TW202233003A - 無線傳輸/接收單元(wtru)以及用於nrsl多次通道pscch傳輸的方法 - Google Patents

無線傳輸/接收單元(wtru)以及用於nrsl多次通道pscch傳輸的方法 Download PDF

Info

Publication number
TW202233003A
TW202233003A TW110147180A TW110147180A TW202233003A TW 202233003 A TW202233003 A TW 202233003A TW 110147180 A TW110147180 A TW 110147180A TW 110147180 A TW110147180 A TW 110147180A TW 202233003 A TW202233003 A TW 202233003A
Authority
TW
Taiwan
Prior art keywords
wtru
pscch
sci
resources
pssch
Prior art date
Application number
TW110147180A
Other languages
English (en)
Inventor
濤 鄧
李汶宜
馬提諾 M 法瑞達
祥德 黃
春暄 葉
Original Assignee
美商Idac控股公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商Idac控股公司 filed Critical 美商Idac控股公司
Publication of TW202233003A publication Critical patent/TW202233003A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/543Allocation or scheduling criteria for wireless resources based on quality criteria based on requested quality, e.g. QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本文揭露了用於側鏈路(SL)通信的方法和裝置。一種由無線傳輸/接收單元(WTRU)執行的用於SL通信的方法,該方法可包括確定藉由實體側鏈路控制通道(PSCCH)傳輸側鏈路控制資訊(SCI)。該方法還可包括從實體側鏈路共用通道(PSSCH)中選擇一個或複數次通道,其中為該PSCCH分配時間和頻率資源。該方法還可包括在該PSCCH內分配時間和頻率資源,其中對該SCI進行傳輸。時間和頻率資源的分配可以是基於SCI格式類型、層1(L1)識別符(ID)、優先順序、或服務品質(QoS)要求中的至少一者的。該方法還可以包括藉由所確定的時間和頻率資源傳輸SCI。

