TW202231100A - Reduced overhead beam profile parametrization - Google Patents
Reduced overhead beam profile parametrization Download PDFInfo
- Publication number
- TW202231100A TW202231100A TW110144588A TW110144588A TW202231100A TW 202231100 A TW202231100 A TW 202231100A TW 110144588 A TW110144588 A TW 110144588A TW 110144588 A TW110144588 A TW 110144588A TW 202231100 A TW202231100 A TW 202231100A
- Authority
- TW
- Taiwan
- Prior art keywords
- positioning
- trp
- information
- antenna element
- receiving entity
- Prior art date
Links
- 230000002829 reductive effect Effects 0.000 title description 7
- 238000000034 method Methods 0.000 claims abstract description 140
- 238000005259 measurement Methods 0.000 claims abstract description 121
- 230000005855 radiation Effects 0.000 claims abstract description 88
- 238000004891 communication Methods 0.000 claims abstract description 65
- 239000011159 matrix material Substances 0.000 claims abstract description 53
- 230000005540 biological transmission Effects 0.000 claims abstract description 33
- 230000007774 longterm Effects 0.000 claims description 7
- 230000006870 function Effects 0.000 description 78
- 238000012545 processing Methods 0.000 description 51
- 239000010410 layer Substances 0.000 description 34
- 230000008569 process Effects 0.000 description 28
- 238000007726 management method Methods 0.000 description 24
- 230000000875 corresponding effect Effects 0.000 description 14
- 239000000969 carrier Substances 0.000 description 12
- 238000001228 spectrum Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 238000003491 array Methods 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 9
- 239000013598 vector Substances 0.000 description 9
- 230000009471 action Effects 0.000 description 7
- 230000001413 cellular effect Effects 0.000 description 7
- 238000012937 correction Methods 0.000 description 6
- 230000011664 signaling Effects 0.000 description 6
- 101100288173 Enterococcus faecalis (strain ATCC 700802 / V583) prs1 gene Proteins 0.000 description 5
- 101150077018 PRS3 gene Proteins 0.000 description 5
- 101150022144 PRS4 gene Proteins 0.000 description 5
- 101100465559 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) PRE7 gene Proteins 0.000 description 5
- 101100409535 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) PRE8 gene Proteins 0.000 description 5
- 101100465401 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) SCL1 gene Proteins 0.000 description 5
- 230000003416 augmentation Effects 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 238000013507 mapping Methods 0.000 description 5
- 101150016674 prs2 gene Proteins 0.000 description 5
- 238000013459 approach Methods 0.000 description 4
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 230000006837 decompression Effects 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000012913 prioritisation Methods 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000004422 calculation algorithm Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 238000012795 verification Methods 0.000 description 3
- 101100298888 Arabidopsis thaliana PAD2 gene Proteins 0.000 description 2
- 101100030928 Arabidopsis thaliana PAF1 gene Proteins 0.000 description 2
- 101100465385 Arabidopsis thaliana PAF2 gene Proteins 0.000 description 2
- 101100398338 Enterococcus faecalis (strain ATCC 700802 / V583) prs2 gene Proteins 0.000 description 2
- 101100510342 Listeria ivanovii prs gene Proteins 0.000 description 2
- 101100137870 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) PRE10 gene Proteins 0.000 description 2
- 230000003466 anti-cipated effect Effects 0.000 description 2
- 230000003190 augmentative effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 101150077839 pac1 gene Proteins 0.000 description 2
- 230000002085 persistent effect Effects 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 101150086435 prs1 gene Proteins 0.000 description 2
- 235000012431 wafers Nutrition 0.000 description 2
- 101000741965 Homo sapiens Inactive tyrosine-protein kinase PRAG1 Proteins 0.000 description 1
- 102100038659 Inactive tyrosine-protein kinase PRAG1 Human genes 0.000 description 1
- 230000027311 M phase Effects 0.000 description 1
- 101150067591 PRS5 gene Proteins 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 101100409550 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) PRE9 gene Proteins 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000013475 authorization Methods 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 210000001520 comb Anatomy 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000002592 echocardiography Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000013468 resource allocation Methods 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 230000009131 signaling function Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 235000019527 sweetened beverage Nutrition 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000012384 transportation and delivery Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W64/00—Locating users or terminals or network equipment for network management purposes, e.g. mobility management
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0617—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/0009—Transmission of position information to remote stations
- G01S5/0018—Transmission from mobile station to base station
- G01S5/0036—Transmission from mobile station to base station of measured values, i.e. measurement on mobile and position calculation on base station
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/0009—Transmission of position information to remote stations
- G01S5/0072—Transmission between mobile stations, e.g. anti-collision systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/0205—Details
- G01S5/0236—Assistance data, e.g. base station almanac
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/0252—Radio frequency fingerprinting
- G01S5/02521—Radio frequency fingerprinting using a radio-map
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0636—Feedback format
- H04B7/0639—Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/08—Testing, supervising or monitoring using real traffic
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W48/00—Access restriction; Network selection; Access point selection
- H04W48/08—Access restriction or access information delivery, e.g. discovery data delivery
- H04W48/10—Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S1/00—Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
- G01S1/02—Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
- G01S1/08—Systems for determining direction or position line
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/12—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves by co-ordinating position lines of different shape, e.g. hyperbolic, circular, elliptical or radial
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Mathematical Physics (AREA)
- Computer Security & Cryptography (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
本揭示的各態樣整體係關於無線通訊。Aspects of the present disclosure relate generally to wireless communications.
無線通訊系統已經發展了幾代,包括第一代類比無線電話服務(1G)、第二代(2G)數位無線電話服務(包括用於過渡的2.5G和2.75G網路)、第三代(3G)高速資料、支援網際網路的無線服務和第四代(4G)服務(例如,長期進化(LTE)或WiMax)。目前有許多不同類型的無線通訊系統在使用,包括蜂巢和個人通訊服務(PCS)系統。已知蜂巢式系統的實例包括蜂巢類比先進行動電話系統(AMPS)和基於分碼多工存取(CDMA)、分頻多工存取(FDMA)、分時多工存取(TDMA)、行動通訊全球系統(GSM)的數位蜂巢式系統等。Wireless communication systems have evolved over several generations, including first generation analog wireless telephone service (1G), second generation (2G) digital wireless telephone service (including 2.5G and 2.75G networks for transition), third generation (3G) ) high-speed data, Internet-enabled wireless services, and fourth-generation (4G) services (eg, Long Term Evolution (LTE) or WiMax). There are many different types of wireless communication systems in use today, including cellular and Personal Communication Service (PCS) systems. Examples of known cellular systems include cellular analog advanced mobile phone system (AMPS) and based on code division multiple access (CDMA), frequency division multiple access (FDMA), time division multiple access (TDMA), mobile Digital cellular systems of the Global System for Communications (GSM), etc.
第五代(5G)無線標準,稱為新無線電(NR),要求更高的資料傳輸速度、更多的連接數量、及更大的覆蓋範圍以及其他改進。根據下一代行動網路聯盟,5G標準經設計為數萬名使用者中的每一位使用者提供每秒幾十兆位元的資料速率,為一個辦公大樓層上的數十名員工提供每秒1千兆位元的資料速率。為了支援大型感測器部署,應該支援幾十萬個同時連接。因此,與當前的4G標準相比,5G行動通訊的頻譜效率應該顯著提高。此外,與當前標準相比,應提高訊號傳遞效率,並應大幅降低時延。The fifth generation (5G) wireless standard, known as New Radio (NR), requires higher data speeds, more connections, and greater coverage, among other improvements. According to the Next Generation Mobile Network Alliance, the 5G standard is designed to provide data rates in the tens of terabits per second for each of tens of thousands of users, and for dozens of employees on a large office floor. 1 gigabit data rate per second. To support large sensor deployments, hundreds of thousands of simultaneous connections should be supported. Therefore, the spectral efficiency of 5G mobile communications should be significantly improved compared to the current 4G standard. In addition, signal transfer efficiency should be improved and latency should be significantly reduced compared to current standards.
下文呈現了與本文揭示的一或多個態樣相關的簡化概述。因此,以下概述不應被視為與所有預期態樣相關的廣泛概述,以下概述亦不應被視為標識與所有預期態樣相關的關鍵或重要元素或描述與任何特定態樣相關聯的範圍。因此,以下概述的唯一目的是在下文提供的實施方式之前,以簡化的形式提供與關於本文揭示的機制的一或多個態樣相關的某些概念。The following presents a simplified overview related to one or more aspects disclosed herein. Accordingly, the following summary should not be construed as a broad overview relevant to all anticipated aspects, nor should the following summary be considered to identify key or important elements relevant to all anticipated aspects or to describe the scope associated with any particular aspect . Thus, the sole purpose of the summary below is to present some concepts related to one or more aspects of the mechanisms disclosed herein in a simplified form prior to the embodiments presented below.
對於基於角度量測的UE輔助或基於UE的定位,UE需要知道,對於由發送/接收點(TRP)發送的每個定位信號,定位信號的預期波束功率作為方位角的函數。向UE提供該資訊的習知的、提出的方法需要大量頻寬來報告來自僅僅一個TRP的所有定位信號,並且該要求要乘以UE必須從中獲得該資訊的TRP的數量。對於通常由電池供電的UE來說,此種大頻寬在處理資源和功耗方面皆是負擔。For UE-assisted or UE-based positioning based on angle measurements, the UE needs to know, for each positioning signal sent by the transmit/receive point (TRP), the expected beam power of the positioning signal as a function of azimuth angle. The known, proposed method of providing this information to the UE requires a large amount of bandwidth to report all positioning signals from only one TRP, and this requirement is multiplied by the number of TRPs from which the UE must obtain this information. Such large bandwidth is a burden in terms of both processing resources and power consumption for UEs, which are typically battery powered.
為了解決該問題,提出了用於精簡管理負擔波束簡檔(profile)參數化的若干技術:UE不接收每個定位資源的波束樣式的描述,而是接收描述發送天線配置的資訊、描述天線元件功率樣式的資訊、以及對於每個定位資源,來自每個定位資源的離散傅立葉轉換(DFT)編碼簿的預編碼矩陣資訊(PMI)索引。藉由利用UE已經維護的資訊,UE可以接收對特徵描述的查閱資料表的索引值,而不是特徵的完整表徵(characterization),此顯著節省了頻寬。To solve this problem, several techniques are proposed for streamlining the management burden beam profile parameterization: instead of receiving a description of the beam pattern for each positioning resource, the UE receives information describing the transmit antenna configuration, describing the antenna elements Information of the power pattern and, for each positioning resource, the Precoding Matrix Information (PMI) index from the Discrete Fourier Transform (DFT) codebook of each positioning resource. By utilizing the information already maintained by the UE, the UE can receive an index value to a lookup table of feature descriptions, rather than a full characterization of the feature, which significantly saves bandwidth.
在一個態樣中,一種由接收實體執行的無線通訊方法包括:接收表徵將由TRP使用發送波束的集合發送的定位信號的集合的資訊,該資訊包括至少一個天線元件輻射樣式、至少一個天線元件陣列配置、以及對於該發送波束的集合中的每一個波束,辨識至少一個預編碼矩陣的資訊;執行由TRP發送的定位信號的量測;基於至少一個天線元件輻射樣式、至少一個天線元件陣列配置、辨識至少一個預編碼矩陣的資訊和定位量測中的至少一些來計算至少一個定位量測估計;及將定位資訊發送到TRP,該定位資訊包括至少一個定位量測估計。In one aspect, a method of wireless communication performed by a receiving entity includes receiving information representing a set of positioning signals to be transmitted by a TRP using a set of transmit beams, the information including at least one antenna element radiation pattern, at least one antenna element array configuration, and for each beam in the set of transmit beams, identifying information for at least one precoding matrix; performing measurements of positioning signals transmitted by the TRP; based on at least one antenna element radiation pattern, at least one antenna element array configuration, Identifying at least some of the information of the at least one precoding matrix and the positioning measurements to calculate at least one positioning measurement estimate; and sending the positioning information to the TRP, the positioning information including the at least one positioning measurement estimate.
在一個態樣中,一種由TRP執行的無線通訊的方法包括:向接收實體發送表徵將由TRP使用發送波束的集合發送的定位信號的集合的資訊,該資訊包括至少一個天線元件輻射樣式、至少一個天線元件陣列配置、以及對於該發送波束的集合中的每一個波束,辨識至少一個預編碼矩陣的資訊;根據該資訊發送定位信號的集合;及從接收實體接收定位資訊,該定位資訊包括至少一個定位量測估計。In one aspect, a method of wireless communication performed by a TRP includes transmitting to a receiving entity information representing a set of positioning signals to be transmitted by the TRP using a set of transmit beams, the information including at least one antenna element radiation pattern, at least one antenna element array configuration, and, for each beam in the set of transmit beams, identifying information for at least one precoding matrix; transmitting a set of positioning signals based on the information; and receiving positioning information from a receiving entity, the positioning information including at least one Positioning measurement estimation.
在一個態樣中,接收實體包括記憶體、至少一個收發器以及通訊地耦接到記憶體和至少一個收發器的至少一個處理器。該至少一個處理器被配置為:接收表徵將由TRP使用發送波束的集合發送的定位信號的集合的資訊,該資訊包括至少一個天線元件輻射樣式、至少一個天線元件陣列配置、以及對於該發送波束的集合中的每一個波束,辨識至少一個預編碼矩陣的資訊;執行由TRP發送的定位信號的量測;基於至少一個天線元件輻射樣式、至少一個天線元件陣列配置、辨識至少一個預編碼矩陣的資訊和定位量測中的至少一些來計算至少一個定位量測估計;及使至少一個收發器將定位資訊發送到TRP,該定位資訊包括至少一個定位量測估計。In one aspect, the receiving entity includes memory, at least one transceiver, and at least one processor communicatively coupled to the memory and the at least one transceiver. The at least one processor is configured to receive information representing a set of positioning signals to be transmitted by the TRP using a set of transmit beams, the information including at least one antenna element radiation pattern, at least one antenna element array configuration, and a For each beam in the set, identify information for at least one precoding matrix; perform measurements of positioning signals sent by the TRP; identify information for at least one precoding matrix based on at least one antenna element radiation pattern, at least one antenna element array configuration and at least some of the positioning measurements to calculate at least one positioning measurement estimate; and causing the at least one transceiver to transmit positioning information to the TRP, the positioning information including the at least one positioning measurement estimate.
在一個態樣中,一種TRP包括記憶體、至少一個收發器、以及通訊地耦接到記憶體和至少一個收發器的至少一個處理器。該至少一個處理器被配置為:使該至少一個收發器向接收實體發送表徵將由TRP使用發送波束的集合發送的定位信號的集合的資訊,該資訊包括至少一個天線元件輻射樣式、至少一個天線元件陣列配置、以及對於該發送波束的集合中的每一個波束,辨識至少一個預編碼矩陣的資訊;根據該資訊發送定位信號的集合;及從接收實體接收定位資訊,該定位資訊包括至少一個定位量測估計。In one aspect, a TRP includes memory, at least one transceiver, and at least one processor communicatively coupled to the memory and the at least one transceiver. The at least one processor is configured to cause the at least one transceiver to transmit to a receiving entity information representing a set of positioning signals to be transmitted by the TRP using the set of transmit beams, the information comprising at least one antenna element radiation pattern, at least one antenna element array configuration and, for each beam in the set of transmit beams, information identifying at least one precoding matrix; transmitting a set of positioning signals based on the information; and receiving positioning information from a receiving entity, the positioning information including at least one positioning quantity estimate.
在一個態樣中,接收實體包括:用於接收表徵將由TRP使用發送波束的集合發送的定位信號的集合的資訊的構件,該資訊包括至少一個天線元件輻射樣式、至少一個天線元件陣列配置、以及對於該發送波束的集合中的每一個波束,辨識至少一個預編碼矩陣的資訊;用於執行由TRP發送的定位信號的量測的構件;用於基於至少一個天線元件輻射樣式、至少一個天線元件陣列配置、辨識至少一個預編碼矩陣的資訊和定位量測中的至少一些來計算至少一個定位量測估計的構件;及用於將定位資訊發送到TRP的構件,該定位資訊包括至少一個定位量測估計。In one aspect, the receiving entity includes means for receiving information representing a set of positioning signals to be transmitted by the TRP using the set of transmit beams, the information including at least one antenna element radiation pattern, at least one antenna element array configuration, and for each beam in the set of transmit beams, identifying information of at least one precoding matrix; means for performing measurements of positioning signals transmitted by the TRP; for at least one antenna element radiation pattern based on at least one antenna element array configuration, identifying at least some of information of at least one precoding matrix and positioning measurements to calculate at least one positioning measurement estimate; and means for sending positioning information to the TRP, the positioning information including at least one positioning quantity estimate.
在一個態樣中,一種TRP包括:用於向接收實體發送表徵將由TRP使用發送波束的集合發送的定位信號的集合的資訊的構件,該資訊包括至少一個天線元件輻射樣式、至少一個天線元件陣列配置、以及對於該發送波束的集合中的每一個波束,辨識至少一個預編碼矩陣的資訊;用於根據該資訊發送定位信號的集合的構件;及用於從接收實體接收定位資訊的構件,該定位資訊包括至少一個定位量測估計。In one aspect, a TRP includes means for transmitting to a receiving entity information representing a set of positioning signals to be transmitted by the TRP using a set of transmit beams, the information including at least one antenna element radiation pattern, at least one antenna element array configuring, and for each beam in the set of transmit beams, information identifying at least one precoding matrix; means for transmitting a set of positioning signals based on the information; and means for receiving positioning information from a receiving entity, the The positioning information includes at least one positioning measurement estimate.
在一個態樣中,一種非暫時性電腦可讀取媒體儲存指令集合,該指令集合包括一或多個指令,該等指令在由接收實體的一或多個處理器執行時,使得接收實體:接收表徵將由TRP使用發送波束的集合發送的定位信號的集合的資訊,該資訊包括至少一個天線元件輻射樣式、至少一個天線元件陣列配置、以及對於該發送波束的集合中的每一個波束,辨識至少一個預編碼矩陣的資訊;執行由TRP發送的定位信號的量測;基於至少一個天線元件輻射樣式、至少一個天線元件陣列配置、辨識至少一個預編碼矩陣的資訊和定位量測中的至少一些來計算至少一個定位量測估計;及將定位資訊發送到TRP,該定位資訊包括至少一個定位量測估計。In one aspect, a non-transitory computer-readable medium stores a set of instructions comprising one or more instructions that, when executed by one or more processors of a receiving entity, cause the receiving entity to: receiving information characterizing the set of positioning signals to be transmitted by the TRP using the set of transmit beams, the information including at least one antenna element radiation pattern, at least one antenna element array configuration, and for each beam in the set of transmit beams, identifying at least one information of a precoding matrix; performing measurements of positioning signals transmitted by the TRP; based on at least some of at least one antenna element radiation pattern, at least one antenna element array configuration, information identifying at least one precoding matrix, and positioning measurements calculating at least one positioning measurement estimate; and sending positioning information to the TRP, the positioning information including the at least one positioning measurement estimate.
在一個態樣中,一種非暫時性電腦可讀取媒體儲存指令集合,該指令集合包括一或多個指令,該等指令在由TRP的一或多個處理器執行時,使得TRP:向接收實體發送表徵將由TRP使用發送波束的集合發送的定位信號的集合的資訊,該資訊包括至少一個天線元件輻射樣式、至少一個天線元件陣列配置、以及對於該發送波束的集合中的每一個波束,辨識至少一個預編碼矩陣的資訊;根據該資訊發送定位信號的集合;及從接收實體接收定位資訊,該定位資訊包括至少一個定位量測估計。In one aspect, a non-transitory computer-readable medium stores a set of instructions including one or more instructions that, when executed by one or more processors of a TRP, cause the TRP to: The entity transmits information characterizing the set of positioning signals to be transmitted by the TRP using the set of transmit beams, the information including at least one antenna element radiation pattern, at least one antenna element array configuration, and, for each beam in the set of transmit beams, identifying information of at least one precoding matrix; sending a set of positioning signals based on the information; and receiving positioning information from a receiving entity, the positioning information including at least one positioning measurement estimate.
基於附圖和實施方式,與本文揭示的各態樣相關聯的其他目的和優點對於本領域技藝人士來說將是顯而易見的。Other objects and advantages associated with the various aspects disclosed herein will be apparent to those skilled in the art based on the drawings and embodiments.
本揭示的各態樣在以下描述和相關附圖中提供,該等描述和相關附圖針對為說明目的而提供的各種實例。在不脫離本揭示的範圍的情況下,可以設計替代態樣。另外,本揭示的眾所周知的元素不會被詳細描述或者會被省略,以免模糊本揭示的相關細節。Aspects of the present disclosure are provided in the following description and associated drawings, which are directed to various examples provided for purposes of illustration. Alternative aspects may be devised without departing from the scope of the present disclosure. Additionally, well-known elements of the disclosure are not described in detail or are omitted so as not to obscure the relevant details of the disclosure.
詞語「示例性」及/或「示例」在本文中用於意味著「用作示例、實例或說明」。本文中描述為「示例性」及/或「示例」的任何態樣不一定被解釋為優選的或優於其他態樣。同樣,術語「本揭示的各態樣」並不要求本揭示的所有態樣皆包括所論述的特徵、優點或操作模式。The words "exemplary" and/or "example" are used herein to mean "serving as an example, instance, or illustration." Any aspect described herein as "exemplary" and/or "exemplary" is not necessarily to be construed as preferred or advantageous over other aspects. Likewise, the term "aspects of the disclosure" does not require that all aspects of the disclosure include the discussed feature, advantage, or mode of operation.
本領域技藝人士將理解,下文描述的資訊和信號可以使用各種不同的技術和製程中的任何一種來表示。例如,在下文的描述中引用的資料、指令、命令、資訊、信號、位元、符號和晶片(chip)可以由電壓、電流、電磁波、磁場或粒子、光場或粒子或其任意組合來表示,部分取決於特定的應用,部分取決於期望的設計,部分取決於對應的技術等。Those of skill in the art would understand that the information and signals described below may be represented using any of a variety of different technologies and processes. For example, the data, instructions, commands, information, signals, bits, symbols and chips referenced in the following description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, light fields or particles, or any combination thereof , partly depending on the specific application, partly on the desired design, partly on the corresponding technology, etc.
