第四偏極化抑制裝置108-4、及第五偏極化抑制裝置108-5中的任何一或多者。又,在某些實施例中,PM光學數據通訊鏈路103不包含第一偏極化抑制裝置108-1、 第二偏極化抑制裝置108-2、第三偏極化抑制裝置108-3、第四偏極化抑制裝置108-4、及第五偏極化抑制裝置108-5中的任何者。在某些實施例中,第一偏極化抑制裝置108-1、第二偏極化抑制裝置108-2、第三偏極化抑制裝置108-3、第四偏極化抑制裝置108-4、及第五偏極化抑制裝置108-5中的任何一或多者為用以抑制兩偏極化模式中的一者的偏極化裝置。在某些實施例中,第一偏極化抑制裝置108-1、第二偏極化抑制裝置108-2、第三偏極化抑制裝置108-3、第四偏極化抑制裝置108-4、及第五偏極化抑制裝置108-5中的任何一或多者為用以抑制兩偏極化模式中的一者的偏極化相依之損失元件。In some embodiments, the polarization suppression device is optically coupled to the PM optical data communication link 103 . For example, FIG. 1 shows a first polarization suppression device 108-1 optically coupled to a first PM fiber 107-1 at a location between the optical output of the optical transmitter 101 and the first optical connector 109-1. Figure 1 also shows a second polarization suppressing device 108-2 optically coupled to a second PM optical fiber 107-2 at a location between the first optical connector 109-1 and the second optical connector 109-2. Figure 1 also shows a third polarization suppressing device 108-3 optically coupled to a third PM optical fiber 107-3 at a location between the second optical connector 109-2 and the third optical connector 109-3. Figure 1 also shows a fourth polarization suppressing device 108-4 optically coupled to a fourth PM optical fiber 107-4 at a location between the third optical connector 109-3 and the fourth optical connector 109-4. 1 also shows a fifth polarization suppression device 108-5 optically coupled to a fifth PM optical fiber 107-5 at a location between the fourth optical connector 109-4 and the optical input of the optical receiver 105. It should be appreciated that in various embodiments, the PM optical data communication link 103 may include a first polarization suppression device 108-1, a second polarization suppression device 108-2, a third polarization suppression device 108-3 , any one or more of the fourth polarization suppression device 108-4, and the fifth polarization suppression device 108-5. Also, in some embodiments, the PM optical data communication link 103 does not include the first polarization suppression device 108-1, the second polarization suppression device 108-2, and the third polarization suppression device 108-3 , any one of the fourth polarization suppression device 108-4, and the fifth polarization suppression device 108-5. In some embodiments, the first polarization suppression device 108-1, the second polarization suppression device 108-2, the third polarization suppression device 108-3, and the fourth polarization suppression device 108-4 , and any one or more of the fifth polarization suppression means 108-5 are polarization means for suppressing one of the two polarization modes. In some embodiments, the first polarization suppression device 108-1, the second polarization suppression device 108-2, the third polarization suppression device 108-3, and the fourth polarization suppression device 108-4 , and any one or more of the fifth polarization suppression means 108-5 are polarization-dependent loss elements for suppressing one of the two polarization modes.

圖2顯示根據某些實施例之在包含五個PM光纖區段 107-1、107-2、107-3、107-4、107-5之PM光學數據通訊鏈路103之自-500千兆赫茲(GHz)至+500 GHz之頻率範圍上之光傳輸(以分貝(dB)作為單位)的各種圖示201、202、203、204。 圖2中所示之光傳輸的不同圖示201、202、203、204係對應至針對PM光纖區段107-3(中央PM光纖區段)使用不同長度但將其他PM光纖區段 107-1、107-2、107-4、107-5維持在其各別長度值之PM光學數據通訊鏈路103的實施例。在用以產生圖示201、202、203、204之PM光學數據通訊鏈路103的每一組態中,第一PM光纖區段107-1具有約0.6米之長度、第二PM光纖區段107-2具有約1米之長度、第四PM光纖區段107-4 具有約1米之長度、而第五PM光纖區段107-5具有約0.6米之長度。在用以產生圖示 201之PM光學數據通訊鏈路103中,第三PM光纖區段107-3具有約3米之長度。在用以產生圖示202之PM光學數據通訊鏈路103中,第三PM光纖區段107-3具有約10米之長度。在用以產生圖示203之PM光學數據通訊鏈路103中,第三PM光纖區段107-3具有約30米之長度。在用以產生圖示204之PM光學數據通訊鏈路103中,第三PM光纖區段107-3具有約100米之長度。FIG. 2 shows a self-500 Gigabit connection over a PM optical data communication link 103 comprising five PM fiber segments 107-1, 107-2, 107-3, 107-4, 107-5, according to certain embodiments. Various diagrams 201 , 202 , 203 , 204 of optical transmission in decibels (dB) over the frequency range Hertz (GHz) to +500 GHz. The different illustrations 201, 202, 203, 204 of light transmission shown in FIG. 2 correspond to the use of different lengths for the PM fiber section 107-3 (central PM fiber section) but the other PM fiber sections 107-1 , 107-2, 107-4, 107-5 are embodiments of PM optical data communication links 103 maintained at their respective length values. In each configuration used to produce the PM optical data communication link 103 shown in Figures 201, 202, 203, 204, the first PM fiber section 107-1 has a length of about 0.6 meters, the second PM fiber section 107-2 has a length of about 1 meter, the fourth PM fiber section 107-4 has a length of about 1 meter, and the fifth PM fiber section 107-5 has a length of about 0.6 meter. In the PM optical data communication link 103 used to generate the diagram 201, the third PM optical fiber section 107-3 has a length of about 3 meters. In the PM optical data communication link 103 used to generate the diagram 202, the third PM optical fiber section 107-3 has a length of about 10 meters. In the PM optical data communication link 103 used to generate the diagram 203, the third PM optical fiber section 107-3 has a length of about 30 meters. In the PM optical data communication link 103 used to generate the diagram 204, the third PM optical fiber section 107-3 has a length of about 100 meters.

為了產生圖示201、202、203、204,光纖偏極化模式色散(PMD)約為每公尺1.3皮秒(ps/m)。光纖 PMD為平均差分群延遲(DGD),其中DGD為光學接收器105處之兩主要偏極化狀態之間的時間分隔(或延遲)。DGD為可藉由馬克士威機率分布所近似的隨機值。PMD為大量獨立DGD量測值分佈上的DGD平均值。圖示201、202、203、204中的每一者皆包含畫在一起的16個隨機實現。又,為了產生圖示201、202、203、204,針對16個隨機實現之光學連接器109-1、109-2、109-3、109-4處的失準角度進行取樣成為具有一維標準差的獨立高斯隨機變數。To generate the graphs 201, 202, 203, 204, the fiber polarization mode dispersion (PMD) is approximately 1.3 picoseconds per meter (ps/m). The fiber PMD is the average differential group delay (DGD), where DGD is the time separation (or delay) between the two dominant polarization states at the optical receiver 105 . DGD is a random value that can be approximated by a Maxwell probability distribution. PMD is the average value of DGD over the distribution of a large number of independent DGD measurements. Each of the diagrams 201, 202, 203, 204 contains 16 random realizations drawn together. Also, in order to generate graphs 201, 202, 203, 204, the misalignment angles at 16 randomly implemented optical connectors 109-1, 109-2, 109-3, 109-4 are sampled to have a one-dimensional standard Poor independent Gaussian random variables.

圖示201、202、203、204之比較顯示,偏極化耦合將與頻率相依之損失導入PM光學數據通訊鏈路103內。圖示201、202、203、204之比較亦顯示, 較長之PM光纖會隨著頻率產生在光傳輸的快速變化(因增加之PMD),此為非所欲之結果。橫跨波長範圍之最差的光學損失為光學連接器109-1、109-2、109-3、109-4處之隨機失準的函數,且可藉由收緊光學連接器109-1、109-2、109-3、109-4處之角對準容裕而減少此光學損失。在某些實施例中,期望選擇具有相對小之PMD的PM光纖,以產生隨頻率較不快速振盪的傳輸響應。A comparison of diagrams 201 , 202 , 203 , 204 shows that polarization coupling introduces frequency-dependent losses into the PM optical data communication link 103 . A comparison of graphs 201, 202, 203, 204 also shows that longer PM fibers produce rapid changes in optical transmission (due to increased PMD) with frequency, which is an undesired result. The worst-case optical loss across the wavelength range is a function of random misalignment at the optical connectors 109-1, 109-2, 109-3, 109-4 and can be determined by tightening the optical connectors 109-1, 109-1, Corner alignment margins at 109-2, 109-3, 109-4 reduce this optical loss. In certain embodiments, it is desirable to select a PM fiber with a relatively small PMD to produce a transmission response that oscillates less rapidly with frequency.

