TW202229159A - Films comprising bright silver based quaternary nanostructures - Google Patents

Films comprising bright silver based quaternary nanostructures Download PDF

Info

Publication number
TW202229159A
TW202229159A TW110147823A TW110147823A TW202229159A TW 202229159 A TW202229159 A TW 202229159A TW 110147823 A TW110147823 A TW 110147823A TW 110147823 A TW110147823 A TW 110147823A TW 202229159 A TW202229159 A TW 202229159A
Authority
TW
Taiwan
Prior art keywords
film
nanostructures
aigs
ligand
emission
Prior art date
Application number
TW110147823A
Other languages
Chinese (zh)
Inventor
拉維薩巴西 譚吉萊拉
傑 亞瑪納嘉
文卓 郭
克里斯托弗 桑德蘭
亞舍納非 丹堤 馬姆葉
春明 王
黃銀希
金那雄
Original Assignee
美商納諾西斯有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/166,788 external-priority patent/US11407940B2/en
Application filed by 美商納諾西斯有限公司 filed Critical 美商納諾西斯有限公司
Publication of TW202229159A publication Critical patent/TW202229159A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • C09K11/621Chalcogenides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • C01G15/006Compounds containing, besides gallium, indium, or thallium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source

Abstract

Disclosed are films comprising Ag, In, Ga, and S (AIGS) nanostructures and at least one ligand bound to the nanostructures. In some embodiment, the AIGS nanostructures have a photon conversion efficiency of greater than 32% and a peak wavelength emission of 480-545 nm. In some embodiments, the nanostructures have an emission spectrum with a FWHM of 24-38 nm.

Description

包含亮銀基底的四級奈米結構的膜Quaternary Nanostructured Films Containing Bright Silver Substrates

本發明係關於奈米技術領域。更具體而言,本發明提供了薄的、不含重金屬之奈米結構色彩轉換膜,當使用波長為約450 nm之藍光源激發時,該等膜在480-545 nm之峰值發射波長下具有大於32%之高光子轉換效率(PCE)。The present invention relates to the field of nanotechnology. More specifically, the present invention provides thin, heavy metal-free, nanostructured color conversion films having peak emission wavelengths of 480-545 nm when excited with a blue light source having a wavelength of about 450 nm. High Photon Conversion Efficiency (PCE) greater than 32%.

高效之色彩轉換對於照明及顯示應用係重要的。在顯示應用中,波長為約450 nm之藍光源最常用作背光。大部分應用要求材料不含諸如Cd及Pb等重金屬。Efficient color conversion is important for lighting and display applications. In display applications, a blue light source with a wavelength of about 450 nm is most commonly used as a backlight. Most applications require the material to be free of heavy metals such as Cd and Pb.

提高效率導致較少功率浪費以及增加之發射。色彩轉換膜之特徵在於光子轉換效率(PCE),其定義為發射之光子數除以源光子數。用於顯示器之綠色無重金屬QD色彩轉換膜通常由於其在激發其之藍光中之有限吸收而具有差的性能。藍色吸收通常固有地受到所用材料系統之限制,此導致需要更厚之膜來吸收足夠450 nm光。Increased efficiency results in less wasted power and increased emissions. Color conversion films are characterized by photon conversion efficiency (PCE), which is defined as the number of photons emitted divided by the number of source photons. Green heavy metal-free QD color conversion films for displays generally have poor performance due to their limited absorption in the blue light that excites them. Blue absorption is often inherently limited by the material system used, resulting in the need for thicker films to absorb sufficient 450 nm light.

通常藉由UV輻照固化藉由QD油墨之沈積形成之薄膜。在許多情形下,此之後在空氣存在下於180℃下熱處理高達1小時。該等膜之光子轉換效率受到差的吸收及差的光轉換(由於經由該等處理步驟之不穩定性)之組合的限制。Films formed by deposition of QD inks are typically cured by UV radiation. In many cases this was followed by heat treatment at 180°C for up to 1 hour in the presence of air. The photon conversion efficiency of these films is limited by the combination of poor absorption and poor light conversion due to instability through these processing steps.

業內仍然需要具有高帶邊緣發射(BE)、窄半峰全寬(FWHM)、高量子產率(QY)及減少紅移之Ag/In/Ga/S (AIGS)奈米結構,且其可用於製備使用約450 nm之激發波長在介於480 nm與545 nm之間之峰值發射波長下具有高(大於32%)光子轉換效率(PCE)之膜。Ag/In/Ga/S (AIGS) nanostructures with high band-edge emission (BE), narrow full width at half maximum (FWHM), high quantum yield (QY), and reduced red-shift are still needed and available in the industry Films with high (greater than 32%) Photon Conversion Efficiency (PCE) at peak emission wavelengths between 480 nm and 545 nm were prepared using an excitation wavelength of about 450 nm.

本發明提供薄的、不含重金屬之奈米結構色彩轉換膜,當使用波長為約450 nm之藍光源激發時,該等膜在480-545 nm之峰值發射波長下具有大於32%之高光子轉換效率(PCE)。此係藉由在含有一或多種配體之油墨調配物中使用Ag/In/Ga/S (AIGS)奈米結構來實現,其中在暴露於藍光或紫外光之前,油墨之所有處置、隨後沈積、膜之處理及量測均在無氧環境中進行。在一些實施例中,AIGS奈米結構具有28-38 nm之FWHM。在其他實施例中,AIGS奈米結構具有小於32 nm之FWHM。此窄FWHM係藉由向AIGS奈米結構中添加至少一種聚胺基配體並製備膜層來實現,其中奈米結構油墨之所有處置、油墨之沈積、膜之處理及量測均在無氧環境中進行。The present invention provides thin, heavy metal-free, nanostructured color conversion films that have greater than 32% high photons at a peak emission wavelength of 480-545 nm when excited by a blue light source with a wavelength of about 450 nm Conversion Efficiency (PCE). This is achieved by using Ag/In/Ga/S (AIGS) nanostructures in ink formulations containing one or more ligands, where all handling of the ink, subsequent deposition, prior to exposure to blue or UV light , The treatment and measurement of the membrane are carried out in an oxygen-free environment. In some embodiments, the AIGS nanostructures have a FWHM of 28-38 nm. In other embodiments, the AIGS nanostructures have a FWHM of less than 32 nm. This narrow FWHM is achieved by adding at least one polyamine-based ligand to the AIGS nanostructures and preparing a film layer, where all handling of the nanostructured ink, deposition of the ink, processing of the film, and measurement are performed without oxygen. carried out in the environment.

通常藉由UV輻照固化藉由QD油墨之沈積形成之薄膜。在許多情形下,此之後在空氣存在下於180℃下熱處理高達1小時。已發現,由於經由該等處理步驟之不穩定性,差的吸收及差的光轉換會降低光子轉換效率。Films formed by deposition of QD inks are typically cured by UV radiation. In many cases this was followed by heat treatment at 180°C for up to 1 hour in the presence of air. It has been found that poor absorption and poor light conversion reduce photon conversion efficiency due to instability through these processing steps.

本文揭示在包含至少一種配體之油墨調配物中包含AIGS奈米結構之膜,其在熱處理後達成大於(>) 32%之PCE。在一些實施例中,提供包含AIGS奈米結構、至少一種配體且當使用波長為450 nm之藍光源激發時在480-545 nm之峰值發射波長下展現大於32%之PCE的膜。藉由對484 nm至700 nm之發射光譜進行積分計算PCE,其中綠色部分定義為484-588 nm。在一些實施例中,膜係薄的(5-15 µm)色彩轉換膜。Disclosed herein are films comprising AIGS nanostructures in ink formulations comprising at least one ligand that achieve a PCE of greater than (>) 32% after thermal treatment. In some embodiments, films are provided comprising AIGS nanostructures, at least one ligand, and exhibiting greater than 32% PCE at peak emission wavelengths of 480-545 nm when excited with a blue light source having a wavelength of 450 nm. PCE was calculated by integrating the emission spectrum from 484 nm to 700 nm, with the green part defined as 484-588 nm. In some embodiments, the film is a thin (5-15 μm) color conversion film.

如此製備之該等膜在約450 nm下具有良好(> 95%)藍光吸收,但具有中等發射性質。然而,當在不存在氧氣及/或光之情況下處理及/或在將膜暴露於UV或藍光之前囊封時,該等膜之發射性質顯著經改良。The films so prepared have good (>95%) blue light absorption at about 450 nm, but moderate emission properties. However, when processed in the absence of oxygen and/or light and/or encapsulated before exposing the films to UV or blue light, the emission properties of these films are significantly improved.

在一些實施例中,膜進一步包含至少一種納入塗覆AIGS表面之配體中的單體。在一些實施例中,至少一種單體係丙烯酸酯。在一些實施例中,單體係丙烯酸乙基酯、二丙烯酸六亞甲基酯(HDDA)、丙烯酸四氫糠基酯、三(丙二醇)二丙烯酸酯、1,4-雙(丙烯醯基氧基)丁烷或丙烯酸異莰基酯中之至少一者。In some embodiments, the membrane further comprises at least one monomer incorporated into the ligand that coats the AIGS surface. In some embodiments, at least one monosystem acrylate. In some embodiments, the mono-system ethyl acrylate, hexamethylene diacrylate (HDDA), tetrahydrofurfuryl acrylate, tri(propylene glycol) diacrylate, 1,4-bis(acryloyloxy) group) at least one of butane or isobornyl acrylate.

提供製備AIGS膜之方法,其包含: (a)    提供AIGS奈米結構及至少一種塗覆奈米結構之配體; (b)    將至少一種有機樹脂與(a)之AIGS奈米結構混合;及 (c)    在第一障壁層上製備包含混合之AIGS奈米結構、至少一種塗覆奈米結構之配體及至少一種有機樹脂之第一膜; (d)    藉由UV輻照及/或烘烤固化膜; (e)    將第一膜囊封在第一障壁層與第二障壁層之間;及 其中當使用波長為約450 nm之藍光源激發時,囊封之膜在480-545 nm之峰值發射波長下展現大於32%之轉換效率(PCE)。 A method of making an AIGS membrane is provided, comprising: (a) providing AIGS nanostructures and at least one ligand coating the nanostructures; (b) mixing at least one organic resin with the AIGS nanostructure of (a); and (c) preparing a first film comprising mixed AIGS nanostructures, at least one nanostructure-coated ligand, and at least one organic resin on the first barrier layer; (d) curing the film by UV irradiation and/or baking; (e) encapsulating the first membrane between the first barrier layer and the second barrier layer; and Among them, the encapsulated films exhibited conversion efficiencies (PCEs) greater than 32% at peak emission wavelengths of 480-545 nm when excited with a blue light source with a wavelength of about 450 nm.

在一些實施例中,AIGS奈米結構進一步包含至少一種納入至少一種塗覆AIGS表面之配體中之單體。In some embodiments, the AIGS nanostructure further comprises at least one monomer incorporated into at least one ligand that coats the AIGS surface.

亦提供進一步包含以下之方法: (f)    在(a)之AIGS奈米結構及配體之混合物中添加至少一種氧反應性材料、在(b)之混合物中添加至少一種氧反應性材料、及/或在(c)中製備之第一膜之頂部上形成包含至少一種氧反應性材料之第二膜;及/或 (g)    在(c)中製備之第一膜上形成暫時阻擋氧氣及/或水之犧牲障壁層,並量測膜之PCE,然後去除犧牲障壁層。 Methods further including the following are also provided: (f) adding at least one oxygen-reactive material to the mixture of AIGS nanostructures and ligands of (a), adding at least one oxygen-reactive material to the mixture of (b), and/or preparing in (c) a second film comprising at least one oxygen-reactive material is formed on top of the first film; and/or (g) Forming a sacrificial barrier layer temporarily blocking oxygen and/or water on the first film prepared in (c), measuring the PCE of the film, and then removing the sacrificial barrier layer.

亦提供包含以下之方法: (a)在熱處理及/或量測之前囊封膜; (b)在熱處理或光暴露期間使用氧反應性材料作為調配物之一部分;及/或 (c)經由使用犧牲障壁層暫時阻擋氧氣。 Methods including the following are also provided: (a) encapsulating the film prior to heat treatment and/or measurement; (b) using an oxygen reactive material as part of the formulation during heat treatment or light exposure; and/or (c) Temporarily blocking oxygen through the use of a sacrificial barrier layer.

在一些實施例中,奈米結構具有FWHM小於40 nm之發射光譜。在一些實施例中,奈米結構具有FWHM為24-38 nm之發射光譜。在一些實施例中,奈米結構具有FWHM為27-32 nm之發射光譜。在一些實施例中,奈米結構具有FWHM為29-31 nm之發射光譜。In some embodiments, the nanostructures have an emission spectrum with a FWHM of less than 40 nm. In some embodiments, the nanostructures have an emission spectrum with a FWHM of 24-38 nm. In some embodiments, the nanostructure has an emission spectrum with a FWHM of 27-32 nm. In some embodiments, the nanostructures have an emission spectrum with a FWHM of 29-31 nm.

在一些實施例中,奈米結構具有80-99.9%之QY。在一些實施例中,奈米結構具有85-95%之QY。在一些實施例中,奈米結構具有約86-94%之QY。在一些實施例中,奈米結構具有大於或等於0.8之OD 450/質量(mL .mg -1.cm -1),其中OD係光學密度。在一些實施例中,奈米結構具有在0.8-2.5之包括範圍內之OD 450/質量(mL .mg -1.cm -1)。在一些實施例中,奈米結構具有在0.87-1.9之包括範圍內之OD 450/質量(mL .mg -1.cm -1)。在一些實施例中,藉由透射電子顯微鏡(TEM),奈米結構之平均直徑小於10 nm。在一些實施例中,平均直徑為約5 nm。 In some embodiments, the nanostructures have a QY of 80-99.9%. In some embodiments, the nanostructures have a QY of 85-95%. In some embodiments, the nanostructures have a QY of about 86-94%. In some embodiments, the nanostructures have an OD450 /mass (mL.mg - 1.cm - 1 ) greater than or equal to 0.8, where OD is optical density. In some embodiments, the nanostructures have an OD450 /mass (mL.mg - 1.cm - 1 ) in the inclusive range of 0.8-2.5. In some embodiments, the nanostructures have an OD450 /mass (mL.mg-1.cm - 1 ) in the inclusive range of 0.87-1.9 . In some embodiments, the average diameter of the nanostructures is less than 10 nm by transmission electron microscopy (TEM). In some embodiments, the average diameter is about 5 nm.

在一些實施例中,至少約80%之發射係帶邊緣發射。在一些實施例中,至少約90%之發射係帶邊緣發射。在一些實施例中,92-98%之發射係帶邊緣發射。在一些實施例中,93-96%之發射係帶邊緣發射。In some embodiments, at least about 80% of the emission tether is edge-emitted. In some embodiments, at least about 90% of the emission tether is edge-emitted. In some embodiments, 92-98% of the emission fringes are edge-emitted. In some embodiments, 93-96% of the emission is fringed edge emission.

在一些實施例中,AIGS奈米結構具有約450 nm之峰值發射波長(PWL)。In some embodiments, the AIGS nanostructures have a peak emission wavelength (PWL) of about 450 nm.

在一些實施例中,AIGS奈米結構包含自奈米結構表面增加之鎵至奈米結構中心中減少之鎵之梯度。In some embodiments, the AIGS nanostructure includes a gradient of increasing gallium from the surface of the nanostructure to decreasing gallium in the center of the nanostructure.

在一些實施例中,至少一種配體係胺基配體、聚胺基配體、包含巰基之配體或包含矽烷基團之配體。出乎意料地發現,使用聚胺基配體會導致FWHM大於32 nm之含有AIGS之膜。In some embodiments, the at least one ligand is an amine-based ligand, a polyamine-based ligand, a thiol-containing ligand, or a silane group-containing ligand. It was unexpectedly found that the use of polyamine-based ligands resulted in AIGS-containing films with FWHM greater than 32 nm.

在一些實施例中,至少一種聚胺基配體係聚胺基烷烴、聚胺基-環烷烴、聚胺基雜環化合物、聚胺基官能化聚矽氧或聚胺基取代之乙二醇。在一些實施例中,聚胺基配體係由兩個或三個胺基取代且視情況含有一個或兩個胺基代替碳基團之C 2-20烷烴或C 2-20環烷烴。在一些實施例中,聚胺基配體係1,3-環己烷雙(甲胺)、2,2-二甲基-1,3-丙烷二胺或參(2-胺基乙基)胺。 In some embodiments, at least one polyamine based ligand is a polyaminoalkane, a polyamino-cycloalkane, a polyaminoheterocycle, a polyamine functionalized polysiloxane, or a polyamine substituted ethylene glycol. In some embodiments, the polyamine based ligand systems are C2-20 alkanes or C2-20 cycloalkanes substituted with two or three amine groups and optionally containing one or two amine groups in place of carbon groups. In some embodiments, the polyamine-based ligand is 1,3-cyclohexanebis(methylamine), 2,2-dimethyl-1,3-propanediamine, or ps(2-aminoethyl)amine .

在一些實施例中,配體係式I化合物:

Figure 02_image001
其中: x係1至100; y係0至100;且 R 2係C 1-20烷基。 In some embodiments, the ligand is a compound of formula I:
Figure 02_image001
wherein: x is 1 to 100; y is 0 to 100; and R 2 is C 1-20 alkyl.

在一些實施例中,x = 19,y = 3,且R 2= -CH 3In some embodiments, x=19, y= 3 , and R2= -CH3 .

在一些實施例中,至少一種配體係(3-胺基丙基)三甲氧基-矽烷);(3-巰基丙基)三乙氧基矽烷;DL-α-硫辛酸;3,6-二氧雜-1,8-辛烷二硫醇;6-巰基-1-己醇;甲氧基聚乙二醇胺(約m.w. 500);聚(乙二醇)甲醚硫醇(約m.w. 800);苯基亞膦酸二乙基酯;N,N-二異丙基亞磷醯胺二苄基酯;N,N-二異丙基亞磷醯胺二-第三丁基酯;參(2-羧基乙基)膦鹽酸鹽;聚(乙二醇)甲醚硫醇(約m.w. 2000);甲氧基聚乙二醇胺(約m.w.750);丙烯醯胺;或聚乙烯亞胺。聚合物之M.w.係藉由質譜測定。In some embodiments, at least one ligand is (3-aminopropyl)trimethoxy-silane); (3-mercaptopropyl)triethoxysilane; DL-alpha-lipoic acid; oxa-1,8-octanedithiol; 6-mercapto-1-hexanol; methoxypolyethylene glycol amine (about m.w. 500); poly(ethylene glycol) methyl ether thiol (about m.w. 800 ); diethyl phenylphosphinate; N,N-diisopropylphosphoramidite dibenzyl ester; N,N-diisopropylphosphoramidite di-tert-butyl ester; (2-carboxyethyl) phosphine hydrochloride; poly(ethylene glycol) methyl ether mercaptan (about m.w. 2000); methoxypolyethylene glycol amine (about m.w. 750); acrylamide; or polyethylene sulfite amine. The M.w. of the polymer was determined by mass spectrometry.

在一些實施例中,至少一種配體係以下之組合:胺基-聚環氧烷(約m.w. 1000)及甲氧基聚乙二醇胺(約m.w. 500);胺基-聚環氧烷(約m.w. 1000)及6-巰基-1-己醇;胺基-聚環氧烷(約m.w. 1000)及(3-巰基丙基)三乙氧基矽烷;及6-巰基-1-己醇及甲氧基聚乙二醇胺(約m.w. 500)。In some embodiments, at least one ligand is a combination of: amino-polyalkylene oxide (about m.w. 1000) and methoxypolyethylene glycol amine (about m.w. 500); amino-polyalkylene oxide (about m.w. 500); m.w. 1000) and 6-mercapto-1-hexanol; amino-polyalkylene oxide (about m.w. 1000) and (3-mercaptopropyl)triethoxysilane; and 6-mercapto-1-hexanol and methyl oxypolyethylene glycol amine (approximately m.w. 500).

在一些實施例中,AIGS奈米結構進一步包含至少一種納入至少一種塗覆AIGS表面之配體中之單體。In some embodiments, the AIGS nanostructure further comprises at least one monomer incorporated into at least one ligand that coats the AIGS surface.

亦提供奈米結構組合物,其包含: (a)    展現大於32%之PCE之AIGS奈米結構,及 (b)    至少一種有機樹脂。 Also provided are nanostructured compositions comprising: (a) AIGS nanostructures exhibiting greater than 32% PCE, and (b) at least one organic resin.

在一些實施例中,固化至少一種有機樹脂。In some embodiments, at least one organic resin is cured.

亦提供製備本文所述奈米結構組合物之方法,該方法包含: (a)    提供AIGS奈米結構及至少一種塗覆奈米結構之配體; (b)    將至少一種有機樹脂與(a)之奈米結構混合; (c)    在第一障壁層上製備包含混合之AIGS奈米結構、至少一種塗覆奈米結構之配體及至少一種有機樹脂之第一膜; (d)    藉由UV輻照及/或烘烤固化膜;及 (e)    將第一膜囊封在第一障壁層與第二障壁層之間, 其中當使用波長為約450 nm之藍光源激發時,囊封之膜在480-545 nm之峰值發射波長下展現大於32%之轉換效率(PCE)。 Also provided are methods of making the nanostructured compositions described herein, the methods comprising: (a) providing AIGS nanostructures and at least one ligand coating the nanostructures; (b) mixing at least one organic resin with the nanostructure of (a); (c) preparing a first film comprising mixed AIGS nanostructures, at least one nanostructure-coated ligand, and at least one organic resin on the first barrier layer; (d) curing the film by UV irradiation and/or baking; and (e) encapsulating the first membrane between the first barrier layer and the second barrier layer, Among them, the encapsulated films exhibited conversion efficiencies (PCEs) greater than 32% at peak emission wavelengths of 480-545 nm when excited with a blue light source with a wavelength of about 450 nm.

在一些實施例中,(a)之奈米結構進一步包含至少一種納入塗覆AIGS表面之配體中的單體。在一些實施例中,至少一種單體係丙烯酸酯。在一些實施例中,單體係丙烯酸乙基酯、HDDA、丙烯酸四氫糠基酯、三(丙二醇)二丙烯酸酯、1,4-雙(丙烯醯基氧基)丁烷或丙烯酸異莰基酯中之至少一者。In some embodiments, the nanostructure of (a) further comprises at least one monomer incorporated into the ligand that coats the AIGS surface. In some embodiments, at least one monosystem acrylate. In some embodiments, the mono-system ethyl acrylate, HDDA, tetrahydrofurfuryl acrylate, tri(propylene glycol) diacrylate, 1,4-bis(acryloyloxy)butane, or isobornyl acrylate at least one of esters.

在一些實施例中,該方法係在囊封之膜暴露於空氣中以量測AIGS奈米結構之發射光譜之前實施。在一些實施例中,該方法係在惰性氣氛下實施。In some embodiments, the method is performed prior to exposing the encapsulated film to air to measure the emission spectrum of the AIGS nanostructure. In some embodiments, the method is carried out under an inert atmosphere.

在一些實施例中,該方法進一步包含: (f)在(a)之AIGS奈米結構及配體之混合物中添加至少一種氧反應性材料, (g)在(b)之混合物中添加至少一種氧反應性材料,及/或 (h)在(c)中製備之第一膜之頂部上形成包含至少一種氧反應性材料之第二膜;及/或 (i)在(c)中製備之第一膜上形成暫時阻擋氧氣及/或水之犧牲障壁層,並量測膜之PCE,然後去除犧牲障壁層。 In some embodiments, the method further comprises: (f) adding at least one oxygen-reactive material to the mixture of AIGS nanostructures and ligands of (a), (g) adding at least one oxygen-reactive material to the mixture of (b), and/or (h) forming a second film comprising at least one oxygen-reactive material on top of the first film prepared in (c); and/or (i) Forming a sacrificial barrier layer temporarily blocking oxygen and/or water on the first film prepared in (c), measuring the PCE of the film, and then removing the sacrificial barrier layer.

在一些實施例中,兩個障壁層排除氧氣及/或水。In some embodiments, the two barrier layers exclude oxygen and/or water.

在一些實施例中,92-98%之發射係帶邊緣發射。在一些實施例中,93-96%之發射係帶邊緣發射。In some embodiments, 92-98% of the emission fringes are edge-emitted. In some embodiments, 93-96% of the emission is fringed edge emission.

亦提供製備組合物之方法,其包含 (a)    提供包含AIGS奈米結構及至少一種塗覆奈米結構表面之配體之組合物;及 (b)    將(a)中獲得之組合物與至少一種第二配體混合。 Also provided are methods of making the compositions comprising (a) providing a composition comprising AIGS nanostructures and at least one ligand coating the surface of the nanostructures; and (b) Mixing the composition obtained in (a) with at least one second ligand.

在一些實施例中,(a)中之組合物進一步包含有機樹脂。在一些實施例中,(a)中之組合物進一步包含至少一種納入塗覆AIGS表面之配體的單體。在一些實施例中,該方法進一步包含噴墨印刷組合物。In some embodiments, the composition of (a) further comprises an organic resin. In some embodiments, the composition of (a) further comprises at least one monomer incorporated into a ligand that coats the AIGS surface. In some embodiments, the method further comprises inkjet printing the composition.

在一些實施例中,該方法進一步包含製備包含(b)中獲得之組合物之膜。在一些實施例中,該方法進一步包含固化膜。在一些實施例中,藉由加熱固化膜。在一些實施例中,藉由暴露於電磁輻射來固化膜。In some embodiments, the method further comprises preparing a film comprising the composition obtained in (b). In some embodiments, the method further comprises curing the film. In some embodiments, the film is cured by heating. In some embodiments, the film is cured by exposure to electromagnetic radiation.

亦提供包含上述膜之裝置。Devices comprising the above-described films are also provided.

亦提供奈米結構模製製品,其包含: (a)    第一導電層; (b)    第二導電層;及 (c)    包含介於第一導電層與第二導電層之間之AIGS奈米結構層之膜, 其中該奈米結構層包含PCE大於32%之AIGS奈米結構。 Nanostructured molded articles are also provided that include: (a) the first conductive layer; (b) the second conductive layer; and (c) a film comprising an AIGS nanostructure layer between the first conductive layer and the second conductive layer, The nanostructure layer comprises AIGS nanostructures with PCE greater than 32%.

亦提供奈米結構色彩轉換器,其包含 底板; 佈置於底板上之顯示面板;及 包含AIGS奈米結構層之膜,該奈米結構層包含PCE大於32%之AIGS奈米結構,該奈米結構層佈置在顯示面板上。 Also available are nanostructured color converters that include bottom plate; a display panel arranged on the backplane; and A film comprising an AIGS nanostructure layer, the nanostructure layer comprising AIGS nanostructures with PCE greater than 32%, is arranged on a display panel.

在一些實施例中,奈米結構層包含圖案化奈米結構層。在一些實施例中,底板包含LED、LCD、OLED或微型LED。In some embodiments, the nanostructure layer includes a patterned nanostructure layer. In some embodiments, the backplane includes LEDs, LCDs, OLEDs, or micro LEDs.

以下參照隨附圖式詳細闡述本發明之其他特徵及優勢以及本發明之各種實施例之結構及操作。應注意,本發明並不限於本文中所述之具體實施例。此等實施例僅出於說明性目的而呈現於本文中。基於本文中所含有之教示,額外實施例對於熟習相關技術者將係顯而易見的。Other features and advantages of the invention, as well as the structure and operation of various embodiments of the invention, are described in detail below with reference to the accompanying drawings. It should be noted that the present invention is not limited to the specific embodiments described herein. Such embodiments are presented herein for illustrative purposes only. Additional embodiments will be apparent to those skilled in the relevant art based on the teachings contained herein.

定義definition

除非另有定義,否則本文所用之所有技術及科學術語皆具有與熟習此項技術者通常所理解的含義相同之含義。以下定義補充業內之彼等定義,且針對當前應用,且不歸因於任何相關或不相關之情形,例如,任何共同擁有之專利或申請案。儘管在本發明之測試之實踐中可使用與本文所述之彼等方法及材料類似或等效之任何方法及材料,但本文闡述較佳材料及方法。因此,本文中所用之術語僅用於闡述特定實施例之目的而非意欲具有限制性。Unless otherwise defined, all technical and scientific terms used herein have the same meanings as commonly understood by those skilled in the art. The following definitions supplement their definitions in the industry and are specific to current application and are not attributable to any related or unrelated circumstances, such as any commonly owned patents or applications. Although any methods and materials similar or equivalent to those described herein can be used in the practice of the present tests, the preferred materials and methods are described herein. Therefore, the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting.

除非上下文另外明確規定,否則本說明書及隨附申請專利範圍中所用單數形式「一(a、an)」及「該」包括複數個指示物。因此,例如,在提及「奈米結構」時包括複數個該等奈米結構及諸如此類。As used in this specification and the appended claims, the singular forms "a (a, an)" and "the" include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to "nanostructures" includes a plurality of such nanostructures and the like.

如本文所用術語「約」指示給定量之值變化該值之+/-10%。舉例而言,「約100 nm」涵蓋90 nm至110 nm(含)之大小範圍。The term "about" as used herein indicates that a given amount varies by +/- 10% of that value. For example, "about 100 nm" encompasses the size range of 90 nm to 110 nm, inclusive.

「奈米結構」係具有至少一個尺寸小於約500 nm之區或特徵尺寸之結構。在一些實施例中,奈米結構具有小於約200 nm、小於約100 nm、小於約50 nm、小於約20 nm或小於約10 nm之尺寸。通常,區或特徵尺寸將沿著結構之最小軸。該等結構之實例包括奈米線、奈米棒、奈米管、分支奈米結構、奈米四腳體、三腳體、雙腳體、奈米晶體、奈米點、量子點、奈米粒子及諸如此類。奈米結構可為例如實質上結晶的、實質上單晶的、多晶形、非晶形或其組合。在一些實施例中,奈米結構之三個尺寸中之每一者具有小於約500 nm、小於約200 nm、小於約100 nm、小於約50 nm、小於約20 nm或小於約10 nm之尺寸。A "nanostructure" is a structure having at least one region or feature size less than about 500 nm in size. In some embodiments, the nanostructures have dimensions of less than about 200 nm, less than about 100 nm, less than about 50 nm, less than about 20 nm, or less than about 10 nm. Typically, the region or feature size will be along the smallest axis of the structure. Examples of such structures include nanowires, nanorods, nanotubes, branched nanostructures, nanotetrapods, tripods, bipods, nanocrystals, nanodots, quantum dots, nano particles and the like. The nanostructures can be, for example, substantially crystalline, substantially monocrystalline, polymorphic, amorphous, or combinations thereof. In some embodiments, each of the three dimensions of the nanostructure has a dimension of less than about 500 nm, less than about 200 nm, less than about 100 nm, less than about 50 nm, less than about 20 nm, or less than about 10 nm .

當提及奈米結構使用時,術語「異質結構」係指以至少兩種不同及/或可區分之材料類型為特徵之奈米結構。通常,奈米結構之一個區包含第一材料類型,而奈米結構之第二區包含第二材料類型。在某些實施例中,奈米結構包含第一材料之核及第二(或第三等)材料之至少一個殼,其中例如不同材料類型圍繞奈米線之長軸、分支奈米線之臂之長軸或奈米晶體之中心徑向分佈。殼可以但不需要完全覆蓋被認為係殼之毗鄰材料或被認為係異質結構之奈米結構;例如,以一種材料之核經第二材料之小島覆蓋為特徵之奈米晶體係異質結構。在其他實施例中,不同材料類型分佈在奈米結構內之不同位置;例如沿著奈米線之長(major, long)軸或沿著分支奈米線之臂之長軸。異質結構內之不同區可包含完全不同之材料,或者不同區可包含具有不同摻雜劑或不同濃度之相同摻雜劑之基底材料(例如,矽)。When used in reference to nanostructures, the term "heterostructure" refers to nanostructures that are characterized by at least two different and/or distinguishable types of materials. Typically, one region of the nanostructure contains a first material type and a second region of the nanostructure contains a second material type. In certain embodiments, the nanostructure includes a core of a first material and at least one shell of a second (or third, etc.) material, where, for example, different material types surround the long axis of the nanowire, the arms of the branched nanowire The long axis of the nanocrystal or the radial distribution of the center of the nanocrystal. A shell may, but need not, completely cover an adjacent material considered to be a shell or a nanostructure that is considered a heterostructure; for example, a nanocrystalline system heterostructure characterized by a core of one material covered by islands of a second material. In other embodiments, different material types are distributed at different locations within the nanostructure; eg, along the major, long axis of the nanowire or along the long axis of the arms of the branched nanowire. Different regions within the heterostructure may contain entirely different materials, or different regions may contain a base material (eg, silicon) with different dopants or different concentrations of the same dopant.

如本文所用,奈米結構之「直徑」係指與奈米結構之第一軸正交之橫斷面之直徑,其中第一軸相對於第二及第三軸具有最大之長度差(第二及第三軸係長度彼此最接近相等之兩個軸)。第一軸未必係奈米結構之最長軸;例如,對於盤形奈米結構,橫斷面將為與盤之短縱軸正交之實質上圓形之橫斷面。當橫斷面並非圓形時,直徑係該橫斷面之長軸及短軸之平均值。對於細長或高縱橫比奈米結構,例如奈米線,直徑係橫跨垂直於奈米線之最長軸之橫斷面量測。對於球形奈米結構,直徑係自一側穿過球體中心至另一側來量測。As used herein, the "diameter" of a nanostructure refers to the diameter of the cross-section orthogonal to the first axis of the nanostructure, where the first axis has the largest difference in length with respect to the second and third axes (the second axis and the two axes whose lengths are closest to each other in the third axis system). The first axis is not necessarily the longest axis of the nanostructure; for example, for a disk-shaped nanostructure, the cross-section would be a substantially circular cross-section orthogonal to the short longitudinal axis of the disk. When the cross section is not circular, the diameter is the average of the long and short axes of the cross section. For elongated or high aspect ratio nanostructures, such as nanowires, the diameter is measured across a cross-section perpendicular to the longest axis of the nanowire. For spherical nanostructures, the diameter is measured from one side through the center of the sphere to the other.

當關於奈米結構使用時,術語「結晶」或「實質上結晶」係指奈米結構通常跨越結構之一或多個尺寸展現長程有序化之事實。熟習此項技術者應理解,術語「長程有序化」將取決於特定奈米結構之絕對大小,此乃因單晶之有序化不能超出晶體之邊界。在此情形中,「長程有序化」將意味著跨越奈米結構之至少大多數尺寸之實質有序。在一些情況下,奈米結構可帶有氧化物或其他塗層,或者可包含核及至少一個殼。在該等情況下,應理解,氧化物、外殼或其他塗層可以但不需要展現該有序化(例如,其可為非晶形的、多晶體或其他)。在該等情況下,片語「結晶」、「實質上結晶」、「實質上單晶的」或「單晶的」係指奈米結構之中心核(不包括塗覆層或殼)。如本文所用術語「結晶」或「實質上結晶」意欲亦涵蓋包含各種缺陷、堆疊缺點、原子取代及諸如此類之結構,只要該結構展現相當大之長程有序化(例如,在奈米結構或其核之至少一個軸之長度之至少約80%內有序)即可。此外,應理解,奈米結構之核與外部之間、或核與毗鄰殼之間、或殼與第二毗鄰殼之間之界面可含有非結晶區,且甚至可為非晶形。此並不妨礙奈米結構如本文所定義之結晶或實質上結晶。The term "crystalline" or "substantially crystalline" when used in reference to nanostructures refers to the fact that nanostructures typically exhibit long-range ordering across one or more dimensions of the structure. It will be understood by those skilled in the art that the term "long-range ordering" will depend on the absolute size of a particular nanostructure, since a single crystal cannot be ordered beyond the boundaries of the crystal. In this context, "long-range order" would mean substantial order across at least most dimensions of the nanostructure. In some cases, the nanostructures may have oxide or other coatings, or may include a core and at least one shell. In such cases, it is understood that the oxide, shell, or other coating may, but need not, exhibit this ordering (eg, it may be amorphous, polycrystalline, or otherwise). In these cases, the phrases "crystalline," "substantially crystalline," "substantially single-crystalline," or "single-crystalline" refer to the central core (excluding the coating or shell) of the nanostructure. The terms "crystalline" or "substantially crystalline" as used herein are intended to also encompass structures comprising various defects, stacking defects, atomic substitutions, and the like, so long as the structure exhibits considerable long-range order (eg, in nanostructures or their ordered within at least about 80% of the length of at least one axis of the core). Furthermore, it should be understood that the interface between the core and the exterior, or between the core and an adjacent shell, or between the shell and a second adjacent shell of the nanostructure may contain amorphous regions, and may even be amorphous. This does not prevent the nanostructures from being crystallized or substantially crystallized as defined herein.

當關於奈米結構使用時,術語「單晶」指示奈米結構實質上係結晶的且實質上包含單晶。當關於包含核及一或多個殼之奈米結構異質結構使用時,「單晶」指示核實質上係結晶的且實質上包含單晶。When used in reference to nanostructures, the term "single crystal" indicates that the nanostructures are substantially crystalline and comprise substantially single crystals. When used in reference to a nanostructured heterostructure comprising a core and one or more shells, "single crystal" indicates that the core is substantially crystalline and substantially comprises a single crystal.