此外,根據將由例如計算設備的元件執行的動作序列來描述許多態樣。應認識到,本文描述的各種動作可以由特定電路(例如,特殊應用積體電路(ASIC))、由一或多個處理器執行的程式指令、或者由兩者的組合來執行。此外,本文描述的動作序列可以被認為完全體現在任何形式的非暫時性電腦可讀取儲存媒體中,該儲存媒體中儲存有對應的電腦指令集合,該等指令在執行時使得或指示設備的相關處理器執行本文描述的功能。因此,本揭示的各個態樣可以以多種不同的形式體現,所有該等皆被預期在所要求保護的標的的範圍內。此外,對於本文描述的每個態樣,任何此種態樣的對應形式在本文可以被描述為例如「被配置為執行所描述的動作的邏輯」。Furthermore, many aspects are described in terms of sequences of actions to be performed by elements such as computing devices. It will be appreciated that the various actions described herein can be performed by specific circuitry (eg, an application specific integrated circuit (ASIC)), by program instructions executed by one or more processors, or by a combination of the two. Furthermore, the sequences of actions described herein can be considered to be fully embodied in any form of non-transitory computer-readable storage medium storing a corresponding set of computer instructions that, when executed, cause or instruct the device's The associated processors perform the functions described herein. Accordingly, various aspects of the present disclosure may be embodied in many different forms, all of which are intended to be within the scope of the claimed subject matter. Furthermore, for each aspect described herein, the corresponding form of any such aspect may be described herein as, for example, "logic configured to perform the described action."
如本文所使用的,除非另有說明,否則術語「使用者設備(UE)」和「基地台」不意欲是特定的或以其他方式限於任何特定的無線電存取技術(RAT)。通常,UE可以是被使用者用來經由無線通訊網路進行通訊的任何無線通訊設備(例如,行動電話、路由器、平板電腦、膝上型電腦、消費者資產追蹤設備、可穿戴設備(例如,智慧手錶、眼鏡、增強現實(AR)/虛擬實境(VR)耳機等)、車輛(例如,汽車、摩托車、自行車等)、物聯網路(IoT)設備等)。UE可以是行動的或者可以(例如,在特定的時間)是固定的,並且可以與無線電存取網路(RAN)通訊。如本文所使用的,術語「UE」可以互換地稱為「存取終端」或「AT」、「客戶端設備」、「無線設備」、「用戶設備」、「用戶終端」、「用戶站」、「使用者終端」或「UT」、「行動設備」、「行動終端」、「行動站」或其變體。通常,UE可以經由RAN與核心網路通訊,並且經由核心網路,UE可以與外部網路(諸如網際網路)和與其他UE連接。當然,對於UE來說,連接到核心網路及/或網際網路的其他機制亦是可能的,諸如經由有線存取網路、無線區域網路(WLAN)網路(例如,基於電氣與電子工程師協會(IEEE)802.11規範等)等。As used herein, unless otherwise stated, the terms "user equipment (UE)" and "base station" are not intended to be specific or otherwise limited to any particular radio access technology (RAT). In general, a UE can be any wireless communication device (eg, mobile phone, router, tablet, laptop, consumer asset tracking device, wearable device (eg, smart watches, glasses, augmented reality (AR)/virtual reality (VR) headsets, etc.), vehicles (e.g., cars, motorcycles, bicycles, etc.), Internet of Things (IoT) devices, etc.). The UE may be mobile or may be stationary (eg, at specific times) and may communicate with a radio access network (RAN). As used herein, the term "UE" may be referred to interchangeably as "Access Terminal" or "AT", "Client Device", "Wireless Device", "User Equipment", "User Terminal", "Subscriber Station" , "User Terminal" or "UT", "Mobile Device", "Mobile Terminal", "Mobile Station" or variants thereof. Typically, the UE can communicate with the core network via the RAN, and via the core network the UE can connect with external networks, such as the Internet, and with other UEs. Of course, other mechanisms for the UE to connect to the core network and/or the Internet are also possible, such as via wired access networks, wireless local area network (WLAN) networks (eg, based on electrical and electronic Institute of Engineers (IEEE) 802.11 specification, etc.), etc.
取決於其所部署的網路,基地台可以根據與UE通訊的若干RAT中的一個來操作,並且可以可替代地被稱為存取點(AP)、網路節點、NodeB、進化型NodeB(eNB)、下一代eNB(ng-eNB)、新無線電(NR)節點B(亦稱為gNB或gNodeB)等。基地台可以主要用於支援UE的無線存取,包括支援所支援的UE的資料、語音及/或訊號傳遞連接。在一些系統中,基地台可以提供純粹的邊緣節點訊號傳遞功能,而在其他系統中,其可以提供附加的控制及/或網路管理功能。UE可以經由其向基地台發送信號的通訊鏈路被稱為上行鏈路(UL)通道(例如,反向傳輸量通道、反向控制通道、存取通道等)。基地台可以經由其向UE發送信號的通訊鏈路被稱為下行鏈路(DL)或前向鏈路通道(例如,傳呼通道、控制通道、廣播通道、前向傳輸量通道等)。如本文使用的術語傳輸量通道(TCH)可以指上行鏈路/反向或下行鏈路/前向傳輸量通道。Depending on the network it is deployed in, a base station may operate according to one of several RATs that communicate with the UE and may alternatively be referred to as an Access Point (AP), Network Node, NodeB, Evolved NodeB ( eNB), Next Generation eNB (ng-eNB), New Radio (NR) Node B (also known as gNB or gNodeB), etc. The base station may be used primarily to support wireless access for UEs, including supporting data, voice and/or signaling connections for supported UEs. In some systems, the base station may provide pure edge node signaling functions, while in other systems it may provide additional control and/or network management functions. The communication link over which the UE may send signals to the base station is referred to as an uplink (UL) channel (eg, reverse traffic channel, reverse control channel, access channel, etc.). The communication link over which the base station may send signals to the UE is referred to as a downlink (DL) or forward link channel (eg, paging channel, control channel, broadcast channel, forward traffic channel, etc.). The term traffic channel (TCH) as used herein may refer to an uplink/reverse or downlink/forward traffic channel.
術語「基地台」可以指單個實體發送-接收點(TRP),亦可以指多個實體TRP,其可以是共置的,亦可以不是共置的。例如,在術語「基地台」是指單個實體TRP的情況下,實體TRP可以是對應於基地台的細胞(或若干細胞扇區)的基地台的天線。在術語「基地台」指多個共置的實體TRP的情況下,實體TRP可以是基地台的天線陣列(例如,在多輸入多輸出(MIMO)系統中或者在基地台採用波束成形的情況下)。在術語「基地台」指多個不共置的實體TRP的情況下,實體TRP可以是分散式天線系統(DAS)(經由傳輸媒體連接到公共源的空間分離天線網路)或遠端無線電頭端(RRH)(連接到服務基地台的遠端基地台)。可替代地,不共置的實體TRP可以是從UE接收量測報告的服務基地台和UE正在量測其參考射頻(RF)信號的相鄰基地台。因為如本文所使用的,TRP是基地台發送和接收無線信號的點,所以引用從基地台的發送或在基地台處的接收應被理解為指基地台的特定TRP。The term "base station" may refer to a single entity transmit-receive point (TRP) or to multiple entity TRPs, which may or may not be co-located. For example, where the term "base station" refers to a single entity TRP, the entity TRP may be the antenna of the base station corresponding to a cell (or sectors of cells) of the base station. Where the term "base station" refers to multiple co-located physical TRPs, the physical TRP may be the base station's antenna array (eg, in a multiple-input multiple-output (MIMO) system or where the base station employs beamforming ). Where the term "base station" refers to a number of physical TRPs that are not co-located, the physical TRP may be a distributed antenna system (DAS) (a network of spatially separated antennas connected to a common source via a transmission medium) or a remote radio head Remote Side (RRH) (Remote base station connected to serving base station). Alternatively, the non-co-located entity TRP may be the serving base station receiving the measurement report from the UE and the neighboring base station whose reference radio frequency (RF) signal the UE is measuring. Since, as used herein, a TRP is the point at which a base station transmits and receives wireless signals, references to transmission from or reception at a base station should be understood to refer to the base station's specific TRP.
在支援UE的定位的一些實施方式中,基地台可能不支援UE的無線存取(例如,可能不支援UE的資料、語音及/或訊號傳遞連接),而是可以向UE發送參考信號以供UE量測,及/或可以接收和量測由UE發送的信號。此種基地台可以被稱為定位信標(例如,當向UE發送信號時)及/或位置量測單元(例如,當接收和量測來自UE的信號時)。In some embodiments that support positioning of the UE, the base station may not support the UE's radio access (eg, may not support the UE's data, voice, and/or signaling connections), but may send reference signals to the UE for The UE measures, and/or may receive and measure signals transmitted by the UE. Such base stations may be referred to as location beacons (eg, when transmitting signals to UEs) and/or location measurement units (eg, when receiving and measuring signals from UEs).
「RF信號」包括給定頻率的電磁波,其經由發送器和接收器之間的空間傳輸資訊。如本文所用,發送器可以向接收器發送單個「RF信號」或多個「RF信號」。然而,由於RF信號經由多徑通道的傳播特性,接收器可以接收對應於每個發送的RF信號的多個「RF信號」。發送器和接收器之間不同路徑上的相同發送的RF信號可以被稱為「多徑」RF信號。An "RF signal" includes electromagnetic waves of a given frequency that transmit information through the space between a transmitter and a receiver. As used herein, a transmitter may transmit a single "RF signal" or multiple "RF signals" to a receiver. However, due to the propagation characteristics of RF signals through multipath channels, a receiver may receive multiple "RF signals" corresponding to each transmitted RF signal. The same transmitted RF signal on different paths between the transmitter and receiver may be referred to as a "multipath" RF signal.
圖1示出示例無線通訊系統100。無線通訊系統100(亦可以稱為無線廣域網路(WWAN))可以包括各種基地台102和各種UE 104。基地台102可以包括巨集細胞基地台(高功率蜂巢基地台)及/或小型細胞基地台(低功率蜂巢基地台)。在一個態樣中,巨集細胞基地台可以包括其中無線通訊系統100對應於LTE網路的eNB及/或ng-eNB,或者其中無線通訊系統100對應於NR網路的gNB,或者兩者的組合,並且小型細胞基地台可以包括毫微微細胞、微微細胞、微細胞等。FIG. 1 illustrates an example
基地台102可以共同形成RAN,並且經由回載鏈路122與核心網路170(例如,進化封包核心(EPC)或5G核心(5GC))對接,並且經由核心網路170對接到一或多個位置伺服器172(其可以是核心網路170的一部分或者可以在核心網路170的外部)。除了其他功能之外,基地台102可以執行與傳輸使用者資料、無線電通道加密和解密、完整性保護、標頭壓縮、行動性控制功能(例如,交遞、雙重連接)、細胞間干擾協調、連接建立和釋放、負載平衡、非存取層(NAS)訊息的分發、NAS節點選擇、同步、RAN共享、多媒體廣播多播服務(MBMS)、用戶和設備追蹤、RAN資訊管理(RIM)、傳呼、定位和警告訊息的傳遞中的一或多個相關的功能。基地台102可以經由回載鏈路134直接或間接(例如,經由EPC/5GC)彼此通訊,回載鏈路可以是有線的或無線的。The
基地台102可以與UE 104無線通訊。每個基地台102可以為相應的地理覆蓋區域110提供通訊覆蓋。在一個態樣中,每個地理覆蓋區域110中的基地台102可以支援一或多個細胞。「細胞」是用於與基地台通訊的邏輯通訊實體(例如,經由一些頻率資源,稱為載波頻率、分量載波、載波、頻帶等),並且可以與辨識符(例如,實體細胞辨識符(PCI)、虛擬細胞辨識符(VCI)、細胞全域辨識符(CGI))相關聯,用於區分經由相同或不同載波頻率操作的細胞。在一些情況下,可以根據可以為不同類型的UE提供存取的不同協定類型(例如,機器類型通訊(MTC)、窄頻IoT(NB-IoT)、增強型行動寬頻(eMBB)或其他)來配置不同的細胞。因為細胞由特定基地台支援,所以術語「細胞」可以指邏輯通訊實體和支援其的基地台中的一個或兩個,取決於上下文。在一些情況下,術語「細胞」亦可以指基地台的地理覆蓋區域(例如,扇區),只要載波頻率可以被偵測到並用於地理覆蓋區域110的一些部分內的通訊。
儘管相鄰巨集細胞基地台102的地理覆蓋區域110可能部分重疊(例如,在交遞區域中),但是一些地理覆蓋區域110可能被更大的地理覆蓋區域110基本上覆蓋。例如,小型細胞(SC)基地台102’可以具有基本上與一或多個巨集細胞基地台102的地理覆蓋區域110重疊的地理覆蓋區域110’。包括小型細胞和巨集細胞基地台的網路可以被稱為異質網路。異質網路亦可以包括家庭eNB(HeNB),其可以向被稱為封閉用戶群組(CSG)的受限群組提供服務。Although the
基地台102和UE 104之間的通訊鏈路120可以包括從UE 104到基地台102的上行鏈路(亦稱為反向鏈路)傳輸及/或從基地台102到UE 104的下行鏈路(亦稱為前向鏈路)傳輸。通訊鏈路120可以使用MIMO天線技術,包括空間多工、波束成形及/或發送分集。通訊鏈路120可以經由一或多個載波頻率。載波的分配可以相對於下行鏈路和上行鏈路不對稱(例如,可以為下行鏈路分配比上行鏈路更多或更少的載波)。The
無線通訊系統100亦可以包括無線區域網路(WLAN)存取點(AP)150,其經由通訊鏈路154在未授權頻譜(例如,5 GHz)中與WLAN站(STA)152通訊。當在未授權頻譜中通訊時,WLAN STA 152及/或WLAN AP 150可以在通訊之前執行閒置通道評估(CCA)或先聽後說(LBT)程序,以便決定通道是否可用。The
小型細胞基地台102’可以在經授權及/或未授權頻譜中操作。當在未授權頻譜中操作時,小型細胞基地台102’可以採用LTE或NR技術,並且使用與WLAN AP 150所使用的相同的5 GHz未授權頻譜。在未授權頻譜中採用LTE/5G的小型細胞基地台102’可以提高存取網路的覆蓋範圍及/或增加存取網路的容量。未授權頻譜中的NR可以被稱為NR-U。未授權頻譜中的LTE可以被稱為LTE-U、授權輔助存取(LAA)或MulteFire。Small cell base stations 102' may operate in licensed and/or unlicensed spectrum. When operating in unlicensed spectrum, small cell base station 102' may employ LTE or NR technology and use the same 5 GHz unlicensed spectrum used by
無線通訊系統100亦可以包括毫米波(mmW)基地台180,其可以在mmW頻率及/或近mmW頻率下操作,其與UE 182通訊。極高頻率(EHF)是電磁頻譜中RF的一部分。EHF的範圍在30 GHz至300 GHz之間,且波長在1毫米與10毫米之間。該頻帶的無線電波可以稱為毫米波。近mmW可以向下擴展到3 GHz的頻率,波長為100毫米。超高頻(SHF)頻帶在3 GHz和30 GHz之間延伸,亦稱為釐米波。使用mmW/近mmW射頻頻帶的通訊具有高路徑損耗和相對較短的距離。mmW基地台180和UE 182可以經由mmW通訊鏈路184利用波束成形(發送及/或接收)來補償極高的路徑損耗和短距離。此外,將會理解,在替代配置中,一或多個基地台102亦可以使用mmW或近mmW和波束成形來發送。因此,應當理解,前述說明僅僅是實例,且不應被解釋為限制本文揭示的各個態樣。
發送波束成形是一種將RF信號聚焦在特定方向的技術。傳統上,當網路節點(例如,基地台)廣播RF信號時,其向所有方向(全向)廣播信號。利用發送波束成形,網路節點決定給定目標設備(例如,UE)的位置(相對於發送網路節點),並在該特定方向上投射更強的下行鏈路RF信號,從而為(多個)接收設備提供更快(就資料速率而言)和更強的RF信號。為了在發送時改變RF信號的方向性,網路節點可以在廣播RF信號的一或多個發送器的每一個處控制RF信號的相位和相對幅度。例如,網路節點可以使用天線陣列(稱為「相控陣列」或「天線陣列」),其產生可以被「引導」指向不同方向的RF波的波束,而無需實際移動天線。具體而言,來自發送器的RF電流以正確的相位關係饋送到獨立天線,使得來自分離天線的無線電波相加在一起,以增加期望方向上的輻射,同時抵消以抑制不期望方向上的輻射。Transmit beamforming is a technique to focus RF signals in a specific direction. Traditionally, when a network node (eg, a base station) broadcasts an RF signal, it broadcasts the signal in all directions (omnidirectional). Using transmit beamforming, a network node determines the location (relative to the transmitting network node) of a given target device (eg, UE) and projects a stronger downlink RF signal in that particular direction, thereby providing (multiple) ) the receiving device provides a faster (in terms of data rate) and stronger RF signal. In order to change the directivity of the RF signal while transmitting, the network node may control the phase and relative amplitude of the RF signal at each of the one or more transmitters that broadcast the RF signal. For example, network nodes can use antenna arrays (called "phased arrays" or "antenna arrays") that generate beams of RF waves that can be "steered" in different directions without actually moving the antenna. Specifically, the RF current from the transmitter is fed to the separate antennas in the correct phase relationship such that the radio waves from the separate antennas add together to increase radiation in the desired direction, while cancelling to suppress radiation in the undesired direction .
發送波束可以是准並置的,此意味著其在接收器(例如,UE)看來具有相同的參數,無論網路節點的發送天線本身是否實體上並置的。在NR中,有四種類型的准並置(QCL)關係。具體而言,給定類型的QCL關係意味著關於目標波束上的目標參考RF信號的某些參數可以從關於源波束上的源參考RF信號的資訊中推導。若源參考RF信號是QCL A型,則接收器可以使用源參考RF信號來估計在同一通道上發送的目標參考RF信號的都卜勒頻移、都卜勒擴展、平均延遲和延遲擴展。若源參考RF信號是QCL B型,則接收器可以使用源參考RF信號來估計在同一通道上發送的目標參考RF信號的都卜勒頻移和都卜勒擴展。若源參考RF信號是QCL C型,則接收器可以使用源參考RF信號來估計在同一通道上發送的目標參考RF信號的都卜勒頻移和平均延遲。若源參考RF信號是QCL D型,則接收器可以使用源參考RF信號來估計在同一通道上發送的目標參考RF信號的空間接收參數。The transmit beams may be quasi-collocated, which means that they appear to the receiver (eg, UE) to have the same parameters, whether or not the transmit antennas of the network node themselves are physically collocated. In NR, there are four types of Quasi Collocated (QCL) relationships. In particular, a given type of QCL relationship means that certain parameters about the target reference RF signal on the target beam can be derived from information about the source reference RF signal on the source beam. If the source reference RF signal is a QCL Type A, the receiver can use the source reference RF signal to estimate the Doppler shift, Doppler spread, average delay, and delay spread of the target reference RF signal transmitted on the same channel. If the source reference RF signal is of type QCL B, the receiver can use the source reference RF signal to estimate the Doppler shift and Doppler spread of the target reference RF signal transmitted on the same channel. If the source reference RF signal is QCL Type C, the receiver can use the source reference RF signal to estimate the Doppler shift and average delay of the target reference RF signal transmitted on the same channel. If the source reference RF signal is of type QCL D, the receiver can use the source reference RF signal to estimate the spatial reception parameters of the target reference RF signal transmitted on the same channel.
在接收波束成形中,接收器使用接收波束來放大在給定通道上偵測到的RF信號。例如,接收器可以在特定方向上增加增益設置及/或調整天線陣列的相位設置,以放大從該方向接收的RF信號(例如,增加其增益水平)。因此,當說接收器在某個方向上波束成形時,意味著該方向上的波束增益相對於沿其他方向的波束增益是高的,或者該方向上的波束增益與接收器可用的所有其他接收波束在該方向上的波束增益相比是最高的。此導致從該方向接收到的RF信號具有更強的接收信號強度(例如,參考信號接收功率(RSRP)、參考信號接收品質(RSRQ)、信號干擾加雜訊比(SINR)等)。In receive beamforming, a receiver uses a receive beam to amplify RF signals detected on a given channel. For example, the receiver may increase the gain setting and/or adjust the phase setting of the antenna array in a particular direction to amplify (eg, increase its gain level) the RF signal received from that direction. So when the receiver is said to be beamforming in a certain direction, it means that the beam gain in that direction is high relative to the beam gain in other directions, or the beam gain in that direction is comparable to all other receptions available to the receiver The beam gain in this direction is the highest in comparison. This results in a stronger received signal strength (eg, reference signal received power (RSRP), reference signal received quality (RSRQ), signal-to-interference-to-noise ratio (SINR), etc.) for the RF signal received from that direction.
接收波束可以是空間相關的。空間關係意味著第二參考信號的發送波束的參數可以從關於第一參考信號的接收波束的資訊中推導。例如,UE可以使用特定的接收波束從基地台接收一或多個參考下行鏈路參考信號(例如,定位參考信號(PRS)、追蹤參考信號(TRS)、相位追蹤參考信號(PTRS)、細胞特定參考信號(CRS)、通道狀態資訊參考信號(CSI-RS)、主要同步信號(PSS)、輔同步信號(SSS)、同步信號區塊(SSB)等)。隨後,UE可以基於接收波束的參數形成用於向該基地台發送一或多個上行鏈路參考信號(例如,上行鏈路定位參考信號(UL-PRS)、探測參考信號(SRS)、解調參考信號(DMRS)、PTRS等)的發送波束。The receive beams may be spatially correlated. The spatial relationship means that the parameters of the transmit beam of the second reference signal can be derived from information about the receive beam of the first reference signal. For example, the UE may receive one or more reference downlink reference signals (eg, Positioning Reference Signal (PRS), Tracking Reference Signal (TRS), Phase Tracking Reference Signal (PTRS), cell-specific Reference Signal (CRS), Channel State Information Reference Signal (CSI-RS), Primary Synchronization Signal (PSS), Secondary Synchronization Signal (SSS), Synchronization Signal Block (SSB), etc.). The UE may then form parameters based on the receive beam for transmitting one or more uplink reference signals (eg, uplink positioning reference signal (UL-PRS), sounding reference signal (SRS), demodulation to the base station Transmit beams for reference signals (DMRS, PTRS, etc.).