在某些實施例中,藉著反轉每一對光學連接之PM光纖之間的偏極化軸可產生PM光纖區段 107-1、107-2、107-3、107-4、107-5之間之光學連接(由光學連接器109-1、109-2、109-3、109-4所提供)中的一或多者。更具體而言,針對一特定對之光學連接PM光纖而言,該對光纖之一PM光纖的慢軸係對準至該對光纖之另一PM光纖的快速軸。兩PM光纖之間之連接處之偏極化軸的此顛倒對準傾向於引入該兩連接PM光纖之PMD的抵銷且產生隨頻率較不快速振盪的光傳輸響應。In some embodiments, the PM fiber segments 107-1, 107-2, 107-3, 107-4, 107- One or more of the optical connections between 5 (provided by optical connectors 109-1, 109-2, 109-3, 109-4). More specifically, for a particular pair of optically connected PM fibers, the slow axis of the PM fiber of one of the pair is aligned to the fast axis of the other PM fiber of the pair. This reversed alignment of the polarization axes at the junction between two PM fibers tends to introduce cancellation of the PMD of the two connected PM fibers and produces a less rapidly oscillating light transmission response with frequency.

圖3A顯示根據某些實施例之在PM光學數據通訊鏈路103之自-500 GHz延伸至+500 GHz之頻率範圍上之光傳輸(以dB作為單位)的圖示301,在PM光學數據通訊鏈路103中在光學連接器109-1、109-2、109-3、109-4中之每一者處之PM光纖區段 107-1、107-2、107-3、107-4、107-5之間之光纖對光纖之連接具有偏極化軸之標準對準,在偏極化軸之標準對準中在光學連接器109-1、109-2、109-3、109-4處之每一連接對PM光纖的一PM光纖的慢軸係對準至另一PM光纖之慢軸。圖3B顯示根據某些實施例之在PM光學數據通訊鏈路103之自-500 GHz延伸至+500 GHz之頻率範圍上之光傳輸(以dB作為單位)的圖示302, 在PM光學數據通訊鏈路103中在光學連接器109-1、109-2、109-3、109-4中之每一者處之PM光纖區段 107-1、107-2、107-3、107-4、107-5之間之光纖對光纖之連接具有偏極化軸之顛倒對準(PM光纖偏極化軸之交替位向的連接),在偏極化軸之顛倒對準中在光學連接器109-1、109-2、109-3、109-4處之每一連接對PM光纖的一PM光纖的慢軸係對準至另一PM光纖之快軸。在用以產生圖示301與302的PM光學數據通訊鏈路103後,第一PM光纖區段107-1具有約0.2米之長度,第二PM光纖區段107-2具有約5米之長度,第三PM光纖區段107-3具有約10米之長度,第四PM光纖區段107-4具有約5米之長度,而第五PM光纖區段107-5具有約0.2米之長度。圖示301與302之比較顯示,使用偏極化軸之顛倒對準的PM光纖連接(圖示302)產生實質上較平滑之頻率響應及相對較平均的光傳輸及最小的光傳輸。3A shows a graph 301 of optical transmission (in dB) over the frequency range of PM optical data communication link 103 extending from -500 GHz to +500 GHz, according to some embodiments. PM fiber segments 107-1, 107-2, 107-3, 107-4, The fiber-to-fiber connection between 107-5 has a standard alignment of the polarization axis in which optical connectors 109-1, 109-2, 109-3, 109-4 The slow axis of one PM fiber of each connected pair of PM fibers is aligned to the slow axis of the other PM fiber. FIG. 3B shows a graph 302 of optical transmission (in dB) over the frequency range of PM optical data communication link 103 extending from -500 GHz to +500 GHz in accordance with certain embodiments. PM fiber segments 107-1, 107-2, 107-3, 107-4, The fiber-to-fiber connection between 107-5 has an upside-down alignment of the polarization axis (connection of alternate orientations of the polarization axis of the PM fiber), in the upside-down alignment of the polarization axis in the optical connector 109 - The slow axis of one PM fiber of each connected pair of PM fibers at 1, 109-2, 109-3, 109-4 is aligned to the fast axis of the other PM fiber. After being used to produce the PM optical data communication link 103 shown in Figures 301 and 302, the first PM fiber section 107-1 has a length of about 0.2 meters, and the second PM fiber section 107-2 has a length of about 5 meters , the third PM fiber section 107-3 has a length of about 10 meters, the fourth PM fiber section 107-4 has a length of about 5 meters, and the fifth PM fiber section 107-5 has a length of about 0.2 meters. A comparison of graphs 301 and 302 shows that a PM fiber connection using an inverted alignment of the polarization axis (graph 302 ) yields a substantially smoother frequency response and relatively average and minimal light transmission.

在某些實施例中,將一或多個偏極化裝置及/或偏極化相依之損失元件安插於PM光學數據通訊鏈路103內,使得即便在光學連接器109-1、109-2、109-3、109-4中之一或多者處之PM光纖區段 107-1、107-2、107-3、107-4、107-5內之PM光纖之間的失準(複數失準)產生不利之偏極化成分,也能在不利之偏極化成分被耦合回主要偏極化之前便將其消滅。圖4A顯示根據某些實施例之在包含五個PM光纖區段 107-1、107-2、107-3、107-4、107-5之PM光學數據通訊鏈路103之自-500 GHz 延伸至+500 GHz之頻率範圍上之光傳輸(以dB作為單位)的圖示401,PM光學數據通訊鏈路103中安插有偏極化裝置。在用以產生圖示401與402的PM光學數據通訊鏈路103中,第一PM光纖區段107-1具有約0.4米之長度,第二PM光纖區段107-2具有約1.2米之長度,第三PM光纖區段107-3具有約5米之長度,第四PM光纖區段107-4具有約1.2米之長度,而第五PM光纖區段107-5具有約0.4米之長度。圖示401與402中的每一者皆包含100個畫在一起的隨機實現。又,為了產生圖示401與402,針對100個隨機實現之光學連接器109-1、109-2、109-3、109-4處的光纖對光纖失準角度進行取樣成為具有一維標準差的獨立高斯隨機變數。圖4A之圖示 401係針對未安插偏極化裝置之PM光學數據通訊鏈路103,圖4B之圖示 402係針對在五個PM光纖區段 107-1、107-2、107-3、107-4、107-5的每一者中有安插偏極化裝置(複數偏極化裝置)以在五個PM光纖區段 107-1、107-2、107-3、107-4、107-5的每一者中提供6 dB非所欲偏極化抑制的PM光學數據通訊鏈路103。圖示401與402之比較顯示在PM光學數據通訊鏈路103內安插偏極化裝置能實質減少光傳輸損失。In some embodiments, one or more polarization devices and/or polarization-dependent loss elements are inserted within the PM optical data communication link 103 such that even optical connectors 109-1, 109-2 , 109-3, 109-4 at one or more of PM fiber sections 107-1, 107-2, 107-3, 107-4, 107-5 misalignment between PM fibers within the PM fiber section (plural Misalignment) produces unfavorable polarization components, and can also eliminate unfavorable polarization components before they are coupled back into the main polarization. 4A shows the extension from -500 GHz at PM optical data communication link 103 comprising five PM fiber segments 107-1, 107-2, 107-3, 107-4, 107-5, according to some embodiments. Diagram 401 of optical transmission (in dB) over the frequency range to +500 GHz, PM optical data communication link 103 with polarization means inserted. In the PM optical data communication link 103 used to generate diagrams 401 and 402, the first PM fiber section 107-1 has a length of about 0.4 meters, and the second PM fiber section 107-2 has a length of about 1.2 meters , the third PM fiber section 107-3 has a length of about 5 meters, the fourth PM fiber section 107-4 has a length of about 1.2 meters, and the fifth PM fiber section 107-5 has a length of about 0.4 meters. Each of diagrams 401 and 402 contains 100 random realizations drawn together. Also, to generate graphs 401 and 402, the fiber misalignment angles were sampled for 100 randomly implemented fibers at optical connectors 109-1, 109-2, 109-3, 109-4 to have a one-dimensional standard deviation independent Gaussian random variables. The diagram 401 of Fig. 4 A is for the PM optical data communication link 103 without a polarization device inserted, and the diagram 402 of Fig. Each of 107-4, 107-5 has a polarization device (complex number of polarization devices) inserted in each of the five PM fiber sections 107-1, 107-2, 107-3, 107-4, 107 PM optical data communication link 103 providing 6 dB undesired polarization suppression in each of -5. A comparison of diagrams 401 and 402 shows that the insertion of polarization devices within the PM optical data communication link 103 can substantially reduce optical transmission loss.