Description

無線傳輸/接收單元(WTRU)以及用於NR SL多次通道PSCCH 傳輸的方法 相關申請的交叉引用
本申請要求保護2019年10月1日提交的美國臨時申請62/909,022、2019年8月14日提交的美國臨時申請62/886,505以及2019年2月22日提交的美國臨時申請62/809,317的權益,其內容藉由引用併入本文。
在用於長期演進(LTE)無線技術的3GPP標準中,車聯網(V2X)通道頻寬可以被劃分成一組次通道,並且次通道的大小可以由網路來配置。例如,大小可以是4、5、6、8、9、10、12、15、16、18、20、25、30、48或50個資源塊(RB)。LTE V2X無線傳輸/接收單元(WTRU)可以根據包括傳輸塊(TB)大小、次通道配置和/或調變和寫碼方案(MCS)的參數,應用一個或複數次通道來傳輸實體側鏈路共用通道(PSSCH)。由於在LTE中使用離散傅立葉轉換-擴展-正交分頻多工(DFT-s-OFDM),用於一個PSSCH的所有次通道必須是連串的(consecutive)。
相關聯的PSCCH在相同的子訊框中被傳輸,並與PSSCH是分頻多工的(FDMed)。網路可以用信號通知PSSCH的兩種配置和一個或複數相關聯的PSCCH傳輸。一個是相鄰實體側鏈路控制通道(PSCCH)和PSSCH傳輸。PSSCH及其相關聯的PSCCH在相鄰的RB中被傳輸,並且在這種情況下,PSCCH在具有用於PSSCH的較低索引的次通道的前兩個RB中被傳輸。 另一種配置是PSCCH和PSSCH傳輸的非相鄰佈置。PSSCH在次通道中傳輸,並且其相關聯的PSCCH在位於通道的一個邊緣的各別的池中傳輸。應注意,非相鄰配置的PSCCH佔用兩個RB。
對於NR V2X,支援循環前綴OFDM(CP-OFDM),並且由此,非連續的NR PSSCH頻率資源分配可以變得可行。NR PSSCH資源分配是基於次通道和PSSCH與相關聯的PSCCH之間的一組多工配置。對於NR V2X,TDM和FDM配置目前都在考慮之中。在一個分時多工(TDM)配置中,PSCCH和相關聯的PSSCH是使用非重疊時間資源傳輸的,並且兩個通道使用的頻率資源是相同的或不同的。在另一個TDM配置中,使用非重疊頻率資源中的重疊時間資源來傳輸PSCCH的一部分和相關聯的PSSCH,但是使用非重疊時間資源來傳輸相關聯的PSSCH的另一部分和/或PSCCH的另一部分。
在LTE V2X中,支援廣播傳輸和週期性訊務型樣,而傳輸封包大小在50-300位元組之間變化。然而,NR V2X支援具有廣泛不同的訊務型樣和相關聯的QoS要求的一組高級用例。某些NR V2X用例具有比LTE要求大得多的封包大小和更低的潛時,例如,NR V2X封包大小可在30000和60000位元組之間,並且潛時可低至3ms。此外,除了廣播傳輸之外,NR V2X增加了對單播和多播傳輸的支援,這可能需要高可靠性,並且NR PSCCH的鏈路調適變得重要。因此,為了傳遞各種類型的NR V2X傳輸所需的高容量和可靠性以及低潛時,NR PSCCH設計可以解決某些方面。
本文揭露了用於側鏈路(SL)通信的方法和裝置。一種由無線傳輸/接收單元(WTRU)執行的用於SL通信的方法,該方法可包括確定藉由實體側鏈路控制通道(PSCCH)傳輸側鏈路控制資訊(SCI)。該方法可進一步包括從實體側鏈路共用通道(PSSCH)中選擇一個或複數次通道,在其中為PSCCH分配時間和頻率資源。該方法可進一步包括在PSCCH內分配時間和頻率資源以在其中傳輸SCI。時間和頻率資源的分配可以基於SCI格式類型、層1(L1)識別符(ID)、優先順序或服務品質(QoS)要求中的至少一者。該方法還可以包括藉由所確定的時間和頻率資源傳輸SCI。
BWP:側鏈路頻寬部分
ID:識別符
N2、N3、N4、N6、N11、S1、X2、Xn:介面
PHY:實體層
PPPP:優先順序
PPPR:可靠性
PSSCH:實體側鏈路共用通道
PSCCH:實體側鏈路控制通道
SL:側鏈路
SCI:側鏈路控制資訊
102、102a、102b、102c、102d:無線傳輸/接收單元(WTRU)
104:無線電存取網路(RAN)
106:核心網路(CN)
108:公共交換電話網路(PSTN)
110:網際網路
112:其他網路
114a、114b:基地台
116:空中介面
118:處理器
120:收發器
122:傳輸/接收元件
124:揚聲器/麥克風
126:小鍵盤
128:顯示器/觸控板
130:非可移記憶體
132:可移記憶體
134:電源
136:全球定位系統(GPS)晶片組
138:週邊設備
160a、160b、160c:e節點B
162:移動性管理實體(MME)
164:服務閘道(SGW)
166:封包資料網路(PDN)閘道(PGW)
180a、180b、180c:g節點B(gNB)
182a、182b:存取及移動性管理功能(AMF)
183a、183b:對話管理功能(SMF)
184a、184b:使用者平面功能(UPF)
185a、185b:資料網路(DN)
301、310、311、320、321、330、331、332、340:流程
從以下結合附圖以範例方式給出的描述中可以更詳細地理解本發明,其中
附圖中相同的附圖標記表示相同的元件,並且其中:
圖1A是示出了可以實施一個或複數揭露實施例的範例通信系統的系統圖;
圖1B是示出根據實施例的可以在圖1A所示的通信系統中使用的範例性無線傳輸/接收單元(WTRU)的系統圖;
圖1C是示出根據實施例的可以在圖1A中所示的通信系統內使用的範例無線電存取網路(RAN)和範例核心網路(CN)的系統圖;
圖1D是示出根據實施例的可以在圖1A中所示的通信系統內使用的另一範例RAN和另一範例CN的系統圖;
圖2提供了多次通道PSSCH傳輸的概覽圖;
圖3描繪了由WTRU基於一個或複數參數執行的PSCCH資源的確定;
圖4是WTRU可以選擇一個或複數PSSCH次通道(其中包括PSCCH_1和PSCCH_2資源)所藉的條件的範例表示;
圖5描述了在連續和非連續的PSSCH次通道中的PSCCH_1和PSCCH_2資源佈置的各種範例;以及
圖6示出了從SL資源內確定PSCCH資源。
圖1A是示出了其中可以實施一個或複數所揭露的實施例的範例通信系統100的圖。通信系統100可以是向複數無線使用者提供諸如語音、資料、視訊、訊息、廣播等內容的多重存取系統。通信系統100可以使複數無線使用者能夠藉由共用包括無線頻寬的系統資源來存取這樣的內容。例如,通信系統100可以採用一種或多種通道存取方法,例如分碼多重存取(CDMA)、分時多重存取(TDMA)、分頻多重存取(FDMA)、正交FDMA(OFDMA)、單載波FDMA(SC-FDMA)、零尾唯一字離散傅立葉轉換擴展OFDM(ZT-UW-DFT-S-OFDM)、唯一字OFDM(UW-OFDM)、資源塊濾波OFDM、濾波器組多載波(FBMC)等。
如圖1A所示,通信系統100可以包括無線傳輸/接收單元(WTRU)102a、102b、102c、102d、無線電存取網路(RAN)104、核心網路(CN)106、公共交換電話網路(PSTN)108、網際網路110和其他網路112,但是應當理解,所揭露的實施例考慮了任意數量的WTRU、基地台、網路和/或網路元件。每一個WTRU 102a、102b、102c、102d可為被配置為在無線環境中操作和/或通信的任何類型的裝置。舉例來說,WTRU 102a、102b、102c、102d(其中任何一個都可以被稱為站(STA))可以被配置成傳輸和/或接收無線信號,並且可以包括使用者設備(UE)、行動站、固定或行動用戶單元、基於訂閱的單元、呼叫器、行動電話、個人數位助理(PDA)、智慧型電話、膝上型電腦、小筆電、個人電腦、無線感測器、熱點或Mi-Fi裝置、物聯網(IoT) 裝置、手錶或其他可穿戴裝置、頭戴式顯示器(HMD)、車輛、無人機、醫療裝置和應用(例如遠端手術)、工業裝置和應用(例如,在工業和/或自動化處理鏈環境中操作的機器人和/或其他無線裝置)、消費電子裝置、在商業和/或工業無線網路上操作的裝置等等。WTRU 102a、102b、102c及102d中的任一者可互換地稱為WTRU。
通信系統100還可以包括基地台114a和/或基地台114b。基地台114a、114b中的每一個可以是被配置為與WTRU 102a、102b、102c、102d中的至少一個有無線介面以便於存取一個或複數通信網路的任何類型的裝置,該通信網路諸如CN 106、網際網路110和/或其他網路112。作為範例,基地台114a、114b可以是基地台收發器台(BTS)、節點B、e節點B(eNB)、本地節點B、本地e節點B、諸如g節點B(gNB)的下一代節點B、新無線電(NR)節點B、網站控制器、存取點(AP)、無線路由器等。雖然基地台114a、114b每一者被描繪為單個元件,但是將理解,基地台114a、114b可以包括任何數目的互連基地台和/或網路元件。
基地台114a可以是RAN 104的一部分,其還可以包括其它基地台和/或網路元件(未示出),諸如基地台控制器(BSC)、無線網路控制器(RNC)、中繼節點等。基地台114a和/或基地台114b可以被配置為在一個或複數載波頻率(其可以被稱為胞元(未示出))上傳輸和/或接收無線信號。這些頻率可以在授權頻譜、未授權頻譜、或者授權和未授權頻譜的組合中。胞元可以向特定地理區域提供無線服務的覆蓋,該特定地理區域可以是相對固定的或者可以隨時間而改變。胞元可以進一步被劃分為胞元扇區。例如,與基地台114a相關聯的胞元可以被劃分為三個扇區。因此,在一個實施例中,基地台114a可以包括三個收發器,即,胞元的每個扇區一個收發器。在實施例中,基地台114a可以採用多輸入多輸出(MIMO)技術,並且可 以針對胞元的每個扇區使用複數收發器。例如,波束成形可以用於在期望的空間方向上傳輸和/或接收信號。
基地台114a、114b可經由空中介面116與WTRU 102a、102b、102c、102d中的一個或複數通信,該空中介面116可以是任何合適的無線通訊鏈路(例如,射頻(RF)、微波、釐米波、微米波、紅外線(IR)、紫外線(UV)、可見光等)。空中介面116可以使用任何合適的無線存取技術(RAT)來建立。
更具體地說,如上所述,通信系統100可以是多重存取系統,並且可以採用一個或複數通道存取方案,例如CDMA、TDMA、FDMA、OFDMA、SC-FDMA等。例如,RAN 104中的基地台114a和WTRU 102a、102b、102c可以實施諸如通用行動電信系統(UMTS)陸地無線電存取(UTRA)之類的無線電技術,其可以使用寬頻CDMA(WCDMA)來建立空中介面116。WCDMA可以包括諸如高速封包存取(HSPA)和/或演進型HSPA(HSPA +)之類的通信協定。HSPA可以包括高速下鏈(DL)封包存取(HSDPA)和/或高速上鏈(UL)封包存取(HSUPA)。
在一個實施例中,基地台114a和WTRU 102a、102b、102c可以實施諸如演進型UMTS陸地無線電存取(E-UTRA)之類的無線電技術,該無線電技術可以使用長期演進(LTE)和/或高級LTE(LTE-A)和/或高級LTE Pro(LTE-A Pro)來建立空中介面116。
在一個實施例中,基地台114a和WTRU 102a、102b、102c可以實施諸如NR無線電存取的無線電技術,該無線電技術可以使用NR來建立空中介面116。
在一個實施例中,基地台114a和WTRU 102a、102b、102c可以實施多種無線電存取技術。例如,基地台114a和WTRU 102a、102b、102c可以例如使用雙連接(DC)原理將LTE無線電存取和NR無線電存取實施在一 起。因此,WTRU 102a、102b、102c所使用的空中介面的特徵可在於發送到/來自多種類型的基地台(例如eNB和gNB)的多種類型的無線電存取技術和/或傳輸。
在其它實施例中,基地台114a及WTRU 102a、102b、102c可實施無線電技術,例如IEEE 802.11(即無線保真度(WiFi)、IEEE 802.16(即全球互通微波存取(WiMAX))、CDMA2000、CDMA20001X、CDMA2000 EV-DO、臨時性標準2000(IS-2000)、臨時性標準95(IS-95)、臨時性標準856(IS-856)、全球行動通信系統(GSM)、用於GSM演進的增強型資料速率(EDGE)、GSM EDGE(GERAN)等。
圖1A中的基地台114b可以是例如無線路由器、本地節點B、本地e節點B或存取點,並且可以利用任何合適的RAT來促進局部區域中的無線連接,該局部區域諸如營業場所、住宅、車輛、校園、工業設施、空中走廊(例如,供無人機使用)、道路等。在一個實施例中,基地台114b和WTRU 102c、102d可以實施諸如IEEE 802.11的無線電技術以建立無線區域網路(WLAN)。在一個實施例中,基地台114b和WTRU 102c、102d可以實施無線電技術,例如IEEE 802.15,以建立無線個人區域網路(WPAN)。在又一實施例中,基地台114b和WTRU 102c、102d可利用基於蜂巢的RAT(例如WCDMA、CDMA2000、GSM、LTE-A、LTE-APro、NR等)來建立微微胞元或毫微微胞元。如圖1A所示,基地台114b可以具有到網際網路110的直接連接。因此,基地台114b可以不需要經由CN 106存取網際網路110。
RAN 104可與CN 106通信,CN 106可為任何類型的網路,其被配置為向WTRU 102a、102b、102c、102d中的一個或複數WTRU提供語音、資料、應用和/或網際網路協定的語音(VoIP)服務。資料可具有變化服務品質(QoS)要求,例如不同處理量要求、潛時要求、錯誤容限要求、可靠性要 求、資料處理量要求、移動性要求等。CN 106可以提供呼叫控制、計費服務、基於行動位置的服務、預付費呼叫、網際網路連接、視訊分發等,和/或執行高級安全功能,例如使用者認證。儘管在圖1A中未示出,但是應當理解,RAN 104和/或CN 106可以與使用與RAN 104相同的RAT或不同的RAT的其它RAN進行直接或間接的通信。例如,除了連接到可以利用NR無線電技術的RAN 104之外,CN 106還可以與採用GSM、UMTS、CDMA2000、WiMAX、E-UTRA或WiFi無線電技術的另一RAN(未示出)進行通信。
CN 106也可作為WTRU 102a、102b、102c、102d的閘道以存取PSTN 108、網際網路110、和/或其他網路112。PSTN 108可以包括提供普通老式電話服務(POTS)的電路交換電話網。網際網路110可以包括使用共同通信協定的互連電腦網路和裝置的全球系統,該共同通信協定例如是TCP/IP網際網路協定族中的傳輸控制協定(TCP)、使用者資料報協定(UDP)和/或網際網路協定(IP)。網路112可以包括由其他服務提供者擁有和/或操作的有線和/或無線通訊網路。例如,網路112可以包括連接到一個或複數RAN的另一個CN,該RAN可以使用與RAN 104相同的RAT或不同的RAT。
通信系統100中的WTRU 102a、102b、102c、102d中的一些或所有可包括多模式能力(例如,WTRU 102a、102b、102c、102d可包括複數收發器,以藉由不同無線鏈路與不同無線網路通信)。例如,圖1A所示的WTRU 102c可以被配置成與可以使用基於蜂巢的無線電技術的基地台114a通信,以及與可以使用IEEE 802無線電技術的基地台114b通信。
圖1B是示出範例WTRU 102的系統圖。如圖1B所示,WTRU 102可包括處理器118、收發器120、傳輸/接收元件122、揚聲器/麥克風124、小鍵盤126、顯示器觸控板128、非可移記憶體130、可移記憶體132、電源134、 全球定位系統(GPS)晶片組136和/或其他週邊設備138等等。可以理解的是,WTRU 102可以包括前述元件的任何子組合,同時保持與實施例一致。
處理器118可以是通用處理器、專用處理器、常規處理器、數位訊號處理器(DSP)、複數微處理器、與DSP核心相關聯的一個或複數微處理器、控制器、微控制器、專用積體電路(ASIC)、現場可程式設計閘陣列(FPGA)、任何其它類型的積體電路(IC)、狀態機等。處理器118可以執行信號寫碼、資料處理、功率控制、輸入/輸出處理和/或任何其他使WTRU 102能夠在無線環境中操作的功能。處理器118可以耦合到收發器120,收發器120可以耦合到傳輸/接收元件122。雖然圖1B將處理器118和收發器120描繪為各別的組件,但將瞭解,處理器118和收發器120可一起整合在電子封裝或晶片中。
傳輸/接收元件122可以被配置為藉由空中介面116向基地台(例如,基地台114a)傳輸信號或從其接收信號。例如,在一個實施例中,傳輸/接收元件122可以是被配置為傳輸和/或接收RF信號的天線。在一個實施例中,傳輸/接收元件122可以是被配置為傳輸和/或接收例如IR、UV或可見光信號的發射機/偵測器。在又一實施例中,傳輸/接收元件122可經配置以傳輸和/或接收RF及光信號兩者。應當理解,傳輸/接收元件122可以被配置為傳輸和/或接收無線信號的任何組合。
儘管傳輸/接收元件122在圖1B中被描述為單個元件,但是WTRU 102可以包括任意數量的傳輸/接收元件122。更具體地,WTRU 102可以使用MIMO技術。因此,在一個實施方式中,WTRU 102可以包括兩個或複數傳輸/接收元件122(例如複數天線),用於藉由空中介面116傳輸和接收無線信號。
收發器120可以被配置為調變將由傳輸/接收元件122傳輸的信號,並且解調由傳輸/接收元件122接收的信號。如上所述,WTRU 102可以具有多模式能力。因此,收發器120可以包括複數收發器,用於使WTRU 102能夠經由複數RAT(例如NR和IEEE 802.11)進行通信。
WTRU 102的處理器118可被連接到揚聲器/麥克風124、小鍵盤126和/或顯示器/觸控板128(例如液晶顯示器(LCD)顯示單元或有機發光二極體(OLED)顯示單元),並可從揚聲器/麥克風124、小鍵盤126和/或顯示器/觸控板128(例如液晶顯示器(LCD)顯示單元或有機發光二極體(OLED)顯示單元)接收使用者輸入資料。處理器118還可以向揚聲器/麥克風124、小鍵盤126和/或顯示器/觸控板128輸出使用者資料。另外,處理器118可從任何類型的合適記憶體存取資訊,且將資料儲存在該記憶體中,例如非可移記憶體130和/或可移記憶體132。非可移記憶體130可包括隨機存取記憶體(RAM)、唯讀記憶體(ROM)、硬碟或任何其它類型的記憶體儲存裝置。可移記憶體132可以包括用戶身分模組(SIM)卡、記憶棒、安全數位(SD)記憶卡等。在其他實施方式中,處理器118可以從記憶體存取資訊並將資料儲存在記憶體中,該記憶體不是實體地位於WTRU 102上,例如位於伺服器或家用電腦(未示出)上。
處理器118可以從電源134接收功率,並且可以被配置成分發和/或控制功率給WTRU 102中的其他組件。電源134可以是任何合適的用於為WTRU 102供電的裝置。例如,電源134可以包括一個或複數乾電池(例如,鎳鎘、鎳鋅、鎳金屬氫化物(NiMH)、鋰離子(Li-ion)等)、太陽能電池、燃料電池等。
處理器118也可以耦合到GPS晶片組136,其可以被配置成提供關於WTRU 102的目前位置的位置資訊(例如經度和緯度)。除了還有GPS晶片 組136資訊或將GPS晶片組136資訊取而代之的是,WTRU 102可以藉由空中介面116從基地台(例如基地台114a、114b)接收位置資訊,和/或基於從兩個或更多鄰近基地台接收的信號的定時來確定其位置。應該理解,WTRU 102可以藉由任何合適的位置確定方法來獲取位置資訊,同時保持與實施例一致。
處理器118還可以耦合到其他週邊設備138,週邊設備138可以包括提供附加特徵、功能和/或有線或無線連接的一個或複數軟體和/或硬體模組。例如,週邊設備138可以包括加速度計、電子羅盤、衛星收發器、數位相機(用於照片和/或視訊)、通用序列匯流排(USB)埠、振動裝置、電視收發器、免持耳機、藍牙®模組、調頻(FM)無線電單元、數位音樂播放機、媒體播放機、視訊遊戲播放機模組、網際網路瀏覽器、虛擬實境和/或增強現實(VR/AR)裝置、活動追蹤器等。週邊設備138可以包括一個或複數感測器。感測器可以是陀螺儀、加速度計、霍爾效應感測器、磁力計、定向感測器、接近度感測器、溫度感測器、時間感測器中的一個或複數;地理定位感測器、高度計、光感測器、觸控感測器、磁力計、氣壓計、姿態感測器、生物測定感測器、濕度感測器等。
WTRU 102可以包括全雙工無線電裝置,對於該全雙工無線電裝置,一些或所有信號(例如,與用於UL(例如,用於傳輸)和DL(例如,用於接收)的特別子訊框相關聯的信號)的傳輸和接收可以是並行的和/或同時的。全雙工無線電裝置可以包括借助於硬體(例如扼流圈)或是憑藉處理器(例如各別的處理器(未顯示)或是憑藉處理器118)的信號處理來減小和/或實質消除自干擾的干擾管理單元。在實施例中,WTRU 102可以包括傳輸和接收一些或所有信號(例如與用於UL(例如用於傳輸)或下鏈(例如用於接收)的特別子訊框相關聯)的半雙工無線電裝置。
圖1C是示出根據實施例的RAN 104和CN 106的系統圖。如上所述,RAN 104可採用E-UTRA無線電技術以經由空中介面116與WTRU 102a、102b、102c通信。RAN 104還可以與CN 106通信。
RAN 104可包含e節點B 160a、160b、160c,但應瞭解,RAN 104可包含任何數目個e節點B,同時保持與實施例一致。e節點B 160a、160b、160c可每一者包括一個或複數收發器,以藉由空中介面116與WTRU 102a、102b、102c進行通信。在一個實施例中,e節點B 160a、160b、160c可實施MIMO技術。因此,例如,e節點B 160a可以使用複數天線來向WTRU 102a傳輸無線信號和/或從其接收無線信號。