注意,「下行鏈路」波束可以是發送波束,亦可以是接收波束,此取決於形成其的實體。例如,若基地台正在形成下行鏈路波束以向UE發送參考信號,則下行鏈路波束是發送波束。然而,若UE正在形成下行鏈路波束,則其是接收下行鏈路參考信號的接收波束。類似地,「上行鏈路」波束可以是發送波束,亦可以是接收波束,此取決於形成其的實體。例如,若基地台正在形成上行鏈路波束,則其是上行鏈路接收波束,並且若UE正在形成上行鏈路波束,則其是上行鏈路發送波束。Note that a "downlink" beam can be either a transmit beam or a receive beam, depending on the entity that forms it. For example, if the base station is forming a downlink beam to transmit a reference signal to the UE, the downlink beam is the transmit beam. However, if the UE is forming a downlink beam, it is the receive beam that receives the downlink reference signal. Similarly, an "uplink" beam can be a transmit beam or a receive beam, depending on the entity that forms it. For example, if the base station is forming an uplink beam, it is an uplink receive beam, and if the UE is forming an uplink beam, it is an uplink transmit beam.
在5G中,無線節點(例如,基地台102/180、UE 104/182)在其中操作的頻譜被劃分成多個頻率範圍:FR1(從450到6000 MHz)、FR2(從24250到52600 MHz)、FR3(高於52600 MHz)和FR4(在FR1和FR2之間)。在多載波系統中,諸如5G,載波頻率中的一個被稱為「主載波」或「錨載波」或「主服務細胞」或「PCell」,而其餘的載波頻率被稱為「輔載波」或「輔服務細胞」或「SCell」。在載波聚合中,錨載波是在由UE 104/182和UE 104/182在其中執行初始無線電資源控制(RRC)連接建立程序或者發起RRC連接重建程序的細胞利用的主頻率(例如,FR1)上操作的載波。主載波攜帶所有公共和UE特定的控制通道,並且可以是經授權頻率中的載波(但並非總是如此)。輔載波是在第二頻率(例如,FR2)上操作的載波,一旦在UE 104和錨載波之間建立了RRC連接,就可以配置輔載波,並且輔載波可以用於提供附加的無線電資源。在一些情況下,輔載波可以是未授權頻率中的載波。輔載波可以僅包含必要的訊號傳遞資訊和信號,例如,彼等UE特定的資訊和信號可能不存在於輔載波中,因為主上行鏈路和下行鏈路載波通常皆是UE特定的。此意味著細胞中不同的UE 104/182可以具有不同的下行鏈路主載波。上行鏈路主載波亦是如此。網路能夠在任何時間改變任何UE 104/182的主載波。例如,此是為了平衡不同載波上的負載。因為「服務細胞」(無論是PCell還是SCell)對應於一些基地台經由其正在通訊的載波頻率/分量載波,所以術語「細胞」、「服務細胞」、「分量載波」、「載波頻率」等可以互換使用。In 5G, the spectrum in which wireless nodes (eg,
例如,仍然參考圖1,巨集細胞基地台102利用的頻率之一可以是錨載波(或「PCell」),並且巨集細胞基地台102及/或mmW基地台180利用的其他頻率可以是輔載波(「SCell」)。多個載波的同時發送及/或接收使得UE 104/182能夠顯著提高其資料發送及/或接收速率。例如,與單個20 MHz載波相比,多載波系統中的兩個20 MHz聚合載波理論上將導致資料速率增加兩倍(亦即,40 MHz)。For example, still referring to FIG. 1, one of the frequencies utilized by
無線通訊系統100亦可以包括UE 164,其可以經由通訊鏈路120與巨集細胞基地台102通訊,及/或經由mmW通訊鏈路184與mmW基地台180通訊。例如,巨集細胞基地台102可以為UE 164支援PCell和一或多個SCell,並且mmW基地台180可以為UE 164支援一或多個SCell。
在圖1的實例中,一或多個地球軌道衛星定位系統(SPS)太空飛行器(SV)112(例如,衛星)可以被用作任何示出的UE(為了簡單起見,在圖1中示出為單個UE 104)的獨立位置資訊源。UE 104可以包括一或多個專用的SPS接收器,該等SPS接收器被專門設計成接收SPS信號124,用於從SV 112推導地理位置資訊。SPS通常包括發送器系統(例如,SV 112),其被定位成使得接收器(例如,UE 104)能夠至少部分地基於從發送器接收的信號(例如,SPS信號124)來決定其在地球上面或地球上方的位置。此種發送器通常發送標記有設定數量的晶片的重複假性隨機雜訊(PN)碼的信號。儘管發送器通常位於SV 112中,但有時亦可能位於基於地面的控制站、基地台102及/或其他UE 104上。In the example of FIG. 1 , one or more Earth-orbiting Satellite Positioning System (SPS) space vehicles (SVs) 112 (eg, satellites) may be used as any of the illustrated UEs (shown in FIG. 1 for simplicity out as an independent source of location information for a single UE 104). The
SPS信號124的使用可以藉由各種基於衛星的增強系統(SBAS)來增強,該等增強系統可以與一或多個全球及/或區域導航衛星系統相關聯或者以其他方式與其一起使用。例如,SBAS可以包括提供完整性資訊、差分校正等的(多個)增強系統,諸如廣域增強系統(WAAS)、歐洲對地同步導航覆蓋服務(EGNOS)、多功能衛星增強系統(MSAS)、全球定位系統(GPS)輔助地理增強導航或GPS和地理增強導航系統(GAGAN)等。因此,如本文所使用的,SPS可以包括一或多個全球及/或區域導航衛星系統及/或增強系統的任何組合,且SPS信號124可以包括SPS、類似SPS及/或與該一或多個SPS相關聯的其他信號。The use of SPS signals 124 may be augmented by various satellite-based augmentation systems (SBAS), which may be associated with or otherwise used with one or more global and/or regional navigation satellite systems. For example, SBAS may include augmentation system(s) that provide integrity information, differential corrections, etc., such as Wide Area Augmentation System (WAAS), European Geosynchronous Navigation Overlay Service (EGNOS), Multifunctional Satellite Augmentation System (MSAS), Global Positioning System (GPS) Assisted Geo-Augmented Navigation or GPS and Geo-Augmented Navigation System (GAGAN) etc. Thus, as used herein, an SPS may include any combination of one or more global and/or regional navigation satellite systems and/or augmentation systems, and the
無線通訊系統100亦可以包括一或多個UE,諸如UE 190,其經由一或多個設備到設備(D2D)同級間(P2P)鏈路(稱為「側行鏈路」)間接連接到一或多個通訊網路。在圖1的實例中,UE 190具有D2D P2P鏈路192,其中UE 104之一連接到基地台102之一(例如,經由該鏈路UE 190可以間接獲得蜂巢連接),以及D2D P2P鏈路194,其中WLAN STA 152連接到WLAN AP 150(經由該鏈路UE 190可以間接獲得基於WLAN的網際網路連接)。在一個實例中,D2D P2P鏈路192和194可以由任何眾所周知的D2D RAT來支援,諸如直接LTE(LTE-D)、直接WiFi(WiFi-D)、藍芽®等。
圖2A示出示例無線網路結構200。例如,5GC 210(亦稱為下一代核心(NGC))在功能上可以被視為控制平面功能214(例如,UE註冊、認證、網路存取、閘道選擇等)和使用者平面功能212(例如,UE閘道功能、對資料網路的存取、IP路由等),其協同操作以形成核心網路。使用者平面介面(NG-U)213和控制平面介面(NG-C)215將gNB 222連接到5GC 210,且具體地連接到控制平面功能214和使用者平面功能212。在另外的配置中,ng-eNB 224亦可以經由到控制平面功能214的NG-C 215和到使用者平面功能212的NG-U 213連接到5GC 210。此外,ng-eNB 224可以經由回載連接223直接與gNB 222通訊。在一些配置中,新RAN 220可以僅具有一或多個gNB 222,而其他配置包括ng-eNB 224和gNB 222中的一或多個。gNB 222或ng-eNB 224可以與UE 204(例如,圖1中描繪的任何UE)通訊。另一可選態樣可以包括位置伺服器230,其可以與5GC 210通訊,以向UE 204提供位置輔助。位置伺服器230可以被實施為複數個分離的伺服器(例如,實體上分離的伺服器、單個伺服器上的不同軟體模組、分佈在多個實體伺服器上的不同軟體模組等),或者可替代地每個可以對應於單個伺服器。位置伺服器230可以被配置為支援UE 204的一或多個位置服務,UE 204可以經由核心網路、5GC 210及/或經由網際網路(未示出)連接到位置伺服器230。此外,位置伺服器230可以集成到核心網路的部件中,或者可替代地可以在核心網路外部。FIG. 2A shows an example
圖2B示出另一示例無線網路結構250。例如,5GC 260在功能上可以被視為由存取和行動性管理功能(AMF)264提供的控制平面功能,以及由使用者平面功能(UPF)262提供的使用者平面功能,其協同操作以形成核心網路(亦即,5GC 260)。使用者平面介面263和控制平面介面265將ng-eNB 224分別連接到5GC 260,且具體地連接到UPF 262和AMF 264。在另外的配置中,gNB 222亦可以經由到AMF 264的控制平面介面265和到UPF 262的使用者平面介面263連接到5GC 260。此外,ng-eNB 224可以經由回載連接223直接與gNB 222通訊,無論gNB是否直接連接到5GC 260。在一些配置中,新RAN 220可以僅具有一或多個gNB 222,而其他配置包括ng-eNB 224和gNB 222中的一或多個。gNB 222或ng-eNB 224可以與UE 204(例如,圖1中描繪的任何UE)通訊。新RAN 220的基地台經由N2介面與AMF 264通訊,並經由N3介面與UPF 262通訊。FIG. 2B shows another example
AMF 264的功能包括註冊管理、連接管理、可達性管理、行動性管理、合法攔截、UE 204和通信期管理功能(SMF)266之間的通信期管理(SM)訊息傳輸、用於路由SM訊息的透明代理服務、存取認證和存取授權、UE 204和簡訊服務功能(SMSF)(未圖示)之間的簡訊服務(SMS)訊息傳輸以及安全錨功能(SEAF)。AMF 264亦與認證伺服器功能(AUSF)(未圖示)和UE 204互動,並接收作為UE 204認證過程的結果而建立的中間金鑰。在基於UMTS(通用行動電信系統)用戶身份模組(USIM)的認證的情況下,AMF 264從AUSF檢索安全材料。AMF 264的功能亦包括安全上下文管理(SCM)。SCM從SEAF接收金鑰,並使用其來推導存取網路特定的金鑰。AMF 264的功能亦包括用於監管服務的位置服務管理、在UE 204和位置管理功能(LMF)270(其充當位置伺服器230)之間的位置服務訊息的傳輸、以及在新RAN 220和LMF 270之間的位置服務訊息的傳輸、用於與進化封包系統(EPS)互通的EPS承載辨識符分配以及UE 204行動性事件通知。此外,AMF 264亦支援非3GPP(第三代合作夥伴計畫)存取網路的功能。The functions of
UPF 262的功能包括充當RAT內/RAT間行動性的錨點(當適用時)、充當與資料網路(未圖示)互連的外部協定資料單元(PDU)通信期點、提供封包路由和轉發、封包檢查、使用者平面策略規則實施(例如,選通(gating)、重定向、傳輸量導向)、合法攔截(使用者平面收集)、傳輸量使用報告、使用者平面的服務品質(QoS)處理(例如,上行鏈路/下行鏈路速率實施、下行鏈路中的反射性QoS標記)、上行鏈路傳輸量驗證(服務資料流(SDF)到QoS流的映射)、上行鏈路和下行鏈路中的傳輸級封包標記、下行鏈路封包緩衝和下行鏈路資料通知觸發,以及向源RAN節點發送和轉發一或多個「結束標記」。UPF 262亦可以支援經由使用者平面在UE 204和位置伺服器(諸如安全使用者平面位置(SUPL)位置平臺(SLP) 272)之間傳輸位置服務訊息。The functions of the
SMF 266的功能包括通信期管理、UE網際網路協定(IP)位址分配和管理、使用者平面功能的選擇和控制、在UPF 262處配置傳輸量導向以將傳輸量路由到正確的目的地、控制部分策略實施和QoS、以及下行鏈路資料通知。SMF 266經由其與AMF 264通訊的介面被稱為N11介面。The functions of
另一可選態樣可以包括LMF 270,其可以與5GC 260通訊,以向UE 204提供位置輔助。LMF 270可以被實施為複數個分離的伺服器(例如,實體上分離的伺服器、單個伺服器上的不同軟體模組、分佈在多個實體伺服器上的不同軟體模組等),或者可替代地每個可以對應於單個伺服器。LMF 270可以被配置為支援UE 204的一或多個位置服務,UE 204可以經由核心網路、5GC 260及/或經由網際網路(未示出)連接到LMF 270。SLP 272可以支援與LMF 270類似的功能,但LMF 270可以經由控制平面(例如,使用意欲傳送訊號傳遞訊息而不是語音或資料的介面和協定)與AMF 264、新RAN 220和UE 204通訊,SLP 272可以經由使用者平面(例如,使用意欲攜帶語音及/或資料的協定,如傳輸控制協定(TCP)及/或IP)與UE 204和外部客戶端(圖2B中未圖示)通訊。Another optional aspect may include the
圖3A、圖3B和圖3C示出可以被併入UE 302(其可以對應於本文所述的任何UE)、基地台304(其可以對應於本文所述的任何基地台)和網路實體306(其可以對應於或體現本文所述的任何網路功能,包括位置伺服器230和LMF 270)中的若干示例部件(由對應的區塊表示),用於支援如本文所教示的檔案傳輸操作。應當理解,該等部件可以在不同實施方式中的不同類型的裝置中實施(例如,在ASIC中、在片上系統(SoC)中等)。所示的部件亦可以併入通訊系統中的其他裝置中。例如,系統中的其他裝置可以包括類似於所描述的部件,以提供類似的功能。此外,給定的裝置可以包含一或多個部件。例如,裝置可以包括多個收發器部件,該等部件使得該裝置能夠在多個載波上操作及/或經由不同的技術進行通訊。3A, 3B, and 3C illustrate UE 302 (which may correspond to any UE described herein), base station 304 (which may correspond to any base station described herein), and
UE 302和基地台304各自分別包括無線廣域網路(WWAN)收發器310和350,提供用於經由一或多個無線通訊網路(未圖示)進行通訊的構件(例如,用於發送的構件、用於接收的構件、用於量測的構件、用於調諧的構件、用於抑制發送的構件等),無線通訊網路諸如是NR網路、LTE網路、GSM網路等。WWAN收發器310和350可以分別連接到一或多個天線316和356,用於經由至少一個指定的RAT(例如,NR、LTE、GSM等)經由感興趣的無線通訊媒體(例如,特定頻譜中的某時間/頻率資源集合)與其他網路節點通訊,諸如其他UE、存取點、基地台(例如,eNB、gNB)等。WWAN收發器310和350可以被不同地配置用於根據指定的RAT分別發送和編碼信號318和358(例如,訊息、指示、資訊等),以及反過來,分別接收和解碼信號318和358(例如,訊息、指示、資訊、引導頻等)。具體而言,WWAN收發器310和350分別包括一或多個發送器314和354,用於分別發送和編碼信號318和358,以及一或多個接收器312和352,用於分別接收和解碼信號318和358。
至少在一些情況下,UE 302和基地台304亦分別包括一或多個短程無線收發器320和360。短程無線收發器320和360可以分別連接到一或多個天線326和366,並且提供用於經由感興趣的無線通訊媒體經由至少一個指定的RAT(例如,WiFi、LTE-D、藍芽®、Zigbee®、Z-Wave®、PC5、專用短程通訊(DSRC)、車輛環境無線存取(WAVE)、近場通訊(NFC)等)與其他網路節點通訊的構件(例如,用於發送的構件、用於接收的構件、用於量測的構件、用於調諧的構件、用於抑制發送的構件等),其他網路節點諸如其他UE、存取點、基地台等。短程無線收發器320和360可以以不同方式配置用於根據指定的RAT分別發送和編碼信號328和368(例如,訊息、指示、資訊等),以及反過來,分別用於接收和解碼信號328和368(例如,訊息、指示、資訊、引導頻等)。具體而言,短程無線收發器320和360分別包括一或多個發送器324和364,用於分別發送和編碼信號328和368,以及一或多個接收器322和362,用於分別接收和解碼信號328和368。作為具體實例,短程無線收發器320和360可以是WiFi收發器、藍芽®收發器、Zigbee®及/或Z-Wave®收發器、NFC收發器、或車輛對車輛(V2V)及/或車輛對萬物(V2X)收發器。In at least some cases,
包括至少一個發送器和至少一個接收器的收發器電路在一些實施方式中可以包括集成設備(例如,實現為單個通訊設備的發送器電路和接收器電路),在一些實施方式中可以包括分離的發送器設備和分離的接收器設備,或者在其他實施方式中可以以其他方式實現。在一個態樣中,發送器可以包括或耦接到複數個天線(例如,天線316、326、356、366),諸如天線陣列,其允許相應的裝置執行發送「波束成形」,如本文所述。類似地,接收器可以包括或耦接到複數個天線(例如,天線316、326、356、366),諸如天線陣列,其允許相應的裝置執行接收波束成形,如本文所述。在一個態樣,發送器和接收器可以共享相同的複數個天線(例如,天線316、326、356、366),使得相應的裝置只能在給定的時間接收或發送,而不能同時接收或發送。UE 302及/或基地台304的無線通訊設備(例如,收發器310和320及/或350和360中的一個或兩個)亦可以包括用於執行各種量測的網路監聽模組(NLM)等。A transceiver circuit that includes at least one transmitter and at least one receiver may include an integrated device (eg, a transmitter circuit and a receiver circuit implemented as a single communication device) in some embodiments, and may include separate devices in some embodiments. The transmitter device and the separate receiver device, or in other embodiments may be implemented in other ways. In one aspect, the transmitter may include or be coupled to a plurality of antennas (eg,
至少在一些情況下,UE 302和基地台304亦包括衛星定位系統(SPS)接收器330和370。SPS接收器330和370可以分別連接到一或多個天線336和376,並且可以提供用於分別接收及/或量測SPS信號338和378的構件,諸如全球定位系統(GPS)信號、全球導航衛星系統(GLONASS)信號、伽利略信號、北斗信號、印度區域導航衛星系統(NAVIC)、準天頂衛星系統(QZSS)等。SPS接收器330和370可以包括分別用於接收和處理SPS信號338和378的任何合適的硬體及/或軟體。SPS接收器330和370從其他系統請求適當的資訊和操作,並使用藉由任何合適的SPS演算法獲得的量測值來執行決定UE 302和基地台304的位置所必需的計算。At least in some cases,
基地台304和網路實體306各自分別包括至少一個網路介面380和390,提供用於與其他網路實體進行通訊的構件(例如,用於發送的構件、用於接收的構件等)。例如,網路介面380和390(例如,一或多個網路存取埠)可以被配置為經由基於有線或無線回載連接與一或多個網路實體通訊。在一些態樣中,網路介面380和390可以被實施為被配置為支援基於有線或無線信號通訊的收發器。該通訊可以包括例如發送和接收訊息、參數及/或其他類型的資訊。
UE 302、基地台304和網路實體306亦包括可以與本文揭示的操作結合使用的其他部件。UE 302包括實施處理系統332的處理器電路,用於提供與例如無線定位相關的功能,以及用於提供其他處理功能。基地台304包括處理系統384,用於提供與例如本文揭示的無線定位相關的功能,以及用於提供其他處理功能。網路實體306包括處理系統394,用於提供與例如本文揭示的無線定位相關的功能,以及用於提供其他處理功能。處理系統332、384和394因此可以提供用於處理的構件,諸如用於決定的構件、用於計算的構件、用於接收的構件、用於發送的構件、用於指示的構件等。在一個態樣中,處理系統332、384和394可以包括例如一或多個處理器,諸如一或多個通用處理器、多核處理器、ASIC、數位訊號處理器(DSP)、現場可程式設計閘陣列(FPGA)、其他可程式設計邏輯設備或處理電路或其各種組合。
UE 302、基地台304和網路實體306包括分別實施記憶體部件340、386和396(例如,每個包括記憶體設備)的記憶體電路,用於維護資訊(例如,指示預留資源、閾值、參數等的資訊)。記憶體部件340、386和396因此可以提供用於儲存的構件、用於檢索的構件、用於維護的構件等。在一些情況下,UE 302、基地台304和網路實體306可以分別包括PRS部件342、388和398。PRS部件342、388和398可以是分別是處理系統332、384和394的一部分或耦接到處理系統332、384和394的硬體電路,當被執行時,使得UE 302、基地台304和網路實體306執行本文描述的功能。在其他態樣中,PRS部件342、388和398可以在處理系統332、384和394的外部(例如,數據機處理系統的一部分,與另一處理系統集成等)。可替代地,PRS部件342、388和398可以是分別儲存在記憶體部件340、386和396中的記憶體模組,當由處理系統332、384和394(或數據機處理系統、另一處理系統等)執行時,使得UE 302、基地台304和網路實體306執行本文描述的功能。圖3A示出PRS部件342的可能位置,PRS部件342可以是WWAN收發器310、記憶體部件340、處理系統332或其任意組合的一部分,或者可以是獨立部件。圖3B示出PRS部件388的可能位置,PRS部件388可以是WWAN收發器350、記憶體部件386、處理系統384或其任意組合的一部分,或者可以是獨立部件。圖3C示出PRS部件398的可能位置,其可以是(多個)網路介面390、記憶體部件396、處理系統394或其任意組合的一部分,或者可以是獨立部件。
UE 302可以包括耦接到處理系統332的一或多個感測器344,以提供用於感測或偵測獨立於從由WWAN收發器310、短程無線收發器320及/或SPS接收器330接收的信號中推導的運動資料的運動及/或方位資訊的構件。舉例而言,(多個)感測器344可以包括加速度計(例如,微機電系統(MEMS)設備)、陀螺儀、地磁感測器(例如,羅盤)、高度計(例如,氣壓高度計)及/或任何其他類型的移動偵測感測器。此外,(多個)感測器344可以包括複數種不同類型的設備,並且組合其輸出以便提供運動資訊。例如,(多個)感測器344可以使用多軸加速度計和方位感測器的組合來提供在2D及/或3D座標系中計算位置的能力。The
此外,UE 302包括使用者介面346,其提供用於向使用者提供指示(例如,聽覺及/或視覺指示)及/或用於接收使用者輸入(例如,在使用者致動諸如鍵盤、觸控式螢幕、麥克風等感測設備時)的構件。儘管未圖示,基地台304和網路實體306亦可以包括使用者介面。Additionally, the
更詳細地參考處理系統384,在下行鏈路中,來自網路實體306的IP封包可以被提供給處理系統384。處理系統384可以實施RRC層、封包資料彙聚協定(PDCP)層、無線電鏈路控制(RLC)層和媒體存取控制(MAC)層的功能。處理系統384可以提供與系統資訊(例如,主資訊區塊(MIB)、系統資訊區塊(SIB))的廣播、RRC連接控制(例如,RRC連接傳呼、RRC連接建立、RRC連接修改和RRC連接釋放)、RAT間行動性和用於UE量測報告的量測配置相關聯的RRC層功能;與標頭壓縮/解壓縮、安全性(加密、解密、完整性保護、完整性驗證)和交遞支援功能相關聯的PDCP層功能;與上層PDU的傳輸、經由自動重發請求(ARQ)的糾錯、RLC服務資料單元(SDU)的串接、分段和重組、RLC資料PDU的重新分段以及RLC資料PDU的重新排序相關聯的RLC層功能;及與邏輯通道和傳輸通道之間的映射、排程資訊報告、糾錯、優先順序處理和邏輯通道優先化相關聯的MAC層功能。Referring to
發送器354和接收器352可以實施與各種信號處理功能相關聯的第1層(L1)功能,包括實體(PHY)層的第1層可以包括傳輸通道上的錯誤偵測、傳輸通道的前向糾錯(FEC)編碼/解碼、交錯、速率匹配、到實體通道的映射、實體通道的調制/解調、以及MIMO天線處理。發送器354基於各種調制方案(例如,二進位移相鍵控(BPSK)、正交移相鍵控(QPSK)、M-移相鍵控(M-PSK)、M-正交幅度調制(M-QAM))處理到信號群集的映射。經編碼和經調制的符號隨後可以被分成並行的串流。隨後,每個串流可以被映射到正交分頻多工(OFDM)次載波,在時域及/或頻域中與參考信號(例如,引導頻)多工,且隨後使用快速傅立葉逆變換(IFFT)組合在一起,以產生攜帶時域OFDM符號串流的實體通道。OFDM符號串流被空間預編碼以產生多個空間串流。來自通道估計器的通道估計可以用於決定編碼和調制方案,以及用於空間處理。通道估計可以從由UE 302發送的參考信號及/或通道條件回饋中推導。隨後,每個空間串流可以提供給一或多個不同的天線356。發送器354可以用相應的空間串流來調制RF載波以進行傳輸。
