TW202235626A - 併入與成像混合物 - Google Patents

併入與成像混合物 Download PDF

Info

Publication number
TW202235626A
TW202235626A TW110142198A TW110142198A TW202235626A TW 202235626 A TW202235626 A TW 202235626A TW 110142198 A TW110142198 A TW 110142198A TW 110142198 A TW110142198 A TW 110142198A TW 202235626 A TW202235626 A TW 202235626A
Authority
TW
Taiwan
Prior art keywords
nanostructures
nucleotide
nanostructure
polymerase
plasmonic
Prior art date
Application number
TW110142198A
Other languages
English (en)
Inventor
詹盧卡 安德里亞 阿爾蒂奧利
威格 馬修 來薩德
布萊恩 D 馬瑟
賽斯 M 麥可唐納
凱特琳 M 普格利斯
哈頓 澤維爾 韋恩
Original Assignee
美商伊路米納有限公司
英商伊路米納劍橋有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商伊路米納有限公司, 英商伊路米納劍橋有限公司 filed Critical 美商伊路米納有限公司
Publication of TW202235626A publication Critical patent/TW202235626A/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • C12Q1/6874Methods for sequencing involving nucleic acid arrays, e.g. sequencing by hybridisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502738Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0621Control of the sequence of chambers filled or emptied
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2563/00Nucleic acid detection characterized by the use of physical, structural and functional properties
    • C12Q2563/107Nucleic acid detection characterized by the use of physical, structural and functional properties fluorescence

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本發明提供一個併入混合物之實例,該併入混合物包括液體載劑、複合物及經標記核苷酸。該複合物包括聚合酶及連接至該聚合酶之電漿子奈米結構。該經標記核苷酸包括核苷酸、附接至該核苷酸之糖的3' OH阻隔基及附接至該核苷酸之鹼基的染料標記。