「奈米晶體」係實質上為單晶之奈米結構。因此,奈米晶體具有尺寸小於約500 nm之至少一個區或特徵尺寸。在一些實施例中,奈米晶體具有小於約200 nm、小於約100 nm、小於約50 nm、小於約20 nm或小於約10 nm之尺寸。術語「奈米晶體」意欲涵蓋包含各種缺陷、堆疊缺點、原子取代及諸如此類之實質上單晶之奈米結構,以及無該等缺陷、缺點或取代之實質上單晶之奈米結構。在包含核及一或多個殼之奈米晶體異質結構之情形下,奈米晶體之核通常實質上係單晶的,但殼不必係單晶的。在一些實施例中,奈米晶體之三個尺寸中之每一者具有小於約500 nm、小於約200 nm、小於約100 nm、小於約50 nm、小於約20 nm或小於約10 nm之尺寸。A "nanocrystal" is a nanostructure that is essentially a single crystal. Thus, the nanocrystals have at least one region or feature size that is less than about 500 nm in size. In some embodiments, the nanocrystals have dimensions of less than about 200 nm, less than about 100 nm, less than about 50 nm, less than about 20 nm, or less than about 10 nm. The term "nanocrystal" is intended to encompass substantially single crystalline nanostructures comprising various defects, stacking defects, atomic substitutions, and the like, as well as substantially single crystalline nanostructures free of such defects, defects or substitutions. In the case of nanocrystal heterostructures comprising a core and one or more shells, the core of the nanocrystal is typically substantially single crystalline, but the shell need not be single crystalline. In some embodiments, each of the three dimensions of the nanocrystal has a size of less than about 500 nm, less than about 200 nm, less than about 100 nm, less than about 50 nm, less than about 20 nm, or less than about 10 nm .

術語「量子點」(或「點」)係指展現量子限制或激子限制之奈米晶體。量子點在材料性質上可為實質上均勻的,或者在某些實施例中,可為不均勻的,例如,包括核及至少一個殼。量子點之光學性質可受其粒徑、化學組成及/或表面組成之影響,且可藉由業內可用之適宜光學測試來確定。定製例如在介於約1 nm與約15 nm之間之範圍內之奈米晶體大小之能力使得整個光譜中之光電發射覆蓋能夠提供顯色方面之巨大多功能性。The term "quantum dot" (or "dot") refers to a nanocrystal that exhibits quantum confinement or exciton confinement. Quantum dots may be substantially homogeneous in material properties, or, in certain embodiments, may be heterogeneous, eg, including a core and at least one shell. The optical properties of quantum dots can be affected by their particle size, chemical composition, and/or surface composition, and can be determined by suitable optical tests available in the industry. The ability to tailor the size of nanocrystals, eg, in the range between about 1 nm and about 15 nm, enables photoemission coverage across the spectrum to provide great versatility in color rendering.

術語「無氧配體」係指不含能夠與本文所用金屬離子配位或反應之氧原子之配位分子。The term "oxygen-free ligand" refers to a coordinating molecule that does not contain an oxygen atom capable of coordinating or reacting with a metal ion as used herein.

「配體」係能夠例如經由與奈米結構表面之共價、離子、凡得瓦(van der Waals)或其他分子相互作用,與奈米結構之一或多個面相互作用(無論係弱或係強)的分子。A "ligand" is one capable of interacting with one or more faces of the nanostructure (whether weak or strong) molecules.

「光致發光量子產率」(QY)係例如由奈米結構或奈米結構群體發射之光子對吸收之光子之比率。如業內所知,量子產率通常係藉由在積分球內照射樣品時光子計數之絕對變化、或者藉由使用具有已知量子產率值之充分表徵之標準樣品之比較方法來確定。"Photoluminescence quantum yield" (QY) is, for example, the ratio of photons emitted to photons absorbed by a nanostructure or population of nanostructures. As is known in the art, quantum yields are typically determined by the absolute change in photon counts when the sample is irradiated within an integrating sphere, or by comparison methods using well-characterized standard samples with known quantum yield values.

「峰值發射波長」(PWL)係光源之輻射測量發射光譜達到其最大值之波長。The "peak emission wavelength" (PWL) is the wavelength at which the radiometric emission spectrum of a light source reaches its maximum value.

如本文所用術語「半峰全寬」(FWHM)係奈米結構之大小分佈之量度。奈米結構之發射光譜通常具有高斯曲線(Gaussian curve)之形狀。高斯曲線之寬度定義為FWHM,並給出粒子大小分佈之概念。較小之FWHM對應於較窄之奈米結構奈米晶體大小分佈。FWHM亦取決於發射波長最大值。The term "full width at half maximum" (FWHM) as used herein is a measure of the size distribution of a nanostructure. The emission spectrum of the nanostructure generally has the shape of a Gaussian curve. The width of the Gaussian curve is defined as FWHM and gives the concept of particle size distribution. A smaller FWHM corresponds to a narrower nanostructure nanocrystal size distribution. The FWHM also depends on the emission wavelength maximum.

與相應缺陷發射相比,帶邊緣發射以較高能量(較低波長)為中心,與吸收起始能量之偏移量較小。此外,與缺陷發射相比,帶邊緣發射具有較窄之波長分佈。帶邊緣發射及缺陷發射二者皆遵循正態(近似高斯)波長分佈。Compared to the corresponding defect emission, the band-edge emission is centered at higher energy (lower wavelength) and is less offset from the absorption onset energy. Furthermore, band-edge emission has a narrower wavelength distribution than defect emission. Both band-edge emission and defect emission follow a normal (approximately Gaussian) wavelength distribution.

光學密度(OD)係定量溶質或奈米粒子之濃度之常用方法。根據比爾-郎伯特定律(Beer-Lambert's law),特定樣品之吸光度(亦稱為「消光」)與吸收特定波長之光之溶質之濃度成正例。Optical density (OD) is a common method for quantifying the concentration of solutes or nanoparticles. According to Beer-Lambert's law, the absorbance (also known as "extinction") of a particular sample is directly proportional to the concentration of solutes that absorb light of a particular wavelength.

光學密度係如使用標準光譜儀量測之每釐米材料之光衰減,通常以1 cm路徑長度指定。奈米結構溶液通常藉由其光學密度來代替質量或莫耳濃度來量測,此乃因其與濃度成正比,且這係一種更便利之方式來表示在感興趣之波長下奈米結構溶液中發生之光吸收的量。OD為100之奈米結構溶液之濃度係OD為1之產品之100倍(每mL之粒子數係100倍)。Optical density is the attenuation of light per centimeter of material as measured using a standard spectrometer, usually specified as a 1 cm path length. Nanostructured solutions are often measured by their optical density instead of mass or molar concentration, as this is proportional to concentration, and this is a more convenient way of expressing nanostructured solutions at the wavelength of interest The amount of light absorption that occurs in . The concentration of the nanostructure solution with an OD of 100 is 100 times that of the product with an OD of 1 (the number of particles per mL is 100 times).

光學密度可在任何感興趣之波長下、例如在選擇用以激發螢光奈米結構之波長下來量測。光學密度係光在特定波長下通過奈米結構溶液時損失之強度的量度,且使用以下公式計算: OD = log 10*(I OUT/I IN) 其中: I OUT= 進入單元之輻射之強度;且 I IN=透射穿過單元之輻射之強度。 Optical density can be measured at any wavelength of interest, eg, at the wavelength selected to excite fluorescent nanostructures. Optical density is a measure of the intensity of light lost through a nanostructured solution at a specific wavelength and is calculated using the following formula: OD = log 10 *(I OUT /I IN ) where: I OUT = intensity of radiation entering the cell; and I IN = the intensity of the radiation transmitted through the cell.

奈米結構溶液之光學密度可使用UV-VIS光譜儀來量測。因此,經由使用UV-VIS光譜儀,可計算光學密度來確定樣品中存在之奈米結構之量。The optical density of the nanostructured solution can be measured using a UV-VIS spectrometer. Thus, by using a UV-VIS spectrometer, the optical density can be calculated to determine the amount of nanostructures present in the sample.

除非另外明確指示,本文列示之範圍係包括性的。The ranges set forth herein are inclusive unless expressly indicated otherwise.

本文定義或以其他方式表徵多種額外術語。 AIGS奈米結構 Various additional terms are defined or otherwise characterized herein. AIGS nanostructures

提供包含Ag、In、Ga及S之奈米結構,其中奈米結構具有介於480-545 nm之間之峰值發射波長(PWL)。在一些實施例中,至少約80%之發射係帶邊緣發射。藉由擬合奈米結構發射光譜之高斯峰值(通常為2個或更多個)並將能量更接近奈米結構帶隙之峰值面積(代表帶邊緣發射)與所有峰值面積之和(帶邊緣發射+缺陷發射)進行比較,計算帶邊緣發射之百分比。Nanostructures comprising Ag, In, Ga, and S are provided, wherein the nanostructures have a peak emission wavelength (PWL) between 480-545 nm. In some embodiments, at least about 80% of the emission tether is edge-emitted. By fitting the Gaussian peaks (usually 2 or more) of the nanostructure emission spectrum and bringing the energy closer to the peak area of the nanostructure band gap (representing the band-edge emission) and the sum of all peak areas (band-edge) Emission + Defect Emission) are compared and the percentage of band edge emission is calculated.

在一個實施例中,奈米結構具有小於40 nm之FWHM發射光譜。在另一實施例中,奈米結構具有36-38 nm之FWHM。在一些實施例中,奈米結構具有FWHM為27-32 nm之發射光譜。在一些實施例中,奈米結構具有FWHM為29-31 nm之發射光譜。In one embodiment, the nanostructure has a FWHM emission spectrum of less than 40 nm. In another embodiment, the nanostructure has a FWHM of 36-38 nm. In some embodiments, the nanostructure has an emission spectrum with a FWHM of 27-32 nm. In some embodiments, the nanostructures have an emission spectrum with a FWHM of 29-31 nm.

在另一實施例中,奈米結構具有約80%至99.9%之QY。在另一實施例中,奈米結構具有85-95%之QY。在另一實施例中,奈米結構具有約86%至約94%之QY。在一些實施例中,至少80%之發射係帶邊緣發射。在其他實施例中,至少90%之發射係帶邊緣發射。在其他實施例中,至少95%之發射係帶邊緣發射。在一些實施例中,92-98%之發射係帶邊緣發射。在一些實施例中,93-96%之發射係帶邊緣發射。In another embodiment, the nanostructure has a QY of about 80% to 99.9%. In another embodiment, the nanostructure has a QY of 85-95%. In another embodiment, the nanostructure has a QY of about 86% to about 94%. In some embodiments, at least 80% of the emission fringes are edge-emitted. In other embodiments, at least 90% of the firing tethers are edge fired. In other embodiments, at least 95% of the firing tethers are edge fired. In some embodiments, 92-98% of the emission fringes are edge-emitted. In some embodiments, 93-96% of the emission is fringed edge emission.

AIGS奈米結構提供高藍光吸收。作為藍光吸收效率之預測值,藉由量測1 cm路徑長度比色管中奈米結構溶液之光學密度並除以真空(< 200毫托)下去除所有揮發物後相同溶液之每mL之乾質量(mg/mL),計算以質量計450 nm處之光學密度(OD 450/質量)。在一個實施例中,本文提供之奈米結構具有至少0.8之OD 450/質量(mL .mg -1.cm -1)。在另一實施例中,奈米結構具有0.8-2.5之OD 450/質量(mL .mg -1.cm -1)。在另一實施例中,奈米結構具有0.87-1.9之OD 450/質量(mL .mg -1.cm -1)。 AIGS nanostructures provide high blue light absorption. As a predicted value for blue light absorption efficiency, the optical density of the nanostructure solution in a 1 cm path length cuvette was measured by dividing by the dryness per mL of the same solution after removing all volatiles under vacuum (< 200 mTorr). Mass (mg/mL), optical density at 450 nm by mass (OD450/mass) was calculated. In one embodiment, the nanostructures provided herein have an OD450 /mass (mL.mg - 1.cm - 1 ) of at least 0.8. In another embodiment, the nanostructure has an OD450 /mass (mL.mg - 1.cm - 1 ) of 0.8-2.5. In another embodiment, the nanostructure has an OD450 /mass (mL.mg-1.cm - 1 ) of 0.87-1.9 .

在一個實施例中,用鎵離子處理奈米結構,使得在整個AIGS奈米結構中發生鎵對銦之離子交換。在另一實施例中,奈米結構在核中具有Ag、In、Ga及S,並藉由與鎵離子及S之離子交換進行處理。在另一實施例中,奈米結構在核中具有Ag、In、Ga及S,並藉由與銀離子、鎵離子及S之離子交換進行處理。在一些實施例中,離子交換處理在整個奈米結構中導致鎵、銀及/或硫之梯度。In one embodiment, the nanostructures are treated with gallium ions such that ion exchange of gallium for indium occurs throughout the AIGS nanostructure. In another embodiment, the nanostructure has Ag, In, Ga and S in the core and is processed by ion exchange with gallium ions and S. In another embodiment, the nanostructures have Ag, In, Ga and S in the core and are processed by ion exchange with silver ions, gallium ions and S. In some embodiments, the ion exchange treatment results in a gradient of gallium, silver, and/or sulfur throughout the nanostructure.

在一個實施例中,如藉由TEM所量測,奈米結構之平均直徑小於10 nm。在另一實施例中,平均直徑為約5 nm。 AIGS奈米結構使用GaX 3(X = F、Cl或Br)前體及無氧配體製備 In one embodiment, the average diameter of the nanostructures is less than 10 nm as measured by TEM. In another embodiment, the average diameter is about 5 nm. AIGS nanostructures were prepared using GaX 3 (X = F, Cl or Br) precursors and oxygen-free ligands

文獻中關於AIGS製備之報導並未試圖排除含氧配體。在具有鎵之AIGS之塗層中,通常使用含氧配體來穩定Ga前體。乙醯丙酮鎵(III)通常用作易於空氣處理之前體,而氯化Ga(III)由於對水分敏感,需要小心處置。舉例而言,在Kameyama等人之 ACS Appl. Mater. Interfaces 10:42844-42855 (2018)中,乙醯丙酮鎵(III)用作核及核/殼結構之前體。由於鎵對氧具有高親和力,當Ga及S前體用於產生含有顯著鎵含量之奈米結構時,含氧配體及使用未在無氧條件下製備之鎵前體可產生不需要之副反應,例如氧化鎵。該等副反應可能導致奈米結構中之缺陷,並導致較低之量子產率。 Reports in the literature on the preparation of AIGS do not attempt to exclude oxygen-containing ligands. In coatings of AIGS with gallium, oxygen-containing ligands are typically used to stabilize the Ga precursor. Gallium(III) acetylacetonate is often used as a precursor that is easy to air handle, while Ga(III) chloride requires careful handling due to its sensitivity to moisture. For example, in Kameyama et al., ACS Appl. Mater. Interfaces 10: 42844-42855 (2018), gallium(III) acetylacetonate was used as the precursor for the core and core/shell structures. Due to the high affinity of gallium for oxygen, when Ga and S precursors are used to create nanostructures containing significant gallium content, oxygen-containing ligands and the use of gallium precursors not prepared under oxygen-free conditions can produce unwanted side effects Reactions such as gallium oxide. These side reactions can lead to defects in the nanostructure and result in lower quantum yields.

在一些實施例中,在AIGS核之製備中使用無氧GaX 3(X = F、Cl或Br)作為前體來製備AIGS奈米結構。在一些實施例中,在富含Ga之AIGS奈米結構之製備中使用GaX 3(X = F、Cl或Br)作為前體及無氧配體來製備AIGS奈米結構。在一些實施例中,在AIGS核之製備中使用GaX 3(X = F、Cl或Br)作為前體及無氧配體來製備AIGS奈米結構。在一些實施例中,在AIGS核之製備及AIGS核之離子交換處理中,使用GaX 3(X = F、Cl或Br)作為前體及無氧配體來製備AIGS奈米結構。 In some embodiments, AIGS nanostructures are prepared using oxygen-free GaX3 (X = F, Cl or Br) as a precursor in the preparation of AIGS cores. In some embodiments, AIGS nanostructures are prepared using GaX3 (X = F, Cl, or Br) as a precursor and an oxygen-free ligand in the preparation of Ga-rich AIGS nanostructures. In some embodiments, AIGS nanostructures are prepared using GaX3 (X = F, Cl or Br) as a precursor and anaerobic ligand in the preparation of AIGS cores. In some embodiments, AIGS nanostructures are prepared using GaX3 (X=F, Cl or Br) as a precursor and anaerobic ligand in the preparation of AIGS cores and in the ion exchange treatment of AIGS cores.

提供包含Ag、In、Ga及S之奈米結構,其中奈米結構具有介於480-545 nm之間之峰值發射波長(PWL),且其中奈米結構係使用GaX 3(X = F、Cl或Br)前體及無氧配體來製備。 Nanostructures comprising Ag, In, Ga, and S are provided, wherein the nanostructures have a peak emission wavelength (PWL) between 480-545 nm, and wherein the nanostructures use GaX3 (X = F, Cl or Br) precursors and anaerobic ligands.

在一些實施例中,使用GaX 3(X = F、Cl或Br)前體及無氧配體製備之奈米結構展示35 nm或更小之FWHM發射光譜。在一些實施例中,使用GaX 3(X = F、Cl或Br)前體及無氧配體製備之奈米結構展示30-38 nm之FWHM。在一些實施例中,使用GaX 3(X = F、Cl或Br)前體及無氧配體製備之奈米結構具有至少75%之QY。在一些實施例中,使用GaX 3(X = F、Cl或Br)前體及無氧配體製備之奈米結構具有75-90%之QY。在一些實施例中,使用GaX 3(X = F、Cl或Br)前體及無氧配體製備之奈米結構具有約80%之QY。 In some embodiments, nanostructures prepared using GaX3 (X=F, Cl, or Br) precursors and oxygen-free ligands exhibit FWHM emission spectra of 35 nm or less. In some embodiments, nanostructures prepared using GaX3 (X=F, Cl, or Br) precursors and oxygen-free ligands exhibit FWHMs of 30-38 nm. In some embodiments, nanostructures prepared using GaX3 (X=F, Cl, or Br) precursors and oxygen-free ligands have a QY of at least 75%. In some embodiments, nanostructures prepared using GaX3 (X=F, Cl, or Br) precursors and oxygen-free ligands have a QY of 75-90%. In some embodiments, nanostructures prepared using GaX3 (X=F, Cl, or Br) precursors and oxygen-free ligands have about 80% QY.

本文製備之AIGS奈米結構提供高藍光吸收。在一些實施例中,奈米結構具有至少為0.8之OD 450/質量(mL·mg -1.cm -1)。在一些實施例中,奈米結構具有0.8-2.5之OD 450/質量(mL .mg -1.cm -1)。在另一實施例中,奈米結構具有0.87-1.9之OD 450/質量(mL .mg -1.cm -1)。 The AIGS nanostructures prepared here provide high blue light absorption. In some embodiments, the nanostructures have an OD450 /mass (mL·mg "1.cm" 1 ) of at least 0.8. In some embodiments, the nanostructures have an OD450 /mass (mL.mg - 1.cm - 1 ) of 0.8-2.5. In another embodiment, the nanostructure has an OD450 /mass (mL.mg-1.cm - 1 ) of 0.87-1.9 .

在一些實施例中,用鎵離子處理奈米結構,使得在整個AIGS奈米結構中發生鎵對銦之離子交換。在一些實施例中,奈米結構在核中包含Ag、In、Ga及S,且在奈米結構之表面與中心之間存在鎵梯度。在一些實施例中,奈米結構係用AGS處理之AIGS核,並在核中使用GaX 3(X = F、Cl或Br)前體及無氧配體來製備。在一些實施例中,奈米結構係使用GaX 3(X = F、Cl或Br)前體及無氧配體製備之AIGS奈米結構。在一些實施例中,藉由使預形成之In-Ga試劑與Ag 2S奈米結構反應以得到AIGS奈米結構、之後藉由與無氧之Ga鹽反應以與鎵進行離子交換以形成AIGS奈米結構,來製備AIGS奈米結構。 製備AIGS奈米結構之方法 In some embodiments, the nanostructures are treated with gallium ions such that ion exchange of gallium for indium occurs throughout the AIGS nanostructure. In some embodiments, the nanostructure includes Ag, In, Ga, and S in the core, and there is a gallium gradient between the surface and the center of the nanostructure. In some embodiments, nanostructures are prepared with AGS-treated AIGS cores using GaX3 (X=F, Cl, or Br) precursors and anaerobic ligands in the cores. In some embodiments, the nanostructures are AIGS nanostructures prepared using GaX3 (X=F, Cl or Br) precursors and oxygen-free ligands. In some embodiments, AIGS nanostructures are obtained by reacting a preformed In - Ga reagent with Ag2S nanostructures, followed by ion exchange with gallium by reacting with an oxygen-free Ga salt to form AIGS nanostructures to prepare AIGS nanostructures. Method for preparing AIGS nanostructures

提供製造AIGS奈米結構之方法,其包含: (a)    製備包含AIGS核、硫源及配體之混合物; (b)    在180-300℃之溫度下將(a)中獲得之混合物添加至羧酸鎵及配體之混合物中,以得到自奈米結構之表面至中心具有鎵梯度之離子交換之奈米結構;及 (c)    分離奈米結構。 Provided are methods of fabricating AIGS nanostructures comprising: (a) preparing a mixture comprising AIGS core, sulfur source and ligand; (b) Add the mixture obtained in (a) to the mixture of gallium carboxylate and ligand at a temperature of 180-300°C to obtain an ion-exchanged nanostructure with a gallium gradient from the surface to the center of the nanostructure structure; and (c) Isolated nanostructures.

在一些實施例中,奈米結構具有480-545 nm之PWL,其中至少約60%之發射係帶邊緣發射。In some embodiments, the nanostructure has a PWL of 480-545 nm with at least about 60% of the emission tethered edge emission.

亦提供製造AIGS奈米結構之方法,其包含: (a)    使Ga(乙醯丙酮酸鹽) 3、InCl 3及配體視情況在溶劑中在足以得到In-Ga試劑之溫度下反應,及 (b)    使In-Ga試劑與Ag 2S奈米結構在足以製造AIGS奈米結構之溫度下反應, (c)    使AIGS奈米結構與無氧之Ga鹽在含有配體之溶劑中在足以得到自奈米結構之表面至中心具有鎵梯度之離子交換之奈米結構的溫度下反應。 Also provided are methods of making AIGS nanostructures, comprising: (a) reacting Ga(acetylpyruvate) 3 , InCl3 , and a ligand, optionally in a solvent at a temperature sufficient to obtain an In-Ga reagent, and (b) reacting the In-Ga reagent with the Ag 2 S nanostructures at a temperature sufficient to fabricate the AIGS nanostructures, (c) reacting the AIGS nanostructures with an oxygen-free Ga salt in a solvent containing the ligand at a sufficient temperature The reaction at the temperature resulting in an ion-exchanged nanostructure with a gallium gradient from the surface of the nanostructure to the center.

在一些實施例中,奈米結構具有480-545 nm之PWL,其中至少約60%之發射係帶邊緣發射。In some embodiments, the nanostructure has a PWL of 480-545 nm with at least about 60% of the emission tethered edge emission.

在一些實施例中,配體係烷基胺。在一些實施例中,烷基胺配體係油胺。在一些實施例中,配體係過量使用且用作溶劑,且所述溶劑在反應中不存在。在一些實施例中,溶劑存在於反應中。在一些實施例中,溶劑係高沸點溶劑。在一些實施例中,溶劑係十八烯、角鯊烷、二苄基醚或二甲苯。在一些實施例中,(a)中之足夠溫度係100℃至280℃;(b)中之足夠溫度係150℃至260℃;且(c)中之足夠溫度係170℃至280℃。在一些實施例中,(a)中之足夠溫度係約210℃,(b)中之足夠溫度係約210℃,且(c)中之足夠溫度係約240℃。In some embodiments, the ligand is an alkylamine. In some embodiments, the alkylamine formulation is oleylamine. In some embodiments, the ligand system is used in excess and is used as a solvent, and the solvent is not present in the reaction. In some embodiments, a solvent is present in the reaction. In some embodiments, the solvent is a high boiling point solvent. In some embodiments, the solvent is octadecene, squalane, dibenzyl ether, or xylene. In some embodiments, a sufficient temperature in (a) is 100°C to 280°C; a sufficient temperature in (b) is 150°C to 260°C; and a sufficient temperature in (c) is 170°C to 280°C. In some embodiments, a sufficient temperature in (a) is about 210°C, a sufficient temperature in (b) is about 210°C, and a sufficient temperature in (c) is about 240°C.

在一些實施例中,至少80%之發射係帶邊緣發射。在其他實施例中,至少90%之發射係帶邊緣發射。在其他實施例中,至少95%之發射係帶邊緣發射。在一些實施例中,92-98%之發射係帶邊緣發射。在一些實施例中,93-96%之發射係帶邊緣發射。In some embodiments, at least 80% of the emission fringes are edge-emitted. In other embodiments, at least 90% of the firing tethers are edge fired. In other embodiments, at least 95% of the firing tethers are edge fired. In some embodiments, 92-98% of the emission fringes are edge-emitted. In some embodiments, 93-96% of the emission is fringed edge emission.

配體之實例揭示於美國專利第7,572,395號、第8,143,703號、第8,425,803號、第8,563,133號、第8,916,064號、第9,005,480號、第9,139,770號及第9,169,435號及美國專利申請公開案第2008/0118755號中。在一個實施例中,配體係烷基胺。在一些實施例中,配體係選自由以下組成之群之烷基胺:十二烷基胺、油胺、十六烷基胺、二辛基胺及十八烷基胺。Examples of ligands are disclosed in US Patent Nos. 7,572,395; 8,143,703; 8,425,803; 8,563,133; 8,916,064; 9,005,480; middle. In one embodiment, the ligand is an alkylamine. In some embodiments, the ligand system is selected from an alkylamine selected from the group consisting of dodecylamine, oleylamine, cetylamine, dioctylamine, and octadecylamine.

在一些實施例中,(a)中之硫源包含三辛基膦硫化物、元素硫、辛烷硫醇、十二烷硫醇、十八烷硫醇、三丁基膦硫化物、異硫氰酸環己基酯、α-甲苯硫醇、三硫代碳酸乙烯酯、烯丙基硫醇、雙(三甲基矽基)硫化物、三辛基膦硫化物或其組合。在一些實施例中,(a)中之硫源來自S 8In some embodiments, the sulfur source in (a) comprises trioctylphosphine sulfide, elemental sulfur, octanethiol, dodecanethiol, octadecanethiol, tributylphosphine sulfide, isosulfide Cyclohexyl cyanate, alpha-toluenethiol, ethylene trithiocarbonate, allyl mercaptan, bis(trimethylsilyl)sulfide, trioctylphosphine sulfide, or combinations thereof. In some embodiments, the sulfur source in (a) is from S8 .

在一個實施例中,硫源來自S 8In one embodiment, the sulfur source is from S8 .

在一個實施例中,(a)及(b)中之溫度係約270℃。In one embodiment, the temperature in (a) and (b) is about 270°C.

在一些實施例中,(b)中之混合物進一步包含溶劑。在一些實施例中,溶劑係三辛基膦、二苄基醚或角鯊烷。In some embodiments, the mixture in (b) further comprises a solvent. In some embodiments, the solvent is trioctylphosphine, dibenzyl ether, or squalane.

在一些實施例中,羧酸鎵係C 2-24羧酸鎵。C 2-24羧酸鹽之實例包括乙酸鹽、丙酸鹽、丁酸鹽、戊酸鹽、己酸鹽、庚酸鹽、辛酸鹽、壬酸鹽、癸酸鹽、十一酸鹽、十三酸鹽、十四酸鹽、十五酸鹽、十六烷酸鹽、十八酸鹽(油酸鹽)、十九酸鹽及二十三酸鹽。在一個實施例中,羧酸鎵係油酸鎵。 In some embodiments, the gallium carboxylate is a C2-24 gallium carboxylate. Examples of C 2-24 carboxylates include acetate, propionate, butyrate, valerate, hexanoate, heptanoate, octanoate, nonanoate, decanoate, undecanoate, decanoate Triate, myristate, pentadecanoate, hexadecanoate, octadecanoate (oleate), nonadenoate and behenate. In one embodiment, the gallium carboxylate is gallium oleate.

在一些實施例中,羧酸鎵對AIGS核之比率為0.008-0.2 mmol羧酸鎵/ mg AIGS。在一個實施例中,羧酸鎵對AIGS核之比率為約0.04 mmol羧酸鎵/ mg AIGS。In some embodiments, the ratio of gallium carboxylate to AIGS core is 0.008-0.2 mmol gallium carboxylate/mg AIGS. In one embodiment, the ratio of gallium carboxylate to AIGS core is about 0.04 mmol gallium carboxylate/mg AIGS.

在另一實施例中,例如藉由沈澱分離AIGS奈米結構。在一些實施例中,藉由添加AIGS奈米結構之非溶劑來沈澱AIGS奈米結構。在一些實施例中,非溶劑係甲苯/乙醇混合物。沈澱之奈米結構可藉由離心及用奈米結構之非溶劑洗滌進一步分離。In another embodiment, AIGS nanostructures are isolated, eg, by precipitation. In some embodiments, the AIGS nanostructures are precipitated by adding a non-solvent for the AIGS nanostructures. In some embodiments, the non-solvent is a toluene/ethanol mixture. The precipitated nanostructures can be further isolated by centrifugation and washing with a non-solvent of the nanostructures.

亦提供製造奈米結構之方法,其包含: (a)    製備包含溶劑中之AIGS核及鹵化鎵之混合物,並將該混合物保持足以得到自奈米結構之表面至中心具有鎵梯度之離子交換之奈米結構的時間;及 (b)    分離奈米結構。 Also provided are methods of fabricating nanostructures comprising: (a) preparing a mixture comprising AIGS cores and gallium halide in a solvent, and maintaining the mixture for a time sufficient to obtain an ion-exchanged nanostructure with a gallium gradient from the surface of the nanostructure to the center; and (b) Isolated nanostructures.

在一些實施例中,奈米結構具有480-545 nm之PWL,且其中至少約60%之發射係帶邊緣發射。In some embodiments, the nanostructures have a PWL of 480-545 nm with at least about 60% of the emission tethered edge emission.

在一些實施例中,至少80%之發射係帶邊緣發射。在其他實施例中,至少90%之發射係帶邊緣發射。在其他實施例中,至少95%之發射係帶邊緣發射。In some embodiments, at least 80% of the emission fringes are edge-emitted. In other embodiments, at least 90% of the firing tethers are edge fired. In other embodiments, at least 95% of the firing tethers are edge fired.

在一些實施例中,鹵化鎵係鎵之氯化物、溴化物或碘化物。在一個實施例中,鹵化鎵係碘化鎵。In some embodiments, the gallium halide is chloride, bromide or iodide of gallium. In one embodiment, the gallium halide is gallium iodide.

在一些實施例中,溶劑包含三辛基膦。在一些實施例中,溶劑包含甲苯。In some embodiments, the solvent comprises trioctylphosphine. In some embodiments, the solvent comprises toluene.

在一些實施例中,(a)中之足夠時間係0.1-200小時。在一些實施例中,(a)中之足夠時間係約20小時。In some embodiments, sufficient time in (a) is 0.1-200 hours. In some embodiments, sufficient time in (a) is about 20 hours.

在一些實施例中,將混合物保持在20℃至100℃。在一個實施例中,將混合物保持在約室溫(20℃至25℃)。In some embodiments, the mixture is maintained at 20°C to 100°C. In one embodiment, the mixture is maintained at about room temperature (20°C to 25°C).

在一些實施例中,鹵化鎵對AIGS核之莫耳比為約0.1至約30。In some embodiments, the molar ratio of gallium halide to AIGS core is from about 0.1 to about 30.

在另一實施例中,例如藉由沈澱分離AIGS奈米結構。在一些實施例中,藉由添加AIGS奈米結構之非溶劑來沈澱AIGS奈米結構。在一些實施例中,非溶劑係甲苯/乙醇混合物。沈澱之奈米結構可藉由離心及/或用奈米結構之非溶劑洗滌進一步分離。In another embodiment, AIGS nanostructures are isolated, eg, by precipitation. In some embodiments, the AIGS nanostructures are precipitated by adding a non-solvent for the AIGS nanostructures. In some embodiments, the non-solvent is a toluene/ethanol mixture. The precipitated nanostructures can be further isolated by centrifugation and/or washing with a non-solvent of the nanostructures.

亦提供製造奈米結構之方法,其包含: (a)    製備包含AIGS奈米結構、硫源及配體之混合物; (b)    在180-300℃之溫度下,將(a)中獲得之混合物添加至GaX 3(X = F、Cl或Br)及無氧配體之混合物中,以得到自奈米結構之表面至中心具有鎵梯度之離子交換之奈米結構;及 (d)    分離奈米結構。 Also provided are methods of making nanostructures, comprising: (a) preparing a mixture comprising AIGS nanostructures, a sulfur source and a ligand; (b) subjecting the mixture obtained in (a) at a temperature of 180-300°C added to a mixture of GaX3 (X = F, Cl or Br) and oxygen-free ligands to obtain ion-exchanged nanostructures with a gallium gradient from the surface to the center of the nanostructures; and (d) separation of the nanostructures structure.

在一些實施例中,奈米結構具有480-545 nm之PWL。In some embodiments, the nanostructures have a PWL of 480-545 nm.

在一些實施例中,(a)中之製備係在無氧條件下進行。在一些實施例中,(a)中之製備係在手套箱中進行。In some embodiments, the preparation of (a) is carried out under anaerobic conditions. In some embodiments, the preparation in (a) is performed in a glove box.

在一些實施例中,(b)中之添加係在無氧條件下進行。在一些實施例中,(b)中之添加係在手套箱中進行。In some embodiments, the addition of (b) is performed under anaerobic conditions. In some embodiments, the addition in (b) is performed in a glove box.

在一些實施例中,至少80%之發射係帶邊緣發射。在其他實施例中,至少90%之發射係帶邊緣發射。在其他實施例中,至少95%之發射係帶邊緣發射。In some embodiments, at least 80% of the emission fringes are edge-emitted. In other embodiments, at least 90% of the firing tethers are edge fired. In other embodiments, at least 95% of the firing tethers are edge fired.

配體之實例揭示於美國專利第7,572,395號、第8,143,703號、第8,425,803號、第8,563,133號、第8,916,064號、第9,005,480號、第9,139,770號及第9,169,435號及美國專利申請公開案第2008/0118755號中。在一些實施例中,(a)中之配體係無氧配體。在一些實施例中,(b)中之配體係無氧配體。在一些實施例中,(a)及(b)中之配體係烷基胺。在一些實施例中,配體係選自由以下組成之群之烷基胺:十二烷基胺、油胺、十六烷基胺、二辛基胺及十八烷基胺。在一些實施例中,(a)中之配體係油胺。在一些實施例中,(b)中之配體係油胺。在一些實施例中,(a)及(b)中之配體係油胺。Examples of ligands are disclosed in US Patent Nos. 7,572,395; 8,143,703; 8,425,803; 8,563,133; 8,916,064; 9,005,480; middle. In some embodiments, the ligand in (a) is an oxygen-free ligand. In some embodiments, the ligand in (b) is an oxygen-free ligand. In some embodiments, the ligands in (a) and (b) are alkylamines. In some embodiments, the ligand system is selected from an alkylamine selected from the group consisting of dodecylamine, oleylamine, cetylamine, dioctylamine, and octadecylamine. In some embodiments, the ligand in (a) is oleylamine. In some embodiments, the ligand in (b) is oleylamine. In some embodiments, the ligands in (a) and (b) are oleylamine.

在一個實施例中,硫源來自S 8In one embodiment, the sulfur source is from S8 .

在一個實施例中,(a)及(b)中之溫度係約270℃。In one embodiment, the temperature in (a) and (b) is about 270°C.

在一些實施例中,(b)中之混合物進一步包含溶劑。在一些實施例中,溶劑係三辛基膦、二苄基醚或角鯊烷。In some embodiments, the mixture in (b) further comprises a solvent. In some embodiments, the solvent is trioctylphosphine, dibenzyl ether, or squalane.

在一些實施例中,GaX 3係氯化鎵、氟化鎵或碘化鎵。在一些實施例中,GaX 3係氯化鎵。在一些實施例中,GaX 3係氯化Ga(III)。 In some embodiments, GaX 3 is gallium chloride, gallium fluoride, or gallium iodide. In some embodiments, the GaX 3 series gallium chloride. In some embodiments, GaX 3 is Ga(III) chloride.

在一些實施例中,GaX 3對AIGS核之比率為0.008-0.2 mmol GaX 3/ mg AIGS。在一些實施例中,GaX 3對AIGS核之莫耳比為約0.1至約30。在一些實施例中,GaX 3對AIGS核之比率為約0.04 mmol GaX 3/ mg AIGS。 In some embodiments, the ratio of GaX3 to AIGS core is 0.008-0.2 mmol GaX3 /mg AIGS. In some embodiments, the molar ratio of GaX 3 to AIGS core is from about 0.1 to about 30. In some embodiments, the ratio of GaX3 to AIGS core is about 0.04 mmol GaX3 /mg AIGS.