e節點B 160a、160b、160c中的每一者可與特別胞元(未圖示)相關聯,且可經配置以處理無線電資源管理決定、切換決定、UL和/或DL中的使用者排程等。如圖1C中所示,e節點B 160a、160b、160C可經由X2介面彼此通信。
圖1C中所示的CN 106可以包括移動性管理實體(MME)162、服務閘道(SGW)164和封包資料網路(PDN)閘道(PGW)166。雖然前述元件被描繪為CN 106的一部分,但是將理解,這些元件中的任何一個可以由CN操作者之外的實體擁有和/或操作。
MME162可以經由S1介面連接到RAN 104中的e節點B162a、162b、162c中的每一者,並且可以用作控制節點。例如,MME 162可負責認證WTRU 102a、102b、102c的使用者、承載啟動/去啟動、在WTRU 102a、102b、102c的初始附接期間選擇特別服務閘道等等。MME 162可以提供控制平面功能,用於在RAN 104和採用其他無線電技術(例如GSM和/或WCDMA)的其他RAN(未示出)之間進行切換。
SGW 164可經由S1介面連接到RAN 104中的e節點B 160a、160b、160c中的每一者。SGW 164通常可以路由和轉發往/來自WTRU 102a、102b、102c的使用者資料封包。SGW 164可以執行其他功能,例如在e節點B間切換期間錨定使用者平面、當DL資料可用於WTRU 102a、102b、102c時觸發傳呼、管理和儲存WTRU 102a、102b、102c的上下文等等。
SGW 164可以連接到PGW 166,PGW 166可以為WTRU 102a、102b、102c提供對諸如網際網路110的封包交換網路的存取,以促進WTRU 102a、102b、102c和IP賦能裝置之間的通信。
CN 106可以促進與其他網路的通信。例如,CN 106可提供WTRU 102a、102b、102c存取電路切換式網路(例如PSTN 108)之存取,以促進WTRU 102a、102b、102c和傳統陸線通信裝置之間的通信。例如,CN 106可以包括IP閘道(例如,IP多媒體子系統(IMS)伺服器),或者可以與IP閘道通信,該IP閘道用作CN 106和PSTN 108之間的介面。此外,CN 106可提供WTRU 102a、102b、102c存取其他網路112之存取,其他網路112可包括其它服務提供者所擁有和/或操作的其他有線和/或無線網路。
雖然WTRU在圖1A至圖1D中被描述為無線終端,但是可以預期在某些代表性實施例中,這種終端與通信網路可以使用(例如臨時或永久)有線通信介面。
在代表性實施例中,其他網路112可以是WLAN。
基礎設施基本服務集(BSS)模式中的WLAN可以具有用於BSS的存取點(AP)和與AP相關聯的一個或複數站(STA)。AP可以存取或有介面於分散系統(DS)或承載進入和/或離開BSS的訊務的另一類型的有線/無線網路。源於BSS外部且往STA的訊務可以藉由AP到達,並且可以被遞送到STA。源自STA且往BSS外部的目的地的訊務可以被發送到AP以被遞送到 分別的目的地。BSS內的STA之間的訊務可以藉由AP來發送,例如,其中源STA可以向AP發送訊務,並且AP可以向目的地STA遞送訊務。BSS內的STA之間的訊務可以被認為和/或稱為對等訊務。對等訊務可以利用直接鏈路建立(DLS)在源和目的地STA之間(例如,直接在源和目的地STA之間)發送。在某些代表性實施例中,DLS可使用802.11e DLS或802.11z隧道DLS(TDLS)。使用獨立BSS(IBSS)模式的WLAN可能不具有AP,並且在IBSS內或使用IBSS的STA(例如,所有STA)可以彼此直接通信。IBSS通信模式在這裡有時可以被稱為“特定(ad-hoc)”通信模式。
當使用802.11ac基礎結構操作模式或類似的操作模式時,AP可以在固定通道(例如主通道)上傳輸信標。主通道可以是固定寬度(例如,20MHz寬的頻寬)或動態設定的寬度。主通道可以是BSS的工作通道,並且可以由STA用來建立與AP的連接。在某些代表性實施例中,例如在802.11系統中可以實施具有衝突避免的載波感測多重存取(CSMA/CA)。對於CSMA/CA,包括AP的STA(例如,每個STA)可以感測主通道。如果主通道被特別STA感測/偵測和/或確定為繁忙,則該特別STA可以退避。一個STA(例如,僅一個站)可以在給定BSS中在任何給定時間進行傳輸。
高輸送量(HT)STA可以使用40MHz寬通道進行通信,例如,藉由將主20MHz通道與相鄰或非相鄰的20MHz通道組合以形成40MHz寬通道。
超高輸送量(VHT)STA可以支援20MHz、40MHz、80MHz和/或160MHz寬的通道。40MHz和/或80MHz通道可藉由組合連續的20MHz通道來形成。160MHz通道可藉由組合8個連續的20MHz通道或藉由組合兩個不連續的80MHz通道來形成,這可被稱為80+80配置。對於80+80配置,在通道編碼之後,資料可以被傳遞並經過分段解析器,該分段解析器可以將 資料劃分成兩個串流。可以對每個串流各別進行逆快速傅利葉變換(IFFT)處理和時域處理。該串流可以被映射到兩個80MHz通道上,並且資料可以由傳輸STA傳輸。在接收STA的接收器處,上述80+80配置的操作可以顛倒,並且組合資料可以被發送到媒體媒體控制(MAC)。
低於1GHz的操作模式由802.11af和802.11ah支援。相對於802.11n和802.11ac中使用的,在802.11af和802.11ah中通道工作頻寬和載波被減少。802.11af支援TV空白空間(TVWS)頻譜中的5MHz、10MHz和20MHz頻寬,而802.11ah支援使用非TVWS頻譜的1MHz、2MHz、4MHz、8MHz和16MHz頻寬。根據代表性實施例,802.11ah可以支援儀錶型控制/機器型通信(MTC),例如巨集覆蓋區域中的MTC裝置。MTC裝置可具有某些能力,例如,包括對某些和/或有限頻寬的支援(例如,僅支援)的有限能力。MTC裝置可包括具有高於臨界值的電池壽命(例如,以維持非常長的電池壽命)的電池。
可以支援複數通道和通道頻寬的WLAN系統,例如802.11n、802.11ac、802.11af和802.11ah,包括可以被指定為主通道的通道。主通道可以具有等於BSS中的所有STA所支援的最大共同工作頻寬的頻寬。主通道的頻寬可以由在BSS(其支援最小頻寬工作模式)中操作的所有STA之中的STA來設定和/或限制。在802.11ah的例子中,對於支援(例如,僅支援)1MHz模式的STA(例如,MTC型裝置),主通道可以是1MHz寬,即使AP和BSS中的其它STA支援2MHz、4MHz、8MHz、16MHz和/或其它通道頻寬操作模式。載波感測和/或網路分配向量(NAV)設定可以取決於主通道的狀態。如果主通道繁忙(例如,由於STA(其僅支援1MHz操作模式)向AP傳輸),則所有可用頻帶可被認為繁忙,即使大多數可用頻帶保持空閒。
在美國,802.11ah可使用的可用頻帶是從902MHz到928MHz。在韓國,可用頻帶是從917.5MHz到923.5MHz。在日本,可用頻帶是從916.5MHz到927.5MHz。根據國家代碼,可用於802.11ah的總頻寬是6MHz到26MHz。
圖1D是示出根據實施例的RAN 104和CN 106的系統圖。如上所述,RAN 104可以使用NR無線技術經由空中介面116與WTRU 102a、102b、102c通信。RAN 104還可以與CN 106通信。
RAN 104可以包括gNB 180a、180b、180c,但是應當理解,RAN 104可以包括任意數目的gNB,同時保持與實施例一致。gNB 180a、180b、180c中的每一個都包括一個或複數收發器,用於藉由空中介面116與WTRU 102a、102b、102c進行通信。在一個實施例中,gNB 180a、180b、180c可以實施MIMO技術。例如,gNB 180a、108b可以利用波束成形來向gNB180a、180b、180c傳輸信號和/或從其接收信號。因此,gNB 180a例如可使用複數天線來向WTRU 102a傳輸無線信號和/或從其接收無線信號。在一個實施例中,gNB180a、180b、180c可以實施載波聚合技術。例如,gNB 180a可以向WTRU 102a傳輸複數分量載波(未示出)。這些分量載波的子集可以在未授權頻譜上,而剩餘分量載波可以在授權頻譜上。在一個實施例中,gNB 180a、180b、180c可以實施協作多點(CoMP)技術。例如,WTRU 102a可以從gNB 180a和gNB 180b(和/或gNB 180c)接收協調傳輸。
WTRU 102a、102b、102c可以使用與可縮放參數配置(numerology)相關聯的傳輸來與gNB180a、180b、180c通信。例如,OFDM符號間距和/或OFDM子載波間距可以針對不同的傳輸、不同的胞元和/或無線傳輸頻譜的不同部分而變化。WTRU 102a、102b、102c可以使用具有各種或可縮放 長度的子訊框或傳輸時間間隔(TTI)(例如,包含不同數量的OFDM符號和/或持續變化的絕對時間長度)與gNB180a、180b、180c通信。
gNB 180a、180b、180c可被配置為在分立配置和/或非分立配置中與WTRU 102a、102b、102c通信。在分立配置中,WTRU 102a、102b、102c可以與gNB 180a、180b、180c通信,而不需要也存取其他RAN(例如e節點B160a、160b、160c)。在分立配置中,WTRU 102a、102b、102c可利用gNB 180a、180b、180c中的一個或複數作為移動性錨點。在分立配置中,WTRU 102a、102b、102c可以使用未授權頻帶中的信號與gNB 180a、180b、180c通信。在非分立配置中,WTRU 102a、102b、102c可以與gNB 180a、180b、180c通信/連接,同時也可以與諸如e節點B 160a、160b、160c的另一個RAN通信/連接。舉例來說,WTRU 102a、102b、102c可以實施DC原理以便與gNB180a、180b、180c中的一個或複數以及e節點B160a、160b、160c中的一個或複數實質上同時地進行通信。在非分立配置中,e節點B 160a、160b、160c可以用作WTRU 102a、102b、102c的移動性錨點,並且gNB180a、180b、180c可以提供用於服務WTRU 102a、102b、102c的額外的覆蓋和/或輸送量。
gNB 180a、180b、180c中的每一個gNB可以與特別胞元(未示出)相關聯,並且可以被配置為處理無線電資源管理決定、切換決定、UL和/或DL中的使用者排程、支援網路分片、DC、NR與E-UTRA之間的交互工作、向使用者平面功能(UPF)184a、184b路由使用者平面資料、向存取及移動性管理功能(AMF)182a、182b路由控制平面資訊等。如圖1D所示,gNB 180a、180b、180c可以藉由Xn介面彼此通信。
圖1D中所示的CN 106可以包括AMF182a、182b中的至少一個、UPF 184a、184b中的至少一個、對話管理功能(SMF)183a、183b中的至少一個以及可能的資料網路(DN)185a、185b。雖然前述元件被描繪為CN 106 的一部分,但是將理解,這些元件中的任何一個可以由CN操作者之外的實體擁有和/或操作。
AMF182a、182b可以經由N2介面連接到RAN 104中的gNB 180a、180b、180c中的一個或複數,並且可以充當控制節點。例如,AMF182a、182b可負責認證WTRU 102a、102b、102c的使用者、支援網路切片(例如,處理具有不同需求的不同協定資料單元(PDU)對話)、選擇特別的SMF183a、183b、管理註冊區域、終止非存取層(NAS)傳訊、移動性管理等等。AMF182a、182b可使用網路切片,以根據WTRU 102a、102b、102c所使用的服務類型,來定制CN對WTRU 102a、102b、102c的支援。例如,可以針對不同的使用情況建立不同的網路切片,諸如依賴於超可靠低潛時(URLLC)存取的服務、依賴於增強的大規模行動寬頻(eMBB)存取的服務、用於MTC存取的服務等。AMF182a、182b可以提供用於在RAN 104和採用其他無線電技術(例如LTE、LTE-A、LTE-APro和/或非3GPP存取技術(例如WiFi))的其他RAN(未示出)之間切換的控制平面功能。
SMF183a、183b可以經由N11介面連接到CN 106中的AMF182a、182b。SMF183a、183b也可以經由N4介面連接到CN 106中的UPF 184a、184b。SMF183a、183b可以選擇和控制UPF 184a、184b,並且配置藉由UPF 184a、184b的訊務路由。SMF183a、183b可以執行其他功能,例如管理和分配WTRU IP位址、管理PDU對話、控制策略實施和QoS、提供DL資料通知等等。PDU對話類型可以是基於IP的、基於非IP的、基於乙太網路的等等。
UPF 184a、184b可以經由N3介面連接到RAN 104中的gNB 180a、180b、180c中的一個或複數,這可以為WTRU 102a、102b、102c提供對諸如網際網路110的封包交換網路的存取,以促進WTRU 102a、102b、102c 與IP賦能裝置之間的通信。UPF184、184b可以執行其他功能,例如路由和轉發封包、實施使用者平面策略、支援多連接(multi-homed)PDU對話、處理使用者平面QoS、緩衝DL封包、提供移動性錨定等等。
CN 106可以促進與其他網路的通信。例如,CN 106可以包括IP閘道(例如,IP多媒體子系統(IMS)伺服器),或者可以與IP閘道通信,該IP閘道用作CN 106和PSTN 108之間的介面。此外,CN 106可提供WTRU 102a、102b、102c提供針對其他網路112的存取,該其他網路112可包括其它服務提供者所擁有和/或操作的其他有線和/或無線網路。在一實施例中,WTRU 102a、102b、102c可通過至UPF 184a、184b的N3介面及介於UPF 184a、184b與DN 185a、185b之間的N6介面,並通過UPF 184a、184b連接至本地DN 185a、185b。
鑒於圖1A至圖1D和圖1A至圖1D的相應描述,本文關於以下各項中的一者或一者以上描述的功能中的一者或一者以上或全部可以由一個或複數仿真裝置(未示出)執行:WTRU 102a-d、基地台114a-b、e節點B 160a-c、MME 162、SGW 164、PGW 166、gNB 180a-c、AMF 182a-b、UPF 184a-b、SMF183a-b、DN185a-b和/或這裡描述的任何其他裝置(一個或複數)。這些仿真裝置可以是被配置為模擬這裡描述的功能中的一個或複數或全部的一個或複數裝置。例如,仿真裝置可以用於測試其他裝置和/或模擬網路和/或WTRU功能。
仿真裝置可以被設計為在實驗室環境和/或操作者網路環境中實施對其他裝置的一個或複數測試。例如,一個或複數仿真裝置可以執行一個或複數或所有功能,同時被完全或部分地實施和/或部署為有線和/或無線通訊網路的一部分,以便測試通信網路內的其他裝置。一個或複數仿真裝置可以執行一個或複數或所有功能,同時被臨時實施/部署為有線和/或無線通 訊網路的一部分。仿真裝置可以直接耦合到另一裝置,以便使用空中無線通訊來用於測試目的和/或執行測試。
一個或複數仿真裝置可以執行一個或複數功能(包括所有功能),而不是作為有線和/或無線通訊網路的一部分來實施/部署。例如,仿真裝置可以在測試實驗室和/或未被部署(例如,測試)有線和/或無線通訊網路中的測試場景中使用,以便實施一個或複數組件的測試。一個或複數仿真裝置可以是測試設備。仿真裝置可以使用直接RF耦合和/或經由RF電路(例如,其可以包括一個或複數天線)的無線通訊來傳輸和/或接收資料。
在LTE V2X中,支援廣播傳輸和週期性訊務型樣,其中傳輸封包大小在50-300位元組之間變化。然而,NR V2X支援具有廣泛不同的訊務型樣和相關聯的服務品質(QoS)要求的一組高級用例。某些NR V2X用例可以採用大得多的封包大小,並且需要比LTE場景更低的潛時。例如,NR V2X封包大小可以在30000和60000位元組之間,並且潛時可以低至3ms。此外,除了廣播傳輸之外,NR V2X增加了對可能需要高可靠性的單播和多播傳輸的支援,並且NR PSCCH傳輸的鏈路調適可能變得重要。因此,為了遞送高容量和可靠性以及各種類型的NR V2X傳輸所需的低潛時,NR PSCCH設計可以顧及現有LTE V2X設計和所提出的NR V2X設計的某些方面。
例如,LTE指定固定數量的PSCCH時間資源。LTE PSCCH資源分配對於PSSCH傳輸總是固定使用一個子訊框(14個符號)和兩個RB,並且不(例如)取決於傳輸類型或QoS參數而變化。這樣固定量的PSCCH資源可能不能滿足NR V2X QoS要求的範圍和實施高的資源利用效率。對NR PSCCH設計可能需要提供靈活的NR PSCCH資源配置,藉由該NR PSCCH資源配置,總PSCCH資源可以在頻域(例如RB的數量)和時域(例如在一個時 槽中佔用的符號的數量)中被變化。另外,LTE規定固定PSCCH頻率資源放置。
LTE PSCCH頻率資源可以被放置在次通道的前兩個RB處,該次通道具有被分配用於相關聯的PSSCH傳輸的最低次通道索引。藉由這種分配,PSCCH不能像LTE和NR空中介面(Uu)PDCCH那樣利用通道頻率分集。由於潛在的大的TB大小,NR PSSCH傳輸可能佔用大量的頻率資源,並且藉由使用在NR V2X中的循環前綴正交分頻多工(CP-OFDM),所分配的PSSCH頻率可能是不連續的。由此,NR V2X傳輸可以具有高度的頻率分集,以用於PSCCH(尤其是用於大TB傳輸)。
由於使用分時多工用於PSCCH和/或PSSCH傳輸,所提出的NR PSCCH和PSSCH設計可能需要高傳訊開銷。當PSSCH傳輸佔用非連續的頻率資源(例如非連續的次通道組)時,目前討論的用於NR V2X PSCCH/PSSCH多工的TDM配置可能需要為每個不同的PSSCH頻率資源集合使用PSCCH傳輸。這可能增加控制通道開銷,特別是當PSSCH傳輸頻率資源分配被片段化時。
本文描述了用於PSCCH資源確定的解決方案。具體地,對於側鏈路(SL)傳輸,可以使用、配置或確定一個或複數SL資源池。資源池可以是用於側鏈路傳輸的次通道集合。術語“資源池”可以與“池”、“資源集”、“側鏈路資源池”或“SL資源池”互換使用。當確定側鏈路資源池時,可以應用一個或複數解決方案。
例如,在一些解決方案中,可以在側鏈路頻寬部分(BWP)中確定、定義或使用次通道集合,其中可以基於一個或複數參數來確定用於SL BWP的次通道的數量。這些參數可以包括SL BWP的頻帶(例如,用於SL BWP的RB的數量和/或所使用的參數配置)、參數配置(例如,子載波間距)或預留 資源的數量(例如,資源塊(RB)和/或符號)。預留的RB和/或符號可以是落在SL BWP內但不被用於側鏈路鏈路傳輸的複數RB。預留的資源(RB或符號)可以被稱為速率匹配資源。
在一些解決方案中,可以配置一個或複數資源池,並且資源池可以包括一個或複數次通道。可以基於一個或複數參數來確定用於資源的相關聯的次通道。這樣的參數可以包括所配置的資源池的數目。在一種場景中,資源池的複數次通道可以在複數配置的資源池之間均勻分散。例如,這種次通道分散可以表示為N_subpool=floor(N_sub/N_pool),其中N_subpool表示每個池的次通道的數量,N_subpool表示SL BWP內的次通道的數量,並且N_pool表示為SL BWP配置的池的數量。用於資源的相關聯的次通道可以由較高層配置來確定。例如,對於每個資源池配置,gNB可以配置與該池相關聯的次通道集合。
在一種解決方案中,可以為SL BWP配置一個或複數資源池,並且可以為每個資源池配置一個或複數屬性。用於資源池的一個配置屬性可以是次通道配置。該配置可以包括例如次通道集合,或者PSCCH和PSSCH多工方案。例如,可以使用一個或複數PSCCH和PSSCH多工方案,並且可以在配置中指示使用或將要使用的多工方案。為一個或複數資源池中的每一個配置的PSCCH和PSSCH多工方案可以包括但不限於時域和/或頻域多工。用於每個資源池的配置屬性可以包括一個或複數服務品質(QoS)臨界值。例如,如果側鏈路傳輸的QoS低於與資源池相關聯的QoS臨界值,則源WTRU可以不使用或不被允許使用資源池。如果側鏈路傳輸的QoS不低於QoS臨界值,則源WTRU可以使用資源池來傳輸PSCCH或PSSCH傳輸。QoS參數可以包括PPPP(優先順序)、PPPR(可靠性)和/或範圍,並且可以針對每 個QoS參數個別地配置臨界值。在一個範例中,如果任何一個QoS參數都不超過臨界值,則源WTRU可以不被允許使用資源池。
用於每個資源池的配置屬性可以包括一個或複數訊務類型,例如單播、組播或廣播,並且訊務類型可以基於用於加擾(scramble)用於PSCCH的SCI的CRC的RNTI、SCI格式或SCI的內容中的一者或多者被確定。用於每個資源池的配置屬性可以包括用於一個或複數PSCCH、PSSCH和/或PSFCH傳輸的一個或複數解調參考信號(DM-RS)配置,其可以包括類型1映射或類型2映射、DM-RS時間和/或頻率密度;或者用於每個資源池的配置屬性可以包括所支援的最大都卜勒頻率。
可以配置最大都卜勒頻率D_max,並且如果用於鏈路的最大都卜勒頻率(例如兩個WTRU的相對都卜勒頻率)高於該最大值,則源WTRU可以不使用或被可以不被允許使用資源池。在一些實施例中,最大都卜勒頻率限制或約束可以僅用於單播訊務。