Description

併入與成像混合物
相關申請案的交叉引用
本申請案主張2020年11月16日申請之美國臨時申請案第63/114,302號之權益,其內容以全文引用之方式併入本文中。
生物或化學研究中之各種方案涉及在局部支撐表面上或預界定之反應室內進行大量受控反應。接著可觀測或偵測到指定反應,且後續分析可幫助識別或揭露反應中所涉及之化學物質的特性。在一些實例中,受控反應改變電荷、電導率或某一其他電學特性,且因此電子系統可用於偵測。在其他實例中,受控反應產生螢光,且因此光學系統可用於偵測。
併入與成像混合物揭示於本文中。此等混合物適用於與定序方法一起使用,其中經由偵測光學信號來進行核苷酸鹼基識別。本文所揭示之混合物經由電漿子共振及電漿子奈米結構相對於併入之經標記核苷酸的染料標記之精確定位來增強此等光學信號。本文揭示若干機制及技術,其將電漿子奈米結構定位於染料標記之信號增強近程內,該染料標記為在定序期間已併入至新生核酸股中之經標記核苷酸的組分。該定位使得電漿子奈米結構能夠在成像期間保持在染料標記之信號增強近程內,且因此電漿子奈米結構能夠增強染料標記之光學信號。 簡介
本文所揭示之第一態樣為一種併入混合物,其包含:液體載劑;包括聚合酶及連接至該聚合酶之電漿子奈米結構的複合物;及經標記核苷酸,其包括核苷酸;附接至該核苷酸之糖的3' OH阻隔基;及附接至該核苷酸之鹼基的染料標記。
在第一態樣之一實例中,電漿子奈米結構係選自由以下組成之群:金奈米結構、銀奈米結構、錫奈米結構、銠奈米結構、釕奈米結構、鈀奈米結構、鋨奈米結構、銥奈米結構、鉑奈米結構、鉻奈米結構、銅奈米結構、砷化鎵奈米結構、摻矽奈米結構、鋁奈米結構、鎂奈米結構、銀與金複合奈米結構及其組合。
在第一態樣之一實例中,電漿子奈米結構與聚合酶之胺或半胱胺酸化學共軛。
在第一態樣之一實例中,寡核苷酸附接至聚合酶;且寡核苷酸與附接至電漿子奈米結構之互補寡核苷酸繫鏈(tether)雜交。
在第一態樣之一實例中,寡核苷酸附接至聚合酶;且寡核苷酸與寡核苷酸繫鏈之互補部分雜交,該寡核苷酸繫鏈亦包括包在電漿子奈米結構周圍之額外部分。
在第一態樣之一實例中,電漿子奈米結構藉由結合對之第一成員官能化;且該聚合酶包括結合對之第二成員或藉由其官能化。在一個實例中,第一成員及第二成員包括NiNTA配位體及組胺酸標籤,或鏈黴抗生物素蛋白及生物素,或諜標籤(spytag)及諜捕手(spycatcher),或順丁烯二醯亞胺及半胱胺酸,或疊氮及二苯并環辛炔。
應理解,第一態樣之任何特徵可以任何期望的方式組合在一起及/或可與本文中所揭示之實例中之任一者組合以達成如本發明中所描述之益處,包括例如在定序成像期間增強螢光信號。
本文揭示之第二態樣為一種方法,其包含將併入混合物引入至包括模板股之叢集的流動池,該併入混合物包括:液體載劑;複數種複合物,各複合物包括聚合酶及連接至聚合酶之電漿子奈米結構;及複數種經標記核苷酸,各經標記核苷酸包括:核苷酸;附接至核苷酸之糖的3' OH阻隔基;及附接至核苷酸之鹼基的染料標記;其中聚合酶中之至少一者i)將經標記核苷酸中之個別一者沿模板股中之一者併入新生股中,及ii)將其所連接之電漿子奈米結構維持在經標記核苷酸中之個別一者之附近;及在電漿子奈米結構得到維持時對併入物進行光學成像。
應理解,第二態樣之任何特徵可以任何期望的方式組合在一起。此外,應理解,第一態樣及/或第二態樣之特徵的任何組合可一起使用,及/或可與本文中所揭示之實例中的任一者組合以達成如本發明中所描述之益處,包括例如在定序成像期間增強螢光信號。
本文所揭示之第三態樣為一種套組,其包含併入混合物,該併入混合物包括:液體載劑;聚合酶;及經標記核苷酸,其包括核苷酸;附接至核苷酸之糖的3' OH阻隔基;及附接至核苷酸之鹼基的染料標記;及成像混合物,其包括第二液體載劑;及電漿子奈米結構,其經官能化以在涉及經標記核苷酸之併入事件之後使其自身締合在經標記核苷酸附近。
在第三態樣之一實例中,電漿子奈米結構係選自由以下組成之群:金奈米結構、銀奈米結構、錫奈米結構、銠奈米結構、釕奈米結構、鈀奈米結構、鋨奈米結構、銥奈米結構、鉑奈米結構、鉻奈米結構、銅奈米結構、砷化鎵奈米結構、摻矽奈米結構、鋁奈米結構、鎂奈米結構、銀與金複合奈米結構及其組合。
在第三態樣之一實例中,電漿子奈米結構藉由第二聚合酶官能化。在一個實例中,電漿子奈米結構與第二聚合酶之胺或半胱胺酸化學共軛。在另一實例中,寡核苷酸附接至第二聚合酶;且寡核苷酸與附接至電漿子奈米結構之互補寡核苷酸繫鏈雜交。在另一實例中,寡核苷酸附接至第二聚合酶;且寡核苷酸與互補寡核苷酸繫鏈雜交,該互補寡核苷酸繫鏈包括包在電漿子奈米結構周圍之部分。
在第三態樣之一實例中,電漿子奈米結構藉由結合對之第一成員官能化;且該聚合酶包括結合對之第二成員或藉由其官能化。在一個實例中,第一成員及第二成員包括NiNTA配位體及組胺酸標籤,或鏈黴抗生物素蛋白及生物素,或諜標籤及諜捕手,或順丁烯二醯亞胺及半胱胺酸,或疊氮及二苯并環辛炔。在一些實例中,聚合酶進一步包含附接至其表面之DNA結合域。在其他實例中,聚合酶進一步包含附接至其表面之表面繫鏈;及附接至表面繫鏈之流動池表面結合劑。
在第三態樣之一實例中,電漿子奈米結構藉由鏈黴抗生物素蛋白官能化;且經標記核苷酸經生物素標記。
應理解,第三態樣之任何特徵可以任何期望的方式組合在一起。此外,應理解,第一態樣及/或第二態樣及/或第三態樣之特徵的任何組合可一起使用,及/或可與本文中所揭示之實例中的任一者組合以達成如本發明中所描述之益處,包括例如在定序成像期間增強螢光信號。
本文中所揭示之第四態樣為一種方法,其包含將併入混合物引入至包括模板股之叢集的流動池,併入混合物包括液體載劑;複數種聚合酶;及複數種經標記核苷酸,各經標記核苷酸包括核苷酸;附接至核苷酸之糖的3' OH阻隔基;及附接至核苷酸之鹼基的染料標記;其中聚合酶中之至少一者將經標記核苷酸中之個別一者沿模板股中之一者併入至新生股中;將成像混合物引入至流動池中,該成像混合物包括第二液體載劑;及複數個官能化電漿子奈米結構;從而,官能化電漿子奈米結構中之至少一者使其自身締合在經標記核苷酸中之個別一者附近;且在官能化電漿子奈米結構中之至少一者與經標記核苷酸中之個別一者締合時對該併入物進行光學成像。
在第四態樣之一實例中,官能化電漿子奈米結構中之每一者藉由第二聚合酶官能化;且該方法進一步包含在引入成像混合物之前移除該併入混合物。
在第四態樣之實例中,官能化電漿子奈米結構中之每一者藉由結合對之第一成員官能化;聚合酶中之每一者包括結合對之第二成員;且該方法進一步包含在引入成像混合物之前移除該併入混合物。
在第四態樣之一實例中,官能化電漿子奈米結構中之每一者藉由鏈黴抗生物素蛋白官能化;經標記核苷酸中之每一者經生物素標記;且該方法進一步包含在引入成像混合物之前移除該併入混合物。
應理解,第四態樣之任何特徵可以任何期望的方式組合在一起。此外,應理解,第一態樣之特徵及/或第二態樣之特徵及/或第三態樣之特徵及/或第四態樣之特徵的任何組合可一起使用,及/或可與本文中所揭示之實例中的任一者組合以達成如本發明中所描述之益處,包括例如在定序成像期間增強螢光信號。
本文所揭示之第五態樣為一種經標記核苷酸,其包含核苷酸;附接至核苷酸之糖的3' OH阻隔基;附接至核苷酸之鹼基的染料標記;及附接至核苷酸之鹼基或染料標記之電漿子奈米結構。
在第五態樣之一實例中,電漿子奈米結構係選自由以下組成之群:金奈米結構、銀奈米結構、錫奈米結構、銠奈米結構、釕奈米結構、鈀奈米結構、鋨奈米結構、銥奈米結構、鉑奈米結構、鉻奈米結構、銅奈米結構、砷化鎵奈米結構、摻矽奈米結構、鋁奈米結構、鎂奈米結構、銀與金複合奈米結構及其組合。
在第五態樣之一實例中,電漿子奈米結構經由雙股去氧核糖核酸股附接至核苷酸之鹼基。
在第五態樣之一實例中,第一連接分子使染料標記附接至核苷酸之鹼基;第二連接分子使電漿子奈米結構附接至核苷酸之鹼基;且第一連接分子之第一長度在第二連接分子之第二長度的約3 nm至約12 nm內。
在第五態樣之一實例中,第一連接分子使染料標記附接至核苷酸之鹼基;第二連接分子使電漿子奈米結構附接至核苷酸之鹼基;且第一連接分子具有第一長度,第二連接分子具有第二長度,且第一長度與第二長度同在約3 nm至約12 nm範圍內。
應理解,第五態樣之任何特徵可以任何期望的方式組合在一起。此外,應理解,第一態樣及/或第二態樣及/或第三態樣及/或第四態樣及/或第五態樣之特徵的任何組合可一起使用,及/或可與本文中所揭示之實例中的任一者組合以達成如本發明中所描述之益處,包括例如在定序成像期間增強螢光信號。
本文中所揭示之第六態樣為一種方法,其包含將併入混合物引入至包括模板股之叢集的流動池,該併入混合物包括液體載劑;複數種聚合酶;及複數種經標記核苷酸,各經標記核苷酸包括核苷酸;附接至核苷酸之糖的3' OH阻隔基;附接至該核苷酸之鹼基的染料標記;及附接至該核苷酸之鹼基的電漿子奈米結構;其中聚合酶中之至少一者將經標記核苷酸中之個別一者沿模板股中之一者併入至新生股中;及對該併入物進行光學成像。
應理解,第六態樣之任何特徵可以任何所要方式組合在一起。此外,應理解,第一態樣及/或第二態樣及/或第三態樣及/或第四態樣及/或第五態樣及/或第六態樣之特徵的任何組合可一起使用,及/或可與本文中所揭示之實例中之任一者組合以達成如本發明中所描述之益處,包括例如在定序成像期間增強螢光信號。
在本文所揭示之實例中,在定序期間經由偵測經電漿子增強之光學信號進行核苷酸鹼基識別。經由電漿子共振之信號增強係經由電漿子奈米結構相對於併入之經標記核苷酸之染料標記的精確定位來達成。本文所揭示之機制及技術將電漿子奈米結構定位於染料標記之信號增強近程內,該染料標記為在定序期間已併入至新生核酸股中之經標記核苷酸的組分。「信號增強近程(signal enhancing proximity)」意謂電漿子奈米結構及染料標記由一定距離分隔開,該距離i)防止在電漿子奈米結構及染料標記彼此定位得過於接近時可能發生之淬滅,以及ii)增加在更大距離處可能顯著下降的電漿子增強。與信號增強近程對應之距離可在大於0 nm至約100 nm範圍內,但其取決於電漿子奈米結構(例如組成、形狀、大小)以及染料標記。在一些例子中,與信號增強近程對應之距離在約0.1 nm至約25 nm範圍內,例如,約1 nm至約20 nm等。在一個特定實例中,與信號增強近程對應之距離在約3 nm至約12 nm範圍內。本文所揭示之機制及技術使得電漿子奈米結構能夠在成像期間保持在染料標記之信號增強近程內,且因此電漿子奈米結構能夠增強染料標記之光學信號。
定義
應理解,除非另外規定,否則本文所使用之術語將採用其在相關領域中之普通含義。本文所使用之若干術語及其含義闡述於下文中。
除非上下文另外明確指示,否則單數形式「一(a)」、「一(a)」及「該(the)」之單數形式包括複數個指示物。
術語包含(comprising)、包括(including)、含有(containing)及此等術語之各種形式彼此為同義的且意謂同等廣義。
術語頂部(top)、底部(bottom)、下部(lower)、上部(upper)、相鄰(adjacent)、之上(on)等在本文中用於描述流動池及/或流動池之各個組分。應瞭解,此等方向性術語不意欲暗示特定取向,但用於指示組分之間的相對取向。方向性術語之使用不應解釋為將本文揭示之實例限制於任何(一或多個)特定取向。
術語第一(first)、第二(second)等亦不意謂暗示特定取向或次序,而是用於將一個組分與另一組分區分隔開來。
「丙烯醯胺單體(acrylamide monomer)」為具有結構
Figure 02_image001
之單體或包括丙烯醯胺基之單體。包括丙烯醯胺基之單體之實例包括疊氮基乙醯胺基戊基丙烯醯胺:
Figure 02_image003
及N-異丙基丙烯醯胺:
Figure 02_image005
。可使用其他丙烯醯胺單體。
如本文所用,「醛(aldehyde)」為含有具有結構-CHO之官能基的有機化合物,其包括羰基中心(亦即碳雙鍵結至氧)且碳原子亦鍵結至氫及R基團,諸如烷基或其他側鏈。醛通用結構為:
Figure 02_image007
如本文所用,「烷基(alkyl)」係指完全飽和(亦即不含雙鍵或參鍵)之直鏈或分支鏈烴鏈。烷基可具有1至20個碳原子。實例烷基包括甲基、乙基、丙基、異丙基、丁基、異丁基、三級丁基、戊基、己基及其類似者。作為一實例,名稱「C1-4烷基」指示烷基鏈中存在一至四個碳原子,亦即,烷基鏈係選自由以下組成之群:甲基、乙基、丙基、異丙基、正丁基、異丁基、二級丁基及三級丁基。
如本文所用,「烯基(alkenyl)」係指含有一或多個雙鍵之直鏈或分支鏈烴鏈。烯基可具有2至20個碳原子。實例烯基包括乙烯基、丙烯基、丁烯基、戊烯基、己烯基及其類似者。
如本文所用,「炔烴(alkyne)」或「炔基(alkynyl)」係指含有一或多個參鍵之直鏈或分支鏈烴鏈。炔基可具有2至20個碳原子。
如本文所用,「芳基(aryl)」係指僅在環主鏈中含有碳的芳族環或環系統(即共用兩個相鄰碳原子之兩個或更多個稠合環)。當芳基為環系統時,該系統中之各環為芳族環。芳基可具有6至18個碳原子。芳基之實例包括苯基、萘基、薁基及蒽基。
「胺基(amino)」官能基係指-NR aR b基團,其中R a及R b各自獨立地選自氫(例如,
Figure 02_image009
)、C1-6烷基、C2-6烯基、C2-6炔基、C3-7碳環、C6-10芳基、5-10員雜芳基及5-10員雜環,如本文中所定義。
如本文所用,術語「附接(attached)」係指兩個事物彼此直接或間接接合、緊固、黏著、相連或結合之狀態。舉例言之,核酸可藉由共價或非共價鍵附接至聚合水凝膠。共價鍵之特徵在於原子之間的電子對共用。非共價鍵為不涉及電子對共用之物理鍵,且可包括例如氫鍵、離子鍵、凡得瓦爾力(van der Waals force)、親水相互作用及疏水相互作用。
「疊氮(azide)」或「疊氮基(azido)」官能基係指-N 3
如本文所用,「碳環(carbocycle)」意謂環系統主鏈中僅含有碳原子的非芳族環或環系統。在碳環為環系統時,兩個或更多個環可以稠合、橋連或螺連接方式接合在一起。碳環可具有任何飽和度,其限制條件為環系統中之至少一個環不為芳族。因此,碳環包括環烷基、環烯基及環炔基。碳環基可具有3至20個碳原子。碳環環之實例包括環丙基、環丁基、環戊基、環己基、環己烯基、2,3-二氫-茚、雙環[2.2.2]辛烷基、金剛烷基及螺[4.4]壬基。
如本文所用,術語「羧酸(carboxylic acid)」或「羧基(carboxyl)」如本文所用係指-COOH。
術語「複合物(complex)」係指與之連接有電漿子奈米結構的聚合酶。
如本文所用,「伸環烷基(cycloalkylene)」意謂經由兩個附接點附接至分子之其餘部分的完全飽和碳環環或環系統。
如本文所用,「環烯基(cycloalkenyl)」或「環烯(cycloalkene)」意謂具有至少一個雙鍵之碳環或環系統,其中環系統中並無環為芳族。實例包括環己烯基或環己烯及降莰烯基或降莰烯。亦如本文所用,「雜環烯基(heterocycloalkenyl)」或「雜環烯(heterocycloalkene)」意謂在環主鏈中具有至少一個雜原子之碳環或環系統,其具有至少一個雙鍵,其中環系統中並無環為芳族。
如本文所用,「環炔基(cycloalkynyl)」或「環炔(cycloalkyne)」意謂具有至少一個參鍵之碳環或環系統,其中環系統中並無環為芳族。實例為環辛炔。另一實例為雙環壬炔。亦如本文所用,「雜環炔基(heterocycloalkynyl)」或「雜環炔(heterocycloalkyne)」意謂在環主鏈中具有至少一個雜原子之碳環或環系統,其具有至少一個參鍵,其中環系統中並無環為芳族。
如本文所用,術語「凹陷(depression)」係指基板中之個別凹形特徵,該基板具有至少部分地由(一或多個)基板之間隙區包圍之表面開口。凹陷在表面中其開口處可具有多種形狀中之任一者,包括例如圓形、橢圓形、正方形、多邊形、星形(具有任何數目的頂點)等。與表面正交獲得之凹陷的橫截面可為曲線、正方形、多邊形、雙曲線、圓錐形、角形等。作為實例,凹陷可為孔或兩個互連孔。
當參考條項之集合使用時,術語「每個(each)」意欲鑑別該集合中之單獨條項,但未必指代該集合中之每一條項。若明確揭示內容或上下文另外清楚地規定,則可存在例外狀況。
如本文所用,術語「環氧(epoxy)」(亦稱為縮水甘油基或環氧乙烷基)係指
Figure 02_image011
Figure 02_image013
如本文所用,術語「流動池(flow cell)」欲意謂具有可進行反應之流動通道、用於將(一或多種)試劑遞送至流動通道之入口及用於自流動通道移除(一或多種)試劑之出口的容器。在一些實例中,流動池允許偵測流動池中發生之反應。舉例而言,流動池可包括允許光學偵測陣列、光學標記分子或其類似物之一或多個透明表面。
如本文所用,「流動通道flow channel)」或「通道(channel)」可為界定於兩個結合組分之間的區域,其可選擇性地接收液體樣品。在一些實例中,流動通道可界定於兩個基板之間,並且因此可與基板中之每一者之活性區流體連通。在其他實例中,流動通道可界定於基板與蓋板之間,且因此可與基板之活性區流體連通。
如本文所用,「雜芳基(heteroaryl)」係指在環主鏈中含有一或多個雜原子之芳族環或環系統(亦即兩個或更多個共用兩個相鄰原子之稠合環),該雜原子為除碳外之元素,包括(但不限於)氮、氧及硫。當雜芳基為環系統時,該系統中之各環為芳族環。雜芳基可具有5-18個環成員。
如本文中所使用,「雜環(heterocycle)」意謂環主鏈中含有至少一個雜原子的非芳族環或環系統。雜環可以稠合、橋連或螺連接方式接合在一起。雜環可具有任何飽和度,其限制條件為環系統中的至少一個環不為芳族。在環系統中,(一或多個)雜原子可存在於非芳族或芳族環中。雜環基可具有3至20個環成員(即,構成環主鏈之原子的數目,包括碳原子及雜原子)。在一些實例中,(一或多個)雜原子為O、N或S。
如本文所用,術語「肼(hydrazine)」或「肼基(hydrazinyl)」係指-NHNH 2基團。
如本文所用,如本文所使用之術語「腙(hydrazone)」或「腙基(hydrazonyl)」係指
Figure 02_image015
基團,其中R a及R b各自獨立地選自氫、C1-6烷基、C2-6烯基、C2-6炔基、C3-7碳環、C6-10芳基、5-10員雜芳基及5-10員雜環,如本文所定義。
如本文所用,「羥基(hydroxy)」或「羥基(hydroxyl)」係指-OH基團。
如本文中所使用,術語「間隙區(interstitial region)」係指例如分隔開凹陷或包圍通路之基板之區域。舉例而言,間隙區可將陣列之凹陷與陣列之另一凹陷分隔開。對於另一實例,間隙區可將流動池之一個通路與流動池之另一通路分隔開。彼此分隔開之凹陷及通路可為離散的,亦即彼此不物理接觸。在許多實例中,間隙區為連續的,然而凹陷或通路為離散的,例如如同原本連續表面中或上所界定之複數個凹陷或通路之情況一般。由間隙區提供之分隔可為部分分隔開或完全分隔開。間隙區可具有不同於凹陷或通路之表面材料的表面材料。舉例而言,凹陷或通路可在其中具有聚合水凝膠及引子,且間隙區可不含聚合水凝膠及引子兩者。
如本文所用,「氧化腈(nitrile oxide)」意謂「R aC≡N +O -」基團,其中R a為本文所定義。製備氧化腈之實例包括藉由用氯醛甲醯胺-T處理或經由醯亞胺基氯[RC(Cl)=NOH]之作用自醛肟或自羥胺與醛之間的反應原位產生。
如本文所用,「硝酮(nitrone)」意謂
Figure 02_image017
基團,其中R 1、R 2及R 3可為本文所定義之R a及R b基團中之任一者,但R 3不為氫(H)。
如本文所用,「核苷酸(nucleotide)」包括含氮雜環鹼基、糖及一或多種磷酸基團。核苷酸為核酸序列之單體單元。在RNA中,糖為核糖,且在DNA中,糖為去氧核糖,亦即缺乏存在於核糖中之2'位置處之羥基的糖。含氮雜環鹼基(亦即核鹼基)可為嘌呤鹼基或嘧啶鹼基。嘌呤鹼基包括腺嘌呤(A)及鳥嘌呤(G)及其經修飾之衍生物或類似物。嘧啶鹼基包括胞嘧啶(C)、胸腺嘧啶(T)及尿嘧啶(U)以及其經修飾之衍生物或類似物。脫氧核糖之C-1原子鍵結至嘧啶之N-1或嘌呤之N-9。核酸類似物可使磷酸主鏈、糖或核鹼基中之任一者改變。核酸類似物之實例包括例如通用鹼基或磷酸-糖主鏈類似物,諸如肽核酸(peptide nucleic acid,PNA)。「經標記核苷酸(labeled nucleotide)」為至少具有附接至其上之染料標記的核苷酸。
「電漿子奈米結構(plasmonic nanostructures)」包括能夠呈現電漿子共振之任何獨立結構。