在一些實施例中,例如藉由沈澱分離AIGS奈米結構。在一些實施例中,藉由添加AIGS奈米結構之非溶劑來沈澱AIGS奈米結構。在一些實施例中,非溶劑係甲苯/乙醇混合物。沈澱之奈米結構可藉由離心及/或用奈米結構之非溶劑洗滌進一步分離。In some embodiments, AIGS nanostructures are isolated, eg, by precipitation. In some embodiments, the AIGS nanostructures are precipitated by adding a non-solvent for the AIGS nanostructures. In some embodiments, the non-solvent is a toluene/ethanol mixture. The precipitated nanostructures can be further isolated by centrifugation and/or washing with a non-solvent of the nanostructures.

在一些實施例中,將(a)中之混合物保持在20℃至100℃。在一些實施例中,將(a)中之混合物保持在約室溫(20℃至25℃)。In some embodiments, the mixture in (a) is maintained at 20°C to 100°C. In some embodiments, the mixture in (a) is maintained at about room temperature (20°C to 25°C).

在一些實施例中,將(b)中之混合物在200℃至300℃下保持0.1小時至200小時。在一些實施例中,將(b)中之混合物在200℃至300℃下保持約20小時。 摻雜之AIGS奈米結構 In some embodiments, the mixture in (b) is maintained at 200°C to 300°C for 0.1 hour to 200 hours. In some embodiments, the mixture in (b) is maintained at 200°C to 300°C for about 20 hours. Doped AIGS Nanostructures

在一些實施例中,摻雜AIGS奈米結構。在一些實施例中,奈米晶體核之摻雜劑包含金屬,包括一或多種過渡金屬。在一些實施例中,摻雜劑係選自由以下組成之群之過渡金屬:Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Tc、Re、Fe、Ru、Os、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au及其組合。在一些實施例中,摻雜劑包含非金屬。在一些實施例中,摻雜劑係ZnS、ZnSe、ZnTe、CdSe、CdS、CdTe、HgS、HgSe、HgTe、CuInS 2、CuInSe 2、AlN、AlP、AlAs、GaN、GaP或GaAs。 In some embodiments, AIGS nanostructures are doped. In some embodiments, the dopants of the nanocrystal cores comprise metals, including one or more transition metals. In some embodiments, the dopant is a transition metal selected from the group consisting of: Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au and combinations thereof. In some embodiments, the dopant comprises a non-metal. In some embodiments, the dopant is ZnS, ZnSe, ZnTe, CdSe, CdS, CdTe, HgS, HgSe, HgTe, CuInS2 , CuInSe2 , AlN, AlP, AlAs, GaN, GaP, or GaAs.

在一些實施例中,藉由自非溶劑沈澱來純化核。在一些實施例中,過濾AIGS奈米結構以自核溶液去除沈澱。 奈米結構組合物 In some embodiments, the core is purified by precipitation from a non-solvent. In some embodiments, the AIGS nanostructures are filtered to remove precipitates from the core solution. Nanostructured composition

在一些實施例中,本發明提供奈米結構組合物,其包含: (a)    AIGS奈米結構之至少一個群體;及 (b)    至少一種有機樹脂。 In some embodiments, the present invention provides nanostructured compositions comprising: (a) at least one population of AIGS nanostructures; and (b) at least one organic resin.

在一些實施例中,奈米結構具有介於480-545 nm之間之PWL。In some embodiments, the nanostructures have a PWL between 480-545 nm.

在一些實施例中,至少80%之奈米結構發射係帶邊緣發射。在其他實施例中,至少90%之發射係帶邊緣發射。在其他實施例中,至少95%之發射係帶邊緣發射。在一些實施例中,92-98%之發射係帶邊緣發射。在一些實施例中,93-96%之發射係帶邊緣發射。In some embodiments, at least 80% of the nanostructures emit tethered edge emission. In other embodiments, at least 90% of the firing tethers are edge fired. In other embodiments, at least 95% of the firing tethers are edge fired. In some embodiments, 92-98% of the emission fringes are edge-emitted. In some embodiments, 93-96% of the emission is fringed edge emission.

在一些實施例中,奈米結構組合物進一步包含奈米結構之至少一個第二群體。PWL介於480-545 nm之間之奈米結構發射綠光。可添加在光譜之綠色、黃色、橙色及/或紅色區發射之奈米結構之額外群體。該等奈米結構具有大於545 nm之PWL。在一些實施例中,奈米結構具有介於550-750 nm之間之PWL。奈米結構之大小決定發射波長。奈米結構之至少一個第二群體可包含選自由以下組成之群之III-V族奈米晶體:BN、BP、BAs、BSb、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs及InSb。在一些實施例中,奈米結構之第二群體之核係InP奈米晶體。 有機樹脂 In some embodiments, the nanostructure composition further comprises at least one second population of nanostructures. Nanostructures with a PWL between 480-545 nm emit green light. Additional populations of nanostructures emitting in the green, yellow, orange and/or red regions of the spectrum can be added. The nanostructures have PWLs greater than 545 nm. In some embodiments, the nanostructures have a PWL between 550-750 nm. The size of the nanostructure determines the emission wavelength. The at least one second population of nanostructures may comprise III-V nanocrystals selected from the group consisting of BN, BP, BAs, BSb, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs and InSb. In some embodiments, the cores of the second population of nanostructures are InP nanocrystals. organic resin

在一些實施例中,有機樹脂係熱固性樹脂或紫外線(UV)可固化樹脂。在一些實施例中,藉由有利於捲對捲處理之方法固化有機樹脂。In some embodiments, the organic resin is a thermosetting resin or an ultraviolet (UV) curable resin. In some embodiments, the organic resin is cured by a method that facilitates roll-to-roll processing.

熱固性樹脂需要固化,在固化過程中,其經歷不可逆之分子交聯過程,這使得樹脂不可熔。在一些實施例中,熱固性樹脂係環氧樹脂、酚樹脂、乙烯基樹脂、三聚氰胺樹脂、脲樹脂、不飽和聚酯樹脂、聚胺基甲酸酯樹脂、烯丙基樹脂、丙烯酸樹脂、聚醯胺樹脂、聚醯胺-醯亞胺樹脂、酚胺縮聚樹脂、脲三聚氰胺縮聚樹脂或其組合。Thermosetting resins require curing, during which they undergo an irreversible molecular cross-linking process, which makes the resin infusible. In some embodiments, the thermosetting resins are epoxy resins, phenolic resins, vinyl resins, melamine resins, urea resins, unsaturated polyester resins, polyurethane resins, allyl resins, acrylic resins, polyamides Amine resins, polyamide-imide resins, phenolamine polycondensation resins, urea melamine polycondensation resins, or combinations thereof.

在一些實施例中,熱固性樹脂係環氧樹脂。環氧樹脂很容易固化,而不會因各種化學品而產生揮發物或副產物。環氧樹脂亦與大部分基材相容,且往往易於潤濕表面。參見Boyle, M.A.等人,「Epoxy Resins,」 Composites, 第21卷, ASM Handbook, 第78-89頁(2001)。In some embodiments, the thermoset resin is an epoxy resin. Epoxies cure easily without volatiles or by-products from various chemicals. Epoxies are also compatible with most substrates and tend to wet surfaces easily. See Boyle, M.A. et al., "Epoxy Resins," Composites, Vol. 21, ASM Handbook, pp. 78-89 (2001).

在一些實施例中,有機樹脂係聚矽氧熱固性樹脂。在一些實施例中,聚矽氧熱固性樹脂係OE6630A或OE6630B (Dow Corning Corporation, Auburn, MI)。In some embodiments, the organic resin is a polysiloxane thermosetting resin. In some embodiments, the polysiloxane thermoset resin is OE6630A or OE6630B (Dow Corning Corporation, Auburn, MI).

在一些實施例中,使用熱起始劑。在一些實施例中,熱起始劑係AIBN [2,2'-偶氮雙(2-甲基丙腈)]或過氧化苯甲醯。In some embodiments, thermal initiators are used. In some embodiments, the thermal initiator is AIBN [2,2'-azobis(2-methylpropionitrile)] or benzyl peroxide.

UV可固化樹脂係當暴露於特定光波長時會固化並快速硬化之聚合物。在一些實施例中,UV可固化樹脂係具有作為官能基之自由基聚合基團(例如(甲基)丙烯醯氧基、乙烯基氧基、苯乙烯基或乙烯基)、陽離子可聚合基團(例如環氧基、硫代環氧基、乙烯基氧基或氧雜環丁基)之樹脂。在一些實施例中,UV可固化樹脂係聚酯樹脂、聚醚樹脂、(甲基)丙烯酸樹脂、環氧樹脂、胺基甲酸酯樹脂、醇酸樹脂、螺縮醛樹脂、聚丁二烯樹脂或聚硫醇多烯樹脂。UV curable resins are polymers that cure and harden rapidly when exposed to specific wavelengths of light. In some embodiments, the UV curable resins have as functional groups free radical polymerizable groups (eg (meth)acryloyloxy, vinyloxy, styryl or vinyl), cationically polymerizable groups (eg epoxy, thioepoxy, vinyloxy or oxetanyl). In some embodiments, the UV curable resins are polyester resins, polyether resins, (meth)acrylic resins, epoxy resins, urethane resins, alkyd resins, spiroacetal resins, polybutadiene resin or polythiol polyene resin.

在一些實施例中,UV可固化樹脂選自由以下組成之群:丙烯酸異莰基酯、甲基丙烯酸異莰基酯、丙烯酸苯氧基乙基酯、甲基丙烯酸苯氧基乙基酯、胺基甲酸酯丙烯酸酯、烯丙氧基化二丙烯酸環己基酯、異氰尿酸雙(丙烯醯氧基乙基)羥基酯、己二酸雙(丙烯醯氧基新戊二醇)酯、雙酚A二丙烯酸酯、雙酚A二甲基丙烯酸酯、1,4-丁二醇二丙烯酸酯、1,4-丁二醇二甲基丙烯酸酯、1,3-丁二醇二丙烯酸酯、1,3-丁二醇二甲基丙烯酸酯、二丙烯酸二環戊基酯、二乙二醇二丙烯酸酯、二乙二醇二甲基丙烯酸酯、二新戊四醇六丙烯酸酯、二新戊四醇單羥基五丙烯酸酯、四丙烯酸二(三羥甲基丙烷)酯、乙二醇二甲基丙烯酸酯、甘油甲基丙烯酸酯、1,6-己二醇二丙烯酸酯、1,6-己二醇二甲基丙烯酸酯、新戊二醇二甲基丙烯酸酯、新戊二醇羥基新戊酸酯二丙烯酸酯、新戊四醇三丙烯酸酯、新戊四醇四丙烯酸酯、磷酸二甲基丙烯酸酯、聚乙二醇二丙烯酸酯、聚丙二醇二丙烯酸酯、四乙二醇二丙烯酸酯、四溴雙酚A二丙烯酸酯、三乙二醇二乙烯基醚、三甘油二丙烯酸酯、三丙烯酸三羥甲基丙烷酯、三丙二醇二丙烯酸酯、參(丙烯醯氧基乙基)異氰尿酸酯、磷酸三丙烯酸酯、磷酸二丙烯酸酯、丙烯酸炔丙基酯、乙烯基封端之聚二甲基矽氧烷、乙烯基封端之二苯基矽氧烷-二甲基矽氧烷共聚物、乙烯基封端之聚苯基甲基矽氧烷、乙烯基封端之三氟甲基矽氧烷-二甲基矽氧烷共聚物、乙烯基封端之二乙基矽氧烷-二甲基矽氧烷共聚物、乙烯基甲基矽氧烷、單甲基丙烯醯基氧基丙基封端之聚二甲基矽氧烷、單乙烯基封端之聚二甲基矽氧烷、單烯丙基-單三甲基矽氧基封端之聚氧化乙烯及其組合。In some embodiments, the UV curable resin is selected from the group consisting of: isobornyl acrylate, isobornyl methacrylate, phenoxyethyl acrylate, phenoxyethyl methacrylate, amines carbamate acrylate, allyloxylated cyclohexyl diacrylate, bis(acrylooxyethyl) hydroxy isocyanurate, bis(acrylooxyneopentyl glycol) adipate, bis(acrylooxyneopentyl) adipate Phenol A Diacrylate, Bisphenol A Dimethacrylate, 1,4-Butanediol Diacrylate, 1,4-Butanediol Dimethacrylate, 1,3-Butanediol Diacrylate, 1,3-Butanediol dimethacrylate, Dicyclopentyl diacrylate, Diethylene glycol diacrylate, Diethylene glycol dimethacrylate, Dipivalerythritol hexaacrylate, Two new Pentaerythritol monohydroxypentaacrylate, di(trimethylolpropane) tetraacrylate, ethylene glycol dimethacrylate, glycerol methacrylate, 1,6-hexanediol diacrylate, 1,6 -Hexanediol dimethacrylate, neopentyl glycol dimethacrylate, neopentyl glycol hydroxypivalate diacrylate, neopentaerythritol triacrylate, neotaerythritol tetraacrylate, phosphoric acid Dimethacrylate, Polyethylene Glycol Diacrylate, Polypropylene Glycol Diacrylate, Tetraethylene Glycol Diacrylate, Tetrabromobisphenol A Diacrylate, Triethylene Glycol Divinyl Ether, Triglycerol Diacrylate Esters, Trimethylolpropane Triacrylate, Tripropylene Glycol Diacrylate, Tris(acryloyloxyethyl)isocyanurate, Phosphate Triacrylate, Phosphate Diacrylate, Propargyl Acrylate, Vinyl End-capped polydimethylsiloxane, vinyl-terminated diphenylsiloxane-dimethylsiloxane copolymer, vinyl-terminated polyphenylmethylsiloxane, vinyl-terminated trifluoromethylsiloxane-dimethylsiloxane copolymer, vinyl terminated diethylsiloxane-dimethylsiloxane copolymer, vinylmethylsiloxane, monomethyl siloxane Acryloyloxypropyl terminated polydimethylsiloxane, monovinyl terminated polydimethylsiloxane, monoallyl-monotrimethylsiloxy terminated polyethylene oxide and its combinations.

在一些實施例中,UV可固化樹脂係可在UV固化條件下與異氰酸酯、環氧樹脂或不飽和化合物交聯之巰基官能化合物。在一些實施例中,聚硫醇係新戊四醇四(3-巰基-丙酸酯) (PETMP);三羥甲基-丙烷三(3-巰基-丙酸酯) (TMPMP);二醇二(3-巰基-丙酸酯) (GDMP);參[25-(3-巰基-丙醯基氧基)乙基]異氰尿酸酯(TEMPIC);二-新戊四醇六(3-巰基-丙酸酯) (Di-PETMP);乙氧基化三羥甲基丙烷三(3-巰基-丙酸酯) (ETTMP 1300及ETTMP 700);聚己內酯四(3-巰基-丙酸酯) (PCL4MP 1350);新戊四醇四巰基乙酸酯(PETMA);三羥甲基-丙烷三巰基乙酸酯(TMPMA);或二醇二巰基乙酸酯(GDMA)。該等化合物係由Bruno Bock, Marschacht, Germany以商品名THIOCURE ®出售。 In some embodiments, the UV-curable resins are mercapto-functional compounds that can be cross-linked with isocyanates, epoxy resins, or unsaturated compounds under UV curing conditions. In some embodiments, the polythiol is neotaerythritol tetrakis(3-mercapto-propionate) (PETMP); trimethylol-propane tris(3-mercapto-propionate) (TMPMP); diols bis(3-mercapto-propionate) (GDMP); sam[25-(3-mercapto-propionyloxy)ethyl]isocyanurate (TEMPIC); bis-neopentaerythritol hexa(3 - mercapto-propionate) (Di-PETMP); ethoxylated trimethylolpropane tris(3-mercapto-propionate) (ETTMP 1300 and ETTMP 700); polycaprolactone tetrakis(3-mercapto-propionate) propionate) (PCL4MP 1350); neotaerythritol tetramercaptoacetate (PETMA); trimethylol-propane trimercaptoacetate (TMPMA); or glycol dimercaptoacetate (GDMA). These compounds are sold under the tradename THIOCURE® by Bruno Bock, Marschacht, Germany.

在一些實施例中,UV可固化樹脂係聚硫醇。在一些實施例中,UV可固化樹脂係選自由以下組成之群之聚硫醇:乙二醇雙(巰基乙酸酯)、乙二醇雙(3-巰基丙酸酯)、三羥甲基丙烷參(巰基乙酸酯)、三羥甲基丙烷參(3-巰基丙酸酯)、新戊四醇四(巰基乙酸酯)、新戊四醇四(3-巰基丙酸酯) (PETMP)、及其組合。在一些實施例中,UV可固化樹脂係PETMP。In some embodiments, the UV curable resin is a polythiol. In some embodiments, the UV curable resin is a polythiol selected from the group consisting of ethylene glycol bis(thioglycolate), ethylene glycol bis(3-mercaptopropionate), trimethylol Propane ginseng (mercaptoacetate), trimethylolpropane ginseng (3-mercaptopropionate), neotaerythritol tetrakis (mercaptoacetate), neotaerythritol tetrakis (3-mercaptopropionate) ( PETMP), and combinations thereof. In some embodiments, the UV curable resin is PETMP.

在一些實施例中,UV可固化樹脂係包含聚硫醇及1,3,5-三烯丙基-1,3,5-三嗪-2,4,6 (1H,3H,5H)-三酮(TTT)之硫醇-烯調配物。在一些實施例中,UV可固化樹脂係包含PETMP及TTT之硫醇-烯調配物。In some embodiments, the UV curable resin system comprises a polythiol and 1,3,5-triallyl-1,3,5-triazine-2,4,6(1H,3H,5H)-triazine Thiol-ene formulations of ketones (TTT). In some embodiments, the UV curable resin is a thiol-ene formulation comprising PETMP and TTT.

在一些實施例中,UV可固化樹脂進一步包含光起始劑。光起始劑在曝光期間起始光敏材料之交聯及/或固化反應。在一些實施例中,光起始劑係基於苯乙酮、基於安息香或基於氧硫𠮿

Figure 110147823-0000-3
。In some embodiments, the UV curable resin further comprises a photoinitiator. The photoinitiator initiates the crosslinking and/or curing reaction of the photosensitive material during exposure. In some embodiments, the photoinitiator is acetophenone-based, benzoin-based, or oxysulfide-based
Figure 110147823-0000-3
.

在一些實施例中,光起始劑係基於丙烯酸乙烯基酯之樹脂。在一些實施例中,光起始劑係MINS-311RM (Minuta Technology Co., Ltd, Korea)。In some embodiments, the photoinitiator is a vinyl acrylate based resin. In some embodiments, the photoinitiator is MINS-311RM (Minuta Technology Co., Ltd, Korea).

在一些實施例中,光起始劑係IRGACURE ®127、IRGACURE ®184、IRGACURE ®184D、IRGACURE ®2022、IRGACURE ®2100、IRGACURE ®250、IRGACURE ®270、IRGACURE ®2959、IRGACURE ®369、IRGACURE ®369 EG、IRGACURE ®379、IRGACURE ®500、IRGACURE ®651、IRGACURE ®754、IRGACURE ®784、IRGACURE ®819、IRGACURE ®819Dw、IRGACURE ®907、IRGACURE ®907 FF、IRGACURE ®Oxe01、IRGACURE ®TPO-L、IRGACURE® 1173、IRGACURE® 1173D、IRGACURE® 4265、IRGACURE® BP或IRGACURE® MBF (BASF Corporation, Wyandotte, MI)。在一些實施例中,光起始劑係TPO (2,4,6-三甲基苯甲醯基-二苯基-氧化膦)或MBF (苯甲醯基甲酸甲酯)。 In some embodiments, the photoinitiator is IRGACURE 127, IRGACURE 184, IRGACURE 184D , IRGACURE 2022, IRGACURE 2100, IRGACURE 250, IRGACURE 270, IRGACURE 2959 , IRGACURE 369, IRGACURE 369 EG, IRGACURE® 379, IRGACURE® 500, IRGACURE® 651, IRGACURE® 754, IRGACURE® 784, IRGACURE® 819, IRGACURE® 819Dw , IRGACURE® 907, IRGACURE® 907 FF, IRGACURE® Oxe01 , IRGACURE® TRURE ® 1173, IRGACURE® 1173D, IRGACURE® 4265, IRGACURE® BP or IRGACURE® MBF (BASF Corporation, Wyandotte, MI). In some embodiments, the photoinitiator is TPO (2,4,6-trimethylbenzyl-diphenyl-phosphine oxide) or MBF (methyl benzylcarboxylate).

在一些實施例中,奈米結構組合物中之至少一種有機樹脂之重量%介於約5%與約99%、約5%與約95%、約5%與約90%、約5%與約80%、約5%與約70%、約5%與約60%、約5%與約50%、約5%與約40%、約5%與約30%、約5%與約20%、約5%與約10%、約10%與約99%、約10%與約95%、約10%與約90%、約10%與約80%、約10%與約70%、約10%與約60%、約10%與約50%、約10%與約40%、約10%與約30%、約10%與約20%、約20%與約99%、約20%與約95%、約20%與約90%、約20%與約80%、約20%與約70%、約20%與約60%、約20%與約50%、約20%與約40%、約20%與約30%、約30%與約99%、約30%與約95%、約30%與約90%、約30%與約80%、約30%與約70%、約30%與約60%、約30%與約50%、約30%與約40%、約40%與約99%、約40%與約95%、約40%與約90%、約40%與約80%、約40%與約70%、約40%與約60%、約40%與約50%、約50%與約99%、約50%與約95%、約50%與約90%、約50%與約80%、約50%與約70%、約50%與約60%、約60%與約99%、約60%與約95%、約60%與約90%、約60%與約80%、約60%與約70%、約70%與約99%、約70%與約95%、約70%與約90%、約70%與約80%、約80%與約99%、約80%與約95%、約80%與約90%、約90%與約99%、約90%與約95%、或約95%與約99%之間。In some embodiments, the weight % of the at least one organic resin in the nanostructure composition is between about 5% and about 99%, about 5% and about 95%, about 5% and about 90%, about 5% and about 5%. About 80%, about 5% and about 70%, about 5% and about 60%, about 5% and about 50%, about 5% and about 40%, about 5% and about 30%, about 5% and about 20% %, about 5% and about 10%, about 10% and about 99%, about 10% and about 95%, about 10% and about 90%, about 10% and about 80%, about 10% and about 70%, About 10% and about 60%, about 10% and about 50%, about 10% and about 40%, about 10% and about 30%, about 10% and about 20%, about 20% and about 99%, about 20% % and about 95%, about 20% and about 90%, about 20% and about 80%, about 20% and about 70%, about 20% and about 60%, about 20% and about 50%, about 20% and about About 40%, about 20% and about 30%, about 30% and about 99%, about 30% and about 95%, about 30% and about 90%, about 30% and about 80%, about 30% and about 70% %, about 30% and about 60%, about 30% and about 50%, about 30% and about 40%, about 40% and about 99%, about 40% and about 95%, about 40% and about 90%, About 40% and about 80%, about 40% and about 70%, about 40% and about 60%, about 40% and about 50%, about 50% and about 99%, about 50% and about 95%, about 50% % and about 90%, about 50% and about 80%, about 50% and about 70%, about 50% and about 60%, about 60% and about 99%, about 60% and about 95%, about 60% and about About 90%, about 60% and about 80%, about 60% and about 70%, about 70% and about 99%, about 70% and about 95%, about 70% and about 90%, about 70% and about 80% %, about 80% and about 99%, about 80% and about 95%, about 80% and about 90%, about 90% and about 99%, about 90% and about 95%, or about 95% and about 99% between.

在一些實施例中,奈米結構組合物進一步包含至少一種納入塗覆AIGS表面之配體中之單體。已發現,含有至少一種納入塗覆AIGS表面之配體中之單體之AIGS奈米結構具有高QY性、與HDDA(噴墨可印刷油墨中使用之常見單體)之良好相容性以及良好藍光吸收。In some embodiments, the nanostructured composition further comprises at least one monomer incorporated into the ligand coating the AIGS surface. It has been found that AIGS nanostructures containing at least one monomer incorporated into the ligand that coats the AIGS surface have high QY, good compatibility with HDDA (a common monomer used in inkjet printable inks), and good Blue light absorption.

在一些實施例中,至少一種單體係丙烯酸酯。丙烯酸酯單體之實例包括(但不限於)甲基丙烯酸甲酯、甲基丙烯酸乙基酯、甲基丙烯酸異丙基酯、甲基丙烯酸正丁基酯、甲基丙烯酸異丁基酯、甲基丙烯酸第三丁基酯、甲基丙烯酸正戊基酯、甲基丙烯酸異戊基酯、甲基丙烯酸正己基酯、甲基丙烯酸十三烷基酯、甲基丙烯酸硬脂醯基酯、甲基丙烯酸癸基酯、甲基丙烯酸十二烷基酯、甲氧基二乙二醇甲基丙烯酸酯、聚丙二醇單甲基丙烯酸酯、甲基丙烯酸苯基酯、苯甲基丙烯酸氧基乙基酯、甲基丙烯酸四氫糠基酯、甲基丙烯酸第三丁基環己基酯、甲基丙烯酸山崳基酯、甲基丙烯酸二環戊基酯、甲基丙烯酸二環戊烯基氧基乙基酯、甲基丙烯酸2-乙基己基酯、甲基丙烯酸辛基酯、甲基丙烯酸異辛基酯、甲基丙烯酸正癸基酯、甲基丙烯酸異癸基酯、甲基丙烯酸月桂基酯、甲基丙烯酸十六烷基酯、甲基丙烯酸十八烷基酯、甲基丙烯酸苄基酯、甲基丙烯酸2-苯基乙基酯、丙烯酸2-苯氧基乙基酯、丙烯酸乙基酯、丙烯酸甲基酯、丙烯酸正丁基酯、丙烯酸2-羥基乙基酯、丙烯酸2-羧基乙基酯、丙烯酸、乙二醇二丙烯酸酯、1,3-丙二醇二丙烯酸酯、1,4-雙(丙烯醯基氧基)丁烷、丙烯酸異莰基酯、丙烯酸四氫糠基酯、環狀三羥甲基丙烷甲醛丙烯酸酯、甲基丙烯酸環己基酯及丙烯酸4-第三丁基環己基酯。In some embodiments, at least one monosystem acrylate. Examples of acrylate monomers include, but are not limited to, methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, methyl methacrylate tert-butyl methacrylate, n-amyl methacrylate, isoamyl methacrylate, n-hexyl methacrylate, tridecyl methacrylate, stearyl methacrylate, methyl methacrylate Decyl methacrylate, dodecyl methacrylate, methoxydiethylene glycol methacrylate, polypropylene glycol monomethacrylate, phenyl methacrylate, oxyethyl benzyl methacrylate ester, tetrahydrofurfuryl methacrylate, tert-butylcyclohexyl methacrylate, behenyl methacrylate, dicyclopentyl methacrylate, dicyclopentenyloxyethyl methacrylate methacrylate, 2-ethylhexyl methacrylate, octyl methacrylate, isooctyl methacrylate, n-decyl methacrylate, isodecyl methacrylate, lauryl methacrylate , cetyl methacrylate, octadecyl methacrylate, benzyl methacrylate, 2-phenylethyl methacrylate, 2-phenoxyethyl acrylate, ethyl acrylate ester, methyl acrylate, n-butyl acrylate, 2-hydroxyethyl acrylate, 2-carboxyethyl acrylate, acrylic acid, ethylene glycol diacrylate, 1,3-propylene glycol diacrylate, 1,4 -Bis(acryloyloxy)butane, isobornyl acrylate, tetrahydrofurfuryl acrylate, cyclic trimethylolpropane formaldehyde acrylate, cyclohexyl methacrylate and 4-tert-butyl acrylate Cyclohexyl ester.

在一些實施例中,單體係丙烯酸乙基酯、HDDA、丙烯酸四氫糠基酯、三(丙二醇)二丙烯酸酯、1,4-雙(丙烯醯基氧基)丁烷或丙烯酸異莰基酯中之至少一者。 製備AIGS奈米結構組合物之方法 In some embodiments, the mono-system ethyl acrylate, HDDA, tetrahydrofurfuryl acrylate, tri(propylene glycol) diacrylate, 1,4-bis(acryloyloxy)butane, or isobornyl acrylate at least one of esters. Methods of making AIGS nanostructure compositions

本發明提供製備奈米結構組合物之方法,該方法包含: (a) 提供AIGS奈米結構之至少一個群體;及 (b)    將至少一種有機樹脂與(a)之組合物混合。 The present invention provides a method for preparing a nanostructured composition, the method comprising: (a) providing at least one population of AIGS nanostructures; and (b) mixing at least one organic resin with the composition of (a).

在一些實施例中,奈米結構具有介於480-545 nm之間之PWL,且至少約80%之發射係帶邊緣發射。在一些實施例中,至少80%之發射係帶邊緣發射。在其他實施例中,至少90%之發射係帶邊緣發射。在其他實施例中,至少95%之發射係帶邊緣發射。在一些實施例中,92-98%之發射係帶邊緣發射。在一些實施例中,93-96%之發射係帶邊緣發射。In some embodiments, the nanostructures have a PWL between 480-545 nm and an emission tether edge emission of at least about 80%. In some embodiments, at least 80% of the emission fringes are edge-emitted. In other embodiments, at least 90% of the firing tethers are edge fired. In other embodiments, at least 95% of the firing tethers are edge fired. In some embodiments, 92-98% of the emission fringes are edge-emitted. In some embodiments, 93-96% of the emission is fringed edge emission.

本發明亦提供製備奈米結構組合物之方法,該方法包含: (a) 提供AIGS奈米結構之至少一個群體,且其中奈米結構係使用GaX 3(X = F、Cl或Br)前體及無氧配體來製備;及 (b)    將至少一種有機樹脂與(a)之組合物混合。 The present invention also provides a method of making a nanostructure composition, the method comprising: (a) providing at least one population of AIGS nanostructures, and wherein the nanostructures use a GaX3 (X = F, Cl or Br) precursor and oxygen-free ligands; and (b) mixing at least one organic resin with the composition of (a).

在一些實施例中,奈米結構具有介於480-545 nm之間之PWL,且至少約60%之發射係帶邊緣發射。In some embodiments, the nanostructures have a PWL between 480-545 nm and an emission tethered edge emission of at least about 60%.

本發明亦提供製備奈米結構組合物之方法,該方法包含: (a)提供AIGS奈米結構之至少一個群體,其中奈米結構具有介於480-545 nm之間之PWL,其中至少約80%之發射係帶邊緣發射,且其中奈米結構展現80-99%之QY;及 (b)    將至少一種有機樹脂與(a)之組合物混合。 The present invention also provides a method of making a nanostructure composition, the method comprising: (a) providing at least one population of AIGS nanostructures, wherein the nanostructures have a PWL between 480-545 nm, wherein at least about 80 % emission tethered edge emission and wherein the nanostructure exhibits 80-99% QY; and (b) mixing at least one organic resin with the composition of (a).

在一些實施例中,將奈米結構之至少一個群體與至少一種有機樹脂以介於約100 rpm與約10,000 rpm、約100 rpm與約5,000 rpm、約100 rpm與約3,000 rpm、約100 rpm與約1,000 rpm、約100 rpm與約500 rpm、約500 rpm與約10,000 rpm、約500 rpm與約5,000 rpm、約500 rpm與約3,000 rpm、約500 rpm與約1,000 rpm、約1,000 rpm與約10,000 rpm、約1,000 rpm與約5,000 rpm、約1,000 rpm與約3,000 rpm、約3,000 rpm與約10,000 rpm、約3,000 rpm與約10,000 rpm或約5,000 rpm與約10,000 rpm之間之攪動速率混合。In some embodiments, at least one population of nanostructures and at least one organic resin are mixed at between about 100 rpm and about 10,000 rpm, about 100 rpm and about 5,000 rpm, about 100 rpm and about 3,000 rpm, about 100 rpm and about 100 rpm. about 1,000 rpm, about 100 rpm and about 500 rpm, about 500 rpm and about 10,000 rpm, about 500 rpm and about 5,000 rpm, about 500 rpm and about 3,000 rpm, about 500 rpm and about 1,000 rpm, about 1,000 rpm and about 10,000 Mix at agitation rates between about 1,000 rpm and about 5,000 rpm, about 1,000 rpm and about 3,000 rpm, about 3,000 rpm and about 10,000 rpm, about 3,000 rpm and about 10,000 rpm, or about 5,000 rpm and about 10,000 rpm.

在一些實施例中,將奈米結構之至少一個群體與至少一種有機樹脂混合介於約10分鐘與約24小時、約10分鐘與約20小時、約10分鐘與約15小時、約10分鐘與約10小時、約10分鐘與約5小時、約10分鐘與約1小時、約10分鐘與約30分鐘、約30分鐘與約24小時、約30分鐘與約20小時、約30分鐘與約15小時、約30分鐘與約10小時、約30分鐘與約5小時、約30分鐘與約1小時、約1小時與約24小時、約1小時與約20小時、約1小時與約15小時、約1小時與約10小時、約1小時與約5小時、約5小時與約24小時、約5小時與約20小時、約5小時與約15小時、約5小時與約10小時、約10小時與約24小時、約10小時與約20小時、約10小時與約15小時、約15小時與約24小時、約15小時與約20小時、或約20小時與約24小時之間之時間。In some embodiments, the at least one population of nanostructures is mixed with the at least one organic resin for between about 10 minutes and about 24 hours, about 10 minutes and about 20 hours, about 10 minutes and about 15 hours, about 10 minutes and about 10 minutes and About 10 hours, about 10 minutes and about 5 hours, about 10 minutes and about 1 hour, about 10 minutes and about 30 minutes, about 30 minutes and about 24 hours, about 30 minutes and about 20 hours, about 30 minutes and about 15 hours, about 30 minutes and about 10 hours, about 30 minutes and about 5 hours, about 30 minutes and about 1 hour, about 1 hour and about 24 hours, about 1 hour and about 20 hours, about 1 hour and about 15 hours, About 1 hour and about 10 hours, about 1 hour and about 5 hours, about 5 hours and about 24 hours, about 5 hours and about 20 hours, about 5 hours and about 15 hours, about 5 hours and about 10 hours, about 10 hours hours and about 24 hours, about 10 hours and about 20 hours, about 10 hours and about 15 hours, about 15 hours and about 24 hours, about 15 hours and about 20 hours, or about 20 hours and about 24 hours .

在一些實施例中,將奈米結構之至少一個群體與至少一種有機樹脂於介於約-5℃與約100℃、約-5℃與約75℃、約-5℃與約50℃、約-5℃與約23℃、約23℃與約100℃、約23℃與約75℃、約23℃與約50℃、約50℃與約100℃、約50℃與約75℃、或約75℃與約100℃之間之溫度下混合。在一些實施例中,將至少一種有機樹脂與奈米結構之至少一個群體於介於約23℃與約50℃之間之溫度下混合。In some embodiments, at least one population of nanostructures is combined with at least one organic resin at between about -5°C and about 100°C, about -5°C and about 75°C, about -5°C and about 50°C, about -5°C and about 23°C, about 23°C and about 100°C, about 23°C and about 75°C, about 23°C and about 50°C, about 50°C and about 100°C, about 50°C and about 75°C, or about Mix at a temperature between 75°C and about 100°C. In some embodiments, the at least one organic resin and at least one population of nanostructures are mixed at a temperature between about 23°C and about 50°C.

在一些實施例中,若使用一種以上有機樹脂,則一起添加及混合有機樹脂。在一些實施例中,將第一有機樹脂與第二有機樹脂以介於約100 rpm與約10,000 rpm、約100 rpm與約5,000 rpm、約100 rpm與約3,000 rpm、約100 rpm與約1,000 rpm、約100 rpm與約500 rpm、約500 rpm與約10,000 rpm、約500 rpm與約5,000 rpm、約500 rpm與約3,000 rpm、約500 rpm與約1,000 rpm、約1,000 rpm與約10,000 rpm、約1,000 rpm與約5,000 rpm、約1,000 rpm與約3,000 rpm、約3,000 rpm與約10,000 rpm、約3,000 rpm與約10,000 rpm或約5,000 rpm與約10,000 rpm之間之攪動速率混合。In some embodiments, if more than one organic resin is used, the organic resins are added and mixed together. In some embodiments, the first organic resin and the second organic resin are operated at between about 100 rpm and about 10,000 rpm, about 100 rpm and about 5,000 rpm, about 100 rpm and about 3,000 rpm, about 100 rpm and about 1,000 rpm , about 100 rpm and about 500 rpm, about 500 rpm and about 10,000 rpm, about 500 rpm and about 5,000 rpm, about 500 rpm and about 3,000 rpm, about 500 rpm and about 1,000 rpm, about 1,000 rpm and about 10,000 rpm, about Mix at agitation rates between 1,000 rpm and about 5,000 rpm, about 1,000 rpm and about 3,000 rpm, about 3,000 rpm and about 10,000 rpm, about 3,000 rpm and about 10,000 rpm, or between about 5,000 rpm and about 10,000 rpm.

