TW202228068A - 樣本的類比圖像的決定 - Google Patents
樣本的類比圖像的決定 Download PDFInfo
- Publication number
- TW202228068A TW202228068A TW110127081A TW110127081A TW202228068A TW 202228068 A TW202228068 A TW 202228068A TW 110127081 A TW110127081 A TW 110127081A TW 110127081 A TW110127081 A TW 110127081A TW 202228068 A TW202228068 A TW 202228068A
- Authority
- TW
- Taiwan
- Prior art keywords
- image
- given
- design
- sample
- machine learning
- Prior art date
Links
- 238000013461 design Methods 0.000 claims abstract description 93
- 238000006073 displacement reaction Methods 0.000 claims abstract description 82
- 239000011159 matrix material Substances 0.000 claims abstract description 71
- 238000012549 training Methods 0.000 claims abstract description 66
- 238000010801 machine learning Methods 0.000 claims abstract description 62
- 230000006870 function Effects 0.000 claims abstract description 50
- 239000004065 semiconductor Substances 0.000 claims abstract description 30
- 238000000034 method Methods 0.000 claims description 68
- 230000007547 defect Effects 0.000 claims description 33
- 230000008569 process Effects 0.000 claims description 28
- 238000009499 grossing Methods 0.000 claims description 10
- 238000005457 optimization Methods 0.000 claims description 4
- 238000012937 correction Methods 0.000 abstract description 3
- 238000007689 inspection Methods 0.000 description 53
- 238000004519 manufacturing process Methods 0.000 description 9
- 238000003860 storage Methods 0.000 description 7
- 238000001514 detection method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 238000012545 processing Methods 0.000 description 5
- 238000004626 scanning electron microscopy Methods 0.000 description 5
- 238000013528 artificial neural network Methods 0.000 description 4
- 230000004913 activation Effects 0.000 description 3
- 238000004630 atomic force microscopy Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000001878 scanning electron micrograph Methods 0.000 description 3