圖5A顯示根據某些實施例之在用以分別產生圖4A及4B之圖示401與402之PM光學數據通訊鏈路103組態之3.4 太赫(THz) 頻率範圍(其為WDM系統之例示性全範圍)上之最差光傳輸損失之累積分佈函數(自1024個實現所估計)的圖示501與502,其中針對1024個隨機實現之光學連接器109-1、109-2、109-3、109-4處之光纖對光纖之失準角度進行取樣成為具有一維標準差之獨立高斯隨機變數。對於偏極化相關之折損的特定位準而言,含偏極化裝置的PM光學數據通訊鏈路103(圖示502)比不含偏極化裝置的PM光學數據通訊鏈路(圖示501)具有遠遠較高的累積機率。因此,具有偏極化裝置之PM光學數據通訊鏈路103遠遠地較不可能搞砸效能的所需位準。例如,若光學數據通訊系統100在3.4 THz的操作頻帶範圍內需要小於或等於0.15 dB之最差光傳輸損失, 不含偏極化裝置之PM光學數據通訊鏈路103具有約5個百分比之機率搞砸最差之光傳輸損失要求, 但含偏極化裝置之PM光學數據通訊鏈路103具有遠低於1個百分比之機率最差之光傳輸損失要求。FIG. 5A shows the 3.4 terahertz (THz) frequency range in the configuration of PM optical data communication link 103 used to generate graphs 401 and 402 of FIGS. 4A and 4B , respectively, which is an example of a WDM system, according to certain embodiments. Graphs 501 and 502 of the cumulative distribution functions (estimated from 1024 realizations) of the worst optical transmission loss over the entire range of performance) for 1024 random realizations of optical connectors 109-1, 109-2, 109- 3. The optical fiber at 109-4 samples the misalignment angle of the optical fiber to become an independent Gaussian random variable with a one-dimensional standard deviation. For a particular level of polarization-dependent impairments, the PM optical data communication link 103 (shown 502 ) with a polarization device is more efficient than the PM optical data communication link (shown 501 ) without a polarization device. ) has a much higher cumulative probability. Thus, a PM optical data communication link 103 with a polarization device is far less likely to screw up the desired level of performance. For example, if the optical data communication system 100 requires a worst-case optical transmission loss of less than or equal to 0.15 dB within the 3.4 THz operating frequency band, the PM optical data communication link 103 without polarization devices has a probability of about 5 percent The worst optical transmission loss requirement is messed up, but the PM optical data communication link 103 with polarization devices has a probability of worst optical transmission loss requirement well below 1 percent.

圖5B顯示根據某些實施例之在用以分別產生圖4A及4B之圖示401與402之PM光學數據通訊鏈路103組態之3.4 太赫(THz) 頻率範圍上之最差光傳輸損失之累積分佈函數(自1024實現所估計)的圖示503與504,其中針對1024個隨機實現之光學連接器109-1、109-2、109-3、109-4處之光纖對光纖之失準角度進行取樣成為具有二維標準差之獨立高斯隨機變數。對於偏極化相關之折損之特定位準而言,含偏極化裝置之PM光學數據通訊鏈路103(圖示504)比不含偏極化裝置的PM光學數據通訊鏈路(圖示503)具有遠遠較高的累積機率。因此,含偏極化裝置之PM光學數據通訊鏈路103遠遠地較不可能未達效能的所需位準。在光學連接器109-1、109-2、109-3、109-4處光纖對光纖失準角度的兩個標準差高斯取樣代表光學連接器係與光纖帶及陣列相匹配。在標準的假設下,如圖示503中所示,很少見到大於約1 dB之最差的光傳輸損失,但其仍然發生在一至兩個百分比的光鏈路中。若整合光學裝置係附接至形成一數目(N,如N=4)光鏈路之光纖的陣列,則產率損失近似於每一鏈路之產率的N倍。在此情況中,可能無法接受每一光鏈路一至兩個百分比的故障率。5B shows the worst-case optical transmission loss over the 3.4 terahertz (THz) frequency range for the PM optical data communication link 103 configuration used to generate graphs 401 and 402 of FIGS. 4A and 4B , respectively, according to certain embodiments. Plots 503 and 504 of the cumulative distribution function (estimated from 1024 implementations) for fiber-to-fiber losses at 1024 randomly implemented optical connectors 109-1, 109-2, 109-3, 109-4 The quasi-angles are sampled as independent Gaussian random variables with two-dimensional standard deviations. For a particular level of polarization-dependent impairments, the PM optical data communication link 103 (shown 504 ) with a polarization device is more efficient than the PM optical data communication link (shown 503 ) without a polarization device. ) has a much higher cumulative probability. Thus, PM optical data communication links 103 containing polarization devices are far less likely to fall short of the desired level of performance. Two standard deviation Gaussian samples of the fiber-to-fiber misalignment angles at the optical connectors 109-1, 109-2, 109-3, 109-4 represent that the optical connectors are matched to the ribbon and array. Under standard assumptions, as shown in diagram 503, worst-case optical transmission losses greater than about 1 dB are rarely seen, but still occur in one to two percent of optical links. If the integrating optics device is attached to an array of optical fibers forming a number (N, such as N=4) of optical links, the yield loss is approximately N times the yield of each link. In this case, a failure rate of one to two percent per optical link may not be acceptable.

與偏極化相關之折損對光學數據通訊系統之總效能(如容量、位元錯誤率、耗能等)的影響會取決於所使用之訊號處理技術。此些訊號處理技術可包含類比或數位技術。又,在某些實施例中,此些訊號處理技術係以電路方式施行。在某些實施例中,接收整合光學裝置包含晶片上之電路以進行連續時間之線性等化 (CTLE)或其他類型之線性等化。在某些實施例中,接收整合光學裝置包含晶片上之電路以進行決策反饋等化(DFE)或其他類型之非線性等化。在使用DFE的某些實施例中,減少PMD使偏極化相關之折損的時域表示落在DFE中可得之樣本的範圍內。The impact of polarization-related impairments on the overall performance (such as capacity, bit error rate, power consumption, etc.) of an optical data communication system will depend on the signal processing technology used. Such signal processing techniques may include analog or digital techniques. Also, in some embodiments, such signal processing techniques are implemented in circuits. In some embodiments, the receive integrated optics device includes on-chip circuitry to perform continuous-time linear equalization (CTLE) or other types of linear equalization. In some embodiments, the receive integrated optics device includes on-chip circuitry to perform decision feedback equalization (DFE) or other types of nonlinear equalization. In some embodiments using a DFE, reducing the PMD makes the time domain representation of polarization-dependent impairments fall within the range of samples available in the DFE.

在某些實施例中,客製化光纖的長度以改善具有低偏極化-折損光鏈路的可能性。例如,當一應用需要所需的範圍時,可有實質的自由度選擇光鏈路內之獨立光纖區段的長度。在某些實施例中,實施某些技術以達到經連接之PM光纖區段之間的較佳角容裕及/或較少交叉耦合,其包含但不限於選擇具有較佳容裕的光學連接器如單光纖連接器(例如尤其是固定連接(FC)連接器)、光纖陣列連接器(例如尤其是機械轉移(MT)連接器)、或其他類型之光學連接器。又,在某些實施例中,使用25拼接之獨立光纖或拼接光纖帶以達到經連接之PM光纖區段之間的較佳角容裕及/或較少交叉耦合。In some embodiments, the length of the fiber is customized to improve the likelihood of having a low polarization-loss optical link. For example, when an application requires the desired range, there is substantial freedom in choosing the length of the individual fiber segments within the optical link. In certain embodiments, certain techniques are implemented to achieve better angular margins and/or less cross-coupling between connected PM fiber segments, including but not limited to selecting optical connections with better margins Such as single fiber connectors (eg, especially Fixed Connection (FC) connectors), fiber optic array connectors (eg, especially Mechanical Transfer (MT) connectors), or other types of optical connectors. Also, in some embodiments, 25 spliced individual fibers or spliced fiber ribbons are used to achieve better angular margin and/or less cross-coupling between connected PM fiber segments.

在某些實施例中,光纖(複數光纖)係為了光學對準及/或測試的目的利用連接器而光學連接至整合光學裝置並在最終操作中達到較佳的偏極化效能。在某些實施例中,犧牲性連接器係附接至整合光學裝置或耦合組件,以提供光學對準及/或測試,其中在較後的時間處移除該犧牲性連接器。在某些實施例中,光纖陣列係附接至整合光學裝置。在此些實施例中,光纖陣列包含用於光學對準及/或測試的一光纖子組,該光纖子組係自其他光纖扇出及連接化。In certain embodiments, the optical fiber(s) are optically connected to the integrated optics device using a connector for optical alignment and/or testing purposes and to achieve better polarization performance in final operation. In certain embodiments, a sacrificial connector is attached to an integrated optics device or coupling assembly to provide optical alignment and/or testing, where the sacrificial connector is removed at a later time. In some embodiments, the fiber optic array is attached to an integrated optics device. In such embodiments, the fiber array includes a subset of fibers for optical alignment and/or testing that is fanned out and connected from other fibers.