在一些實施例中,將第一有機樹脂與第二有機樹脂混合介於約10分鐘與約24小時、約10分鐘與約20小時、約10分鐘與約15小時、約10分鐘與約10小時、約10分鐘與約5小時、約10分鐘與約1小時、約10分鐘與約30分鐘、約30分鐘與約24小時、約30分鐘與約20小時、約30分鐘與約15小時、約30分鐘與約10小時、約30分鐘與約5小時、約30分鐘與約1小時、約1小時與約24小時、約1小時與約20小時、約1小時與約15小時、約1小時與約10小時、約1小時與約5小時、約5小時與約24小時、約5小時與約20小時、約5小時與約15小時、約5小時與約10小時、約10小時與約24小時、約10小時與約20小時、約10小時與約15小時、約15小時與約24小時、約15小時與約20小時、或約20小時與約24小時之間之時間。In some embodiments, the first organic resin and the second organic resin are mixed for between about 10 minutes and about 24 hours, about 10 minutes and about 20 hours, about 10 minutes and about 15 hours, about 10 minutes and about 10 hours , about 10 minutes and about 5 hours, about 10 minutes and about 1 hour, about 10 minutes and about 30 minutes, about 30 minutes and about 24 hours, about 30 minutes and about 20 hours, about 30 minutes and about 15 hours, about 30 minutes and about 10 hours, about 30 minutes and about 5 hours, about 30 minutes and about 1 hour, about 1 hour and about 24 hours, about 1 hour and about 20 hours, about 1 hour and about 15 hours, about 1 hour about 10 hours, about 1 hour and about 5 hours, about 5 hours and about 24 hours, about 5 hours and about 20 hours, about 5 hours and about 15 hours, about 5 hours and about 10 hours, about 10 hours and about 24 hours, about 10 hours and about 20 hours, about 10 hours and about 15 hours, about 15 hours and about 24 hours, about 15 hours and about 20 hours, or the time between about 20 hours and about 24 hours.

在一些實施例中,將AIGS奈米結構與至少一種納入塗覆AIGS表面之配體中之單體在與樹脂合併之前合併。在一些實施例中,單體係丙烯酸酯。在一些實施例中,單體係丙烯酸乙基酯、HDDA、丙烯酸四氫糠基酯、三(丙二醇)二丙烯酸酯、1,4-雙(丙烯醯基氧基)丁烷或丙烯酸異莰基酯中之至少一者。 AIGS奈米結構之性質 In some embodiments, the AIGS nanostructures are combined with at least one monomer incorporated into the ligand that coats the AIGS surface prior to combining with the resin. In some embodiments, a single system acrylate. In some embodiments, the mono-system ethyl acrylate, HDDA, tetrahydrofurfuryl acrylate, tri(propylene glycol) diacrylate, 1,4-bis(acryloyloxy)butane, or isobornyl acrylate at least one of esters. Properties of AIGS Nanostructures

在一些實施例中,AIGS奈米結構展示高光致發光量子產率。在一些實施例中,奈米結構展示介於約50%與約99%、約50%與約95%、約50%與約90%、約50%與約85%、約50%與約80%、約50%與約70%、約50%與約60%、60%與約99%、約60%與約95%、約60%與約90%、約60%與約85%、約60%與約80%、約60%與約70%、約70%與約99%、約70%與約95%、約70%與約90%、約70%與約85%、約70%與約80%、約80%與約99%、約80%與約95%、約80%與約90%、約80%與約85%、約85%與約99%、約85%與約95%、約80%與約85%、約85%與約99%、約85%與約90%、約90%與約99%、約90%與約95%、或約95%與約99%之間之光致發光量子產率。在一些實施例中,奈米結構展示介於約82%與約96%之間、介於約85%與約96%之間及介於約93%與約94%之間之光致發光量子產率。In some embodiments, AIGS nanostructures exhibit high photoluminescence quantum yields. In some embodiments, the nanostructure exhibits between about 50% and about 99%, about 50% and about 95%, about 50% and about 90%, about 50% and about 85%, about 50% and about 80% %, about 50% and about 70%, about 50% and about 60%, 60% and about 99%, about 60% and about 95%, about 60% and about 90%, about 60% and about 85%, about 60% and about 80%, about 60% and about 70%, about 70% and about 99%, about 70% and about 95%, about 70% and about 90%, about 70% and about 85%, about 70% with about 80%, about 80% and about 99%, about 80% and about 95%, about 80% and about 90%, about 80% and about 85%, about 85% and about 99%, about 85% and about 95%, about 80% and about 85%, about 85% and about 99%, about 85% and about 90%, about 90% and about 99%, about 90% and about 95%, or about 95% and about 99% % photoluminescence quantum yield. In some embodiments, the nanostructure exhibits between about 82% and about 96%, between about 85% and about 96%, and between about 93% and about 94% photoluminescence quanta Yield.

奈米結構之光致發光光譜可覆蓋寬的期望光譜部分。在一些實施例中,奈米結構之光致發光光譜具有介於300 nm與750 nm、300 nm與650 nm、300 nm與550 nm、300 nm與450 nm、450 nm與750 nm、450 nm與650 nm、450 nm與550 nm、450 nm與750 nm、450 nm與650 nm、450 nm與550 nm、550 nm與750 nm、550 nm與650 nm、或650 nm與750 nm之間之發射最大值。在一些實施例中,奈米結構之光致發光光譜具有介於450 nm與550 nm之間之發射最大值。The photoluminescence spectrum of the nanostructures can cover a broad desired part of the spectrum. In some embodiments, the photoluminescence spectrum of the nanostructure is between 300 nm and 750 nm, 300 nm and 650 nm, 300 nm and 550 nm, 300 nm and 450 nm, 450 nm and 750 nm, 450 nm and 450 nm. Emission maximum at 650 nm, 450 nm and 550 nm, 450 nm and 750 nm, 450 nm and 650 nm, 450 nm and 550 nm, 550 nm and 750 nm, 550 nm and 650 nm, or between 650 nm and 750 nm value. In some embodiments, the photoluminescence spectrum of the nanostructure has an emission maximum between 450 nm and 550 nm.

奈米結構之大小分佈可相對較窄。在一些實施例中,奈米結構之群體之光致發光光譜可具有介於10 nm與60 nm、10 nm與40 nm、10 nm與30 nm、10 nm與20 nm、20 nm與60 nm、20 nm與40 nm、20 nm與30 nm、25 nm與60 nm、25 nm與40 nm、25 nm與30 nm、30 nm與60 nm、30 nm與40 nm、或40 nm與60 nm之間之半峰全寬。在一些實施例中,奈米結構之群體之光致發光光譜可具有介於24 nm與50 nm之間之半峰全寬。The size distribution of the nanostructures can be relatively narrow. In some embodiments, the photoluminescence spectrum of the population of nanostructures can have a photoluminescence spectrum between 10 nm and 60 nm, 10 nm and 40 nm, 10 nm and 30 nm, 10 nm and 20 nm, 20 nm and 60 nm, 20 nm and 40 nm, 20 nm and 30 nm, 25 nm and 60 nm, 25 nm and 40 nm, 25 nm and 30 nm, 30 nm and 60 nm, 30 nm and 40 nm, or between 40 nm and 60 nm full width at half maximum. In some embodiments, the photoluminescence spectrum of the population of nanostructures can have a full width at half maximum between 24 nm and 50 nm.

在一些實施例中,奈米結構發射峰值發射波長(PWL)介於約400 nm與約650 nm、約400 nm與約600 nm、約400 nm與約550 nm、約400 nm與約500 nm、約400 nm與約450 nm、約450 nm與約650 nm、約450 nm與約600 nm、約450 nm與約550 nm、約450 nm與約500 nm、約500 nm與約650 nm、約500 nm與約600 nm、約500 nm與約550 nm、約550 nm與約650 nm、約550 nm與約600 nm、或約600 nm與約650 nm之間之光。在一些實施例中,奈米結構發射PWL介於約500 nm與約550 nm之間之光。In some embodiments, the nanostructures emit a peak emission wavelength (PWL) between about 400 nm and about 650 nm, about 400 nm and about 600 nm, about 400 nm and about 550 nm, about 400 nm and about 500 nm, About 400 nm and about 450 nm, about 450 nm and about 650 nm, about 450 nm and about 600 nm, about 450 nm and about 550 nm, about 450 nm and about 500 nm, about 500 nm and about 650 nm, about 500 nm Light between about 600 nm and about 600 nm, about 500 nm and about 550 nm, about 550 nm and about 650 nm, about 550 nm and about 600 nm, or about 600 nm and about 650 nm. In some embodiments, the nanostructures emit light with a PWL of between about 500 nm and about 550 nm.

作為藍光吸收效率之預測值,藉由量測1 cm路徑長度比色管中奈米結構溶液之光學密度並除以真空(< 200毫托)下去除所有揮發物後相同溶液之每mL之乾質量(mg/mL),計算以質量計450 nm處之光學密度(OD 450/質量)。在一些實施例中,奈米結構具有介於約0.28/mg與約0.5/mg、約0.28/mg與約0.4/mg、約0.28/mg與約0.35/mg、約0.28/mg與約0.32/mg、約0.32/mg與約0.5/mg、約0.32/mg與約0.4/mg、約0.32/mg與約0.35/mg、約0.35/mg與約0.5/mg、約0.35/mg與約0.4/mg、或約0.4/mg與約0.5/mg之間之以質量計450 nm處之光學密度(OD 450/質量)。 膜 As a predicted value for blue light absorption efficiency, the optical density of the nanostructure solution in a 1 cm path length cuvette was measured by dividing by the dryness per mL of the same solution after removing all volatiles under vacuum (< 200 mTorr). Mass (mg/mL), optical density at 450 nm by mass (OD450/mass) was calculated. In some embodiments, the nanostructures have between about 0.28/mg and about 0.5/mg, about 0.28/mg and about 0.4/mg, about 0.28/mg and about 0.35/mg, about 0.28/mg and about 0.32/mg mg, about 0.32/mg and about 0.5/mg, about 0.32/mg and about 0.4/mg, about 0.32/mg and about 0.35/mg, about 0.35/mg and about 0.5/mg, about 0.35/mg and about 0.4/mg mg, or between about 0.4/mg and about 0.5/mg optical density at 450 nm by mass (OD450/mass). membrane

本發明之奈米結構可使用任何適宜方法嵌入聚合基質中。如本文所用術語「嵌入」用於指示奈米結構由構成基質大部分組分之聚合物包圍或包裹。在一些實施例中,至少一個奈米結構群體適當地均勻分佈在整個基質中。在一些實施例中,至少一個奈米結構群體根據應用特定分佈來分佈。在一些實施例中,奈米結構混合在聚合物中並施加至基材之表面。The nanostructures of the present invention can be embedded in a polymeric matrix using any suitable method. The term "embedded" as used herein is used to indicate that the nanostructure is surrounded or encased by the polymer that constitutes the bulk of the matrix. In some embodiments, at least one population of nanostructures is suitably uniformly distributed throughout the matrix. In some embodiments, at least one population of nanostructures is distributed according to an application-specific distribution. In some embodiments, the nanostructures are mixed in a polymer and applied to the surface of the substrate.

在一些實施例中,本發明提供包含以下之奈米結構膜層: (a)    包含AIGS奈米結構之至少一個群體及至少一種與奈米結構結合之配體的組合物;及 (b)    至少一種有機樹脂。 In some embodiments, the present invention provides nanostructured films comprising: (a) a composition comprising at least one population of AIGS nanostructures and at least one ligand bound to the nanostructure; and (b) at least one organic resin.

在一些實施例中,配體之一部分與奈米結構結合。在其他實施例中,奈米結構表面經配體飽和。In some embodiments, a portion of the ligand is bound to the nanostructure. In other embodiments, the nanostructure surface is saturated with ligands.

在一些實施例中,奈米結構具有介於480 nm與545 nm之間之PWL。In some embodiments, the nanostructures have a PWL between 480 nm and 545 nm.

在一些實施例中,包含AIGS奈米結構之至少一個群體之組合物進一步包含至少一種納入塗覆AIGS表面之配體中之單體。在一些實施例中,至少一種單體係丙烯酸酯。在一些實施例中,單體係丙烯酸乙基酯、HDDA、丙烯酸四氫糠基酯、三(丙二醇)二丙烯酸酯、1,4-雙(丙烯醯基氧基)丁烷或丙烯酸異莰基酯中之至少一者。In some embodiments, the composition comprising at least one population of AIGS nanostructures further comprises at least one monomer incorporated into the ligand coating the AIGS surface. In some embodiments, at least one monosystem acrylate. In some embodiments, the mono-system ethyl acrylate, HDDA, tetrahydrofurfuryl acrylate, tri(propylene glycol) diacrylate, 1,4-bis(acryloyloxy)butane, or isobornyl acrylate at least one of esters.

本發明亦提供製備奈米結構膜層之方法,其包含: (a) 提供AIGS奈米結構之至少一個群體;及 (b)    將至少一種有機樹脂與(a)之組合物混合。 在一些實施例中,奈米結構具有介於480-545 nm之間之PWL。 The present invention also provides a method for preparing the nanostructured film, comprising: (a) providing at least one population of AIGS nanostructures; and (b) mixing at least one organic resin with the composition of (a). In some embodiments, the nanostructures have a PWL between 480-545 nm.

在一些實施例中,至少80%之發射係帶邊緣發射。在其他實施例中,至少90%之發射係帶邊緣發射。在其他實施例中,至少95%之發射係帶邊緣發射。在一些實施例中,92-98%之發射係帶邊緣發射。在一些實施例中,93-96%之發射係帶邊緣發射。In some embodiments, at least 80% of the emission fringes are edge-emitted. In other embodiments, at least 90% of the firing tethers are edge fired. In other embodiments, at least 95% of the firing tethers are edge fired. In some embodiments, 92-98% of the emission fringes are edge-emitted. In some embodiments, 93-96% of the emission is fringed edge emission.

在一些實施例中,奈米結構組合物進一步包含具有式I之胺基配體:

Figure 02_image003
(I) 其中: x係1至100; y係0至100;且 R 2係C 1-20烷基。 In some embodiments, the nanostructure composition further comprises an amine-based ligand of formula I:
Figure 02_image003
(I) wherein: x is 1 to 100; y is 0 to 100; and R 2 is C 1-20 alkyl.

在一些實施例中,x係1至100、1至50、1至20、1至10、1至5、5至100、5至50、5至20、5至10、10至100、10至50、10至20、20至100、20至50、或50至100。在一些實施例中,x係10至50。在一些實施例中,x係10至20。在一些實施例中,x係1。在一些實施例中,x係19。在一些實施例中,x係6。在一些實施例中,x係10。In some embodiments, x is 1 to 100, 1 to 50, 1 to 20, 1 to 10, 1 to 5, 5 to 100, 5 to 50, 5 to 20, 5 to 10, 10 to 100, 10 to 50, 10 to 20, 20 to 100, 20 to 50, or 50 to 100. In some embodiments, x is 10 to 50. In some embodiments, x is 10 to 20. In some embodiments, x is 1. In some embodiments, x is 19. In some embodiments, x is 6. In some embodiments, x is 10.

在一些實施例中,R 2係C 1-20烷基。在一些實施例中,R 2係C 1-10烷基。在一些實施例中,R 2係C 1-5烷基。在一些實施例中,R 2係-CH 2CH 3In some embodiments, R 2 is C 1-20 alkyl. In some embodiments, R 2 is C 1-10 alkyl. In some embodiments, R 2 is C 1-5 alkyl. In some embodiments, R 2 is -CH 2 CH 3 .

在一些實施例中,式I化合物係可自Huntsman Petrochemical Corporation商業購得之胺封端之聚合物。在一些實施例中,式(VI)之胺封端之聚合物具有x = 1、y = 9且R 2= -CH 3且係JEFFAMINE M-600 (Huntsman Petrochemical Corporation, Texas)。JEFFAMINE M-600具有約600之分子量。在一些實施例中,式(III)之胺封端之聚合物具有x = 19、y = 3且R 2= -CH 3且係JEFFAMINE M-1000 (Huntsman Petrochemical Corporation, Texas)。JEFFAMINE M-1000具有約1,000之分子量。在一些實施例中,式(III)之胺封端之聚合物具有x = 6、y = 29且R 2= -CH 3且係JEFFAMINE M-2005 (Huntsman Petrochemical Corporation, Texas)。JEFFAMINE M-2005具有約2,000之分子量。在一些實施例中,式(III)之胺封端之聚合物具有x = 31、y = 10且R 2= -CH 3且係JEFFAMINE M-2070 (Huntsman Petrochemical Corporation, Texas)。JEFFAMINE M-2070具有約2,000之分子量。在另一實施例中,配體係可自CreativePEGWorks購得之聚乙二醇胺,例如PEG550-胺及PEG350-胺。 In some embodiments, the compound of formula I is an amine terminated polymer commercially available from Huntsman Petrochemical Corporation. In some embodiments, the amine terminated polymer of formula (VI) has x=1, y= 9 and R2= -CH3 and is JEFFAMINE M-600 (Huntsman Petrochemical Corporation, Texas). JEFFAMINE M-600 has a molecular weight of about 600. In some embodiments, the amine terminated polymer of formula (III) has x=19, y= 3 and R2= -CH3 and is a JEFFAMINE M-1000 (Huntsman Petrochemical Corporation, Texas). JEFFAMINE M-1000 has a molecular weight of about 1,000. In some embodiments, the amine terminated polymer of formula (III) has x= 6 , y=29 and R2= -CH3 and is JEFFAMINE M-2005 (Huntsman Petrochemical Corporation, Texas). JEFFAMINE M-2005 has a molecular weight of about 2,000. In some embodiments, the amine terminated polymer of formula (III) has x=31, y= 10 and R2= -CH3 and is JEFFAMINE M-2070 (Huntsman Petrochemical Corporation, Texas). JEFFAMINE M-2070 has a molecular weight of about 2,000. In another embodiment, the ligands are polyethylene glycol amines, such as PEG550-amine and PEG350-amine, available from Creative PEGWorks.

在一些實施例中,奈米結構膜層係色彩轉換層。In some embodiments, the nanostructured film layer is a color conversion layer.

奈米結構組合物可藉由業內已知之任何適宜方法沈積,該等方法包括(但不限於)噴漆、噴塗、溶劑噴塗、濕式塗覆、黏著劑塗覆、旋塗、帶塗覆、輥塗、淋塗、噴墨蒸氣噴射、液滴澆注、刮刀塗覆、薄霧沈積或其組合。在一些實施例中,在沈積後固化奈米結構組合物。適宜固化方法包括光固化(例如UV固化)及熱固化。傳統層壓膜處理方法、帶塗覆方法及/或捲對捲製作方法可用於形成本發明之奈米結構膜。奈米結構組合物可直接塗覆至基材之期望層上。或者,奈米結構組合物可形成為作為獨立元件之固體層,並隨後施加至基材。在一些實施例中,奈米結構組合物可沈積於一或多個障壁層上。 旋塗 The nanostructure composition can be deposited by any suitable method known in the art including, but not limited to, painting, spraying, solvent spraying, wet coating, adhesive coating, spin coating, tape coating, roller coating coating, curtain coating, ink jet vapor jetting, drop casting, knife coating, mist deposition, or a combination thereof. In some embodiments, the nanostructure composition is cured after deposition. Suitable curing methods include photocuring (eg, UV curing) and thermal curing. Conventional lamination film processing methods, tape coating methods, and/or roll-to-roll fabrication methods can be used to form the nanostructured films of the present invention. The nanostructured composition can be applied directly to the desired layer of the substrate. Alternatively, the nanostructured composition can be formed as a solid layer as a separate element and subsequently applied to a substrate. In some embodiments, the nanostructured composition can be deposited on one or more barrier layers. spin coating

在一些實施例中,使用旋塗將奈米結構組合物沈積至基材上。在旋塗中,通常將少量材料沈積至裝載有機器(稱為旋塗器)之基材中心,該機器藉由真空固定。高速旋轉經由旋塗器施加至基材上,此導致向心力將材料自基材之中心擴散至邊緣。儘管大部分材料會被剝離,但仍有一定量之材料會保留在基材上,隨著旋轉之繼續,會在表面形成材料之薄膜。除了為旋塗製程選擇之參數(例如旋塗速度、加速度及旋塗時間)之外,膜之最終厚度亦由沈積材料及基材之性質決定。對於典型膜,使用1500至6000 rpm之旋塗速度,且旋塗時間為10-60秒。在一些實施例中,膜以極低速度(例如,低於1000 rpm)沈積。在一些實施例中,膜以約300、約400、約500、約600、約700、約800或約900 rpm澆注。 薄霧沈積 In some embodiments, spin coating is used to deposit the nanostructure composition onto the substrate. In spin coating, a small amount of material is typically deposited onto the center of a substrate loaded with a machine called a spin coater, which is held in place by a vacuum. High speed rotation is applied to the substrate via a spin coater, which causes centripetal forces to spread the material from the center of the substrate to the edges. Although most of the material is peeled off, a certain amount of material remains on the substrate, forming a thin film of material on the surface as the rotation continues. In addition to the parameters selected for the spin coating process, such as spin coating speed, acceleration, and spin coating time, the final thickness of the film is also determined by the properties of the deposition material and substrate. For typical films, spin coating speeds of 1500 to 6000 rpm are used, and spin coating times are 10-60 seconds. In some embodiments, the films are deposited at very low speeds (eg, less than 1000 rpm). In some embodiments, the film is cast at about 300, about 400, about 500, about 600, about 700, about 800, or about 900 rpm. mist deposition

在一些實施例中,使用噴霧沈積將奈米結構組合物沈積至基材上。薄霧沈積在室溫及大氣壓下進行,且藉由改變製程條件可精確控制膜厚度。在薄霧沈積期間,液體源材料會變成非常細之薄霧,並藉由氮氣帶入沈積室。然後,藉由場屏與晶圓支架之間之高壓電勢,薄霧被吸引至晶圓表面。一旦液滴在晶圓表面上聚結,將晶圓自室中取出並熱固化,以使溶劑蒸發。液體前體係溶劑及欲沈積之材料之混合物。其藉由加壓氮氣帶至霧化器。Price, S.C.等人,「Formation of Ultra-Thin Quantum Dot Films by Mist Deposition,」 ESC Transactions 11:89-94 (2007)。 噴塗 In some embodiments, the nanostructure composition is deposited onto the substrate using spray deposition. The mist deposition is performed at room temperature and atmospheric pressure, and the film thickness can be precisely controlled by changing the process conditions. During mist deposition, the liquid source material becomes a very fine mist and is carried into the deposition chamber by nitrogen gas. The mist is then attracted to the wafer surface by the high voltage potential between the field screen and the wafer holder. Once the droplets coalesce on the wafer surface, the wafer is removed from the chamber and thermally cured to allow the solvent to evaporate. A mixture of liquid pre-system solvent and material to be deposited. It was brought to the nebulizer by pressurized nitrogen gas. Price, S.C. et al., "Formation of Ultra-Thin Quantum Dot Films by Mist Deposition," ESC Transactions 11:89-94 (2007). spray

在一些實施例中,使用噴塗將奈米結構組合物沈積至基材上。噴塗之典型設備包括噴嘴、霧化器、前體溶液及載氣。在噴霧沈積製程中,藉助載氣或藉由霧化(例如,超音波、空氣鼓風或靜電)將前體溶液粉碎成微米級液滴。自霧化器出來之液滴在載氣之幫助下經由噴嘴藉由基材表面加速,載氣根據需要進行控制及調節。出於在基材上全覆蓋之目的,由設計確定噴嘴與基材之間之相對運動。In some embodiments, the nanostructure composition is deposited onto the substrate using spray coating. Typical equipment for spraying includes nozzles, atomizers, precursor solutions and carrier gas. In the spray deposition process, the precursor solution is pulverized into micron-sized droplets with the aid of a carrier gas or by atomization (eg, ultrasound, air blast, or electrostatics). The droplets coming out of the atomizer are accelerated by the surface of the substrate through a nozzle with the help of a carrier gas, which is controlled and regulated as required. The relative motion between the nozzle and the substrate is determined by design for full coverage on the substrate.

在一些實施例中,奈米結構組合物之施加進一步包含溶劑。在一些實施例中,用於施加奈米結構組合物之溶劑係水、有機溶劑、無機溶劑、鹵化有機溶劑或其混合物。闡釋性溶劑包括(但不限於)水、D 2O、丙酮、乙醇、二噁烷、乙酸乙酯、甲基乙基酮、異丙醇、茴香醚、γ-丁內酯、二甲基甲醯胺、N-甲基吡咯啶酮、二甲基乙醯胺、六甲基磷醯胺、甲苯、二甲亞碸、環戊酮、四亞甲基亞碸、二甲苯、ε-己內酯、四氫呋喃、四氯乙烯、氯仿、氯苯、二氯甲烷、1,2-二氯乙烷、1,1,2,2-四氯乙烷或其混合物。 噴墨印刷 In some embodiments, the application of the nanostructured composition further comprises a solvent. In some embodiments, the solvent used to apply the nanostructure composition is water, an organic solvent, an inorganic solvent, a halogenated organic solvent, or a mixture thereof. Illustrative solvents include, but are not limited to, water, D2O , acetone, ethanol, dioxane, ethyl acetate, methyl ethyl ketone, isopropanol, anisole, gamma-butyrolactone, dimethylmethane Amide, N-methylpyrrolidone, dimethylacetamide, hexamethylphosphoramide, toluene, dimethyl sulfoxide, cyclopentanone, tetramethylene sulfoxide, xylene, ε-caprolactone ester, tetrahydrofuran, tetrachloroethylene, chloroform, chlorobenzene, dichloromethane, 1,2-dichloroethane, 1,1,2,2-tetrachloroethane or mixtures thereof. inkjet printing

適於奈米結構之噴墨印刷之溶劑為熟習此項技術者已知。在一些實施例中,有機溶劑係在美國專利申請公開案第2018/0230321號中闡述之經取代之芳香族或雜芳香族溶劑,該專利之全文以引用方式併入本文中。Solvents suitable for ink jet printing of nanostructures are known to those skilled in the art. In some embodiments, the organic solvent is a substituted aromatic or heteroaromatic solvent described in US Patent Application Publication No. 2018/0230321, which is incorporated herein by reference in its entirety.

在一些實施例中,在用作噴墨印刷調配物之奈米結構組合物中使用之有機溶劑由其沸點、黏度及表面張力定義。適於噴墨印刷調配物之有機溶劑之性質示於表1中。 表1:用於噴墨印刷調配物之有機溶劑之性質 溶劑 沸點(℃) 黏度(mPa·s) 表面張力(達因/cm) 1-甲基萘 240 3.3 38 1-甲氧基萘 270 7.2 43 3-苯氧基甲苯 271 4.8 37 二苄基醚 298 8.7 39 苯甲酸苄基酯 324 10.0 44 苯甲酸丁基酯 249 2.7 34 苯甲酸己基酯 272 辛基苯 265 2.6 31 環己基苯 240 2.0 34 十六烷 287 3.4 28 4-甲基茴香醚 179 29 In some embodiments, the organic solvent used in the nanostructured composition used as an inkjet printing formulation is defined by its boiling point, viscosity, and surface tension. The properties of organic solvents suitable for ink jet printing formulations are shown in Table 1. Table 1: Properties of organic solvents used in inkjet printing formulations solvent Boiling point (℃) Viscosity (mPa s) Surface tension (dynes/cm) 1-Methylnaphthalene 240 3.3 38 1-Methoxynaphthalene 270 7.2 43 3-Phenoxytoluene 271 4.8 37 Dibenzyl ether 298 8.7 39 benzyl benzoate 324 10.0 44 Butyl benzoate 249 2.7 34 Hexyl Benzoate 272 Octylbenzene 265 2.6 31 Cyclohexylbenzene 240 2.0 34 hexadecane 287 3.4 28 4-Methylanisole 179 29

在一些實施例中,有機溶劑在1個大氣壓下之沸點介於約150℃與約350℃之間。在一些實施例中,有機溶劑在1個大氣壓下之沸點介於約150℃與約350℃、約150℃與約300℃、約150℃與約250℃、約150℃與約200℃、約200℃與約350℃、約200℃與約300℃、約200℃與約250℃、約250℃與約350℃、約250℃與約300℃、或約300℃與約350℃之間。In some embodiments, the boiling point of the organic solvent at 1 atmosphere is between about 150°C and about 350°C. In some embodiments, the boiling point of the organic solvent at 1 atmosphere is between about 150°C and about 350°C, about 150°C and about 300°C, about 150°C and about 250°C, about 150°C and about 200°C, about 200°C and about 350°C, about 200°C and about 300°C, about 200°C and about 250°C, about 250°C and about 350°C, about 250°C and about 300°C, or between about 300°C and about 350°C.

在一些實施例中,有機溶劑具有介於約1 mPa .s與約15 mPa .s之間之黏度。在一些實施例中,有機溶劑具有介於約1 mPa .s與約15 mPa .s、約1 mPa .s與約10 mPa .s、約1 mPa .s與約8 mPa .s、約1 mPa .s與約6 mPa .s、約1 mPa .s與約4 mPa .s、約1 mPa .s與約2 mPa .s、約2 mPa .s與約15 mPa .s、約2 mPa .s與約10 mPa .s、約2 mPa .s與約8 mPa .s、約2 mPa .s與約6 mPa .s、約2 mPa .s與約4 mPa .s、約4 mPa .s與約15 mPa .s、約4 mPa .s與約10 mPa .s、約4 mPa .s與約8 mPa .s、約4 mPa .s與約6 mPa .s、約6 mPa .s與約15 mPa .s、約6 mPa .s與約10 mPa .s、約6 mPa .s與約8 mPa .s、約8 mPa .s與約15 mPa .s、約8 mPa .s與約10 mPa .s、或約10 mPa .s與約15 mPa .s之間之黏度。 In some embodiments, the organic solvent has a viscosity between about 1 mPa.s and about 15 mPa.s. In some embodiments, the organic solvent has between about 1 mPa.s and about 15 mPa.s , about 1 mPa.s and about 10 mPa.s , about 1 mPa.s and about 8 mPa.s , about 1 mPa s with about 6 mPa.s , about 1 mPa.s with about 4 mPa.s , about 1 mPa.s with about 2 mPa.s , about 2 mPa.s with about 15 mPa.s , about 2 mPa.s with about 10 mPa.s , about 2 mPa.s with about 8 mPa.s , about 2 mPa.s with about 6 mPa.s , about 2 mPa.s with about 4 mPa.s , about 4 mPa.s with about 15 mPa.s , about 4 mPa.s and about 10 mPa.s , about 4 mPa.s and about 8 mPa.s , about 4 mPa.s and about 6 mPa.s , about 6 mPa.s and about 15 mPa s , about 6 mPa.s and about 10 mPa.s , about 6 mPa.s and about 8 mPa.s , about 8 mPa.s and about 15 mPa.s , about 8 mPa.s and about 10 mPa.s , or a viscosity between about 10 mPa.s and about 15 mPa.s.

在一些實施例中,有機溶劑具有介於約20達因/cm與約50達因/cm之間之表面張力。在一些實施例中,有機溶劑具有介於約20達因/cm與約50達因/cm、約20達因/cm與約40達因/cm、約20達因/cm與約35達因/cm、約20達因/cm與約30達因/cm、約20達因/cm與約25達因/cm、約25達因/cm與約50達因/cm、約25達因/cm與約40達因/cm、約25達因/cm與約35達因/cm、約25達因/cm與約30達因/cm、約30達因/cm與約50達因/cm、約30達因/cm與約40達因/cm、約30達因/cm與約35達因/cm、約35達因/cm與約50達因/cm、約35達因/cm與約40達因/cm、或約40達因/cm與約50達因/cm之間之表面張力。In some embodiments, the organic solvent has a surface tension between about 20 dynes/cm and about 50 dynes/cm. In some embodiments, the organic solvent has between about 20 dynes/cm and about 50 dynes/cm, about 20 dynes/cm and about 40 dynes/cm, about 20 dynes/cm and about 35 dynes/cm /cm, about 20 dynes/cm and about 30 dynes/cm, about 20 dynes/cm and about 25 dynes/cm, about 25 dynes/cm and about 50 dynes/cm, about 25 dynes/cm cm and about 40 dynes/cm, about 25 dynes/cm and about 35 dynes/cm, about 25 dynes/cm and about 30 dynes/cm, about 30 dynes/cm and about 50 dynes/cm , about 30 dynes/cm and about 40 dynes/cm, about 30 dynes/cm and about 35 dynes/cm, about 35 dynes/cm and about 50 dynes/cm, about 35 dynes/cm and about A surface tension of about 40 dynes/cm, or between about 40 dynes/cm and about 50 dynes/cm.

在一些實施例中,奈米結構組合物中使用之有機溶劑係烷基萘、烷氧基萘、烷基苯、芳基、烷基取代之苯、環烷基苯、C 9-C 20烷烴、二芳基醚、苯甲酸烷基酯、苯甲酸芳基酯或烷氧基取代之苯。 In some embodiments, the organic solvent used in the nanostructure composition is alkylnaphthalene, alkoxynaphthalene, alkylbenzene, aryl, alkyl substituted benzene, cycloalkylbenzene, C9 - C20 alkane , diaryl ether, alkyl benzoate, aryl benzoate or alkoxy substituted benzene.

在一些實施例中,奈米結構組合物中使用之有機溶劑係1-四氫萘酮、3-苯氧基甲苯、苯乙酮、1-甲氧基萘、正辛基苯、正壬基苯、4-甲基茴香醚、正癸基苯、對二異丙基苯、戊基苯、四氫萘、環己基苯、氯萘、1,4-二甲基萘、3-異丙基聯苯、對甲基異丙苯、二戊基苯、鄰-二乙苯、間-二乙苯、對二乙苯、1,2,3,4-四甲苯、1,2,3,5-四甲苯、1,2,4,5-四甲苯、丁基苯、十二烷基苯、1-甲基萘、1,2,4-三氯苯、二苯醚、二苯基甲烷、4-異丙基聯苯、苯甲酸苄基酯、1,2-聯(3,4-二甲基苯基)乙烷、2-異丙基萘、二苄基醚或其組合。在一些實施例中,奈米結構組合物中使用之有機溶劑係1-甲基萘、正辛基苯、1-甲氧基萘、3-苯氧基甲苯、環己基苯、4-甲基茴香醚、正癸基苯或其組合。In some embodiments, the organic solvent used in the nanostructure composition is 1-tetralone, 3-phenoxytoluene, acetophenone, 1-methoxynaphthalene, n-octylbenzene, n-nonyl Benzene, 4-methylanisole, n-decylbenzene, p-diisopropylbenzene, amylbenzene, tetrahydronaphthalene, cyclohexylbenzene, chloronaphthalene, 1,4-dimethylnaphthalene, 3-isopropyl Biphenyl, p-Cumylbenzene, Dipentylbenzene, o-diethylbenzene, m-diethylbenzene, p-diethylbenzene, 1,2,3,4-tetratoluene, 1,2,3,5 -Tetratoluene, 1,2,4,5-tetratoluene, butylbenzene, dodecylbenzene, 1-methylnaphthalene, 1,2,4-trichlorobenzene, diphenyl ether, diphenylmethane, 4-isopropylbiphenyl, benzyl benzoate, 1,2-bi(3,4-dimethylphenyl)ethane, 2-isopropylnaphthalene, dibenzyl ether, or combinations thereof. In some embodiments, the organic solvent used in the nanostructure composition is 1-methylnaphthalene, n-octylbenzene, 1-methoxynaphthalene, 3-phenoxytoluene, cyclohexylbenzene, 4-methylnaphthalene Anisole, n-decylbenzene, or a combination thereof.

在一些實施例中,有機溶劑係無水有機溶劑。在一些實施例中,有機溶劑係實質上無水之有機溶劑。In some embodiments, the organic solvent is an anhydrous organic solvent. In some embodiments, the organic solvent is a substantially anhydrous organic solvent.

在一些實施例中,有機溶劑係非揮發性單體或選自上文提供之清單之單體之組合。In some embodiments, the organic solvent is a non-volatile monomer or a combination of monomers selected from the list provided above.

在一些實施例中,奈米結構組合物中之有機溶劑之重量%介於約70%與約99%之間。在一些實施例中,奈米結構組合物中之有機溶劑之重量%介於約70%與約99%、約70%與約98%、約70%與約95%、約70%與約90%、約70%與約85%、約70%與約80%、約70%與約75%、約75%與約99%、約75%與約98%、約75%與約95%、約75%與約90%、約75%與約85%、約75%與約80%、約80%與約99%、約80%與約98%、約80%與約95%、約80%與約90%、約80%與約85%、約85%與約99%、約85%與約98%、約85%與約95%、約85%與約90%、約90%與約99%、約90%與約98%、約90%與約95%、約95%與約99%、約95%與約98%、或約98%與約99%之間。在一些實施例中,奈米結構組合物中之有機溶劑之重量%介於約95%與約99%之間。In some embodiments, the weight % of the organic solvent in the nanostructure composition is between about 70% and about 99%. In some embodiments, the weight % of the organic solvent in the nanostructure composition is between about 70% and about 99%, about 70% and about 98%, about 70% and about 95%, about 70% and about 90% %, about 70% and about 85%, about 70% and about 80%, about 70% and about 75%, about 75% and about 99%, about 75% and about 98%, about 75% and about 95%, About 75% and about 90%, about 75% and about 85%, about 75% and about 80%, about 80% and about 99%, about 80% and about 98%, about 80% and about 95%, about 80% % and about 90%, about 80% and about 85%, about 85% and about 99%, about 85% and about 98%, about 85% and about 95%, about 85% and about 90%, about 90% and about Between about 99%, about 90% and about 98%, about 90% and about 95%, about 95% and about 99%, about 95% and about 98%, or about 98% and about 99%. In some embodiments, the weight % of the organic solvent in the nanostructure composition is between about 95% and about 99%.