術語「聚合水凝膠(polymeric hydrogel)」係指對液體及氣體可透之半剛性聚合物。聚合水凝膠在吸收液體(例如,水)時可膨脹且在例如藉由乾燥移除液體時可收縮。雖然水凝膠可吸收水,但其不具水溶性。
如本文中所使用,術語「引子(primer)」被定義為單股核酸序列(例如,單股DNA)。在本文中稱為擴增引子之一些引子充當模板擴增及叢集產生之起點。在本文中稱為定序引子之其他引子充當DNA合成之起點。引子之5'端可經修飾以允許與聚合水凝膠之官能基發生偶合反應。引子長度可為任何數目之鹼基長且可包括多種非天然核苷酸。在一實例中,定序引子為短股,在10至60個鹼基或20至40個鹼基之範圍內。
片語「實質上界定距離(substantially define the distance)」用於描述在成像期間在電漿子奈米結構與染料標記之間(一或多種)組分形成所需分隔。如本文所用,此片語意謂所列組分在電漿子奈米結構與染料標記之間產生至少85%之所需分隔。另外15%可包括可存在於電漿子奈米結構與染料標記之間的經標記核苷酸(例如,鹼基)、空氣或流體之一部分。應理解,該等組分亦為靈活的且能夠在溶液中快速移動。因此,在成像期間電漿子奈米結構與染料標記之間的距離可略微變化。
「硫醇(thiol)」官能基係指-SH。
如本文所用,術語「四
Figure 110142198-001
(tetrazine)」及「四
Figure 110142198-001
基(tetrazine)」係指包含四個氮原子之六員雜芳基。四
Figure 110142198-001
可視情況經取代。
如本文所用,「四唑(tetrazole)」係指包括四個氮原子之五員雜環基。四唑可視情況經取代。
電漿子奈米結構
如本文中所指出,電漿子奈米結構包括能夠呈現電漿子共振之任何獨立結構。電漿子共振為其中材料表層中之電子藉由入射光之光子以某一入射角激發且接著平行於材料表面傳播的現象。電漿子奈米結構之表面可經由其耦合至傳播或局域表面電漿子來強烈地限制電磁場。此相互作用與局部電場之較大增強相關聯,其又可增強激發及發射速率且減少螢光發射器之激發狀態的壽命。此產生經放大螢光信號且亦可改進對光漂白之抗性。
能夠電漿子共振之任何材料,在本文中被稱作「電漿子材料(plasmonic material)」,可用作電漿子奈米結構。若干金屬(例如,金、銀、錫、銠、釕、鈀、鋨、銥、鉑、銅、鋁等)、摻雜半金屬(例如,摻雜矽)、直接能隙半導體(例如,砷化鎵)及金屬複合物可能夠電漿子共振。金屬複合物可包括上文所列之金屬中之兩者或更多者。作為實例,雙金屬複合物包括銀及金,並且三金屬複合物包括銀、金及鉑。在本文所闡述之實例中之任一者中,電漿子奈米結構係選自由以下組成之群:金奈米結構、銀奈米結構、錫奈米結構、銠奈米結構、釕奈米結構、鈀奈米結構、鋨奈米結構、銥奈米結構、鉑奈米結構、鉻奈米結構、銅奈米結構、砷化鎵奈米結構、摻矽奈米結構、鋁奈米結構、鎂奈米結構、銀與金複合奈米結構及其組合。
在一實例中,電漿子奈米結構係球形奈米粒子。在另一實例中,電漿子奈米結構為非球形奈米粒子,諸如立方體、三角狀、棒狀、籠狀(例如具有多孔殼之非球形中空粒子)等。在另一實例中,電漿子奈米結構為不規則形狀奈米粒子。
電漿子奈米結構亦可為實心、中空或核殼結構。核殼結構具有作為核之一種材料及作為至少部分地囊封核之殼的另一種材料。在一些實例中,兩種不同電漿子材料用作核及殼。在其他實例中,核為電漿子材料且殼為非電漿子材料。合適殼材料之一些實例包括二氧化矽、金屬氧化物,諸如氧化鋁、二氧化鈦及氧化鉭、蛋白質,諸如牛血清蛋白,以及對在定序期間使用之波長透明的有機聚合物,諸如聚(甲基丙烯酸甲酯)(poly(methyl methacrylate),PMMA)、聚(乳酸)(poly(lactic acid),PLA)及聚(丙烯酸甲酯)(poly(methyl acrylate),PMA)。非電漿子材料不干擾核之電漿子共振,且其厚度可經調整以幫助定位染料標記之信號增強近程內之核。作為一個實例,當核殼電漿子奈米結構之二氧化矽殼藉由可與例如附接至經標記核苷酸的結合對之第二成員結合的結合對之第一成員官能化時,二氧化矽殼之厚度及結合對(包括任何連接子)之結合成員的長度實質上界定染料標記與電漿子奈米結構核之間的距離。作為另一實例,當核殼電漿子奈米結構之二氧化矽殼藉由可與例如附接至聚合酶之結合對之第二成員結合的結合對之第一成員官能化時,二氧化矽殼之厚度、結合對(包括任何連接分子)之結合成員之長度及聚合酶之大小實質上界定染料標記與電漿子奈米結構核之間的距離。
電漿子奈米結構之尺寸可視其形狀而變化。在本文中所揭示之實例中,電漿子奈米結構之最大尺寸(例如,直徑、長度、中值等)係在奈米級上,並且因此在約1 nm至小於1000 nm範圍內。在一些實例中,奈米結構為具有大於或等於1 nm、2 nm、3 nm、4 nm、5 nm、6 nm、7 nm、8 nm、9 nm、10 nm、20 nm、30 nm、40 nm、50 nm、60 nm、70 nm、80 nm、90 nm或大於或等於100 nm之直徑的奈米粒子。
電漿子光學信號增強很大程度上取決於電漿子奈米結構與信號將增強之染料標記的距離。本文所揭示之機制及技術允許電漿子奈米結構在成像期間保持在染料標記之信號增強近程內。現將描述此等機制及技術中之每一者。
併入混合物中之電漿子奈米結構
電漿子奈米結構可包括於併入混合物中。在一些實例中,電漿子奈米結構為亦包括聚合酶之複合物之一部分。在此等實例中,複合物為電漿子奈米結構藉以保持在染料標記之信號增強近程內之機制。在其他實例中,奈米結構為經標記核苷酸之一部分。在此等實例中,經標記核苷酸為電漿子奈米結構藉以保持在染料標記之信號增強近程內之機制。
併入混合物之一個實例示意性地展示於圖1中。此實例併入混合物10A包括液體載劑12;包括聚合酶16及連接至聚合酶16之電漿子奈米結構18的複合物14;及經標記核苷酸20,其包括核苷酸22、附接至核苷酸22之糖的3' OH阻隔基24及附接至核苷酸22之鹼基的染料標記26。
併入混合物10A之液體載劑12可為水及/或離子鹽緩衝流體,諸如毫莫耳濃度至莫耳濃度之檸檬酸鹽水、氯化鈉、氯化鉀、磷酸鹽緩衝鹽水等,及/或其他緩衝液,諸如參(羥甲基)胺基甲烷(tris(hydroxymethyl)aminomethane,TRIS)或(4-(2-羥乙基)-1-哌
Figure 110142198-001
乙磺酸)((4-(2- hydroxyethyl) -1-piperazineethanesulfonic acid),HEPES)。液體載劑12亦可包括意欲用於併入反應之催化金屬,諸如Mg 2+、Mn 2+、Ca 2+等。可使用單一催化金屬或催化金屬之組合,且總濃度可在約0.01 mM至約100 mM範圍內。
複合物14包括聚合酶16及連接至聚合酶16之電漿子奈米結構18。併入混合物10A中之複合物14之濃度可在約1 nM至約10 mM範圍內。作為其他實例,併入混合物10A中之複合物14之濃度可在約50 nM至約100 µM、約1 nM至約50 µM等範圍內。
可使用可接受經標記核苷酸22且可成功地將核苷酸鹼基沿模板股併入新生股中之任何聚合酶16。實例聚合酶包括:來自A族之彼等聚合酶,諸如Bsu聚合酶、Bst聚合酶、Taq聚合酶、T7聚合酶及許多其他者;來自B族及B2之聚合酶,諸如Phi29聚合酶及其他高度進行型聚合酶(族B2)、Pfu聚合酶(族B)、KOD聚合酶(族B)、9oN(族B)及許多其他者;來自C族之聚合酶,諸如大腸桿菌DNA PolIII族及許多其他者;來自D族之聚合酶,諸如強烈火球菌DNA Pol II,及許多其他者;來自X族之聚合酶,諸如DNA Pol μ、DNA Pol β、DNA Pol σ及許多其他者。
因為電漿子奈米結構18係連接至進行經標記核苷酸併入之聚合酶16,所以聚合酶16至少部分地界定染料標記26與電漿子奈米結構18之間的空間。因此,可選擇聚合酶16之大小以產生信號增強近程。在一個實例中,聚合酶16之大小在約3 nm至約9 nm範圍內。在另一實例中,聚合酶16之大小在約4 nm至約7 nm範圍內。在另一實例中,聚合酶16之大小為約5 nm。
除聚合酶16之外,複合物14亦包括連接至聚合酶16之電漿子奈米結構18。複合物14之電漿子奈米結構18可為本文所闡述之實例中之任一者。聚合酶16具有用於核苷酸併入之活性位點,且可能需要將電漿子奈米結構18連接至聚合酶16遠離活性位點之區。舉例而言,遠離活性位點之內部或末端標籤可為電漿子奈米結構18附接所需的,從而不抑制聚合酶16活性。以下技術中之任一者可用於將電漿子奈米結構18連接至聚合酶16。
在一個實例中,電漿子奈米結構18與聚合酶16化學共軛。化學共軛可藉由結合對達成,其中電漿子奈米結構18藉由結合對之第一成員官能化,且聚合酶16包括結合對之第二成員或藉由其官能化。在實例結合對中,第一成員及第二成員分別包括NiNTA(鎳-氮基三乙酸)配位體及組胺酸標籤,或鏈黴抗生物素蛋白或抗生素蛋白及生物素,或諜標籤及諜捕手,或順丁烯二醯亞胺及半胱胺酸,或疊氮及二苯并環辛炔(dibenzocyclooctyne,DBCO)。此等實例中之一些涉及與聚合酶16上存在之胺或半胱胺酸之化學共軛。聚合酶16上天然存在或經工程改造之半胱胺酸容易與一些官能化電漿子奈米結構(例如金、銀、鉑、其合金)之表面反應。聚合酶16上天然存在或經工程改造之半胱胺酸亦容易與一些官能化電漿子奈米結構之表面上併入之順丁烯二醯亞胺基反應。任何電漿子奈米粒子可藉由羧基官能化,該等羧基可與聚合酶16上天然存在或經工程改造之胺反應,其藉由用1-乙基-3-[3-二甲胺基丙基]碳化二亞胺鹽酸鹽(EDC)使該等羧基活化實現。可使用N-羥基丁二醯亞胺酯(NHS酯)標記聚合酶16上之胺基,諸如離胺酸。在一實例中,可在僅N端胺為反應性的pH範圍內(例如,pH 7)採用N-羥基丁二醯亞胺(NHS)化學物質,使得每種聚合酶16添加單個電漿子奈米結構18。化學共軛亦可經由π夾介導之半胱胺酸共軛、小泛素類調節劑(SUMO)蛋白質或任何其他適合之共軛方法達成。
在另一實例中,電漿子奈米結構18經由雜交寡核苷酸附接至聚合酶16。此實例示意性地展示於圖2A中。在此實例中,單股寡核苷酸28附接至聚合酶16,且其互補單股寡核苷酸繫鏈30附接至電漿子奈米結構18。寡核苷酸28與互補寡核苷酸繫鏈30雜交,以將電漿子奈米結構18連接至聚合酶16。本文所揭示之化學共軛技術中之任一者可用於使寡核苷酸28附接至聚合酶16及使互補寡核苷酸繫鏈30附接至電漿子奈米結構18。作為兩個實例,硫醇化寡核苷酸可直接鍵結至金奈米粒子或銀奈米粒子之表面。另外,互補寡核苷酸繫鏈30可經由多種其他化學物質附接至電漿子奈米結構18,該等化學物質包括疊氮-炔烴點擊反應、無銅點擊反應、醛官能性寡聚胺電漿子奈米結構反應。
寡核苷酸28及互補寡核苷酸繫鏈30具有相同長度,其可在約5個核苷酸至約30個核苷酸範圍內。
在此實例中,聚合酶16及雜交寡核苷酸28及30至少部分地界定染料標記26與電漿子奈米結構18之間的距離。因此,可選擇聚合酶16之大小及寡核苷酸28及30之長度,使得在成像期間,電漿子奈米結構18在染料標記26之信號增強近程內。
在又另一實例中,電漿子奈米結構18經由包在電漿子奈米結構18周圍之寡核苷酸繫鏈32附接至聚合酶16。此寡核苷酸繫鏈32包括足夠長以包在電漿子奈米結構18周圍之部分34及與附接至聚合酶16之寡核苷酸28互補的部分36。足夠長以包在電漿子奈米結構18周圍之部分34的長度將視電漿子奈米結構18之大小而定。在一實例中,電漿子奈米結構18之直徑在約5 nm至約12 nm範圍內,且足夠長以包在電漿子奈米結構18周圍之部分34可包括約40個核苷酸至約150個核苷酸。此等核苷酸可與電漿子奈米結構18之表面選擇性結合。在一個實例中,電漿子奈米結構18為金,且足夠長以包在電漿子奈米結構18周圍之部分34為聚腺嘌呤。
寡核苷酸繫鏈32之互補部分36與聚合酶16上之寡核苷酸28雜交,以將包於部分34中之電漿子奈米結構18連接至聚合酶16。在此實例中,互補部分36及寡核苷酸28具有相同長度,其可在約5個核苷酸至約20個核苷酸範圍內。本文所揭示之化學共軛技術中之任一者可用於使寡核苷酸28附接至聚合酶16。
在此實例中,聚合酶16及雜交寡核苷酸28及部分36至少部分地界定染料標記26與電漿子奈米結構18之間的距離。因此,可選擇聚合酶16之大小及寡核苷酸28及部分36之長度,使得在成像期間,電漿子奈米結構18在染料標記26之信號增強近程內。
在一些實例中,複合物14亦可包括額外組分以在洗滌循環之後提高複合物14在流動池中之保留率。
在一個實例中,為提高洗滌循環之後的複合物保留率,複合物14包括基因融合至聚合酶16之DNA結合域。在一個實例中,DNA結合域可包括單股DNA(ssDNA)結合域,其可例如附接至流動池中之模板股的轉接子部分。ssDNA結合域可為非序特異性的。此等DNA結合域之實例包括寡核苷酸/寡醣/寡肽結合(oligopeptide-binding,OB)倍數、K同源(K homology,KH)域、RNA識別模體(RNA recognition motif,RRM)及旋轉域(whirly domain)。在另一實例中,DNA結合域可包括雙股DNA(double stranded DNA,ds-DNA)結合域,其可附接例如定序引子/模板雙螺旋體之雙股部分。此等DNA結合域之實例包括TOPO-V螺旋-髮夾-螺旋域及增殖細胞核抗原(proliferating cell nuclear antigen,PCNA)。
在另一實例中,為提高洗滌循環之後的複合物保留率,複合物14可包括表面繫鏈42(展示於圖3中)。表面繫鏈42用於在併入與成像期間將複合物14錨定至圖案化或非圖案化流動池表面44。在一個實例中,聚合酶16包括附接至其表面之表面繫鏈42,且流動池表面結合劑附接至表面繫鏈42(例如在與聚合酶16附接之端的相反端)。在此實例中,當聚合酶16被引入至流動池中時,流動池表面44經官能化以附接聚合酶結合之表面繫鏈42。在另一實例中,流動池包括附接至其表面44的表面繫鏈42,且聚合酶結合劑附接至表面繫鏈42。在此實例中,聚合酶表面經官能化以在聚合酶16被引入至流動池中時附接至與流動池結合之表面繫鏈42。在此等實例中之任一者中,表面繫鏈42可包括結合對之一個成員,而聚合酶16攜有其他成員:生物素/抗生物素蛋白、麥芽糖結合蛋白/麥芽糖、His6/NiNTA、諜捕手002/諜標籤002或麩胱甘肽S-轉移酶/麩胱甘肽。
適合的表面繫鏈42之一個特定實例包括生物素-聚乙二醇(polyethylene glycol,PEG)-生物素。在此實例中,表面繫鏈42之生物素端能夠分別與位於聚合酶16之表面上及流動池表面44上之鏈黴抗生物素蛋白或抗生素蛋白共軛。因此,在此實例中,一端之生物素為流動池表面結合劑。適合的表面繫鏈42之另一特定實例在包括流動池表面44上之抗生物素蛋白。在此實例中,聚合酶16可經生物素標記。適合的表面繫鏈42之另一特定實例包括鹵素聚乙二醇(PEG)。在此實例中,PEG可附接至流動池表面44,且鹵素可附接至與聚合酶16附接之HaloTag®。
表面繫鏈42之長度足以使表面結合聚合酶16能夠結合在模板股48與定序引子50或自定序引子50延伸之生長新生股52之間的接合點46的任何位置。在一實例中,部分取決於待在流動池表面44上定序之庫片段的長度,表面繫鏈42之長度可在約2 nm至約200 nm、或約5 nm至約150 nm、或約10 nm至約100 nm範圍內。
返回參看圖1,除複合物14之外,展示於圖1中之併入混合物10A亦包括經標記核苷酸20。如本文中所提及,經標記核苷酸20包括核苷酸22、附接至核苷酸22之糖的3' OH阻隔基24及附接至核苷酸22之鹼基的染料標記26。經標記核苷酸20A、20B、20C之若干實例展示於圖4中。
經標記核苷酸20之核苷酸22包括含氮雜環鹼基、糖及一或多個磷酸酯基。核苷酸22為核酸序列之單體單元。在RNA中,糖為核糖,且在DNA中,糖為去氧核糖,亦即,缺乏存在於核糖中之2'位置處之羥基的糖。含氮雜環鹼基(亦即核鹼基)可為嘌呤鹼基或嘧啶鹼基。嘌呤鹼基包括腺嘌呤(A)及鳥嘌呤(G)及其經修飾之衍生物或類似物。嘧啶鹼基包括胞嘧啶(C)、胸腺嘧啶(T)及尿嘧啶(U)以及其經修飾之衍生物或類似物。核糖或去氧核糖之C-1原子鍵結至嘧啶之N-1或嘌呤之N-9。核苷酸22可為單磷酸酯或包括若干磷酸酯基之多磷酸酯形式(例如,三磷酸酯(亦即,γ磷酸酯)、四磷酸酯、五磷酸酯、六磷酸酯等)。核酸類似物可使磷酸主鏈、糖或核鹼基中之任一者改變。核酸類似物之實例包括例如通用鹼基或磷酸-糖主鏈類似物,諸如肽核酸(PNA)。在圖4中,核苷酸22之鹼基為胞嘧啶,糖為去氧核糖,且磷酸酯為三磷酸酯或γ磷酸酯。
經標記核苷酸20之核苷酸22亦包括附接至其上之3' OH阻隔基24。3' OH阻隔基24可連接至核苷酸22中之糖分子之3'氧原子。3' OH阻隔基24可為在各定序循環中僅允許單一鹼基併入的可逆終止子。可逆終止子阻止額外鹼基併入至新生股52(圖3)中,該新生股與模板多核苷酸鏈(在本文中亦稱為模板股48(圖3))互補。此使得能夠偵測及鑑定單一併入鹼基。隨後可移除3' OH阻隔基24,從而使得額外定序循環能夠在各模板多核苷酸鏈處發生。不同3' OH阻隔基24之實例展示於圖4中參考數字24A、24B、24C處,包括3'-ONH 2可逆終止子(展示於24A處)、3'- O-烯丙基可逆終止子(亦即,-CH=CHCH 2,展示於24B處)及3'- O-疊氮基甲基可逆終止子(亦即,-CH 2N 3,展示於24C處)。其他適合的可逆終止子包括鄰硝苄基醚、烷基鄰硝苄基碳酸酯、酯部分、其他烯丙基部分、縮醛(例如,三級丁氧基-乙氧基)、MOM(-CH 2OCH 3)部分、2,4-二硝基苯次磺醯基、四氫呋喃基醚、3'磷酸酯、醚、-F、-H 2、-OCH 3、-N 3、-HCOCH 3及2-硝基苯碳酸酯。
經標記核苷酸20之核苷酸22亦包括附接至核苷酸22之鹼基的染料標記26。染料標記26可為任何光學可偵測部分,包括發光、化學發光、螢光、螢光形成、發色及/或顯色部分。適合的光學可偵測部分之一些實例包括螢光素標記、玫瑰紅標記、花青標記(例如Cy3、Cy5及其類似者)及ALEXA FLUOR®家族螢光染料(來自Molecular Probes公司)以及其他螢光及螢光形成染料)。
染料標記26可使用任何適合的連接分子附接至核苷酸22之鹼基。在一實例中,連接分子為式-((CH 22O) n-之間隔基,其中n為2與50之間的整數。連接分子之其他實例在圖4中以參考數字38A、38B及38C展示。連接分子38A、38B、38C包括由圖4中之箭頭標識之裂解位點40。
在一個實例中,併入混合物10A包括不同經標記核苷酸20之混合物,該等經標記核苷酸包括不同鹼基,例如A、T、G、C(以及U或I)。亦可能需要針對不同的經標記核苷酸20利用不同類型之染料標記26。舉例而言,可選擇螢光或螢光形成物標記,使得各標記可吸收激發輻射及/或以可與其他標記區分之波長發射螢光。此類可區分之類似物提供監測不同標記26同時在相同反應混合物中存在的能力。在一些實例中,併入混合物10A中之四種經標記核苷酸20中之一者可不包括染料標記26,而其他三種經標記核苷酸20包括不同染料標記26。
返回參看圖3,以下描述係關於一種涉及併入混合物10A之實例方法。在整個本說明書中,參考且簡要地描述流動池。流動池之實例展示於圖8A、圖8B及圖8C中,且將在下文參考彼等圖式進行更詳細地描述。
在定序期間,待定序之模板股48可使用固定於流動池表面44上之擴增引子(圖3中未示)在流動池表面44上形成。在模板股形成開始時,可由任何核酸樣品(例如,DNA樣品或RNA樣品)製備庫模板。DNA核酸樣品可經片段化成單股,類似大小(例如,<1000 bp)為DNA片段。RNA核酸樣品可用於合成互補DNA(cDNA),並且cDNA可經片段化成單股,類似大小(例如,<1000 bp)為cDNA片段。在製備期間,可將轉接子添加至片段中之任一者之末端。經由減少之循環擴增,不同模體可被引入轉接子中,諸如定序引子結合位點、索引及與流動池表面44上之擴增引子互補的區。在一些實例中,來自單一核酸樣品之片段具有向其中添加之相同轉接子。最終庫模板包括DNA或cDNA片段及在兩個末端處之轉接子。DNA或cDNA片段表示待定序之最終庫模板之部分。
複數個庫模板可引入至流動池。使多個庫模板與例如固定於流動池表面44上之兩種類型的擴增引子中之一者雜交。