在UE 302處,接收器312經由其相應的(多個)天線316接收信號。接收器312恢復調制到RF載波上的資訊,並將該資訊提供給處理系統332。發送器314和接收器312實施與各種信號處理功能相關聯的第1層功能。接收器312可以對資訊執行空間處理,以恢復去往UE 302的任何空間串流。若多個空間串流被指定去往UE 302,則其可以被接收器312組合成單個OFDM符號串流。接收器312隨後使用快速傅立葉轉換(FFT)將OFDM符號串流從時域轉換到頻域。頻域信號包括用於OFDM信號的每個次載波的分離的OFDM符號串流。藉由決定由基地台304發送的最可能的信號群集點,每個次載波上的符號和參考信號被恢復和解調。該等軟決策可以基於由通道估計器計算的通道估計。隨後,軟決策被解碼和解交錯,以恢復最初由基地台304在實體通道上發送的資料和控制信號。資料和控制信號隨後被提供給處理系統332,該處理系統實施第3層(L3)和第2層(L2)功能。At
在上行鏈路中,處理系統332提供傳輸和邏輯通道之間的解多工、封包重組、解密、標頭解壓縮和控制信號處理,以從核心網路恢復IP封包。處理系統332亦負責錯誤偵測。In the uplink,
類似於結合基地台304的下行鏈路傳輸描述的功能,處理系統332提供與系統資訊(例如,MIB、SIB)獲取、RRC連接和量測報告相關聯的RRC層功能;與標頭壓縮/解壓縮和安全性(加密、解密、完整性保護、完整性驗證)相關聯的PDCP層功能;與上層PDU的傳輸、經由ARQ的糾錯、RLC SDU的串接、分段和重組、RLC資料PDU的重新分段以及RLC資料PDU的重新排序相關聯的RLC層功能;及與邏輯通道和傳輸通道之間的映射、MAC SDU多工到傳輸區塊(TB)、從TB中解多工MAC SDU、排程資訊報告、經由混合自動重傳請求(HARQ)的糾錯、優先順序處理和邏輯通道優先化相關聯的MAC層功能。Similar to the functions described in connection with the downlink transmission of
發送器314可以使用由通道估計器從由基地台304發送的參考信號或回饋中推導的通道估計來選擇適當的編碼和調制方案,並促進空間處理。由發送器314產生的空間串流可以被提供給不同的(多個)天線316。發送器314可以用相應的空間串流來調制RF載波以進行傳輸。
以類似於結合UE 302處的接收器功能所描述的方式,在基地台304處處理上行鏈路傳輸。接收器352經由其相應的(多個)天線356接收信號。接收器352恢復調制到RF載波上的資訊,並將該資訊提供給處理系統384。Uplink transmissions are processed at
在上行鏈路中,處理系統384提供傳輸通道和邏輯通道之間的解多工、封包重組、解密、標頭解壓縮、控制信號處理,以從UE 302恢復IP封包。來自處理系統384的IP封包可以被提供給核心網路。處理系統384亦負責錯誤偵測。In the uplink,
為了方便起見,UE 302、基地台 304及/或網路實體306在圖3A至圖3C中圖示為包括可以根據本文描述的各種實例配置的各種部件。然而,應當理解,所示的區塊在不同的設計中可以具有不同的功能。For convenience,
UE 302、基地台304和網路實體306的各種部件可以分別經由資料匯流排334、382和392相互通訊。圖3A至圖3C的部件可以以各種方式實施。在一些實施方式中,圖3A至圖3C的部件可以在一或多個電路中實施,諸如,例如,一或多個處理器及/或一或多個ASIC(其可以包括一或多個處理器)。此處,每個電路可以使用及/或併入至少一個記憶體部件,用於儲存電路用來提供該功能的資訊或可執行代碼。例如,由方塊310至346表示的一些或全部功能可以由UE 302的處理器和(多個)記憶體部件來實施(例如,藉由執行適當的代碼及/或藉由處理器部件的適當配置)。類似地,由方塊350至388表示的一些或全部功能可以由基地台304的處理器和(多個)記憶體部件來實施(例如,藉由執行適當的代碼及/或藉由處理器部件的適當配置)。此外,由方塊390至398表示的一些或全部功能可以由網路實體306的處理器和(多個)記憶體部件來實施(例如,藉由執行適當的代碼及/或藉由處理器部件的適當配置)。為簡單起見,各種操作、動作及/或功能在本文中描述為「由UE」、「由基地台」、「由網路實體」等執行。然而,可以理解,此種操作、動作及/或功能實際上可以由UE 302、基地台304、網路實體306等的特定部件或部件的組合來執行,諸如處理系統332、384、394、收發器310、320、350和360、記憶體部件340、386和396、PRS部件342、388和398等。Various components of
各種訊框結構可以用於支援網路節點(例如,基地台和UE)之間的下行鏈路和上行鏈路傳輸。Various frame structures may be used to support downlink and uplink transmissions between network nodes (eg, base stations and UEs).
圖4A是示出根據本揭示的各態樣的下行鏈路訊框結構的實例的圖400。圖4B是示出根據本揭示的各態樣的下行鏈路訊框結構內的通道的實例的圖430。圖4C是示出根據本揭示的各態樣的上行鏈路訊框結構的實例的圖450。圖4D是示出根據本揭示的各態樣的上行鏈路訊框結構內的通道的實例的圖470。其他無線通訊技術可以具有不同的訊框結構及/或不同的通道。4A is a diagram 400 illustrating an example of a downlink frame structure according to aspects of the present disclosure. 4B is a diagram 430 illustrating an example of a channel within a downlink frame structure in accordance with aspects of the present disclosure. 4C is a diagram 450 illustrating an example of an uplink frame structure according to aspects of the present disclosure. 4D is a diagram 470 illustrating an example of a channel within an uplink frame structure according to aspects of the present disclosure. Other wireless communication technologies may have different frame structures and/or different channels.
LTE(且在一些情況下為NR)在下行鏈路上利用OFDM,且在上行鏈路上利用單載波分頻多工(SC-FDM)。然而,與LTE不同,NR亦可以選擇在上行鏈路上使用OFDM。OFDM和SC-FDM將系統頻寬劃分為多個(K個)正交次載波,該等次載波通常亦被稱為頻調(tone)或者頻段(bin)等。每個次載波可以用資料調制。通常,使用OFDM在頻域中發送調制符號,並且使用SC-FDM在時域中發送調制符號。相鄰次載波之間的間隔可以是固定的,並且次載波的總數(K)可以取決於系統頻寬。例如,次載波的間隔可以是15千赫(kHz),並且最小資源配置(資源區塊)可以是12個次載波(或180 kHz)。因此,對於1.25、2.5、5、10或20兆赫(MHz)的系統頻寬,標稱FFT大小可以分別等於128、256、512、1024或2048。系統頻寬亦可以被劃分為次頻帶。例如,一個次頻帶可以覆蓋1.08 MHz(亦即,6個資源區塊),且對於1.25、2.5、5、10或20 MHz的系統頻寬,可以分別有1、2、4、8或16個次頻帶。LTE (and in some cases NR) utilizes OFDM on the downlink and single-carrier frequency division multiplexing (SC-FDM) on the uplink. However, unlike LTE, NR also has the option to use OFDM on the uplink. OFDM and SC-FDM divide the system bandwidth into multiple (K) orthogonal sub-carriers, which are also commonly referred to as tones or bins. Each subcarrier can be modulated with data. Typically, modulation symbols are sent in the frequency domain using OFDM and in the time domain using SC-FDM. The spacing between adjacent subcarriers may be fixed, and the total number (K) of subcarriers may depend on the system bandwidth. For example, the spacing of subcarriers may be 15 kilohertz (kHz), and the minimum resource configuration (resource block) may be 12 subcarriers (or 180 kHz). Thus, for a system bandwidth of 1.25, 2.5, 5, 10, or 20 megahertz (MHz), the nominal FFT size may be equal to 128, 256, 512, 1024, or 2048, respectively. The system bandwidth can also be divided into sub-bands. For example, one subband may cover 1.08 MHz (ie, 6 resource blocks), and there may be 1, 2, 4, 8, or 16 for system bandwidths of 1.25, 2.5, 5, 10, or 20 MHz, respectively subband.
LTE支援單個參數集(次載波間隔(SCS)、符號長度等)。相反,NR可以支援多種參數集(µ),例如,15 kHz(µ=0)、30 kHz(µ=1)、60 kHz(µ=2)、120 kHz(µ=3)和240 kHz(µ=4)或更大的次載波間隔是可能的。在每個次載波間隔中,每時槽有14個符號。對於15 kHz SCS(µ=0),每子訊框有一個時槽,每訊框有10個時槽,時槽持續時間為1毫秒(ms),符號持續時間為66.7微秒(µs),並且4K FFT大小的最大標稱系統頻寬(單位為MHz)為50。對於30 kHz SCS(µ=1),每子訊框有兩個時槽,每訊框有20個時槽,時槽持續時間為0.5 ms,符號持續時間為33.3 µs,並且4K FFT大小的最大標稱系統頻寬(單位為MHz)為100。對於60 kHz SCS(µ=2),每子訊框有4個時槽,每訊框40個時槽,時槽持續時間為0.25 ms,符號持續時間為16.7 µs,並且4K FFT大小的最大標稱系統頻寬(單位為MHz)為200。對於120 kHz SCS(µ=3),每子訊框有8個時槽,每訊框80個時槽,時槽持續時間為0.125 ms,符號持續時間為8.33 µs,並且4K FFT大小的最大標稱系統頻寬(單位為MHz)為400。對於240 kHz SCS(µ=4),每子訊框有16個時槽,每訊框有160個時槽,時槽持續時間為0.0625 ms,符號持續時間為4.17 µs,並且4K FFT大小的最大標稱系統頻寬(單位為MHz)為800。LTE supports a single parameter set (subcarrier spacing (SCS), symbol length, etc.). In contrast, NR can support multiple parameter sets (µ), for example, 15 kHz (µ=0), 30 kHz (µ=1), 60 kHz (µ=2), 120 kHz (µ=3), and 240 kHz (µ=1) =4) or greater subcarrier spacing is possible. In each subcarrier interval, there are 14 symbols per slot. For a 15 kHz SCS (µ=0), there is one slot per subframe and 10 slots per frame, the slot duration is 1 millisecond (ms), and the symbol duration is 66.7 microseconds (µs), And the maximum nominal system bandwidth (in MHz) for a 4K FFT size is 50. For 30 kHz SCS (µ=1), there are two slots per subframe, 20 slots per frame, slot duration 0.5 ms, symbol duration 33.3 µs, and the maximum 4K FFT size The nominal system bandwidth (in MHz) is 100. For 60 kHz SCS (µ=2), there are 4 slots per subframe, 40 slots per frame, slot duration 0.25 ms, symbol duration 16.7 µs, and the maximum scale of the 4K FFT size is Call the system bandwidth (in MHz) as 200. For 120 kHz SCS (µ=3), there are 8 slots per subframe, 80 slots per frame, slot duration 0.125 ms, symbol duration 8.33 µs, and the maximum scale of the 4K FFT size The system bandwidth (in MHz) is called 400. For 240 kHz SCS (µ=4), there are 16 slots per subframe, 160 slots per frame, slot duration 0.0625 ms, symbol duration 4.17 µs, and the maximum 4K FFT size The nominal system bandwidth (in MHz) is 800.
在圖4A到圖4D的實例中,使用15 kHz的參數集。因此,在時域中,10 ms訊框被分成10個大小相等的子訊框,每個子訊框1 ms,並且每個子訊框包括一個時槽。在圖4A到圖4D中,時間被水平表示(在X軸上),時間從左到右增加,而頻率被垂直表示(在Y軸上),頻率從下到上增加(或減少)。In the example of Figures 4A-4D, a parameter set of 15 kHz is used. Thus, in the time domain, a 10 ms frame is divided into 10 equally sized subframes of 1 ms each, and each subframe includes a slot. In Figures 4A to 4D, time is represented horizontally (on the X-axis), with time increasing from left to right, while frequency is represented vertically (on the Y-axis), with frequency increasing (or decreasing) from bottom to top.
資源網格可以用於表示時槽,每個時槽包括頻域中的一或多個時間並行資源區塊(RB)(亦稱為實體RB(PRB))。資源網格進一步分為多個資源元素(RE)。RE可以對應於時域中的一個符號長度和頻域中的一個次載波。在圖4A到圖4D的參數集中,對於正常循環字首,RB可以包含頻域中的12個連續次載波和時域中的7個連續符號,總共84個RE。對於擴展循環字首,RB可以包含頻域中的12個連續次載波和時域中的6個連續符號,總共72個RE。每個RE攜帶的位元數取決於調制方案。A resource grid may be used to represent time slots, each time slot including one or more time-parallel resource blocks (RBs) (also known as physical RBs (PRBs)) in the frequency domain. The resource grid is further divided into multiple resource elements (REs). A RE may correspond to one symbol length in the time domain and one subcarrier in the frequency domain. In the parameter sets of Figures 4A to 4D, for a normal cyclic prefix, an RB may contain 12 consecutive subcarriers in the frequency domain and 7 consecutive symbols in the time domain, for a total of 84 REs. For the extended cyclic prefix, the RB may contain 12 consecutive subcarriers in the frequency domain and 6 consecutive symbols in the time domain, for a total of 72 REs. The number of bits carried by each RE depends on the modulation scheme.
一些RE攜帶下行鏈路參考(引導頻)信號(DL-RS)。DL-RS可包括PRS、TRS、PTRS、CRS、CSI-RS、DMRS、PSS、SSS、SSB等。圖4A示出攜帶PRS(標記為「R」)的RE的示例位置。Some REs carry downlink reference (pilot) signals (DL-RS). DL-RS may include PRS, TRS, PTRS, CRS, CSI-RS, DMRS, PSS, SSS, SSB, and the like. Figure 4A shows example locations of REs carrying PRS (labeled "R").
用於傳輸PRS的資源元素(RE)的群集(collection)被稱為「PRS資源」。資源元素的群集可以跨越頻域中的多個PRB和時域中時槽內的「N」(諸如,1個或更多)個連續符號。在時域中給定的OFDM符號中,PRS資源佔用頻域中的連續PRB。A collection of resource elements (REs) used to transmit PRS is called a "PRS resource". A cluster of resource elements may span multiple PRBs in the frequency domain and "N" (eg, 1 or more) consecutive symbols within a slot in the time domain. In a given OFDM symbol in the time domain, PRS resources occupy consecutive PRBs in the frequency domain.
給定PRB內的PRS資源的傳輸具有特定的梳狀大小(亦被稱為「梳狀密度」)。梳狀大小「N」表示PRS資源配置的每個符號內的次載波間隔(或頻率/頻調間隔)。具體而言,對於梳狀大小「N」,在PRB的符號的每第N個次載波中發送PRS。例如,對於梳狀-4,對於PRS資源配置的每個符號,對應於每第四個次載波(諸如次載波0、4、8)的RE被用於發送PRS資源的PRS。目前,對於DL-PRS,支援梳狀-2、梳狀-4、梳狀-6和梳狀-12的梳狀大小。圖4A示出梳狀-6(其跨越六個符號)的示例PRS資源配置。亦亦即,陰影RE(標記為「R」)的位置表示梳狀-6 PRS資源配置。The transmission of PRS resources within a given PRB has a specific comb size (also known as "comb density"). The comb size "N" represents the subcarrier spacing (or frequency/tone spacing) within each symbol of the PRS resource configuration. Specifically, for the comb size "N", the PRS is transmitted every Nth subcarrier of the PRB symbol. For example, for comb-4, for each symbol of the PRS resource configuration, REs corresponding to every fourth sub-carrier (such as
目前,DL-PRS資源可能在具有完全頻域交錯樣式的時槽內跨越2、4、6或12個連續符號。可以在時槽的任何更高層配置的下行鏈路或靈活(FL)符號中配置DL-PRS資源。對於給定DL-PRS資源的所有RE,每資源元素(EPRE)可能有恆定的能量。以下是2、4、6和12個符號上梳狀大小為2、4、6和12的符號到符號的頻率偏移。2-符號梳狀-2:{0,1};4-符號梳狀-2:{0,1,0,1};6-符號梳狀-2:{0,1,0,1,0,1};12-符號梳狀-2:{0,1,0,1,0,1,0,1,0,1,0,1};4-符號梳狀-4:{0,2,1,3};12-符號梳狀-4:{0,2,1,3,0,2,1,3,0,2,1,3};6-符號梳狀-6:{0,3,1,4,2,5};12-符號梳狀-6:{0,3,1,4,2,5,0,3,1,4,2,5};和12-符號梳狀-12:{0,6,3,9,1,7,4,10,2,8,5,11}。Currently, DL-PRS resources may span 2, 4, 6 or 12 consecutive symbols within a slot with a full frequency domain interleaving pattern. DL-PRS resources may be configured in any higher layer configured downlink or flexible (FL) symbols of the time slot. There may be constant energy per resource element (EPRE) for all REs of a given DL-PRS resource. Below are the symbol-to-symbol frequency offsets for comb sizes of 2, 4, 6 and 12 over 2, 4, 6 and 12 symbols. 2-symbol-comb-2: {0, 1}; 4-symbol-comb-2: {0, 1, 0, 1}; 6-symbol-comb-2: {0, 1, 0, 1, 0 , 1}; 12-symbol comb-2: {0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1}; 4-symbol comb-4: {0, 2 , 1, 3}; 12-symbol comb-4: {0, 2, 1, 3, 0, 2, 1, 3, 0, 2, 1, 3}; 6-symbol comb-6: {0 , 3, 1, 4, 2, 5}; 12-symbol comb-6: {0, 3, 1, 4, 2, 5, 0, 3, 1, 4, 2, 5}; and 12-symbol Comb-12: {0, 6, 3, 9, 1, 7, 4, 10, 2, 8, 5, 11}.
「PRS資源集」是用於傳輸PRS信號的PRS資源集合,其中每個PRS資源皆有PRS資源ID。此外,PRS資源集中的PRS資源與同一TRP相關聯。PRS資源集由PRS資源集ID標識,並與特定的TRP相關聯(由TRP ID標識)。此外,PRS資源集中的PRS資源具有相同的週期、共同的靜音樣式配置、以及跨時槽的相同重複因數(諸如「PRS-ResourceRepetitionFactor」)。週期是從第一PRS實例的第一PRS資源的第一次重複到下一PRS實例的相同的第一PRS資源的相同的第一次重複的時間。週期的長度可以選自2^µ*{4,5,8,10,16,20,32,40,64,80,160,320,640,1280,2560,5120,10240}個時槽,其中µ=0,1,2,3。重複因數的長度可以選自{1,2,4,6,8,16,32}個時槽。A "PRS resource set" is a set of PRS resources used for transmitting PRS signals, wherein each PRS resource has a PRS resource ID. Furthermore, the PRS resources in the PRS resource set are associated with the same TRP. A PRS resource set is identified by a PRS resource set ID and is associated with a specific TRP (identified by a TRP ID). Furthermore, the PRS resources in the PRS resource set have the same period, common mute pattern configuration, and the same repetition factor (such as "PRS-ResourceRepetitionFactor") across time slots. The period is the time from the first repetition of the first PRS resource of the first PRS instance to the same first repetition of the same first PRS resource of the next PRS instance. The length of the period can be selected from 2^µ*{4, 5, 8, 10, 16, 20, 32, 40, 64, 80, 160, 320, 640, 1280, 2560, 5120, 10240} time slots, where µ=0, 1, 2, 3. The length of the repetition factor may be selected from {1, 2, 4, 6, 8, 16, 32} time slots.