在一些實施例中,用於噴墨印刷之組合物進一步包含納入塗覆AIGS表面之配體中之單體。在一些實施例中,單體係丙烯酸酯。在一些實施例中,單體係丙烯酸乙基酯、HDDA、丙烯酸四氫糠基酯、三(丙二醇)二丙烯酸酯、1,4-雙(丙烯醯基氧基)丁烷或丙烯酸異莰基酯中之至少一者。已發現,在噴墨組合物中使用單體提供噴墨組合物中AIGS奈米結構之更好相容性,改良QY,並改良藍光吸收。 膜固化 In some embodiments, the composition for inkjet printing further comprises a monomer incorporated into the ligand that coats the AIGS surface. In some embodiments, a single system acrylate. In some embodiments, the mono-system ethyl acrylate, HDDA, tetrahydrofurfuryl acrylate, tri(propylene glycol) diacrylate, 1,4-bis(acryloyloxy)butane, or isobornyl acrylate at least one of esters. It has been found that the use of monomers in inkjet compositions provides better compatibility of AIGS nanostructures in inkjet compositions, improves QY, and improves blue light absorption. Film curing

在一些實施例中,組合物經熱固化以形成奈米結構層。在一些實施例中,使用UV光固化組合物。在一些實施例中,將奈米結構組合物直接塗覆至奈米結構膜之障壁層上,且隨後在奈米結構層上沈積額外障壁層以產生奈米結構膜。可在障壁膜下方使用支撐基材,以增加強度、穩定性及塗覆均勻性,並防止材料不一致、氣泡形成以及障壁層材料或其他材料之起皺或摺疊。此外,可在奈米結構層上沈積一或多個障壁層,以密封頂部與底部障壁層之間之材料。適宜地,障壁層可作為層壓膜沈積,並視情況經密封或進一步處理,之後將奈米結構膜納入特定照明裝置中。如熟習此項技術者將理解,奈米結構組合物沈積製程可包括額外或變化之組分。該等實施例將允許奈米結構發射特徵(例如亮度及顏色(例如,用以調整量子膜白點))、以及奈米結構膜厚度及其他特徵之在線製程調整。此外,該等實施例將允許在產生期間對奈米結構膜特徵進行定期測試,以及任何必要之切換以實現精確奈米結構膜特徵。該等測試及調整亦可在不改變生產線之機械構形之情況下完成,此乃因可採用電腦程式電子地改變在形成奈米結構膜中使用之混合物之各別量。In some embodiments, the composition is thermally cured to form the nanostructured layer. In some embodiments, the compositions are cured using UV light. In some embodiments, the nanostructured composition is directly coated onto the barrier layer of the nanostructured film, and then additional barrier layers are deposited on the nanostructured layer to produce the nanostructured film. A support substrate can be used under the barrier film to increase strength, stability, and coating uniformity, and to prevent material inconsistencies, bubble formation, and wrinkling or folding of the barrier layer material or other materials. Additionally, one or more barrier layers can be deposited on the nanostructure layer to seal the material between the top and bottom barrier layers. Suitably, the barrier layer can be deposited as a laminate film and optionally sealed or further processed prior to incorporating the nanostructured film into a particular lighting device. As will be understood by those skilled in the art, the nanostructure composition deposition process may include additional or varying components. These embodiments will allow for in-process adjustment of nanostructure emission characteristics such as brightness and color (eg, to adjust quantum film white point), as well as nanostructure film thickness and other characteristics. Furthermore, these embodiments will allow for periodic testing of nanostructured film features during production, as well as any necessary switching to achieve precise nanostructured film features. These tests and adjustments can also be accomplished without changing the mechanical configuration of the production line, as computer programs can be used to electronically vary the individual amounts of the mixtures used in forming the nanostructured films.

已發現,當在為奈米結構提供無氧環境之前在未將AIGS奈米晶體暴露於藍光或UV光之情況下處理膜時,可獲得具有高PCE之奈米結構膜。無氧環境可藉由以下提供: (a)    在熱處理及/或暴露於藍光以進行PCE量測之前,用氧障壁囊封膜; (b)    在熱處理或光暴露期間使用氧反應性材料作為調配物之一部分;及/或 (c)    經由使用犧牲障壁層暫時阻擋氧氣。 It has been found that nanostructured films with high PCE can be obtained when the films are processed without exposing the AIGS nanocrystals to blue or UV light prior to providing the nanostructures with an oxygen-free environment. An oxygen-free environment can be provided by: (a) Encapsulate the film with an oxygen barrier prior to heat treatment and/or exposure to blue light for PCE measurements; (b) using an oxygen reactive material as part of the formulation during heat treatment or light exposure; and/or (c) Temporarily blocking oxygen through the use of sacrificial barrier layers.

在一些實施例中,可藉由能夠在AIGS層上形成氧屏障之任何方法來實現PCE之改良。在含有該等AIGS-CC層之裝置之大量生產中,囊封可使用氣相沈積方法實施。在此情形下,典型製程流程包含噴墨印刷AIGS層,之後用UV輻照固化,在180℃下烘烤以去除揮發物,沈積有機平面化層,然後沈積無機障壁層。用於沈積無機層之技術可包括原子層沈積(ALD)、分子層沈積(MLD)、化學氣相沈積(CVD)(有或沒有電漿增強)、脈衝氣相沈積(PVD)、濺鍍或金屬蒸發。其他潛在囊封方法包括溶液處理或印刷之有機層、UV或熱固化黏著劑、使用障壁膜之層壓等。In some embodiments, the improvement of PCE can be achieved by any method capable of forming an oxygen barrier on the AIGS layer. In mass production of devices containing these AIGS-CC layers, encapsulation can be performed using vapor deposition methods. In this case, a typical process flow involves inkjet printing of an AIGS layer, followed by curing with UV radiation, baking at 180° C. to remove volatiles, depositing an organic planarization layer, and then depositing an inorganic barrier layer. Techniques for depositing inorganic layers may include atomic layer deposition (ALD), molecular layer deposition (MLD), chemical vapor deposition (CVD) (with or without plasma enhancement), pulsed vapor deposition (PVD), sputtering or Metal evaporates. Other potential encapsulation methods include solution-processed or printed organic layers, UV or thermally cured adhesives, lamination using barrier films, and the like.

在一些實施例中,將膜囊封在惰性氣氛中。在一些實施例中,將膜囊封在氮或氬氣氛中。In some embodiments, the membrane is encapsulated in an inert atmosphere. In some embodiments, the membrane is encapsulated in a nitrogen or argon atmosphere.

氧反應性材料包括比AIGS奈米結構更易與氧反應之任何材料。氧反應性材料之實例包括(但不限於)膦、亞磷酸酯、金屬-有機前體、氮化鈦及氮化鉭。在一些實施例中,膦可為C 1-20三烷基膦中之任一者。在一個實施例中,膦係三辛基膦。在一些實施例中,亞磷酸酯可為三烷基亞磷酸酯、烷基芳基亞磷酸酯或三芳基亞磷酸酯。在一些實施例中,金屬-有機前體可為三烷基鋁、三烷基鎵、三烷基銦、二烷基鋅等。 Oxygen reactive materials include any material that is more reactive with oxygen than AIGS nanostructures. Examples of oxygen-reactive materials include, but are not limited to, phosphines, phosphites, metal-organic precursors, titanium nitride, and tantalum nitride. In some embodiments, the phosphine can be any one of C 1-20 trialkylphosphines. In one embodiment, the phosphine is trioctylphosphine. In some embodiments, the phosphite can be a trialkyl phosphite, an alkylaryl phosphite, or a triaryl phosphite. In some embodiments, the metal-organic precursor may be trialkylaluminum, trialkylgallium, trialkylindium, dialkylzinc, and the like.

犧牲障壁層之實例包括可在溶劑中溶解及洗掉之聚合物層。該等聚合物之實例包括(但不限於)聚乙烯醇、聚乙酸乙烯酯及聚乙二醇。犧牲障壁層之其他實例包括無機化合物或鹽,例如矽酸鋰、氟化鋰等。可用於洗掉犧牲層之溶劑之實例包括水及有機溶劑,例如醇(例如乙醇、甲醇)、鹵代烴(例如二氯甲烷及氯乙烯)、芳香族烴(例如甲苯、二甲苯)、脂肪族烴(例如己烷、辛烷、十八烯)、四氫呋喃、C 4-20醚(例如乙醚)及C 2-20酯(例如乙酸乙酯)。 奈米結構膜特徵及實施例 Examples of sacrificial barrier layers include polymer layers that can be dissolved and washed away in a solvent. Examples of such polymers include, but are not limited to, polyvinyl alcohol, polyvinyl acetate, and polyethylene glycol. Other examples of sacrificial barrier layers include inorganic compounds or salts such as lithium silicate, lithium fluoride, and the like. Examples of solvents that can be used to wash off the sacrificial layer include water and organic solvents such as alcohols (eg, ethanol, methanol), halogenated hydrocarbons (eg, methylene chloride and vinyl chloride), aromatic hydrocarbons (eg, toluene, xylene), aliphatics Hydrocarbons (eg, hexane, octane, octadecene), tetrahydrofuran, C4-20 ethers (eg, diethyl ether), and C2-20 esters (eg, ethyl acetate). Nanostructured Membrane Features and Examples

在一些實施例中,本發明之奈米結構膜用於形成顯示裝置。如本文所用,顯示裝置係指具有照明顯示器之任何系統。該等裝置包括(但不限於)涵蓋液晶顯示器(LCD)、電視、電腦、行動電話、智慧型手機、個人數位助理(PDA)、遊戲裝置、電子閱讀裝置、數位照相機、增強現實/虛擬現實(AR/VR)眼鏡、光投影系統、平視顯示器及諸如此類之裝置。In some embodiments, the nanostructured films of the present invention are used to form display devices. As used herein, a display device refers to any system having an illuminated display. Such devices include, but are not limited to, liquid crystal displays (LCDs), televisions, computers, mobile phones, smart phones, personal digital assistants (PDAs), gaming devices, electronic reading devices, digital cameras, augmented reality/virtual reality ( AR/VR) glasses, light projection systems, head-up displays, and the like.

在一些實施例中,奈米結構膜係奈米結構色彩轉換層之一部分。In some embodiments, the nanostructured film is part of the nanostructured color conversion layer.

在一些實施例中,顯示裝置包含奈米結構色彩轉換器。在一些實施例中,顯示裝置包含底板;佈置於底板上之顯示面板;及奈米結構層。在一些實施例中,奈米結構層佈置於顯示面板上。在一些實施例中,奈米結構層包含圖案化奈米結構層。In some embodiments, the display device includes a nanostructured color converter. In some embodiments, a display device includes a backplane; a display panel disposed on the backplane; and a nanostructure layer. In some embodiments, the nanostructure layer is disposed on the display panel. In some embodiments, the nanostructure layer includes a patterned nanostructure layer.

在一些實施例中,背板包含藍色LED、LCD、OLED或微型LED。In some embodiments, the backplane includes blue LEDs, LCDs, OLEDs, or micro LEDs.

在一些實施例中,奈米結構層佈置於光源元件上。在一些實施例中,奈米結構層包含圖案化奈米結構層。圖案化奈米結構層可藉由業內任何已知之方法製備。在一個實施例中,圖案化奈米結構層係藉由奈米結構溶液之噴墨印刷來製備。適用於該溶液之溶劑包括(但不限於)二丙二醇單甲醚乙酸酯(DPMA)、聚甲基丙烯酸縮水甘油酯(PGMA)、二甘醇單乙醚乙酸酯(EDGAC)及丙二醇甲醚乙酸酯(PGMEA)。揮發性溶劑亦可用於噴墨印刷,此乃因其允許快速乾燥。揮發性溶劑包括乙醇、甲醇、1-丙醇、2-丙醇、丙酮、甲基乙基酮、甲基異丁基酮、乙酸乙酯及四氫呋喃。或者,其中AIGS奈米結構分散在油墨單體中之「無溶劑」油墨可用於噴墨印刷。In some embodiments, the nanostructure layer is disposed on the light source element. In some embodiments, the nanostructure layer includes a patterned nanostructure layer. The patterned nanostructured layer can be prepared by any method known in the art. In one embodiment, the patterned nanostructured layer is prepared by inkjet printing of nanostructured solutions. Suitable solvents for this solution include, but are not limited to, dipropylene glycol monomethyl ether acetate (DPMA), polyglycidyl methacrylate (PGMA), diethylene glycol monoethyl ether acetate (EDGAC), and propylene glycol methyl ether Acetate (PGMEA). Volatile solvents can also be used in inkjet printing because they allow for fast drying. Volatile solvents include ethanol, methanol, 1-propanol, 2-propanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, and tetrahydrofuran. Alternatively, "solvent free" inks in which the AIGS nanostructures are dispersed in the ink monomer can be used for inkjet printing.

在一些實施例中,用組合物噴墨印刷AIGS奈米結構,該組合物亦包含至少一種納入塗覆AIGS表面之配體中之單體。在一些實施例中,至少一種單體係丙烯酸酯。在一些實施例中,丙烯酸酯係丙烯酸乙基酯、丙烯酸四氫糠基酯、三(丙二醇)二丙烯酸酯、1,4-雙(丙烯醯基氧基)丁烷或丙烯酸異莰基酯中之至少一者。已發現,在配體交換期間用至少一種單體處理之AIGS奈米結構提供與HDDA (噴墨可印刷油墨中使用之常見單體)更好之相容性,改良QY及藍光吸收。In some embodiments, AIGS nanostructures are inkjet printed with a composition that also includes at least one monomer incorporated into a ligand that coats the AIGS surface. In some embodiments, at least one monosystem acrylate. In some embodiments, the acrylate is in ethyl acrylate, tetrahydrofurfuryl acrylate, tri(propylene glycol) diacrylate, 1,4-bis(acryloyloxy)butane, or isobornyl acrylate at least one of them. It has been found that AIGS nanostructures treated with at least one monomer during ligand exchange provide better compatibility with HDDA (a common monomer used in inkjet printable inks), improving QY and blue light absorption.

在一些實施例中,奈米結構層具有介於約1 μm與約25 μm之間之厚度。在一些實施例中,奈米結構層具有介於約5 μm與約25 μm之間之厚度。在一些實施例中,奈米結構層具有介於約10 μm與約12 μm之間之厚度。In some embodiments, the nanostructure layer has a thickness between about 1 μm and about 25 μm. In some embodiments, the nanostructure layer has a thickness between about 5 μm and about 25 μm. In some embodiments, the nanostructure layer has a thickness between about 10 μm and about 12 μm.

在一些實施例中,奈米結構顯示裝置展現至少32%之PCE。在一些實施例中,奈米結構模製製品展現32-40%之PCE。在一些實施例中,奈米結構模製製品展現33-40%、34-40%、35-40%、36-40%、37-40%、38-40%、39-40%、33-39%、34-39%、35-39%、36-39%、37-39%、38-39%、33-38%、34-38%、35-38%、36-38%、37-38%、33-37%、34-37%、35-37%、36-37%、33-36%、34-36%、35-36%、33-35 %、或34-35%之PCE。In some embodiments, the nanostructured display device exhibits a PCE of at least 32%. In some embodiments, the nanostructured molded articles exhibit a PCE of 32-40%. In some embodiments, the nanostructured molded articles exhibit 33-40%, 34-40%, 35-40%, 36-40%, 37-40%, 38-40%, 39-40%, 33-40% 39%, 34-39%, 35-39%, 36-39%, 37-39%, 38-39%, 33-38%, 34-38%, 35-38%, 36-38%, 37- 38%, 33-37%, 34-37%, 35-37%, 36-37%, 33-36%, 34-36%, 35-36%, 33-35%, or 34-35% of PCE .

在一些實施例中,包含奈米結構層之光學膜實質上不含鎘。如本文所用術語「實質上不含鎘」欲指奈米結構組合物含有以重量計小於100 ppm之鎘。RoHS符合性定義要求,原料均質前體材料中應存在不超過以重量計0.01% (100 ppm)之鎘。鎘濃度可藉由電感耦合電漿質譜術(ICP-MS)分析來量測,且為十億分率(ppb)位準。在一些實施例中,「實質上不含鎘」之光學膜含有10至90 ppm之鎘。在其他實施例中,實質上不含鎘之光學膜含有小於約50 ppm、小於約20 ppm、小於約10 ppm、或小於約1 ppm之鎘。 奈米結構模製製品 In some embodiments, the optical film including the nanostructured layer is substantially free of cadmium. The term "substantially free of cadmium" as used herein is intended to mean that the nanostructured composition contains less than 100 ppm by weight of cadmium. The RoHS compliance definition requires that no more than 0.01% by weight (100 ppm) of cadmium should be present in the raw homogeneous precursor material. Cadmium concentrations can be measured by inductively coupled plasma mass spectrometry (ICP-MS) analysis and are at the parts per billion (ppb) level. In some embodiments, an optical film that is "substantially free of cadmium" contains 10 to 90 ppm of cadmium. In other embodiments, the optical film that is substantially free of cadmium contains less than about 50 ppm, less than about 20 ppm, less than about 10 ppm, or less than about 1 ppm of cadmium. Nanostructured molded articles

在一些實施例中,本發明提供奈米結構模製製品,其包含: (a)    第一障壁層; (b)    第二障壁層;及 (c)    在第一障壁層與第二障壁層之間之奈米結構層,其中奈米結構層包含含有AIGS奈米結構之奈米結構群體;及至少一種有機樹脂。 In some embodiments, the present invention provides nanostructured molded articles comprising: (a) the first barrier layer; (b) the second barrier layer; and (c) a nanostructure layer between the first barrier layer and the second barrier layer, wherein the nanostructure layer comprises a nanostructure population comprising AIGS nanostructures; and at least one organic resin.

在一些實施例中,奈米結構具有介於480-545 nm之間之PWL。In some embodiments, the nanostructures have a PWL between 480-545 nm.

在一些實施例中,至少80%之發射係帶邊緣發射。在其他實施例中,至少90%之發射係帶邊緣發射。在其他實施例中,至少95%之發射係帶邊緣發射。在一些實施例中,92-98%之發射係帶邊緣發射。在一些實施例中,93-96%之發射係帶邊緣發射。在一些實施例中,奈米結構模製製品展現至少32%之PCE。在一些實施例中,奈米結構模製製品展現32-40%之PCE。在一些實施例中,奈米結構模製製品展現33-40%、34-40%、35-40%、36-40%、37-40%、38-40%、39-40%、33-39%、34-39%、35-39%、36-39%、37-39%、38-39%、33-38%、34-38%、35-38%、36-38%、37-38%、33-37%、34-37%、35-37%、36-37%、33-36%、34-36%、35-36%、33-35 %、或34-35%之PCE。 障壁層 In some embodiments, at least 80% of the emission fringes are edge-emitted. In other embodiments, at least 90% of the firing tethers are edge fired. In other embodiments, at least 95% of the firing tethers are edge fired. In some embodiments, 92-98% of the emission fringes are edge-emitted. In some embodiments, 93-96% of the emission is fringed edge emission. In some embodiments, the nanostructured molded articles exhibit a PCE of at least 32%. In some embodiments, the nanostructured molded articles exhibit a PCE of 32-40%. In some embodiments, the nanostructured molded articles exhibit 33-40%, 34-40%, 35-40%, 36-40%, 37-40%, 38-40%, 39-40%, 33-40% 39%, 34-39%, 35-39%, 36-39%, 37-39%, 38-39%, 33-38%, 34-38%, 35-38%, 36-38%, 37- 38%, 33-37%, 34-37%, 35-37%, 36-37%, 33-36%, 34-36%, 35-36%, 33-35%, or 34-35% of PCE . barrier layer

在一些實施例中,奈米結構模製製品包含佈置在奈米結構層之一側或兩側上之一或多個障壁層。適宜障壁層保護奈米結構層及奈米結構模製製品免受諸如高溫、氧氣及水分等環境條件之影響。適宜障壁材料包括不泛黃之透明光學材料,其係疏水的,在化學及機械上與奈米結構模製製品相容,展現光及化學穩定性,且能夠耐受高溫。在一些實施例中,一或多個障壁層與奈米結構模製製品折射率匹配。在一些實施例中,奈米結構模製製品之基質材料及一或多個毗鄰障壁層進行折射率匹配以具有相似折射率,使得穿過障壁層向奈米結構模製製品透射之大部分光自障壁層透射至奈米結構層中。此折射率匹配降低障壁與基質材料之間之界面處之光學損失。In some embodiments, the nanostructure molded article includes one or more barrier layers disposed on one or both sides of the nanostructure layer. Suitable barrier layers protect the nanostructured layers and nanostructured molded articles from environmental conditions such as high temperature, oxygen, and moisture. Suitable barrier materials include non-yellowing transparent optical materials that are hydrophobic, chemically and mechanically compatible with nanostructured moldings, exhibit optical and chemical stability, and are able to withstand high temperatures. In some embodiments, the one or more barrier layers are index-matched to the nanostructured molded article. In some embodiments, the matrix material of the nanostructured molded article and one or more adjacent barrier layers are index matched to have similar refractive indices such that a majority of the light transmitted through the barrier layer to the nanostructured molded article is Transmission from the barrier layer into the nanostructure layer. This index matching reduces optical losses at the interface between the barrier and the matrix material.

障壁層適宜地為固體材料,且可為固化之液體、凝膠或聚合物。根據特定應用,障壁層可包括撓性或非撓性材料。障壁層通常係平面層,且端視特定照明應用而定,可包括任何適宜形狀及表面積構形。在一些實施例中,一或多個障壁層將與層壓膜處理技術相容,其中奈米結構層佈置在至少第一障壁層上,且至少第二障壁層佈置在與奈米結構層相對之一側上之奈米結構層上,以形成根據本發明之一個實施例之奈米結構模製製品。適宜障壁材料包括業內已知之任何適宜障壁材料。舉例而言,適宜障壁材料包括玻璃、聚合物及氧化物。適宜障壁層材料包括(但不限於)聚合物,例如聚對苯二甲酸乙二醇酯(PET);氧化物,例如氧化矽、氧化鈦或氧化鋁(例如SiO 2、Si 2O 3、TiO 2或Al 2O 3);以及其適宜組合。在一些實施例中,奈米結構模製製品之每一障壁層包含至少2個包含不同材料或組合物之層,使得多層障壁層消除或減少障壁層中之針孔缺陷對準,從而提供有效阻擋氧氣及水分滲透至奈米結構層中。奈米結構層可在奈米結構層之任一側或兩側上包括任何適宜材料或材料之組合以及任何適宜數量之障壁層。障壁層之材料、厚度及數量將取決於特定應用,且適宜地經選擇以最大化障壁保護及奈米結構層之亮度,同時最小化奈米結構模製製品之厚度。在一些實施例中,每一障壁層包含層壓膜,在一些實施例中,雙層壓膜,其中每一障壁層之厚度足夠厚以消除捲對捲或層壓製造過程中之起皺。在其中奈米結構包含重金屬或其他有毒材料之實施例中,障壁之數量或厚度可進一步取決於法定毒性指南,該等指南可能要求更多或更厚之障壁層。障壁之額外考慮因素包括成本、可用性及機械強度。 The barrier layer is suitably a solid material and can be a solidified liquid, gel or polymer. Depending on the particular application, the barrier layer may comprise a flexible or non-flexible material. The barrier layer is typically a planar layer and, depending on the particular lighting application, can include any suitable shape and surface area configuration. In some embodiments, the one or more barrier layers will be compatible with lamination film processing techniques, wherein the nanostructure layer is disposed on at least a first barrier layer and at least a second barrier layer is disposed opposite the nanostructure layer on the nanostructured layer on one side to form a nanostructured molded article according to one embodiment of the present invention. Suitable barrier materials include any suitable barrier materials known in the art. For example, suitable barrier materials include glass, polymers, and oxides. Suitable barrier layer materials include, but are not limited to, polymers such as polyethylene terephthalate (PET); oxides such as silicon oxide, titanium oxide, or aluminum oxide (eg SiO 2 , Si 2 O 3 , TiO 2 or Al 2 O 3 ); and suitable combinations thereof. In some embodiments, each barrier layer of the nanostructured molded article comprises at least 2 layers comprising different materials or compositions, such that the multilayer barrier layers eliminate or reduce pinhole defect alignment in the barrier layers, thereby providing effective Blocks the penetration of oxygen and moisture into the nanostructured layer. The nanostructured layer may include any suitable material or combination of materials and any suitable number of barrier layers on either or both sides of the nanostructured layer. The material, thickness and quantity of the barrier layer will depend on the particular application and is suitably selected to maximize barrier protection and brightness of the nanostructured layer while minimizing the thickness of the nanostructured molded article. In some embodiments, each barrier layer comprises a laminate film, in some embodiments, a bilayer laminate, wherein the thickness of each barrier layer is sufficiently thick to eliminate wrinkling during roll-to-roll or lamination manufacturing. In embodiments where the nanostructures contain heavy metals or other toxic materials, the number or thickness of the barriers may further depend on legal toxicity guidelines, which may require more or thicker barrier layers. Additional considerations for barriers include cost, availability and mechanical strength.

在一些實施例中,奈米結構膜包含毗鄰奈米結構層之每一側之兩個或多個障壁層,例如,在奈米結構層之每一側上之兩個或三個層或在每一側上之兩個障壁層。在一些實施例中,每一障壁層包含薄玻璃板,例如厚度為約100 µm、100 µm或更小、或50 µm或更小之玻璃板。In some embodiments, the nanostructured film includes two or more barrier layers adjacent to each side of the nanostructured layer, eg, two or three layers on each side of the nanostructured layer or Two barrier layers on each side. In some embodiments, each barrier layer comprises a thin glass plate, such as a glass plate having a thickness of about 100 μm, 100 μm or less, or 50 μm or less.

如熟習此項技術者所理解,本發明之奈米結構膜之每一障壁層可具有任何適宜厚度,此將取決於照明裝置及應用之特定要求及特徵,以及諸如障壁層及奈米結構層等個別膜組分。在一些實施例中,每一障壁層可具有50 µm或更小、40 µm或更小、30 µm或更小、25 µm或更小、20 µm或更小、或15 µm或更小之厚度。在某些實施例中,障壁層包括氧化物塗層,其可包含諸如氧化矽、氧化鈦及氧化鋁(例如SiO 2、Si 2O 3、TiO 2或Al 2O 3)等材料。氧化物塗層可具有約10 µm或更小、5 µm或更小、1 µm或更小、或100 nm或更小之厚度。在某些實施例中,障壁包含厚度為約100 nm或更小、10 nm或更小、5 nm或更小、或3 nm或更小之薄氧化物塗層。頂部及/或底部障壁可由薄氧化物塗層組成,或可包含薄氧化物塗層及一或多個額外材料層。 具有奈米結構色彩轉換層之顯示裝置 As will be understood by those skilled in the art, each barrier layer of the nanostructured films of the present invention may have any suitable thickness, which will depend on the specific requirements and characteristics of the lighting device and application, as well as factors such as barrier layer and nanostructured layer. and other individual membrane components. In some embodiments, each barrier layer can have a thickness of 50 μm or less, 40 μm or less, 30 μm or less, 25 μm or less, 20 μm or less, or 15 μm or less . In certain embodiments, the barrier layer includes an oxide coating, which may include materials such as silicon oxide, titanium oxide, and aluminum oxide (eg, SiO 2 , Si 2 O 3 , TiO 2 , or Al 2 O 3 ). The oxide coating can have a thickness of about 10 μm or less, 5 μm or less, 1 μm or less, or 100 nm or less. In certain embodiments, the barrier ribs comprise a thin oxide coating having a thickness of about 100 nm or less, 10 nm or less, 5 nm or less, or 3 nm or less. The top and/or bottom barriers may consist of a thin oxide coating, or may comprise a thin oxide coating and one or more additional layers of material. Display device with nanostructured color conversion layer

在一些實施例中,本發明提供顯示裝置,其包含: (a)    用以發射第一光之顯示面板; (b)    經構形以向顯示面板提供第一光之背光單元;及 (c)    包含至少一個包含色彩轉換層之像素區之濾色器。 In some embodiments, the present invention provides a display device comprising: (a) a display panel for emitting the first light; (b) a backlight unit configured to provide the first light to the display panel; and (c) includes at least one color filter including the pixel region of the color conversion layer.

在一些實施例中,濾色器包含至少1、2、3、4、5、6、7、8、9或10個像素區。在一些實施例中,當藍光入射於濾色器上時,可穿過像素區域分別發射紅光、白光、綠光及/或藍光。在一些實施例中,濾色器闡述於美國專利第9,971,076號中,其全文以引用方式併入本文中。In some embodiments, the color filter includes at least 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 pixel regions. In some embodiments, when blue light is incident on the color filter, red light, white light, green light, and/or blue light, respectively, may be emitted through the pixel area. In some embodiments, color filters are described in US Patent No. 9,971,076, which is incorporated herein by reference in its entirety.

在一些實施例中,每一像素區包括色彩轉換層。在一些實施例中,色彩轉換層包含經構形以將入射光轉換成第一顏色之光之本文所述奈米結構。在一些實施例中,色彩轉換層包含經構形以將入射光轉換成藍光之本文所述奈米結構。In some embodiments, each pixel region includes a color conversion layer. In some embodiments, the color converting layer includes nanostructures described herein that are configured to convert incident light to light of a first color. In some embodiments, the color converting layer includes the nanostructures described herein configured to convert incident light to blue light.

在一些實施例中,顯示裝置包含1、2、3、4、5、6、7、8、9或10個色彩轉換層。在一些實施例中,顯示裝置包含1個包含本文所述奈米結構之色彩轉換層。在一些實施例中,顯示裝置包含2個包含本文所述奈米結構之色彩轉換層。在一些實施例中,顯示裝置包含3個包含本文所述奈米結構之色彩轉換層。在一些實施例中,顯示裝置包含4個包含本文所述奈米結構之色彩轉換層。在一些實施例中,顯示裝置包含至少一個紅色轉換層、至少一個綠色轉換層及至少一個藍色轉換層。In some embodiments, the display device includes 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 color conversion layers. In some embodiments, the display device includes a color conversion layer comprising the nanostructures described herein. In some embodiments, the display device includes 2 color conversion layers comprising the nanostructures described herein. In some embodiments, the display device includes 3 color conversion layers comprising the nanostructures described herein. In some embodiments, the display device includes 4 color conversion layers comprising the nanostructures described herein. In some embodiments, the display device includes at least one red conversion layer, at least one green conversion layer, and at least one blue conversion layer.

在一些實施例中,色彩轉換層具有介於約3 μm與約10 μm、約3 μm與約8 μm、約3 μm與約6 μm、約6 μm與約10 μm、約6 μm與約8 μm、或約8 μm與約10 μm之間之厚度。在一些實施例中,色彩轉換層具有介於約3 μm與約10 μm之間之厚度。In some embodiments, the color conversion layer has between about 3 μm and about 10 μm, about 3 μm and about 8 μm, about 3 μm and about 6 μm, about 6 μm and about 10 μm, about 6 μm and about 8 μm μm, or a thickness between about 8 μm and about 10 μm. In some embodiments, the color conversion layer has a thickness between about 3 μm and about 10 μm.

奈米結構色彩轉換層可藉由業內已知之任何適宜方法沈積,該等方法包括(但不限於)噴漆、噴塗、溶劑噴塗、濕式塗覆、黏著劑塗覆、旋塗、帶塗覆、輥塗、淋塗、噴墨印刷、光阻劑圖案化、液滴澆注、刮刀塗覆、薄霧沈積或其組合。在一些實施例中,藉由光阻劑圖案化來沈積奈米結構色彩轉換層。在一些實施例中,藉由噴墨印刷來沈積奈米結構色彩轉換層。 包含AIGS奈米結構及配體之組合物 The nanostructured color conversion layer can be deposited by any suitable method known in the art including, but not limited to, painting, spraying, solvent spraying, wet coating, adhesive coating, spin coating, tape coating, Roll coating, curtain coating, ink jet printing, photoresist patterning, drop casting, knife coating, mist deposition, or combinations thereof. In some embodiments, the nanostructured color conversion layer is deposited by photoresist patterning. In some embodiments, the nanostructured color conversion layer is deposited by inkjet printing. Compositions comprising AIGS nanostructures and ligands

在一些實施例中,AIGS奈米結構組合物進一步包含一或多種配體。配體包括胺基配體、多胺基配體、巰基配體、膦配體、矽烷配體,以及聚合或寡聚鏈,例如具有胺及矽烷基團之聚乙二醇。In some embodiments, the AIGS nanostructure composition further comprises one or more ligands. Ligands include amine ligands, polyamine ligands, sulfhydryl ligands, phosphine ligands, silane ligands, and polymeric or oligomeric chains such as polyethylene glycols with amine and silane groups.

在一些實施例中,胺基-配體具有式I:

Figure 02_image005
(I) 其中: x係1至100; y係0至100;且 R 2係C 1-20烷基。 In some embodiments, the amine-ligand is of formula I:
Figure 02_image005
(I) wherein: x is 1 to 100; y is 0 to 100; and R 2 is C 1-20 alkyl.