每個資源池的配置屬性可以包括啟用或禁用HARQ回饋的配置。可替換地,一個或複數實體側鏈路回饋通道(PSFCH)可以存在於資源池中或時槽中。用於每個資源池的配置屬性可以規定資源池的模式。例如,如果資源池內的次通道被配置有連續RB,則資源池可以被配置用於局部模式。如果資源池內的次通道被配置有非連續RB,則資源池可以被配置用於分散式模式。用於每個資源池的配置屬性可以規定該資源池是傳輸器池還是資源池,即,該資源池是否用於側鏈路發送或接收。
在本文所述的解決方案中,WTRU可以確定用於PSCCH傳輸的一個或複數SL資源。可以基於載波和/或頻寬部分(BWP)內的頻率中的連續RB集合(或非連續)或者時槽內的連續或非連續符號集合中的一個或複數來定 義、確定、配置或使用可以進行PSCCH傳輸所藉由的次通道,其中符號可以是DFT-s-OFDM或CP-OFDM符號。
可以基於諸如類型1 DM-RS映射或類型2 DM-RS映射的相關聯的DM-RS配置來定義、確定、配置或使用可以進行PSCCH傳輸所藉由的次通道,並且基於相關聯的DM-RS配置,DM-RS在頻率和/或時間上的密度可以不同。
可以基於用於DM-RS(例如,用於PSCCH、PSSCH和/或PSFCH傳輸)的加擾序列來定義、確定、配置或使用可以進行PSCCH傳輸所藉由的次通道,並且可以基於次通道索引來初始化加擾序列。
本文描述了用於確定用於PSCCH傳輸的次通道的解決方案。圖2提供了多次通道PSSCH傳輸的概覽圖。WTRU可以確定在一個SL時間資源中應用SL資源集合,例如在一個SL TB內的PSSCH傳輸的時槽,在該時槽中傳輸一個SL TB。所選擇的SL資源可以是連續的或不連續的,如圖2所示。在220所示的連續PSSCH中,可以使用複數連串的次通道。在210所示的非連續PSSCH中,次通道可以分散在SL資源池230中,其可以用特別頻寬來定義。WTRU可以基於在感測過程中確定的資源可用性來確定這種SL資源的集合。
在PSSCH次通道之間,即,在為PSSCH傳輸確定的次通道之間,WTRU可以確定一個或複數PSSCH次通道集合,從這些次通道集合中包括用於相關聯的PSCCH傳輸的PSCCH資源。例如,次通道231可以定義PSSCH內的頻率資源,藉由其而發送PSCCH傳輸。SL資源池可以另外包括定義的SL時間資源232。次通道確定可以包括,例如,一個PSSCH次通道用於一個相關聯的PSCCH,其可以用於一級SCI傳輸;用於一個相關PSCCH的PSSCH次通道集合,其可以用於一級SCI傳輸;一個PSSCH次通道用於兩個 相關聯的PSCCH(PSCCH_1和PSCCH_2),其可以用於兩級SCI傳輸;或者是用於兩個相關聯的PSCCH(PSCCH_1和PSCCH_2)的PSSCH次通道集合,其可以用於兩級SCI傳輸。在最後一種情況下,WTRU可以基於不同的規則或參數來確定用於PSCCH_1和PSCCH_2的次通道。
這些參數可以包括例如PSCCH中攜帶的SCI格式類型(例如單播SCI、多播SCI或廣播SCI),包含WTRU共同資訊的SCI(例如兩級SCI傳輸中的第一SCI),或包含WTRU特定資訊的SCI(例如兩級SCI傳輸中的第二SCI)。
參數可以包括SL BWP配置;PHY ID,其可以是由較高層配置的源ID、目的地ID或HARQ過程ID;鏈路ID、組ID或服務ID,其中的任何一個都可以提供WTRU可以用來區分複數已建立的單播、多播和廣播傳輸的鏈路索引,或者WTRU可以用來區分其所訂閱的廣播傳輸服務的服務ID;相關聯的SL傳輸QoS參數,例如優先順序、可靠性或潛時和範圍;次通道條件,其可以全部或部分基於SL回饋資訊(CQI/PMI/RI)、WTRU定位資訊、WTRU移動性資訊、都卜勒估計、通道互易性(reciprocity)、LOS偵測、或其任意組合;或者波束成形配置,例如用於頻率範圍2(FR2)操作中的PSCCH資源的空間域傳輸濾波配置。
在一些解決方案中,WTRU可以基於SCI格式類型選擇PSSCH次通道,在該次通道中包括PSCCH資源。
為了排程廣播SCI傳輸或者包含WTRU共同資訊的SCI之傳輸,WTRU可以在連續和非連續的PSSCH傳輸間選擇具有最低次通道索引的PSSCH次通道。在另一種解決方案中,WTRU可以從PSSCH傳輸的頻率資源的中心選擇PSSCH次通道,藉由其來傳輸這樣的SCI。
從資源池中,WTRU可以選擇用於PSSCH傳輸的第一次通道集合,並且WTRU可以選擇用於PSCCH傳輸的第二次通道集合。PSCCH傳輸可以與PSSCH傳輸相關聯,並且例如可以包括用於PSSCH的排程資訊。第二次通道集合可以是第一次通道集合的子集。一個或複數特性可應用於第一或第二次通道集合中的一者或兩者。第二次通道集合可以是具有最低或最高次通道索引的次通道,並且可以基於次通道在頻域中的遞增或遞減順序來確定次通道索引。可以基於一個或複數系統參數來確定第二次通道集合,該系統參數包括但不限於時槽號、子訊框號、實體胞元ID、載波ID或諸如SFN之類的無線訊框號。可以基於為第一次通道集合選擇、確定、使用或排程的次通道的數目來確定第二次通道集合。
在另一種解決方案中,一個或複數PSCCH可被用於傳輸用於PSSCH傳輸的排程資訊。WTRU可以選擇第一次通道集合來傳輸用於PSSCH傳輸的排程資訊,並且WTRU可以確定用於與排程的PSSCH相關聯的一個或複數PSCCH傳輸的第二次通道集合。WTRU可以基於如本文所揭露的一個或複數標準來做出這種確定。
例如,用於第一PSCCH的次通道(可被稱為PSCCH-1)可基於用於WTRU組的一個或複數共同參數來確定。該一個或複數共同參數或可以包括但不限於次通道ID,或者當複數次通道被排程或用於PSSCH傳輸時的第一次通道ID;該第一次通道集合的集合ID,其中一個或複數集合ID可以用於排程藉由具有一個或複數次通道的PSSCH的傳輸;或者時槽號或子訊框號。
在一些實施例中,用於第一PSCCH的次通道可以在預定頻率位置中傳輸,該預定頻率位置可以是例如從第一次通道集合內的第一RB開始的RB集合。
在一些實施方式中,用於第二PSCCH的次通道(可被稱為PSCCH-2)可基於一個或複數WTRU特定參數來確定。這樣的WTRU特定參數可以包括但不限於鏈路身分、源WTRU或目的地WTRU的ID;訊務類型;QoS參數、範圍參數和PSSCH傳輸的DM-RS配置。
鏈路身分可以根據源ID和目的地ID而被確定。此後,術語“源ID”可以與術語“傳輸器ID”、“TX ID”和/或“源WTRU ID”互換使用。此外,術語“目的地ID”可以與術語“接收器ID”、“Rx-ID”和/或“目的地WTRU ID”互換使用。在一些實施例中,如果源ID和目的地ID的長度相同,則確定鏈路身分的函數可以是源ID和目的地ID的互斥運算。在一些實施例中,鏈路身分可以是源ID和目的地ID的組合。在一些實施例中,鏈路身分可以由gNB基於源ID和目的地ID來分派。例如,可以為源ID和目的地ID之間的鏈路分派號碼。
可以基於與SCI相關聯的RNTI確定訊務類型。例如,單播訊務可以使用第一RNTI(例如U-RNTI),其可以使用SCI的循環冗餘碼(CRC)被加擾。組播訊務可以使用第二RNTI(例如G-RNTI),其可以使用SCI的CRC被加擾。廣播訊務可以使用第三RNTI(例如B-RNTI),其可以使用SCI的CRC被加擾。在一些實施例中,可以基於一個或複數SCI格式來確定訊務類型。在這種情況下,第一SCI格式可以用於單播訊務,第二SCI格式可以用於組播訊務,且第三SCI格式可以用於廣播訊務。
對於上述解決方案,如果使用單個PSCCH傳輸來排程PSSCH傳輸,則PSCCH傳輸可以是第一PSCCH傳輸或第二PSCCH傳輸,但是仍然可以與這裡所揭露的實施例一致。
在本文揭露的解決方案中,WTRU可以基於SL BWP配置來選擇PSSCH次通道,在該次通道中包括PSCCH資源。WTRU可以基於如上所述 的一個或複數參數來確定PSCCH資源,如圖3中的範例所示。在301處,WTRU可以開始用於PSCCH_1和PSCCH_2資源的次通道選擇。如在310處所示,WTRU可以確定一個或複數QoS參數(例如優先順序PPPP或範圍PPPR)是否超過配置的臨界值。如果是,則在311處,WTRU可以選擇每個PSSCH次通道,在該次通道中包括PSCCH_1和PSCCH_2資源,實質上如上所述。如果QoS參數沒有超過預配置的臨界值,則在320處WTRU可以確定要被傳輸的SCI是否是廣播SCI。如果是,則在321處,WTRU可以選擇具有較低索引的次通道。如果要被傳輸的SCI不是廣播SCI(即SCI將被單播或多播),則在330處,WTRU可以確定選擇所來自的PSSCH次通道是否是連續的次通道。如果是,則在340處,WTRU進一步評估總PSSCH頻寬是否小於臨界值。如果是,則WTRU可以基於PHY ID或鏈路ID中的至少一者來選擇PSSCH次通道,如在331處所示。如果PSSCH的次通道不是連續的,或者總PSSCH BW滿足或者超過臨界值,則在332處,WTRU可以基於CSI回饋或者互易性來選擇具有最好通道條件的PSSCH次通道。
WTRU可以被配置有至少一個側鏈路BWP和一個或複數空中介面(Uu)BWP。該至少一個側鏈路BWP可以用於側鏈路傳輸,該一個或複數Uu BWP可以用於Uu傳輸。
在配置了一個或複數SL BWP的一些實施例中,當WTRU處於覆蓋範圍內或執行覆蓋範圍內的側鏈路傳輸時,第一SL BWP可用於側鏈路傳輸,並且當WTRU處於覆蓋範圍外或執行覆蓋範圍外的側鏈路傳輸時,第二SL BWP可用於側鏈路傳輸。在其它實施例中,SL BWP可以用於覆蓋範圍內的側鏈路傳輸和覆蓋範圍外的側鏈路傳輸。
在一些實施例中,可以使用一種或多種SL BWP類型。例如,第一SL BWP類型可以用於覆蓋範圍內側鏈路傳輸,而第二SL BWP類型可以用 於覆蓋範圍外側鏈路傳輸。在一些情況下,可以基於SL BWP類型來確定DM-RS類型(例如類型1 DM-RS映射或類型2 DM-RS映射)或者次通道配置(例如局部或分散式次通道)。在一些實施例中,SL BWP可以與一個或複數Uu BWP完全或部分重疊。SL BWP可以被配置在預設BWP之內,或者與預設BWP共同延伸,並且預設BWP可以包括用於Uu的SSB。
在一種解決方案中,當WTRU被配置具有與Uu BWP重疊的SL BWP時,WTRU可以選擇不位於Uu BWP中的一個或複數PSSCH次通道。可以應用以下情況中的一個或複數個。在一種情況下,當SL BWP與可以是預設BWP的Uu BWP部分重疊時,可以不同地使用或處理與Uu BWP重疊的SL資源和與Uu BWP不重疊的SL資源。例如,與Uu BWP重疊的SL資源可以被稱為第一SL資源,而與Uu BWP不重疊的SL資源可以被稱為第二SL資源。SL資源可以是次通道或資源池。第一SL資源和第二SL資源可以與個別的QoS限制或臨界值相關聯。例如,第一SL資源可以與第一QoS臨界值相關聯,並且第二SL資源可以與第二QoS臨界值相關聯。QoS臨界值可以是最低要求的QoS參數值,其指定例如側鏈路傳輸應當高於給定值以便使用相關聯的SL資源。在一些實施例中,第一QoS限制可以高於第二QoS限制。因此,被配置成以變化的優先順序執行側鏈路傳輸的WTRU或節點可以在相關聯的QoS參數高於臨界值時使用第一SL資源。否則,第二SL資源可以用於側鏈路傳輸。
在一些實施例中,第一SL資源和第二SL資源可以與用例相關聯,例如覆蓋範圍內或覆蓋範圍外場景。例如,第一SL資源可以用於覆蓋範圍內的側鏈路傳輸,而第二SL資源可以用於覆蓋範圍外的側鏈路傳輸。用例可以包括但不限於車輛列隊、高級駕駛、擴展感測器或遠端駕駛,並且每個用例可以具有不同的要求值,諸如潛時、可靠性或資料速率值。
在一些情況下,可以基於以下因素中的至少一個來使用第一SL資源或第二SL資源:WTRU速度或相對速度;用於源WTRU的區域id;QoS參數;該側鏈路傳輸是覆蓋範圍內傳輸還是覆蓋範圍外傳輸;或者PSCCH或PSSCH。
在另一種解決方案中,當SL BWP與Uu BWP重疊時,與一個或複數Uu實體通道重疊的SL資源可以被認為是預留資源來使用。例如,與用於Uu的SSB(例如,Uu-SSB)重疊的SL資源可以被預留或被認為是無效的側鏈路資源。Uu實體通道可以包括SSB;PDCCH共同搜尋空間;或者組共同PDCCH。SL BWP可以與UL BWP完全或部分地重疊
在這裡描述的解決方案中,WTRU可以基於與PSSCH相關聯的QoS參數來選擇一個或複數PSSCH次通道,在該PSSCH次通道中包括PSCCH資源。次通道可以是用於PSSCH傳輸的最小側鏈路資源單元。一個或複數次通道可以用於PSSCH傳輸。可以應用以下配置中的一個或複數個。
例如,每個次通道可以包括相關聯的PSCCH資源,並且相關聯的PSCCH可以位於PSSCH頻率資源內。每個次通道中的關聯PSCCH資源可以被預配置或預定為例如次通道中的前N個RB或前M個符號。
在另一個例子中,當複數次通道用於PSSCH傳輸時,相關聯的PSCCH傳輸可以藉由用於PSSCH傳輸的次通道的子集被傳輸。在一些情況下,次通道的子集可以是用於PSSCH傳輸的同一次通道集合。
在一些情況下,次通道的子集可以是小於用於PSSCH傳輸的次通道。在另一個例子中,PSSCH次通道中的PSCCH資源可以被稱為PSCCH資源單元(RU)。PSCCH可以配置有聚合等級(AL),聚合等級(AL)例如可以指定被分配用於PSCCH的控制通道單元(CCE)的數目。例如,如果使用單個PSCCH RU,則PSCCH AL可以是1,或者如果使用N個PSCCH RU,則PSCCH AL可以具有值N。在一些實施例中,如果M個次通道用於PSSCH傳輸,則可以使用多達M個PSCCH聚合等級。
在一種解決方案中,當與TB相關聯的QoS參數超過配置的或預配置的臨界值時,WTRU可以選擇PSSCH次通道以包括PSCCH資源。QoS參數可以是例如PPPR中的可靠性指示、PPPP中指示的優先順序、或範圍。在一個範例中,WTRU可以在每個所選擇的次通道中傳輸一個或複數相關聯的PSCCH的重複。
在一些實施例中,WTRU可以選擇PSSCH的所有次通道以包括PSCCH資源。在其他解決方案中,WTRU可以基於一個或複數因素確定PSSCH次通道的子集。例如,WTRU可以基於側鏈路傳輸的QoS來確定PSSCH次通道的子集以包括PSCCH資源,例如PSSCH或者一個或更複數別的TB。在這種情況下,QoS可以是一個或複數QoS參數,例如PPPP、PPPR或、範圍。如果側鏈路傳輸的QoS低於臨界值,則WTRU可以使用PSSCH次通道中的第一PSSCH次通道用於相關聯的PSCCH傳輸。如果側鏈路傳輸的QoS高於臨界值,則WTRU可以藉由PSSCH次通道的子集重複地傳輸PSCCH傳輸,即一個或複數SCI。該子集可以包括所有PSSCH次通道。在另一個範例中,WTRU可以基於側鏈路覆蓋等級來確定PSSCH次通道的子集以包括PSCCH資源。
在這裡描述的解決方案中,WTRU可以基於實體層(PHY)ID選擇一個或複數PSSCH次通道,在該次通道中包括PSCCH資源。在一個這樣的解決方案中,WTRU可以基於用於單播傳輸的一個或複數識別符來選擇用於相關聯的PSCCH的PSSCH次通道。單播傳輸的身分可以包括一個或複數識別符,例如源ID、目的地ID、源ID和目的地ID的組合、HARQ過程號、冗餘版本或NDI雙態觸變(toggle)狀態。
在一些解決方案中,WTRU可以基於源ID和應用資源池中PSSCH次通道的總數來選擇PSSCH次通道,該PSSCH次通道的索引等於算數運算,(例如模數運算)的結果。在另一種解決方案中,如果兩個PSCCH用於PSSCH排程,則用於第一PSCCH和第二PSCCH的PSSCH次通道確定可以是不同的。第一PSCCH可以攜帶第一SCI,且第一SCI可以包括PSSCH排程資訊的第一部分。第二PSCCH可以攜帶第二SCI,且第二SCI可以包括PSSCH排程資訊的第二部分。第一SCI可以具有第一SCI格式,例如SCI格式-1,並且第二SCI可以具有第二SCI格式,例如SCI格式-2。第一SCI可以包括促進第二SCI的接收的資訊,或者第一SCI可以指示第二SCI的存在。
第一PSCCH(PSCCH-1)可位於預定的次通道集合內,而用於第二PSCCH(PSCCH-2)的次通道可在第一PSCCH中指示,或從第一PSCCH中導出,或從藉由第一PSCCH傳輸的資訊中導出。
用於第一PSCCH的一個或複數PSSCH次通道可以位於PSSCH次通道內的預定位置。例如,在PSSCH次通道間具有低次通道索引的第一PSSCH次通道可用於第一PSCCH傳輸。用於第二PSCCH(PSCCH-2)的一個或複數PSSCH次通道可以在第一PSCCH中指示,或從第一PSCCH中導出,或者從藉由第一PSCCH傳輸的資訊中導出。
第一PSCCH(PSCCH-1)可位於預定的次通道集合內,而用於第二PSCCH(PSCCH-2)的次通道可根據上述識別符中的一個或複數確定。藉由基於識別符選擇用於第二PSCCH的次通道,可以隨機化用於控制通道的干擾。
在另一種解決方案中,WTRU可以基於源ID和/或HARQ過程ID以及在所應用的用於TB重傳的資源池中的次通道(例如,排程的PSSCH次通道)的總數,選擇自己的索引等於算數運算(例如,模數運算)的結果的PSSCH 次通道。次通道的總數可以等於被排程的PSSCH次通道的總數。在另一種情況下,為相關聯的PSCCH排程的PSSCH次通道內的PSSCH次通道可以基於源ID或HARQ過程ID來確定。
如本文所述,WTRU可以基於鏈路ID選擇一個或複數PSSCH次通道,在該次通道中包括PSCCH資源。
WTRU可以被配置有用於組傳輸的組ID、用於單播/組播傳輸的鏈路ID、用於廣播傳輸的服務ID、或前述ID的任意組合。在一種解決方案中,WTRU可以基於鏈路ID、組ID或服務ID中的一個或複數以及所應用的資源池中的次通道總數來選擇PSSCH次通道,該PSSCH次通道的索引等於算數運算(例如,模數運算)的結果。
如本文所述,WTRU可以基於次通道特定通道條件來選擇一個或複數PSSCH次通道,在該次通道中將包括PSCCH資源。例如,WTRU可以基於次通道CSI回饋或通道互易性中的一者或兩者,來獲得PSSCH次通道的通道條件。在一種解決方案中,WTRU可以選擇具有最高CQI值的PSSCH次通道來包括PSCCH資源,或者在自己的CQI值可以高於配置或預配置的臨界值的PSSCH次通道間隨機選擇。在另一種解決方案中,WTRU可以選擇PSSCH次通道,藉由該次通道,WTRU獲得在接收的PSCCH或PSSCH傳輸間測量的最高信號品質。
如這裡所描述的,PSSCH次通道資訊的SCI指示可以被WTRU使用來識別用於PSSCH傳輸的次通道。例如,WTRU可以指示用於TB傳輸的連續PSSCH次通道的數目。例如,當PSCCH資源位於具有最低次通道索引的PSSCH次通道中時,WTRU可以基於該資訊識別所有PSSCH次通道。WTRU可以指示用於TB傳輸的每個PSSCH次通道的索引,例如用於使用非連續的次通道的PSSCH傳輸。
WTRU可以指示長度等於所應用的資源池中的次通道總數的點陣圖。WTRU可以在點陣圖中設定與用於TB傳輸的PSSCH次通道相對應的位元。
這裡描述了用於確定用於第一PSCCH傳輸PSSCH_1的資源和用於第二PSCCH傳輸PSSCH_2的資源之間的關聯的解決方案。在一些實施方式中,WTRU可以使用用於每個PSCCH的不同規則來選擇次通道,在該次通道中包括用於PSCCH_1和PSCCH_2的資源。例如,在兩級SCI傳輸中,WTRU可以基於如上所述的不同規則選擇PSSCH次通道(其中包括用於PSCCH_1的PSCCH資源),以及另一個次通道(其中包括用於PSCCH_2的資源)。WTRU可以在PSCCH_1中傳輸用於所有SL WTRU的SCI,且因此WTRU可以選擇具有最低次通道索引的PSSCH次通道。這可以降低偵測PSCCH_1所需的解碼程度,因為WTRU可以藉由遵循次通道索引的升序來解碼所有次通道中的PSCCH。WTRU可以在PSCCH_2中傳輸WTRU特定資訊,其可以與PHY ID或鏈路ID中的一者或兩者相關聯;因此,WTRU可以基於PHY ID或鏈路ID中的一者或兩者來選擇PSSCH次通道用於PSCCH_2資源。對於具有高PPPR值或範圍中的任一個或兩者的TB傳輸,WTRU可以確定選擇單個PSSCH次通道,在該次通道中包括PSCCH_1和PSCCH_2資源。在這種情況下,在PSCCH_1傳輸中,不需要用於PSCCH_2的進一步次通道資訊。
圖4提供了WTRU可藉以選擇一個或複數PSSCH次通道(其中包括PSCCH_1和PSCCH_2資源)的條件的範例表示。如在401處所示,WTRU可以開始用於PSCCH_1和PSCCH_2資源的次通道選擇。如在410處所示,WTRU可以確定一個或複數QoS參數(例如優先順序PPPP或範圍PPPR)是否超過配置的臨界值。如果是,在411處,WTRU可以選擇每個次通道,在 該次通道中包括PSCCH_1和PSCCH_2資源,實質上如上所述。如果QoS參數沒有超過預配置的臨界值,則在420處,WTRU可以確定哪個PSSCH次通道分配PSCCH_1。如果是,則在421處,WTRU可以選擇具有較低索引的次通道用於PSCCH_1。如果WTRU確定哪個PSSCH次通道分配PSCCH_2,則WTRU可以在430處進一步確定選擇所來自的PSSCH次通道是否是連續的次通道。如果是,則在440,WTRU進一步評估總PSSCH頻寬是否小於臨界值。如果是,則WTRU進一步評估PHY ID或鏈路ID是否可用。如果是,則WTRU基於PHY ID或鏈路ID中的至少一個或二者來選擇PSSCH次通道,如在431處所示。如果PSSCH的次通道不連續,或者總PSSCH BW滿足或者超過臨界值,或者PHY ID或者鏈路ID不可用,則在432處,WTRU可以基於CSI回饋或者用於PSCCH_2的互易性來選擇具有最佳通道條件的PSSCH次通道。
PSCCH_1和PSCCH_2資源可以位於相同或不同的PSSCH次通道之間,如圖5中的例子所示。除了PSSCH次通道分配資訊之外,WTRU可以在PSCCH_1中包括識別PSCCH_2資源所需的資訊。應當注意,在SL鏈路中,接收WTRU可能不具有解密傳輸WTRU如何選擇PSCCH_1和PSCCH_2資源所需的資訊。