- 230000011218 segmentation Effects 0.000 description 3
- 235000012431 wafers Nutrition 0.000 description 3
- 230000002238 attenuated effect Effects 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000013527 convolutional neural network Methods 0.000 description 2
- 230000001066 destructive effect Effects 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000000306 recurrent effect Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 238000012634 optical imaging Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000007847 structural defect Effects 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
- G06T7/0006—Industrial image inspection using a design-rule based approach
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/93—Detection standards; Calibrating baseline adjustment, drift correction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/9501—Semiconductor wafers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/048—Activation functions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/001—Texturing; Colouring; Generation of texture or colour
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/70—Denoising; Smoothing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/90—Dynamic range modification of images or parts thereof
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
- G06T7/001—Industrial image inspection using an image reference approach
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
- G01N2021/8883—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges involving the calculation of gauges, generating models
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
- G01N2021/8887—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
- G06T2207/30148—Semiconductor; IC; Wafer
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Mathematical Physics (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Quality & Reliability (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Medical Informatics (AREA)
- Signal Processing (AREA)
- Image Analysis (AREA)
- Image Processing (AREA)
Abstract
提供了一種檢驗半導體樣本的系統,該系統包括處理器和記憶體電路系統,該處理器和記憶體電路系統被配置為:獲得訓練樣品,該訓練樣品包括半導體樣本的圖像和基於設計資料的設計圖像;訓練機器學習模組,其中該訓練包括最小化代表由該機器學習模組基於給定設計圖像來生成的類比圖像與對應於在根據給定位移矩陣校正給定圖像的圖元位置之後的該給定圖像的校正圖像之間的差異的函數,其中該最小化包括優化該機器學習模組的和該給定位移矩陣的參數,其中所訓練的機器學習模組可用於基於樣本的設計圖像來生成該樣本的類比圖像。
Description
本發明公開的主題總體涉及樣本檢驗領域,並且更具體地涉及自動化樣本的檢驗。
當前對與所製造的元件的超大規模集成相關聯的高密度和高效能的需求要求亞微米特徵、提高的電晶體和電路速度以及提高的可靠性。這種需求要求形成具有高精確度和均勻性的元件特徵,這又使得必需仔細地監測製造製程,包括在元件仍呈半導體晶圓的形式時對所述元件的自動化檢驗。
在半導體製造期間的各種階段上使用檢驗製程來偵測樣本上的缺陷並對其分類。可藉由(多個)製程的自動化(例如,自動化缺陷分類(ADC)、自動化缺陷查驗(ADR)等)來提高檢驗效力。
根據本發明公開的主題的某些態樣,提供了一種檢驗半導體樣本的系統,所述系統包括處理器和記憶體電路系統(PMC),所述處理器和記憶體電路系統(PMC)被配置為:獲得複數個訓練樣品,每個訓練樣品包括半導體樣本的圖像和基於設計資料的設計圖像;基於包括給定圖像和給定設計圖像的給定訓練樣品來訓練機器學習模組,其中給定位移矩陣針對所述給定圖像初始化,其中所述訓練包括最小化代表在由所述機器學習模組基於所述給定設計圖像來生成的類比圖像與對應於在根據所述給定位移矩陣校正所述給定圖像的圖元位置之後的所述給定圖像的校正圖像之間的差異的函數,其中所述最小化包括優化所述機器學習模組的和所述給定位移矩陣的參數,其中所述機器學習模組可用於在所述訓練之後基於半導體樣本的設計圖像來生成所述半導體樣本的類比圖像。
根據一些實施例,所述給定位移矩陣提供要應用於所述給定圖像的圖元的位移場的資訊。
根據一些實施例,所述校正圖像包括具有比所述給定圖像的結構元素要小的過程變化的結構元素。
根據一些實施例,所述函數包括影響所述給定位移矩陣的參數的優化的平滑項。
根據一些實施例,所述類比圖像對應於所述圖像中不存在缺陷的所述給定圖像的估計或對應於具有較少缺陷的所述給定圖像的估計。
根據一些實施例,所述系統被配置為將基於設計資料來生成的樣本的設計圖像在其訓練之後饋送到所述機器學習模組,並且生成所述樣本的類比圖像。
根據一些實施例,所述系統被配置為:獲得半導體樣本的第一圖像和基於設計資料的第一設計圖像,其中第一位移矩陣針對所述第一圖像初始化;最小化代表在由所述機器學習模組基於所述第一設計圖像來生成的類比圖像與對應於在根據所述第一位移矩陣校正所述第一圖像的圖元位置之後的所述第一圖像的第一圖像之間的差異的函數,其中所述最小化包括優化所述第一位移矩陣的參數;以及輸出所述校正圖像。
根據本發明公開的主題的其他態樣,提供了一種檢驗半導體樣本的方法,所述方法包括由處理器和記憶體電路系統(PMC)進行以下操作:獲得複數個訓練樣品,每個訓練樣品包括半導體樣本的圖像和基於設計資料的設計圖像;基於包括給定圖像和給定設計圖像的給定訓練樣品來訓練機器學習模組,其中給定位移矩陣針對所述給定圖像初始化,其中所述訓練包括最小化代表在由所述機器學習模組基於所述給定設計圖像來生成的類比圖像與對應於在根據所述給定位移矩陣校正所述給定圖像的圖元位置之後的所述給定圖像的校正圖像之間的差異的函數,其中所述最小化包括優化所述機器學習模組的和所述給定位移矩陣的參數,其中所述機器學習模組可用於在所述訓練之後基於樣本的設計圖像來生成所述樣本的類比圖像。
根據一些實施例,所述給定位移矩陣提供要應用於所述給定圖像的圖元的位移場的資訊。
根據一些實施例,所述校正圖像包括具有比所述給定圖像的結構元素要小的過程變化的結構元素。
根據一些實施例,所述函數包括影響所述給定位移矩陣的參數的優化的平滑項。
根據一些實施例,所述類比圖像對應於所述給定圖像中不存在缺陷的所述給定圖像的估計或對應於具有較少缺陷的所述給定圖像的估計。
根據一些實施例,所述方法包括將基於設計資料來生成的樣本的設計圖像在其訓練之後饋送到所述機器學習模組,並且生成所述樣本的類比圖像。
根據一些實施例,所述方法包括:獲得半導體樣本的第一圖像和基於設計資料的第一設計圖像,其中第一位移矩陣針對所述第一圖像初始化;最小化代表在由所述機器學習模組基於所述第一設計圖像來生成的類比圖像與對應於在根據所述第一位移矩陣校正所述第一圖像的圖元位置之後的所述第一圖像的第一圖像之間的差異的函數,其中所述最小化包括優化所述第一位移矩陣的參數;以及輸出所述校正圖像。