在一些實施例中,聚胺基配體係聚胺基烷烴、多胺-環烷烴、聚胺基雜環化合物、聚胺基官能化聚矽氧或聚胺基取代之乙二醇。在一些實施例中,聚胺基配體係由兩個或三個胺基取代且視情況含有一個或兩個胺基代替碳基團之C 2-20烷烴或C 2-20環烷烴。在一些實施例中,聚胺基配體係乙二胺、1,2-二胺基丙烷、1,2-二胺基-2-甲基丙烷、N-甲基-乙二胺、N-乙基-乙二胺、N-異丙基-乙二胺、N-環己基-乙二胺、N-環己基-乙二胺、N-辛基-乙二胺、N-癸基-乙二胺、N-十二烷基-乙二胺、N,N-二甲基-乙二胺、N,N-二乙基-乙二胺、N,N'-二乙基-乙二胺、N,N'-二異丙基乙二胺、N,N,N'-三甲基-乙二胺、二伸乙基三胺、N-異丙基-二伸乙基三胺、N-(2-胺基乙基)-1,3-丙烷二胺、三伸乙基四胺、N,N'-雙(3-胺基丙基)乙二胺、N,N'-雙(2-胺基乙基)-1,3-丙烷二胺、參(2-胺基乙基)胺、四伸乙基五胺、五伸乙基六胺、2-(2-胺基-乙基胺基)乙醇、N,N-雙(羥基乙基)乙二胺、N-(羥基乙基)二伸乙基三胺、N-(羥基乙基)三伸乙基四胺、六氫吡嗪、1-(2-胺基乙基)六氫吡嗪、4-(2-胺基乙基)嗎啉、聚乙亞胺、1,3-二胺基丙烷、1,4-二胺基丁烷、1,3-二胺基戊烷、1,5-二胺基戊烷、2,2-二甲基-1,3-丙烷二胺、六亞甲基二胺、2-甲基-1,5-二胺基丙烷、1,7-二胺基庚烷、1,8-二胺基辛烷、2,2,4-三甲基-1,6-己烷二胺、2,4,4-三甲基-1,6-己烷二胺、1,9-二胺基壬烷、1,10-二胺基癸烷、1,12-二胺基十二烷、N-甲基-1,3-丙烷二胺、N-乙基-1,3-丙烷二胺、N-異丙基-1,3-丙烷二胺、N,N-二甲基-1,3-丙烷二胺、N,N'-二甲基-1,3-丙烷二胺、N,N'-二乙基-1,3-丙烷二胺、N,N'-二異丙基-1,3-丙烷二胺、N,N,N'-三甲基-1,3-丙烷二胺、2-丁基-2-乙基-1,5-戊烷二胺、N,N'-二甲基-1,6-己烷二胺、3,3'-二胺基-N-甲基-二丙胺、N-(3-胺基丙基)-1,3-丙烷二胺、亞精胺、雙(六亞甲基)三胺、N,N',N''-三甲基-雙(六亞甲基)三胺、4-胺基-1,8-辛烷二胺、N,N'-雙(3-胺基丙基)-1,3-丙烷二胺、精胺、4,4'-亞甲基雙(環己基胺)、1,2-二胺基環己烷,1,4-二胺基環己烷、1,3-環己烷雙(甲胺)、1,4-環己烷雙(甲胺)、1,2-雙(胺基乙氧基)乙烷、4,9-二氧雜-1,12-十二烷二胺、4,7,10-三氧雜-1,13-十三烷二胺、1,3-二胺基-羥基-丙烷、4,4-亞甲基二六氫吡啶、4-(胺基甲基)六氫吡啶、3-(4-胺基丁基)六氫吡啶或聚烯丙胺。在一些實施例中,聚胺基配體係1,3-環己烷雙(甲胺)、2,2-二甲基-1,3-丙烷二胺或參(2-胺基乙基)胺。 In some embodiments, the polyamine-based ligands are polyaminoalkanes, polyamine-cycloalkanes, polyamine-based heterocycles, polyamine-functionalized polysiloxanes, or polyamine-substituted ethylene glycols. In some embodiments, the polyamine based ligand systems are C2-20 alkanes or C2-20 cycloalkanes substituted with two or three amine groups and optionally containing one or two amine groups in place of carbon groups. In some embodiments, the polyamine based ligands are ethylenediamine, 1,2-diaminopropane, 1,2-diamino-2-methylpropane, N-methyl-ethylenediamine, N-ethyl Ethyl-ethylenediamine, N-isopropyl-ethylenediamine, N-cyclohexyl-ethylenediamine, N-cyclohexyl-ethylenediamine, N-octyl-ethylenediamine, N-decyl-ethylenediamine Amine, N-dodecyl-ethylenediamine, N,N-dimethyl-ethylenediamine, N,N-diethyl-ethylenediamine, N,N'-diethyl-ethylenediamine, N,N'-diisopropylethylenediamine, N,N,N'-trimethyl-ethylenediamine, diethylenetriamine, N-isopropyl-diethylenediamine, N- (2-aminoethyl)-1,3-propanediamine, triethylenetetramine, N,N'-bis(3-aminopropyl)ethylenediamine, N,N'-bis(2 -Aminoethyl)-1,3-propanediamine, gins(2-aminoethyl)amine, tetraethylenepentamine, pentaethylenehexamine, 2-(2-amino-ethyl) Amino) ethanol, N,N-bis(hydroxyethyl)ethylenediamine, N-(hydroxyethyl)diethylenetriamine, N-(hydroxyethyl)triethylenetetramine, hexahydropyridine oxazine, 1-(2-aminoethyl)hexahydropyrazine, 4-(2-aminoethyl)morpholine, polyethyleneimine, 1,3-diaminopropane, 1,4-diamine butane, 1,3-diaminopentane, 1,5-diaminopentane, 2,2-dimethyl-1,3-propanediamine, hexamethylenediamine, 2-methyl 1,5-diaminopropane, 1,7-diaminoheptane, 1,8-diaminooctane, 2,2,4-trimethyl-1,6-hexanediamine, 2,4,4-trimethyl-1,6-hexanediamine, 1,9-diaminononane, 1,10-diaminodecane, 1,12-diaminododecane, N-methyl-1,3-propanediamine, N-ethyl-1,3-propanediamine, N-isopropyl-1,3-propanediamine, N,N-dimethyl-1, 3-Propanediamine, N,N'-dimethyl-1,3-propanediamine, N,N'-diethyl-1,3-propanediamine, N,N'-diisopropyl- 1,3-Propanediamine, N,N,N'-trimethyl-1,3-propanediamine, 2-butyl-2-ethyl-1,5-pentanediamine, N,N' -Dimethyl-1,6-hexanediamine, 3,3'-diamino-N-methyl-dipropylamine, N-(3-aminopropyl)-1,3-propanediamine, Spermidine, bis(hexamethylene)triamine, N,N',N''-trimethyl-bis(hexamethylene)triamine, 4-amino-1,8-octanediamine , N,N'-bis(3-aminopropyl)-1,3-propanediamine, spermine, 4,4'-methylenebis(cyclohexylamine), 1,2-diamino ring Hexane, 1,4-diaminocyclohexane, 1,3-cyclohexanebis(methylamine), 1,4-cyclohexanebis(methylamine), 1,2-bis(aminoethoxy) base) ethane, 4,9-dioxa-1,12-dodecanediamine, 4,7,10-trioxa-1,13-tridecanediamine, 1,3-diamine -Hydroxy-propane, 4,4-methylenedihexahydro Pyridine, 4-(aminomethyl)hexahydropyridine, 3-(4-aminobutyl)hexahydropyridine or polyallylamine. In some embodiments, the polyamine-based ligand is 1,3-cyclohexanebis(methylamine), 2,2-dimethyl-1,3-propanediamine, or ps(2-aminoethyl)amine .

在一些實施例中,聚胺基配體係聚胺基雜環化合物。在一些實施例中,聚胺基雜環化合物係2,4-二胺基-6-苯基-1,3,5-三嗪、6-甲基-1,3,5-三嗪-2,4-二胺、2,4-二胺基-6-二乙基胺基-1,3,5-三嗪、2-N,4-N,6-N-三丙基-1,3,5-三嗪-2,4,6-三胺、2,4-二胺基嘧啶、2,4,6-三胺基嘧啶、2,5-二胺基吡啶、2,4,5,6-四胺基嘧啶、吡啶-2,4,5-三胺、1-(3-胺基丙基)咪唑、4-苯基-1H-咪唑-1,2-二胺、1H-咪唑-2,5-二胺、4-苯基-N(1)-[(E)-苯基亞甲基]-1H-咪唑-1,2-二胺、2-苯基-1H-咪唑-4,5-二胺、1H-咪唑-2,4,5-三胺、1H-吡咯-2,5-二胺、1,2,4,5-四嗪-3,6-二胺、N,N'-二環己基-1,2,4,5-四嗪-3,6-二胺、N3-丙基-1H-1,2,4-三唑-3,5-二胺或N,N'-雙(2-甲氧基苄基)-1H-1,2,4-三唑-3,5-二胺。In some embodiments, the polyamine-based ligands are polyamine-based heterocyclic compounds. In some embodiments, the polyaminoheterocycles are 2,4-diamino-6-phenyl-1,3,5-triazine, 6-methyl-1,3,5-triazine-2 ,4-diamine, 2,4-diamino-6-diethylamino-1,3,5-triazine, 2-N,4-N,6-N-tripropyl-1,3 ,5-triazine-2,4,6-triamine, 2,4-diaminopyrimidine, 2,4,6-triaminopyrimidine, 2,5-diaminopyridine, 2,4,5, 6-tetraaminopyrimidine, pyridine-2,4,5-triamine, 1-(3-aminopropyl)imidazole, 4-phenyl-1H-imidazole-1,2-diamine, 1H-imidazole- 2,5-Diamine, 4-phenyl-N(1)-[(E)-phenylmethylene]-1H-imidazole-1,2-diamine, 2-phenyl-1H-imidazole-4 ,5-diamine, 1H-imidazole-2,4,5-triamine, 1H-pyrrole-2,5-diamine, 1,2,4,5-tetrazine-3,6-diamine, N, N'-dicyclohexyl-1,2,4,5-tetrazine-3,6-diamine, N3-propyl-1H-1,2,4-triazole-3,5-diamine or N, N'-bis(2-methoxybenzyl)-1H-1,2,4-triazole-3,5-diamine.

在一些實施例中,聚胺基配體係聚胺基官能化聚矽氧。在一些實施例中,聚胺基官能化聚矽氧係以下中之一者:

Figure 02_image007
Figure 02_image009
Figure 02_image011
Figure 02_image013
Figure 02_image015
Figure 02_image017
Figure 02_image019
。 In some embodiments, the polyamine-based ligands are polyamine-functionalized polysiloxanes. In some embodiments, the polyamine functionalized polysiloxane is one of the following:
Figure 02_image007
,
Figure 02_image009
,
Figure 02_image011
,
Figure 02_image013
,
Figure 02_image015
,
Figure 02_image017
or
Figure 02_image019
.

在一些實施例中,聚胺基配體係聚胺基取代之乙二醇。在一些實施例中,聚胺基取代之乙二醇係2-[3-胺基-4-[2-[2-胺基-4-(2-羥基乙基)苯氧基]乙氧基]苯基]乙醇、1,5-二胺基-3-氧雜戊烷、1,8-二胺基-3,6-二氧雜辛烷、雙[5-氯-1H-吲哚-2-基-羰基-胺基乙基]-乙二醇、胺基-PEG8-t-Boc-醯肼或2-(2-(2-乙氧基乙氧基)乙氧基)乙胺。In some embodiments, the polyamine-based ligands are polyamine-substituted ethylene glycols. In some embodiments, the polyamine substituted ethylene glycol is 2-[3-amino-4-[2-[2-amino-4-(2-hydroxyethyl)phenoxy]ethoxy ]Phenyl]ethanol, 1,5-diamino-3-oxopentane, 1,8-diamino-3,6-dioxoctane, bis[5-chloro-1H-indole- 2-yl-carbonyl-aminoethyl]-ethylene glycol, amino-PEG8-t-Boc-hydrazide or 2-(2-(2-ethoxyethoxy)ethoxy)ethanamine.

在一些實施例中,巰基-配體係(3-巰基丙基)三乙氧基矽烷、3,6-二氧雜-1,8-辛烷二硫醇;6-巰基-1-己醇;巰基琥珀酸、巰基十一酸、巰基己酸、巰基丙酸、巰基乙酸、半胱胺酸、甲硫胺酸及巰基聚(乙二醇)。In some embodiments, the mercapto-ligand system (3-mercaptopropyl)triethoxysilane, 3,6-dioxa-1,8-octanedithiol; 6-mercapto-1-hexanol; mercaptosuccinic acid, mercaptoundecanoic acid, mercaptocaproic acid, mercaptopropionic acid, thioglycolic acid, cysteine, methionine and mercaptopoly(ethylene glycol).

在一些實施例中,矽烷-配體係胺基烷基三烷氧基矽烷或硫代烷基三烷氧基矽烷。在一些實施例中,胺基烷基三烷氧基矽烷係(3-胺基丙基)三乙氧基矽烷或(3-巰基丙基)三乙氧基矽烷。In some embodiments, the silane-ligand system is an aminoalkyltrialkoxysilane or a thioalkyltrialkoxysilane. In some embodiments, the aminoalkyltrialkoxysilane is (3-aminopropyl)triethoxysilane or (3-mercaptopropyl)triethoxysilane.

在一些實施例中,配體包括(但不限於)胺基-聚環氧烷(例如約m.w. 1000);(3-胺基丙基)三甲氧基矽烷;(3-巰基丙基)三乙氧基矽烷;DL-α-硫辛酸;3,6-二氧雜-1,8-辛烷二硫醇;6-巰基-1-己醇;甲氧基聚乙二醇胺(約m.w. 500);聚(乙二醇)甲醚硫醇(約m.w. 800);苯基亞膦酸二乙基酯;N,N-二異丙基亞磷醯胺二苄基酯;N,N-二異丙基亞磷醯胺二-第三丁基酯;參(2-羧基乙基)膦鹽酸鹽;聚(乙二醇)甲醚硫醇(約m.w. 2000);甲氧基聚乙二醇胺(約m.w. 750);丙烯醯胺;及聚乙烯亞胺。In some embodiments, ligands include, but are not limited to, amino-polyalkylene oxides (eg, about m.w. 1000); (3-aminopropyl)trimethoxysilane; (3-mercaptopropyl)triethyl oxysilane; DL-α-lipoic acid; 3,6-dioxa-1,8-octanedithiol; 6-mercapto-1-hexanol; methoxypolyethylene glycol amine (approx. m.w. 500 ); poly(ethylene glycol) methyl ether mercaptan (about m.w. 800); diethyl phenylphosphinate; N,N-diisopropylphosphoramidite dibenzyl ester; Isopropylphosphoramidite di-tert-butyl ester; sine (2-carboxyethyl) phosphine hydrochloride; poly(ethylene glycol) methyl ether mercaptan (about m.w. 2000); methoxypolyethylene glycol Alcohol amines (about m.w. 750); acrylamide; and polyethyleneimine.

配體之特定組合包括胺基-聚環氧烷(約m.w. 1000)及甲氧基聚乙二醇胺(約m.w. 500);胺基-聚環氧烷(約m.w. 1000)及6-巰基-1-己醇;胺基-聚環氧烷(約m.w. 1000)及(3-巰基丙基)三乙氧基矽烷;及6-巰基-1-己醇及甲氧基聚乙二醇胺(約m.w. 500);其提供優良可分散性及熱穩定性。參見實例9。Specific combinations of ligands include amino-polyalkylene oxide (about m.w. 1000) and methoxypolyethylene glycol amine (about m.w. 500); amino-polyalkylene oxide (about m.w. 1000) and 6-mercapto- 1-hexanol; amino-polyalkylene oxide (about m.w. 1000) and (3-mercaptopropyl)triethoxysilane; and 6-mercapto-1-hexanol and methoxypolyethylene glycol amine ( about m.w. 500); it provides good dispersibility and thermal stability. See Example 9.

與無聚胺基配體之含AIGS之膜相比以及與單胺基配體相比,包含AIGS奈米結構及聚胺基配體之膜展現更高膜光轉換效率(PCE),展現更少之褶皺及更少之膜脫層。因此,包含AIGS-聚胺基配體之組合物獨特地適用於奈米結構色彩轉換層。Compared with AIGS-containing films without polyamine-based ligands and compared with monoamine-based ligands, films containing AIGS nanostructures and polyamine-based ligands exhibited higher film photoconversion efficiency (PCE), exhibiting more Less wrinkling and less membrane delamination. Therefore, compositions comprising AIGS-polyamine based ligands are uniquely suitable for use in nanostructured color conversion layers.

以下實例闡釋且不限制本文所述產品及方法。業內通常遇到且根據本揭示內容對熟習此項技術者顯而易見之各種條件、調配物及其他參數之適宜修改及適應在本發明之精神及範圍內。 實例 實例1:AIGS核合成 The following examples illustrate and do not limit the products and methods described herein. Suitable modifications and adaptations of various conditions, formulations and other parameters commonly encountered in the art and apparent to those skilled in the art from this disclosure are within the spirit and scope of the invention. example Example 1: AIGS Nucleosynthesis

樣品ID 1係使用AIGS核之以下典型合成來製備:將4 mL 0.06 M於油胺中之CH₃CO₂Ag、1 mL 0.2 M於乙醇中之InCl 3、1 mL 0.95 M於油胺中之硫及0.5 mL十二烷硫醇注射至含有5 mL脫氣之十八烯、300 mg氧化三辛基膦及170 mg乙醯丙酮酸鎵之燒瓶中。將混合物加熱至40℃並保持5分鐘,然後將溫度升至210℃並保持100分鐘。冷卻至180℃後,添加5 mL三辛基膦。將反應混合物轉移至手套箱中並用5 mL甲苯稀釋。藉由添加75 mL乙醇沈澱最終AIGS產物,離心,並重新分散在甲苯中。樣品ID 2及3亦係使用此方法來製備。量測AIGS核之光學性質,並將其概述於表2中。藉由透射電子顯微鏡(TEM)對AIGS核大小及形態進行表徵。 表2 樣品ID QY (%) PWL (nm) FWHM (nm) 藉由ICP之Ag/(Ag+In+Ga) 藉由ICP之In/(In+Ga) 注釋 1 44 519.5 47 0.39 0.44 50 mL燒瓶稱 2 30 514 50 0.37 0.41 10倍放大樣品ID 1 3 40 518 52 0.38 0.45 10倍放大樣品ID 1 實例2:進行離子交換處理之AIGS奈米結構 Sample ID 1 was prepared using the following typical synthesis of an AIGS core: 4 mL of 0.06 M CH₃CO₂Ag in oleylamine, 1 mL of 0.2 M InCl3 in ethanol, 1 mL of 0.95 M sulfur in oleylamine, and 0.5 mL Dodecanethiol was injected into a flask containing 5 mL of degassed octadecene, 300 mg of trioctylphosphine oxide, and 170 mg of gallium acetylacetonate. The mixture was heated to 40°C and held for 5 minutes, then the temperature was raised to 210°C and held for 100 minutes. After cooling to 180°C, 5 mL of trioctylphosphine was added. The reaction mixture was transferred to the glove box and diluted with 5 mL of toluene. The final AIGS product was precipitated by adding 75 mL of ethanol, centrifuged, and redispersed in toluene. Sample ID 2 and 3 were also prepared using this method. Optical properties of AIGS cores were measured and summarized in Table 2. AIGS nuclear size and morphology were characterized by transmission electron microscopy (TEM). Table 2 Sample ID QY (%) PWL (nm) FWHM (nm) Ag/(Ag+In+Ga) by ICP In/(In+Ga) by ICP Notes 1 44 519.5 47 0.39 0.44 50 mL flask weighing 2 30 514 50 0.37 0.41 10x magnification sample ID 1 3 40 518 52 0.38 0.45 10x magnification sample ID 1 Example 2: AIGS nanostructures subjected to ion exchange treatment

樣品ID 4係使用以下典型離子交換處理來製備:將2 mL 0.3 M於十八烯中之油酸鎵溶液及12 mL油胺引入燒瓶並脫氣。將混合物加熱至270℃。共注射1 mL 0.95 M於油胺中之硫溶液及1 mL分離之AIGS核(15 mg/mL)的預混合溶液。30分鐘後停止反應。將最終產物轉移至手套箱中,用甲苯/乙醇洗滌,離心,並重新分散在甲苯中。亦使用此方法製備樣品ID 4-8。由此產生之AIGS奈米結構之光學性質概述於表3中。與鎵離子之離子交換導致幾乎完全之帶邊緣發射。藉由TEM觀察到平均粒徑增大。 表3 樣品ID PWL (nm) FWHM (nm) QY (%) OD 450/質量 (mL .mg -1.cm -1) 4 516 38 61 - 5 517 36 58 0.87 6 520 37 53 1.04 7 514 38 64 0.72 8 514 38 65 1.15 實例3:鹵化鎵及三辛基膦離子交換處理 Sample ID 4 was prepared using the following typical ion exchange treatment: 2 mL of a 0.3 M solution of gallium oleate in octadecene and 12 mL of oleylamine were introduced into a flask and degassed. The mixture was heated to 270°C. A total of 1 mL of a premixed solution of 0.95 M sulfur solution in oleylamine and 1 mL of isolated AIGS cores (15 mg/mL) was injected. The reaction was stopped after 30 minutes. The final product was transferred to a glove box, washed with toluene/ethanol, centrifuged, and redispersed in toluene. Sample IDs 4-8 were also prepared using this method. The optical properties of the resulting AIGS nanostructures are summarized in Table 3. Ion exchange with gallium ions results in almost complete band-edge emission. An increase in the average particle size was observed by TEM. table 3 Sample ID PWL (nm) FWHM (nm) QY (%) OD 450 /mass (mL.mg - 1.cm - 1 ) 4 516 38 61 - 5 517 36 58 0.87 6 520 37 53 1.04 7 514 38 64 0.72 8 514 38 65 1.15 Example 3: Gallium halide and trioctylphosphine ion exchange treatment

藉由向AIGS QD中添加GaI 3於三辛基膦(0.01-0.25 M)中之溶液並在室溫下保持20小時,執行與AIGS奈米結構之室溫離子交換反應。此處理導致表4中概述之帶邊緣發射之顯著增強,同時實質上維持峰值波長(PWL)。 Room temperature ion-exchange reactions with AIGS nanostructures were performed by adding a solution of Gal3 in trioctylphosphine (0.01-0.25 M) to AIGS QDs and maintaining at room temperature for 20 hours. This treatment resulted in a significant enhancement of the band-edge emission outlined in Table 4, while substantially maintaining the peak wavelength (PWL).

藉由電感耦合電漿原子發射光譜法(ICP-AE)及能量色散X射線光譜法(EDS)監測GaI 3添加之前及之後之組成變化,如表4中所概述。GaI 3/TOP處理之前及之後之In及Ga元素分佈之複合影像顯示In至Ga之徑向分佈,由此指示離子交換處理導致奈米結構表面附近鎵之量較大、而中心之鎵之量較低的梯度。 表4 ID PWL (nm) FWHM (nm) QY (%) 帶邊緣貢獻 藉由ICP之Ag/(Ag+In+Ga) 藉由ICP之In/(In+Ga) 藉由EDS之Ag/(Ag+In+Ga) 藉由EDS之In/(In+Ga) 9 542 38 11 <45% 0.41 0.11 0.45 0.16 10 543 37 24 >80% 0.38 0.09 0.44 0.14 實例4:使用無氧鎵源之AIGS離子交換處理 Compositional changes before and after Gal3 addition were monitored by inductively coupled plasma atomic emission spectroscopy (ICP-AE) and energy dispersive X-ray spectroscopy (EDS), as summarized in Table 4. Composite images of In and Ga elemental distributions before and after GaI3 /TOP treatment show a radial distribution of In to Ga, thereby indicating that ion exchange treatment results in a larger amount of gallium near the surface of the nanostructure and a greater amount of gallium in the center lower gradient. Table 4 ID PWL (nm) FWHM (nm) QY (%) with edge contribution Ag/(Ag+In+Ga) by ICP In/(In+Ga) by ICP Ag/(Ag+In+Ga) by EDS In/(In+Ga) by EDS 9 542 38 11 <45% 0.41 0.11 0.45 0.16 10 543 37 twenty four >80% 0.38 0.09 0.44 0.14 Example 4: AIGS Ion Exchange Treatment Using Oxygen-Free Gallium Source

樣品ID 14及15係使用以下使用無氧Ga源之AIGS奈米粒子之典型處理來製備:向8 mL脫氣之油胺中添加溶解於400 μL甲苯中之400 mg GaCl 3,之後添加40 mg AIGS核,且然後添加1.7 mL 0.95 M於油胺中之硫。加熱至240℃後,將反應保持2小時,且然後冷卻。將最終產物轉移至手套箱,用甲苯/乙醇洗滌,離心,並分散在甲苯中。亦使用此方法製備樣品ID 15及16。使用實例2之方法製備樣品ID 11-13。經處理之AIGS材料之光學特性示於表5中。 表5 樣品ID PWL (nm) FWHM (nm) QY (%) BE% 鎵源 11 525 43 25 未測定 乙醯丙酮酸) Ga(III) 12 516 34 73 90 油酸鎵 13 522 35 72 87 油酸鎵 14 521 35 85 86 氯化Ga(III) 15 521 35 80 89 氯化Ga(III) 16 未測定 未測定 未測定 未測定 碘化Ga(III) Sample ID 14 and 15 were prepared using the following typical treatment of AIGS nanoparticles using an oxygen-free Ga source: To 8 mL of degassed oleylamine was added 400 mg GaCl 3 dissolved in 400 μL toluene followed by 40 mg AIGS core, and then 1.7 mL of 0.95 M sulfur in oleylamine was added. After heating to 240°C, the reaction was held for 2 hours and then cooled. The final product was transferred to a glove box, washed with toluene/ethanol, centrifuged, and dispersed in toluene. Sample IDs 15 and 16 were also prepared using this method. Sample IDs 11-13 were prepared using the method of Example 2. The optical properties of the treated AIGS material are shown in Table 5. table 5 Sample ID PWL (nm) FWHM (nm) QY (%) BE% Gallium source 11 525 43 25 Not determined Acetylpyruvate) Ga(III) 12 516 34 73 90 Gallium Oleate 13 522 35 72 87 Gallium Oleate 14 521 35 85 86 Ga(III) chloride 15 521 35 80 89 Ga(III) chloride 16 Not determined Not determined Not determined Not determined Ga(III) iodide

如表5中所示,當使用油胺作為溶劑時,藉由使用氯化Ga(III)而非乙醯丙酮酸Ga(III)或油酸鎵,可改良經處理之AIGS奈米結構之量子產率。使用氯化Ga(III)經受離子交換之最終材料產生與起始奈米結構相似之大小及相似之帶邊緣至陷阱發射性質。因此,量子產率(QY)之增加不僅僅係由於陷阱發射分量之增加。並且意外地,發現當使用碘化Ga(III)代替氯化Ga(III)時,AIGS奈米結構似乎溶解於反應混合物中,且沒有發生離子交換。As shown in Table 5, the quantum of treated AIGS nanostructures can be improved by using Ga(III) chloride instead of Ga(III) acetylpyruvate or gallium oleate when oleylamine is used as solvent Yield. The final material subjected to ion exchange with Ga(III) chloride yielded similar size to the starting nanostructure and similar band-edge-to-trap emission properties. Therefore, the increase in quantum yield (QY) is not only due to the increase in trap emission components. And unexpectedly, it was found that when Ga(III) iodide was used instead of Ga(III) chloride, the AIGS nanostructures appeared to dissolve in the reaction mixture and no ion exchange occurred.

樣品14之具有能量色散X射線光譜(EDS)之高解析度TEM顯示,自AIGS奈米結構中心至表面,奈米結構可能包含In降低之輕微梯度,此指示在該等條件下之處理係由In交換出AIGS結構並經Ga替代之過程產生,而Ag存在於整個結構中,而非生長出獨特GS層。由於應變更小,此亦可有助於改良奈米結構之量子產率。 實例5:來自與預形成之In-Ga試劑混合之預形成之Ag 2S奈米結構之熱注射的AIGS核 High-resolution TEM with energy dispersive X-ray spectroscopy (EDS) of sample 14 showed that the nanostructures likely contained a slight gradient of In reduction from the center to the surface of the AIGS nanostructures, indicating that processing under these conditions was caused by Instead of growing a unique GS layer, the In exchanged out of the AIGS structure and was produced by a process of Ga replacement, while Ag was present throughout the structure. This also helps to improve the quantum yield of the nanostructures due to the smaller strain. Example 5 : AIGS cores from thermal injection of preformed Ag2S nanostructures mixed with preformed In-Ga reagents

為了製備Ag 2S奈米結構,在N 2氣氛下,向20 mL小瓶中添加0.5 g AgI及2 mL油胺,並在58℃下攪拌,直至獲得透明溶液。在單獨20 mL小瓶中,將5 mL DDT及9 mL 0.95 M於油胺中之硫混合。將DDT+S-OYA混合物添加至AgI溶液中,並在58℃下攪拌10 min。使用獲得之Ag 2S奈米粒子而無需洗滌。 To prepare Ag2S nanostructures, under N2 atmosphere, 0.5 g AgI and 2 mL oleylamine were added to a 20 mL vial and stirred at 58 °C until a clear solution was obtained. In a separate 20 mL vial, combine 5 mL of DDT and 9 mL of 0.95 M sulfur in oleylamine. The DDT+S-OYA mixture was added to the AgI solution and stirred at 58 °C for 10 min. The obtained Ag 2 S nanoparticles were used without washing.

為了製備In-Ga試劑混合物,向100 mL燒瓶中裝入1.2 g Ga(乙醯丙酮酸鹽) 3、0.35g InCl 3、2.5 mL油胺及2.5 mL ODE。在N 2氣氛下加熱至210℃並保持10 min。獲得橙色黏稠產物。 To prepare the In-Ga reagent mixture, a 100 mL flask was charged with 1.2 g Ga(acetylpyruvate) 3 , 0.35 g InCl3 , 2.5 mL oleylamine, and 2.5 mL ODE. Heat to 210 °C under N atmosphere and hold for 10 min. An orange viscous product was obtained.

為了形成AIGS奈米粒子,在N 2下,向250 mL燒瓶中添加1.75 g TOPO、23 mL油胺及25 mL ODE。在真空下脫氣後,將此溶劑混合物在40 min內加熱至210℃。在40 mL小瓶中,將上述Ag 2S及In-Ga試劑混合物在58℃下混合,並轉移至注射器。然後將Ag-In-Ga混合物注射至210℃下之溶劑混合物並保持3 hr。冷卻至180℃後,添加5 mL三辛基膦。將反應混合物轉移至手套箱並用50 mL甲苯稀釋。藉由添加150 mL乙醇沈澱最終產物,離心,並重新分散在甲苯中。然後藉由實例4中所述之方法對AIGS奈米結構進行離子交換。藉由此方法以高達上述24倍之規模製備之材料之光學性質示於表6中。 表6 樣品 ID PWL (nm) FWHM (nm) BE% QY (%) OD 450/ 質量 (mL .mg -1.cm -1) 17 510 34 96 86 - 18 524 38 93 94 1.1 19 520 38 93 88 1.3 20 517 38 94 86 1.3 21 518 38 94 89 1.4 22 528 37 93 93 1.9 實例7     重複之鎵離子交換改良AIGS奈米結構之光致發光穩定性 7.1    第一離子交換製程 To form AIGS nanoparticles, 1.75 g TOPO, 23 mL oleylamine, and 25 mL ODE were added to a 250 mL flask under N2 . After degassing under vacuum, this solvent mixture was heated to 210 °C in 40 min. In a 40 mL vial, the above Ag2S and In - Ga reagent mixture was mixed at 58°C and transferred to a syringe. The Ag-In-Ga mixture was then injected into the solvent mixture at 210°C for 3 hr. After cooling to 180°C, 5 mL of trioctylphosphine was added. The reaction mixture was transferred to the glove box and diluted with 50 mL of toluene. The final product was precipitated by adding 150 mL of ethanol, centrifuged, and redispersed in toluene. The AIGS nanostructures were then ion-exchanged by the method described in Example 4. The optical properties of materials prepared by this method on a scale up to 24 times the above are shown in Table 6. Table 6 Sample ID PWL (nm) FWHM (nm) BE% QY (%) OD 450 / mass (mL.mg - 1.cm - 1 ) 17 510 34 96 86 - 18 524 38 93 94 1.1 19 520 38 93 88 1.3 20 517 38 94 86 1.3 twenty one 518 38 94 89 1.4 twenty two 528 37 93 93 1.9 Example 7 Repeated gallium ion exchange to improve the photoluminescence stability of AIGS nanostructures 7.1 The first ion exchange process

將油胺(OYA, 2.5L)在真空下於40℃下脫氣40 min。添加AIGS奈米結構(25.4g,於甲苯中),之後添加GaCl 3(127g,於最少甲苯中)及溶解於OYA中之硫(0.95M, 570 mL)。將混合物在40 min內加熱至240℃,並保持4小時。冷卻後,用1體積之甲苯稀釋混合物。在離心以去除一些副產物後,用2體積之乙醇洗滌材料,藉由離心收集,並重新溶解在甲苯中。第二次洗滌後,將奈米結構溶解於庚烷中進行儲存。 7.2    第二離子交換製程 Oleylamine (OYA, 2.5 L) was degassed at 40 °C for 40 min under vacuum. AIGS nanostructures (25.4 g in toluene) were added followed by GaCl3 (127 g in minimum toluene) and sulfur dissolved in OYA (0.95 M, 570 mL). The mixture was heated to 240 °C over 40 min and held for 4 h. After cooling, the mixture was diluted with 1 volume of toluene. After centrifugation to remove some by-products, the material was washed with 2 volumes of ethanol, collected by centrifugation, and redissolved in toluene. After the second wash, the nanostructures were dissolved in heptane for storage. 7.2 The second ion exchange process

將油胺(OYA, 960 mL)在真空下於40℃下脫氣20 min。向OYA中添加例如來自實例7.1之AIGS離子交換之奈米結構(12 g,於庚烷中),之後添加GaCl 3(22.5 g,於最少體積之甲苯中),然後添加溶解OYA於中之硫(0.95M, 100 mL)。將混合物在40 min內加熱至240℃,並保持3hr。冷卻後,將混合物用1體積之甲苯稀釋,然後洗滌(用1.6體積之乙醇沈澱,離心),並根據需要重新分散在甲苯或庚烷中。當對油墨調配物實施配體交換時,施加進一步之乙醇洗滌,並將QD重新分散在庚烷中。 7.3    替代第二離子交換製程 Oleylamine (OYA, 960 mL) was degassed under vacuum at 40 °C for 20 min. To OYA is added, for example, the AIGS ion-exchanged nanostructures from Example 7.1 (12 g in heptane), followed by GaCl3 (22.5 g in a minimum volume of toluene), followed by sulfur dissolving OYA in (0.95M, 100 mL). The mixture was heated to 240 °C over 40 min and held for 3 hr. After cooling, the mixture was diluted with 1 volume of toluene, then washed (precipitated with 1.6 volumes of ethanol, centrifuged) and redispersed in toluene or heptane as needed. When ligand exchange was performed on the ink formulation, a further ethanol wash was applied and the QDs were redispersed in heptane. 7.3 Alternative to the second ion exchange process

將油胺(15 mL)在真空下於60℃下脫氣20 min。向OYA中添加GaCl 3(360 mg,於最少體積之甲苯中),之後添加例如來自實例7.1之AIGS (200 mg,於庚烷中),然後添加溶解於OYA中之硫(0.95M, 1.6 mL)。將混合物在40 min內加熱至240℃,並保持3 hr。冷卻後,如實例7.1所述洗滌混合物。 7.4    替代第二離子交換製程 Oleylamine (15 mL) was degassed under vacuum at 60 °C for 20 min. To OYA was added GaCl3 (360 mg in a minimum volume of toluene), followed by, eg, AIGS from Example 7.1 (200 mg in heptane), followed by sulfur dissolved in OYA (0.95M, 1.6 mL) ). The mixture was heated to 240 °C over 40 min for 3 hr. After cooling, the mixture was washed as described in Example 7.1. 7.4 Alternative to the second ion exchange process

此實例係如實例7.3所述實施,但規模為3倍。 7.5    替代第二離子交換製程 This example was performed as described in Example 7.3, but on a 3x scale. 7.5 Replacing the second ion exchange process

將油胺(10 mL)及油酸(5mL)在真空下於90℃下脫氣20 min。添加(Ga(NMe 3) 3) 2(206 mg)及GaCl 3(180 mg,於最少體積之甲苯中),之後添加例如來自實例7.1之AIGS (200 mg,於庚烷中)。加熱至130℃後,在20 min內添加TMS 2S (0.65mL於ODE中之50%溶液),且將混合物保持2.5 hr。冷卻後,如實例7.1所述洗滌混合物。 7.6    結果 Oleylamine (10 mL) and oleic acid (5 mL) were degassed under vacuum at 90 °C for 20 min. (Ga(NMe3) 3 ) 2 ( 206 mg) and GaCl3 (180 mg in a minimum volume of toluene) were added, followed by addition of eg AIGS from Example 7.1 (200 mg in heptane). After heating to 130 °C, TMS 2 S (0.65 mL of a 50% solution in ODE) was added over 20 min and the mixture was held for 2.5 hr. After cooling, the mixture was washed as described in Example 7.1. 7.6 Results

AIGS奈米結構經受離子交換製程,其中In更換為Ga。與核生長相比,此製程中使用之較高溫度(240℃對210℃)會導致成熟,因此平均大小比未處理之奈米結構更大。奈米結構不具有良好區分之殼結構。此可在橫斷面TEM元素圖中觀察到。缺少較高帶隙殼預計會限制該等材料在膜處理期間光致發光之保留。AIGS nanostructures are subjected to an ion exchange process in which In is replaced by Ga. Compared to nuclear growth, the higher temperature used in this process (240°C vs. 210°C) results in maturation and therefore larger average size than untreated nanostructures. Nanostructures do not have well differentiated shell structures. This can be observed in cross-sectional TEM elemental images. The lack of higher bandgap shells is expected to limit the retention of photoluminescence of these materials during film processing.

第二離子交換製程後,平均TEM大小未增加(圖2A-2C),但TEM元素圖展現,在QD中形成向富Ga(較高帶隙)區之更明顯梯度。After the second ion exchange process, the average TEM size did not increase (FIGS. 2A-2C), but the TEM elemental maps revealed that a more pronounced gradient was formed in the QDs towards Ga-rich (higher bandgap) regions.