圖5描述了在連續和非連續的PSSCH次通道中PSCCH_1和PSCCH_2資源放置的各種範例。如510、520、530和540所示,PSCCH_1和PSCCH_2可被放置於連續的PSSCH次通道中,而550、560、570和580描述了PSCCH_1和PSCCH_2在非連續通道中的佈置。510、530和550一般地描述了PSCCH_1和PSCCH_2可共同位於相同的次通道中,510和550顯示了兩者包括在所有可用次通道中,且530顯示了兩者只包括在具有低索引的次通道中。如520 和560所示,PSCCH_1可僅位於由次通道索引所確定的最低的次通道中,而PSCCH_2被包括在每個剩餘的次通道中。
在一些解決方案中,WTRU可以在PSCCH_1中明確地指示PSCCH_2資源可以位於之中的PSCCH次通道。例如,WTRU可以使用PSCCH_1中的點陣圖欄位,並且將該位元設定為與包括PSCCH_2資源的PSSCH次通道相對應的值。
在一些解決方案中,WTRU可以在PSCCH_1中包括資訊,其可以指示如何確定PSCCH_2資源。在一些範例中,WTRU可以在PSCCH_1中包括位元欄位,並且每個碼點可以對應於PSCCH_2的配置或預配置的PSSCH次通道確定。在一些範例中,WTRU可以被配置或預配置有3位元欄位,並且每個碼點可以指示如下面表1中所示的資訊,該表總結了PSCCH_1中攜帶的SCI的3位元欄位的值的範例。注意,在該範例中,當引入附加PSCCH_2資源確定規則時,可以使用三個以上的碼點。
Figure 110147180-A0202-12-0036-1
本文描述了涉及WTRU確定PSCCH_2解碼所需的資訊的實施例。在一些實施方式中,WTRU可以被配置或預配置有一組用於PSCCH_2的SCI 格式、類型或大小。每個PSCCH_2 SCI格式、類型或大小可以具有不同數量的總SCI酬載資訊位元、SCI酬載中的不同位元欄位,並且可以在每個位元欄位中傳達不同的資訊。PSCCH_2 SCI格式、類型或大小可以被配置或預先配置成適用於一個或複數特性。這樣的特性可以包括PSSCH傳輸類型。例如,用於單播PSCCH_2 SCI和組播PSCCH_2 SCI的SCI位元的總數可以不同。在另一個例子中,用於單播PSCCH_2 SCI和組播PSCCH_2 SCI的SCI位元的總數可以相同,但是位元欄位可以不同。在一些情況下,可以使用單播或組播指示位元,並且可以在某些位元欄位中應用零填充以確保SCI位元的相同總數。
上述特性可以包括在相關聯的PSSCH中傳輸的TB的QoS參數。例如,WTRU可以被配置成具有用於高可靠性TB傳輸的緊湊PSCCH_2 SCI格式、類型或大小。此外,與具有最小通信範圍(MCR)要求的PSSCH傳輸相關聯的單播或組播PSCCH_2 SCI可以包括SCI中的位元欄位,其可以用於傳達MCS值。
上述特性可以包括HARQ過程的活動性,例如,HARQ回饋是被啟用還是被禁用。例如,與HARQ被禁用的PSSCH傳輸相關聯的單播PSCCH_2 SCI格式、類型或大小可以不包括HARQ過程ID、RV或NDI的位元欄位。與啟用了HARQ的PSSCH傳輸相關聯的單播PSSCH_2 SCI格式、類型或大小還可以包括用於HARQ重傳的資源預留的位元欄位。
上述特性可以包括CSI報告的活動性,例如,CSI報告是被啟用還是被禁用。例如,與CSI被禁用的PSSCH傳輸相關聯的單播PSCCH_2 SCI格式、類型或大小可以不包括與CSI請求資訊或CSI報告資源預留資訊有關的位元欄位。在另一範例中,與包括多工的CSI報告位元的PSSCH傳輸相關 聯的單播PSCCH_2 SCI格式、類型或大小可以包括新的位元欄位,以指示PSSCH資源中解碼的CSI位元的存在。
上述特徵可以包括被設計為指示僅NACK回饋或ACK/NACK回饋的組HARQ方案。例如,指示ACK/NACK回饋的群組HARQ傳輸方案可以包括用於ACK和NACK傳輸資源預留的附加SCI位元欄位。
在一些實施方式中,WTRU可以被配置或預配置有PSCCH_2 SCI格式、類型或大小,以用於啟用HARQ和CSI的單播傳輸。在另一個範例中,PSCCH_2 SCI格式、類型或大小可以被配置或預配置用於在HARQ和CSI被禁用的情況下的單播傳輸。
在一些實施方式中,WTRU可以基於PSCCH_1 SCI傳輸的資源分配,從配置或預配置的集合中選擇PSCCH_2 SCI格式、類型或大小,並且WTRU可以使用PSCCH_2 SCI格式、類型或大小來解碼PSCCH_2傳輸。例如,WTRU可以被配置或預配置有專用資源分配,例如資源池或者資源池中用於單播傳輸的次通道或子載波集合。WTRU因此可以在這些配置的或預配置的資源中根據單播PSCCH_2 SCI格式、類型或大小解碼PSCCH_2 SCI。類似地,WTRU可以被配置或預配置有用於組播傳輸的這種專用資源分配,並且WTRU可以根據這些資源中的組播PSCCH_2 SCI格式、類型或大小來解碼PSCCH_2 SCI。
在另一種解決方案中,WTRU可以基於從PSCCH_1 SCI解碼的資訊,從配置或預配置的集合中選擇並解碼PSCCH_2 SCI格式、類型或大小。解碼資訊可以包括例如鏈路身分。鏈路身分可以根據WTRU源ID和WTRU目的地ID來確定。在另一範例中,鏈路身分可以在鏈路建立過程期間在較高層傳訊中交換。解碼資訊可以包括WTRU L1源ID和L1目的地ID。這種WTRU L1 ID可以是基於由較高層分派的並且在L1傳訊中攜帶的WTRU ID。解碼後的資訊可以包括在相關聯的PSSCH中傳輸的TB的QoS參數。例如,WTRU可以指示與在相關聯的PSCCH_1 SCI傳輸中傳輸的TB相關聯的優先順序、潛時、可靠性和最小通信範圍資訊。此類QoS參數可基於由較高層指示的PQI/5QI資訊。解碼後的資訊可以包括用於排程PSSCH的頻域資源分派。解碼資訊可以包括PSCCH_1 SCI中PSCCH_2 SCI格式、類型或大小的顯式指示。
諸如鏈路身分、WTRU L1源和目的地ID資訊的身分資訊可以在PSSCH_1 SCI位元欄位中明確地被指示或藉由CRC加擾被應用。在一些解決方案中,WTRU可以被配置或預配置有身分資訊與單播或組播傳輸之間的關聯。WTRU可以基於鏈路身分、L1源ID或目的地ID來確定是否根據單播或組播PSCCH_2 SCI格式、類型或大小來解碼PSCCH_2 SCI。在另一種解決方案中,WTRU可以基於PSCCH_1 SCI中攜帶的顯式指示來確定SCI格式、類型或大小。例如,當PSCCH_1 SCI的SCI格式、類型或大小位元欄位指示單播或組播傳輸時,WTRU可以確定繼續解碼PSCCH_2 SCI。
在一些實施方式中,L1 WTRU源ID和目的地ID可以基於24位元的L2 WTRU ID來導出,例如使用L2 WTRU ID的8或16個最低有效位元(LSB)。WTRU ID的這種縮短版本可能導致衝突,例如,在具有相同的8或16個LSB的兩個WTRU L2 WTRU ID之間。在一些解決方案中,L1 WTRU ID(例如目的地ID)可以與L2 WTRU ID相同,並且被明確地攜帶在PSCCH_1 SCI中。這可能增加L1傳訊開銷。
在一種解決方案中,WTRU ID(例如L1目的地ID)可以在PSCCH_1 SCI和PSCCH_2 SCI中都被攜帶。例如,WTRU目的地ID的8位元可以在PSCCH_1 SCI中被明確地指示,並且WTRU目的地ID的剩餘部分(16位元)可以在PSCCH_2 SCI中被明確地或隱含地指示。隱式指示可例如經由基於 或使用CRC對PSCCH_2 SCI加擾來傳達。隱式指示可以經由PSCCH_2 SCI RB的分配來傳達,諸如開始RB索引或基於WTRU目的地ID的剩餘16位元的DMRS配置或序列。因此,WTRU可以解碼PSCCH_1 SCI和PSCCH_2 SCI以用於廣播、組播或單播傳輸。一個優點可以是當L1 WTRU ID是L2 WTRU ID的一部分時,最小化由於L1 WTRU ID的衝突而導致的錯誤SCI解碼。
在一些解決方案中,WTRU ID(例如L1源ID)可以在PSCCH_2 SCI中攜帶,以用於單播和組播傳輸。為了避免WTRU ID衝突同時保持低的L1傳訊開銷,WTRU可以藉由CRC加擾PSCCH_2 SCI、配置DMRS(例如序列)或基於16位元LSB為PSCCH_2 SCI分配一個或複數頻率(例如開始RB)來隱式地指示L2 WTRU ID的16個LSB。剩餘的8位元可以明確地在PSCCH_2 SCI的位元欄位中攜帶。
在另一種解決方案中,WTRU可以被配置或預配置有身分資訊或QoS參數與一個或複數傳輸特徵之間的關聯。例如,單播身分資訊可以指示針對相關聯的PSSCH傳輸,HARQ回饋和重傳是被啟用還是被禁用。在另一範例中,單播身分資訊可以指示是否可以針對相關聯的PSSCH傳輸啟用CSI報告。在另一個例子中,該組身分資訊可以指示是否僅基於NACK或基於ACK/NACK的HARQ傳輸可以應用於相關聯的PSSCH傳輸。
在一些解決方案中,WTRU可以在PSCCH_1 SCI中包括用於相同單播鏈路的兩個不同的身分資訊;一個可以指示啟用HARQ回饋和重傳,而另一個可以指示禁用HARQ回饋和重傳。因此,WTRU可以基於從PSCCH_1 SCI解碼的鏈路身分、L1源ID或目的地ID,在HARQ被啟用或禁用的情況下確定是否根據配置或預配置的單播PSCCH_2 SCI格式、類型或大小解碼PSCCH_2 SCI。利用相同的方法,WTRU可以基於從PSCCH_1 SCI解碼的鏈路身分、L1源ID或目的地ID,在CSI報告被啟用或禁用的情況下根據 配置的或預配置的單播PSCCH_2 SCI格式、類型或大小確定是否解碼PSCCH_2。
在另一個範例中,當諸如優先順序、可靠性、潛時或範圍的QoS度量從PSCCH_1 SCI被解碼並且超過配置或預配置的臨界值時,WTRU可以在HARQ被啟用的情況下根據配置或預配置的單播PSCCH_2 SCI格式、類型或大小解碼PSCCH_2。PSCCH_1 SCI中的QoS資訊可以隱含地指示對於相關聯的TB傳輸啟用還是禁用HARQ回饋或重傳。利用PSCCH_1 SCI中的QoS資訊和CSI報告啟用/禁用特徵之間的相同關聯,WTRU可以基於從PSCCH_1 SCI解碼的QoS資訊,在CSI報告被啟用或禁用的情況下根據配置或預配置的單播PSCCH_2 SCI格式、類型或大小確定是否解碼PSCCH_2。
在另一個例子中,當PSSCH頻率資源從PSCCH 1 SCI解碼時,PSCCH 2 SCI格式、類型或大小可以相應地確定。例如,如果PSSCH佔用多於一個的次通道,則可以選擇與較大的尺寸相關聯的SCI格式、類型或大小。對於組播傳輸,WTRU可以基於從組播PSCCH_1 SCI傳輸中解碼的鏈路身分、L1源ID、目的地ID或QoS資訊,在HARQ使用僅NACK或ACK/NACK選項的情況下,根據組播SCI格式、類型或大小來確定是否解碼組PSCCH_2 SCI。
本文描述了針對確定PSCCH_2 SCI傳輸配置的解決方案。為了根據確定的PSCCH_2 SCI格式、類型或大小解碼PSCCH_2 SCI,WTRU可以確定PSCCH_2 SCI傳輸配置。傳輸配置可以包括PSSCH_2 SCI傳輸的資源元素分配,例如PSCCH_2 SCI傳輸所佔用的符號、PRB和子載波。傳輸配置可包括PSCCH_2 SCI傳輸的傳輸格式,例如寫碼率(coding rate)、聚合等級和重複方案。傳輸配置可以包括PSCCH_2 SCI傳輸的多天線傳輸方案,諸如所應用的天線埠的數量或預解碼配置。WTRU可以基於所確定的 PSCCH_2格式、類型或大小中的至少一個,或者從PSCCH_1 SCI解碼的相關聯的PSSCH的資源預留,來確定PSCCH_2 SCI傳輸資源元素分配。
在一些解決方案中,WTRU可以在為其相關聯的PSSCH分配的資源中接收PSCCH2 SCI資訊。例如,PSCCH_2 SCI位元可以被編碼並與次通道中的相關PSSCH位元多工,該次通道被排程用於PSCCH_1 SCI傳輸中的PSSCH。在另一個例子中,WTRU可以在相關聯的PSSCH中的MAC CE中傳輸編碼的PSCCH_2 SCI位元。在這種情況下,WTRU可以基於在PSCCH_1 SCI中為相關聯的PSSCH預留的資源來確定PSCCH_2 SCI資源元素分配。
可能有利的是,所確定的PSCCH_2 SCI格式、類型或大小的位元以足夠的寫碼增益被編碼,以確保PSCCH_2 SCI解碼性能。這可能是因為,例如,該傳輸可以是“一次性的(one-shot)”而沒有任何HARQ重傳,並且PSCCH_2 SCI格式、類型或大小可以具有不同數量的總位元數和位元欄位,其可能還需要不同級別的保護以免不利通道條件和路徑損耗。
因此,在所確定的資源元素分配中,WTRU可以進一步基於一個或複數因素確定資源元素的數量、這些資源元素的位置以及所確定的PSCCH_2格式、類型或大小的寫碼率。這些因素可包括PSCCH_2格式、類型或大小;該相關聯的PSSCH的調變和寫碼方案(MCS);與該相關聯的PSSCH有關的QoS參數;該相關聯的PSSCH的DMRS配置;天線埠配置;WTRU身分資訊,例如鏈路身分、WTRU L1源ID或WTRU L1目的地ID;PSCCH_1 SCI的聚合等級;或者PSSCH MCS或寫碼率。
在一個範例中,WTRU可以基於從WTRU身分資訊中導出的WTRU TX-RX距離來確定PSCCH_2 SCI傳輸聚合等級或寫碼率。WTRU可以將地理位置資訊與其身分資訊相關聯,並且定期更新該資訊。WTRU可以被配 置或預配置有一組寫碼率,並且每一者可以與WTRU TX-RX距離值相關聯。因此,WTRU可以基於WTRU身分資訊來選擇PSCCH_2 SCI的聚合等級或寫碼率。
此外,WTRU可以基於為PSCCH_2 SCI解碼選擇的PSCCH_2格式、類型或大小來確定PSCCH_2 SCI的寫碼率。例如,WTRU可以被配置或預配置有一組寫碼率,其中每個寫碼率與所配置或預配置的PSCCH_2格式、類型或大小相關聯。
WTRU可以基於PSCCH_1 SCI中指示的DMRS配置來確定PSCCH_2 SCI的MCS或寫碼率。DMRS配置,例如,時間和頻率上的序列、長度和/或密度,可以與預配置的PSCCH_2 SCI傳輸的MCS或寫碼率索引相關聯。
WTRU可以基於PSCCH_1 SCI中指示的PSSCH MCS資訊來確定PSCCH_2 SCI MCS或寫碼率。WTRU可以應用所確定的聚合等級或寫碼率以及相關聯的PSSCH的MCS資訊,來解碼PSCCH_2 SCI傳輸。
在另一種解決方案中,PSCCH_2 SCI的MCS或寫碼率可以在PSCCH_1 SCI中明確指示,並且相關聯的PSSCH的MSC資訊可以在PSCCH_2 SCI中指示。例如,PSSCH MCS資訊可以是絕對MCS索引或者可以指示PSCCH_2 SCI MCS和PSSCH MCS之間的差的偏移或差量。這可以減少PSCCH_2 SCI中所需的L1傳訊。
在另一種解決方案中,WTRU可以基於DMRS密度以及在相關聯的PSSCH內的位置,來確定PSCCH_2 SCI資源元素的位置。此外,WTRU可以確定所識別的PSCCH_2格式、類型或大小中的每個位元欄位相對於DMRS資源的位置。例如,PSSCH_2 SCI格式、類型或大小(具有啟用的HARQ)的HARQ相關位元欄位,包括L1源ID、HARQ過程ID、新資料指示 符(NDI)或冗餘版本(RV),可以在時域和頻域二者中緊接著DMRS資源進行傳輸,以提供這些位元欄位的解碼性能的強健性。
在另一種解決方案中,WTRU可以被配置或預配置有規則集,以基於在PSCCH_1 SCI中接收的QoS資訊將編碼的PSCCH_2 SCI位元分散給針對不同跳頻實例的不同頻率。對於每個PSCCH_2 SCI格式、類型或大小,WTRU可以確定在跳頻實例中哪些編碼位元可以被分散。在另一個例子中,PSCCH_2 SCI位元可以在每個跳頻實例中重複。這可以使得PSCCH_2 SCI傳輸能夠應用頻率選擇性增益。
WTRU可以基於在PSCCH_1 SCI中指示的層映射和預解碼資訊,來確定解碼PSCCH_2 SCI傳輸。例如,PSCCH_1 SCI可以指示PSCCH_2 SCI傳輸可以應用多少層。在另一種解決方案中,WTRU可以基於PSSCH_1 SCI傳輸中的DMRS配置對多天線配置執行盲偵測。WTRU可以嘗試使用用於所有配置的或預配置的天線配置的DMRS配置,來解碼PSCCH_2傳輸,並且在每個配置的或預配置的天線配置處評估CRC結果。CRC校驗可以僅對實際用於PSCCH_2傳輸的天線配置而被執行。
因此,WTRU可以從SL資源池中的最低次通道索引的PSCCH開始搜尋在每個次通道中的PSCCH_1中攜帶的SCI。當WTRU解碼PSCCH_1傳輸時,WTRU可以獲得PSSCH次通道分配資訊,並且基於上面討論的顯式或隱式指示來確定哪個或哪些PSSCH次通道包含一個或複數PSCCH_2資源。WTRU可以應用PSCCH_2資源資訊來定位和解碼PSCCH_2傳輸,並速率匹配PSSCH資料。
本文揭露了針對確定是否使用一級和二級SCI傳輸的解決方案。這種確定可以由WTRU來進行。WTRU可以基於QoS範圍要求確定是使用一級還是兩級SCI傳輸用於廣播傳輸。在一種解決方案中,當範圍參數與TB不 相關聯時,WTRU可以使用一級SCI傳輸,即執行一個PSCCH傳輸。WTRU可以使用兩級SCI傳輸,即執行兩個PSCCH傳輸,並且在PSCCH_2 SCI中攜帶基於範圍的參數(例如最小通信範圍要求和TX WTRU的位置資訊)。RX WTRU能夠基於WTRU位置資訊確定TX-RX距離,並與最小通信範圍要求進行比較。
本文描述了針對WTRU確定SL資源內的PSCCH資源的解決方案。PSCCH資源可以位於次通道內,並且次通道可以是用於側鏈路傳輸的最小資源單元。WTRU可以執行一個步驟或步驟的組合。例如,WTRU可以確定用於側鏈路傳輸的一個或複數次通道,及然後選擇所確定的一個或複數次通道內的PSCCH位置。WTRU可以感測一個或複數次通道,並選擇次通道的子集,其可以被認為是空的或可用於側鏈路傳輸。
在一些解決方案中,WTRU可以確定在所選擇的次通道中的一個或複數PSCCH資源,並且所選擇的次通道可以至少用於PSCCH和PSSCH傳輸。在所選擇的次通道內的PSCCH時間或頻率位置可以基於一個或複數參數來確定。這樣的參數可以包括,例如,鏈路身分、源ID、目的地ID、服務ID;該側鏈路傳輸的QoS參數;指示該WTRU是在覆蓋範圍內還是在覆蓋範圍外的參數。
WTRU是否使用用於PSCCH的局部資源(例如連續RB),或WTRU使用用於PSCCH的分散式資源(例如非連續RB),可以基於一個或複數因素來確定。這些因素可以包括所選擇的次通道的RB的總數,其中所選擇的次通道可以是連續的或非連續的。例如,所選擇的次通道的RB總數可以小於臨界值,並且局部資源可被用於PSCCH。否則,分散式資源可用於PSCCH。WTRU用於PSCCH的資源也可以基於DM-RS密度來確定。例如,如果DM-RS時間密度低於臨界值(例如2個符)號,則局部資源可以用於 PSCCH。否則,分散式資源可用於PSCCH。WTRU用於PSCCH的資源也可以基於所使用的訊務類型來確定。例如,當側鏈路傳輸是用於廣播或組播訊務時,分散式資源可以用於PSCCH;當側鏈路傳輸是用於單播訊務時,局部資源可以用於PSCCH。WTRU用於PSCCH的資源也可以基於QoS參數來確定。
在一些解決方案中,PSCCH資源在所選擇的次通道內的位置可以基於符號(諸如可用於側鏈路傳輸的OFDM符號或DFT-s-OFDM符號)的數量來確定。
圖6示出了從SL資源內確定PSCCH資源。WTRU可以被配置有SL資源池650,該SL資源池可以由SL時間和頻率資源組成,例如圖6所示的時槽和次通道。SL資源池可以包含由610、620、630和640示出的PSSCH資源,其中的每一個描述了在單個時槽上攜帶PSCCH資源的次通道的範例。WTRU可以使用一個SL時間資源652中的一個或一集合的SL資源藉由一個PSSCH執行傳輸,該SL時間資源可以是例如時槽。SL資源的頻率維度(即次通道)在651處以範例的方式示出。WTRU可以確定在一個或複數SL資源中用於傳輸相關聯的PSCCH的PSCCH資源集合。SL資源內的PSCCH資源可以被配置有如下參數中的任意參數:開始RB,其可以是PSCCH資源的第一RB的索引;頻寬,其可以是PSCCH資源的連串RB的數量;開始符號,其可以是PSCCH資源的第一符號的索引;持續時間或長度,其可以是PSCCH資源的連串的符號的數量;或者PSCCH資源分配模式,其可以包括局部和分散式模式。WTRU可以在局部PSCCH資源分配模式中確定一個SL資源中的一個PSCCH資源。WTRU可以在分散式PSCCH資源分配模式中確定一個SL資源中的複數PSCCH資源。
如圖6所示,時槽610描述了在分散式模式中PSSCH資源內的PSCCH資源之分配的例子,而時槽620、630和640描述了根據傳輸類型在局部模式中PSCCH資源分配的例子。時槽610描述了在PSSCH資源內用於廣播PSCCH傳輸的資源分配。時槽620描述了,例如在PSSCH通道內用於廣播傳輸的PSCCH資源的分配。時槽630描述了,例如在PSSCH次通道內用於多播PSCCH傳輸的PSCCH資源的分配。時槽640描述了,例如PSSCH次通道中用於單播傳輸的PSCCH資源的分配。