用以產生圖2、3A、3B、4A、4B、5A、及5B中所示之圖示的模擬使用瓊斯矩陣表示,其中輸入訊號之偏極化係由二維複數向量 u in 表示。2x2矩陣代表例如藉由光纖之n th區段( T n fiber )或m th耦合點( T m c )之偏極化之每一轉換,且 藉著以如下方式級聯(cascade)此些轉換而計算得到輸出之偏極化: U out = T N+1 cT N fiber T 2 fiberT 2 cT 1 fiberT 1 cu in The simulations used to generate the graphs shown in Figures 2, 3A, 3B, 4A, 4B, 5A, and 5B are represented using Jones matrices, where the polarization of the input signal is represented by a two-dimensional complex vector u in . A 2x2 matrix represents each conversion of polarization eg by the n th section of fiber ( T n fiber ) or the m th coupling point ( T m c ), and by cascading these conversions in the following way And calculate the output polarization: U out = T N+1 c T N fiber T 2 fiber T 2 c T 1 fiber T 1 c u in

在多區段PM光學數據通訊鏈路如103中之PM光纖的每一區段授予主要偏極化(在理想情況下應被激發者)與次級非所欲偏極化之間之頻率相依之差異相 Φ n( f)。市售之PMF具有在數毫米(mm)等級的拍頻長度,因此對於遠長於一公分(cm)之合理光纖長度而言,此差異相極大。又,因切割精度所造成之光纖長度的不確定性甚至都具有拍頻長度的等級。因此,假設多區段PM光學數據通訊鏈路內之光纖的每一區段隨機地重相位偏極化分量。又,頻率相依之差異相通常由PMD延遲(具有每米PMF 1皮秒的等級)來加以特徵化,且可藉由光纖的設計及/或選擇來加以調整。 Each segment of the PM fiber in a multi-segment PM optical data communication link such as 103 imparts a frequency dependence between the primary polarization (which ideally should be excited) and the secondary undesired polarization The difference phase Φ n ( f ). Commercially available PMFs have beat lengths on the order of millimeters (mm), so for reasonable fiber lengths much longer than one centimeter (cm), the difference is enormous. Also, the uncertainty of fiber length caused by cutting accuracy even has the level of beat frequency length. Therefore, it is assumed that each section of optical fiber within a multi-section PM optical data communication link randomly rephases the phase polarization components. Also, the frequency-dependent differential phase is typically characterized by PMD delay (on the order of 1 picosecond per meter PMF) and can be adjusted by fiber design and/or selection.

每次光通過PM光鏈路中的一PMF區段且受到不完全地耦合,兩延遲分量之間的干擾受到鎖定並可導致光學接收器處的折損。在某些實施例中, PM區段或裝置之間的光學耦合係由消光比或(有效的)失準角度 θ來加以特徵化, (有效的)失準角度 θ之定義針對理想發射使耦合至期望與非所欲偏極化中的功率係分別與 cos 2(θ)及 sin 2(θ)成比例,消光率(ER)係定義為 ER= −10 log10( tan 2(θ))。此係於1999年8月6日加拿大之OZ Optics LTD.的「Application Note – Polarization Measurements – OZ Optics Family of Polarization Maintaining Components, Sources, and Measurements Systems」中討論,將其全部內容包含於此作為所有目的之參考。 Every time light passes through a PMF section in a PM optical link and is coupled incompletely, the interference between the two delayed components becomes locked and can cause a breakdown at the optical receiver. In some embodiments, the optical coupling between PM segments or devices is characterized by the extinction ratio or the (effective) misalignment angle θ, which is defined for ideal emission such that the coupling The power in the desired and undesired polarizations is proportional to cos 2 (θ) and sin 2 (θ) respectively, and the extinction ratio (ER) is defined as ER = −10 log 10( tan 2 (θ)) . This is discussed in "Application Note – Polarization Measurements – OZ Optics Family of Polarization Maintaining Components, Sources, and Measurements Systems," OZ Optics LTD., Canada, August 6, 1999, the entire contents of which are incorporated herein for all purposes for reference.

根據前面所述,在某些實施例中,所揭露之光學數據通訊系統(如100)包含光學發射器(如101)、光學接收器(如105)、及自光學發射器之光學輸出延伸至光學接收器之光學輸入的PM光學數據通訊鏈路(如103)。在某些實施例中,光學發射器係用以經由PM光學數據通訊鏈路傳輸具有複數WDM波長之經調變的光。PM光學數據通訊鏈路包含經由光學連接器(如109-1至109-4) 光學連接之PM光纖的至少兩區段(如107-1至107-5)。在某些實施例中,PM光纖之至少兩區段具有不同長度。在某些實施例中,PM光纖之至少兩區段中之至少一區段的長度比PM光纖之至少兩區段中之另一區段的長度至少大三倍。在某些實施例中,PM光纖之至少兩區段中的每一者包含複數PM光纖。在此些實施例的某些者中,該複數PM光纖係由光纖帶所形成。According to the foregoing, in some embodiments, the disclosed optical data communication system (such as 100) includes an optical transmitter (such as 101), an optical receiver (such as 105), and an optical output extending from the optical transmitter to PM optical data communication link (eg 103 ) for the optical input of the optical receiver. In certain embodiments, an optical transmitter is used to transmit modulated light having a plurality of WDM wavelengths over a PM optical data communication link. The PM optical data communication link comprises at least two sections (eg 107-1 to 107-5) of PM optical fiber optically connected via optical connectors (eg 109-1 to 109-4). In some embodiments, at least two sections of the PM fiber have different lengths. In some embodiments, the length of at least one of the at least two sections of the PM fiber is at least three times greater than the length of the other of the at least two sections of the PM fiber. In certain embodiments, each of at least two sections of PM fiber comprises a plurality of PM fibers. In some of these embodiments, the plurality of PM fibers is formed from a fiber ribbon.

在某些實施例中,光學連接器(如109-1至109-4)係用以使第一PM光纖之快速偏極化軸光學對準至第二PM光纖之慢偏極化軸並使第一PM光纖之慢偏極化軸光學對準至第二PM光纖之快速偏極化軸。在某些實施例中,PM光纖之至少兩區段中的一或多者包含用以抑制兩偏極化模式中之一者的偏極化裝置(如108-1至108-5)。在某些實施例中,PM光纖之至少兩區段中的每一者包含用以抑制兩偏極化模式中之相同者的分離偏極化裝置。在某些實施例中,PM光纖之至少兩區段中的一或多者包含用以抑制兩偏極化模式中之一者的偏極化相依之損失元件(如108-1至108-5)。In some embodiments, optical connectors (such as 109-1 to 109-4) are used to optically align the fast polarization axis of the first PM fiber to the slow polarization axis of the second PM fiber and enable The slow polarization axis of the first PM fiber is optically aligned to the fast polarization axis of the second PM fiber. In certain embodiments, one or more of the at least two sections of the PM fiber include polarization means (eg, 108-1 to 108-5) to suppress one of two polarization modes. In certain embodiments, each of at least two sections of the PM fiber includes separate polarization means to suppress the same of the two polarization modes. In some embodiments, one or more of at least two sections of the PM fiber include polarization-dependent loss elements (e.g., 108-1 to 108-5) to suppress one of the two polarization modes. ).

在某些實施例中,PM光學數據通訊鏈路(如103)包含至少兩個光學連接器(如109-1至109-4),其中至少兩個光學連接器中的每一者光學連接一分離對之PM光纖(如107-1至107-5)俾使該分離對偏極化維持光纖之第一偏極化維持光纖之快速偏極化軸係與該分離對偏極化維持光纖之第二偏極化維持光纖之慢偏極化軸實質對準。在某些實施例中,當光纖對光纖之失準角度係小於或等於約10度時,在第一及第二PM光纖之間連接之第一PM光纖之快速偏極化軸與第二PM光纖之慢偏極化軸具有實質對準。光纖對光纖之失準角度係定義為:當第一及第二PM光纖之光學核中心線彼此對準時,沿著第一PM光纖或第二PM光纖之一光學核中心線量測第一PM光纖之快速偏極化軸與第二PM光纖之慢偏極化軸之間的角度。在某些實施例中,當光纖對光纖之失準角度係小於或等於約6度時,在第一及第二PM光纖之間連接之第一PM光纖之快速偏極化軸與第二PM光纖之慢偏極化軸具有實質對準。在某些實施例中,當光纖對光纖之失準角度係小於或等於約3度時,在第一及第二PM光纖之間連接之第一PM光纖之快速偏極化軸與第二PM光纖之慢偏極化軸具有實質對準。In some embodiments, the PM optical data communication link (such as 103) includes at least two optical connectors (such as 109-1 to 109-4), wherein each of the at least two optical connectors is optically connected to a Separate the PM fiber of the pair (such as 107-1 to 107-5) so that the fast polarization axis system of the first polarization maintaining fiber of the split pair of polarization maintaining fiber is connected to the polarization maintaining fiber of the split pair The second polarization maintains the substantial alignment of the slow polarization axis of the fiber. In certain embodiments, when the fiber-to-fiber misalignment angle is less than or equal to about 10 degrees, the fast polarization axis of the first PM fiber connected between the first and second PM fibers is aligned with the second PM fiber. The slow polarization axes of the fibers are substantially aligned. The fiber-to-fiber misalignment angle is defined as the first PM measured along the optical core centerline of the first PM fiber or the second PM fiber when the optical core centerlines of the first and second PM fibers are aligned with each other. The angle between the fast polarization axis of the fiber and the slow polarization axis of the second PM fiber. In certain embodiments, when the fiber-to-fiber misalignment angle is less than or equal to about 6 degrees, the fast polarization axis of the first PM fiber connected between the first and second PM fibers is aligned with the second PM fiber. The slow polarization axes of the fibers are substantially aligned. In certain embodiments, when the fiber-to-fiber misalignment angle is less than or equal to about 3 degrees, the fast polarization axis of the first PM fiber connected between the first and second PM fibers is aligned with the second PM fiber. The slow polarization axes of the fibers are substantially aligned.