PRS資源集中的PRS資源ID與從單個TRP發送的單個波束(或波束ID)相關聯(其中TRP可以發送一或多個波束)。亦亦即,PRS資源集中的每一個PRS資源可以在不同的波束上被發送,且因此,「PRS資源」或簡稱為「資源」亦可以被稱為「波束」。請注意,此並不影響UE是否知道TRP和在其上發送PRS的波束。A PRS resource ID in a PRS resource set is associated with a single beam (or beam ID) transmitted from a single TRP (where a TRP may transmit one or more beams). That is, each PRS resource in the PRS resource set may be transmitted on a different beam, and thus, a "PRS resource" or simply "resource" may also be referred to as a "beam". Note that this does not affect whether the UE is aware of the TRP and the beam on which the PRS is sent.
「PRS實例」或「PRS時機(occasion)」是預期要發送PRS的週期性重複時間訊窗(諸如一或多個連續時槽的組)的一個實例。PRS時機亦可以被稱為「PRS定位時機」、「PRS定位實例」、「定位時機」、「定位實例」、「定位重複」或簡稱為「時機」、「實例」或「重複」。A "PRS instance" or "PRS occasion" is an example of a periodically repeating time window (such as a group of one or more consecutive time slots) in which PRS is expected to be sent. PRS occasions may also be referred to as "PRS positioning occasions", "PRS positioning instances", "location occasions", "location instances", "location repeats" or simply "opportunities", "instances" or "repetitions".
「定位頻率層」(亦簡稱為「頻率層」)是跨一或多個TRP的一或多個PRS資源集的群集,該等資源集對於某些參數具有相同的值。具體而言,PRS資源集的群集具有相同的次載波間隔和循環字首(CP)類型(意味著PDSCH支援的所有參數集亦支援PRS)、相同的點A、相同的下行鏈路PRS頻寬值、相同的起始PRB(和中心頻率)以及相同的梳狀大小。點A參數取參數「ARFCN-ValueNR」(其中「ARFCN」代表「絕對射頻通道號」)的值,並且是指定用於發送和接收的一對實體無線電通道的辨識符/代碼。下行鏈路PRS頻寬可以具有四個PRB的細微性,最小24個PRB,和最大272個PRB。目前,已經定義了多達四個頻率層,且每頻率層每TRP可以配置多達兩個PRS資源集。A "positioning frequency layer" (also referred to simply as a "frequency layer") is a cluster of one or more PRS resource sets across one or more TRPs, the resource sets having the same value for certain parameters. Specifically, the clusters of PRS resource sets have the same subcarrier spacing and cyclic prefix (CP) type (meaning that all parameter sets supported by PDSCH also support PRS), the same point A, the same downlink PRS bandwidth value, the same starting PRB (and center frequency), and the same comb size. The point A parameter takes the value of the parameter "ARFCN-ValueNR" (where "ARFCN" stands for "Absolute RF Channel Number") and is an identifier/code specifying a pair of physical radio channels for transmission and reception. The downlink PRS bandwidth can have a granularity of four PRBs, a minimum of 24 PRBs, and a maximum of 272 PRBs. Currently, up to four frequency layers have been defined, and each frequency layer can be configured with up to two PRS resource sets per TRP.
頻率層的概念有點類似於分量載波和頻寬部分(BWP)的概念,但不同之處在於分量載波和BWP由一個基地台(或巨集細胞基地台和小型細胞基地台)用來發送資料通道,而頻率層由若干(通常是三個或更多)基地台用來發送PRS。當UE向網路發送其定位能力時,諸如在LTE定位協定(LPP)通信期期間,UE可以指示其能夠支援的頻率層的數量。例如,UE可以指示其是否可以支援一個或四個定位頻率層。The concept of frequency layer is somewhat similar to the concept of component carrier and bandwidth part (BWP), but the difference is that component carrier and BWP are used by a base station (or macrocell base station and small cell base station) to transmit data channels , while the frequency layer is used by several (usually three or more) base stations to transmit PRS. When the UE sends its positioning capabilities to the network, such as during an LTE Positioning Protocol (LPP) communication period, the UE may indicate the number of frequency layers it can support. For example, the UE may indicate whether it can support one or four positioning frequency layers.
圖4B示出無線電訊框的下行鏈路時槽內的各種通道的實例。在NR中,通道頻寬或系統頻寬被分為多個BWP。BWP是從給定載體上給定參數集的公共RB的連續子集選擇的連續PRB集合。通常,下行鏈路和上行鏈路中可以指定最大四個BWP。亦即,UE可以在下行鏈路上配置有多達四個BWP,且在上行鏈路上配置有多達四個BWP。在給定的時間只有一個BWP(上行鏈路或下行鏈路)是活動的,此意味著UE一次只能經由一個BWP進行接收或發送。在下行鏈路上,每個BWP的頻寬應該等於或大於SSB的頻寬,但其可能包含亦可能不包含SSB。4B shows an example of various channels within a downlink time slot of a wireless frame. In NR, the channel bandwidth or system bandwidth is divided into multiple BWPs. A BWP is a set of contiguous PRBs selected from a contiguous subset of common RBs for a given parameter set on a given bearer. Typically, a maximum of four BWPs can be specified in the downlink and uplink. That is, the UE may be configured with up to four BWPs on the downlink and up to four BWPs on the uplink. Only one BWP (uplink or downlink) is active at a given time, which means that the UE can only receive or transmit via one BWP at a time. On the downlink, the bandwidth of each BWP should be equal to or greater than that of the SSB, but it may or may not contain the SSB.
參考圖4B,主要同步信號(PSS)被UE用來決定子訊框/符號時序和實體層標識。UE使用輔助同步信號(SSS)來決定實體層細胞標識組號和無線電訊框時序。基於實體層標識和實體層細胞標識組號,UE可以決定PCI。基於PCI,UE可以決定前述DL-RS的位置。攜帶MIB的實體廣播通道(PBCH)可以與PSS和SSS邏輯分組以形成SSB(亦被稱為SS/PBCH)。MIB提供下行鏈路系統頻寬中的RB的數量和系統訊框號(SFN)。實體下行鏈路共享通道(PDSCH)攜帶使用者資料、不經由PBCH發送的廣播系統資訊(諸如系統資訊區塊(SIB))和傳呼訊息。Referring to Figure 4B, the Primary Synchronization Signal (PSS) is used by the UE to determine subframe/symbol timing and physical layer identification. The UE uses the Supplementary Synchronization Signal (SSS) to determine the physical layer cell identification group number and radio frame timing. Based on the entity layer identification and the entity layer cell identification group number, the UE may decide the PCI. Based on the PCI, the UE can decide the location of the aforementioned DL-RS. A physical broadcast channel (PBCH) carrying MIB can be logically grouped with PSS and SSS to form SSB (also known as SS/PBCH). The MIB provides the number of RBs and the System Frame Number (SFN) in the downlink system bandwidth. The Physical Downlink Shared Channel (PDSCH) carries user data, broadcast system information (such as System Information Blocks (SIBs)) and paging messages that are not sent over the PBCH.
實體下行鏈路控制通道(PDCCH)在一或多個控制通道元素(CCE)內攜帶下行鏈路控制資訊(DCI),每個CCE包括一或多個RE組(REG)束(其可以在時域中跨越多個符號),每個REG束包括一或多個REG,每個REG對應於頻域中的12個資源元素(一個資源區塊)和時域中的一個OFDM符號。用於攜帶PDCCH/DCI的實體資源集合在NR中被稱為控制資源集(CORESET)。在NR中,PDCCH被限制在單個CORESET內,並與其自己的DMRS一起被發送。此實現了針對PDCCH的特定於UE的波束形成。A Physical Downlink Control Channel (PDCCH) carries Downlink Control Information (DCI) within one or more Control Channel Elements (CCEs), each CCE comprising one or more RE Group (REG) bundles (which can be domain spanning multiple symbols), each REG bundle includes one or more REGs, each REG corresponding to 12 resource elements (one resource block) in the frequency domain and one OFDM symbol in the time domain. The entity resource set used to carry PDCCH/DCI is called Control Resource Set (CORESET) in NR. In NR, the PDCCH is confined within a single CORESET and sent with its own DMRS. This enables UE-specific beamforming for the PDCCH.
在圖4B的實例中,每BWP有一個CORESET,並且該CORESET在時域中跨越三個符號(儘管其可能只有一個或兩個符號)。與佔用整個系統頻寬的LTE控制通道不同,在NR中,PDCCH通道局限於(localized)頻域中的特定區域(亦即,CORESET)。因此,圖4B中所示的PDCCH的頻率分量在頻域中被示為小於單個BWP。注意,儘管示出的CORESET在頻域中是連續的,但其不需要是連續的。此外,CORESET在時域中可以跨越少於三個符號。In the example of Figure 4B, there is one CORESET per BWP, and the CORESET spans three symbols in the time domain (although it may be only one or two symbols). Unlike the LTE control channel, which occupies the entire system bandwidth, in NR, the PDCCH channel is localized to a specific region (ie, CORESET) in the frequency domain. Therefore, the frequency components of the PDCCH shown in FIG. 4B are shown in the frequency domain to be smaller than a single BWP. Note that although the CORESET is shown to be contiguous in the frequency domain, it need not be contiguous. Furthermore, CORESET can span less than three symbols in the time domain.
PDCCH內的DCI攜帶關於上行鏈路資源分配(持久和非持久)的資訊和關於發送給UE的下行鏈路資料的描述,分別稱為上行鏈路和下行鏈路容許。更具體地,DCI指示為下行鏈路資料通道(例如,PDSCH)和上行鏈路資料通道(例如,PUSCH)排程的資源。在PDCCH中可以配置多個(例如,多達八個)DCI,且該等DCI可以具有多種格式之一。例如,上行鏈路排程、下行鏈路排程、上行鏈路發送功率控制(TPC)等有不同的DCI格式。PDCCH可以藉由1、2、4、8或16個CCE來傳輸,以便適應不同的DCI有效負荷大小或編碼速率。The DCI within the PDCCH carries information about uplink resource allocations (persistent and non-persistent) and descriptions about downlink data sent to the UE, referred to as uplink and downlink allowances, respectively. More specifically, DCI indicates resources scheduled for downlink data channels (eg, PDSCH) and uplink data channels (eg, PUSCH). Multiple (eg, up to eight) DCIs may be configured in the PDCCH, and the DCIs may be in one of multiple formats. For example, there are different DCI formats for uplink scheduling, downlink scheduling, uplink transmit power control (TPC), etc. The PDCCH can be transmitted with 1, 2, 4, 8 or 16 CCEs to accommodate different DCI payload sizes or coding rates.
圖4C示出無線電訊框的下行鏈路時槽內的各種參考信號(RS)的實例。如圖4C所示,一些RE(標記為「R」)攜帶DMRS用於接收器(例如,基地台、另一UE等)處的通道估計。UE亦可以在例如時槽的最後一個符號中發送SRS。SRS可以具有梳狀結構,並且UE可以在其中一個梳上發送SRS。在圖4C的實例中,所示的SRS在一個符號上是梳狀-2。基地台可以使用該SRS來獲得每個UE的通道狀態資訊(CSI)。CSI描述了RF信號如何從UE傳播到基地台,並表示散射、衰落和功率衰減隨距離的綜合影響。該系統使用SRS進行資源排程、鏈路自我調整、大規模MIMO、波束管理等。4C shows examples of various reference signals (RSs) within a downlink time slot of a radio frame. As shown in Figure 4C, some REs (labeled "R") carry DMRS for channel estimation at the receiver (eg, base station, another UE, etc.). The UE may also transmit the SRS, eg, in the last symbol of the slot. The SRS may have a comb-like structure, and the UE may transmit the SRS on one of the combs. In the example of Figure 4C, the SRS shown is comb-2 on one symbol. The base station can use the SRS to obtain channel state information (CSI) for each UE. CSI describes how the RF signal propagates from the UE to the base station and represents the combined effects of scattering, fading and power attenuation over distance. The system uses SRS for resource scheduling, link self-adjustment, massive MIMO, beam management, and more.
目前,SRS資源可能跨越時槽內的1、2、4、8或12個連續符號,其梳狀大小為梳狀-2、梳狀-4或梳狀-8。以下是當前支援的SRS梳狀樣式的符號到符號的頻率偏移。1-符號梳狀-2:{0};2-符號梳狀-2:{0,1};4-符號梳狀-2:{0,1,0,1};4-符號梳狀-4:{0,2,1,3};8-符號梳狀-4:{0,2,1,3,0,2,1,3};12-符號梳狀-4:{0,2,1,3,0,2,1,3,0,2,1,3};4-符號梳狀-8:{0,4,2,6};8-符號梳狀-8:{0,4,2,6,1,5,3,7};和12-符號梳狀-8:{0,4,2,6,1,5,3,7,0,4,2,6}。Currently, SRS resources may span 1, 2, 4, 8, or 12 consecutive symbols within a slot with a comb size of comb-2, comb-4, or comb-8. The following are the currently supported symbol-to-symbol frequency offsets for the SRS comb pattern. 1-symbol-comb-2: {0}; 2-symbol-comb-2: {0, 1}; 4-symbol-comb-2: {0, 1, 0, 1}; 4-symbol-comb- 4: {0, 2, 1, 3}; 8-symbol comb-4: {0, 2, 1, 3, 0, 2, 1, 3}; 12-symbol comb-4: {0, 2 , 1, 3, 0, 2, 1, 3, 0, 2, 1, 3}; 4-symbol comb-8: {0, 4, 2, 6}; 8-symbol comb-8: {0 , 4, 2, 6, 1, 5, 3, 7}; and 12-symbol comb-8: {0, 4, 2, 6, 1, 5, 3, 7, 0, 4, 2, 6} .
用於傳輸SRS的資源元素的群集被稱為「SRS資源」,並且可以藉由參數「SRS-ResourceId」來標識。資源元素的群集可以跨越頻域中的多個PRB和時域中時槽內的N個(例如,一或多個)連續符號。在給定的OFDM符號中,SRS資源佔用連續的PRB。「SRS資源集」是用於傳輸SRS信號的SRS資源的集合,並且由SRS資源集ID(「SRS-ResourceSetId」)來標識。The cluster of resource elements used to transmit SRS is called "SRS resource" and can be identified by the parameter "SRS-ResourceId". A cluster of resource elements may span multiple PRBs in the frequency domain and N (eg, one or more) consecutive symbols within a slot in the time domain. In a given OFDM symbol, SRS resources occupy consecutive PRBs. An "SRS resource set" is a set of SRS resources used to transmit an SRS signal, and is identified by an SRS resource set ID ("SRS-ResourceSetId").
通常,UE發送SRS,以使接收基地台(服務基地台或相鄰基地台)能夠量測UE和基地台之間的通道品質。然而,SRS亦可以作為上行鏈路定位程序的上行鏈路定位參考信號,諸如UL-TDOA、多RTT、DL-AoA等。Usually, the UE transmits SRS to enable the receiving base station (serving base station or neighboring base station) to measure the channel quality between the UE and the base station. However, the SRS can also be used as an uplink positioning reference signal for uplink positioning procedures, such as UL-TDOA, multi-RTT, DL-AoA, and so on.
已經針對用於定位的SRS(亦被稱為「UL-PRS」)提出了對先前SRS定義的若干增強,諸如SRS資源內的新交錯樣式(單符號/梳狀-2除外)、SRS的新梳狀類型、SRS的新序列、每分量載波的SRS資源集的更多數量、以及每分量載波的SRS資源的更多數量。此外,參數「SpatialRelationInfo」和「PathLossReference」將基於來自相鄰TRP的下行鏈路參考信號或SSB進行配置。此外,一個SRS資源可以在活動BWP之外被發送,並且一個SRS資源可以跨越多個分量載波。此外,SRS可以被配置為處於RRC連接狀態,並且僅在活動BWP內被發送。此外,可能沒有跳頻、沒有重複因數、單個天線埠和新的SRS長度(例如,8和12個符號)。亦可以有開放迴路功率控制而不是閉合迴路功率控制,並且可以使用梳狀-8(亦即,在同一符號中每第八個次載波發送SRS)。最後,UE可以經由相同的發送波束從用於UL-AoA的多個SRS資源發送。所有該等皆是當前SRS框架的附加特徵,當前SRS框架是經由RRC更高層訊號傳遞配置的(並且可能經由MAC控制元素(CE)或DCI觸發或啟動)。Several enhancements to previous SRS definitions have been proposed for SRS for positioning (also known as "UL-PRS"), such as new interleaving patterns within SRS resources (except single symbol/comb-2), new Comb type, new sequence of SRS, higher number of SRS resource sets per component carrier, and higher number of SRS resources per component carrier. Furthermore, the parameters "SpatialRelationInfo" and "PathLossReference" will be configured based on downlink reference signals or SSBs from neighboring TRPs. Furthermore, one SRS resource may be sent outside the active BWP, and one SRS resource may span multiple component carriers. Furthermore, the SRS may be configured to be in the RRC connected state and sent only within the active BWP. Additionally, there may be no frequency hopping, no repetition factor, single antenna port, and new SRS lengths (eg, 8 and 12 symbols). There can also be open loop power control instead of closed loop power control, and comb-8 can be used (ie, SRS is sent every eighth subcarrier in the same symbol). Finally, the UE may transmit from multiple SRS resources for UL-AoA via the same transmit beam. All of these are additional features of the current SRS framework, which is configured via RRC higher layer signaling (and possibly triggered or enabled via a MAC Control Element (CE) or DCI).
圖4D示出根據本揭示的各態樣的訊框的上行鏈路時槽內的各種通道的實例。隨機存取通道(RACH),亦被稱為實體隨機存取通道(PRACH),可以基於PRACH配置在訊框內的一或多個時槽內。PRACH可以在時槽內包括六個連續的RB對。PRACH允許UE執行初始系統存取並實現上行鏈路同步。實體上行鏈路控制通道(PUCCH)可以位於上行鏈路系統頻寬的邊緣。PUCCH攜帶上行鏈路控制資訊(UCI),諸如排程請求、CSI報告、通道品質指示符(CQI)、預編碼矩陣指示符(PMI)、秩指示符(RI)和HARQ ACK/NACK回饋。實體上行鏈路共享通道(PUSCH)攜帶資料,並且可以另外用於攜帶緩衝器狀態報告(BSR)、功率餘量報告(PHR)及/或UCI。4D illustrates an example of various channels within an uplink slot of a frame according to aspects of the present disclosure. A random access channel (RACH), also known as a physical random access channel (PRACH), can be configured in one or more time slots within a frame based on PRACH. PRACH may include six consecutive RB pairs within a slot. PRACH allows the UE to perform initial system access and achieve uplink synchronization. The Physical Uplink Control Channel (PUCCH) can be located at the edge of the uplink system bandwidth. PUCCH carries uplink control information (UCI) such as scheduling request, CSI report, channel quality indicator (CQI), precoding matrix indicator (PMI), rank indicator (RI) and HARQ ACK/NACK feedback. The Physical Uplink Shared Channel (PUSCH) carries data and may additionally be used to carry Buffer Status Reports (BSRs), Power Headroom Reports (PHRs) and/or UCIs.
請注意,術語「定位參考信號」和「PRS」通常指的是在NR和LTE系統中用於定位的特定參考信號。然而,如本文所使用的,術語「定位參考信號」和「PRS」亦可以指可以用於定位的任何類型的參考信號,諸如但不限於在LTE和NR中定義的PRS、TRS、PTRS、CRS、CSI-RS、DMRS、PSS、SSS、SSB、SRS、UL-PRS等。此外,術語「定位參考信號」和「PRS」可以指下行鏈路或上行鏈路定位參考信號,除非上下文另有指示。若需要進一步區分PRS的類型,下行鏈路定位參考信號可以被稱為「DL-PRS」,並且上行鏈路定位參考信號(例如,用於定位的SPS,PTRS)可以被稱為「UL-PRS」。此外,對於可以在上行鏈路和下行鏈路兩者中被發送的信號(例如,DMRS、PTRS),可以在信號前面加上「UL」或「DL」來區分方向。例如,「UL-DMRS」可能有別於「DL-DMRS」。Note that the terms "positioning reference signal" and "PRS" generally refer to specific reference signals used for positioning in NR and LTE systems. However, as used herein, the terms "positioning reference signal" and "PRS" may also refer to any type of reference signal that can be used for positioning, such as but not limited to PRS, TRS, PTRS, CRS as defined in LTE and NR , CSI-RS, DMRS, PSS, SSS, SSB, SRS, UL-PRS, etc. Furthermore, the terms "positioning reference signal" and "PRS" may refer to downlink or uplink positioning reference signals, unless context dictates otherwise. If it is necessary to further distinguish the types of PRS, the downlink positioning reference signal may be referred to as "DL-PRS" and the uplink positioning reference signal (eg, SPS for positioning, PTRS) may be referred to as "UL-PRS" ". Additionally, for signals that may be transmitted in both uplink and downlink (eg, DMRS, PTRS), the signal may be preceded by "UL" or "DL" to differentiate directions. For example, "UL-DMRS" may be different from "DL-DMRS".