單次及多次離子交換製程之元素組成示於表7中。值係實例7.1及7.2之10-20個樣品之平均值。 表7 樣品類型 PWL (nm) FWHM (nm) Ag/(Ag+In+Ga) In/(In+Ga) 單次離子交換處理 523 34.5 0.39 0.27 雙重離子交換處理 523 34.1 0.40 0.24 The elemental compositions of the single and multiple ion exchange processes are shown in Table 7. Values are the average of 10-20 samples of Examples 7.1 and 7.2. Table 7 Sample type PWL (nm) FWHM (nm) Ag/(Ag+In+Ga) In/(In+Ga) single ion exchange treatment 523 34.5 0.39 0.27 Double ion exchange treatment 523 34.1 0.40 0.24

離子交換之AIGS奈米結構之性質及示於表8中。金屬比係藉由ICP測定之莫耳比。 表8 樣品 ID PWL nm FWHM nm BE % QY % Ag/ (Ag+In+Ga) In/ (In+Ga) 實例7.1 524.2 34.8 90 83 0.41 0.27 實例7.2 523.6 34.4 90 89 0.40 0.24 實例7.3 525.1 34.4 90 87 0.42 0.23 實例7.4 525.9 34.3 90 88 0.42 0.24 實例7.5 524.4 33.5 90 62 0.28 0.12 實例7.6 521.0 24.5 92 89 0.41 0.18 The properties of the ion-exchanged AIGS nanostructures are shown in Table 8. Metal ratios are molar ratios determined by ICP. Table 8 Sample ID PWL , nm FWHM , nm BE , % QY , % Ag/ (Ag+In+Ga) In/ (In+Ga) Example 7.1 524.2 34.8 90 83 0.41 0.27 Example 7.2 523.6 34.4 90 89 0.40 0.24 Example 7.3 525.1 34.4 90 87 0.42 0.23 Example 7.4 525.9 34.3 90 88 0.42 0.24 Example 7.5 524.4 33.5 90 62 0.28 0.12 Example 7.6 521.0 24.5 92 89 0.41 0.18

如表9中所展現,UV固化及180℃烘烤後保留之膜PCE藉由第二離子交換製程得到顯著改良。據信此係由於增加奈米結構外層中之Ga濃度之製程導致藉由離子交換所引入之更高帶隙區之梯度。 表9 樣品 ID 藍色 吸收 (%) UV 後綠色 PCE % 烘烤後綠色 PCE % 保留之 QY % 實例7.1 91.5 25.6 9.7 37.9 實例7.2 91.9 25.8 16.3 63.3 實例7.3 88.1 23.1 14.7 63.8 實例7.4 88.5 23.7 14.9 62.8 實例7.5 95.0 26.4 17.3 64.7 實例7.6 91.0 31.4 19.7 62.8 實例8 -包含AIGS奈米結構及聚胺基配體之組合物 As shown in Table 9, the membrane PCE remaining after UV curing and 180°C bake was significantly improved by the second ion exchange process. It is believed that this is due to the gradient of the higher bandgap region introduced by ion exchange due to the process of increasing the Ga concentration in the outer layer of the nanostructure. Table 9 Sample ID Blue Absorption (%) Green PCE % after UV Green PCE % after baking Reserved QY % Example 7.1 91.5 25.6 9.7 37.9 Example 7.2 91.9 25.8 16.3 63.3 Example 7.3 88.1 23.1 14.7 63.8 Example 7.4 88.5 23.7 14.9 62.8 Example 7.5 95.0 26.4 17.3 64.7 Example 7.6 91.0 31.4 19.7 62.8 Example 8 - Compositions Comprising AIGS Nanostructures and Polyamine-Based Ligands

縮寫 •  Jeffamine - Jeffamine M-1000 •  HDDA - 1-6己二醇二丙烯酸酯 •  雙甲胺 - 1,3環己烷雙甲胺 •  PCE - 光子轉換效率 abbreviation • Jeffamine - Jeffamine M-1000 • HDDA - 1-6 Hexanediol Diacrylate • Dimethylamine - 1,3 cyclohexane dimethylamine • PCE - Photon Conversion Efficiency

藉由用乙醇洗滌並重新分散在庚烷中來純化粗AIGS QD生長溶液(溶液1)。向溶液1中添加6-巰基-1-己醇,於50℃下加熱30分鐘,用乙醇洗滌,並重新分散在庚烷中(溶液2)。每100 mg QD無機固體中添加2µL 6-巰基-1-己醇。向溶液2中添加Jeffamine及HDDA用於配體交換階段,在80℃下加熱1小時,用庚烷沈澱,且重新分散至HDDA中(溶液3)。每100 mg QD無機固體添加83 mg Jeffamine。每100mg QD無機固體添加0.42g HDDA。向包含10 wt% TiO 2及90 wt%單體之噴墨油墨組合物中添加溶液3及HDDA。噴墨調配物之組成為10 wt% QD無機物質、4 wt% TiO 2,其餘86 wt%為配體(結合及未結合)、HDDA、單體、光起始劑及QD溶液剩餘之其他各種有機物之組合。該油墨調配物為溶液4。 The crude AIGS QD growth solution (solution 1) was purified by washing with ethanol and redispersing in heptane. 6-Mercapto-1-hexanol was added to solution 1, heated at 50°C for 30 minutes, washed with ethanol, and redispersed in heptane (solution 2). Add 2 µL of 6-mercapto-1-hexanol per 100 mg of QD inorganic solids. Jeffamine and HDDA were added to solution 2 for the ligand exchange stage, heated at 80°C for 1 hour, precipitated with heptane, and redispersed into HDDA (solution 3). Add 83 mg Jeffamine per 100 mg QD inorganic solids. 0.42 g of HDDA was added per 100 mg of QD inorganic solids. Solution 3 and HDDA were added to an inkjet ink composition comprising 10 wt% TiO2 and 90 wt% monomer. The composition of the inkjet formulation was 10 wt% QD inorganics, 4 wt% TiO2 , and the remaining 86 wt% were ligands (bound and unbound), HDDA, monomers, photoinitiators and various others remaining in the QD solution A combination of organic matter. This ink formulation is Solution 4.

向溶液4中添加聚胺基配體雙甲胺(50mg雙甲胺/100mg QD無機固體),且然後將組合物澆注成膜。 膜澆注 The polyamine based ligand dimethylamine (50 mg dimethylamine/100 mg QD inorganic solids) was added to solution 4, and the composition was then cast into a film. Film casting

將溶液4旋塗在2'' x 2''玻璃基材上。用UV LED固化燈固化膜。然後測試膜光轉換效率(PCE),即亮度之量度。然後將膜用設定於180℃下之熱板烘烤30分鐘,稍微升高到熱板上方。或者,將膜用設定於溫度180℃下之熱板上烘烤10分鐘,與熱的地方表面直接接觸。Solution 4 was spin coated on a 2'' x 2'' glass substrate. The film was cured with a UV LED curing light. The films were then tested for light conversion efficiency (PCE), a measure of brightness. The film was then baked for 30 minutes on a hot plate set at 180°C, raised slightly above the hot plate. Alternatively, the film was baked on a hot plate set at a temperature of 180°C for 10 minutes, in direct contact with the hot local surface.

然後測試膜PCE。藍色448 nm LED之1'' x 1''遮罩陣列為膜提供激發源。將積分球放置在膜頂部上,並連接至螢光計。參見圖3A及3B。分析收集之光譜以獲得PCE。The membrane PCE was then tested. A 1'' x 1'' mask array of blue 448 nm LEDs provided the excitation source for the membrane. An integrating sphere was placed on top of the membrane and connected to a fluorometer. See Figures 3A and 3B. The collected spectra were analyzed to obtain PCE.

PCE係前向發射之綠色光子數對測試平臺產生之藍色光子數之比率。儘管484 nm至700 nm之發射光譜用於計算PCE,但預計綠色發射之峰值波長介於484 nm與545 nm之間,且發射之主要部分低於588 nm。PCE、LRR及膜形態報告於表10中。意外地,配體1,3-環己烷雙(甲胺)、參(2-胺基乙基)胺及2,2-二甲基-1,3-丙烷二胺之存在導致與無配體之膜相比,180℃烘烤後PCE之高保留、高LRR及無起皺。 表10 添加劑 UV固化後PCE 180℃烘烤後PCE LRR 膜形態 無添加劑 28.4% 14.1% 49.7% 起皺 1,3-環己烷雙(甲胺) 21.0% 20.4% 96.8% 無起皺 參(2-胺基乙基)胺 12.0% 12.1% 100.7% 無起皺 2,2-二甲基-1,3-丙烷二胺 21.2% 21.1% 99.2% 無起皺 PCE is the ratio of the number of green photons forward emitted to the number of blue photons generated by the test platform. Although the emission spectrum from 484 nm to 700 nm was used to calculate the PCE, the peak wavelength of green emission is expected to be between 484 nm and 545 nm, and the major part of the emission is below 588 nm. PCE, LRR and membrane morphology are reported in Table 10. Unexpectedly, the presence of the ligands 1,3-cyclohexanebis(methylamine), ps(2-aminoethyl)amine, and 2,2-dimethyl-1,3-propanediamine resulted in Compared with other films, the PCE has high retention, high LRR and no wrinkling after baking at 180°C. Table 10 additive PCE after UV curing PCE after baking at 180℃ LRR Membrane morphology No additives 28.4% 14.1% 49.7% wrinkled 1,3-Cyclohexanebis(methylamine) 21.0% 20.4% 96.8% wrinkle free gins(2-aminoethyl)amine 12.0% 12.1% 100.7% wrinkle free 2,2-Dimethyl-1,3-propanediamine 21.2% 21.1% 99.2% wrinkle free

圖1顯示二胺添加對膜形態之效應。圖1中自左至右之膜含有:無添加劑(起皺);2,2-二甲基-1,3-丙烷二胺(二胺,無起皺);環己烷甲胺(單胺,起皺);及參(2-胺基乙基)胺(三胺,無起皺)。自左至右,不含二胺之第一及第三膜展現大範圍之起皺。相比之下,第二及第四層膜不展現起皺。意外地,在AIGS膜中使用二胺基配體大大減少膜起皺。 實例9 - AIGS奈米結構之額外配體之測試 Figure 1 shows the effect of diamine addition on membrane morphology. The film from left to right in Figure 1 contains: no additive (wrinkle); 2,2-dimethyl-1,3-propanediamine (diamine, no wrinkle); cyclohexanemethylamine (monoamine) , wrinkling); and gins(2-aminoethyl)amine (triamine, no wrinkling). From left to right, the diamine-free first and third films exhibited extensive wrinkling. In contrast, the second and fourth films did not exhibit wrinkling. Unexpectedly, the use of diamine-based ligands in AIGS membranes greatly reduced membrane wrinkling. Example 9 - Testing of Additional Ligands for AIGS Nanostructures

在本實驗中,測試AIGS奈米粒子之額外配體之增強QY、高相容性及良好熱穩定性。此外,評估該等配體保護AIGS奈米結構免於劣化及氧化。亦測試可調配成AIGS油墨組合物之配體之組合。In this experiment, the additional ligands of AIGS nanoparticles were tested for enhanced QY, high compatibility and good thermal stability. In addition, these ligands were assessed to protect AIGS nanostructures from degradation and oxidation. Combinations of ligands that can be formulated into AIGS ink compositions were also tested.

在諸如乙酸乙酯、PGMEA、丙酮、二甲苯、1,2-二氯苯(ODCB)、乙酸丁酯及二乙二醇單乙基醚(DGMEE)等有機溶劑中與該等配體實施配體交換。The ligands are formulated in organic solvents such as ethyl acetate, PGMEA, acetone, xylene, 1,2-dichlorobenzene (ODCB), butyl acetate, and diethylene glycol monoethyl ether (DGMEE) body exchange.

AIGS奈米結構與配體進行配體交換,該等配體含有聚合或寡聚鏈(例如具有胺及矽烷基團之聚乙二醇)以及用於共鈍化之軟鹼(例如膦基-、巰基-及其組合)。AIGS nanostructures perform ligand exchange with ligands containing polymeric or oligomeric chains (eg polyethylene glycol with amine and silane groups) and soft bases for co-passivation (eg phosphino-, Sulfhydryl - and combinations thereof).

圖4繪示如本文所述經受單次離子交換處理之許多個別配體及AIGS奈米結構之量子產率值。在該圖中, NG:天然AIGS; NG-NL1 胺基-聚環氧烷,約m.w. 1000; NG-NL2 (3-胺基丙基)三甲氧基矽烷; NG-NL3 (3-巰基丙基)三乙氧基矽烷; NG-NL4 DL-α-硫辛酸; NG-NL5 3,6-二氧雜-1,8-辛烷二硫醇; NG-NL6 6-巰基-1-己醇; NG-NL7 甲氧基聚乙二醇胺500; NG-NL8 聚(乙二醇)甲醚硫醇Mn 800; NG-NL9 苯基亞膦酸二乙基酯; NG-NL10 N,N-二異丙基亞磷醯胺二苄基酯; NG-NL11 N,N-二異丙基亞磷醯胺二-第三丁基酯; NG-NL12 參(2-羧基乙基)膦鹽酸鹽; NG-NL13 聚(乙二醇)甲醚硫醇Mn 2000; NG-NL14 甲氧基聚乙二醇胺750; NG-NL15 丙烯醯胺;及 NG-NL16 聚乙烯亞胺。 Figure 4 depicts quantum yield values for a number of individual ligands and AIGS nanostructures subjected to a single ion exchange treatment as described herein. In this figure, NG : native AIGS; NG-NL1 : amino-polyalkylene oxide, about mw 1000; NG-NL2 : (3-aminopropyl)trimethoxysilane; NG-NL3 : (3-aminopropyl)trimethoxysilane mercaptopropyl) triethoxysilane; NG-NL4 : DL-α-lipoic acid; NG-NL5 : 3,6-dioxa-1,8-octanedithiol; NG-NL6 : 6-mercapto -1-hexanol; NG-NL7 : methoxypolyethylene glycol amine 500; NG-NL8 : poly(ethylene glycol) methyl ether thiol Mn 800; NG-NL9 : diethyl phenylphosphinate ; NG-NL10 : N,N-diisopropylphosphoramidite dibenzyl ester; NG-NL11 : N,N-diisopropylphosphoramidite di-tert-butyl ester; NG-NL12 : San (2-carboxyethyl) phosphine hydrochloride; NG-NL13 : poly(ethylene glycol) methyl ether thiol Mn 2000; NG-NL14 : methoxypolyethylene glycol amine 750; NG-NL15 : acrylamide amine; and NG-NL16 : polyethyleneimine.

如圖4中可見,用(3-巰基丙基)三乙氧基矽烷(NL3)、3,6-二氧雜-1,8-辛烷二硫醇(NL5)及6-巰基-1-己醇(NL6)處理AIGS奈米結構產生高QY (分別為73.7%、72.9%及76.1%)。因此,本發明提供包含至少一種巰基取代之配體之AIGS奈米結構組合物,其提供改良之QY。據信,巰基取代之配體藉由鈍化AIGS奈米結構之表面及減少缺陷發射來提供高QY。胺基取代之配體亦改良QY。As can be seen in Figure 4, with (3-mercaptopropyl)triethoxysilane (NL3), 3,6-dioxa-1,8-octanedithiol (NL5) and 6-mercapto-1- Hexanol (NL6) treatment of AIGS nanostructures yielded high QY (73.7%, 72.9% and 76.1%, respectively). Accordingly, the present invention provides AIGS nanostructure compositions comprising at least one thiol-substituted ligand that provide improved QY. It is believed that thiol-substituted ligands provide high QY by passivating the surface of AIGS nanostructures and reducing defect emission. Amino-substituted ligands also improve QY.

在此單一配體測試中,與天然AIGS奈米結構相比,聚乙二醇胺取代之配體(L1、L7、L8及L13)、硫醇取代之配體(L3、L5及L6)及矽烷配體(L2)顯示良好QY。且在分散於HDDA中時,配體L1、L7及L8與單體之相容性更好。In this single ligand assay, the polyethylene glycol amine substituted ligands (L1, L7, L8 and L13), thiol substituted ligands (L3, L5 and L6) and The silane ligand (L2) shows good QY. And when dispersed in HDDA, ligands L1, L7 and L8 have better compatibility with monomers.

圖5係顯示產生改良之QY(良好組合)及降低之QY(差的組合)之各種2-配體組合之QY%的圖。藉由添加硫醇配體可減少表面缺陷。L6及L7之組合比其他組合產生更佳穩定性。但是對於相對親水之油墨組合物,更佳配體係相對親水之配體,例如甲氧基聚乙二醇胺及聚(乙二醇)甲醚硫醇。該硫醇亦藉由鈍化表面缺陷來改良QY。Figure 5 is a graph showing the QY % of various 2-ligand combinations resulting in improved QY (good combination) and reduced QY (poor combination). Surface defects can be reduced by adding thiol ligands. The combination of L6 and L7 resulted in better stability than the other combinations. However, for relatively hydrophilic ink compositions, more preferred ligands are relatively hydrophilic ligands, such as methoxypolyethylene glycol amine and poly(ethylene glycol) methyl ether thiol. The thiol also improves QY by passivating surface defects.

配體交換之適宜溫度為室溫至120℃。組合物中配體之總量可為AIGS質量之60%至150%。Suitable temperatures for ligand exchange range from room temperature to 120°C. The total amount of ligands in the composition may be 60% to 150% of the mass of the AIGS.

表11顯示與多個配體進行配體交換之前及之後之QY、PWL、FWHM之相對變化。表11顯示,尤其當與丙烯酸酯單體組合時,L6及L7係油墨調配物之最有效之配體組合。L2及L7、L2及L6以及L2及L3、L6及L7之組合提供優良可分散性及熱穩定性。參見圖6。 表11 LE之前之QY (%) LE之後之QY (%) 之前PWL (nm) 之後PWL (nm) 之前FWHM (nm) 之後FWHM (nm) QY變化 (%) PWL變化(nm) FWHM變化(nm) L6、7 55.3 61.5 531.1 531.6 36.3 36.2 +11.2 -0.1 +0.3 L6、2 55.3 57.8 531.1 531.3 36.3 36.3 +4.5 -0.1 0.0 L3、7 55.0 56.6 531.3 531.1 36.2 36.1 +3.0 0.0 +0.1 L5、7 55.0 57.6 531.3 530.8 36.2 36.1 +4.7 +0.1 +0.3 L13、7 55.0 57.5 531.3 531.2 36.2 36.1 +4.6 0.0 +0.2 L2、8 55.0 57.1 531.3 531.9 36.2 36.4 +3.8 -0.1 -0.5 L3、8 55.0 63.8 531.3 530.8 36.2 36.2 +16.0 +0.1 -0.1 L5、8 55.0 63.3 531.3 531.8 36.2 36.6 +15.0 -0.1 -1.0 L2、15 55.3 59.0 531.1 532.1 36.3 36.6 +6.6 -0.2 -0.7 L3、15 55.3 55.5 531.1 532.4 36.3 37.5 +0.4 -0.3 -3.3 L2、13 55.3 53.6 531.1 532.5 36.3 36.6 -3.1 -0.3 -0.7 L3、13 55.3 62.2 531.1 530.0 36.3 38.5 +12.4 +0.2 -5.6 L2、7 56.6 58.2 530.7 532.0 36.5 36.1 +2.8 -0.3 +0.9 L2、3 54.6 58.7 530.6 531.3 36.2 36.8 +7.5 -0.1 -1.7 Table 11 shows the relative changes in QY, PWL, FWHM before and after ligand exchange with multiple ligands. Table 11 shows the most effective ligand combinations for the L6 and L7 based ink formulations, especially when combined with acrylate monomers. The combination of L2 and L7, L2 and L6, and L2 and L3, L6 and L7 provides good dispersibility and thermal stability. See Figure 6. Table 11 QY before LE (%) QY after LE (%) Before PWL (nm) After PWL (nm) Before FWHM (nm) After FWHM (nm) QY change (%) PWL change (nm) FWHM change (nm) L6, 7 55.3 61.5 531.1 531.6 36.3 36.2 +11.2 -0.1 +0.3 L6, 2 55.3 57.8 531.1 531.3 36.3 36.3 +4.5 -0.1 0.0 L3, 7 55.0 56.6 531.3 531.1 36.2 36.1 +3.0 0.0 +0.1 L5, 7 55.0 57.6 531.3 530.8 36.2 36.1 +4.7 +0.1 +0.3 L13, 7 55.0 57.5 531.3 531.2 36.2 36.1 +4.6 0.0 +0.2 L2, 8 55.0 57.1 531.3 531.9 36.2 36.4 +3.8 -0.1 -0.5 L3, 8 55.0 63.8 531.3 530.8 36.2 36.2 +16.0 +0.1 -0.1 L5, 8 55.0 63.3 531.3 531.8 36.2 36.6 +15.0 -0.1 -1.0 L2, 15 55.3 59.0 531.1 532.1 36.3 36.6 +6.6 -0.2 -0.7 L3, 15 55.3 55.5 531.1 532.4 36.3 37.5 +0.4 -0.3 -3.3 L2, 13 55.3 53.6 531.1 532.5 36.3 36.6 -3.1 -0.3 -0.7 L3, 13 55.3 62.2 531.1 530.0 36.3 38.5 +12.4 +0.2 -5.6 L2, 7 56.6 58.2 530.7 532.0 36.5 36.1 +2.8 -0.3 +0.9 L2, 3 54.6 58.7 530.6 531.3 36.2 36.8 +7.5 -0.1 -1.7

進一步研究在手套箱中加熱至180℃達30 min時提供良好熱穩定性之配體組合。配體組合L6及L7、L2及L6以及L2及L3比單一配體L1提供更佳穩定性。參見圖6。Ligand combinations that provide good thermal stability when heated to 180°C for 30 min in a glove box were further investigated. The ligand combinations L6 and L7, L2 and L6, and L2 and L3 provide better stability than the single ligand L1. See Figure 6.

亦研究不同比率之配體組合對QY之效應。配體之重量比係改變的,而配體之總量係固定的。利用7:3之L6對L7比率達成最佳QY。參見圖7。與天然AIGS奈米結構相比,與L6及L7之所有組合皆顯示增強之QY,比率為9:1除外。儘管該混合物展現高QY,但由於不發生沈澱,故難以純化。L6及L2、L3及L7以及L5及L7之混合物係AIGS奈米結構之良好配體混合物。該等配體組合可與各種單體(例如丙烯酸四氫糠基酯、三(丙二醇)二丙烯酸酯、1,4-雙(丙烯醯基氧基)丁烷、二乙二醇乙基醚丙烯酸酯、丙烯酸異莰基酯、丙烯酸羥基丙基酯、氫琥珀酸2-(丙烯醯基氧基)乙基酯及1,6-己二醇二丙烯酸酯)組合使用。 實例10 - AIGS膜中PCE之改良 The effect of different ratios of ligand combinations on QY was also investigated. The weight ratio of ligands is varied, while the total amount of ligands is fixed. Optimum QY is achieved with an L6 to L7 ratio of 7:3. See Figure 7. All combinations with L6 and L7 showed enhanced QY compared to native AIGS nanostructures, except the ratio of 9:1. Although this mixture exhibited a high QY, it was difficult to purify as no precipitation occurred. Mixtures of L6 and L2, L3 and L7, and L5 and L7 are good ligand mixtures for AIGS nanostructures. These ligand combinations can be combined with various monomers such as tetrahydrofurfuryl acrylate, tri(propylene glycol) diacrylate, 1,4-bis(acryloyloxy)butane, diethylene glycol ethyl ether acrylic acid ester, isobornyl acrylate, hydroxypropyl acrylate, 2-(acryloyloxy)ethyl hydrosuccinate, and 1,6-hexanediol diacrylate) in combination. Example 10 - Improvement of PCE in AIGS Membrane

在充滿N 2之手套箱中,將經適當配體塗覆之AIGS QD混合至含有一或多種單體、TiO 2散射粒子及光起始劑之油墨中。藉由旋塗該等油墨澆注膜,然後使用UV輻照固化。然後將膜在180℃下在熱板上烘烤30分鐘,以去除殘留之揮發性組分。所有該等製程皆係在惰性氣氛中-在裝滿N 2之手套箱中實施。 In a glove box filled with N2 , the appropriate ligand-coated AIGS QDs were mixed into an ink containing one or more monomers, TiO2 scattering particles, and a photoinitiator. The films were cast by spin coating the inks and then cured using UV radiation. The films were then baked on a hot plate at 180°C for 30 minutes to remove residual volatile components. All these processes were carried out in an inert atmosphere - in a glove box filled with N2 .

通常在此階段,藉由將膜側朝上放置在藍色LED光源上,在空氣中量測膜。將與分光光度計連接之積分球放置在QD膜之頂部上(參見圖3A及3B),並捕獲膜之發射光譜。利用空白玻璃基板(無QD)重複量測。藉由使用以下公式量測QD膜之藍光吸收及光子轉換效率(PCE): 藍色吸收= 透射穿過QD膜之藍色光子數/ 入射藍色光子數 PCE = 正向發射之綠色光子(484-588nm)數/入射藍色光子數 Typically at this stage, the film is measured in air by placing the film side up on a blue LED light source. An integrating sphere connected to a spectrophotometer was placed on top of the QD film (see Figures 3A and 3B) and the emission spectrum of the film was captured. Measurements were repeated using blank glass substrates (no QDs). The blue light absorption and photon conversion efficiency (PCE) of the QD films were measured by using the following equations: Blue absorption = number of blue photons transmitted through the QD film / number of incident blue photons PCE = number of green photons (484-588nm) emitted in the forward direction/number of incident blue photons

為了研究量測期間空氣及水分之效應,在將烘烤之QD膜自N 2手套箱中取出之前進行囊封。此係藉由在QD層上施加幾滴UV可固化透明黏著劑、然後放置玻璃蓋片並藉由UV輻照固化黏著劑來進行。使用上述方法在空氣中量測使用玻璃及黏著劑由此密封之QD膜。 To investigate the effect of air and moisture during the measurement, encapsulation was performed before the baked QD films were removed from the N2 glove box. This was done by applying a few drops of UV-curable transparent adhesive on the QD layer, then placing a glass cover slip and curing the adhesive by UV radiation. The QD film thus sealed using glass and adhesive was measured in air using the method described above.

結果顯示,在空氣中量測之前囊封QD膜對於達成高光子轉換效率(PCE)至關重要。表12顯示一組膜在囊封及未囊封情況下量測之結果。為了比較,亦顯示含有InP QD之典型QDCC膜之PCE值。當囊封及量測時,包含AIGS奈米結構之膜在低得多之QD負載下具有比InP更高之烘烤後PCE值。藉由將膜置於藍光源(約6mW/cm 2)上輻照1小時之時段,達成PCE之進一步改良。此外,與利用InP QD製備之膜(FWHM 36 nm)相比,利用AIGS QD製備之QDCC膜展現窄得多之發射(FWHM約30 nm)。此係由於溶液中AIGS QD之FWHM較低(34 nm對39 nm),以及使用單胺基及多胺基配體,使得在油墨樹脂中良好分散。 表12 QD 類型 油墨中之 QD 負載 囊封 囊封後處理 10µm 膜中之藍色吸收 180 ℃烘烤後之 PCE PWL FWHM AIGS 12.5% 無囊封 >95% 28% 535 30 玻璃囊封 >95% 35% 535 30 玻璃囊封 用藍光輻照1 hr >95% 38% 535 30 InP 30% 無囊封 85% 32% 540 36 The results show that the encapsulation of QD films prior to measurement in air is critical to achieve high photon conversion efficiency (PCE). Table 12 shows the results measured for a set of membranes both encapsulated and unencapsulated. For comparison, PCE values for typical QDCC films containing InP QDs are also shown. When encapsulated and measured, films comprising AIGS nanostructures had higher post-bake PCE values than InP at much lower QD loadings. Further improvement in PCE was achieved by exposing the film to a blue light source (approximately 6 mW/cm 2 ) for a period of 1 hour. Furthermore, QDCC films prepared using AIGS QDs exhibited much narrower emission (FWHM about 30 nm) compared to films prepared using InP QDs (FWHM 36 nm). This is due to the lower FWHM of AIGS QDs in solution (34 nm vs. 39 nm) and the use of mono- and polyamine-based ligands, resulting in good dispersion in ink resins. Table 12 QD type QD loading in ink encapsulation Post-encapsulation treatment Blue absorption in 10µm film PCE after baking at 180 PWL FWHM AIGS 12.5% no encapsulation none >95% 28% 535 30 glass encapsulation none >95% 35% 535 30 glass encapsulation Irradiate with blue light for 1 hr >95% 38% 535 30 InP 30% no encapsulation none 85% 32% 540 36

圖8顯示在更大範圍樣品內囊封及藍光處理之影響。意外地,經由囊封達成之PCE值顯著高於(大於32%)未囊封之PCE值。Figure 8 shows the effect of encapsulation and blue light treatment over a wider range of samples. Unexpectedly, the PCE values achieved via encapsulation were significantly higher (greater than 32%) than the unencapsulated PCE values.

圖9顯示180℃烘烤步驟及後續囊封後膜之發射線寬(FWHM)。在180℃下烘烤之膜之中值FWHM為30.5 nm,其在囊封時進一步變窄至30.1 nm。此變窄可能是由於囊封時膜變亮。Figure 9 shows the emission linewidth (FWHM) of the films after the 180°C bake step and subsequent encapsulation. The median FWHM of the films baked at 180°C was 30.5 nm, which was further narrowed to 30.1 nm upon encapsulation. This narrowing may be due to the brightening of the membrane upon encapsulation.

儘管本研究中之樣品係使用玻璃及黏著劑囊封,但PCE之此改良可藉由可在QD層上形成氧障壁之任何方法來達成。在含有該等QDCC層之裝置之大量生產中,囊封可能係使用氣相沈積製程實施。在此情形下,典型製程流程將包括噴墨印刷QD層,之後用UV輻照固化,在180℃下烘烤以去除揮發物,沈積有機平面化層,然後沈積無機障壁層。用於沈積無機層之技術可包括原子層沈積(ALD)、分子層沈積(MLD)、化學氣相沈積(CVD)(有或沒有電漿增強)、脈衝氣相沈積(PVD)、濺鍍或金屬蒸發。其他潛在囊封方法包括溶液處理或印刷之有機層、UV或熱固化黏著劑、使用障壁膜之層壓等。 實例11 - 包含納入塗覆AIGS表面之配體中之單體的AIGS油墨 Although the samples in this study were encapsulated using glass and adhesive, this modification of PCE can be achieved by any method that can form an oxygen barrier on the QD layer. In mass production of devices containing these QDCC layers, encapsulation may be performed using a vapor deposition process. In this case, a typical process flow would include inkjet printing of the QD layer, followed by curing with UV radiation, baking at 180°C to remove volatiles, depositing an organic planarization layer, and then depositing an inorganic barrier layer. Techniques for depositing inorganic layers may include atomic layer deposition (ALD), molecular layer deposition (MLD), chemical vapor deposition (CVD) (with or without plasma enhancement), pulsed vapor deposition (PVD), sputtering or Metal evaporates. Other potential encapsulation methods include solution-processed or printed organic layers, UV or thermally cured adhesives, lamination using barrier films, and the like. Example 11 - AIGS Ink Comprising Monomers Incorporated into Ligands Coating AIGS Surfaces

發現與在純溶劑中進行之配體交換(LE)相比,在單體存在下AIGS奈米結構之LE導致更高溶液QY、更佳相容性油墨及更佳膜性能。此係經由使用16種不同介質之LE及膜評估來展現。It was found that LE of AIGS nanostructures in the presence of monomers resulted in higher solution QY, better compatible inks, and better film performance than ligand exchange (LE) in pure solvent. This is demonstrated through LE and film evaluations using 16 different media.

量子點(QD)(例如CdSe及InP)之LE可在有機溶劑中實施,以用期望配體替代天然配體。藉由將QD分散在單體中、去除原始溶劑並添加諸如散射介質及光起始劑等其他油墨組分,然後可將所得QD調配成無溶劑油墨。LE of quantum dots (QDs) such as CdSe and InP can be carried out in organic solvents to replace natural ligands with desired ligands. By dispersing the QDs in monomers, removing the original solvent, and adding other ink components such as scattering media and photoinitiators, the resulting QDs can then be formulated into solvent-free inks.

該程序亦可用於AIGS奈米結構之LE,具有QY之高保留。然而,此方法在去除溶劑時通常導致奈米結構在單體中之可分散性差。AIGS奈米結構在油墨中之良好分散性以及配體對奈米結構表面之有效鈍化對於在苛刻處理條件下(例如UV輻照、高溫烘烤等)維持膜性能係必要的。因此,使用習用方法進行配體交換之AIGS奈米結構不適合於QDCC應用。This procedure can also be used for AIGS nanostructured LEs with high retention of QY. However, this approach generally results in poor dispersibility of the nanostructures in the monomer when the solvent is removed. Good dispersion of AIGS nanostructures in inks and efficient passivation of the nanostructure surfaces by ligands are necessary to maintain film properties under harsh processing conditions (eg, UV irradiation, high temperature baking, etc.). Therefore, AIGS nanostructures using conventional methods for ligand exchange are not suitable for QDCC applications.

圖10顯示在兩個溫度–室溫(25℃)及80℃下,在各種有機溶劑(例如丙酮、PGMEA、乙酸乙酯、甲苯、二氯甲烷(DCM)、氯仿、二甲基甲醯胺(DMF)及乙醇)中進行配體交換之AIGS奈米結構之PLQY。使用Jeffamine M1000作為配體,相對於AIGS奈米結構之質量比為0.8:1。Figure 10 shows the results in various organic solvents such as acetone, PGMEA, ethyl acetate, toluene, dichloromethane (DCM), chloroform, dimethylformamide at two temperatures - room temperature (25°C) and 80°C. PLQY of AIGS nanostructures with ligand exchange in (DMF) and ethanol). Jeffamine M1000 was used as the ligand with a mass ratio of 0.8:1 to AIGS nanostructures.

LE後,PGMEA、乙酸乙酯、甲苯、DCM等若干溶劑對維持QY非常有效。值得注意的是,室温下之LE比80℃下之LE導致更高之QY。所測試之其他溶劑(例如丙酮、氯仿、DMF及乙醇)導致較低QY。After LE, several solvents such as PGMEA, ethyl acetate, toluene, DCM are very effective for maintaining QY. Notably, LE at room temperature resulted in a higher QY than LE at 80°C. Other solvents tested such as acetone, chloroform, DMF and ethanol resulted in lower QYs.

然而,如表13中所示(o =透明分散;Δ=混濁分散),在室溫下在溶劑中進行配體交換之AIGS奈米結構與HDDA(噴墨可印刷油墨中使用之常見單體)之相容性差。在80℃下進行配體交換之AIGS奈米結構與HDDA之相容性更佳,但具有較低QY。因此,難以找到導致高QY及與HDDA良好相容性之有效LE條件。 表13    丙酮 PGMEA 乙酸 乙酯 甲苯 DCM 氯仿 DMF 乙醇 Comp. w/HDDA O Δ Δ Δ Δ Δ Δ Δ Comp. w/HDDA (80℃ LE) O O O O O - - - However, as shown in Table 13 (o = clear dispersion; Δ = cloudy dispersion), ligand-exchanged AIGS nanostructures and HDDA (a common monomer used in inkjet printable inks) were performed in solvent at room temperature ) has poor compatibility. The AIGS nanostructures with ligand exchange at 80°C are more compatible with HDDA, but have lower QY. Therefore, it is difficult to find effective LE conditions that result in high QY and good compatibility with HDDA. Table 13 acetone PGMEA Ethyl acetate Toluene DCM Chloroform DMF Ethanol Comp. w/HDDA O Δ Δ Δ Δ Δ Δ Δ Comp. w/HDDA (80℃ LE) O O O O O - - -

使用一系列常見單體(示於表14中)代替有機溶劑作為介質,重複LE研究。藉由將起始AIGS奈米結構(在庚烷中)與單體混合、然後添加Jeffamine M1000並在80℃下加熱實施LE。 表14 單體名稱 M1 二乙二醇單甲醚甲基丙烯酸酯 M2 丙烯酸乙基酯 M3 HDDA M4 丙烯酸四氫糠基酯 M5 三(丙二醇)二丙烯酸酯 M6 1,4-雙(丙烯醯基氧基)丁烷 M7 二乙二醇乙基醚丙烯酸酯 M8 丙烯酸異莰基酯 M9 二乙二醇二丙烯酸酯 M10 丙烯酸2-甲氧基乙基酯 M11 四乙二醇二丙烯酸酯 M13 二乙二醇二乙烯基醚 M14 丙烯酸丁基酯 M15 甲基丙烯酸2-苯氧基乙基酯 M16 1,6-己二醇二甲基丙烯酸酯 The LE study was repeated using a range of common monomers (shown in Table 14) in place of the organic solvent as the medium. LE was performed by mixing the starting AIGS nanostructures (in heptane) with monomers, then adding Jeffamine M1000 and heating at 80°C. Table 14 Monomer name M1 Diethylene glycol monomethyl ether methacrylate M2 Ethyl acrylate M3 HDDA M4 Tetrahydrofurfuryl Acrylate M5 Tri(propylene glycol) diacrylate M6 1,4-Bis(acryloyloxy)butane M7 Diethylene glycol ethyl ether acrylate M8 Isobornyl Acrylate M9 Diethylene glycol diacrylate M10 2-Methoxyethyl acrylate M11 Tetraethylene glycol diacrylate M13 Diethylene glycol divinyl ether M14 Butyl acrylate M15 2-phenoxyethyl methacrylate M16 1,6-Hexanediol dimethacrylate

圖11顯示在單體存在下LE後之QY。在所有16個情形下,QY在LE時增加,且亦高於在有機溶劑中經由LE達成之QY。Figure 11 shows QY after LE in the presence of monomer. In all 16 cases, QY increased at LE and was also higher than that achieved via LE in organic solvent.

LE後,藉由在庚烷中沈澱來分離及純化AIGS奈米結構,並藉由記錄起始及最終QD質量來計算產率。與溶劑中之LE (其中僅觀察到小的質量變化)不同,單體中進行配體交換之QD之質量增加30-100%,此取決於單體。由於測試之大部分單體可與庚烷混溶,且在QD沈澱時會去除,此指示一定量之單體納入塗覆QD表面之配體中。After LE, AIGS nanostructures were isolated and purified by precipitation in heptane, and yields were calculated by recording starting and final QD masses. Unlike LE in solvent, where only small mass changes were observed, the mass of QDs undergoing ligand exchange in the monomer increased by 30-100%, depending on the monomer. Since most of the monomers tested were miscible with heptane and were removed upon precipitation of the QDs, this indicated that a certain amount of monomers was incorporated into the ligands coating the QD surface.

將所有16個AIGS樣品分散在HDDA,然後混合至含有散射介質及光起始劑之油墨中。與在溶劑中進行配體交換之奈米結構不同,此處測試之所有16個樣品在HDDA顯示良好相容性。藉由以700、800及900 rpm旋塗自每一油墨澆注三個膜,然後用UV輻照固化。All 16 AIGS samples were dispersed in HDDA and then mixed into an ink containing scattering medium and photoinitiator. Unlike nanostructures that undergo ligand exchange in solvent, all 16 samples tested here show good compatibility in HDDA. Three films were cast from each ink by spin coating at 700, 800 and 900 rpm and then cured with UV radiation.