在某些實施例中,PM光學數據通訊鏈路(如103)包含第一光學連接器(如109-1)、第二光學連接器(如109-2)、第三光學連接器(如109-3)、第四光學連接器(如109-4)、光學連接於光學發射器(如101)之輸出與第一光學連接器之間的第一PM光纖(如107-1)、光學連接於第一光學連接器與第二光學連接器之間的第二PM光纖(如107-2)、光學連接於第二光學連接器與第三光學連接器之間的第三PM光纖(如107-3)、光學連接於第三光學連接器與第四光學連接器之間的第四PM光纖(如107-4)、及光學連接於第四光學連接器與光學接收器(如105)之光學輸入之間的第五PM光纖 (如107-5)。在某些實施例中,第一光學連接器係用以使第一PM光纖之快速偏極化軸對準至第二PM光纖之慢偏極化軸、及使第一PM光纖之慢偏極化軸對準至第二PM光纖之快速偏極化軸。又,第二光學連接器係用以使第二PM光纖之快速偏極化軸對準至 第三PM光纖之慢偏極化軸、及使第二PM光纖之慢偏極化軸對準至第三PM光纖之快速偏極化軸。又,第三光學連接器係用以使第三PM光纖之快速偏極化軸對準至第四PM光纖之慢偏極化軸、及使第三PM光纖之慢偏極化軸對準至第四PM光纖之快速偏極化軸。又,第四光學連接器係用以使第四PM光纖之快速偏極化軸 對準至第五PM光纖之慢偏極化軸、及使第四PM光纖之慢偏極化軸對準至第五PM光纖之快速偏極化軸。In some embodiments, the PM optical data communication link (such as 103) includes a first optical connector (such as 109-1), a second optical connector (such as 109-2), a third optical connector (such as 109 -3), the fourth optical connector (such as 109-4), optically connected to the first PM optical fiber (such as 107-1) between the output of the optical transmitter (such as 101) and the first optical connector, optical connection The second PM optical fiber (such as 107-2) between the first optical connector and the second optical connector, the third PM optical fiber (such as 107-2) optically connected between the second optical connector and the third optical connector -3), the fourth PM optical fiber (such as 107-4) optically connected between the third optical connector and the fourth optical connector, and the optical connection between the fourth optical connector and the optical receiver (such as 105) Fifth PM fiber (eg 107-5) between optical inputs. In some embodiments, the first optical connector is used to align the fast polarization axis of the first PM fiber to the slow polarization axis of the second PM fiber, and to align the slow polarization axis of the first PM fiber The polarization axis is aligned to the fast polarization axis of the second PM fiber. Also, the second optical connector is used to align the fast polarization axis of the second PM fiber to the slow polarization axis of the third PM fiber, and to align the slow polarization axis of the second PM fiber to the The fast polarization axis of the third PM fiber. Also, the third optical connector is used to align the fast polarization axis of the third PM fiber to the slow polarization axis of the fourth PM fiber, and to align the slow polarization axis of the third PM fiber to the The fast polarization axis of the fourth PM fiber. Also, the fourth optical connector is used to align the fast polarization axis of the fourth PM fiber to the slow polarization axis of the fifth PM fiber, and to align the slow polarization axis of the fourth PM fiber to the The fast polarization axis of the fifth PM fiber.

在某些實施例中,第一偏極化抑制裝置(如108-1)係光學耦合至位於光學發射器(如101)之光學輸出與第一光學連接器(如109-1)之間之位置處的第一PM光纖(如107-1)。又,第二偏極化抑制裝置(如108-2)係光學耦合至位於第一光學連接器(如109-1)與第二光學連接器(如109-2)之間之位置處的第二PM光纖(如107-2)。又,第三偏極化抑制裝置(如108-3)係光學耦合至位於第二光學連接器(如109-2)與第三光學連接器(如109-3)之間之位置處的第三PM光纖(如107-3)。又,第四偏極化抑制裝置(如108-4)係光學耦合至位於第三光學連接器(如109-3)與第四光學連接器(如109-4)之間之位置處的第四PM光纖(如107-4)。又,第五偏極化抑制裝置(如108-5)係光學耦合至位於第四光學連接器(如109-4)與光學接收器(如105)之光學輸入之間之位置處的第五PM光纖(如107-5)。In some embodiments, the first polarization suppressing device (eg, 108-1) is optically coupled to the first optical connector (eg, 109-1) between the optical output of the optical transmitter (eg, 101) and the first optical connector (eg, 109-1). The first PM fiber at position (such as 107-1). Also, the second polarization suppressing device (such as 108-2) is optically coupled to the first optical connector (such as 109-1) and the second optical connector (such as 109-2) at a position between Two PM fibers (such as 107-2). Also, a third polarization suppressing device (such as 108-3) is optically coupled to the first optical connector at a position between the second optical connector (such as 109-2) and the third optical connector (such as 109-3). Three PM fibers (such as 107-3). Also, a fourth polarization suppressing device (such as 108-4) is optically coupled to the first optical connector at a position between the third optical connector (such as 109-3) and the fourth optical connector (such as 109-4). Four PM fibers (such as 107-4). Also, a fifth polarization suppressing device (such as 108-5) is optically coupled to the fifth optical connector (such as 109-4) at a position between the optical input of the optical receiver (such as 105). PM fiber (such as 107-5).

此外,根據前面所述,在某些實施例中,揭露之光學數據通訊系統(如100)包含PM光學數據通訊鏈路(如103),PM光學數據通訊鏈路(如103)包含光學耦合至第二PM光纖(如107-1至107-5中的任何其他者)之第一PM光纖 (如107-1至107-5中的任何者)俾使第一PM光纖之快速偏極化軸係與第二PM光纖之慢偏極化軸對準且第一PM光纖之慢偏極化軸係與第二PM光纖之快速偏極化軸對準。在某些實施例中,偏極化抑制裝置(如108-1至108-5中的任何者)係光學耦合至PM光學數據通訊鏈路。在某些實施例中,PM光學數據通訊鏈路內之任何兩條PM光纖之間的每一光學連接皆具有與另一PM光纖之慢偏極化軸對準之一PM光纖之快速偏極化軸。在某些實施例中,PM光學數據通訊鏈路係自光學發射器(如101)之光學輸出延伸至光學接收器(如105)之光學輸入。In addition, according to the foregoing, in some embodiments, the disclosed optical data communication system (such as 100) includes a PM optical data communication link (such as 103), and the PM optical data communication link (such as 103) includes an optically coupled to The first PM fiber (such as any of 107-1 to 107-5) of the second PM fiber (such as any other of 107-1 to 107-5) such that the fast polarization axis of the first PM fiber is aligned with the slow polarization axis of the second PM fiber and the slow polarization axis of the first PM fiber is aligned with the fast polarization axis of the second PM fiber. In some embodiments, a polarization suppressing device (such as any of 108-1 to 108-5) is optically coupled to the PM optical data communication link. In certain embodiments, each optical connection between any two PM fibers within a PM optical data communication link has the fast polarization of one PM fiber aligned with the slow polarization axis of the other PM fiber axis. In some embodiments, a PM optical data communication link extends from an optical output of an optical transmitter (eg, 101 ) to an optical input of an optical receiver (eg, 105 ).

圖6顯示根據某些實施例之光學數據通訊系統操作方法的輪廓。圖6之方法包含操作601,經由PM光學數據通訊鏈路(如103)將來自光學發射器(如101)之輸出的複數光學訊號傳輸至光學接收器(如105)之光學輸入。PM光學數據通訊鏈路包含經由光學連接器(如109-1至109-4) 光學連接之PM光纖(如107-1至107-5)的至少兩區段。該PM光纖之該至少兩區段具有不同長度。在某些實施例中,圖6之方法亦包含操作603,使該PM光纖之該至少兩區段之第一PM光纖之快速偏極化軸光學對準至該PM光纖之該至少兩區段之第二PM光纖之慢偏極化軸。在某些實施例中,圖6之方法亦包含操作605,將偏極化抑制裝置(如108-1至108-5)光學耦合至該PM光纖之該至少兩區段內的光纖。Figure 6 shows an outline of a method of operating an optical data communication system according to some embodiments. The method of FIG. 6 includes operation 601 of transmitting a complex optical signal from an output of an optical transmitter (eg 101 ) to an optical input of an optical receiver (eg 105 ) via a PM optical data communication link (eg 103 ). The PM optical data communication link comprises at least two sections of PM optical fibers (eg 107-1 to 107-5) optically connected via optical connectors (eg 109-1 to 109-4). The at least two sections of the PM fiber have different lengths. In some embodiments, the method of FIG. 6 also includes operation 603, optically aligning the fast polarization axis of the first PM fiber of the at least two sections of the PM fiber to the at least two sections of the PM fiber The slow polarization axis of the second PM fiber. In some embodiments, the method of FIG. 6 also includes operation 605 of optically coupling polarization suppression devices (eg, 108-1 to 108-5) to optical fibers within the at least two sections of the PM optical fiber.