接著可進行叢集產生。在叢集產生之一個實例中,使用高保真DNA聚合酶藉由3'延伸自雜交引子複製庫模板。使原始庫模板變性,使複本固定於流動池表面44上。等溫橋式擴增或某一其他形式之擴增可用於擴增經固定複本。舉例而言,經複製之模板在相鄰的互補引子上循環以與其雜交,且聚合酶複製經複製之模板以形成雙股橋,該等雙股橋經變性以形成兩個單股之股。此兩股在相鄰的互補引子上循環且與其雜交並再次延伸以形成兩個新的雙股環。藉由等溫變性及擴增之循環在各模板複本上重複該製程以產生密集的純系叢集。使各雙股橋之叢集變性。在一個實例中,藉由特異性鹼基裂解移除反向股,從而留下正向模板股。雖然單一模板股48展示於圖3中,叢集化引起固定於流動池表面44(例如,在如圖8B中所示之整個通路上或在如圖8C中所示之凹陷中)上之若干模板股48之形成。叢集之此實例被稱作橋式擴增,並且為可執行之擴增之一個實例。應理解,可使用其他擴增技術,諸如排除擴增(Examp)工作流(Illumina公司)。
可引入與模板股48之序列之互補部分雜交的定序引子50。此定序引子50使模板股48準備好使用併入混合物10A定序。
實例定序方法涉及將併入混合物10A引入至流動池,該流動池包括模板股48之叢集(其中定序引子50與其雜交),併入混合物10A包括複數種複合物14及複數種經標記核苷酸20,其中聚合酶16中之至少一者i)將經標記核苷酸20中之個別一者沿模板股48中之一者併入至新生股52中,及ii)將其所連接之電漿子奈米結構18維持在經標記核苷酸20中之個別一者附近;及在電漿子奈米結構18得到維持時對併入物進行光學成像。
在此實例方法中,併入混合物10A之任何實例係例如經由輸入埠引入至流動池中。當併入混合物10A被引入至流動池中時,混合物10A進入流動通道,且接觸存在模板股48之表面44。
使併入混合物10A在流動池中培育,且經標記核苷酸20藉由複合物14之相應聚合酶16併入。如圖3中所示,在併入期間,經標記核苷酸20中之一者藉由相應聚合酶16併入至一個新生股52中,該新生股延伸一個定序引子50且與模板股48中之一者互補。併入以模板股依賴性方式進行,且因此對添加至新生股52中之經標記核苷酸20之順序及類型的偵測可用於判定模板股48之序列。在單個定序循環期間在整個流動池表面44上之至少一些模板股48中發生併入。因此,在跨流動池之至少一些模板股48中,相應聚合酶16藉由經標記核苷酸20中之一者在併入混合物10A中延伸雜交定序引子50。
併入之經標記核苷酸20包括歸因於3' OH阻隔基24之存在的可逆終止特性,一旦已添加經標記核苷酸20,其終止進一步定序引子延伸。
在培育及併入所需時間之後,併入混合物10A,包括未併入之經標記核苷酸20,可在洗滌循環期間自流動池移除。洗滌循環可涉及流通技術,其中洗滌溶液(例如,緩衝液)例如藉由泵或其他適合之機構導引至流動通道中、穿過流動通道且接著至流動通道之外。
至少一些進行併入之聚合酶16及其相應的複合物14在洗滌循環之後保留於模板股48與最近併入之經標記核苷酸20之間的接合點46處之適當位置。在一個實例中,在洗滌循環之後約20%至約90%之複合物14保留於流動池中。雖然提供一個實例範圍,但應理解,取決於多種不同因素,保留複合物14之百分比可或多或少。如本文所提及,為了增加在洗滌循環期間及之後保留的複合物14之百分比,複合物14可繫栓至模板股48(例如經由DNA結合域)或至流動池表面44(例如經由表面繫鏈42)。因為每一保留複合物14包括電漿子奈米結構18,所以此等電漿子奈米結構18亦保留於模板股48與最近併入之經標記核苷酸20之間的接合點46處之適當位置,如圖3中所示。因此,電漿子奈米結構18在併入之後保持在染料標記26之信號增強近程內。
在不發生進一步併入之情況下,可經由成像事件偵測最近併入之經標記核苷酸20。在成像事件期間,照明系統(圖中未示)可將激發光提供至流動池表面44。併入之經標記核苷酸20之染料標記26回應於激發光而發射光學信號。另外,因為保留電漿子奈米結構18保持在各別染料標記26之信號增強近程內,所以來自染料標記26之信號可經由電漿子共振增強。
在成像進行之後,接著可將裂解混合物引入至流動池中。在此實例中,裂解混合物能夠i)自併入之核苷酸20移除3' OH阻隔基24,及ii)自併入之核苷酸20裂解染料標記26。裂解混合物中3' OH阻隔基24及適合之解封端劑/組分之實例可包括:酯部分,其可藉由鹼水解移除;烯丙基部分,其可經由Nal、氯三甲基矽烷及Na 2S 2O 3或經由含Hg(II)之丙酮/水移除;疊氮基甲基,其可與膦裂解,諸如參(2-羧基乙基)膦(tris(2-carboxyethyl)phosphine,TCEP)或三(羥丙基)膦(tri(hydroxypropyl)phosphine,THP);縮醛,諸如三級丁氧基-乙氧基,其可在酸性條件下裂解;可用LiBF 4及CH 3CN/H 2O裂解的MOM(-CH 2OCH 3)部分;可用親核試劑(諸如硫酚及硫代硫酸鹽)裂解的2,4-二硝基苯次磺醯基;可用Ag(I)或Hg(II)裂解的四氫呋喃基醚;及可藉由磷酸酶(例如多核苷酸激酶)裂解的3'磷酸酯。裂解混合物中適合之染料標記裂解試劑/組分之實例可包括:過碘酸鈉,其可裂解鄰二醇;膦,諸如參(2-羧乙基)膦(tris(2-carboxyethyl)phosphine,TCEP)或參(羥丙基)膦(tris(hydroxypropyl)phosphine,THP),其可裂解疊氮基甲基鍵;鈀及THP,其可裂解烯丙基;鹼,其可裂解酯部分;或任何其他適合之裂解試劑。
用裂解混合物洗滌或後續洗滌亦可移除原本連接至模板股48或流動池表面44的保留複合物14。
當複合物14連接至模板股48(例如經由DNA結合域)或至流動池表面44(例如經由表面繫鏈42)時,可將額外複合物移除劑添加至裂解混合物中。複合物移除劑將視複合物14與模板股48之間或複合物14與流動池表面44之間形成的鍵聯而定。本文所闡述之一些實例染料標記裂解劑可能能夠裂解複合物14。在一個實例中,生物素-鏈黴抗生物素蛋白結合對使表面繫鏈42與流動池表面44連接。在此實例中,複合物移除劑可為十二烷基硫酸鈉(sodium dodecyl sulfate,SDS)、尿素與生物素之組合或約10體積%至約50體積%之甲醯胺試劑(包括甲醯胺及視情況存在之緩衝液)及占剩餘百分比之鹽緩衝液(包括氯化鈉、檸檬酸鈉及生物相容性界面活性劑)的組合。在另一實例中,結合對組分中之一者的過量可能能夠破壞結合對之間(例如,聚合酶16與表面繫鏈42之間或表面繫鏈42與流動池表面44之間)的結合,其中之任一者使在流動池表面44上結合位點之開放。在另一實例中,可添加核酸酶或烯丙基裂解化學物質以裂解表面繫鏈42。在另一實例中,可添加外源性DNA以促進DNA結合域自表面共軛DNA釋放。
可在各種流體遞送步驟之間進行洗滌。定序循環可隨後重複「n」次以將定序引子50延伸n個核苷酸,由此偵測長度n之序列。在一些實例中,可使用成對末端定序,其中對正向股進行定序並將其移除,且接著構築反向股並對其進行定序。
現參看圖5A,示意性地描繪併入混合物10B之另一實例。此實例併入混合物10B包括經標記核苷酸20'之另一實例。此經標記核苷酸20'包括核苷酸22、附接至核苷酸22之糖的3' OH阻隔基24、附接至核苷酸22之鹼基的染料標記26及附接至核苷酸22之鹼基的電漿子奈米結構18。
本文所述之核苷酸22、3' OH阻隔基24及染料標記26中之任一者均可用於經標記核苷酸20'。另外,本文所述之電漿子奈米結構18中之任一者亦可用於經標記核苷酸20'。
在此實例中,第一連接分子38使染料標記26附接至核苷酸22之鹼基且第二連接分子38'使電漿子奈米結構18附接至核苷酸22之鹼基。第一及第二連接分子38、38'之長度可視連接分子38、38'如何附接至鹼基而定。在一些實例中,當與信號增強近程相關之距離在0.1 nm與100 nm之間時,該等長度將在約1 nm至約12 nm之範圍內,或至多約100 nm。
第一及/或第二連接分子38、38'可為針對將染料標記26連接至鹼基所描述的連接分子中之任一者,諸如間隔基-((CH 22O) n-(n在2至50範圍內)或圖4中參考編號38A、38B及38C處展示之彼等實例。在一些實例中,第一連接分子及/或第二連接分子38、38'經選擇為相同類型之連接子,使得其可在併入與成像之後使用相同機制裂解。第二連接分子38'之另一實例為雙股DNA(ds-DNA)。ds-DNA連接子之剛性可為特別期望的。在此等實例中之任一者中,第二連接分子38'可包括可與電漿子奈米結構18化學共軛之端基。作為一個實例,生物素可被添加至第二連接分子38'的末端,且電漿子奈米結構18可藉由可結合於生物素的抗生素蛋白或鏈黴抗生物素蛋白官能化。作為另一實例,硫醇可被添加至第二連接分子38'之末端,該硫醇可直接結合至金奈米粒子之表面。
如圖5A中所示,併入混合物10B之此實例亦包括液體載劑12及聚合酶16。聚合酶16及/或經標記核苷酸20'的濃度可在約50 nM至約100 µM、約1 nM至約50 µM等範圍內。
併入混合物10B之液體載劑12可為水及/或本文所闡述之緩衝液中之任一者。
併入混合物10B之聚合酶16可為本文所提供之實例中之任一者。在此等實例中,應瞭解,併入混合物10B中之聚合酶16並非複合物14之一部分。因此,聚合酶16不連接至電漿子奈米結構18。因為聚合酶16及電漿子奈米結構18為分開的,所以此等實例中之聚合酶16可不經官能化以繫栓至模板股48(例如經由DNA結合域)或至流動池表面44(例如經由表面繫鏈42)。
現參看圖5B,示意性地描繪併入混合物10C之另一實例。此實例併入混合物10C包括經標記核苷酸20'''之另一實例。此經標記核苷酸20'''包括核苷酸22、附接至核苷酸22之糖的3' OH阻隔基24、附接至核苷酸22之鹼基的染料標記26以及附接至染料標記26之電漿子奈米結構18。電漿子奈米粒子18與染料標記26之附接在空間上可比圖5A中所示之實例經標記核苷酸20'較少擁擠。
本文所述之核苷酸22、3' OH阻隔基24及染料標記26中之任一者均可用於經標記核苷酸20'''。另外,本文所述之電漿子奈米結構18中之任一者亦可用於經標記核苷酸20'''。
在此實例中,第一連接分子38使染料標記26附接至核苷酸22之鹼基且第二連接分子38'使電漿子奈米結構18附接至染料標記26。第一連接分子及第二連接分子38、38'之總長度可視連接分子38如何附接至鹼基及連接分子38'如何附接至染料標記26而定。在一些實例中,當與信號增強近程相關之距離在0.1 nm與100 nm之間時,連接分子38'之長度在約1 nm至約12 nm範圍內,或至多約100 nm。
第一及/或第二連接分子38、38'可為針對將染料標記26連接至鹼基所描述的連接分子中之任一者,諸如間隔基-((CH 22O) n-(n在2至50範圍內)或圖4中參考編號38A、38B及38C處展示之彼等實例。
如圖5B中所示,併入混合物10C之此實例亦包括液體載劑12及聚合酶16。聚合酶16及/或經標記核苷酸20'''的濃度可在約50 nM至約100 µM、約1 nM至約50 µM等範圍內。
併入混合物10C之液體載劑12可為水及/或本文所闡述之緩衝液中之任一者。併入混合物10C之液體載劑12亦可包括催化金屬。
併入混合物10C之聚合酶16可為本文所提供之實例中之任一者。在此等實例中,應瞭解,併入混合物10C中之聚合酶16並非複合物14之一部分。因此,聚合酶16不連接至電漿子奈米結構18。因為聚合酶16及電漿子奈米結構18為分開的,所以此等實例中之聚合酶16可不經官能化以繫栓至模板股48(例如經由DNA結合域)或至流動池表面44(例如經由表面繫鏈42)。
現參看圖6,以下描述係關於涉及併入混合物10B之實例方法。此方法亦利用參考圖8A、圖8B及圖8C所展示及詳細描述的流動池之實例。如參考圖3所描述,在此方法開始時,模板股48已經形成。
如圖6中所示,可引入與模板股48之序列之互補部分雜交的定序引子50。此定序引子50使模板股48準備好使用併入混合物10B定序。
實例定序方法涉及將併入混合物10B引入包括模板股48之叢集(其中定序引子50與其雜交)之流動池中,併入混合物10B包括液體載劑12、複數種聚合酶16及複數種經標記核苷酸20',其中聚合酶16中之至少一者將經標記核苷酸20中之個別一者沿模板股48中之一者併入至新生股52中;及對併入物進行光學成像。
在此實例方法中,併入混合物10B之任何實例係例如經由輸入埠引入至流動池中。當併入混合物10B被引入至流動池中時,混合物10B進入流動通道,且接觸存在模板股48之表面44。
使併入混合物10B在流動池中培育,且經標記核苷酸20'藉由相應聚合酶16併入。如圖6中所示,在併入期間,經標記核苷酸20'中之一者藉由相應聚合酶16併入至一個新生股52中,該新生股延伸一個定序引子50且與模板股48中之一者互補。此併入以模板股依賴性方式進行,且因此對添加至新生股52中之經標記核苷酸20'之順序及類型的偵測可用於判定模板股48之序列。在單個定序循環期間在整個流動池表面44上之至少一些模板股48中發生併入。
併入之經標記核苷酸20'包括歸因於3' OH阻隔基24之存在的可逆終止特性,一旦已添加經標記核苷酸20',其終止進一步定序引子延伸。
在培育及併入所需時間之後,併入混合物10B,包括未併入之經標記核苷酸20',可在洗滌循環期間自流動池移除。洗滌循環可涉及流通技術,其中洗滌溶液(例如,緩衝液)例如藉由泵或其他適合之機構導引至流動通道中、穿過流動通道且接著至流動通道之外。
因為各別電漿子奈米結構18連接至併入之經標記核苷酸20',所以在併入之後此等電漿子奈米結構18保留在染料標記26之信號增強近程內適當位置。
在不發生進一步併入之情況下,最可經由成像事件偵測到近併入之經標記核苷酸20'。在成像事件期間,照明系統(圖中未示)可將激發光提供至流動池表面44。併入之經標記核苷酸20'之染料標記26回應於激發光而發射光學信號,且併入之經標記核苷酸20'之相應電漿子奈米結構18經由電漿子共振增強此等光學信號。
在成像進行之後,接著可將裂解混合物引入至流動池中。在此實例中,裂解混合物能夠i)自所併入之核苷酸20'移除3' OH阻隔基24,ii)裂解所併入之核苷酸20'的染料標記26,及iii)裂解所併入之核苷酸20'的電漿子奈米結構18。
在此實例中,可使用本文所描述之用於裂解3' OH阻隔基24之解封端劑/組分中的任一者。在此實例中,亦可使用本文中所描述之用於裂解染料標記26之裂解劑/組分中的任一者。當用於分別附接染料標記26與電漿子奈米結構18之連接分子38、38'相同時,裂解混合物可包括可裂解連接分子38、38'之單一裂解劑/組分。當用於分別附接染料標記26及電漿子奈米結構18之連接分子38、38'不同時,裂解混合物可包括可裂解相應連接分子38、38'之不同裂解劑/組分。作為一個實例,可使用靶向各連接分子38、38'之特定序列的限制酶。
可在各種流體遞送步驟之間進行洗滌。定序循環可隨後重複n次以將定序引子50延伸n個核苷酸,由此偵測長度n之序列。在一些實例中,可使用成對末端定序,其中對正向股進行定序並將其移除,且接著構築反向股並對其進行定序。
併入混合物10C而非併入混合物10B可用於參考圖6所描述之方法中。該方法(例如併入、培育、信號增強等)將類似於參考圖6所描述之方法,但裂解過程可能會簡化。在併入混合物10C中,電漿子奈米結構18附接至染料標記26。因此,當染料標記26裂解時,電漿子奈米結構18亦將裂解。因此,在該方法期間不使用用於連接分子38'之額外裂解劑。
成像混合物中之電漿子奈米結構
在本文所揭示之其他實例中,電漿子奈米結構18可包括於成像混合物中,而非併入混合物10A或10B或10C中。在此等實例中,奈米結構18經官能化,使得其可與併入之經標記核苷酸(例如經標記核苷酸20)締合。在此等實例中,官能化為使電漿子奈米結構18定位於染料標記26之信號增強近程內之機制的至少一部分。
圖7A、圖7B及圖7C說明包括併入混合物10D、10E及10F及成像混合物56、56'及56''兩者之套組54、54'、54''的三個實例。各套組54、54'、54''包括併入混合物10D、10E及10F之不同實例,該併入混合物包括液體載劑12、聚合酶16或16''之實例及經標記核苷酸20或20''之實例。每一套組54、54'、54''亦包括成像混合物56、56'、56''之實例,該成像混合物包括第二液體載劑12'及經官能化以在涉及經標記核苷酸20或20''之併入事件之後使其自身締合在經標記核苷酸20或20''附近的電漿子奈米結構18'、18''或18'''之實例。
併入混合物10D、10E及10F之液體載劑12及成像混合物56、56'、56''之第二液體載劑12'可為水及/或本文中所闡述之緩衝液中之任一者。液體載劑12'亦可包括催化金屬。
此等實例套組54、54'、54''中之每一者可用於定序方法中,該定序方法一般涉及將併入混合物10D、10E及10F引入至包括模板股48之叢集的流動池中,其中聚合酶16或16''中之至少一者將經標記核苷酸20或20''中之個別一者沿模板股48中之一者併入至新生股52中;將成像混合物56或56'或56''引入至流動池中,從而官能化電漿子奈米結構18'、18''或18'''中之至少一者使其自身締合在經標記核苷酸20或20''中之個別一者附近;且在官能化電漿子奈米結構18'、18''或18'''中之至少一者與經標記核苷酸20或20''中之個別一者締合時對併入物進行光學成像。
套組54、54'、54''中之每一者及其相關定序方法將分別進一步描述於參考圖7A、圖7B及圖7C中。
在圖7A中所示之實例套組54中,併入混合物10D包括如參考圖5A所描述的聚合酶16及如參考圖1所描述的經標記核苷酸20。聚合酶16可為本文所揭示用於併入之任一實例,且對於繫栓至模板股48(例如經由DNA結合域)或至流動池表面44(例如經由表面繫鏈42)可不經官能化。聚合酶16用於在如參考圖6所描述之併入事件期間併入經標記核苷酸20。應理解,併入混合物10D包括複數種聚合酶16。
在圖7A中所示之實例套組54中,成像混合物56亦包括藉由第二聚合酶16'官能化之電漿子奈米結構18'。藉由第二聚合酶16'官能化之電漿子奈米結構18'與複合物14類似,不同之處在於第二聚合酶16'不用於經標記核苷酸20併入,而是用於在併入發生之後將電漿子奈米結構18'定位於模板股48與大部分最近併入之經標記核苷酸20之間的接合點46附近。
第二聚合酶16'可為本文中所闡述之聚合酶16之任何實例,或可為對核苷酸併入物係惰性的聚合酶。本文中所闡述之聚合酶中之任一者可暴露於活性位點突變,該等活性位點突變可使得第二聚合酶16'不能催化併入反應。聚合酶使用共用兩個活性位點天冬胺酸殘基的共同機制,且使此等殘基中之一者或兩者突變使得聚合係惰性的。亦選擇第二聚合酶16'以使得其可特異性結合至新生股52之3'端。
因為電漿子奈米結構18'係連接至特異性結合至新生股52之3'端的第二聚合酶16',聚合酶16'至少部分界定(併入之核苷酸20之)染料標記26與電漿子奈米結構18'之間的空間。因此,可選擇聚合酶16聚合酶之大小以產生信號增強近程。在一個實例中,聚合酶16'之大小在約3 nm至約12 nm範圍內。在另一實例中,聚合酶16'之大小在約4 nm至約7 nm範圍內。在另一實例中,聚合酶16'之大小為約5 nm。當與信號增強近程相關之距離在0.1 nm與100 nm之間時,聚合酶16'之大小可更大,例如至多約100 nm。
第二聚合酶16'可使用本文所述之相同技術連接至電漿子奈米結構18'以將聚合酶16連接至電漿子奈米粒子18。在一個實例中,第二聚合酶16'可使用本文所闡述之化學共軛技術中之任一者連接至電漿子奈米結構18'。在另一實例中,在將寡核苷酸28附接至第二聚合酶16'的情況下使用與展示於圖2A中之鍵聯類似的鍵聯。在另一實例中,在將寡核苷酸28附接至第二聚合酶16'且寡核苷酸繫鏈32包在電漿子奈米粒子18'周圍之情況下使用與展示於圖2B中之鍵聯類似的鍵聯。
以下描述係關於一種涉及套組54之實例方法。此方法亦利用參考圖8A、圖8B及圖8C所展示及描述之流動池之實例。如參考圖3所描述,在此方法開始時,模板股48已經形成。
可引入定序引子50,以與模板股48之序列之互補部分雜交。此定序引子50使模板股48準備好使用併入混合物10D及成像混合物56定序。
在此實例方法中,併入混合物10D係例如經由輸入埠引入至流動池中。當併入混合物10D被引入至流動池中時,混合物10D進入流動通道,且接觸存在模板股48之表面44。