圖5是示出與UE 504(其可以對應於本文描述的任何UE)通訊的基地台(BS)502(其可以對應於本文描述的任何基地台)的圖500。參考圖5,基地台502可以在一或多個發送波束502a、502b、502c、502d、502e、502f、502g上向UE 504發送波束成形信號,每個波束成形信號具有可以由UE 504用來辨識相應波束的波束辨識符。在基地台502利用單個天線陣列(例如,單個TRP/細胞)朝向UE 504波束成形的情況下,基地台502可以藉由發送第一波束502a,隨後波束502b,且一直到最後發送波束502g來執行「波束掃瞄」。可替代地,基地台502可以以某種樣式發送波束502a-502g,諸如波束502a,隨後波束502g,隨後波束502b,隨後波束502f等等。在基地台502使用多個天線陣列(例如,多個TRP/細胞)朝向UE 504波束成形的情況下,每個天線陣列可以執行波束502a-502g的子集的波束掃瞄。可替代地,波束502a-502g中的每一個可以對應於單個天線或天線陣列。5 is a diagram 500 illustrating a base station (BS) 502 (which may correspond to any of the base stations described herein) in communication with a UE 504 (which may correspond to any of the UEs described herein). Referring to FIG. 5,
圖5亦示出路徑512c、512d、512e、512f和512g,後面是分別在波束502c、502d、502e、502f和502g上發送的波束成形信號。每個路徑512c、512d、512e、512f、512g可以對應於單個「多徑」,或者由於射頻(RF)信號經由環境的傳播特性,可以由複數個(一簇)「多徑」組成。注意,儘管僅圖示波束502c-502g的路徑,但此是為了簡單起見,且在每個波束502a-502g上發送的信號亦會遵循一些路徑。在所示的實例中,路徑512c、512d、512e和512f是直線,而路徑512g在障礙物520(例如,建築物、車輛、地形特徵等)上反射出去。Figure 5 also shows
UE 504可以在一或多個接收波束504a、504b、504c、504d上從基地台502接收波束成形信號。注意,為了簡單起見,圖5中所示的波束代表發送波束或接收波束,此取決於基地台502和UE 504中的哪一個正在發送以及哪一個正在接收。因此,UE 504亦可以在波束504a-504d中的一或多個上向基地台502發送波束成形信號,並且基地台502可以在波束502a-502g中的一或多個上從UE 504接收波束成形信號。
在一個態樣中,基地台502和UE 504可以執行波束訓練,以對準基地台502和UE 504的發送和接收波束。例如,取決於環境條件和其他因素,基地台502和UE 504可以決定最佳發送波束和接收波束分別是502d和504b,或者分別是502e和504c。基地台502的最佳發送波束的方向可以與最佳接收波束的方向相同或不同,且同樣,UE 504的最佳接收波束的方向可以與最佳發送波束的方向相同或不同。然而,注意,對準發送波束和接收波束對於執行下行鏈路離開角(DL-AoD)或上行鏈路到達角(UL-AoA)定位程序不是必需的。In one aspect,
為了執行DL-AoD定位程序,基地台502可以在波束502a-502g中的一或多個上向UE 504發送參考信號(例如,PRS、CRS、TRS、CSI-RS、PSS、SSS等),每個波束具有不同的發送角度。波束的不同發送角度將導致UE 504處不同的接收信號強度(例如,RSRP、RSRQ、SINR等)。具體而言,對於離基地台502和UE 504之間的視線(LOS)路徑510更遠的發送波束502a-502g,接收信號強度將比對於離LOS路徑510更近的發送波束502a-502g更低。To perform DL-AoD positioning procedures,
在圖5的實例中,若基地台502在波束502c、502d、502e、502f和502g上向UE 504發送參考信號,則發送波束502e最好與LOS路徑510對準,而發送波束502c、502d、502f和502g不與LOS路徑510對準。因此,波束502e在UE 504處可能比波束502c、502d、502f和502g具有更高的接收信號強度。注意,在一些波束(例如,波束502c及/或502f)上發送的參考信號可能不會到達UE 504,或者從該等波束到達UE 504的能量可能非常低,以至於該能量可能是不可偵測的或者至少可以被忽略。In the example of FIG. 5, if
UE 504可以向基地台502報告每個量測的發送波束502c-502g的接收信號強度,以及可選地,相關聯的量測品質,或者可替代地報告具有最高接收信號強度的發送波束(圖5的實例中的波束502e)的標識。可替代地或附加地,若UE 504亦分別與至少一個基地台502或複數個基地台502進行往返時間(RTT)或到達時間差(TDOA)定位通信期,則UE 504可以分別向服務基地台502或其他定位實體報告接收到發送時間差(Rx-Tx)或參考信號時間差(RSTD)量測值(以及可選的相關聯的量測品質)。在任何情況下,定位實體(例如,基地台502、位置伺服器、協力廠商客戶端、UE 504等)可以將從基地台502到UE 504的角度估計為在UE 504處具有最高接收信號強度的發送波束的AoD,此處是發送波束502e。
在基於DL-AoD的定位的一個態樣中,其中只存在一個涉及的基地台502,基地台502和UE 504可以執行往返時間(RTT)程序來決定基地台502和UE 504之間的距離。因此,定位實體可以決定到UE 504的方向(使用DL-AoD定位)和到UE 504的距離(使用RTT定位)來估計UE 504的位置。注意,如圖5所示,具有最高接收信號強度的發送波束的AoD不一定位於LOS路徑510上。然而,出於基於DL-AoD的定位目的,假設情況就是如此。In one aspect of DL-AoD based positioning, where there is only one
在基於DL-AoD的定位的另一態樣中,其中存在多個涉及的基地台502,每個基地台502可以向定位實體報告從基地台502到UE 504的所決定的AoD。定位實體從複數個涉及的基地台502(或其他地理上分離的傳輸點)接收對於UE 504的多個此種AoD。利用該資訊和對基地台502的地理位置的知識,定位實體可以將UE 504的位置估計為接收到的AoD的交叉點。對於二維(2D)定位解決方案,應該至少有兩個涉及的基地台502,但是可以理解,定位程序中涉及的基地台502越多,估計的UE 504的位置就越精確。對於基於UE輔助的定位,服務基地台向定位實體(例如,位置伺服器)報告RSRP量測。AoD不是由每個基地台決定或報告的。In another aspect of DL-AoD based positioning, where there are multiple
為了執行UL-AoA定位程序,UE 504在上行鏈路發送波束504a-504d中的一或多個上向基地台502發送上行鏈路參考信號(例如,UL-PRS、SRS、DMRS等)。基地台502在上行鏈路接收波束502a-502g中的一或多個上接收上行鏈路參考信號。基地台502決定用於接收來自UE 504的一或多個參考信號的最佳接收波束502a-502g的角度,作為從UE 504到基地台502的AoA。具體而言,每個接收波束502a-502g將導致基地台502處一或多個參考信號的不同的接收信號強度(例如,RSRP、RSRQ、SINR等)。此外,對於離基地台502和UE 504之間的實際LOS路徑更遠的接收波束502a-502g,一或多個參考信號的通道脈衝回應將比對於離LOS路徑更近的接收波束502a-502g更小。同樣,對於離LOS路徑更遠的接收波束502a-502g,接收信號強度將比對於離LOS路徑更近的接收波束502a-502g更低。因此,基地台502辨識導致最高接收信號強度和可選的最強通道脈衝回應的接收波束502a-502g,並且估計從其自身到UE 504的角度作為該接收波束502a-502g的AoA。注意,與基於DL-AoD的定位一樣,導致最高接收信號強度(以及最強通道脈衝回應,若量測的話)的接收波束502a-502g的AoA不一定位於LOS路徑510上。然而,出於基於UL AoA的定位目的,在FR2中可以假設情況是如此。對於FR1,可以用數位波束掃瞄進行AoA估計。例如,UE 504可以將AoA估計為具有功率大於某個閾值的最早路徑的AoA。To perform UL-AoA positioning procedures,
注意,儘管UE 504被示為能夠進行波束成形,但是此對於DL-AoD和UL-AoA定位程序不是必需的。相反,UE 504可以在全向天線上接收和發送。Note that although
在UE 504在估計其位置(亦即,UE是定位實體)的情況下,其需要獲得基地台502的地理位置。UE 504可以從例如基地台502本身或位置伺服器(例如,位置伺服器230、LMF 270、SLP 272)獲得位置。知道到基地台502的距離(基於RTT或時序提前量)、基地台502和UE 504之間的角度(基於最佳接收波束502a-502g的UL-AoA)、以及基地台502的已知地理位置,UE 504可以估計其位置。In the case where the
可替代地,在定位實體(諸如基地台502或位置伺服器)正在估計UE 504的位置的情況下,基地台502報告導致從UE 504接收的參考信號的最高接收信號強度(以及可選的最強通道脈衝回應)的接收波束502a-502g的AoA,或者所有接收波束502a-502g的所有接收信號強度和通道脈衝回應(此允許定位實體決定最佳接收波束502a-502g)。基地台502可以另外向UE 504報告Rx-Tx時間差。定位實體隨後可以基於UE 504到基地台502的距離、所辨識的接收波束502a-502g的AoA、以及基地台502的已知地理位置來估計UE 504的位置。Alternatively, where a positioning entity (such as
圖6示出使用RSRP量測來執行DL-AoD量測的習知方法600。在圖6中,TRP 602發送PRS信號的集合,每個PRS信號在不同的方位角上。每個波束的輻射樣式皆用帶編號的橢圓形來圖形表示,橢圓形編號1代表PRS1,橢圓形編號2代表PRS2,依此類推。具有到TRP 602的視線(LOS)路徑606的UE 604對每個PRS信號進行RSRP量測,並將該等量測報告給TRP 602,TRP 602可以將該等量測轉發給定位實體,諸如位置管理功能(LMF)608。從UE 604的角度來看,每個PRS的感知RSRP將取決於PRS波束與LOS路徑606的角度的相對角度,在圖6中標記為𝜙1。此在圖6中圖形表示為LOS路徑606和該波束輻射樣式的交點,其中交點與TRP的距離對應於波束的感知功率。在圖6所示的實例中,LOS路徑606的角度最接近PRS3的傳輸角度,且因此由UE 604量測的PRS3的RSRP與PRS2的RSRP相比相對較大,PRS2的RSRP大於PRS4的RSRP,PRS4的RSRP大於PRS1的RSRP。UE 604將該等RSRP量測報告給TRP 602。6 illustrates a
在圖6中可以看出,RSRP量測的集合,亦即,由TRP 602發送並由UE量測的PRS波束的量測RSRP,將取決於UE的方位角𝜙而不同。例如,對於圖6中方位角𝜙2上的UE,PRS4的RSRP值最高,其次是PRS3、PRS5、PRS2的RSRP值。作為方位角的函數的每個PRS的預期RSRP值可以被建模為一組預期功率曲線,如圖7所示。It can be seen in Figure 6 that the set of RSRP measurements, ie the measured RSRP of the PRS beams sent by the
圖7是作為方位角的函數的預期RSRP值的曲線圖,其正規化以消除距離的影響。在圖7所示的示例曲線圖中,曲線圖(a)、(b)和(c)分別圖示PRS2、PRS3和PRS4的預期RSRP值,作為方位角的函數,並且曲線圖(d)是曲線圖(a)至(c)的組合。因此,在每個方位角上,PRS2、PRS3和PRS4的值有已知的比率。相同的概念適用於圖6中未圖示的PRS波束。TRP 602發送由UE 604量測的PRS資源。隨後,UE 604向TRP 602報告多達8個RSRP,每個PRS資源一個。Figure 7 is a graph of expected RSRP values as a function of azimuth, normalized to remove the effect of distance. In the example graph shown in Figure 7, graphs (a), (b), and (c) illustrate expected RSRP values for PRS2, PRS3, and PRS4, respectively, as a function of azimuth, and graph (d) is A combination of graphs (a) to (c). Therefore, at each azimuth, the values of PRS2, PRS3 and PRS4 have a known ratio. The same concept applies to PRS beams not shown in FIG. 6 .
在UE輔助定位中,TRP 602例如經由LPP協定向LMF 608報告量測的RSRP值。LMF 608估計AoD,亦即,LMF 608可以藉由將RSRP量測與每個PRS的預期RSRP值進行比較來決定UE 604的方位角,並使用AoD來計算UE 604的位置。In UE-assisted positioning, the
在基於UE的定位中,UE 604使用輔助資料來估計AoD並計算其自身的位置,該輔助資料包括TRP 602和其他TRP的地理位置以及PRS波束資訊(例如,波束方位角和仰角)。In UE-based positioning, the
在任一種情況下,皆需要對預期RSRP值進行建模。在一個態樣中,藉由以下方法來執行。對於UE可能位於的每個潛在𝜙𝑘∈[𝜙1,…,𝜙M],對於正在被發送的每個波束𝑙∈[1,…,𝑁𝑏𝑒𝑎𝑚𝑠],計算預期接收功率𝑃(𝑖,𝑘)。隨後,為每個k∈[1,…M]推導正規化向量𝑃(𝑘,): 此得出每個PRS波束的正規化的預期RSRP值的集合,亦即,在特定方位角上的PRS波束的相對RSRP值的集合,並且正如該等集合中的許多集合一樣,亦考慮了方位角。 In either case, the expected RSRP value needs to be modeled. In one aspect, it is performed by the following method. For each potential 𝜙𝑘∈[𝜙1, . Subsequently, a normalized vector 𝑃(𝑘,) is derived for each k∈[1,…M]: This yields a set of normalized expected RSRP values for each PRS beam, that is, the set of relative RSRP values for the PRS beams at a particular azimuth, and, like many of these sets, also takes into account the azimuth horn.
對於UE輔助的AoD定位,LMF 608將正規化RSRP的接收向量表示為
,並找到
,藉由其得出接近
的
。
For UE-assisted AoD positioning, the
對於基於UE的AoD定位,UE 604需要知道在被建模的方位角的集合中的每一個上的PRS波束的相對RSRP值的集合。一個難題是如何向UE提供該資訊。一種提議的方法是「每角度」方法,例如,對於考慮的每個方位角和仰角,向UE提供每個PRS資源的預期輻射功率(亦即,對於每個k∈[1,…M],發送正規化向量𝑃(𝑘,))。另一種提議的方法是「每PRS」方法,例如,對於每個PRS資源,發送方位角或仰角的列表以及每個角度上的預期輻射功率。然而,該等方法有技術上的缺點。例如,假設8個PRS資源,並且需要在方位角和頂點的120度範圍內每0.5度報告一次,每個值5位元(1 dB細微性),此需要每TRP的資料為5*240*240*8=2.3 MB。對於基於UE的AoD定位,該管理負擔對於由UE量測的每個TRP亦要成倍增加。儘管此種管理負擔對於TRP向LMF的報告來說是可以接受的,但對於UE來說卻非常沉重。因此,需要一種更有效的方式來向UE提供正規化功率向量。For UE-based AoD positioning, the
為了解決該問題,本文提出了用於精簡管理負擔波束簡檔參數化的若干技術:UE不接收每個定位資源的波束樣式的描述,而是接收描述發送天線配置(例如,面板配置)的資訊、描述天線元件功率樣式的資訊、以及對於每個定位資源,來自每個定位資源的離散傅立葉轉換(DFT)編碼簿的預編碼矩陣資訊(PMI)索引。藉由利用UE已經維護的資訊,UE可以接收對特徵描述的查閱資料表的索引值,而不是特徵的完整表徵,此顯著節省了頻寬。例如,面板配置可以用四位元來編碼,且從N個波束的DFT編碼簿推導的PMI索引可以用log 2(N)來編碼,例如,對於八個波束,只需要3位元。 To address this issue, this paper proposes several techniques for streamlining the management burden beam profile parameterization: the UE does not receive a description of the beam pattern for each positioning resource, but information describing the transmit antenna configuration (eg, panel configuration) , information describing the antenna element power pattern, and, for each positioning resource, the Precoding Matrix Information (PMI) index from each positioning resource's Discrete Fourier Transform (DFT) codebook. By utilizing the information already maintained by the UE, the UE can receive an index value to a lookup table of descriptions of the feature, rather than the full characterization of the feature, which saves significant bandwidth. For example, the panel configuration can be coded with 4 bits, and the PMI index derived from the DFT codebook of N beams can be coded with log 2 (N), eg, for eight beams, only 3 bits are required.
圖8是與精簡管理負擔波束簡檔參數化相關聯的示例過程800的流程圖。在一些態樣,圖8的一或多個過程方塊可以由接收實體執行,例如,圖1中的BS 102或圖1中的UE 104。在一些態樣中,圖8的一或多個過程方塊可以由與接收實體分離或包括接收實體的另一設備或設備組來執行。附加地或可替代地,圖8的一或多個過程方塊可以由設備302或設備304的一或多個部件來執行,諸如處理系統332或處理系統384、記憶體340或記憶體386、WWAN收發器310或WWAN收發器350、收發器320或收發器360、使用者介面346或網路介面380。FIG. 8 is a flow diagram of an
如圖8所示,過程800可以包括接收表徵將由發送/接收點(TRP)使用發送波束的集合發送的定位信號的集合的資訊,該資訊包括至少一個天線元件輻射樣式、至少一個天線元件陣列配置、以及對於該發送波束的集合中的每一個波束,辨識至少一個預編碼矩陣的資訊(方塊810)。As shown in FIG. 8,
在一些態樣中,表徵定位信號的集合的資訊在多播或多播訊息中被接收。在一些態樣中,多播或多播訊息包括定位系統資訊區塊(SIB)。在一些態樣中,表徵定位信號的集合的資訊在單播訊息中被接收。在一些態樣中,單播訊息包括長期進化(LTE)定位協定(LPP)輔助資料訊息。在一些態樣中,辨識至少一個預編碼矩陣的資訊包括預編碼矩陣指示符(PMI)索引。In some aspects, the information characterizing the set of positioning signals is received in a multicast or multicast message. In some aspects, the multicast or multicast message includes a positioning system information block (SIB). In some aspects, the information characterizing the set of positioning signals is received in a unicast message. In some aspects, the unicast messages include Long Term Evolution (LTE) Positioning Protocol (LPP) assistance data messages. In some aspects, the information identifying the at least one precoding matrix includes a precoding matrix indicator (PMI) index.
在一些態樣中,該定位信號的集合中的每一個定位信號對應於一個定位參考信號(PRS)資源。在一些態樣中,接收實體為每個PRS資源決定發送波束樣式。在一些態樣中,表徵將由TRP發送的定位信號的集合的至少一些資訊亦表徵將由至少一個其他TRP發送的定位信號。In some aspects, each positioning signal in the set of positioning signals corresponds to a positioning reference signal (PRS) resource. In some aspects, the receiving entity decides the transmit beam pattern for each PRS resource. In some aspects, at least some of the information characterizing the set of positioning signals to be sent by the TRP also characterizes the positioning signals to be sent by at least one other TRP.
在一些態樣中,天線元件輻射樣式包括對預定義的天線樣式集合的索引。在一些態樣中,天線元件輻射樣式包括根據封閉形式參數化來表徵天線元件輻射樣式的參數集合。在一些態樣中,天線元件輻射樣式包括天線元件輻射樣式的幅度對離開角(angle of departure,AoD)的離散化圖表。在一些態樣中,至少一個天線元件陣列配置指定水平方向上的N個天線元件、垂直方向上的M個天線元件、P個參考信號(RS)天線埠、水平方向上的NxM個天線元件的陣列的Ng個實例、以及垂直方向上的NxM個天線元件的陣列的Mg個實例中的至少一個。在一些態樣中,每個天線元件包括交叉極化天線埠。In some aspects, the antenna element radiation pattern includes an index to a predefined set of antenna patterns. In some aspects, the antenna element radiation pattern includes a set of parameters that characterize the antenna element radiation pattern according to closed-form parameterization. In some aspects, the antenna element radiation pattern includes a discretized plot of the magnitude of the antenna element radiation pattern versus angle of departure (AoD). In some aspects, the at least one antenna element array configuration specifies N antenna elements in the horizontal direction, M antenna elements in the vertical direction, P reference signal (RS) antenna ports, and NxM antenna elements in the horizontal direction. At least one of Ng instances of the array, and Mg instances of the array of NxM antenna elements in the vertical direction. In some aspects, each antenna element includes a cross-polarized antenna port.
在一些態樣中,由TRP發送的定位信號包括定位參考信號(PRS)、探測參考信號(SRS)、通道狀態資訊參考信號(CSI-RS)或解調參考信號(DMRS)中的至少一個。在一些態樣中,由TRP發送的定位信號包括下行鏈路(DL)定位信號、上行鏈路(UL)定位信號或側行鏈路(SL)定位信號中的至少一個。In some aspects, the positioning signal sent by the TRP includes at least one of a positioning reference signal (PRS), a sounding reference signal (SRS), a channel state information reference signal (CSI-RS), or a demodulation reference signal (DMRS). In some aspects, the positioning signal transmitted by the TRP includes at least one of a downlink (DL) positioning signal, an uplink (UL) positioning signal, or a sidelink (SL) positioning signal.
如圖8中進一步圖示的,過程800可以包括執行由TRP發送的定位信號的量測(方塊820)。例如,接收實體可以執行由TRP發送的定位信號中的一或多個的一或多個量測。As further illustrated in FIG. 8,
如圖8中進一步所示,過程800可以包括基於至少一個天線元件輻射樣式、至少一個天線元件陣列配置、辨識至少一個預編碼矩陣的資訊和定位量測中的至少一些來計算至少一個定位量測估計(方塊830)。例如,如上述,接收實體可以基於至少一個天線元件輻射樣式、至少一個天線元件陣列配置、辨識至少一個預編碼矩陣的資訊和定位量測中的至少一些來計算至少一個定位量測估計。在一些態樣,至少一個定位量測估計包括接收實體的估計位置。As further shown in FIG. 8,
如圖8中進一步所示,過程800可以包括向TRP發送定位資訊,該定位資訊包括至少一個定位量測估計(方塊840)。在一些態樣中,定位資訊包括參考信號接收功率(RSRP)量測、到達時間(ToA)量測、服務品質(QoS)量測、接收信號強度指示符(RSSI)量測、信號干擾加雜訊比(SINR)或離開角(AoD)中的至少一個。As further shown in FIG. 8,
在一些態樣中,接收實體包括使用者設備(UE)或基地台(BS)。在一些態樣中,TRP包括使用者設備(UE)或基地台(BS)。In some aspects, the receiving entity includes a user equipment (UE) or a base station (BS). In some aspects, the TRP includes a user equipment (UE) or a base station (BS).
儘管圖8圖示過程800的示例方塊,但是在一些實施方式中,過程800可以包括與圖8所描繪的彼等方塊相比附加的方塊、更少的方塊、不同的方塊或不同排列的方塊。附加地或可替代地,過程800的兩個或兩個以上方塊可以並行執行。Although FIG. 8 illustrates example blocks of
圖9是示例天線元件輻射樣式的曲線圖,圖示幅度(dB)作為單位為度的到達角(AoA)的函數。
表1
在另一態樣中,由接收實體接收的天線元件輻射樣式資訊包括對接收實體已知的預定義的天線樣式集合的索引,例如,接收實體被預配置有該預定義的天線樣式集合,或者接收實體經由MAC-CE、RRC或其他訊號傳遞接收該預定義的天線樣式集合。In another aspect, the antenna element radiation pattern information received by the receiving entity includes an index to a predefined set of antenna patterns known to the receiving entity, eg, the receiving entity is preconfigured with the predefined set of antenna patterns, or The receiving entity receives the predefined set of antenna patterns via MAC-CE, RRC or other signaling.