圖7顯示根據某些實施例之光學數據通訊系統操作方法的輪廓。圖7之方法包含操作701, 經由第一PM光纖(如107-1至107-5中之任一者)傳輸複數光學訊號,PM光學數據通訊鏈路(如103)包含光學耦合至第二PM光纖 (如107-1至107-5中之任何其他者)的第一PM光纖(如107-1至107-5中之任一者)俾使第一PM光纖之快速偏極化軸係與第二PM光纖之慢偏極化軸對準且第一PM光纖之慢偏極化軸係與第二PM光纖之快速偏極化軸對準。在某些實施例中,圖7之方法包含操作703,使偏極化抑制裝置(如108-1至108-5)光學耦合至PM光學數據通訊鏈路。在某些實施例中,PM光學數據通訊鏈路將光學發射器(如101)之光學輸出光學連接至光學接收器(如105)之光學輸入。Figure 7 shows an outline of a method of operating an optical data communication system according to some embodiments. The method of FIG. 7 includes operation 701, transmitting a plurality of optical signals through a first PM optical fiber (such as any one of 107-1 to 107-5), the PM optical data communication link (such as 103) comprising optically coupling to a second PM The first PM fiber (such as any one of 107-1 to 107-5) of the optical fiber (such as any other of 107-1 to 107-5) such that the fast polarization axis of the first PM fiber is aligned with The slow polarization axis of the second PM fiber is aligned and the slow polarization axis of the first PM fiber is aligned with the fast polarization axis of the second PM fiber. In some embodiments, the method of FIG. 7 includes an operation 703 of optically coupling polarization suppression devices (eg, 108-1 to 108-5) to the PM optical data communication link. In some embodiments, a PM optical data communication link optically connects an optical output of an optical transmitter (eg, 101 ) to an optical input of an optical receiver (eg, 105 ).

為了例示及闡述的目的提供前面實施例之說明,其意不在排除其他可能性或限制本發明。特定實施例之獨立元件或特徵大致上並不限於該特定實施例,而是在適合的情況下可互換,即便在文中未具體顯示或說明,其可用於一選定的實施例中。以此方式,來自一或多個文中實施例的一或多個特徵可與來自一或多個其他文中實施例的一或多個特徵結合,形成文中未明確揭露但可視為暗示揭露的另一實施例。亦可以許多方式變化此其他實施例。此類實施例變化不應視為脫離本發明之揭露內容,且所有此類實施例變化及修改應包含於本發明之揭露範圍內。The description of the foregoing embodiments is provided for purposes of illustration and description, and it is not intended to exclude other possibilities or limit the invention. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable, which can be used in a selected embodiment, even if not specifically shown or described herein. In this way, one or more features from one or more embodiments herein may be combined with one or more features from one or more other embodiments herein to form another embodiment that is not explicitly disclosed but may be considered implicitly disclosed. Example. This other embodiment can also be varied in many ways. Such embodiment changes should not be regarded as departing from the disclosure content of the present invention, and all such embodiment changes and modifications should be included in the disclosure scope of the present invention.

雖然在文中以特定順序說明某些方法操作,但應瞭解,只要能以能成功實施方法的方式進行方法操作的處理,在方法操作之間可進行其他閒雜操作或者可調整方法操作使其發生的時間略有不同或同時,或者可將方法操作分配至允許方法操作以各種間隔進行的系統中。Although certain method operations are described herein in a particular order, it should be understood that other idle operations may be performed between method operations or may be adjusted to occur so long as the processing of the method operations can be performed in a manner that enables the successful implementation of the method. At slightly different times or at the same time, or method operations can be distributed into systems that allow method operations to be performed at various intervals.

雖然為了讓熟知此項技藝者能清楚瞭解本發明,已詳細說明了前面的實施例,但應明白,在隨附之請求項的範疇內可進行某些變化與修改。因此,此些實施例應被視為是說明性而非限制性的,且實施例並不限於文中所述的細節,在隨附之請求項的範疇內及等效物內可進行修改。Although the foregoing embodiments have been described in detail in order to enable those skilled in the art to clearly understand the invention, it should be understood that certain changes and modifications may be made within the scope of the appended claims. Accordingly, such embodiments should be regarded as illustrative rather than restrictive, and embodiments are not limited to the details set forth herein, modifications may be made within the scope and equivalents of the appended claims.

100:光學數據通訊系統 101、101(Tx):光學發射器 102:箭頭 103:PM光學數據通訊鏈路 105、105(Rx):光學接收器 107-1、107-2、107-3、107-4、107-5:PM光纖區段 108-1:第一偏極化抑制裝置 108-2:第二偏極化抑制裝置 108-3:第三偏極化抑制裝置 108-4:第四偏極化抑制裝置 108-5:第五偏極化抑制裝置 109-1、109-2、109-3、109-4:光學連接器 111:雷射 113:光學鏈路 115-1、115-2、115-3:光纖區段 117-1、117-2:光學連接器 119:光學鏈路 121-1、121-2、121-3:光纖區段 123-1、123-2:光學連接器 201、202、203、204:圖示 401、402:圖示 501、502、503、504:圖示 601、603、605:操作 701、703:操作 100:Optical data communication system 101, 101(Tx): optical transmitter 102: Arrow 103: PM optical data communication link 105, 105(Rx): optical receiver 107-1, 107-2, 107-3, 107-4, 107-5: PM fiber section 108-1: The first polarization suppression device 108-2: Second polarization suppression device 108-3: The third polarization suppression device 108-4: The fourth polarization suppression device 108-5: Fifth polarization suppression device 109-1, 109-2, 109-3, 109-4: Optical connectors 111:Laser 113: Optical link 115-1, 115-2, 115-3: fiber optic section 117-1, 117-2: Optical connectors 119: Optical link 121-1, 121-2, 121-3: fiber optic section 123-1, 123-2: Optical connectors 201, 202, 203, 204: icon 401, 402: icon 501, 502, 503, 504: icon 601, 603, 605: operation 701, 703: operation

圖1顯示根據某些實施例之光學數據通訊系統的圖,光學數據通訊系統包含經由偏極化維持光學數據通訊鏈路光學連接至光學接收器的光學發射器。Figure 1 shows a diagram of an optical data communication system comprising an optical transmitter optically connected to an optical receiver via a polarization maintaining optical data communication link, according to some embodiments.

圖2顯示根據某些實施例之在圖1之偏極化維持光學數據通訊鏈路之頻率範圍上之光傳輸的各種圖示。2 shows various diagrams of light transmission over the frequency range of the polarization maintaining optical data communication link of FIG. 1, according to some embodiments.

圖3A顯示根據某些實施例之在圖1之偏極化維持光學數據通訊鏈路之頻率範圍上之光傳輸的一圖示,在圖1之偏極化維持光學數據通訊鏈路中,在每一光學連接器處之偏極化維持光纖區段之間的光纖對光纖之連接具有偏極化軸的標準對準。3A shows a diagram of light transmission over the frequency range of the polarization-maintaining optical data communication link of FIG. 1 , in accordance with some embodiments, in which Polarization at each optical connector maintains fiber-to-fiber connections between fiber segments with standard alignment of polarization axes.

圖3B顯示根據某些實施例之在圖1之偏極化維持光學數據通訊鏈路之頻率範圍上之光傳輸的一圖示,在圖1之偏極化維持光學數據通訊鏈路中,在每一光學連接器處之偏極化維持光纖區段之間的光纖對光纖之連接具有偏極化軸的顛倒對準。3B shows a graphical representation of light transmission over the frequency range of the polarization-maintaining optical data communication link of FIG. Polarization at each optical connector maintains fiber-to-fiber connections between fiber segments with an inverted alignment of polarization axes.

圖4A顯示根據某些實施例之在圖1之偏極化維持光學數據通訊鏈路之頻率範圍上之光傳輸的一圖示,在圖1之偏極化維持光學數據通訊鏈路中未安插偏極化裝置。4A shows a diagram of light transmission over the frequency range of the polarization-maintaining optical data communication link of FIG. Polarization device.

圖4B顯示根據某些實施例之在圖1之偏極化維持光學數據通訊鏈路之頻率範圍上之光傳輸的一圖示,在圖1之偏極化維持光學數據通訊鏈路中已安插偏極化裝置。4B shows a graphical representation of light transmission over the frequency range of the polarization-maintaining optical data communication link of FIG. 1 in which the polarization-maintaining optical data communication link of FIG. Polarization device.