使併入混合物10D在流動池中培育,且經標記核苷酸20藉由相應聚合酶16併入。類似於圖6中所展示之實例,在併入期間,經標記核苷酸20中之一者藉由相應聚合酶16併入至一個新生股52中,該新生股延伸一個定序引子50且與模板股48中之一者互補。此併入以模板股依賴性方式進行,且因此對添加至新生股52中之經標記核苷酸20之順序及類型的偵測可用於判定模板股48之序列。在單個定序循環期間在整個流動池表面44上之至少一些模板股48中發生併入。
併入之經標記核苷酸20包括歸因於3' OH阻隔基24之存在的可逆終止特性,一旦已添加經標記核苷酸20,其終止進一步定序引子延伸。
在培育及併入所需時間之後,併入混合物10D,包括未併入之經標記核苷酸20,可在洗滌循環期間自流動池移除。併入混合物10D在引入成像混合物56之前移除。在此實例中,期望在洗滌循環期間移除大多數(若非全部)的來自併入混合物10D之聚合酶16。可進行多次洗滌循環以增加移除之聚合酶16之百分比。洗滌循環可涉及如本文所描述之流通技術。
接著例如經由輸入埠將成像混合物56引入至流動池中。當將成像混合物56引入至流動池中時,混合物56進入流動通道,且接觸存在模板股48(包括最近併入之經標記核苷酸20)之表面44。
使成像混合物56在流動池中培育,且至少一些第二聚合酶16'特異性地結合至至少一些新生股52之3'端。因為各電漿子奈米結構18'藉由第二聚合酶16'官能化,所以當所附接之第二聚合酶16'特異性結合至新生股52之3'端時,使得各電漿子奈米結構18'在染料標記26之信號增強近程內。另外,經標記核苷酸20未與成像混合物56一起引入將,且因此不發生額外經標記核苷酸20併入。
在不發生進一步併入之情況下,可經由成像事件偵測最近併入之經標記核苷酸20。在成像事件期間,照明系統(圖中未示)可將激發光提供至流動池表面44。併入之經標記核苷酸20之染料標記26回應於激發光而發射光學信號,且藉由第二聚合酶16'固定之相應電漿子奈米結構18'經由電漿子共振增強此等光學信號。
在成像進行之後,接著可將裂解混合物引入至流動池中。在此實例中,裂解混合物能夠i)自所併入之核苷酸20移除3' OH阻隔基24,ii)裂解所併入之核苷酸20的染料標記26,及iii)移除第二聚合酶16'及附接至其上之電漿子奈米粒子18'。
在此實例中,可使用本文所描述之用於裂解3' OH阻隔基24之解封端劑/組分中的任一者。在此實例中,亦可使用本文中所描述之用於裂解染料標記26之裂解劑/組分中的任一者。
可在各種流體遞送步驟之間進行洗滌。定序循環可隨後重複n次以將定序引子50延伸n個核苷酸,由此偵測長度n之序列。在一些實例中,可使用成對末端定序,其中對正向股進行定序並將其移除,且接著構築反向股並對其進行定序。
在圖7B中所示之實例套組54'中,併入混合物10E包括聚合酶16'',及經標記核苷酸20,如參考圖1所描述。
在此實例中,聚合酶16''用於併入經標記核苷酸20以及用於結合被引入成像混合物56'中的電漿子奈米粒子18''。因此,聚合酶16''係本文所揭示用於核苷酸併入之實例中之任一者,且亦藉由結合對之一個成員58A官能化。由於期望聚合酶16''在併入之後保持在適當位置,聚合酶16''亦可經官能化以繫栓至模板股48(例如經由DNA結合域)或至流動池表面44(例如經由表面繫鏈42)。本文所描述之表面繫鏈42之任何實例可用於錨定聚合酶16''。應理解,併入混合物10E包括複數種聚合酶16''。
電漿子奈米結構18''最終連接至用於併入之聚合酶16'',且因此聚合酶16''至少部分地界定(併入之核苷酸20之)染料標記26與電漿子奈米結構18''之間的空間。因此,可選擇聚合酶16''之大小以產生信號增強近程。在一個實例中,聚合酶16''之大小在約3 nm至約9 nm範圍內。在另一實例中,聚合酶16''之大小在約4 nm至約7 nm範圍內。在另一實例中,聚合酶16'之大小為約5 nm。
在圖7B中所示之實例套組54'中,成像混合物56'亦包括藉由結合對的另一成員58B官能化的電漿子奈米結構18''。電漿子奈米粒子18''上之成員58B能夠結合至聚合酶16''上之成員58A。作為結合對,成員58B(在電漿子奈米粒子18''上)及成員58A(在聚合酶16''上)分別包括NiNTA(鎳-氮基三乙酸)配位體及組胺酸標籤,或鏈黴抗生物素蛋白或抗生物素蛋白及生物素,或諜標籤及諜捕手,或順丁烯二醯亞胺及半胱胺酸,或疊氮及二苯并環辛炔(DBCO)。
以下描述係關於一種涉及套組54'之實例方法。此方法亦利用參考圖8A、圖8B及圖8C所展示及詳細描述的流動池之實例。如參考圖3所描述,在此方法開始時,模板股48已經形成。
可引入定序引子50,以與模板股48之序列之互補部分雜交。此定序引子50使模板股48準備好使用併入混合物10E及成像混合物56'定序。
在此實例方法中,併入混合物10E係例如經由輸入埠引入至流動池中。當併入混合物10E被引入至流動池中時,混合物10E進入流動通道,且接觸存在模板股48之表面44。
使併入混合物10E在流動池中培育,且經標記核苷酸20藉由相應聚合酶16''併入。類似於圖6中所展示之實例,在併入期間,經標記核苷酸20中之一者藉由相應聚合酶16''併入至一個新生股52中,該新生股延伸一個定序引子50且與模板股48中之一者互補。此併入以模板股依賴性方式進行,且因此對添加至新生股52中之經標記核苷酸20之順序及類型的偵測可用於判定模板股48之序列。在單個定序循環期間在整個流動池表面44上之至少一些模板股48中發生併入。
併入之經標記核苷酸20包括歸因於3' OH阻隔基24之存在的可逆終止特性,一旦已添加經標記核苷酸20,其終止進一步定序引子延伸。
在培育及併入所需時間之後,併入混合物10E,包括未併入之經標記核苷酸20,可在洗滌循環期間自流動池移除。併入混合物10E在引入成像混合物56'之前移除。至少一些進行併入之聚合酶16''在洗滌循環之後保留在模板股48與最近併入之經標記核苷酸20之間的接合點46處之適當位置。在一個實例中,在洗滌循環之後約20%至約90%之聚合酶16''保留於流動池中。如本文所提及,為了增加在洗滌循環期間及之後保留的聚合酶16''之百分比,聚合酶16''可繫栓至模板股48(例如經由DNA結合域)或至流動池表面44(例如經由表面繫鏈42)。
接著例如經由輸入埠將成像混合物56'引入至流動池中。當將成像混合物56'引入至流動池中時,混合物56'進入流動通道,且接觸存在模板股48(包括最近併入之經標記核苷酸20)之表面44。
使成像混合物56'在流動池中培育,且電漿子奈米結構18''之至少一些成員58B結合至聚合酶16''之成員58A,該等聚合酶保留在模板股48與最近併入之經標記核苷酸20之間的接合點46處。因此,當電漿子奈米結構18''之成員58B特異性地結合至聚合酶16''上之成員58A時,使該電漿子奈米結構在染料標記26之信號增強近程內。
在不發生進一步併入之情況下,可經由成像事件偵測最近併入之經標記核苷酸20。在成像事件期間,照明系統(圖中未示)可將激發光提供至流動池表面44。併入之經標記核苷酸20之染料標記26回應於激發光而發射光學信號,且藉由聚合酶16''固定之相應電漿子奈米結構18''經由電漿子共振增強此等光學信號。
在成像進行之後,接著可將裂解混合物引入至流動池中。在此實例中,裂解混合物能夠i)自所併入之核苷酸20移除3' OH阻隔基24,ii)裂解所併入之核苷酸20的染料標記26,及iii)移除聚合酶16''及附接至其上之電漿子奈米粒子18''。
在此實例中,可使用本文所描述之用於裂解3' OH阻隔基24之解封端劑/組分中的任一者。在此實例中,亦可使用本文中所描述之用於裂解染料標記26之裂解劑/組分中的任一者。當聚合酶16''連接至模板股48(例如經由DNA結合域)或至流動池表面44(例如經由表面繫鏈42)時,可將額外聚合酶移除劑添加至如本文所描述之裂解混合物中。聚合酶移除劑將視形成於聚合酶16''與模板股48之間或聚合酶16''與流動池表面44之間的鍵聯而定。在一個實例中,生物素-鏈黴抗生物素蛋白結合對使表面繫鏈42(及聚合酶16'')連接至流動池表面44。在此實例中,聚合酶移除劑可為十二烷基硫酸鈉(SDS)、尿素與生物素之組合或約10體積%至約50體積%之甲醯胺試劑(包括甲醯胺及視情況存在之緩衝液)及占剩餘百分比之鹽緩衝液(包括氯化鈉、檸檬酸鈉及生物相容性界面活性劑)的組合。
可在各種流體遞送步驟之間進行洗滌。定序循環可隨後重複n次以將定序引子50延伸n個核苷酸,由此偵測長度n之序列。在一些實例中,可使用成對末端定序,其中對正向股進行定序並將其移除,且接著構築反向股並對其進行定序。
在圖7C中所示之實例套組54''中,併入混合物10F包括如圖5A中所述之聚合酶16及經標記核苷酸20''之另一實例。
在併入混合物10F之此實例中,聚合酶16可為本文所揭示用於併入之任一實例,且對於繫栓至模板股48(例如經由DNA結合域)或流動池表面44(例如經由表面繫鏈42)可不經官能化。聚合酶16用於在如參考圖6所描述之併入事件期間併入經標記核苷酸20''。應理解,併入混合物10F包括複數種聚合酶16。
經標記核苷酸20''包括附接至核苷酸22之糖的核苷酸22、3' OH阻隔基24、附接至核苷酸22之鹼基的染料標記26。經標記核苷酸20''亦經生物素標記,且因此包括生物素標記60。生物素標記60可經由適合的連接分子添加至經標記核苷酸20''的鹼基中,該等連接分子係諸如:式-((CH 22O) n-之間隔基,其中n為2與50之間的整數;PEG連接子;或圖4中所示的連接分子38A、38B、38C中之任一者。生物素標記60可替代地僅併入超過染料標記26(亦即附接至染料標記26)。
電漿子奈米結構18'''最終連接至經標記核苷酸20''之生物素標記60,且因此可選擇附接生物素標記60的連接分子之長度,使得結合電漿子奈米結構18'''在經標記核苷酸20''之染料標記26的信號增強近程內。在一個實例中,生物素標記連接分子之長度在染料標記連接分子38之長度的約3 nm至約12 nm內。在另一實例中,生物素標記連接分子具有第一長度,染料標記連接分子38具有第二長度,且第一長度與第二長度同在約3 nm至約12 nm範圍內。
亦在圖7C中所示之實例套組54''中,成像混合物56''包括藉由鏈黴抗生物素蛋白62官能化之電漿子奈米結構18'''。電漿子奈米結構18'''上之鏈黴抗生物素蛋白62及經標記核苷酸20''上之生物素標記60形成結合對。
以下描述係關於一種涉及套組54''之實例方法。此方法亦利用參考圖8A、圖8B及圖8C所展示及詳細描述的流動池之實例。如參考圖3所描述,在此方法開始時,模板股48已經形成。
可引入定序引子50,以與模板股48之序列之互補部分雜交。此定序引子50使模板股48準備好使用併入混合物10F及成像混合物56''定序。
在此實例方法中,併入混合物10F例如經由輸入埠引入至流動池中。當併入混合物10F被引入至流動池中時,混合物10F進入流動通道,且接觸存在模板股48(其中定序引子50與其雜交)之表面44。
使併入混合物10F在流動池中培育,且經標記核苷酸20''由相應聚合酶16併入。類似於圖6中所展示之實例,在併入期間,經標記核苷酸20''中之一者藉由相應聚合酶16併入至一個新生股52中,該新生股延伸一個定序引子50且與模板股48中之一者互補。此併入以模板股依賴性方式進行,且因此對添加至新生股52中之經標記核苷酸20''之順序及類型的偵測可用於判定模板股48之序列。在單個定序循環期間在整個流動池表面44上之至少一些模板股48中發生併入。
併入之經標記核苷酸20''包括歸因於3' OH阻隔基24之存在的可逆終止特性,一旦已添加經標記核苷酸20'',其終止進一步定序引子延伸。
在培育及併入所需時間之後,併入混合物10F,包括未併入之經標記核苷酸20'',可在洗滌循環期間自流動池移除。併入混合物10F在引入成像混合物56''之前移除。在此實例中,期望在洗滌循環期間移除大多數(若非全部)的來自併入混合物10F之聚合酶16。可進行多次洗滌循環以增加移除之聚合酶16之百分比。洗滌循環可涉及如本文所描述之流通技術。
接著例如經由輸入埠將成像混合物56''引入至流動池中。當將成像混合物56''引入至流動池中時,混合物56''進入流動通道,且接觸存在模板股48(包括最近併入之經標記核苷酸20'')之流動池表面44。
使成像混合物56''在流動池中培育,且至少一些電漿子奈米粒子18'''經由其表面處之鏈黴抗生物素蛋白62特異性結合至至少一些併入之核苷酸20''的生物素標記60。因為生物素標記60為與電漿子奈米粒子18'''連接之經標記核苷酸20''的一部分,所以使得電漿子奈米結構18'在該等經標記核苷酸20''之染料標記26的信號增強近程內。
在不發生進一步併入之情況下,可經由成像事件偵測到最近併入之經標記核苷酸20''。在成像事件期間,照明系統(圖中未示)可將激發光提供至流動池表面44。併入的經標記核苷酸20''之染料標記26響應於激發光而發射光信號,及藉由鏈黴抗生物素蛋白62與生物素標記60之間的相互作用固定之相應電漿子奈米結構18'''經由電漿子共振增強此等光學信號。
在成像進行之後,接著可將裂解混合物引入至流動池中。在此實例中,裂解混合物能夠i)自所併入之核苷酸20''移除3' OH阻隔基24,ii)裂解所併入之核苷酸20''的染料標記26,及iii)裂解所併入之核苷酸20''的生物素標記60。
在此實例中,可使用本文所描述之用於裂解3' OH阻隔基24之解封端劑/組分中的任一者。在此實例中,亦可使用本文中所描述之用於裂解染料標記26之裂解劑/組分中的任一者。當生物素標記連接分子與染料標記連接分子38相同時,裂解混合物可包括單一裂解劑/組分,其可裂解生物素標記60及染料標記26兩者。當生物素標記連接分子不同於染料標記連接分子38時,裂解混合物可包括可使相應連接分子裂解之不同裂解劑/組分。
可在各種流體遞送步驟之間進行洗滌。定序循環可隨後重複n次以將定序引子50延伸n個核苷酸,由此偵測長度n之序列。在一些實例中,可使用成對末端定序,其中對正向股進行定序並將其移除,且接著構築反向股並對其進行定序。
流動池
現將參考圖8A、圖8B及圖8C描述可用於本文中所揭示之實例中的流動池之實例。
在圖8A中展示流動池64之實例的俯視圖。如將參考圖8B及圖8C所論述,流動池64之一些實例包括可發生定序之兩個相對流動池表面44。圖8B展示非圖案化定序表面44A、44A'之實例,圖8C展示圖案化定序表面44B、44B'之實例。每一定序表面44A、44A'或44B、44B'如可藉由基板(通常在圖8A中展示為66)支撐;及流動通道(在圖8A中通常展示為68)經定義於定序表面44A、44A'或44B、44B'之間。在其他實例中,流動池64包括藉由基板66支撐之一個定序表面44A或44B及附接至基板66之蓋板。在此等實例中,流動通道68係界定於定序表面44A或44B與蓋板之間。
在實例中之任一者中,基板66可為單層/材料。單層基板之實例展示於圖8B中之參考編號66A及66A'處。適合的單層基板66A、66A'之實例包括環氧基矽氧烷、玻璃、經改質或官能化玻璃、塑膠(包括丙烯酸樹脂、聚苯乙烯及苯乙烯與其他材料之共聚物、聚丙烯、聚乙烯、聚丁烯、聚胺基甲酸酯、聚四氟乙烯(諸如來自Chemours之TEFLON®)、環烯烴/環烯烴聚合物(COP)(諸如來自Zeon之ZEONOR®)、聚醯亞胺等)、耐綸(聚醯胺)、陶瓷/陶瓷氧化物、二氧化矽、熔融二氧化矽或基於二氧化矽之材料、矽酸鋁、矽及改質矽(例如硼摻雜之p+矽)、氮化矽(Si 3N 4)、氧化矽(SiO 2)、五氧化二鉭(Ta 2O 5)或其他氧化鉭(TaO x)、氧化鉿(HfO 2)、碳、金屬、無機玻璃或其類似物。
基板66亦可為多層結構。多層基板之實例展示於圖8C中之參考編號66B及66B處。多層結構66B、66B'之一些實例包括玻璃或矽,具有五氧化二鉭或另一用於光學成像之對光透明之氧化物的塗層。特定參考圖8C,多層結構66B、66B'之其他實例包括上面具有圖案化樹脂72、72'的底層支撐件70、70'。多層基板66B、66B'之另外其他實例可包括絕緣層上矽(SOI)基板。
在一實例中,基板66(不論單層或多層)可為圓形且具有約2 mm至約300 mm範圍內之直徑,或可為最大尺寸至多10呎(約3公尺)之矩形薄片或板件。在一實例中,基板26為直徑在約200 mm至約300 mm範圍內之晶圓。在另一實例中,基板66為寬度在約0.1 mm至約10 mm範圍內之晶粒。雖然已提供實例尺寸,但應理解,可使用具有任何合適尺寸之基板66。另舉例而言,可使用呈矩形支撐物之板件,其具有比300 mm圓形晶圓更大的表面積。
在圖8A中所展示之實例中,流動池64包括流動通道68。雖然展示若干流動通道68,但應理解,任何數目個通道68可包括於流動池64中(例如,單個通道68、四個通道68等)。在本文中所揭示之一些實例中,每一流動通道68係界定於兩個定序表面(例如,44A及44A'或44B及44B')之間且由兩個附接基板(例如,66A及66A'或66B及66B')界定之區域。在本文中所揭示之其他實例中,各流動通道68為界定於一個定序表面(例如,44A或44B)與蓋板之間的區域。可將併入混合物10A-10F、成像混合物56、56'、56''及本文中所描述之其他流體引入至流動通道68中及自該(等)流動通道移除。在流動池64中,各流動通道68可與每一其他流動通道68分隔開,使得引入至任何特定流動通道68中之流體不流入任何相鄰流動通道68中。
流動通道68之一部分可使用部分取決於基板66之材料的任何合適技術界定於基板66中。在一個實例中,將流動通道68之一部分蝕刻至玻璃基板中,諸如基板66A、66A'。在另一實例中,可使用光微影、奈米壓印微影等將流動通道68之一部分圖案化成多層基板66B、66B'之樹脂72、72'。分隔材料(例如,圖8B及圖8C中之材料74)可應用於基板66,使得分隔材料界定流動通道68之壁的至少一部分。
在一實例中,流動通道68具有實質上矩形組態,帶有兩個圓形末端。流動通道68之長度及寬度可分別小於基板66之長度及寬度,使得基板表面包圍流動通道68之部分可用於附接至另一基板66或蓋板。在一些情況下,各流動通道68之寬度可為至少約1 mm、至少約2.5 mm、至少約5 mm、至少約7 mm、至少約10 mm或更長。在一些例子中,每一流動通道68之長度可為至少約10 mm、至少約25 mm、至少約50 mm、至少約100 mm或更長。各流動通道68之寬度及/或長度可大於、小於上文指定之值或介於上文指定之值之間。在另一實例中,流動通道68為正方形(例如10 mm×10 mm)。
舉例而言,當使用微接觸、氣溶膠或噴墨印刷來沈積界定流動通道壁之分隔材料74時,各流動通道68之深度可小至數個單層厚。在其他實例中,流動通道68之深度可為約1 μm、約10 μm、約50 μm、約100 μm或更深。在一實例中,深度可在約10 μm至約100 μm範圍內。在另一實例中,深度為約5 μm或更淺。應理解,每一流動通道68之深度大於、小於上文所指定之值,或介於該等值之間。例如,當使用圖案化定序表面44B、44B'時,流動通道68之深度亦可沿流動池64之長度及寬度變化。
圖8B說明包括非圖案化相對定序表面44A、44A'之流動池64的橫截面視圖。在一實例中,此等表面44A、44A'中之每一者可在基板66A、66A'上製備,且隨後基板44A、44A'可彼此附接以形成流動池64之實例。任何合適的結合材料74,諸如黏著劑、有助於結合之輻射吸收材料等,可用於將基板66A、66A'結合在一起。
在圖8B中所展示之實例中,在單層基板66A、66A'中之每一者中界定流動通道68之一部分。舉例而言,每一基板66A、66A'可具有界定於其中之凹入區76A、76A',定序表面44A、44A'之組分可被引入該凹入區。應理解,凹入區76A、76A'內不由定序表面44A、44A'之組分佔據的任何空間可被視為流動通道68之一部分。
定序表面44A、44A'包括聚合水凝膠78A、78A'及附接至聚合水凝膠78A、78A''的擴增引子80A、82A或80A'、82A'。雖然圖中未示,但定序表面44A、44A'之一些實例亦可包括可附接至表面繫鏈42之結合劑(例如鏈黴抗生物素蛋白、抗生物素蛋白、生物素等)。此結合劑可存在於凹入區76A、76A'中。
聚合水凝膠78A、78A'之實例包括丙烯醯胺共聚物,諸如聚(N-(5-疊氮基乙醯胺基戊基)丙烯醯胺-共-丙烯醯胺PAZAM。PAZAM及一些其他形式之丙烯醯胺共聚物由以下結構(I)表示:
Figure 02_image019
其中: R A選自由以下組成之群:疊氮基、視情況經取代之胺基、視情況經取代之烯基、視情況經取代之炔、鹵素、視情況經取代之腙、視情況經取代之肼、羧基、羥基、視情況經取代之四唑、視情況經取代之四
Figure 110142198-001