本文描述了涉及WTRU確定PSCCH資源的實施例。WTRU可以基於例如PSCCH中攜帶的SCI格式類型來確定一個或複數PSCCH資源及其參數,例如單播SCI、多播SCI、廣播SCI、包含WTRU共同資訊的SCI(例如2級SCI傳輸中的第一SCI),以及包含WTRU特定資訊的SCI(例如2級SCI傳輸中的第二SCI)。WTRU可以基於相關聯的SL傳輸QoS參數(例如優先順序、可靠性、潛時或範圍),來確定一個或複數PSCCH資源及其參數。WTRU可以基於SL資源配置(例如次通道大小和時槽持續時間),來確定一個或複數PSCCH資源及其參數。WTRU可以基於PHY ID來確定一個或複數PSCCH資源及其參數,PHY ID例如是由較高層為每個可應用的SL傳輸配置的源ID、目的地ID、HARQ過程ID。WTRU可以基於鏈路ID來確定一個或複數PSCCH資源及其參數,例如WTRU可以用來維持和區分複數已建立的單播、多播和廣播傳輸的鏈路身分和/或鏈路索引。WTRU可以基於通道條件確定一個或複數PSCCH資源及其參數,例如SL回饋資訊(CQI/PMI/RI)、WTRU定位資訊、WTRU移動性資訊、都卜勒估計、通道互易性、或LOS偵測。WTRU可以基於波束成形配置(例如用於FR2操作中的PSCCH資源的空間域傳輸濾波配置),來確定一個或複數PSCCH資源及其參數。
在一些解決方案中,WTRU可以基於PSCCH中攜帶的SCI格式類型來確定PSCCH開始RB。例如,WTRU可以被配置或預配置有在每個SCI格式的RB的數量方面相對於次通道的開始RB的偏移。在另一個範例中,WTRU可以被配置或預配置有用於每個SCI格式的絕對RB索引。在另一種解決方案中,WTRU可以基於在PSCCH中攜帶的SCI格式類型和次通道大小來確定PSCCH開始RB。WTRU可以被配置或預配置有用於每個SCI格式的偏移和預定義的次通道大小。
因此,如圖2所示,WTRU可以在一個次通道中的不同RB中執行與單播、多播和廣播傳輸相關聯的PSCCH傳輸,如先前在以上段落中所介紹和描述的。利用一個PSCCH資源,WTRU可以在與第二SCI的那些不同的RB中的兩級SCI傳輸中傳輸包含WTRU共同資訊的SCI(例如第一SCI)。在一些情況下,WTRU可以在一個PSCCH資源內的不同符號處傳輸第一SCI和第二SCI。
WTRU可以基於配置的QoS潛時需求來確定PSCCH資源開始符號、持續時間和/或長度。例如,WTRU可以確定在用於TB的時槽開始處的PSCCH資源,該TB與在封包延遲預算(PDB)中指示的低潛時相關聯,其可以低於配置的或預配置的臨界值。
WTRU可以基於配置的QoS可靠性要求來確定PSCCH資源頻寬、持續時間和/或長度。例如,WTRU可以基於PPPR或最小通信範圍來確定RB的數量和用於TB的PSCCH資源的符號。WTRU可以被配置或預配置有PSSCH資源大小、每個PPPR和最小通信範圍值之間的映射。在另一種解決方案中,WTRU可以基於特定於該次通道的可用通道條件來確定這種PSCCH資源大小。例如,WTRU可以被配置或預配置有PSCCH資源大小與SL CQI值之間的映射。
WTRU可以基於配置的或預配置的PHY ID來確定PSCCH資源開始符號、持續時間和/或長度。例如,WTRU可以藉由使用源ID或目的地ID以及次通道中的總RB的數量執行模數運算(modular operation),來確定開始RB索引。在另一個範例中,WTRU可以基於源ID和/或HARQ過程ID,來確定與重傳相關聯的PSCCH資源的開始RB索引。在另一種解決方案中,WTRU可以被配置成具有用於每個已建立的單播傳輸的唯一鏈路ID,並且WTRU可以基於該鏈路ID確定PSCCH資源開始符號、持續時間和/或長度。
WTRU可以基於為SL資源分配的次通道的大小來確定PSCCH資源分配模式。例如,WTRU可以確定進入用於PRB數量的次通道配置的分散式PSCCH資源分配模式,其中PRB數量可以大於配置或預配置的臨界值。如圖5所示,如先前在段落中介紹和描述的,在分散式PSCCH資源分配模式中,WTRU可以在一個SL資源內的一組PSCCH資源中傳輸PSCCH。例如,每個PSCCH資源在時間和頻率上可以具有相同的大小,並且可以均勻地分散在次通道頻寬內。當次通道的頻寬大於通道同調頻寬時,分散式模式可向PSCCH傳輸提供頻率分集。
在一些解決方案中,WTRU可以基於用於PSCCH傳輸的波束成形配置,來確定PSCCH資源分配模式。例如,WTRU可以確定進入局部PSCCH資源分配模式以用於使用窄波束的傳輸。窄波束傳輸可經歷減小的延遲擴展,且因此可具有大的同調頻寬。因此,可能沒有頻率分集要探索。
本文描述了針對WTRU確定L1優先順序的解決方案。WTRU可以被配置或預配置有用於每個支援的V2X服務的5QI。一組這樣的5QI值可預先指定,並且每一者可具有到預定義QoS參數組合的一對一映射。這樣的QoS參數可以包括:資源類型(例如保證位元速率(GBR)、延遲臨界GBR或非GBR);優先順序等級;封包延遲預算;封包差錯率;例如僅針對GBR 和/或延遲臨界GBR資源類型的平均視窗;例如僅針對延遲臨界GBR資源類型的最大資料叢發量。此外,WTRU可以被配置或預配置有針對每個V2X服務的最小通信範圍(MCR)要求。
可以基於TB的5QI和MCR需求來確定L1優先順序,並且在與TB的PSSCH傳輸相關聯的SCI中指示該L1優先順序。L1優先順序可以是數字指示符。數字指示符可以是以下各項中的一者或其任何組合:與5QI相同的指數;基於配置或預配置的映射的5QI值的索引;基於配置或預配置的映射的5QI值和MCR要求的索引;基於配置或預配置的映射的5QI的QoS參數的一個或子集的索引;基於配置或預配置的映射的5QI和MCR要求的QoS參數中的一個或子集的索引;或者動態配置的優先順序等級的索引。
在一些解決方案中,L1優先順序可以與5QI相同,或者WTRU可以經由SCI指示5QI值作為L1優先順序。L1優先順序值可與配置或預配置的5QI值相同,並且可對應於預先指定的5QI QoS參數,如以下表2中的範例方式所示。
Figure 110147180-A0202-12-0050-2
在一些解決方案中,WTRU可以指示5QI值作為SCI中的L1優先順序。L1優先順序值可基於到5QI值的配置或預配置映射,且可對應於預先指定的5QI QoS參數,如以下表3中的實例方式所示。5QI值可被指定或預先指定有大值,且將5QI值重新映射至小值可節省L1傳訊開銷。
表3:被映射到5QI值的L1優先順序
Figure 110147180-A0202-12-0051-3
在一些解決方案中,L1優先順序可基於配置或預配置的映射而索引到5QI索引和MCR要求。WTRU可以在L1優先順序中指示5QI和MCR需求兩者。例如,L1優先順序可為5QI參數的全集及MCR需求的索引,如以下表4中的實例所示。在L1優先順序中包括MCR的一個優點可以是經由SCI解碼隱式地指示MCR要求。
Figure 110147180-A0202-12-0051-4
在一些解決方案中,L1優先順序可被索引到5QI參數的其中一個或子集。如以下表5中的實例所示,WTRU可基於配置或預配置的映射而被配置或預配置有作為5QI參數之一的索引的L1優先順序,該QI參數可包括預設優先順序等級、封包延遲預算或封包差錯率。在一些情況下,WTRU可以基於配置或預配置的映射而被配置或預配置有作為5QI參數子集的索引的L1優先順序。例如,L1優先順序可以是如下所示的資源類型、預設優先順序等級、封包延遲預算和封包差錯率中的一個或組合的索引。在另一個例子中,L1優先順序可以是資源類型、預設優先順序等級和封包差錯率的組合的索引。
表5:被索引到5QI參數子集的L1優先順序
Figure 110147180-A0202-12-0052-5
在一些解決方案中,L1優先順序可被索引到5QI參數和MCR要求的其中之一或子集。例如,WTRU可以基於配置或預配置的映射而被配置或預配置有作為5QI參數和MCR需求中的一個或複數的索引的L1優先順序。5QI參數可以是例如預設優先順序等級、封包延遲預算或封包差錯率。
在一些解決方案中,WTRU可以基於配置或預配置的映射而被配置或預配置有L1優先順序作為5QI參數和MCR需求的子集的索引。例如,L1優先順序可以是資源類型、預設優先順序、封包延遲預算、封包差錯率或MCR要求中的一個或組合的索引,如以下表6中的範例方式所示。在另一個例子中,L1優先順序可以是資源類型、預設優先順序等級、封包差錯率或MCR要求中的一個或組合的索引。
Figure 110147180-A0202-12-0052-6
在一些解決方案中,L1優先順序可以被索引到動態配置的優先順序等級。例如,當優先順序等級不包括在5QI的配置或預配置的預設優先順序等級中時,WTRU可以被動態地配置有TB的優先順序等級。在這種情況下,WTRU可以使用L1優先順序作為動態配置的優先順序等級的索引。為了基於5QI和動態配置的優先順序等級來區分L1優先順序,被索引到所應用的動態優先順序等級的L1優先順序可以使用指定或預先指定的偏移,使得L1優先順序的值可以在特定於動態優先順序等級的指示的範圍內。
在一些解決方案中,RSRP臨界值可以在感測過程中基於L1優先順序來確定。WTRU可以使用由在感測期間解碼的L1優先順序指示的一個或複數QoS參數,基於TB的預配置或QoS參數中的一者或組合計算用於SL資源排除的RSRP臨界值。
例如,WTRU可以被配置或預配置為使用由L1優先順序指示所指示的優先順序來進行RSRP臨界值計算。在另一個範例中,WTRU可以被配置或預配置為使用封包差錯率參數。WTRU可以使用由在感測過程中解碼的L1優先順序指示的這種QoS參數和其自己的TB的相同QoS參數來計算RSRP臨界值。
在一些情況下,WTRU可以被配置或預配置為使用與L1優先順序相對應的複數QoS參數。例如,WTRU可以被配置或預配置為使用優先順序和由解碼的L1優先順序指示的封包差錯率來計算RSRP臨界值。在另一種情況下,WTRU可以被配置或預配置為基於優先順序、封包差錯率或封包延遲預算中的一者或組合來計算RSRP臨界值。
WTRU可以被配置或預配置有RSRP臨界值計算功能。另外,計算功能可以基於L1優先順序的資源類型參數(諸如延遲臨界GBR),並且可以具有與非GBR資源類型不同的功能。一個目的可以是例如允許具有延遲臨界GBR的V2X服務的TB在模式2操作中具有更高的獲取資源的概率。當在RSRP臨界值計算中應用複數QoS參數時,該功能可以包括用於每個應用的QoS參數的不同權重係數。
在一些解決方案中,WTRU可以基於其自己的TB的相應QoS參數來確定哪個或哪些QoS參數由解碼的L1優先順序指示以用於RSRP臨界值計算。WTRU可以確定在RSRP計算中使用所指示的封包差錯率參數,例如,當WTRU自己的TB具有高可靠性時(例如當所需的封包差錯率低於預 先配置的臨界值時)。在另一個例子中,WTRU可以確定使用封包延遲預算參數,當其自己的TB具有低潛時的時候(例如當其封包延遲預算低於預先配置的臨界值時)。在另一個例子中WTRU可以確定使用優先順序參數,當其TB具有高優先順序時(例如當其優先順序高於預先配置的臨界值時)。
在一些解決方案中,WTRU可以使用具有加權函數的複數QoS參數,例如在RSRP臨界值計算中將最高權重應用於其自身TB的最重要QoS參數。例如,WTRU可以分別將最高權重應用於封包差錯率或封包延遲預算(當其自己的TB具有高可靠性或低潛時的時候)。這可以允許考慮由L1優先順序指示的其他QoS參數。
在一些解決方案中,WTRU可以基於解碼的L1優先順序來確定TB的MCR需求。WTRU還可以基於TX位置資訊確定WTRU TX-RX距離,該TX位置資訊例如地理資訊和/或區域ID,其中每一個都可以在SCI中傳輸。當TX-RX距離大於MCR要求時,WTRU可以禁用HARQ回饋和/或CSI報告。
在一些解決方案中,TX/TX或TX/RX優先順序排序中的一個或兩者可以是基於L1優先順序。WTRU可以基於與每個傳輸和接收相關聯的L1優先順序,在複數同時傳輸之間或在同時傳輸和接收之間對傳輸進行優先順序排序。在一種解決方案中,WTRU可以對與由L1優先順序指示的最高優先順序的TB相關聯的傳輸或接收進行優先順序排序。
在一些解決方案中,WTRU可以基於TB的預配置或QoS參數中的一者或多者,在TX/TX和/或TX/RX優先順序排序期間應用由與傳輸或接收相關聯的L1優先順序指示的複數QoS參數。
在一些解決方案中,WTRU可以被配置或預配置為使用由L1優先順序指示的預設優先順序等級參數來確定PSFCH,當在相同時槽中發生同 時PSFCH傳輸時,在該PSFCH上執行傳輸。在另一種解決方案中,WTRU可以被配置或預配置為使用由L1優先順序指示的封包潛時預算參數。
WTRU可以以配置或預配置的順序比較由L1優先順序指示的每個QoS參數以確定優先順序排序。在一種解決方案中,當L1優先順序包括預設優先順序等級、封包潛時預算和封包差錯率時,WTRU可以被配置或預配置為以封包潛時預算、封包差錯率和預設優先順序等級的順序來對傳輸進行優先順序排序。例如,當WTRU在一個時槽中執行複數PSFCH傳輸時,WTRU可以首先確定執行與具有最低封包潛時預算的TB相關聯的PSFCH傳輸。當TB的預設潛時預算相等時,WTRU可以藉由與具有最低封包差錯率的TB相關聯的PSFCH來執行傳輸。當TB的封包差錯率也相等時,WTRU可以藉由與具有最高預設優先順序的TB相關聯的PSFCH來執行傳輸。在另一個例子中,WTRU可以遵循相同的優先順序排序來確定首先傳輸哪個TB。在一些解決方案中,WTRU可以被配置或預配置有基於由L1優先順序指示的所有QoS參數的功能以計算優先順序值。WTRU可以對具有最高優先順序排序值的傳輸或接收進行優先順序排序。
在一些解決方案中,當WTRU在NR和LTE V2X傳輸之間對傳輸或接收進行優先順序排序時,WTRU可以應用由與NR TB相關聯的L1優先順序指示的一個或複數QoS參數。例如,WTRU可以使用由L1優先順序指示的預設優先順序等級參數來與LTE PPPP值進行比較,以便對傳輸或接收進行優先順序排序。
本文描述了WTRU可以接收控制資訊所藉的過程。對於一個或複數配置的或預配置的SL BWP,WTRU可以確定週期性的時域SL資源集合(例如時槽)。在每個時槽中,WTRU可以嘗試接收包括SCI和傳輸的HARQ ACK/NACK回饋的控制資訊。WTRU可以確定時槽中的控制資訊資源集合,並嘗試接收與每個控制資訊資源相關聯的控制資訊。
在一些解決方案中,WTRU可以接收指示WTRU例如停止或臨時暫停傳輸或接收的搶佔指示。WTRU可以被配置或預配置有接收搶佔指示所在的專用搶佔指示資源集合,例如專用資源池或專用次通道或PRB集合。在另一種解決方案中,WTRU可以基於為可能被搶佔的PSSCH傳輸所預留的資源,來確定時槽中的搶佔指示接收資源。例如,搶佔指示資源可以在與要搶佔的PSSCH傳輸相關聯的PSCCH_1 SCI傳輸的次通道相同的次通道中。此外,次通道的PRB索引可以基於WTRU身分資訊。
當例如WTRU具有PSSCH傳輸的持續(standing)資源預留,並且WTRU確定所預留的PSSCH傳輸可能經受搶佔時,WTRU可以在時槽中的所確定的搶佔指示資源中監控和接收搶佔指示。例如,PSSCH傳輸的優先順序可以低於配置的或預配置的臨界值。在另一個例子中,該時槽和預留PSSCH傳輸時槽之間的時間間隙可以大於預配置的臨界值。WTRU因此可以嘗試解碼配置或預配置的PSCCH_1 SCI的格式、類型或大小,該格式、類型或大小對於時槽的搶佔指示資源中的搶佔指示是特定的。
本文描述了用於確定接收PSFCH傳輸所藉由的資源的解決方案。在一些解決方案中,WTRU可以基於次通道索引、WTRU ID或相關聯的PSSCH傳輸的QoS參數來確定時槽中的PSFCH接收資源(例如,包括符號、次通道或PRB的一個或複數索引)。基於資源池的PSFCH時槽配置,例如,每1、2或4個時槽間的每個有1個PSFCH時槽,WTRU可以借助時槽號確定在時槽中是否期望PSFCH傳輸。WTRU可以基於相關聯的PSCCH_1 SCI和/或PSCCH_2 SCI傳輸資源分配的次通道和PRB分配,來確定PSFCH的次通道和一個或複數PRB索引。在一些情況下,WTRU可以確定PSFCH次通道 與用於相關聯的PSCCH_2 SCI傳輸的次通道相同。在其他情況下,WTRU可以基於PSCCH_2 SCI傳輸PRB分配和/或WTRU ID確定要使用的PSFCH PRB。
在一些解決方案中,WTRU可以在一個或複數條件下在時槽中的確定的PSFCH資源中監控和接收PSFCH傳輸。例如,一個條件可以是當WTRU已經執行了啟用HARQ的PSSCH傳輸時。另一條件可以是當根據HARQ時間線在時槽中發生與PSSCH傳輸相關聯的PSFCH傳輸時。
在一些解決方案中,WTRU可以嘗試解碼時槽的PSFCH接收資源中的配置或預配置的PSFCH格式或類型。
本文描述了針對確定用於HARQ重傳的資源的解決方案。例如,如果WTRU指示初始傳輸的接收失敗,則可以執行HARQ重傳。在一些解決方案中,WTRU可以基於在相同TB的初始傳輸的PSSCH_2 SCI中接收到的HARQ重傳資源預留資訊,來確定時槽中的HARQ重傳資源。當時槽與排程的HARQ重傳定時資訊對齊時,WTRU可以確定接收HARQ重傳。
當例如WTRU接收到啟用了HARQ的TB的初始傳輸時,WTRU可以在時槽中監控和接收HARQ重傳。根據在初始傳輸中接收到的HARQ重傳資源預留,HARQ重傳可以發生在時槽中。WTRU可以嘗試解碼與相同TB的初始傳輸的相同的PSCCH、PSCCH_1或PSCCH_2 SCI格式、類型或大小。
本文揭露了針對在啟用HARQ回饋和重傳時用於基於半持久性(SP)的TB的資源確定的解決方案。當基於SP為基礎的資源預留啟用HARQ回饋或重傳時,WTRU可以確定用於基於SP的TB的時槽中的資源。當啟用HARQ時,WTRU可以確定用於基於SP的TB的一個或複數資源與由包括基於SP的資源預留資訊的PSSCH傳輸所使用的一個或複數資源相同。當WTRU接收 到包含基於SP的資源預留的PSSCH傳輸時,WTRU可以在時槽中監控和接收基於SP的TB。根據在PSSCH傳輸中接收的基於SP的資源預留,在該時槽中可以發生另一TB的PSSCH傳輸。WTRU可以嘗試解碼與最後接收的相同的基於SP預留的TB的相同的PSCCH、PSCCH_1或PSCCH_2 SCI格式、類型或大小。
本文揭露了針對在禁用HARQ回饋和重傳時用於基於半持久性(SP)的TB的資源確定的解決方案。WTRU可以在禁用HARQ回饋和重傳的情況下確定用於基於SP的TB的資源。WTRU可以與上文描述的相同的方式接收這種傳輸。然而,WTRU可以在啟用了HARQ所針對的基於SP的TB中對解碼SCI的嘗試進行優先順序排序。一個益處可以是WTRU可以確保首先接收需要HARQ回饋傳輸的所有TB,並且由於HARQ DTX而不會發生不必要的HARQ重傳。
本文描述了針對確定用於高優先順序控制資訊的資源的解決方案。WTRU可以確定用於通用控制資訊的資源,其可以包括時槽中的所有次通道、PRB、子載波。在該時槽中WTRU不期望任何預排程的傳輸,但是可以期望具有超過配置或預先配置的臨界值的QoS要求的TB的傳輸。例如,可以針對低時延TB傳輸來配置或預先配置資源池中具有最低索引的次通道、PRB或子載波的集合,其中該低潛時TB傳輸可能需要WTRU盡可能早地偵測到這種傳輸。
本文揭露了涉及通用控制資訊資源的實施例。WTRU可以確定一個或複數通用控制資訊資源,該一個或複數通用控制資訊資源可以包括時槽中的所有次通道、PRB或子載波,在該時槽中WTRU不期望任何預排程的傳輸,但可以期望具有低於配置或預配置的臨界值的QoS要求的TB的傳輸。WTRU可以在通用接收資源中執行SCI的盲偵測。
本文描述了針對藉由WTRU之SCI解碼的優先順序排序的解決方案。在一些解決方案中,WTRU可以被配置或預配置為偵測每個所識別的上述所討論的控制資訊資源中的SCI格式、類型或大小。由於WTRU處理能力、SL BWP頻寬、以及NR V2X QoS要求(例如潛時),WTRU在給定時槽中可以解碼多少控制資訊可能存在限制。因此,WTRU可以被配置或預配置為基於控制資訊資源的類型來對SCI解碼進行優先順序排序。
在一些解決方案中,WTRU可以被配置或預配置為基於控制資訊資源類型對控制資訊解碼進行優先順序排序。例如,WTRU可以被配置或預配置為首先接收WTRU在時槽中可能期望的控制資訊。因此,在處理高優先順序控制資訊資源和通用控制資訊資源之前,WTRU可以嘗試在PSFCH接收資源、HARQ重傳資源、用於接收啟用了HARQ的基於SP的TB的資源、搶佔指示資源、或用於接收禁用了HARQ的基於SP的TB的資源中解碼控制資訊。在另一種解決方案中,WTRU可以被配置或預配置為對與HARQ機制有關的所有控制資訊進行優先順序排序。此外,WTRU可以被配置或預配置為對搶佔指示資源進行優先順序排序,並嘗試首先解碼搶佔指示。
在另一種解決方案中,WTRU可以被配置或預配置為基於與所識別的控制資訊資源相關聯的TB的QoS參數,來嘗試解碼控制資訊。例如,當與PSFCH相關聯的TB的優先順序高於與HARQ重傳相關聯的時,WTRU可以在對HARQ重傳資源上的傳輸進行解碼之前嘗試對PSFCH接收資源中的PSFCH進行解碼。此外,WTRU可以被配置或預配置為基於控制資訊資源的類型和與每個控制資訊相關聯的QoS要求來應用優先順序排序。
儘管以上以特別的組合描述了特徵和元素,但是本領域的普通技術人員將理解,每個特徵或元素可以單獨使用或與其它特徵和元素任意組 合使用。另外,本文描述的方法可以在電腦程式、軟體或韌體中實施,該電腦程式、軟體或韌體併入電腦可讀媒體中以由電腦或處理器執行。電腦可讀媒體的範例包括電子信號(藉由有線或無線連接傳輸)和電腦可讀儲存媒體。電腦可讀儲存媒體的範例包括但不限於,唯讀記憶體(ROM)、隨機存取記憶體(RAM)、暫存器、快取記憶體、半導體記憶體裝置、諸如內部硬碟和可移除碟片等磁媒體、磁光媒體、以及諸如CD-ROM碟片和數位多功能碟片(DVD)等光媒體。與軟體相關聯的處理器可以用於實施在WTRU、終端、基地台、RNC或任何主機電腦中使用的射頻收發器。
ID:識別符
PHY:實體層
PPPP:優先順序
PPPR:可靠性
PSSCH:實體側鏈路共用通道
SCI:側鏈路控制資訊
301、310、311、320、321、330、331、332、340:流程