如圖12中所示,一些單體M2、M3、M4、M5、M6及M8顯示高膜EQE,且可作為AIGS QD之良好LE介質。As shown in Figure 12, some of the monomers M2, M3, M4, M5, M6, and M8 display high-film EQE and can serve as good LE mediators for AIGS QDs.

圖13顯示以800 RPM旋塗之AIGS奈米結構膜之藍色吸收。M7、M10、M13、M15及M16提供𣒝高之藍色吸收。 實例12   用聚胺基配體增加藍色吸收 Figure 13 shows the blue absorption of AIGS nanostructured films spin-coated at 800 RPM. M7, M10, M13, M15 and M16 provide 𣒝 high blue absorption. Example 12 Increasing blue absorption with polyamine ligands

典型膜沉積製程包括在非常高之溫度(通常在200℃左右)下進行硬烘烤,以完全去除任何殘留溶劑及擇發性組分。此硬烘烤防止在QDCC層之頂部上沉積其他層期間除氣。此嚴苛之烘烤有時會導致極低EQE。並且,要麼奈米結構被高溫破壞,要麼配體與奈米結構分離,導致聚集。表15顯示UV固化後及180℃硬烘烤後之典型AIGS膜EQE。儘管EQE良好,UV固化後高於33%,但於180℃下硬烘烤30分鐘後,其降至19%以下。光保留比(LRR)(其係烘烤後之EQE對烘烤前之EQE之比率)非常低,低於60%,意味著烘烤後膜性能下降40%以上。 表15    UV後 烘烤後 LRR 1號膜 33.7% 18.4% 54.7% 2號膜 33.1% 18.3% 55.3% A typical film deposition process involves a hard bake at very high temperatures (usually around 200°C) to completely remove any residual solvent and hair-selective components. This hard bake prevents outgassing during deposition of other layers on top of the QDCC layer. This severe roasting sometimes results in very low EQE. And, either the nanostructures are destroyed by high temperature, or the ligands are separated from the nanostructures, leading to aggregation. Table 15 shows typical AIGS film EQE after UV curing and after 180°C hard bake. Although the EQE was good, above 33% after UV curing, it dropped below 19% after hard bake at 180°C for 30 minutes. The light retention ratio (LRR), which is the ratio of the post-bake EQE to the pre-bake EQE, was very low, below 60%, implying that the post-bake film performance dropped by more than 40%. Table 15 After UV after baking LRR No. 1 film 33.7% 18.4% 54.7% No. 2 film 33.1% 18.3% 55.3%

為了克服在硬烘烤期間如此高之EQE損失及所得低LRR,測試兩種方法來改良LRR。To overcome such high EQE losses and resulting low LRR during hard bake, two methods were tested to improve LRR.

為了保持AIGS奈米結構均勻地分散在整個膜中並防止聚集,在油墨調配之前將二胺(1,3-雙(胺基甲基)環己烷)添加至AIGS單體分散液中。或者,可在AIGS單體分散液中混合其他油墨組分(例如散射介質及光起始劑)後將其添加至油墨調配物中。如圖14中所見,在油墨調配之前向AIGS單體分散液中添加二胺增加UV固化及POB之後之EQE。當以AIGS無機品質之5% w/w之量添加二胺時,UV固化後之EQE增加3%。添加更多之二胺並不能進一步改良EQE。POB後,二胺對改良EQE之效應甚至更高。與單體中無二胺相比,添加5%二胺使EQE改良5%。在添加30%二胺下,EQE自25%增加至32%,且LRR係92%,此與利用InP綠色QD膜觀察到之結果相似。如圖15中所見,二胺之副作用係黏度增加。然而,對於諸如丙烯酸乙基酯等單體,室溫下油墨黏度急劇下降至20cP以下之位準。To keep the AIGS nanostructures uniformly dispersed throughout the film and prevent aggregation, a diamine (1,3-bis(aminomethyl)cyclohexane) was added to the AIGS monomer dispersion prior to ink formulation. Alternatively, other ink components such as scattering media and photoinitiators can be added to the ink formulation after mixing in the AIGS monomer dispersion. As seen in Figure 14, addition of diamine to AIGS monomer dispersion prior to ink formulation increased EQE after UV curing and POB. When the diamine was added in an amount of 5% w/w of AIGS inorganic quality, the EQE after UV curing increased by 3%. Adding more diamine did not further improve the EQE. After POB, the effect of diamines on improving EQE was even higher. The addition of 5% diamine resulted in a 5% improvement in EQE compared to no diamine in the monomer. With the addition of 30% diamine, the EQE increased from 25% to 32%, and the LRR was 92%, similar to what was observed with the InP green QD film. As seen in Figure 15, a side effect of the diamine is an increase in viscosity. However, for monomers such as ethyl acrylate, the ink viscosity drops sharply to levels below 20 cP at room temperature.

作為增加EQE之替代方法,試圖用二胺進行更佳AIGS表面鈍化。如圖16中所示,在LE之後,在二胺存在下進行配體交換之AIGS奈米結構之QY立即增強12%以上。應注意,在單體存在下,在180℃下熱處理30分鐘(模擬硬烘烤)後,AIGS奈米結構之QY亦得到增強。對於LE,隨著二胺之添加變大,180℃下30分鐘後之QY下降變小。在LE中50% w/w之二胺下,熱過程之前及之後之QY幾乎相等,且當使用70%二胺進行LE時,熱過程之後之QY變更高。As an alternative to increasing EQE, a better AIGS surface passivation with diamines was attempted. As shown in Figure 16, immediately after LE, the QY of the AIGS nanostructures subjected to ligand exchange in the presence of diamines was enhanced by more than 12%. It should be noted that the QY of the AIGS nanostructures was also enhanced after heat treatment at 180°C for 30 minutes (simulating a hard bake) in the presence of the monomer. For LE, the decrease in QY after 30 minutes at 180°C became smaller as the addition of diamine became larger. At 50% w/w diamine in LE, the QY before and after thermal process is almost equal, and when 70% diamine is used for LE, the QY after thermal process becomes higher.

使用該等AIGS奈米結構之QDCC膜之性能繪製在圖17中。與LE中無二胺相比,當使用二胺進行LE時,膜EQE更佳,且隨著高達50%之更多二胺添加,增強甚至更高。利用70%二胺添加獲得之EQE及LE低於30%及50%。懷疑當使用較高量之二胺進行LE時,AIGS表面上納入之二胺之量增加,但此減少AIGS表面上之配體及/或單體之量。利用二胺進行LE後,觀察到之QD品質下降可能係由於QD表面上之配體及/或單體較少。當將二胺添加至LE單體中進行LE(此會導致油墨黏度增加)時亦會發生此種情況。The performance of QDCC films using these AIGS nanostructures is plotted in FIG. 17 . The membrane EQE is better when using diamine for LE compared to no diamine in LE, and the enhancement is even higher with up to 50% more diamine added. The EQE and LE obtained with 70% diamine addition were less than 30% and 50%. It is suspected that the amount of diamine incorporated on the AIGS surface increased when higher amounts of diamine were used for LE, but this decreased the amount of ligand and/or monomer on the AIGS surface. The observed degradation in QD quality after LE with diamines may be due to less ligands and/or monomers on the QD surface. This also occurs when diamines are added to the LE monomer for LE (which results in an increase in ink viscosity).

當使用該2種方法來改良膜EQE時,如圖19中所見,當在配體交換及單體分散二者中皆添加二胺時,二胺對膜EQE之效應最高。黏度不一定取決於油墨中總二胺量。二胺含最高之樣品(其中在LE及單體分散二者中皆使用二胺)具有中等黏度。該黏度低於僅在LE中使用相同量之二胺時之黏度。When both methods were used to improve membrane EQE, as seen in Figure 19, the diamine had the highest effect on membrane EQE when diamine was added in both ligand exchange and monomer dispersion. Viscosity does not necessarily depend on the total amount of diamines in the ink. The samples with the highest diamine content, in which diamines were used in both the LE and the monomer dispersion, had moderate viscosity. This viscosity is lower than when only the same amount of diamine is used in the LE.

利用表16中列示之1,3-雙(胺基甲基)環己烷及其他5種添加劑測試在LE及/或單體分散中使用二胺之EQE增強。所有添加劑對初始EQE具有相似效應,且當與單體一起直接添加時,A1、A5及A6稍微優於其他添加劑。然而,硬烘烤後,A1及A6係最終膜EQE中2種最佳添加劑。此外,在所列示胺中,在LE及單體添加中不使用相同添加劑之情況下,獲得良好EQE。即使在LE及單體添加中使用相同二胺時,其改良EQE之效應亦可不同。舉例而言,如圖23中所間,當在單體添加中使用時,A6與A1一樣對保留EQE有效,然而,其不如在LE中使用A1時一樣有效。 表16 添加劑清單 A1 1,3-雙(胺基甲基)環己烷 A2 1,7-二胺基庚烷 A3 環庚基胺 A4 4,4'-亞甲基雙(2-甲基環己基胺) A5 環戊基胺 A6 2-甲基-1,5-二胺基戊烷 A7 4-胺基六氫吡啶 EQE enhancement using diamines in LE and/or monomer dispersion was tested using 1,3-bis(aminomethyl)cyclohexane and 5 other additives listed in Table 16. All additives had similar effects on the initial EQE, and A1, A5 and A6 slightly outperformed the other additives when added directly with the monomers. However, after hard bake, A1 and A6 were the 2 best additives in the final film EQE. Furthermore, among the listed amines, good EQEs are obtained without using the same additives in the LE and monomer additions. Even when the same diamine is used in LE and monomer addition, the effect of improving EQE can be different. For example, as shown in Figure 23, A6 is as effective as Al for retaining EQE when used in monomer addition, however, it is not as effective as when Al is used in LE. Table 16 Additive List A1 1,3-Bis(aminomethyl)cyclohexane A2 1,7-Diaminoheptane A3 Cycloheptylamine A4 4,4'-Methylenebis(2-methylcyclohexylamine) A5 Cyclopentylamine A6 2-Methyl-1,5-diaminopentane A7 4-Aminohexahydropyridine

雖然上文已闡述各種實施例,但應理解,該等實施例僅以實例方式而非限制方式呈現。對於熟習此項技術者顯而易見的是,可在不背離本發明精神及範疇之情況下在其中做出形式及細節之各種改變。因此,廣度及範疇不應受上文所闡述之例示性實施例中之任一者限制,而應僅根據隨附申請專利範圍及其等效內容來界定。While various embodiments have been described above, it should be understood that these embodiments have been presented by way of example only, and not limitation. It will be apparent to those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention. Thus, the breadth and scope should not be limited by any of the exemplary embodiments set forth above, but should be defined only in accordance with the scope of the appended claims and their equivalents.

在本說明書中提及之所有出版物、專利及專利申請案皆指示本發明所屬領域之技術人員之技術位準,且以引用方式併入本文中,其併入程度如同每一個別出版物、專利或專利申請案皆具體地及個別地指示以引用方式併入一般。All publications, patents, and patent applications mentioned in this specification are indicative of the level of skill of those skilled in the art to which this invention pertains, and are incorporated herein by reference to the same extent as if each individual publication, Patents or patent applications are specifically and individually indicated to be incorporated by reference.

併入本文中且形成本說明書之部分之隨附圖式圖解說明本實施例且與說明一起進一步用以解釋本實施例之原理且使熟習相關技術者能夠製作且使用本實施例。The accompanying drawings, which are incorporated herein and form part of this specification, illustrate the present embodiments and together with the description further serve to explain the principles of the present embodiments and to enable those skilled in the relevant art to make and use the present embodiments.

圖1係照片,自左至右之第一及第三膜不含聚胺基配體且展現延伸起皺。含有聚胺基配體之第二及第四膜顯示無起皺。Figure 1 is a photograph of the first and third films from left to right, free of polyamine based ligands and exhibiting extended wrinkling. The second and fourth films containing polyamine based ligands showed no wrinkling.

圖2A-2C係顯示離子交換處理之前(圖2A)、單次離子交換處理之後(圖2B)及兩次離子交換處理之後(圖2C)之AIGS奈米結構的TEM影像。2A-2C show TEM images of AIGS nanostructures before ion exchange treatment (FIG. 2A), after a single ion exchange treatment (FIG. 2B), and after two ion exchange treatments (FIG. 2C).

圖3A及3B係未囊封(圖3A)及囊封(圖3B)膜之示意圖。3A and 3B are schematic illustrations of unencapsulated (FIG. 3A) and encapsulated (FIG. 3B) membranes.

圖4係顯示由各種配體之混合物展現之QY%之散射圖。Figure 4 is a graph showing the QY% scattering exhibited by mixtures of various ligands.

圖5係顯示提供改良之QY%之配體組合(良好組合)及提供降低之QY%之組合(差的組合)的散射圖。Figure 5 is a scatter plot showing ligand combinations that provide improved QY% (good combinations) and combinations that provide reduced QY% (poor combinations).

圖6係顯示配體交換之前(NG)、配體交換之後(LE)及熱測試30 min之後各種配體組合之QY%的圖。Figure 6 is a graph showing the QY% for various ligand combinations before (NG), after ligand exchange (LE) and after 30 min of thermal testing.

圖7係顯示在各種配體比率下各種配體組合之QY%的圖。Figure 7 is a graph showing the QY% for various ligand combinations at various ligand ratios.

圖8係顯示進行正常烘烤後(PoB)量測(左圖)及在PCE量測之前進行囊封(右圖)之AIGS膜之PCE的兩個散射圖。Figure 8 shows two scatter plots of PCE for AIGS films subjected to post normal bake (PoB) measurement (left panel) and encapsulated before PCE measurement (right panel).

圖9係顯示在PCE量測之前未囊封(左圖)及進行囊封(右圖)之在180℃下烘烤之AIGS膜之PCE的兩個散射圖。Figure 9 shows two scatter plots of PCE for AIGS films baked at 180°C without encapsulation (left panel) and encapsulated (right panel) prior to PCE measurement.

圖10係顯示在室溫及80℃下在各種溶劑中進行配體交換之AIGS奈米結構之光致發光量子產率(PLQY)的條形圖。Figure 10 is a bar graph showing the photoluminescence quantum yield (PLQY) of AIGS nanostructures subjected to ligand exchange in various solvents at room temperature and 80°C.

圖11係顯示在各種單體存在下配體交換之AIGS奈米結構之QY的條形圖。Figure 11 is a bar graph showing the QY of ligand-exchanged AIGS nanostructures in the presence of various monomers.

圖12係顯示進行配體交換且用各種單體處理且在UV固化之後之AIGS奈米結構之膜外部量子效率(EQE)的線圖。Figure 12 is a line graph showing the membrane external quantum efficiency (EQE) of AIGS nanostructures subjected to ligand exchange and treated with various monomers and after UV curing.

圖13係顯示進行配體交換、用各種單體處理並以800 rpm旋轉塗覆之AIGS奈米結構油墨之藍光吸收的條形圖。Figure 13 is a bar graph showing blue light absorption of AIGS nanostructured inks subjected to ligand exchange, treated with various monomers and spin coated at 800 rpm.

圖14係顯示二胺((1,3-雙(胺基甲基)環己烷)對UV及180℃下後烘烤30 min (POB)後之膜EQE的效應之線圖。Figure 14 is a line graph showing the effect of diamine ((1,3-bis(aminomethyl)cyclohexane) on UV and film EQE after post-baking at 180°C for 30 min (POB).

圖15係顯示添加之二胺對黏度之效應的線圖,該黏度間接量測為在800 RPM下旋塗後膜中之藍光吸收。Figure 15 is a line graph showing the effect of added diamine on viscosity, which is indirectly measured as blue light absorption in films after spin coating at 800 RPM.

圖16係顯示與二胺(DA)之配體交換(LE)對溶液QY之效應的條形圖。該圖顯示,在180℃加熱後,QY下降隨著二胺之增加量而變小。Figure 16 is a bar graph showing the effect of ligand exchange (LE) with diamine (DA) on solution QY. The graph shows that after heating at 180°C, the QY drop becomes smaller with increasing amount of diamine.

圖17係顯示增加量之DA對UV固化後之膜PCE之效應的線圖。Figure 17 is a line graph showing the effect of increasing amounts of DA on film PCE after UV curing.

圖18係顯示藉由增加膜中DA之量對膜藍光吸收度之效應的線圖。Figure 18 is a line graph showing the effect of increasing the amount of DA in the film on the blue light absorbance of the film.

圖19係顯示在單體分散體中、在LE中以及在單體分散體及LE二者中添加之DA對PCE膜藍光吸收度之效應的線圖。Figure 19 is a line graph showing the effect of DA added in the monomer dispersion, in the LE, and in both the monomer dispersion and LE on the blue light absorbance of PCE films.

圖20係顯示在單體分散體中、在LE中以及在單體分散體及LE二者中添加之DA對膜黏度及藍光吸收度之效應的線圖。Figure 20 is a line graph showing the effect of DA added in monomer dispersion, in LE, and in both monomer dispersion and LE on film viscosity and blue light absorbance.

圖21係顯示各種添加劑對初始膜EQE之效應的線圖。Figure 21 is a line graph showing the effect of various additives on the EQE of the initial film.

圖22係顯示各種添加劑對POB後之膜EQE之效應的線圖。Figure 22 is a line graph showing the effect of various additives on the EQE of films after POB.

圖23係顯示具有額外添加劑對膜EQE及藍光吸收之效應的線圖。Figure 23 is a line graph showing the effect of having additional additives on film EQE and blue light absorption.

當連同圖式一起時,依據下文詳述之詳細說明將更明瞭本發明之特徵及優點,其中在通篇中相同參考字符識別對應元件。在圖式中,相同元件符號通常指示相同、功能上類似及/或結構上類似的元件。元件首次出現之圖式由相應參考符號中最左邊之數字指示。除非另外指示,否則貫穿本揭示內容提供之圖式不應被解釋為按比例繪製之圖式。The features and advantages of the present invention will become more apparent from the following detailed description, when taken in conjunction with the accompanying drawings, wherein like reference characters identify corresponding elements throughout. In the drawings, like reference numerals generally indicate identical, functionally similar, and/or structurally similar elements. The drawing in which an element first appears is indicated by the leftmost digit(s) in the corresponding reference number. The drawings provided throughout this disclosure should not be construed as being drawn to scale unless otherwise indicated.

Claims (46)

一種膜,其包含Ag、In、Ga及S (AIGS)奈米結構、至少一種配體,且當使用波長為約450 nm之藍光源激發時在480-545 nm之峰值發射波長下展現大於32%之轉換效率(PCE)。A film comprising Ag, In, Ga, and S (AIGS) nanostructures, at least one ligand, and exhibiting greater than 32 at a peak emission wavelength of 480-545 nm when excited with a blue light source having a wavelength of about 450 nm % Conversion Efficiency (PCE). 如請求項1之膜,其中該等奈米結構具有半峰全寬(FWHM)小於40 nm之發射光譜。The film of claim 1, wherein the nanostructures have an emission spectrum with a full width at half maximum (FWHM) of less than 40 nm. 如請求項1之膜,其中該等奈米結構具有FWHM為24-38 nm之發射光譜。The film of claim 1, wherein the nanostructures have an emission spectrum with a FWHM of 24-38 nm. 如請求項1之膜,其中該等奈米結構具有FWHM為27-32 nm之發射光譜。The film of claim 1, wherein the nanostructures have an emission spectrum with a FWHM of 27-32 nm. 如請求項1之膜,其中該等奈米結構具有FWHM為29-38 nm之發射光譜。The film of claim 1, wherein the nanostructures have an emission spectrum with a FWHM of 29-38 nm. 如請求項1至5中任一項之膜,其中該等奈米結構具有80-99.9%之量子產率(QY)。The film of any one of claims 1 to 5, wherein the nanostructures have a quantum yield (QY) of 80-99.9%. 如請求項6之膜,其中該等奈米結構具有85-95%之QY。The film of claim 6, wherein the nanostructures have a QY of 85-95%. 如請求項1至5中任一項之膜,其中該等奈米結構具有約86-94%之QY。The film of any one of claims 1 to 5, wherein the nanostructures have a QY of about 86-94%. 如請求項1至5中任一項之膜,其中該等奈米結構具有大於或等於0.8之OD 450/質量(mL .mg ­1.cm -1)。 The film of any one of claims 1 to 5, wherein the nanostructures have an OD 450 /mass (mL . mg 1. cm −1 ) greater than or equal to 0.8. 如請求項9之膜,其中該等奈米結構具有在0.8-2.5之包括範圍內之OD 450/質量(mL .mg -1.cm -1)。 The film of claim 9, wherein the nanostructures have an OD450 /mass (mL.mg - 1.cm - 1 ) in the inclusive range of 0.8-2.5. 如請求項10之膜,其中該等奈米結構具有在0.87-1.9之包括範圍內之OD 450/質量(mL .mg -1.cm -1)。 The film of claim 10, wherein the nanostructures have an OD450 /mass (mL.mg-1.cm - 1 ) in the inclusive range of 0.87-1.9 . 如請求項1至5中任一項之膜,其中藉由TEM,該等奈米結構之平均直徑小於10 nm。The film of any one of claims 1 to 5, wherein the nanostructures have an average diameter of less than 10 nm by TEM. 如請求項12之膜,其中平均直徑為約5 nm。The film of claim 12, wherein the average diameter is about 5 nm. 如請求項1至5中任一項之膜,其中至少約80%之發射係帶邊緣發射。The film of any one of claims 1 to 5, wherein at least about 80% of the emission tether is edge-emitted. 如請求項1至5中任一項之膜,其中至少約90%之發射係帶邊緣發射。The film of any one of claims 1 to 5, wherein at least about 90% of the emission tether is edge-emitted. 如請求項15之膜,其中92-98%之該發射係帶邊緣發射。The film of claim 15, wherein 92-98% of the emission tether is edge-emitted. 如請求項15之膜,其中93-96%之該發射係帶邊緣發射。The film of claim 15, wherein 93-96% of the emission tether is edge-emitted. 如請求項1至5中任一項之膜,其中該至少一種配體係聚胺基配體。The membrane of any one of claims 1 to 5, wherein the at least one ligand is a polyamine-based ligand. 如請求項18之膜,其中該至少一種聚胺基配體係聚胺基烷烴、聚胺基-環烷烴、聚胺基雜環化合物、聚胺基官能化聚矽氧或聚胺基取代之乙二醇。The film of claim 18, wherein the at least one polyamine based ligand is a polyaminoalkane, a polyamino-cycloalkane, a polyamine heterocyclic compound, a polyamine functionalized polysiloxane, or a polyamine substituted ethyl diol. 如請求項18之膜,其中該聚胺基配體係由兩個或三個胺基取代且視情況含有一個或兩個胺基代替碳基團之C 2-20烷烴或C 2-20環烷烴。 The film of claim 18, wherein the polyamine-based ligand system is C 2-20 alkane or C 2-20 cycloalkane substituted with two or three amine groups and optionally containing one or two amine groups in place of carbon groups . 如請求項20之膜,其中該聚胺基配體係1,3-環己烷雙(甲胺)、2,2-二甲基-1,3-丙烷二胺、參(2-胺基乙基)胺或2-甲基-1,5-二胺基戊烷。The film of claim 20, wherein the polyamine-based ligands are 1,3-cyclohexanebis(methylamine), 2,2-dimethyl-1,3-propanediamine, gins(2-aminoethylamine) group) amine or 2-methyl-1,5-diaminopentane. 如請求項1至5中任一項之膜,其中該至少一種配體係式I化合物:
Figure 03_image021
(I) 其中:  x係1至100;  y係0至100;且  R 2係C 1-20烷基。
The film of any one of claims 1 to 5, wherein the at least one ligand is a compound of formula I:
Figure 03_image021
(I) wherein: x is 1 to 100; y is 0 to 100; and R 2 is C 1-20 alkyl.
如請求項22之膜,其中x = 19,y = 3,且R 2= -CH 3The film of claim 22, wherein x=19, y= 3 , and R2= -CH3 . 如請求項1至5中任一項之膜,其中該至少一種配體係(3-胺基丙基)三甲氧基矽烷;(3-巰基丙基)三乙氧基矽烷;DL-α-硫辛酸;3,6-二氧雜-1,8-辛烷二硫醇;6-巰基-1-己醇;甲氧基聚乙二醇胺(約m.w. 500);聚(乙二醇)甲醚硫醇(約m.w. 800);苯基亞膦酸二乙基酯;N,N-二異丙基亞磷醯胺二苄基酯;N,N-二異丙基亞磷醯胺二-第三丁基酯;參(2-羧基乙基)膦鹽酸鹽;聚(乙二醇)甲醚硫醇(約m.w. 2000);甲氧基聚乙二醇胺(約m.w.750);丙烯醯胺;或聚乙烯亞胺。The film of any one of claims 1 to 5, wherein the at least one ligand is (3-aminopropyl)trimethoxysilane; (3-mercaptopropyl)triethoxysilane; DL-α-sulfur Octanoic acid; 3,6-dioxa-1,8-octanedithiol; 6-mercapto-1-hexanol; methoxypolyethylene glycol amine (approximately m.w. 500); poly(ethylene glycol) methyl ether mercaptan (approximately m.w. 800); diethyl phenylphosphonite; N,N-diisopropylphosphoramidite dibenzyl ester; N,N-diisopropylphosphoramidite di- tert-butyl ester; sine (2-carboxyethyl) phosphine hydrochloride; poly(ethylene glycol) methyl ether mercaptan (about m.w. 2000); methoxypolyethylene glycol amine (about m.w. 750); propylene amide; or polyethyleneimine. 如請求項1至5中任一項之膜,其中該至少一種配體係以下之組合:胺基-聚環氧烷(約m.w. 1000)及甲氧基聚乙二醇胺(約m.w.500);胺基-聚環氧烷(約m.w. 1000)及6-巰基-1-己醇;胺基-聚環氧烷(約m.w. 1000)及(3-巰基丙基)三乙氧基矽烷;以及6-巰基-1-己醇及甲氧基聚乙二醇胺(約m.w. 500)。The film of any one of claims 1 to 5, wherein the at least one ligand is a combination of: amine-polyalkylene oxide (about m.w. 1000) and methoxypolyethylene glycol amine (about m.w. 500); Amine-polyalkylene oxide (about m.w. 1000) and 6-mercapto-1-hexanol; amino-polyalkylene oxide (about m.w. 1000) and (3-mercaptopropyl)triethoxysilane; and 6 -Mercapto-1-hexanol and methoxypolyethylene glycol amine (about m.w. 500). 如請求項1至5中任一項之膜,其進一步包含至少一種有機樹脂。The film of any one of claims 1 to 5, further comprising at least one organic resin. 如請求項26之膜,其中該至少一種有機樹脂經固化。The film of claim 26, wherein the at least one organic resin is cured. 如請求項1至5中任一項之膜,其中該膜係5-15 µm厚。The film of any one of claims 1 to 5, wherein the film is 5-15 µm thick. 如請求項1至5中任一項之膜,其進一步包含至少一種納入塗覆AIGS表面之該至少一種配體中的單體。The film of any one of claims 1 to 5, further comprising at least one monomer incorporated into the at least one ligand coating the AIGS surface. 如請求項29之膜,其中該至少一種單體係丙烯酸酯。The film of claim 29, wherein the at least one monomeric acrylate. 如請求項29之膜,其中該單體係丙烯酸乙基酯、HDDA、丙烯酸四氫糠基酯、三(丙二醇)二丙烯酸酯、1,4-雙(丙烯醯基氧基)丁烷或丙烯酸異莰基酯中之至少一者。The film of claim 29, wherein the monosystem ethyl acrylate, HDDA, tetrahydrofurfuryl acrylate, tri(propylene glycol) diacrylate, 1,4-bis(acryloyloxy)butane, or acrylic acid At least one of isocamphenyl esters. 如請求項1至5中任一項之膜,其展現在450 nm處大於95%之藍光吸收。The film of any one of claims 1 to 5, which exhibits a blue light absorption of greater than 95% at 450 nm. 如請求項1至5中任一項之膜,其中該等AIGS奈米結構包含自該等奈米結構表面增加之鎵至該等奈米結構中心中減少之鎵之梯度。The film of any one of claims 1 to 5, wherein the AIGS nanostructures comprise a gradient of increasing gallium from the surface of the nanostructures to decreasing gallium in the center of the nanostructures. 一種製備如請求項26至33中任一項之膜的方法,該方法包含: (a)    提供AIGS奈米結構及至少一種塗覆該等AIGS奈米結構表面之配體;  (b)    將至少一種有機樹脂與(a)之AIGS奈米結構混合;  (c)    在第一障壁層上製備包含該等混合之AIGS奈米結構、該至少一種塗覆該表面之配體及該至少一種有機樹脂之第一膜;  (d)    固化該膜;及  (e)    將該第一膜囊封於該第一障壁層與第二障壁層之間;及  其中當使用波長為約450 nm之藍光源激發時,該囊封之膜在480-545 nm之峰值發射波長下展現大於32%之光子轉換效率(PCE)。 A method of making a film as claimed in any one of claims 26 to 33, the method comprising: (a) providing AIGS nanostructures and at least one ligand coating the surfaces of the AIGS nanostructures; (b) mixing at least one organic resin with the AIGS nanostructures of (a); (c) at the first barrier rib preparing a first film comprising the mixed AIGS nanostructures, the at least one ligand coating the surface, and the at least one organic resin on the layers; (d) curing the film; and (e) curing the first film encapsulated between the first barrier layer and the second barrier layer; and wherein the encapsulated film exhibits greater than 32% at a peak emission wavelength of 480-545 nm when excited with a blue light source having a wavelength of about 450 nm The photon conversion efficiency (PCE). 如請求項34之方法,其中該方法係在該囊封之膜在空氣中暴露於藍色LED光源之前實施。The method of claim 34, wherein the method is performed before the encapsulated film is exposed to a blue LED light source in air. 如請求項34之方法,其中該方法係在惰性氣氛下實施。The method of claim 34, wherein the method is carried out under an inert atmosphere. 如請求項34之方法,其中該方法進一步包含: 在(a)之AIGS奈米結構及配體之混合物中添加至少一種氧反應性材料、在(b)之混合物中添加至少一種氧反應性材料、及/或在(c)中製備之該第一膜之頂部上形成包含至少一種氧反應性材料之第二膜、及/或在(c)中製備之該第一膜上形成暫時阻擋氧氣及/或水之犧牲障壁層、並量測該膜之該PCE、然後去除該犧牲障壁層。 The method of claim 34, wherein the method further comprises: adding at least one oxygen-reactive material to the mixture of AIGS nanostructures and ligands of (a), adding at least one oxygen-reactive material to the mixture of (b), and/or the first oxygen-reactive material prepared in (c) A second film comprising at least one oxygen-reactive material is formed on top of a film, and/or a sacrificial barrier layer temporarily blocking oxygen and/or water is formed on the first film prepared in (c), and the measurement of the The PCE of the film and then the sacrificial barrier layer is removed. 如請求項34之方法,其中該兩個障壁層排除氧及/或水。The method of claim 34, wherein the two barrier layers exclude oxygen and/or water. 如請求項34至38中任一項之方法,其中該至少一種配體係聚胺基配體。The method of any one of claims 34 to 38, wherein the at least one ligand is a polyamine-based ligand. 如請求項34至38中任一項之方法,其進一步包含將至少一種單體納入該至少一種塗覆該AIGS表面之配體中。The method of any one of claims 34 to 38, further comprising incorporating at least one monomer into the at least one ligand coating the AIGS surface. 一種裝置,其包含如請求項1至33中任一項之膜。A device comprising the membrane of any one of claims 1 to 33. 一種奈米結構模製製品,其包含: (a)    第一導電層;  (b)    第二導電層;及  (c)    在該第一導電層與該第二導電層之間之如請求項1至33中任一項之膜。 A nanostructured molded article comprising: (a) a first conductive layer; (b) a second conductive layer; and (c) the film of any one of claims 1 to 33 between the first conductive layer and the second conductive layer. 一種奈米結構色彩轉換器,其包含: 底板;  佈置於該底板上之顯示面板;及  佈置於該顯示面板上之如請求項1至33中任一項之膜。 A nanostructured color converter comprising: a backplane; a display panel arranged on the backplane; and the film of any one of claims 1 to 33 arranged on the display panel. 如請求項43之奈米結構色彩轉換器,其中膜包含圖案化AIGS奈米結構。The nanostructured color converter of claim 43, wherein the film comprises patterned AIGS nanostructures. 如請求項43之奈米結構色彩轉換器,其中該膜包含AIGS奈米結構及至少一種納入該至少一種塗覆AIGS表面之配體中的單體。The nanostructure color converter of claim 43, wherein the film comprises AIGS nanostructures and at least one monomer incorporated into the at least one ligand that coats the AIGS surface. 如請求項43之奈米結構色彩轉換器,其中該底板包含LED、LCD、OLED或微型LED。The nanostructured color converter of claim 43, wherein the backplane comprises LEDs, LCDs, OLEDs, or micro LEDs.
TW110147823A 2020-12-22 2021-12-21 Films comprising bright silver based quaternary nanostructures TW202229159A (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US202063129378P 2020-12-22 2020-12-22
US63/129,378 2020-12-22
US202163145299P 2021-02-03 2021-02-03
US17/166,788 2021-02-03
US17/166,788 US11407940B2 (en) 2020-12-22 2021-02-03 Films comprising bright silver based quaternary nanostructures
US63/145,299 2021-02-03

Publications (1)

Publication Number Publication Date
TW202229159A true TW202229159A (en) 2022-08-01

Family

ID=79730546

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110147823A TW202229159A (en) 2020-12-22 2021-12-21 Films comprising bright silver based quaternary nanostructures

Country Status (5)

Country Link
EP (1) EP4267691A1 (en)
JP (1) JP2023554669A (en)
KR (1) KR20230136124A (en)
TW (1) TW202229159A (en)
WO (1) WO2022140328A1 (en)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6949206B2 (en) 2002-09-05 2005-09-27 Nanosys, Inc. Organic species that facilitate charge transfer to or from nanostructures
US7645397B2 (en) 2004-01-15 2010-01-12 Nanosys, Inc. Nanocrystal doped matrixes
US8563133B2 (en) 2004-06-08 2013-10-22 Sandisk Corporation Compositions and methods for modulation of nanostructure energy levels
US7501315B2 (en) 2004-06-08 2009-03-10 Nanosys, Inc. Methods and devices for forming nanostructure monolayers and devices including such monolayers
CN102656233B (en) 2009-05-01 2015-04-29 纳米系统公司 Functionalized matrixes for dispersion of nanostructures
KR20120047282A (en) * 2009-08-04 2012-05-11 프리커서 에너제틱스, 인코퍼레이티드. Methods for photovoltaic absorbers with controlled stoichiometry
EP2462150A2 (en) * 2009-08-04 2012-06-13 Precursor Energetics, Inc. Polymeric precursors for caigs and aigs silver-containing photovoltaics
CN103210505A (en) * 2010-09-15 2013-07-17 普瑞凯瑟安质提克斯公司 Deposition processes and devices for photovoltaics
US9139770B2 (en) 2012-06-22 2015-09-22 Nanosys, Inc. Silicone ligands for stabilizing quantum dot films
TWI596188B (en) 2012-07-02 2017-08-21 奈米系統股份有限公司 Highly luminescent nanostructures and methods of producing same
WO2014159927A2 (en) 2013-03-14 2014-10-02 Nanosys, Inc. Method for solventless quantum dot exchange
CN105062193B (en) 2015-08-14 2020-01-31 广州华睿光电材料有限公司 Printing ink composition and electronic device
KR102474201B1 (en) 2015-11-26 2022-12-06 삼성디스플레이 주식회사 Quantum dot color filter and display device including the same
JP7070826B2 (en) * 2017-02-28 2022-05-18 国立大学法人東海国立大学機構 Semiconductor nanoparticles and their manufacturing methods and light emitting devices

Also Published As

Publication number Publication date
JP2023554669A (en) 2023-12-28
WO2022140328A1 (en) 2022-06-30
EP4267691A1 (en) 2023-11-01
KR20230136124A (en) 2023-09-26

Similar Documents

Publication Publication Date Title
JP6931435B1 (en) Four-dimensional nanostructure based on bright silver
US9139767B2 (en) Methods for encapsulating nanocrystals and resulting compositions
US11021651B2 (en) Thiolated hydrophilic ligands for improved quantum dot reliability in resin films
EP2370993A1 (en) Methods for encapsulating nanocrystals and resulting compositions
TWI827791B (en) Methods for synthesis of inorganic nanostructures using molten salt chemistry, nanostructures and display device comprising the nanostructures
US20180022992A1 (en) Methods for Encapsulating Nanocrystals and Resulting Compositions
US20220098475A1 (en) Thermally stable polythiol ligands with pendant solubilizing moieties
TW202229159A (en) Films comprising bright silver based quaternary nanostructures
US11926776B2 (en) Films comprising bright silver based quaternary nanostructures
US11407940B2 (en) Films comprising bright silver based quaternary nanostructures
US11360250B1 (en) Stable AIGS films
TW202307177A (en) Stable aigs films
CN116981754A (en) Film comprising bright silver-based quaternary nanostructures
CN117396581A (en) Stable AIGS film