圖5A顯示根據某些實施例之在圖1之偏極化維持光學數據通訊鏈路之組態之頻率範圍上之最差光傳輸損失之累積分佈函數的圖示,圖1之偏極化維持光學數據通訊鏈路之組態係用以分別產生圖4A與4B之圖示,其中對光學連接器處之光纖對光纖之失準角度進行取樣成為具有一維標準差之獨立高斯隨機變數。5A shows a graphical representation of the cumulative distribution function of worst-case optical transmission loss over the frequency range for the configuration of the polarization-maintaining optical data communication link of FIG. 1 , according to certain embodiments. The configuration of the optical data communication link was used to generate the graphs of Figures 4A and 4B, respectively, in which the fiber-to-fiber misalignment angles at the optical connectors were sampled as independent Gaussian random variables with one-dimensional standard deviations.

圖5B顯示根據某些實施例之在圖1之偏極化維持光學數據通訊鏈路之組態之頻率範圍上之最差光傳輸損失之累積分佈函數的圖示,圖1之偏極化維持光學數據通訊鏈路之組態係用以分別產生圖4A與4B之圖示,其中對光學連接器處之光纖對光纖之失準角度進行取樣成為具有二維標準差之獨立高斯隨機變數。5B shows a graphical representation of the cumulative distribution function of worst-case optical transmission loss over the frequency range for the configuration of the polarization-maintaining optical data communication link of FIG. 1 , according to certain embodiments. The configuration of the optical data communication link was used to generate the graphs of Figures 4A and 4B, respectively, in which the fiber-to-fiber misalignment angles at the optical connectors were sampled as independent Gaussian random variables with two-dimensional standard deviations.

圖6顯示根據某些實施例之光學數據通訊系統操作方法的輪廓。Figure 6 shows an outline of a method of operating an optical data communication system according to some embodiments.

圖7顯示根據某些實施例之光學數據通訊系統操作方法的輪廓。Figure 7 shows an outline of a method of operating an optical data communication system according to some embodiments.

100:光學數據通訊系統 100:Optical data communication system

101、101(Tx):光學發射器 101, 101(Tx): optical transmitter

102:箭頭 102: Arrow

103:PM光學數據通訊鏈路 103: PM optical data communication link

105、105(Rx):光學接收器 105, 105(Rx): optical receiver

107-1、107-2、107-3、107-4、107-5:PM光纖區段 107-1, 107-2, 107-3, 107-4, 107-5: PM fiber section

108-1:第一偏極化抑制裝置 108-1: The first polarization suppression device

108-2:第二偏極化抑制裝置 108-2: Second polarization suppression device

108-3:第三偏極化抑制裝置 108-3: The third polarization suppression device

108-4:第四偏極化抑制裝置 108-4: The fourth polarization suppression device

108-5:第五偏極化抑制裝置 108-5: Fifth polarization suppression device

109-1、109-2、109-3、109-4:光學連接器 109-1, 109-2, 109-3, 109-4: Optical connectors

111:雷射 111:Laser

113:光學鏈路 113: Optical link

115-1、115-2、115-3:光纖區段 115-1, 115-2, 115-3: fiber optic section

117-1、117-2:光學連接器 117-1, 117-2: Optical connectors

119:光學鏈路 119: Optical link

121-1、121-2、121-3:光纖區段 121-1, 121-2, 121-3: fiber optic section

123-1、123-2:光學連接器 123-1, 123-2: Optical connectors

Claims (20)

一種光學數據通訊系統,包含: 一光學發射器; 一光學接收器;及 一偏極化維持光學數據通訊鏈路,係自該光學發射器之一光學輸出延伸至該光學接收器之一光學輸入,該偏極化維持光學數據通訊鏈路包含經由一光學連接器光學連接之偏極化維持光纖的至少兩區段,該偏極化維持光纖的該至少兩區段具有不同長度。 An optical data communication system comprising: an optical transmitter; an optical receiver; and A polarization maintaining optical data communication link extending from an optical output of the optical transmitter to an optical input of the optical receiver, the polarization maintaining optical data communication link comprising optical connection via an optical connector At least two sections of the polarization maintaining fiber have different lengths. 如請求項1之光學數據通訊系統,其中該光學連接器係用以使一第一偏極化維持光纖之一快速偏極化軸光學對準一第二偏極化維持光纖之一慢偏極化軸,其中該光學連接器係用以使該第一偏極化維持光纖之一慢偏極化軸對準該第二偏極化維持光纖之一快速偏極化軸。The optical data communication system as claimed in claim 1, wherein the optical connector is used to optically align a fast polarization axis of a first polarization maintaining optical fiber with a slow polarization of a second polarization maintaining optical fiber A polarization axis, wherein the optical connector is used to align a slow polarization axis of the first polarization maintaining optical fiber with a fast polarization axis of the second polarization maintaining optical fiber. 如請求項1之光學數據通訊系統,其中該偏極化維持光纖之該至少兩區段中的一或多者包含用以抑制兩偏極化模式中之一者的一偏極化裝置。The optical data communication system of claim 1, wherein one or more of the at least two sections of the polarization maintaining optical fiber includes a polarization device for suppressing one of two polarization modes. 如請求項1之光學數據通訊系統,其中該偏極化維持光纖之該至少兩區段中的每一者包含用以抑制兩偏極化模式中之一相同者的一分離偏極化裝置。The optical data communication system of claim 1, wherein each of the at least two sections of the polarization maintaining optical fiber includes a separate polarization device for suppressing the same one of the two polarization modes. 如請求項1之光學數據通訊系統,其中該偏極化維持光纖之該至少兩區段中的一或多者包含用以抑制兩偏極化模式中之一者的一偏極化相依的損失元件。The optical data communication system of claim 1, wherein one or more of the at least two sections of the polarization maintaining optical fiber include a polarization-dependent loss for suppressing one of two polarization modes element. 如請求項1之光學數據通訊系統,其中該偏極化維持光纖之該至少兩區段中之至少一區段之一長度比該偏極化維持光纖之該至少兩區段中之另一區段之一長度至少大三倍。The optical data communication system according to claim 1, wherein the length of at least one section of the at least two sections of the polarization maintaining optical fiber is longer than the other section of the at least two sections of the polarization maintaining optical fiber One of the segments is at least three times as long. 如請求項1之光學數據通訊系統,其中該偏極化維持光纖之該至少兩區段中的每一者包含複數偏極化維持光纖。The optical data communication system according to claim 1, wherein each of the at least two sections of the polarization maintaining optical fiber comprises a plurality of polarization maintaining optical fibers. 如請求項7之光學數據通訊系統,其中該複數偏極化維持光纖係形成為一光纖帶。The optical data communication system as claimed in claim 7, wherein the plurality of polarization maintaining optical fibers is formed as an optical fiber ribbon. 如請求項1之光學數據通訊系統,其中該光學發射器係用以經由該偏極化維持光學數據通訊鏈路傳輸之具有波長分波多工之複數波長之經調變的光。The optical data communication system according to claim 1, wherein the optical transmitter is used for transmitting modulated light having multiple wavelengths of wavelength division multiplexing through the polarization maintaining optical data communication link. 如請求項1之光學數據通訊系統,其中該偏極化維持光學數據通訊鏈路包含至少兩個光學連接器,其中該至少兩個光學連接器中的每一者光學連接一分離對之偏極化維持光纖,俾使該分離對之該偏極化維持光纖之一第一偏極化維持光纖之一快速偏極化軸係實質上對準該分離對之該偏極化維持光纖之一第二偏極化維持光纖之一慢偏極化軸。The optical data communication system of claim 1, wherein the polarization maintaining optical data communication link comprises at least two optical connectors, wherein each of the at least two optical connectors is optically connected to a split pair of polarities polarization maintaining fiber such that the fast polarization axis of the first polarization maintaining fiber of the split pair is substantially aligned with the first polarization maintaining fiber of the split pair Dual polarization maintains one of the slow polarization axes of the fiber. 一種光學數據通訊系統,包含: 一偏極化維持光學數據通訊鏈路,包含光學耦合至一第二偏極化維持光纖的一第一偏極化維持光纖,俾使該第一偏極化維持光纖之一快速偏極化軸係對準該第二偏極化維持光纖之一慢偏極化軸,並俾使該第一偏極化維持光纖之一慢偏極化軸係對準該第二偏極化維持光纖之一快速偏極化軸。 An optical data communication system comprising: A polarization maintaining optical data communication link comprising a first polarization maintaining fiber optically coupled to a second polarization maintaining fiber such that a fast polarization axis of the first polarization maintaining fiber is aligned with one of the slow polarization axes of the second polarization maintaining fiber and such that one of the slow polarization axes of the first polarization maintaining fiber is aligned with one of the second polarization maintaining fibers Fast polarizing axis. 如請求項11之光學數據通訊系統,更包含: 一偏極化抑制裝置,係光學耦合至該偏極化維持光學數據通訊鏈路。 The optical data communication system as claimed in item 11 further includes: A polarization suppressing device is optically coupled to the polarization maintaining optical data communication link. 如請求項11之光學數據通訊系統,其中該偏極化維持光學數據通訊鏈路內之任兩條偏極化維持光纖之間的每一光學連接皆具有一偏極化維持光纖之一快速偏極化軸對準於另一偏極化維持光纖之一慢偏極化軸。The optical data communication system as claimed in claim 11, wherein each optical connection between any two polarization maintaining optical fibers in the polarization maintaining optical data communication link has a fast polarization of a polarization maintaining optical fiber The polarization axis is aligned with one of the slow polarization axes of the other polarization maintaining fiber. 如請求項11之光學數據通訊系統,更包含: 一光學發射器;及 一光學接收器,該偏極化維持光學數據通訊鏈路係自該光學發射器的一光學輸出延伸至該光學接收器的一光學輸入。 The optical data communication system as claimed in item 11 further includes: an optical transmitter; and An optical receiver, the polarization maintaining optical data communication link extends from an optical output of the optical transmitter to an optical input of the optical receiver. 一種光學數據通訊系統操作方法,包含: 自一光學發射器之一輸出經由一偏極化維持光學數據通訊鏈路將複數光學訊號傳輸至一光學接收器之一光學輸入,該偏極化維持光學數據通訊鏈路包含經由一光學連接器光學連接之偏極化維持光纖的至少兩區段,該偏極化維持光纖的該至少兩區段具有不同長度。 A method of operating an optical data communication system, comprising: Transmitting a plurality of optical signals from an output of an optical transmitter to an optical input of an optical receiver via a polarization maintaining optical data communication link comprising via an optical connector The at least two sections of the polarization maintaining optical fiber of the optical connection have different lengths. 如請求項15之光學數據通訊系統操作方法,更包含: 使該偏極化維持光纖之該至少兩區段之一第一偏極化維持光纖之一快速偏極化軸光學對準至該偏極化維持光纖之該至少兩區段之一第二偏極化維持光纖之一慢偏極化軸。 For example, the operation method of the optical data communication system in claim 15 further includes: optically aligning a fast polarization axis of the first polarization maintaining fiber of the at least two sections of the polarization maintaining fiber to a second polarization axis of the at least two sections of the polarization maintaining fiber Polarization maintains one of the slow polarization axes of the fiber. 如請求項15之光學數據通訊系統操作方法,更包含: 將一偏極化抑制裝置光學耦合至該偏極化維持光纖之該至少兩區段內的一光纖。 For example, the operation method of the optical data communication system in claim 15 further includes: A polarization suppressing device is optically coupled to an optical fiber within the at least two sections of the polarization maintaining optical fiber. 一種光學數據通訊系統操作方法,包含: 經由一偏極化維持光學數據通訊鏈路傳輸複數光學訊號,俾使一第一偏極化維持光纖之一快速偏極化軸係與一第二偏極化維持光纖之一慢偏極化軸對準,並俾使該第一偏極化維持光纖之一慢偏極化軸係與該第二偏極化維持光纖之一快速偏極化軸對準,該偏極化維持光學數據通訊鏈路包含光學耦合至該第二偏極化維持光纖的該第一偏極化維持光纖。 A method of operating an optical data communication system, comprising: Transmitting a plurality of optical signals via a polarization maintaining optical data communication link such that a fast polarization axis of a first polarization maintaining fiber and a slow polarization axis of a second polarization maintaining fiber aligned so that a slow polarization axis of the first polarization maintaining optical fiber is aligned with a fast polarization axis of the second polarization maintaining optical fiber, the polarization maintaining optical data communication link A circuit includes the first polarization maintaining fiber optically coupled to the second polarization maintaining fiber. 如請求項18之光學數據通訊系統操作方法,更包含: 將一偏極化抑制裝置光學耦合至該偏極化維持光學數據通訊鏈路。 For example, the operation method of the optical data communication system in claim item 18 further includes: A polarization suppressing device is optically coupled to the polarization maintaining optical data communication link. 如請求項18之光學數據通訊系統操作方法,其中該偏極化維持光學數據通訊鏈路將一光學發射器之一光學輸出光學連接至一光學接收器之一光學輸入。The method of operating an optical data communication system according to claim 18, wherein the polarization maintaining optical data communication link optically connects an optical output of an optical transmitter to an optical input of an optical receiver.
TW110142005A 2020-11-13 2021-11-11 Mitigation of polarization impairments in optical fiber link TW202235938A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063113193P 2020-11-13 2020-11-13
US63/113,193 2020-11-13