Claims (16)

  1. 一種用於由一無線傳輸/接收單元(WTRU)執行的一側鏈路通信的方法,該方法包括:
    選擇一資源集合,在該資源集合中為一實體側鏈路控制通道(PSCCH)傳輸分配一第一資源子集,其中該資源集合的該選擇是基於下列至少一者:一側鏈路控制資訊(SCI)格式、一訊務類型、一WTRU識別符(ID)、一服務品質(QoS)要求、或一通道狀態資訊(CSI)回饋;以及
    使用所分配的第一資源子集發送包括一SCI的一PSCCH傳輸,其中該第一資源子集是基於該SCI格式、該訊務類型、該WTRU ID或該服務品質(QoS)要求的至少一者而被分配在所選擇的資源集合中。
  2. 如請求項1所述的方法,其中該PSCCH傳輸是一第一PSCCH傳輸,並且該方法還包括使用一第二資源子集發送包括該SCI的一第二PSCCH傳輸。
  3. 如請求項2所述的方法,其中該第一PSCCH傳輸和該第二PSCCH傳輸是基於一QoS要求而被發送。
  4. 如請求項2所述的方法,該方法還包括基於用於發送該第一PSCCH傳輸的該第一資源子集和用於發送該第二PSCCH傳輸的該第二資源子集的一關聯而選擇另一資源集合,在該另一資源集合中分配該第二資源子集;以及使用所分配的第二資源子集來發送包括該SCI的該第二PSCCH傳輸。
  5. 如請求項4所述的方法,其中該SCI包括所分配的第二資源子集的一指示。
  6. 如請求項1所述的方法,其中所選擇的資源集合中的該第一資源子集的該分配是基於一優先順序值,並且該方法還包括基於一5G QoS識別符(5QI)或一最小通信範圍(MCR)要求中的至少一者來確定該優先順序值。
  7. 如請求項6所述的方法,還包括基於所確定的優先順序值來對多個PSCCH傳輸進行優先順序排序。
  8. 如請求項2所述的方法,其中該第一PSCCH傳輸中包括的該SCI包括表明一WTRU ID的一部分的一資訊,以及該第二PSCCH傳輸中包括的該SCI包括表明該WTRU ID的一相應剩餘部分的一資訊。
  9. 一種無線傳輸/接收單元(WTRU),包括:
    一收發器;以及
    一處理器;
    該處理器被配置以選擇一資源集合,在該資源集合中為一實體側鏈路控制通道(PSCCH)傳輸分配一第一資源子集,其中該資源集合的該選擇是基於下列至少一者:一側鏈路控制資訊(SCI)格式、一WTRU識別符(ID)、一服務品質(QoS)要求、或一通道狀態資訊(CSI)回饋;以及
    該處理器以及該收發器被配置以使用所分配的第一資源子集發送包括一SCI的一PSCCH傳輸,其中該第一資源子集是基於該SCI格式、該訊務類型、該WTRU ID或該服務品質(QoS)要求的至少一者而被分配在所選擇的資源集合中。
  10. 如請求項9所述的WTRU,其中該PSCCH傳輸是一第一PSCCH傳輸,並且該收發器還被配置以使用一第二資源子集發送包括該SCI的一第二PSCCH傳輸。
  11. 如請求項10所述的WTRU,其中該收發器以及該處理器還被配置以基於一QoS要求而發送該第一PSCCH傳輸和該第二PSCCH傳輸。
  12. 如請求項10所述的WTRU,其中該處理器還被配置以:基於用於發送該第一PSCCH傳輸的該第一資源子集和用於發送該第二PSCCH傳輸的該第二資源子集的一關聯而選擇另一資源集合,在該另一資源集合中分配該第二資 源子集;以及使用所分配的第二資源子集來發送包括該SCI的該第二PSCCH傳輸。
  13. 如請求項12所述的WTRU,其中該SCI包括所分配的第二資源子集的一指示。
  14. 如請求項9所述的WTRU,其中所選擇的資源集合中的該第一資源子集的該分配是基於一優先順序值,並且該處理器還被配置以基於一5G QoS識別符(5QI)或一最小通信範圍(MCR)要求中的至少一者來確定該優先順序值。
  15. 如請求項14所述的WTRU,其中該處理器還被配置以基於所確定的優先順序值來對多個PSCCH傳輸進行優先順序排序。
  16. 如請求項10所述的WTRU,其中該第一PSCCH傳輸中包括的該SCI包括表明一WTRU ID的一部分的資訊,以及該第二PSCCH傳輸中包括的該SCI包括表明該WTRU ID的一相應剩餘部分的一資訊。
TW110147180A 2019-02-22 2020-02-24 無線傳輸/接收單元(wtru)以及用於nrsl多次通道pscch傳輸的方法 TW202233003A (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201962809317P 2019-02-22 2019-02-22
US62/809,317 2019-02-22
US201962886505P 2019-08-14 2019-08-14
US62/886,505 2019-08-14
US201962909022P 2019-10-01 2019-10-01
US62/909,022 2019-10-01