根據本發明公開的主題的其他態樣,公開了一種非瞬態電腦可讀媒體,所述非瞬態電腦可讀媒體包括指令,所述指令在由PMC執行時致使所述PMC執行如上所述的操作。
根據一些實施例,所提出的解決方案允許基於在設計資料的基礎上生成的半導體樣本的設計圖像來高效地且精確地生成半導體樣本的類比圖像。特別地,類比圖像類似於樣本的圖像,但是沒有(或具有更少的)雜訊和/或缺陷。根據一些實施例,所提出的解決方案允許基於樣本的圖像來高效地生成校正圖像,其中減少或減弱了過程變化。
在以下詳細描述中,闡述了許多具體細節,以便提供對本公開內容的透徹理解。然而,本領域技術人員將理解,本發明公開的主題可在沒有這些具體細節的情況下實踐。在其他情況下,並未詳細地描述所熟知的方法、程式、部件和電路,以免模糊本發明公開的主題。
除非另外具體說明,否則如從以下討論中清楚,將瞭解,貫穿本說明書討論,利用術語諸如「訓練」、「獲得」、「最小化」、「決定」、「優化」、「輸出」、「生成」等是指電腦的將資料操縱和/或變換為其他資料的(多個)動作和/或(多個)處理,所述資料被表示為物理(諸如電子)量和/或所述資料表示物理物件。術語「電腦」應廣義地解釋為涵蓋具有資料處理能力的任何種類的基於硬體的電子裝置,作為非限制性示例,包括本申請中公開的系統103及其相應部分。
本文使用的術語「非瞬態記憶體」和「非瞬態存儲介質」應廣義地解釋為涵蓋適合本發明公開的主題的任何易失性或非易失性電腦記憶體。
本說明書中使用的術語「樣本」應廣義地解釋為涵蓋用來製造半導體積體電路、磁頭、平板顯示器和其他半導體製品的任何種類的晶圓、掩模和其他結構、以上項的組合和/或以上項的部分。
本說明書中使用的術語「檢驗」應廣義地解釋為涵蓋任何種類的計量相關操作以及與在樣本的製造期間所述樣本中的缺陷的偵測和/或分類有關的操作。檢驗藉由在要檢驗的樣本的製造期間或之後使用例如非破壞性檢驗工具提供。作為非限制性示例,檢驗過程可包括使用相同或不同檢查工具進行運行時掃描(以單次掃描或以多次掃描)、取樣、查驗、測量、分類和/或關於樣本或其部分提供的其他操作。同樣地,檢驗可在要檢驗的樣本的製造之前提供並可包括例如生成(多個)檢驗方案和/或其他設置操作。要注意,除非另外具體說明,否則本說明書中使用的術語「檢驗」或其衍生詞在檢查區域的解析度或大小方面不受限制。作為非限制性示例,多種非破壞性檢驗工具包括掃描電子顯微鏡、原子力顯微鏡、光學檢查工具等等。
作為非限制性示例,運行時檢驗可採用兩階段過程,例如,先是檢查樣本,接著查驗潛在缺陷的取樣位置。在第一階段期間,以高速度和相對低的解析度檢查樣本的表面。在第一階段中,產生缺陷圖,以示出在樣本上高概率有缺陷的可疑位置。在第二階段期間,以相對高的解析度更徹底地分析所述可疑位置中的至少一些。在一些情況下,兩個階段可由同一檢查工具實施,並且在一些其他情況下,這兩個階段由不同檢查工具實施。
本說明書中使用的術語「缺陷」應廣義地解釋為涵蓋在樣本上或樣本內所形成的任何種類的異常或不期望的特徵。
本說明書中使用的術語「設計資料」應廣義地解釋為涵蓋指示樣本的分層物理設計(佈局)的任何資料。設計資料可由相應設計者提供和/或可從物理設計匯出(例如,藉由複雜模擬、簡單幾何和布耳運算等)。設計資料可以以不同格式提供,作為非限制性示例,諸如GDSII格式、OASIS格式等。設計資料可以以向量格式、灰度強度圖像格式或以其他方式來呈現。
將瞭解,除非另外具體說明,否則在單獨實施例的上下文中描述的本發明公開的主題的某些特徵也可在單一實施例中被組合地提供。相反地,在單一實施例的上下文中所述的本發明公開的主題的各種特徵也可單獨地提供或以任何合適的子組合提供。在以下詳細描述中,闡述了許多具體細節,以便提供對方法和設備的透徹理解。
考慮到這一點,轉向圖1,其示出了根據本發明公開的主題的某些實施例的檢驗系統的功能框圖。圖1中示出的檢驗系統100可用於作為樣本製造過程的一部分進行的(例如,晶圓和/或其部分的)樣本的檢驗。所示出的檢驗系統100包括基於電腦的系統103,所述基於電腦的系統能夠使用在樣本製造期間獲得的圖像來自動地決定計量相關和/或缺陷相關資訊。系統103可操作地連接到一個或多個低解析度檢驗工具101和/或一個或多個高解析度檢驗工具102和/或其他檢驗工具。檢驗工具被配置為捕獲圖像和/或查驗所捕獲的(多個)圖像和/或實現或提供與所捕獲的(多個)圖像有關的測量。系統103可進一步可操作地連接到CAD伺服器110和資料存儲庫109。