、氧化腈、硝酮、硫酸酯及硫醇; R B為H或視情況經取代之烷基; R C、R D及R E各自獨立地選自由H及視情況經取代之烷基組成之群; -(CH 2p-中之每一者可視情況經取代; p為1至50範圍內之整數; n為1至50,000範圍內之整數;及 m為1至100,000範圍內之整數。
所屬技術領域中具有通常知識者將認識到,在式(I)中重複「n」及「m」個特徵之配置係代表性的,且單體子單元可以任何次序存在於聚合物結構中(例如無規、嵌段、圖案化或其組合)。
PAZAM及其他形式之丙烯醯胺共聚物的分子量可在約5 kDa至約1500 kDa或約10 kDa至約1000 kDa範圍內,或在特定實例中可為約312 kDa。
在一些實例中,PAZAM及其他形式之丙烯醯胺共聚物為線性聚合物。在一些其他實例中,PAZAM及其他形式之丙烯醯胺共聚物為輕度交聯之聚合物。
在其他實例中,聚合水凝膠78A、78A'可為結構(I)之變體。在一個實例中,丙烯醯胺單元可經N,N-二甲基丙烯醯胺(
Figure 02_image021
)置換。在此實例中,結構(I)中之丙烯醯胺單元可經
Figure 02_image023
置換,其中R D、R E及R F各自為H或C1-C6烷基,且R G及R H各自為C1-C6烷基(而非如同丙烯醯胺之情況一樣為H)。在此實例中,q可為1至100,000範圍內之整數。在另一實例中,除丙烯醯胺單元之外,可使用N,N-二甲基丙烯醯胺。在此實例中,除重複的「n」及「m」個特徵以外,結構(I)可包括
Figure 02_image025
,其中R D、R E及R F各自為H或C1-C6烷基,且R G及R H各自為C1-C6烷基。在此實例中,q可為1至100,000範圍內之整數。
作為聚合水凝膠78A、78A'之另一實例,結構(I)中之重複「n」特徵可經包括具有結構(II)之雜環疊氮基之單體置換:
Figure 02_image027
其中R 1為H或C1-C6烷基;R 2為H或C1-C6烷基;L為包括直鏈之連接子,該直鏈具有2至20個選自由碳、氧及氮組成之群的原子及10個在鏈中之碳及任何氮原子上視情況存在之取代基;E為直鏈,其包括1至4個選自由碳、氧及氮組成之群的原子及鏈中之碳及任何氮原子上視情況存在之取代基;A為經N取代之醯胺,其中H或C1-C4烷基附接於N;且Z為含氮雜環。Z之實例包括以單一環狀結構或稠合結構存在之5至10個環成員。Z之一些特定實例包括吡咯啶基、吡啶基或嘧啶基。
作為另一實例,聚合水凝膠78A、78A'可包括結構(III)及(IV)中之每一者的重複單元:
Figure 02_image029
Figure 02_image031
其中R 1a、R 2a、R 1b及R 2b中之各者獨立地選自氫、視情況經取代之烷基或視情況經取代之苯基;R 3a及R 3b中之各者獨立地選自氫、視情況經取代之烷基、視情況經取代之苯基或視情況經取代之C7-C14芳烷基;且各L 1及L 2獨立地選自視情況經取代之伸烷基連接子或視情況經取代之伸雜烷基連接子。
應理解,其他單體可用於形成聚合水凝膠78A、78A',只要其經官能化以將擴增引子80A、82A或80A'、82A'接枝於其中即可。適合的聚合物層之其他實例包括具有以下之聚合物層:膠態結構,諸如瓊脂糖;或聚合物網狀結構,諸如明膠;或交聯聚合物結構,諸如聚丙烯醯胺聚合物及共聚物、無矽烷丙烯醯胺(silane free acrylamide,SFA)或SFA之疊氮化形式。合適聚丙烯醯胺聚合物之實例可由丙烯醯胺及丙烯酸或含有乙烯基之丙烯酸合成,或由形成[2+2]光致環加成反應之單體合成。適合的聚合水凝膠78A、78A'之另外其他實例包括丙烯醯胺與丙烯酸酯之混合共聚物。本文中所揭示之實例中可使用多種含有丙烯酸單體(例如,丙烯醯胺、丙烯酸酯等)之聚合物架構,諸如分支鏈聚合物,包括星形聚合物、星形或星形嵌段共聚物、樹枝狀聚合物及其類似者。舉例而言,單體(例如丙烯醯胺等)可以無規或嵌段形式併入至星形聚合物之支鏈(臂)中。
為將聚合水凝膠78A、78A'引入至凹入區76A、76A'中,可產生聚合水凝膠78A、78A'之混合物且隨後將其施加至相應基板66A、66A'(其中界定有凹入區76A、76A')。在一個實例中,聚合水凝膠78A、78A'可存在於混合物(例如混有水或混有乙醇及水)中。可隨後使用旋塗、或浸漬或浸塗、或在正壓或負壓下流動材料或另一適合技術將混合物施加至相應基板表面(包括在凹入區76A、76A'中)。此等類型之技術將聚水凝膠78A、78A'大面積沈積於基板相應基板66A、66A'上(例如凹入區76A、76A'中及與其相鄰之間隙區84A、84A'上)。其他選擇性沈積技術(例如涉及遮罩、受控印刷技術等)可用於將聚合水凝膠78A、78A'專門沈積於凹入區76A、76A'中且不在間隙區84A、84A'上。
在一些實例中,可活化基板表面(包括凹入區76A、76A'),且隨後可將混合物(包括聚合水凝膠78A、78A')施加至其上。在一個實例中,矽烷或矽烷衍生物(例如降莰烯矽烷)可使用氣相沈積、旋塗或其他沈積方法沈積於基板表面上。在另一實例中,基板表面可暴露於電漿灰化以產生可黏附於聚合水凝膠78A、78A'之(一或多種)表面活化劑(例如,-OH基團)。
視聚合水凝膠78A、78A'而定,所施加之混合物可暴露於固化製程。在一實例中,固化可在室溫(例如約25℃)至約95℃範圍內之溫度下進行約1毫秒至約若干天範圍內之時間。
接著可進行拋光以便自凹入區76A、76A'之周邊處的間隙區84A、84A'移除聚合水凝膠78A、78A',同時使凹入區76A、76A'中之表面上的聚合水凝膠78A、78A'至少實質上完整。
定序表面44A、44A'亦包括附接至聚合水凝膠78A、78A'之擴增引子80A、82A或80A'、82A'。
可進行接枝製程以將擴增引子80A、82A或80A'、82A'接枝至凹入區76A、76A'中之聚合水凝膠78A、78A'。在一實例中,可藉由在擴增引子80A、82A或80A'、82A'之5'端處或附近的單點共價附接將引子80A、82A或80A'、82A'固定至聚合水凝膠78A、78A'上。此附接使得i)引子80A、82A或80A'、82A'之轉接子特異性部分不結合至其同源定序就緒核酸片段及ii)不含引子延伸之3'羥基。出於此目的,可使用任何適合的共價附接。可使用之封端之引子的實例包括炔烴封端之引子(例如,其可附接至聚合水凝膠78A、78A'之疊氮表面部分),或疊氮封端之引子(例如,其可附接至聚合水凝膠78A、78A'之炔烴表面部分)。
適合的引子80A、82A或80A'、82A'之特定實例包括由Illumina公司針對定序在HISEQ™、HISEQX™、MISEQ™、MISEQDX™、MINISEQ™、NEXTSEQ™、NEXTSEQDX™、NOVASEQ™、GENOME ANALYZER™、ISEQ™及其他儀器平台上出售的商業流動池之表面上使用的P5及P7引子。P5及P7引子均可被接枝至聚合水凝膠78A、78A'中之每一者。
在一實例中,接枝可涉及流通沈積(例如使用暫時結合之蓋板)、浸塗、噴塗、覆液施配,或藉由將引子80A、82A或80A'、82A'附接至聚合水凝膠78A、78A'之另一適合方法。此等實例技術中之每一者可利用引子溶液或混合物,其可包括引子80A、82A或80A'、82A'、水、緩衝液及催化劑。在接枝方法中之任一者之情況下,引子42、42'與凹入區76A、76A'中之聚合水凝膠78A、78A'之反應基反應且對於周圍基板66A、66A'不具有親和力。因此,引子80A、82A或80A'、82A'選擇性地接枝至聚合水凝膠78A、78A'。
圖8C說明包括圖案化相對定序表面44B、44B'之流動池64之橫截面視圖。在一實例中,可在基板66B、66B'上製備此等表面44B、44B'中之每一者,且接著基板66B、66B'可彼此附接(例如,經由材料74),形成流動池64之實例。
在圖8C中所展示之實例中,流動池64包括多層基板66B、66B',其中之每一者包括支撐件70、70'及定位於支撐件70、70'上之圖案化材料72、72'。圖案化材料72、72'界定由間隙區84B、84B'分隔開之凹陷88、88'。
在圖8C中所展示之實例中,圖案化材料72、72'分別定位於支撐件70、70'上。應理解,可經選擇性地沈積或經沈積及經圖案化以形成凹陷88、88'及間隙區84B、84B'之任何材料可用於圖案化材料72、72'。
作為一個實例,無機氧化物可經由氣相沈積、氣溶膠印刷或噴墨印刷選擇性地施加至支撐件70、70'。合適無機氧化物之實例包括氧化鉭(例如,Ta 2O 5)、氧化鋁(例如,Al 2O 3)、氧化矽(例如,SiO 2)、氧化鉿(例如,HfO 2)等。
作為另一實例,樹脂可被施加至支撐件70、70'且隨後經圖案化。合適之沈積技術包括化學氣相沈積、浸塗(dip coating)、浸塗(dunk coating)、旋塗、噴塗、覆液分配、超音波噴塗、刮刀塗佈、氣溶膠印刷、網板印刷、微接觸印刷等。合適之圖案化技術包括光微影、奈米壓印微影(nanoimprint lithography,NIL)、衝壓技術、壓印技術、模製技術、微蝕刻技術、印刷技術等。適合之樹脂之一些實例包括多面體寡聚倍半矽氧烷樹脂、非多面體寡聚倍半矽氧烷環氧樹脂、聚(乙二醇)樹脂、聚醚樹脂(例如開環環氧樹脂)、丙烯酸類樹脂、丙烯酸酯樹脂、甲基丙烯酸酯樹脂、非晶形含氟聚合物樹脂(例如來自Bellex之CYTOP®)及其組合。
如本文所用,術語「多面體寡聚倍半矽氧烷(polyhedral oligomeric silsesquioxane)」(可以商標「POSS」自Hybrid Plastics商購)係指作為在二氧化矽(SiO 2)與聚矽氧(R 2SiO)化學組成物之間的雜交中間物(例如RSiO 1.5)的化學組成物。多面體寡聚矽倍半氧烷之實例可為Kehagias等人, Microelectronic Engineering 86(2009),第776-778頁中所述之多面體寡聚矽倍半氧烷,該參考文獻以全文引用之方式併入。在一實例中,組成物為具有化學式[RSiO 3/2] n之有機矽化合物,其中R基可相同或不同。POSS之實例R基包括環氧基、疊氮/疊氮基、硫醇、聚(乙二醇)、降莰烯、四
Figure 110142198-001
、丙烯酸酯及/或甲基丙烯酸酯,或另外例如烷基、芳基、烷氧基及/或鹵烷基。本文所揭示之樹脂組成物可包含一或多種不同籠或核結構作為單體單元。可在合成期間調整平均籠含量,及/或由純化方法控制,且在本文所揭示之實例中可使用(一或多個)單體單元之籠大小之分佈。
如圖8C中所示,圖案化材料72、72'包括分別界定於其中之凹陷88、88'及分隔開相鄰凹陷88、88'之間隙區84B、84B'。可設想凹陷88、88'之多種不同佈局,其包括有規則、重複及非規則圖案。在一實例中,為緊密堆積及改良密度,將凹陷88、88'安置於六邊形柵格中。其他佈局可包括例如直線(矩形)佈局、三角佈局等。在一些實例中,佈局或圖案可為成列及成行的x-y格式之凹陷88、88'。在一些其他實例中,佈局或圖案可為凹陷88、88'及/或間隙區84B、84B'之重複配置。在另外其他實例中,佈局或圖案可為凹陷88、88'及/或間隙區84B、84B'之隨機配置。圖案可包括條紋、漩渦、線、三角形、矩形、圓形、弧線、對角線、箭頭及/或正方形。
凹陷88、88'之佈局或圖案可以關於界定區域中凹陷88、88'之密度(例如,凹陷88、88'之數目)為特徵。舉例而言,凹陷88、88'可以大致2百萬個/平方毫米之密度存在。密度可經調整達不同密度,包括例如以下密度約100個/平方毫米、約1,000個/平方毫米、約10萬個/平方毫米、約1百萬個/平方毫米、約2百萬個/平方毫米、約5百萬個/平方毫米、約1千萬個/平方毫米、約5千萬個/平方毫米或更大或更小。應進一步理解,圖案化材料72、72'中之凹陷88、88'之密度可在選自以上範圍之下限值中之一者與上限值中之一者之間。作為實例,高密度陣列可特性化為使凹陷88、88'隔開小於約100 nm,中等密度陣列可特性化為使凹陷88、88'隔開約400 nm至約1 μm,且低密度陣列可特性化為使凹陷88、88'隔開大於約1 μm。儘管已提供實例密度,但應瞭解可使用任何適合之密度。凹陷88、88'之密度可部分取決於凹陷88、88'之深度。在一些情況下,可能需要凹陷88、88'之間的間距甚至大於本文中所列出之實例。
凹陷88、88'之佈局或圖案亦可或替代地以平均節距或自凹陷88、88'之中心至相鄰凹陷88、88'之中心的間距(中心距)或自一個凹陷88、88'之左邊緣至相鄰凹陷88、88'之右邊緣的間距(邊緣間間距)之方面為特徵。圖案可為有規則的,以使得關於平均節距之變化係數較小,或圖案可為不規則的,在此情況下,變化係數可能相對較大。在任一情況下,平均節距可為例如約50 nm、約0.1 μm、約0.5 μm、約1 μm、約5 μm、約10 μm、約100 μm或更長或更短。凹陷88、88'特定圖案之平均節距可介於選自以上範圍的下限值中之一者與上限值中之一者之間。在一實例中,凹陷88、88'之節距(中心距)為約1.5 μm。雖然已提供實例平均節距值,但應理解可使用其他平均節距值。
各凹陷88、88'之大小可藉由其容積、開口面積、深度及/或直徑表徵。
每一凹陷88、88'可具有能夠限制引入至流動池64中之至少一些流體的任何容積。最小或最大容積可經選擇,例如以適應流動池64之下游使用所預期的通量(例如多路傳輸量(multiplexity))、解析度、核苷酸或分析物反應性。舉例而言,容積可為至少約1×10 -3μm 3、至少約1×10 -2μm 3、至少約0.1 μm 3、至少約1 μm 3、至少約10 μm 3、至少約100 μm 3或更多。替代地或另外,容積可為至多約1×10 4μm 3、至多約1×10 3μm 3、至多約100 μm 3、至多約10 μm 3、至多約1 μm 3、至多約0.1 μm 3或更小。
可基於如上文關於容積所闡述之類似準則選擇每一凹陷開口所佔據之面積。舉例而言,各凹陷開口之面積可為至少約1×10 -3μm 2、至少約1×10 -2μm 2、至少約0.1 μm 2、至少約1 μm 2、至少約10 μm 2、至少約100 μm 2或更多。替代地或另外,該區域可為至多約1×10 3μm 2、至多約100 μm 2、至多約10 μm 2、至多約1 μm 2、至多約0.1 μm 2、至多約1×10 -2μm 2或更小。由各凹陷開口所佔據之面積可大於、小於上文指定之值或在該等值之間。
各凹陷88、88'的深度可足夠大以容納一些聚合水凝膠78B、78B'。在一實例中,深度可為至少約0.1 μm、至少約0.5 μm、至少約1 μm、至少約10 μm、至少約100 μm或更大。替代地或另外,深度可為至多約1×10 3μm、至多約100 μm、至多約10 μm或更小。在一些實例中,深度為約0.4 μm。各凹陷88、88'之深度可大於、小於或介於上文指定之值之間。
在一些情況下,各凹陷88、88'之直徑或長度及寬度可為至少約50 nm、至少約0.1 μm、至少約0.5 μm、至少約1 μm、至少約10 μm、至少約100 μm或更長。替代地或另外,直徑或長度及寬度可為至多約1×10 3μm、至多約100 μm、至多約10 μm、至多約1 μm、至多約0.5 μm、至多約0.1 μm或更短(例如約50 nm)。在一些實例中,直徑或長度及寬度為約0.4 μm。各凹陷88、88'之直徑或長度及寬度可大於、小於或介於上文指定之值之間。
在此實例中,定序表面44B、44B'之至少一些組分可被引入至凹陷88、88'中。應理解,凹陷88、88'內的未由定序表面44B、44B'之組分佔據的任何空間可被視為流動通道68之一部分。
在圖8C中所展示之實例中,將聚合水凝膠78B、78B'安置於凹陷88、88'中之每一者內。聚合水凝膠78B、78B'可為本文針對聚合水凝膠78A、78A'所闡述的實例中之任一者,且可如參考圖8B所描述進行施加(例如沈積隨後拋光),使得聚合水凝膠78B、78B'存在於凹陷88、88'中,且不存在於周圍間隙區84B、84B'上。
在圖8C中所展示之實例中,引子80B、82B或80B'、82B'可為本文針對引子80A、82A或80A'、82A'所闡述之實例中之任一者,且可接枝至凹陷88、88'中之每一者內的聚合水凝膠78B、78B'。引子80B、82B或80B'、82B'可如參考圖8B所描述進行施加,且因此將被接枝至聚合水凝膠78B、78B'且不接枝至周圍間隙區84B、84B'。
雖然圖中未示,但定序表面44B、44B'之一些實例亦可包括可附接表面繫鏈42之結合劑(例如鏈黴抗生物素蛋白、抗生物素蛋白、生物素等)。此結合劑可存在於凹陷88、88'中。
如圖8B及圖8C中所示,基板66A及66A'或66B及66B'彼此附接,使得定序表面44A及44A'或44B及44B'面向彼此,其中流動通道68界定於其間。
基板66A及66A'或66B及66B'可在一些或全部間隙區84A及84A'或84B及84B'處彼此結合。在基板66A及66A'或66B及66B'之間形成的結合可為化學結合或機械結合(例如,使用緊固件等)。
可使用任何適合之技術將基板66A及66A'或66B及66B'結合在一起,該技術諸如雷射接合、擴散接合、陽極接合、共晶接合、電漿活化接合、玻璃膠接合或所屬技術領域中已知的其他方法。在一實例中,分隔層(例如材料74)可用於使基板66A及66A'或66B及66B'結合。分隔層可為將基板66A及66A'或66B及66B'之至少一些部分密封在一起的任何材料74。在一些實例中,間隔層可為有助於結合之輻射吸收材料。
儘管圖中未示,但應理解,蓋板可結合至基板66A或66B中之一者以使得流動池具有一個定序表面。
其他注意事項
應瞭解,前述概念及下文所更詳細地論述之額外概念的所有組合(限制條件為此等概念並不彼此不相容)預期為本文中所揭示之發明標的之部分。詳言之,涵蓋出現在本發明結尾處的所主張主題的所有組合作為本文所揭示之本發明主題的一部分。亦應瞭解,本文中明確採用的亦可出現在以引用方式併入之任何揭示內容中之術語應符合與本文中所揭示之特定概念大部分一致的含義。
本說明書通篇提及「一個實例(one example)」、「另一實例(another example)」、「一實例(an example)」等時意謂結合該實例描述之特定要素(例如特徵、結構及/或特性)包括於本文所述之至少一個實例中,且可或可不存在於其他實例中。另外,應理解,除非上下文另外明確規定,否則關於任何實例所描述之要素可在各種實例中以任何合適方式組合。
應理解,本文所提供之範圍包括所陳述範圍及在所陳述範圍內的任何值或子範圍,如同明確地列舉所陳述範圍內的值或子範圍一般。舉例言之,介於約2 mm至約300 mm之範圍應解釋為不僅包括約2 mm至約300 mm之明確敍述限值,並且亦包括個別值,諸如約40 mm、約250.5 mm等,及子範圍,諸如約25 mm至約175 mm等。
另外,當「約(about)」及/或「實質上(substantially)」用以描述值時,其意謂涵蓋所陳述值的較小變化(達至+/-10%)。
雖然已詳細地描述了若干實例,但應理解,所揭示實例可加以修改。因此,先前描述應視為非限制性的。
參考以下實施方式及圖式,本發明之實例之特徵將變得顯而易見,在圖式中,類似的參考數字對應於類似但或許不相同的組分。出於簡潔起見,具有先前所述功能之參考數字或特徵可以或可不結合出現該等參考數字或特徵之其他附圖來描述。
[圖1]為併入混合物之實例的示意圖;
[圖2A]為經由雜交寡核苷酸附接至聚合酶之實例電漿子奈米結構之示意圖;
[圖2B]為經由雜交之寡核苷酸及寡核苷酸繫鏈附接至聚合酶之實例電漿子奈米結構的示意圖,該寡核苷酸繫鏈足夠長以包在電漿子奈米結構周圍;
[圖3]為涉及圖1之併入混合物的併入事件之示意圖;
[圖4]包括描繪經標記核苷酸之不同實例之化學結構的示意圖;
[圖5A]為併入混合物之另一實例的示意圖;
[圖5B]為併入混合物之另一實例的示意圖;
[圖6]為涉及圖5A之併入混合物的併入事件之示意圖;
[圖7A至圖7C]為包括併入混合物之不同實例及成像混合物之不同實例的實例套組之示意圖;
[圖8A]為流動池之實例之俯視圖;
[圖8B]為沿著圖8A之8B-8B線截取的放大橫截面視圖,其描繪流動池之流動通道及非圖案化定序表面之實例;及
[圖8C]為沿著圖8A之8C-8C線截取的放大橫截面視圖,其描繪流動池之流動通道及圖案化定序表面之實例。
10A:併入混合物
12:液體載劑
14:複合物
16:聚合酶
18:電漿子奈米結構/電漿子奈米粒子
20:經標記核苷酸
22:經標記核苷酸
24:3' OH阻隔基
26:染料標記