Publications (1)

Publication Number Publication Date
TW202235938A true TW202235938A (en) 2022-09-16

Family

ID=81586633

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110142005A TW202235938A (en) 2020-11-13 2021-11-11 Mitigation of polarization impairments in optical fiber link

Country Status (6)

Country Link
US (1) US20220155538A1 (en)
EP (1) EP4226198A1 (en)
JP (1) JP2023549495A (en)
KR (1) KR20230107317A (en)
TW (1) TW202235938A (en)
WO (1) WO2022104068A1 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1406342A (en) * 1998-09-17 2003-03-26 康宁股份有限公司及密执安大学校务委员会 Circularly polarized fiber in optical circuits
US20020159672A1 (en) * 2001-03-13 2002-10-31 Fells Julian A. Adjustable dispersion compensators, adjustable optical filters, and control signals and strain applicators therefor
WO2003050597A2 (en) * 2001-12-06 2003-06-19 Chiral Photonics, Inc. Chiral in-fiber adjustable polarizer apparatus and method
US7013063B2 (en) * 2001-12-31 2006-03-14 3M Innovative Properties Company System for higher-order dispersion compensation including phase modulation
WO2008122289A2 (en) * 2007-04-04 2008-10-16 Koheras A/S A fiber laser comprising an intra cavity switch
US9214781B2 (en) * 2013-11-21 2015-12-15 Lockheed Martin Corporation Fiber amplifier system for suppression of modal instabilities and method
US9829651B2 (en) * 2014-05-16 2017-11-28 Corning Optical Communications LLC Systems and methods for optically connecting fiber arrays with paired transmit and receive fibers
US10724922B1 (en) * 2014-07-25 2020-07-28 General Photonics Corporation Complete characterization of polarization-maintaining fibers using distributed polarization analysis
EP4072247B1 (en) * 2016-09-16 2024-03-27 Lutron Technology Company LLC Load control method for a light-emitting diode light source having different operating modes
US10330875B2 (en) * 2017-02-01 2019-06-25 Ayar Labs, Inc. Optical module and associated methods
DE112018002476T5 (en) * 2017-07-25 2020-01-30 Imra America, Inc. MULTI PULSE GAIN

Also Published As

Publication number Publication date
WO2022104068A1 (en) 2022-05-19
JP2023549495A (en) 2023-11-27
EP4226198A1 (en) 2023-08-16
US20220155538A1 (en) 2022-05-19
KR20230107317A (en) 2023-07-14

Similar Documents

Publication Publication Date Title
EP3266127B1 (en) Optical transceiver using duplex media, self-homodyne detection (shd), coherent detection, and uncooled laser
CN107615139B (en) Polarization independent reflective modulator
US10313113B2 (en) Quantum communication system and a quantum communication method
Feuer et al. Single-port laser-amplifier modulators for local access
US8805200B2 (en) Optical transmission system
US7343100B2 (en) Optical communications based on optical polarization multiplexing and demultiplexing
US11927807B2 (en) Systems, methods, and apparatus for optical transceiver with multiple switch state configurations
US11057114B2 (en) Optical loopback circuits for transceivers and related methods
US9880351B2 (en) Directly-modulated multi-polarization optical transmitters
JP2008209899A (en) Parallel channel optical communication using modulator array and shared laser
Nespola et al. Proof of concept of polarization-multiplexed PAM using a compact Si-Ph device
Shukla et al. Joint WDM and OAM mode group multiplexed transmission over conventional multimode fiber
TW202235938A (en) Mitigation of polarization impairments in optical fiber link
US10298357B2 (en) Polarization-based wavelength multiplexer
Banawan et al. Expanded modal capacity for OAM with standard 2× 2 MIMO
US6529305B1 (en) Optical transmission apparatuses, methods, and systems
Badraoui et al. Enhanced capacity of radio over fiber links using polarization multiplexed signal transmission
US11909512B1 (en) Methods of injection locking for multiple optical source generation
WO2020238279A1 (en) Plc chip, tosa, bosa, optical module, and optical network device
US11722223B2 (en) Optical communication system and optical communication method
KR102228114B1 (en) Active Optical Cable
Goto et al. Development of three-stage burst-mode EDFA with flat gain-spectrum over full C-band for core/metro networks
Sousa et al. Bidirectional SMF and PF‐POF transmission of 400 Gbps Nyquist shaped on DP‐QPSK systems
CN114696903A (en) Optical module, processing device, plug-in device, system and method
Fujiwara et al. Narrow-bandwidth polarization-scrambling technique using delay-coupled binary phase pulse for carrier-distributed WDM networks