Publications (1)

Publication Number Publication Date
TW202233003A true TW202233003A (zh) 2022-08-16

Family

ID=69844950

Family Applications (2)

Application Number Title Priority Date Filing Date
TW110147180A TW202233003A (zh) 2019-02-22 2020-02-24 無線傳輸/接收單元(wtru)以及用於nrsl多次通道pscch傳輸的方法
TW109105811A TW202046789A (zh) 2019-02-22 2020-02-24 Nr sl多次通道pscch傳輸方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW109105811A TW202046789A (zh) 2019-02-22 2020-02-24 Nr sl多次通道pscch傳輸方法

Country Status (5)

Country Link
US (1) US20220159674A1 (zh)
EP (1) EP3928454A1 (zh)
CN (1) CN113508547A (zh)
TW (2) TW202233003A (zh)
WO (1) WO2020172576A1 (zh)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111865478B (zh) * 2019-04-26 2022-02-11 华为技术有限公司 侧行链路控制信息的发送方法及设备
CN111867116B (zh) * 2019-04-30 2022-07-12 华为技术有限公司 一种通信方法及装置
CN111615219B (zh) * 2019-04-30 2022-02-22 维沃移动通信有限公司 一种pc5链路建立方法、设备及系统
US11224055B2 (en) * 2020-03-27 2022-01-11 Verizon Patent And Licensing Inc. Systems and methods for dynamic uplink grant policy based on medium access control (“MAC”) protocol data unit (“PDU”) padding
US11870594B2 (en) * 2019-05-13 2024-01-09 At&T Intellectual Property I, L.P. Facilitating a group hybrid automatic repeat request procedure for sidelink group case in advanced networks
CN110278610B (zh) * 2019-05-28 2022-07-22 华为技术有限公司 一种资源配置方法及通信装置
US11700095B2 (en) * 2019-10-04 2023-07-11 Qualcomm Incorporated Channel estimation for two-stage sidelink control using sidelink data channel DMRS
US20210111835A1 (en) * 2019-10-10 2021-04-15 Qualcomm Incorporated Feedback for multicast and broadcast messages
EP4073942A1 (en) * 2019-12-13 2022-10-19 Telefonaktiebolaget LM Ericsson (publ) A method to beamform multicast transmission
EP3873012A1 (en) * 2020-02-27 2021-09-01 Samsung Electronics Co., Ltd. Method of and apparatus for transmitting data based on channel state in device-to-device communication
US11877190B2 (en) * 2020-04-08 2024-01-16 Qualcomm Incorporated Indicating original data communications
US11564227B2 (en) * 2020-04-08 2023-01-24 Apple Inc. Sidelink transport block size calculation scheme and associated apparatuses, systems, and methods
US20210352624A1 (en) * 2020-05-08 2021-11-11 Qualcomm Incorporated Indication of single or multi-stage sidelink control information (sci)
US11991113B2 (en) 2020-05-21 2024-05-21 Qualcomm Incorporated Positioning measurement reporting
US11937231B2 (en) * 2020-06-23 2024-03-19 Qualcomm Incorporated Sidelink communication reliability
US11924828B2 (en) * 2020-07-10 2024-03-05 Qualcomm Incorporated Adaptive demodulation reference signal density for physical downlink control channel
US11736261B2 (en) * 2020-07-16 2023-08-22 Qualcomm Incorporated Licensed assisted sidelink access using an indication of multiple data channels
US20220046663A1 (en) * 2020-08-07 2022-02-10 Qualcomm Incorporated Communicating about sidelink resource availability without legacy user equipment interference
US11825450B2 (en) 2020-09-04 2023-11-21 Qualcomm Incorporated Channel reservation for sidelink
CN116018844A (zh) * 2020-09-18 2023-04-25 索尼集团公司 无线通信装置和无线通信方法
US11974294B2 (en) * 2020-09-18 2024-04-30 Qualcomm Incorporated Preemption for sidelink communications
US20220110141A1 (en) * 2020-10-02 2022-04-07 Qualcomm Incorporated Sidelink transmission from relay user equipment (ue) to remote ue
CN114499792B (zh) * 2020-10-27 2024-03-05 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2022151431A1 (zh) * 2021-01-15 2022-07-21 华为技术有限公司 通信方法及装置
US20220231871A1 (en) * 2021-01-19 2022-07-21 Qualcomm Incorporated Bandwidth parts for a groupcast sidelink network
WO2022222079A1 (zh) * 2021-04-21 2022-10-27 Oppo广东移动通信有限公司 资源配置方法、设备及存储介质
US11863972B2 (en) * 2021-04-22 2024-01-02 Qualcomm Incorporated Resolving reservation ambiguity of sidelink control information repetition in sidelink communications
US11690047B2 (en) 2021-06-09 2023-06-27 Qualcomm Incorporated Methods and apparatus for configuring intra-slot time-division multiplexed transport blocks
US11825475B2 (en) * 2021-07-15 2023-11-21 Qualcomm Incorporated Multi-transmitter scheduling using sub-slot based physical sidelink shared channels
WO2023010399A1 (zh) * 2021-08-05 2023-02-09 富士通株式会社 设备间协作装置以及方法
US20230081233A1 (en) * 2021-09-16 2023-03-16 Qualcomm Incorporated Techniques for sidelink full-duplex semi-static transmissions
US20230101382A1 (en) * 2021-09-27 2023-03-30 Qualcomm Incorporated Precoding for sidelink communications
WO2023159360A1 (en) * 2022-02-22 2023-08-31 Nec Corporation Method, device and computer readable medium for communications
WO2023182834A1 (ko) * 2022-03-23 2023-09-28 엘지전자 주식회사 비면허 대역에서 인터레이스 기반의 사이드링크 통신을 수행하는 방법 및 장치
CN114884639B (zh) * 2022-05-23 2023-06-30 中国联合网络通信集团有限公司 一种信息接收方法、装置和存储介质
WO2024093129A1 (en) * 2023-04-04 2024-05-10 Lenovo (Beijing) Limited Configuration for sidelink transmissions

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10492098B2 (en) * 2015-07-15 2019-11-26 Nec Corporation Terminal, base station, and method for the same
US10412754B2 (en) * 2015-08-12 2019-09-10 Intel Corporation Resource access in device to device communication
US11147044B2 (en) * 2016-03-04 2021-10-12 Lg Electronics Inc. V2X transmission resource selecting method implemented by terminal in wireless communication system and terminal using same
BR112018070200A2 (pt) * 2016-03-30 2019-01-29 Idac Holdings Inc unidade de transmissão e recepção sem fio, e, método executado por uma unidade de transmissão/recepção sem fio.
KR102435428B1 (ko) * 2017-09-27 2022-08-24 삼성전자주식회사 무선 통신 시스템에서 패킷을 전송하기 위한 방법 및 장치
CN110971370B (zh) * 2018-09-28 2024-01-05 夏普株式会社 由用户设备执行的方法以及用户设备
US11985095B2 (en) * 2019-02-01 2024-05-14 Lg Electronics Inc. Method and apparatus for transmitting signal by side link terminal in wireless communication system

Also Published As

Publication number Publication date
US20220159674A1 (en) 2022-05-19
WO2020172576A1 (en) 2020-08-27
CN113508547A (zh) 2021-10-15
EP3928454A1 (en) 2021-12-29
TW202046789A (zh) 2020-12-16

Similar Documents

Publication Publication Date Title
US20220159674A1 (en) Methods for nr sl multi-sub-channel pscch transmission
CN113544989B (zh) 侧链路反馈信道
TWI786389B (zh) 用於nr sl psfch傳輸及監視的裝置及方法
JP7142148B2 (ja) ニューラジオ(nr)における物理サイドリンク制御チャネル(pscch)設計に対する方法および装置
TWI778401B (zh) 新無線電側鏈頻道狀態資訊獲取裝置及方法
TWI745858B (zh) 實體上鏈共享頻道傳輸的裝置及方法
US20210084620A1 (en) Methods for physical downlink control channel (pdcch) candidate determination
JP2023040260A (ja) 信頼性のある制御シグナリング
WO2020033704A1 (en) Enhanced sidelink control transmission
CN112823486A (zh) 下行链路通信中的可靠性增强
JP2023054357A (ja) アップリンク制御情報を送信するための方法、システム、および装置
US20210176735A1 (en) Control information transmission and sensing in wireless systems
TW201906487A (zh) 無線通訊群組共用實體下鏈控制通道
CN113647192A (zh) 用于在未许可频谱中竞争窗口大小的调整的方法
TW202220403A (zh) 時域及碼域覆蓋增強
JP2023534432A (ja) 柔軟な非周期的srs送信のための方法及び装置
TW202350003A (zh) 用於賦能多個胞元的單一下行鏈路控制資訊(dci)排程的方法及設備
JP2023536878A (ja) 動的スペクトル共有のための方法及び装置
TW202344122A (zh) 上行鏈路載波優先化