Claims (29)

  1. 一種併入混合物,其包含: 液體載劑; 複合物,其包括: 聚合酶;及 連接至該聚合酶之電漿子奈米結構;及 經標記核苷酸,其包括: 核苷酸; 附接至該核苷酸之糖的3' OH阻隔基;及 附接至該核苷酸之鹼基的染料標記。
  2. 如請求項1之併入混合物,其中該電漿子奈米結構係選自由以下組成之群:金奈米結構、銀奈米結構、錫奈米結構、銠奈米結構、釕奈米結構、鈀奈米結構、鋨奈米結構、銥奈米結構、鉑奈米結構、鉻奈米結構、銅奈米結構、砷化鎵奈米結構、摻矽奈米結構、鋁奈米結構、鎂奈米結構、銀與金複合奈米結構及其組合。
  3. 如請求項1之併入混合物,其中該電漿子奈米結構與該聚合酶之胺或半胱胺酸化學共軛。
  4. 如請求項1之併入混合物,其中: 寡核苷酸附接至該聚合酶;及 該寡核苷酸與附接至該電漿子奈米結構之互補寡核苷酸繫鏈(tether)雜交。
  5. 如請求項1之併入混合物,其中: 寡核苷酸附接至該聚合酶;及 該寡核苷酸與寡核苷酸繫鏈之互補部分雜交,該寡核苷酸繫鏈亦包括包在該電漿子奈米結構周圍之額外部分。
  6. 如請求項1之併入混合物,其中: 該電漿子奈米結構藉由結合對之第一成員官能化;及 該聚合酶包括該結合對之第二成員或藉由其官能化。
  7. 如請求項6之併入混合物,其中該第一成員及該第二成員包括NiNTA配位體及組胺酸標籤,或鏈黴抗生物素蛋白及生物素,或諜標籤(spytag)及諜捕手(spycatcher),或順丁烯二醯亞胺及半胱胺酸,或疊氮及二苯并環辛炔。
  8. 一種方法,其包含: 將併入混合物引入至包括模板股之叢集的流動池,該併入混合物包括: 液體載劑; 複數種複合物,各複合物包括: 聚合酶;及 連接至該聚合酶之電漿子奈米結構;及 複數種經標記核苷酸,各經標記核苷酸包括: 核苷酸; 附接至該核苷酸之糖的3' OH阻隔基;及 附接至該核苷酸之鹼基的染料標記; 從而該等聚合酶中之至少一者i)將該等經標記核苷酸中之個別一者沿該等模板股中之一者併入至新生股中,且ii)將其所連接之電漿子奈米結構維持在該等經標記核苷酸中之該個別一者附近;及 在該電漿子奈米結構得到維持時對併入物進行光學成像。
  9. 一種套組,其包含: 併入混合物,其包括: 液體載劑; 聚合酶;及 經標記核苷酸,其包括: 核苷酸; 附接至該核苷酸之糖的3' OH阻隔基;及 附接至該核苷酸之鹼基的染料標記;及 成像混合物,其包括: 第二液體載劑;及 電漿子奈米結構,其經官能化以在涉及該經標記核苷酸的併入事件之後使其自身締合在該經標記核苷酸附近。
  10. 如請求項9之套組,其中該電漿子奈米結構係選自由以下組成之群:金奈米結構、銀奈米結構、錫奈米結構、銠奈米結構、釕奈米結構、鈀奈米結構、鋨奈米結構、銥奈米結構、鉑奈米結構、鉻奈米結構、銅奈米結構、砷化鎵奈米結構、摻矽奈米結構、鋁奈米結構、鎂奈米結構、銀與金複合奈米結構及其組合。
  11. 如請求項9之套組,其中該電漿子奈米結構藉由第二聚合酶官能化。
  12. 如請求項11之套組,其中該電漿子奈米結構與該第二聚合酶之胺或半胱胺酸化學共軛。
  13. 如請求項11之套組,其中: 寡核苷酸附接至該第二聚合酶;及 該寡核苷酸與附接至該電漿子奈米結構之互補寡核苷酸繫鏈雜交。
  14. 如請求項11之套組,其中: 寡核苷酸附接至該第二聚合酶;及 該寡核苷酸與互補寡核苷酸繫鏈雜交,該互補寡核苷酸繫鏈包括包在該電漿子奈米結構周圍之部分。
  15. 如請求項9之套組,其中: 該電漿子奈米結構藉由結合對之第一成員官能化;及 該聚合酶包括該結合對之第二成員或藉由其官能化。
  16. 如請求項15之套組,其中該第一成員及該第二成員包括NiNTA配位體及組胺酸標籤,或鏈黴抗生物素蛋白及生物素,或諜標籤及諜捕手,或順丁烯二醯亞胺及半胱胺酸,或疊氮及二苯并環辛炔。
  17. 如請求項15之套組,其中該聚合酶進一步包含附接至其表面之DNA結合域。
  18. 如請求項15之套組,其中該聚合酶進一步包含: 附接至其表面之表面繫鏈;及 附接至該表面繫鏈之流動池表面結合劑。
  19. 如請求項9之套組,其中: 該電漿子奈米結構藉由鏈黴抗生物素蛋白官能化;及 該經標記核苷酸經生物素標記。
  20. 一種方法,其包含: 將併入混合物引入至包括模板股之叢集的流動池,該併入混合物包括: 液體載劑; 複數種聚合酶;及 複數種經標記核苷酸,各經標記核苷酸包括: 核苷酸; 附接至該核苷酸之糖的3' OH阻隔基;及 附接至該核苷酸之鹼基的染料標記; 從而該等聚合酶中之至少一者將該等經標記核苷酸中之個別一者沿該等模板股中之一者併入至新生股中; 將成像混合物引入至該流動池中,該成像混合物包括: 第二液體載劑;及 複數種官能化電漿子奈米結構; 從而該等官能化電漿子奈米結構中之至少一者使其自身締合在該等經標記核苷酸中之該個別一者附近;及 在該等官能化電漿子奈米結構中之該至少一者與該等經標記核苷酸中之該個別一者締合時對該併入物進行光學成像。
  21. 如請求項20之方法,其中: 該等官能化電漿子奈米結構中之每一者藉由第二聚合酶官能化;及 該方法進一步包含在引入該成像混合物之前移除該併入混合物。
  22. 如請求項20之方法,其中: 該等官能化電漿子奈米結構中之每一者藉由結合對之第一成員官能化; 該等聚合酶中之每一者包括該結合對之第二成員;及 該方法進一步包含在引入該成像混合物之前移除該併入混合物。
  23. 如請求項20之方法,其中: 該等官能化電漿子奈米結構中之每一者藉由鏈黴抗生物素蛋白官能化; 該等經標記核苷酸中之每一者經生物素標記;及 該方法進一步包含在引入該成像混合物之前移除該併入混合物。
  24. 一種經標記核苷酸,其包含: 核苷酸; 附接至該核苷酸之糖的3' OH阻隔基; 附接至該核苷酸之鹼基的染料標記;及 附接至該核苷酸之該鹼基或該染料標記的電漿子奈米結構。
  25. 如請求項24之經標記核苷酸,其中該電漿子奈米結構係選自由以下組成之群:金奈米結構、銀奈米結構、錫奈米結構、銠奈米結構、釕奈米結構、鈀奈米結構、鋨奈米結構、銥奈米結構、鉑奈米結構、鉻奈米結構、銅奈米結構、砷化鎵奈米結構、摻矽奈米結構、鋁奈米結構、鎂奈米結構、銀與金複合奈米結構及其組合。
  26. 如請求項24之經標記核苷酸,其中該電漿子奈米結構係經由雙股去氧核糖核酸股附接至該核苷酸之該鹼基。
  27. 如請求項24之經標記核苷酸,其中: 第一連接分子將該染料標記附接至該核苷酸之該鹼基; 第二連接分子將該電漿子奈米結構附接至該核苷酸之該鹼基;及 該第一連接分子之第一長度在該第二連接分子之第二長度的約3 nm至約12 nm內。
  28. 如請求項24之經標記核苷酸,其中: 第一連接分子將該染料標記附接至該核苷酸之該鹼基; 第二連接分子將該電漿子奈米結構附接至該核苷酸之該鹼基;及 該第一連接分子具有第一長度,該第二連接分子具有第二長度,且該第一長度及該第二長度一起在約3 nm至約12 nm範圍內。
  29. 一種方法,其包含: 將併入混合物引入至包括模板股之叢集的流動池,該併入混合物包括: 液體載劑; 複數種聚合酶;及 複數種經標記核苷酸,各經標記核苷酸包括: 核苷酸; 附接至該核苷酸之糖的3' OH阻隔基; 附接至該核苷酸之鹼基的染料標記;及 附接至該核苷酸之該鹼基的電漿子奈米結構; 從而該等聚合酶中之至少一者將該等經標記核苷酸中之個別一者沿該等模板股中之一者併入至新生股中;及 對該併入物進行光學成像。
TW110142198A 2020-11-16 2021-11-12 併入與成像混合物 TW202235626A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063114302P 2020-11-16 2020-11-16
US63/114,302 2020-11-16