在另一態樣中,天線元件輻射樣式包括天線元件輻射樣式的幅度對AoA的離散化圖表。具有120度的跨度和0.5度的解析度,並且使用5位元資料用於幅度,高精度天線元件輻射樣式可以使用240*240*5=288 kb來表徵。然而,很可能所有的TRP皆是一樣的,或者有高重用水平,所以可能不是每個TRP皆需要該管理負擔。此外,不需要為每個PRS資源發送該資訊,因為接收實體(UE、LMF等)可以基於所提供的資訊推導波束樣式。In another aspect, the antenna element radiation pattern includes a discretized plot of the magnitude of the antenna element radiation pattern versus AoA. With a span of 120 degrees and a resolution of 0.5 degrees, and using 5-bit metadata for amplitude, the high-precision antenna element radiation pattern can be characterized using 240*240*5=288 kb. However, it is likely that all TRPs are the same or have a high level of reuse, so this administrative burden may not be required for every TRP. Furthermore, this information does not need to be sent for each PRS resource, since the receiving entity (UE, LMF, etc.) can derive the beam pattern based on the provided information.
圖10示出天線元件陣列配置(例如,交叉極化平板陣列天線模型的參數)。每個天線1000包含一或多個面板1002,每個面板是NxM天線元件陣列的實例(例如,每個面板包含交叉極化天線1004的NxM矩陣),其中N是矩陣的水平尺寸,且M是矩陣的垂直尺寸。(有時使用參數N
1和N
2來代替N和M。)對於具有多個面板的天線,面板可以組織成水平尺寸為Ng、且垂直尺寸為Mg的陣列。P是CSI-RS天線埠的數量。N、M、P、Ng和Mg的各種可能值可以在接收實體已知的表中定義;對於16條目的表,僅使用四位元就可以將天線元件陣列配置傳送給接收實體。
Figure 10 shows the antenna element array configuration (eg, parameters of a cross-polarized panel array antenna model). Each
因此,使用離散化的天線元件輻射樣式(288 kb)、用於天線元件陣列配置的16條目表(4位元)、以及對於每個定位資源,從DFT編碼簿推導的PMI索引(每資源3位元),例如,8個PRS資源的資訊可以使用288,000+24+4位元,或者每TRP大約288 k位元來傳送——比習知方法所需的每個TRP 2.3 M位元少得多。藉由發送描述天線元件輻射樣式的參數而不是離散化的樣式,該數量可以進一步減少到數百位元,並且藉由發送此種參數的表的索引而不是參數本身,該數量亦可以進一步減少,此將需要每個TRP數十位元。使用此種精簡管理負擔的描述,接收實體可以重構由TRP發送的定位信號的預測波束回應。波束回應的參數化的此種精簡為想要基於角度量測執行UE輔助或基於UE的定位的UE和其他電池供電設備提供了精簡網路管理負擔的技術優勢。Therefore, a discretized antenna element radiation pattern (288 kb), a 16-entry table (4 bits) for antenna element array configuration, and, for each positioning resource, a PMI index derived from the DFT codebook (3 per resource) are used. bits), for example, information for 8 PRS resources can be transmitted using 288,000+24+4 bits, or approximately 288 kbits per TRP—much less than the 2.3 Mbits per TRP required by conventional methods many. This number can be further reduced to hundreds of bits by sending parameters describing the radiation patterns of the antenna elements rather than the discretized patterns, and can be further reduced by sending the index of a table of such parameters instead of the parameters themselves , which would require tens of bits per TRP. Using this description of the reduced administrative burden, the receiving entity can reconstruct the predicted beamback of the positioning signal sent by the TRP. This reduction in the parameterization of beamback provides technical advantages for UEs and other battery powered devices that want to perform UE-assisted or UE-based positioning based on angle measurements.
圖11是與精簡管理負擔波束簡檔參數化相關聯的示例過程1100的流程圖。在一些態樣中,圖11的一或多個過程方塊可以由TRP執行,例如,如圖1中的BS 102或圖1中的UE 104。在一些態樣中,圖11的一或多個過程方塊可以由與接收實體分離或包括接收實體的另一設備或設備組來執行。附加地或可替代地,圖11的一或多個過程方塊可以由設備302或設備304的一或多個部件來執行,諸如處理系統332或處理系統384、記憶體340或記憶體386、WWAN收發器310或WWAN收發器350、收發器320或收發器360、使用者介面346或網路介面380。11 is a flow diagram of an
如圖11所示,過程1100可以包括向接收實體發送表徵將由TRP使用發送波束的集合發送的定位信號的集合的資訊,該資訊包括至少一個天線元件輻射樣式、至少一個天線元件陣列配置、以及對於該發送波束的集合中的每一個波束,辨識至少一個預編碼矩陣的資訊(方塊1110)。As shown in FIG. 11,
在一些態樣中,表徵定位信號的集合的資訊在多播或多播訊息中被發送。在一些態樣中,多播或多播訊息包括定位系統資訊區塊(SIB)。在一些態樣中,表徵定位信號的集合的資訊在單播訊息中被發送。在一些態樣中,單播訊息包括長期進化(LTE)定位協定(LPP)輔助資料訊息。在一些態樣中,辨識至少一個預編碼矩陣的資訊包括預編碼矩陣指示符(PMI)索引。在一些態樣中,該定位信號的集合中的每一個定位信號對應於一個定位參考信號(PRS)資源。在一些態樣中,接收實體為每個PRS資源決定發送波束樣式。在一些態樣中,表徵將由TRP發送的定位信號的集合的至少一些資訊亦表徵將由至少一個其他TRP發送的定位信號。In some aspects, the information characterizing the set of positioning signals is sent in a multicast or multicast message. In some aspects, the multicast or multicast message includes a positioning system information block (SIB). In some aspects, the information characterizing the set of positioning signals is sent in a unicast message. In some aspects, the unicast messages include Long Term Evolution (LTE) Positioning Protocol (LPP) assistance data messages. In some aspects, the information identifying the at least one precoding matrix includes a precoding matrix indicator (PMI) index. In some aspects, each positioning signal in the set of positioning signals corresponds to a positioning reference signal (PRS) resource. In some aspects, the receiving entity decides the transmit beam pattern for each PRS resource. In some aspects, at least some of the information characterizing the set of positioning signals to be sent by the TRP also characterizes the positioning signals to be sent by at least one other TRP.
在一些態樣中,天線元件輻射樣式包括對預定義的天線樣式集合的索引。在一些態樣中,天線元件輻射樣式包括根據封閉形式參數化來表徵天線元件輻射樣式的參數集合。在一些態樣中,天線元件輻射樣式包括天線元件輻射樣式的幅度對離開角(AoD)的離散化圖表。在一些態樣中,至少一個天線元件陣列配置指定水平方向上的N個天線元件、垂直方向上的M個天線元件、P個參考信號(RS)天線埠、水平方向上的NxM個天線元件的陣列的Ng個實例、以及垂直方向上的NxM個天線元件的陣列的Mg個實例中的至少一個。在一些態樣中,每個天線元件包括交叉極化天線埠。In some aspects, the antenna element radiation pattern includes an index to a predefined set of antenna patterns. In some aspects, the antenna element radiation pattern includes a set of parameters that characterize the antenna element radiation pattern according to closed-form parameterization. In some aspects, the antenna element radiation pattern includes a discretized plot of the magnitude of the antenna element radiation pattern versus angle of departure (AoD). In some aspects, the at least one antenna element array configuration specifies N antenna elements in the horizontal direction, M antenna elements in the vertical direction, P reference signal (RS) antenna ports, and NxM antenna elements in the horizontal direction. At least one of Ng instances of the array, and Mg instances of the array of NxM antenna elements in the vertical direction. In some aspects, each antenna element includes a cross-polarized antenna port.
如圖11進一步所示,過程1100可以包括根據該資訊發送定位信號的集合(方塊1120)。例如,如上述,TRP可以根據該資訊發送定位信號的集合。在一些態樣中,由TRP發送的定位信號包括定位參考信號(PRS)、探測參考信號(SRS)、通道狀態資訊參考信號(CSI-RS)或解調參考信號(DMRS)中的至少一個。在一些態樣中,由TRP發送的定位信號包括下行鏈路(DL)定位信號、上行鏈路(UL)定位信號或側行鏈路(SL)定位信號中的至少一個。As further shown in FIG. 11,
如圖11中進一步所示,過程1100可以包括從接收實體接收定位資訊,該定位資訊包括至少一個定位量測估計(方塊1130)。在一些態樣中,定位資訊包括參考信號接收功率(RSRP)量測、到達時間(ToA)量測、服務品質(QoS)量測、接收信號強度指示符(RSSI)量測、信號干擾加雜訊比(SINR)或離開角(AoD)中的至少一個。在一些態樣中,至少一個定位量測估計包括接收實體的估計位置。As further shown in FIG. 11,
在一些態樣中,接收實體包括使用者設備(UE)或基地台(BS)。在一些態樣中,TRP包括使用者設備(UE)或基地台(BS)。In some aspects, the receiving entity includes a user equipment (UE) or a base station (BS). In some aspects, the TRP includes a user equipment (UE) or a base station (BS).
儘管圖11圖示過程1100的示例方塊,但是在一些實施方式中,過程1100可以包括與圖11所描繪的彼等方塊相比附加的方塊、更少的方塊、不同的方塊或不同排列的方塊。附加地或可替代地,過程1100的兩個或兩個以上方塊可以並行執行。Although FIG. 11 illustrates example blocks of
在一些態樣中,接收實體可以重用單面板類型I編碼簿。對於>=4個天線埠,NR類型I單面板編碼簿使用與LTE編碼簿類似的結構。亦即,其是為雙極化二維(2D)均勻平面陣列(UPA)定製的恒模DFT編碼簿。直觀地,可以用以下方式解釋編碼簿的構造。一種DFT預編碼器,其中用於使用具有 N個天線的單極化一維(1D)均勻線性陣列(ULA)對單層傳輸進行預編碼的預編碼器向量可以定義為: , 其中k=0,1,… QN-1是預編碼器索引,並且 Q是整數過取樣因數。藉由將兩個預編碼器向量的克羅內克積設為 ,可以建立2D UPA的對應預編碼器向量。隨後,如下擴展雙極化UPA的預編碼器: 其中 是兩個正交極化之間的同相因數。極化之間的最佳同相 通常隨頻率而變化,而最佳波束方向 通常在整個CSI報告頻帶上是相同的。 In some aspects, the receiving entity may reuse the single-panel Type I codebook. For >= 4 antenna ports, the NR Type I single-panel codebook uses a similar structure to the LTE codebook. That is, it is a constant modulus DFT codebook customized for dual polarized two-dimensional (2D) uniform planar arrays (UPAs). Intuitively, the construction of the codebook can be explained in the following way. A DFT precoder where the precoder vector for precoding a single-layer transmission using a single-polarized one-dimensional (1D) uniform linear array (ULA) with N antennas can be defined as: , where k=0,1,... QN -1 is the precoder index and Q is the integer oversampling factor. By setting the Kronecker product of the two precoder vectors as , the corresponding precoder vector of the 2D UPA can be established. Subsequently, the precoder of the dual-polarization UPA is extended as follows: in is the in-phase factor between the two orthogonal polarizations. Best in-phase between polarizations Usually varies with frequency, while optimal beam direction Usually the same over the entire CSI reporting band.
對於DL-AoD接收處理,考慮以下編碼簿:假設以下公式的第 l個編碼字元的Rx天線上的 相位向量: , 其中 Q是過取樣因素。表示為第 p個子陣列的所估計的通道的第 n個時域分接點的Rx天線上的 向量。對於第 n個時域分接點,按以下方式計算接收能量: 對於第 p個子陣列, 選擇在所有子陣列中最大化的編碼字元 , 對於UE輔助的DL-AoD,報告索引 。對於基於UE的DL-AoD,按以下方式使用 的知識將索引 映射回角度 : For the DL- AoD reception process, consider the following codebook: Assume that the Phase vector: , where Q is the oversampling factor. on the Rx antenna at the nth time-domain tap point of the estimated channel denoted as the pth subarray vector. For the nth time-domain tap, the received energy is calculated as: For the pth subarray, select the coded character that is maximized in all subarrays , For UE-assisted DL-AoD, report index . For UE-based DL-AoD, use as follows knowledge will be indexed map back to angular :
上文描述的技術通常是根據從gNB或其他基地台到UE的DL傳輸來描述的,但是該等技術可以類似地應用於其他場景,包括但不限於用於從UE向另一UE或其他實體發送的DL-AoD。同樣,上述技術不僅限於應用於NR,亦可以應用於使用波束成形的其他類型的無線電傳輸,諸如WiFi、WiMAX等。The techniques described above are generally described in terms of DL transmissions from a gNB or other base station to a UE, but the techniques can be similarly applied to other scenarios, including but not limited to use from a UE to another UE or other entity DL-AoD sent. Likewise, the above techniques are not limited to being applied to NR, but can also be applied to other types of radio transmissions using beamforming, such as WiFi, WiMAX, and the like.
在上文的詳細描述中,可以看出不同的特徵在實例中被分組在一起。此種揭示方式不應被理解為示例條款具有比每個條款中明確提到的更多特徵的意圖。相反,本揭示的各個態樣可以包括少於所揭示的單個示例條款的所有特徵。因此,以下條款應被視為併入說明書中,其中每個條款本身可以作為分離的實例。儘管每個從屬條款可以在條款中引用與其他條款之一的特定組合,但是該從屬條款的(多個)態樣不限於該特定組合。應當理解,其他示例條款亦可以包括(多個)從屬條款態樣與任何其他從屬條款或獨立條款的標的的組合,或者任何特徵與其他從屬和獨立條款的組合。本文揭示的各個態樣明確地包括該等組合,除非明確地表達或者可以容易地推斷不意欲特定的組合(例如,矛盾的態樣,諸如將元件定義為絕緣體和導體)。此外,亦意欲將條款的各態樣包括在任何其他獨立條款中,即使該條款不直接依賴於獨立條款。In the above detailed description, it can be seen that different features are grouped together in the examples. This manner of disclosure should not be construed as an intent that the example clauses have more features than those expressly mentioned in each clause. Rather, various aspects of the present disclosure may include less than all features of a single disclosed example clause. Accordingly, the following clauses should be deemed to be incorporated into the specification, each of which may itself be a separate instance. Although each sub-clause may refer in a clause to a particular combination with one of the other clauses, the aspect(s) of that sub-clause is not limited to that particular combination. It should be understood that other example clauses may also include a combination of dependent clause aspect(s) with the subject matter of any other dependent or independent clause, or a combination of any feature with other dependent and independent clauses. Aspects disclosed herein expressly include such combinations unless expressly expressed or readily inferred that a particular combination is not intended (eg, contradictory aspects, such as defining an element as an insulator and a conductor). In addition, aspects of a term are intended to be included in any other stand-alone term, even if that term is not directly dependent on the stand-alone term.
以下編號條款描述了實施方式實例:The following numbered clauses describe examples of implementations:
條款1.一種由接收實體執行的無線通訊的方法,該方法包括:接收表徵將由TRP使用發送波束的集合發送的定位信號的集合的資訊,該資訊包括至少一個天線元件輻射樣式、至少一個天線元件陣列配置、以及對於該發送波束的集合中的每一個波束,辨識至少一個預編碼矩陣的資訊;執行由TRP發送的定位信號的量測;基於至少一個天線元件輻射樣式、至少一個天線元件陣列配置、辨識至少一個預編碼矩陣的資訊和量測中的至少一些來計算至少一個定位量測估計;及將定位資訊發送到TRP,該定位資訊包括至少一個定位量測估計。
條款2.如條款1所述的方法,其中表徵定位信號的集合的資訊在多播或多播訊息中被接收。
條款3.如條款2所述的方法,其中多播或多播訊息包括定位SIB。
條款4.如條款1至3中任一項所述的方法,其中表徵定位信號的集合的資訊在單播訊息中被接收。
條款5.如條款4所述的方法,其中單播訊息包括LPP輔助資料訊息。
條款6.如條款1至5中任一項所述的方法,其中辨識至少一個預編碼矩陣的資訊包括PMI索引。
條款7.如條款1至6中任一項所述的方法,其中定位信號的集合中的每一個定位信號對應於一個PRS資源。
條款8.如條款7所述的方法,其中接收實體為每個PRS資源決定發送波束樣式。
條款9.如條款1至8中任一項所述的方法,其中表徵將由TRP發送的定位信號的集合的資訊中的至少一些亦表徵將由至少一個其他TRP發送的定位信號。
條款10.如條款1至9中任一項所述的方法,其中至少一個定位量測估計包括接收實體的估計位置。
條款11.如條款1至10中任一項所述的方法,其中天線元件輻射樣式包括對預定義的天線樣式集合的索引。
條款12.如條款1至11中任一項所述的方法,其中天線元件輻射樣式包括根據封閉形式參數化來表徵天線元件輻射樣式的參數集合。
條款13.如條款1至12中任一項所述的方法,其中天線元件輻射樣式包括天線元件輻射樣式的幅度對AoD的離散化圖表。
條款14.如條款1至13中任一項所述的方法,其中至少一個天線元件陣列配置指定水平方向上的N個天線元件、垂直方向上的M個天線元件、P個參考信號(RS)天線埠、水平方向上的NxM個天線元件的陣列的Ng個實例、以及垂直方向上的NxM個天線元件的陣列的Mg個實例中的至少一個。
條款15.如條款1至14中任一項所述的方法,其中每個天線元件包括交叉極化天線埠。
條款16.如條款1至15中任一項所述的方法,其中由TRP發送的定位信號包括PRS、SRS、CSI-RS或DMRS中的至少一個。Clause 16. The method of any of
條款17.如條款1至16中任一項所述的方法,其中由TRP發送的定位信號包括DL定位信號、UL定位信號或SL定位信號中的至少一個。Clause 17. The method of any of
條款18.如條款1至17中任一項所述的方法,其中定位資訊包括RSRP量測、ToA量測、QoS量測、RSSI量測、SINR量測或AoD中的至少一個。Clause 18. The method of any of
條款19.如請求項1所述的方法,其中接收實體包括UE或BS。Clause 19. The method of
條款20.如請求項1所述的方法,其中TRP包括UE或BS。
條款21.一種由TRP執行的無線通訊的方法,該方法包括:向接收實體發送表徵將由TRP使用發送波束的集合發送的定位信號的集合的資訊,該資訊包括至少一個天線元件輻射樣式、至少一個天線元件陣列配置、以及對於該發送波束的集合中的每一個波束,辨識至少一個預編碼矩陣的資訊;根據該資訊發送定位信號的集合;及從接收實體接收定位資訊,該定位資訊包括至少一個定位量測估計。Clause 21. A method of wireless communication performed by a TRP, the method comprising: sending to a receiving entity information representing a set of positioning signals to be transmitted by the TRP using a set of transmit beams, the information comprising at least one antenna element radiation pattern, at least one antenna element array configuration, and, for each beam in the set of transmit beams, identifying information for at least one precoding matrix; transmitting a set of positioning signals based on the information; and receiving positioning information from a receiving entity, the positioning information including at least one Positioning measurement estimation.
條款22.如條款21所述的方法,其中表徵定位信號的集合的資訊在多播或多播訊息中被發送。Clause 22. The method of clause 21, wherein the information characterizing the set of positioning signals is sent in a multicast or multicast message.
條款23.如條款22所述的方法,其中多播或多播訊息包括定位SIB。Clause 23. The method of Clause 22, wherein the multicast or multicast information includes locating the SIB.
條款24.如條款21至23中任一項所述的方法,其中表徵定位信號的集合的資訊在單播訊息中被發送。Clause 24. The method of any of clauses 21 to 23, wherein the information characterizing the set of positioning signals is sent in a unicast message.
條款25.如條款24所述的方法,其中單播訊息包括LPP輔助資料訊息。
條款26.如條款21至25中任一項所述的方法,其中辨識至少一個預編碼矩陣的資訊包括PMI索引。Clause 26. The method of any of clauses 21-25, wherein the information identifying the at least one precoding matrix comprises a PMI index.
條款27.如條款21至26中任一項所述的方法,其中定位信號的集合中的每一個定位信號對應於一個PRS資源。Clause 27. The method of any of clauses 21 to 26, wherein each positioning signal in the set of positioning signals corresponds to one PRS resource.
條款28.如條款27所述的方法,其中接收實體為每個PRS資源決定發送波束樣式。Clause 28. The method of clause 27, wherein the receiving entity decides a transmit beam pattern for each PRS resource.
條款29.如條款21至28中任一項所述的方法,其中表徵將由TRP發送的定位信號的集合的資訊中的至少一些亦表徵將由至少一個其他TRP發送的定位信號。Clause 29. The method of any of clauses 21 to 28, wherein at least some of the information characterizing the set of positioning signals to be transmitted by the TRP also characterizes the positioning signals to be transmitted by at least one other TRP.
條款30.如條款21至29中任一項所述的方法,其中至少一個定位量測估計包括接收實體的估計位置。
條款31.如條款21至30中任一項所述的方法,其中天線元件輻射樣式包括預定義的天線樣式集合的索引。Clause 31. The method of any of clauses 21 to 30, wherein the antenna element radiation pattern comprises an index to a predefined set of antenna patterns.
條款32.如條款21至31中任一項所述的方法,其中天線元件輻射樣式包括根據封閉形式參數化來表徵天線元件輻射樣式的參數集合。Clause 32. The method of any of clauses 21 to 31, wherein the antenna element radiation pattern comprises a set of parameters characterizing the antenna element radiation pattern according to a closed-form parameterization.
條款33.如條款21至32中任一項所述的方法,其中天線元件輻射樣式包括天線元件輻射樣式的幅度對AoD的離散化圖表。Clause 33. The method of any of clauses 21 to 32, wherein the antenna element radiation pattern comprises a discretized plot of the magnitude of the antenna element radiation pattern versus AoD.
條款34.如條款21至33中任一項所述的方法,其中至少一個天線元件陣列配置指定水平方向上的N個天線元件、垂直方向上的M個天線元件、P個RS天線埠、水平方向上的NxM個天線元件的陣列的Ng個實例、以及垂直方向上的NxM個天線元件的陣列的Mg個實例中的至少一個。Clause 34. The method of any of clauses 21 to 33, wherein the at least one antenna element array configuration specifies N antenna elements in a horizontal direction, M antenna elements in a vertical direction, P RS antenna ports, horizontal At least one of Ng instances of an array of NxM antenna elements in the direction and Mg instances of an array of NxM antenna elements in the vertical direction.