Publications (1)

Publication Number Publication Date
TW202235626A true TW202235626A (zh) 2022-09-16

Family

ID=78806468

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110142198A TW202235626A (zh) 2020-11-16 2021-11-12 併入與成像混合物

Country Status (10)

Country Link
US (1) US20220154273A1 (zh)
EP (1) EP4244386A1 (zh)
JP (1) JP2023548994A (zh)
KR (1) KR20230108222A (zh)
CN (1) CN115867677A (zh)
AU (1) AU2021379079A1 (zh)
CA (1) CA3182910A1 (zh)
MX (1) MX2022014823A (zh)
TW (1) TW202235626A (zh)
WO (1) WO2022101400A1 (zh)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8910880D0 (en) * 1989-05-11 1989-06-28 Amersham Int Plc Sequencing method
KR100664331B1 (ko) * 1997-07-28 2007-01-02 메디칼 바이오시스템스 리미티드 핵산 서열 분석
WO2000053805A1 (en) * 1999-03-10 2000-09-14 Asm Scientific, Inc. A method for direct nucleic acid sequencing

Also Published As

Publication number Publication date
US20220154273A1 (en) 2022-05-19
CN115867677A (zh) 2023-03-28
MX2022014823A (es) 2023-03-08
KR20230108222A (ko) 2023-07-18
CA3182910A1 (en) 2022-05-19
WO2022101400A1 (en) 2022-05-19
AU2021379079A1 (en) 2023-01-05
JP2023548994A (ja) 2023-11-22
EP4244386A1 (en) 2023-09-20

Similar Documents

Publication Publication Date Title
US11192083B2 (en) Flow cells with chambers, depressions, and capture sites
US20220145379A1 (en) Kits and flow cells
US11819843B2 (en) Flow cells with a hydrophobic barrier
US20220155211A1 (en) Altering flow cell signals
TW202235626A (zh) 併入與成像混合物
US20230101095A1 (en) Flow cells with dark quencher
US11535890B2 (en) Sequencing kits
US20230416435A1 (en) Enhancing clustering efficiency and kinetics