條款35.如條款21至34中任一項所述的方法,其中每個天線元件包括交叉極化天線埠。Clause 35. The method of any of clauses 21 to 34, wherein each antenna element comprises a cross-polarized antenna port.
條款36.如條款21至35中任一項所述的方法,其中由TRP發送的定位信號包括PRS、SRS、CSI-RS或DMRS中的至少一個。Clause 36. The method of any of clauses 21 to 35, wherein the positioning signal sent by the TRP comprises at least one of PRS, SRS, CSI-RS, or DMRS.
條款37.如條款21至36中任一項所述的方法,其中由TRP發送的定位信號包括DL定位信號、UL定位信號或SL定位信號中的至少一個。Clause 37. The method of any of clauses 21 to 36, wherein the positioning signal transmitted by the TRP comprises at least one of a DL positioning signal, a UL positioning signal, or a SL positioning signal.
條款38.如條款21至37中任一項所述的方法,其中定位資訊包括RSRP量測、ToA量測、QoS量測、RSSI量測、SINR量測或AoD中的至少一個。Clause 38. The method of any of clauses 21 to 37, wherein the positioning information comprises at least one of RSRP measurements, ToA measurements, QoS measurements, RSSI measurements, SINR measurements, or AoD.
條款39.如請求項21所述的方法,其中接收實體包括UE或BS。Clause 39. The method of claim 21, wherein the receiving entity comprises a UE or a BS.
條款40.如請求項21所述的方法,其中TRP包括UE或BS。
條款41.一種裝置,包括記憶體和通訊地耦接到記憶體的至少一個處理器,該記憶體和該至少一個處理器被配置為執行如條款1至40中任一項所述的方法。Clause 41. An apparatus comprising memory and at least one processor communicatively coupled to the memory, the memory and the at least one processor configured to perform the method of any of clauses 1-40.
條款42.一種裝置,包括用於執行如條款1至40中任一項所述的方法的構件。Clause 42. An apparatus comprising means for performing the method of any of clauses 1-40.
條款43.一種儲存電腦可執行指令的非暫時性電腦可讀取媒體,該等電腦可執行指令包括用於使電腦或處理器執行如條款1至40中任一項所述的方法的至少一個指令。Clause 43. A non-transitory computer-readable medium storing computer-executable instructions, the computer-executable instructions comprising at least one of the methods for causing a computer or processor to perform any one of clauses 1-40 instruction.
本領域技藝人士將理解資訊和信號可以使用各種不同的技術和製程中的任一種來表示。例如,以上整個描述引用的資料、指令、命令、資訊、信號、位元、符號和晶片可以由電壓、電流、電磁波、磁場或粒子、光場或粒子或其任意組合來表示。Those of skill in the art would understand that information and signals may be represented using any of a variety of different technologies and processes. For example, the data, instructions, commands, information, signals, bits, symbols and wafers referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, light fields or particles, or any combination thereof.
此外,本領域技藝人士將理解,結合本文揭示的各態樣描述的各種說明性邏輯區塊、模組、電路和演算法步驟可以被實施為電子硬體、電腦軟體或兩者的組合。為了清楚地說明硬體和軟體的此種可互換性,各種說明性的部件、方塊、模組、電路和步驟已經在上面根據其功能進行了一般性的描述。此種功能被實施為硬體或軟體取決於特定的應用和對整個系統施加的設計約束。技藝人士可以針對每個特定應用以不同的方式實施所描述的功能,但是此種實施方式決策不應被解釋為導致脫離本揭示範圍。Furthermore, those of skill in the art will understand that the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the various aspects disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends on the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present disclosure.
結合本文揭示態樣描述的各種說明性邏輯區塊、模組和電路可以用通用處理器、DSP、ASIC、FPGA或其他可程式設計邏輯設備、個別閘極或電晶體邏輯、個別硬體部件或設計成執行本文描述的功能的其任意組合來實施或執行。通用處理器可以是微處理器,但是在替代方案中,處理器可以是任何習知的處理器、控制器、微控制器或狀態機。處理器亦可以被實施為計算設備的組合,例如,DSP和微處理器的組合、複數個微處理器、一或多個微處理器與DSP核心的組合、或者任何其他此種配置。The various illustrative logic blocks, modules, and circuits described in connection with aspects disclosed herein may be implemented in general-purpose processors, DSPs, ASICs, FPGAs, or other programmable logic devices, individual gate or transistor logic, individual hardware components, or be implemented or performed by any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any known processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, eg, a combination of a DSP and a microprocessor, a plurality of microprocessors, a combination of one or more microprocessors and a DSP core, or any other such configuration.
結合本文揭示的各態樣描述的方法、序列及/或演算法可以直接體現在硬體、由處理器執行的軟體模組或兩者的組合中。軟體模組可以常駐在隨機存取記憶體(RAM)、快閃記憶體、唯讀記憶體(ROM)、可抹除可程式設計ROM(EPROM)、電子可抹除可程式設計ROM(EEPROM)、暫存器、硬碟、可移除磁碟、CD-ROM或本領域已知的任何其他形式的儲存媒體中。示例儲存媒體耦接到處理器,使得處理器可以從儲存媒體讀取資訊和向儲存媒體寫入資訊。在替代方案中,儲存媒體可以集成到處理器中。處理器和儲存媒體可以常駐在ASIC中。ASIC可以常駐在使用者終端(例如,UE)中。在替代方案中,處理器和儲存媒體可以作為個別部件常駐在使用者終端中。The methods, sequences and/or algorithms described in connection with the various aspects disclosed herein may be embodied directly in hardware, in software modules executed by a processor, or in a combination of both. Software modules can reside in random access memory (RAM), flash memory, read only memory (ROM), erasable programmable ROM (EPROM), electronically erasable programmable ROM (EEPROM) , scratchpad, hard disk, removable disk, CD-ROM, or any other form of storage medium known in the art. An example storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integrated into the processor. The processor and storage medium may reside in the ASIC. The ASIC may reside in a user terminal (eg, UE). In the alternative, the processor and storage medium may reside in the user terminal as separate components.
在一或多個示例態樣中,所描述的功能可以以硬體、軟體、韌體或其任意組合來實施。若以軟體來實施,則該等功能可以作為一或多個指令或代碼儲存在電腦可讀取媒體上或經由電腦可讀取媒體發送。電腦可讀取媒體包括電腦儲存媒體和通訊媒體,通訊媒體包括促進將電腦程式從一個地方傳送到另一地方的任何媒體。儲存媒體可以是可以由電腦存取的任何可用媒體。作為實例而非限制,此種電腦可讀取媒體可以包括RAM、ROM、EEPROM、CD-ROM或其他光碟儲存、磁碟儲存或其他磁儲存設備,或者可以用於以指令或資料結構的形式攜帶或儲存期望的程式碼並且可以由電腦存取的任何其他媒體。此外,任何連接皆被恰當地稱為電腦可讀取媒體。例如,若使用同軸電纜、光纖電纜、雙絞線、數位用戶線路(DSL)或無線技術(諸如紅外線、無線電和微波)從網站、伺服器或其他遠端源發射軟體,則同軸電纜、光纖電纜、雙絞線、DSL或無線技術(諸如紅外線、無線電和微波)包括在媒體的定義中。本文使用的磁碟和光碟包括壓縮光碟(CD)、雷射光碟、光碟、數位多功能光碟(DVD)、軟碟和藍光光碟,其中磁碟通常磁性地再現資料,而光碟用鐳射光學地再現資料。上述的組合亦應該包括在電腦可讀取媒體的範圍內。In one or more example aspects, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over a computer-readable medium as one or more instructions or code. Computer-readable media includes computer storage media and communication media, including any medium that facilitates transfer of a computer program from one place to another. Storage media can be any available media that can be accessed by a computer. By way of example and not limitation, such computer-readable media may include RAM, ROM, EEPROM, CD-ROM, or other optical disk storage, magnetic disk storage, or other magnetic storage devices, or may be used to carry instructions or data structures Or any other medium that stores the desired code and can be accessed by a computer. Also, any connection is properly termed a computer-readable medium. For example, if you use coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies (such as infrared, radio, and microwave) to transmit software from a website, server, or other remote source, coaxial cable, fiber optic cable , twisted pair, DSL or wireless technologies such as infrared, radio and microwave are included in the definition of media. Disk and disc, as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disc, and blu-ray disc, where discs usually reproduce material magnetically, while discs reproduce optically with lasers material. Combinations of the above should also be included within the scope of computer-readable media.
儘管前述揭示內容圖示本揭示內容的說明性態樣,但是應當注意,在不脫離由所附請求項限定的本揭示內容的範圍的情況下,可以在此做出各種改變和修改。根據本文描述的揭示的態樣的方法請求項的功能、步驟及/或動作不需要以任何特定的順序來執行。此外,儘管可以單數形式描述或要求保護本揭示的要素,但是除非明確說明限制為單數形式,否則複數形式亦是可以預期的。Although the foregoing disclosure illustrates illustrative aspects of the present disclosure, it should be noted that various changes and modifications may be made herein without departing from the scope of the present disclosure as defined by the appended claims. The functions, steps and/or actions of the method claims in accordance with aspects of the disclosure described herein need not be performed in any particular order. Furthermore, although elements of the present disclosure may be described or claimed in the singular, the plural is contemplated unless limitation to the singular is explicitly stated.
100:無線通訊系統 102:基地台 102':小型細胞(SC)基地台 104:UE 110:地理覆蓋區域 110’:地理覆蓋區域 112:地球軌道衛星定位系統(SPS)太空飛行器(SV) 120:通訊鏈路 122:回載鏈路 124:SPS信號 134:回載鏈路 150:無線區域網路(WLAN)存取點(AP) 152:WLAN站(STA) 154:通訊鏈路 164:UE 170:核心網路 172:位置伺服器 180:mmW基地台 182:UE 184:mmW通訊鏈路 190:UE 192:D2D P2P鏈路 194:D2D P2P鏈路 200:無線網路結構 204:UE 210:5GC 212:使用者平面功能 213:使用者平面介面(NG-U) 214:控制平面功能 215:控制平面介面(NG-C) 220:新RAN 222:gNB 223:回載連接 224:ng-eNB 230:位置伺服器 250:無線網路結構 260:5GC 262:UPF 263:使用者平面介面 264:AMF 265:控制平面介面 266:通信期管理功能(SMF) 270:位置管理功能(LMF) 272:安全使用者平面位置(SUPL)位置平臺(SLP) 302:UE 304:基地台 306:網路實體 310:無線廣域網路(WWAN)收發器 312:接收器 314:發送器 316:天線 318:信號 320:短程無線收發器 322:接收器 324:發送器 326:天線 328:信號 330:衛星定位系統(SPS)接收器 332:處理系統 334:資料匯流排 336:天線 338:SPS信號 340:記憶體部件 342:PRS部件 344:感測器 346:使用者介面 350:無線廣域網路(WWAN)收發器 352:接收器 354:發送器 356:天線 358:信號 360:短程無線收發器 362:接收器 364:發送器 366:天線 368:信號 370:衛星定位系統(SPS)接收器 376:天線 378:SPS信號 380:網路介面 382:資料匯流排 384:處理系統 386:記憶體部件 388:PRS部件 390:網路介面 392:資料匯流排 394:處理系統 396:記憶體部件 398:PRS部件 400:圖 430:圖 450:圖 470:圖 500:圖 502:基地台 502a:發送波束 502b:發送波束 502c:發送波束 502d:發送波束 502e:發送波束 502f:發送波束 502g:發送波束 504:UE 504a:接收波束 504b:接收波束 504c:接收波束 504d:接收波束 510:視線(LOS)路徑 512c:路徑 512d:路徑 512e:路徑 512f:路徑 512g:路徑 520:障礙物 600:方法 602:TRP 604:UE 606:視線(LOS)路徑 608:位置管理功能(LMF) 800:過程 810:方塊 820:方塊 830:方塊 840:方塊 1000:天線 1002:面板 1004:交叉極化天線 1100:過程 1110:方塊 1120:方塊 1130:方塊 CORESET:控制資源集 DMRS:解調參考信號 PBCH:實體廣播通道 PDCCH:實體下行鏈路控制通道 PDSCH:實體下行鏈路共享通道 PRS:定位參考信號 PSS:主要同步信號 PUCCH:實體上行鏈路控制通道 PUSCH:實體上行鏈路共享通道 R:位置 RACH:隨機存取通道 RB:資源區塊 SRS:探測參考信號 SSB:同步信號區塊 SSS:輔同步信號 φ1:方位角 φ2:方位角 100: Wireless Communication System 102: Base Station 102': Small Cell (SC) Base Station 104:UE 110: Geographic coverage area 110’: Geographic Coverage Area 112: Earth Orbiting Satellite Positioning System (SPS) Space Vehicle (SV) 120: Communication link 122: backload link 124: SPS signal 134:Backload link 150: Wireless Local Area Network (WLAN) Access Point (AP) 152: WLAN Station (STA) 154: Communication link 164:UE 170: Core Network 172:Position server 180:mmW base station 182:UE 184:mmW communication link 190:UE 192: D2D P2P Link 194: D2D P2P Link 200: Wireless Network Architecture 204:UE 210:5GC 212: User plane function 213: User Plane Interface (NG-U) 214: Control plane functions 215: Control Plane Interface (NG-C) 220: New RAN 222: gNB 223: loadback connection 224:ng-eNB 230:Position server 250: Wireless Network Architecture 260:5GC 262:UPF 263: User Plane Interface 264:AMF 265: Control plane interface 266: Communication period management function (SMF) 270: Location Management Function (LMF) 272: Safe User Plane Position (SUPL) Position Platform (SLP) 302:UE 304: Base Station 306: Network entity 310: Wireless Wide Area Network (WWAN) Transceivers 312: Receiver 314: Transmitter 316: Antenna 318: Signal 320: Short Range Wireless Transceiver 322: Receiver 324: Transmitter 326: Antenna 328: Signal 330: Satellite Positioning System (SPS) Receiver 332: Handling Systems 334: Data Bus 336: Antenna 338: SPS signal 340: Memory Parts 342:PRS Parts 344: Sensor 346: User Interface 350: Wireless Wide Area Network (WWAN) Transceiver 352: Receiver 354: Transmitter 356: Antenna 358: Signal 360: Short Range Wireless Transceiver 362: Receiver 364: Transmitter 366: Antenna 368: Signal 370: Satellite Positioning System (SPS) Receiver 376: Antenna 378: SPS signal 380: Web Interface 382: Data bus 384: Handling Systems 386: Memory Parts 388:PRS Parts 390: Web Interface 392: Data Bus 394: Handling Systems 396: Memory Parts 398:PRS Parts 400: Figure 430: Figure 450: Figure 470: Figure 500: Figure 502: Base Station 502a: Transmit Beam 502b: Transmit Beam 502c: Transmit Beam 502d: Transmit Beam 502e: Transmit Beam 502f: Transmit Beam 502g: Transmit Beam 504:UE 504a: Receive Beam 504b: Receive Beam 504c: Receive Beam 504d: Receive Beam 510: Line of Sight (LOS) Path 512c: Path 512d: Path 512e: path 512f: path 512g: path 520: Obstacle 600: Method 602:TRP 604:UE 606: Line of Sight (LOS) Path 608: Location Management Function (LMF) 800: Process 810: Square 820: Square 830: Square 840: Square 1000: Antenna 1002: Panel 1004: Cross-Polarized Antenna 1100: Process 1110: Blocks 1120: Blocks 1130: Blocks CORESET: Control resource set DMRS: Demodulation Reference Signal PBCH: Physical Broadcast Channel PDCCH: Physical Downlink Control Channel PDSCH: Physical Downlink Shared Channel PRS: Positioning Reference Signal PSS: Primary Sync Signal PUCCH: Physical Uplink Control Channel PUSCH: Physical Uplink Shared Channel R: location RACH: random access channel RB: Resource Block SRS: Sounding Reference Signal SSB: Sync Signal Block SSS: Secondary sync signal φ1: Azimuth φ2: Azimuth
呈現附圖是為了幫助描述本揭示的各個態樣,並且附圖僅僅是為了說明該等態樣,而不是對其進行限制。The accompanying drawings are presented to help describe various aspects of the present disclosure and are intended to illustrate, not to limit, such aspects.
圖1示出根據本揭示的各態樣的示例無線通訊系統。1 illustrates an example wireless communication system in accordance with various aspects of the present disclosure.
圖2A和圖2B示出根據本揭示的各態樣的示例無線網路結構。2A and 2B illustrate example wireless network structures according to aspects of the present disclosure.
圖3A至圖3C是可以分別在使用者設備(UE)、基地台和網路實體中採用並且被配置為支援本文教示的通訊的部件的若干取樣態樣的簡化方塊圖。3A-3C are simplified block diagrams of several sampled aspects of components that may be employed in user equipment (UE), base stations, and network entities, respectively, and configured to support the communications taught herein.
圖4A至圖4D是示出根據本揭示的各態樣的示例訊框結構和訊框結構內的通道的圖。4A-4D are diagrams illustrating example frame structures and channels within the frame structures according to aspects of the present disclosure.
圖5是示出根據本揭示的各態樣的與示例UE通訊的示例基地台的圖。5 is a diagram illustrating an example base station in communication with an example UE in accordance with aspects of the present disclosure.
圖6示出使用RSRP量測來執行DL-AoD量測的習知方法。FIG. 6 illustrates a conventional method for performing DL-AoD measurements using RSRP measurements.
圖7是預期RSRP值作為方位角的函數的曲線圖,其正規化以消除距離的影響。Figure 7 is a graph of expected RSRP values as a function of azimuth angle, normalized to remove the effect of distance.
圖8示出根據本揭示的一些態樣的精簡管理負擔波束簡檔參數化。8 illustrates a reduced management burden beam profile parameterization in accordance with some aspects of the present disclosure.
圖9是根據本揭示的一些態樣的示例天線元件輻射樣式的曲線圖。9 is a graph of example antenna element radiation patterns in accordance with some aspects of the present disclosure.
圖10示出根據本揭示的一些態樣的天線元件陣列配置。10 illustrates an antenna element array configuration in accordance with some aspects of the present disclosure.
圖11示出根據本揭示的一些態樣的精簡管理負擔波束簡檔參數化。11 illustrates a reduced management burden beam profile parameterization in accordance with some aspects of the present disclosure.
國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic storage information (please note in the order of storage institution, date and number) none Foreign deposit information (please note in the order of deposit country, institution, date and number) none
800:過程 800: Process
810:方塊 810: Square
820:方塊 820: Square
830:方塊 830: Square
840:方塊 840: Square
Claims (82)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GR20210100025 | 2021-01-13 | ||
GR20210100025 | 2021-01-13 | ||
WOPCT/US21/72621 | 2021-11-29 | ||
PCT/US2021/072621 WO2022154991A1 (en) | 2021-01-13 | 2021-11-29 | Reduced overhead beam profile parametrization |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202231100A true TW202231100A (en) | 2022-08-01 |
Family
ID=79259411
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110144588A TW202231100A (en) | 2021-01-13 | 2021-11-30 | Reduced overhead beam profile parametrization |
Country Status (7)
Country | Link |
---|---|
US (1) | US20240063862A1 (en) |
EP (1) | EP4278460A1 (en) |
KR (1) | KR20230131845A (en) |
CN (1) | CN116670530A (en) |
BR (1) | BR112023013359A2 (en) |
TW (1) | TW202231100A (en) |
WO (1) | WO2022154991A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024141840A1 (en) * | 2022-12-30 | 2024-07-04 | Nokia Technologies Oy | Apparatuses and methods for positioning |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11330550B2 (en) * | 2019-03-15 | 2022-05-10 | Qualcomm Incorporated | Positioning with relays |
-
2021
- 2021-11-29 KR KR1020237023388A patent/KR20230131845A/en unknown
- 2021-11-29 BR BR112023013359A patent/BR112023013359A2/en unknown
- 2021-11-29 US US18/258,151 patent/US20240063862A1/en active Pending
- 2021-11-29 CN CN202180089628.1A patent/CN116670530A/en active Pending
- 2021-11-29 EP EP21836742.3A patent/EP4278460A1/en active Pending
- 2021-11-29 WO PCT/US2021/072621 patent/WO2022154991A1/en active Application Filing
- 2021-11-30 TW TW110144588A patent/TW202231100A/en unknown
Also Published As
Publication number | Publication date |
---|---|
US20240063862A1 (en) | 2024-02-22 |
EP4278460A1 (en) | 2023-11-22 |
CN116670530A (en) | 2023-08-29 |
WO2022154991A1 (en) | 2022-07-21 |
KR20230131845A (en) | 2023-09-14 |
BR112023013359A2 (en) | 2023-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW202147889A (en) | Reducing the overhead of reporting measurements and transmission-reception point (trp) identifiers in positioning state information (psi) | |
TW202239224A (en) | Operational adaptation for reconfigurable intelligent surface aided positioning | |
TW202234923A (en) | Reconfigurable intelligent surface aided positioning | |
TW202232973A (en) | Location assistance data with line of sight condition for a link between a user equipment and a wireless network node | |
TW202234917A (en) | Time and frequency resource level muting of reconfigurable intelligent surfaces | |
TW202228469A (en) | Power delay profile (pdp) similarity measurement and reporting | |
TW202249514A (en) | Reconfigurable intelligent surface (ris) beam sweeping of sounding reference signal (srs) for angle of departure (aod) based positioning | |
KR20230157962A (en) | Location assistance data for intelligent, reconfigurable surface-assisted positioning | |
JP2024528921A (en) | Signaling for Timing Error Group (TEG) Reporting | |
US20240094325A1 (en) | Sidelink reference signal for reconfigurable intelligent surface aided positioning | |
KR20240004348A (en) | Signaling details for timing error group (TEG) reporting | |
TW202232976A (en) | Configuration of radio access network notification area for positioning | |
US20240063862A1 (en) | Reduced overhead beam profile parametrization | |
KR20230154814A (en) | Measurement of sounding reference signal reflections from reconfigurable intelligent surfaces | |
US20240107484A1 (en) | Reduced overhead beam profile characterization | |
TW202231004A (en) | Increased angle of departure measurement granularity | |
TW202234910A (en) | Per beam pair timing for positioning |