系統103包括可操作地連接到基於硬體的輸入介面105和基於硬體的輸出介面106的處理器和記憶體電路(PMC)104。PMC 104被配置為提供作業系統103所需的所有處理,如下文進一步詳述(參見圖3至圖5中描述的可至少部分地由系統103執行的方法)並且包括處理器(未單獨地示出)和記憶體(未單獨地示出)。PMC 104的處理器可被配置為根據實現在PMC中包括的非瞬態電腦可讀記憶體上的電腦可讀指令來執行若干功能模組。此類功能模組在下文被稱為包括在PMC中。PMC 104中包括的功能模組包括深度神經網路(DNN)112。DNN 112被配置為使用用於基於樣本的圖像來輸出應用相關資料的機器學習演算法來實現資料處理。
作為非限制性示例,可根據卷積神經網路(CNN)架構、迴圈神經網路架構、遞迴神經網路架構、生成性對抗網路(GAN)架構或其他架構來組織DNN 112的層。任選地,層中的至少一些可被組織在複數個DNN子網中。DNN的每個層可包括多個基本計算元素(CE),在本領域中,所述多個基本CE典型地稱為維度、神經元或節點。
一般來講,給定層的計算元素可與前一層和/或後一層的CE連接。在前一層的CE與後一層的CE之間的每個連接與加權值相關聯。給定CE可經由相應連接從前一層的CE接收輸入,每個給定連接與可應用於給定連接的輸入的加權值相關聯。加權值可決定連接的相對強度並由此決定相應輸入對給定CE的輸出的相對影響。給定CE可被配置為計算啟動值(例如,輸入的加權和)並藉由將啟動函數應用於所計算的啟動來進一步匯出輸出。啟動函數可為例如恆等函數、決定性函數(例如,線性、S形、閾值等)、隨機函數或其他合適的函數。來自給定CE的輸出可經由相應連接傳輸到後一層的CE。同樣地,如上所述,在CE的輸出處的每個連接可與可在被接收作為後一層的CE的輸入之前被應用於CE的輸出的加權值相關聯。除加權值外,還可存在與連接和CE相關聯的閾值(包括限制函數)。
可在訓練之前初始地選擇DNN 112的加權值和/或閾值,並且可在訓練期間進一步反覆運算地調整或修改所述加權值和/或閾值,以在所訓練的DNN中實現最佳加權值和/或閾值集。在每次反覆運算之後,可決定在由DNN 112產生的實際輸出和與相應資料訓練集相關聯的目標輸出之間的差值(也稱損失函數)。所述差值可稱為誤差值。當指示誤差值的成本或損失函數小於預決定值時,或者當實現在反覆運算之間的效能的有限改變時,可決定訓練已經完成。任選地,在訓練整個DNN之前,可單獨地訓練DNN子網(如果有的話)中的至少一些。
系統103被配置為經由輸入介面105接收輸入資料。輸入資料可包括由檢驗工具產生的資料(和/或其衍生物和/或與其相關聯的中繼資料)和/或產生和/或存儲在一個或多個資料存儲庫109和/或CAD伺服器110和/或另一個相關資料存儲庫中的資料。要注意,輸入資料可包括圖像(例如,所捕獲的圖像、從所捕獲的圖像匯出的圖像、類比圖像、合成圖像等)和相關聯的數值資料(例如,中繼資料、手工定制的屬性等)。要進一步注意,圖像資料可包括與感興趣層和/或與樣本的一個或多個其他層有關的資料。
系統103進一步被配置為處理接收到的輸入資料的至少部分,並經由輸出介面106將結果(或其一部分)發送到存儲系統107、(多個)檢查工具、基於電腦的圖形化使用者介面(GUI)108來呈現結果和/或將結果呈現到外部系統(例如,FAB的產量管理系統(YMS))。GUI 108可進一步被配置為實現與作業系統103有關的使用者指定的輸入。
作為非限制性示例,可藉由一個或多個低解析度檢驗機器101(例如,光學檢查系統、低解析度SEM等)來檢驗樣本。提供樣本的低解析度圖像的資訊的結果資料(下文稱為低解析度圖像資料121)可直接地或經由一個或多個中間系統傳輸到系統103。替代地或附加地,可藉由高解析度機器102檢驗樣本(例如,可藉由掃描電子顯微鏡(SEM)或原子力顯微鏡(AFM)查驗被選擇用於進行查驗的潛在缺陷位置子集)。提供樣本的高解析度圖像的資訊的結果資料(下文稱為高解析度圖像資料122)可直接地或經由一個或多個中間系統傳輸到系統103。
要注意,可以以不同解析度捕獲在樣本上的所期望的位置的圖像。藉由非限制性示例,期望位置的所謂的「缺陷圖像」可用於區分缺陷和誤報,而期望位置的所謂的「類圖像」以更高的解析度獲得並可用於缺陷分類。在一些實施例中,相同位置的圖像(具有相同或不同解析度)可包括在其之間配准的若干圖像(例如,從給定位置捕獲的圖像和與給定位置相對應的一個或多個設計圖像)。
要注意,圖像資料可連同與其相關聯的中繼資料(例如,圖元大小、缺陷類型的文本描述、圖像捕獲過程的參數等)一起被接收和處理。
在處理輸入資料(例如,低解析度圖像資料和/或高解析度圖像資料,任選地連同其他資料,例如設計資料、合成資料等)後,系統103可將結果(例如,指令相關資料123和/或124)發送到(多個)檢驗工具中的任一者,將結果(例如,缺陷屬性、缺陷分類等)存儲在存儲系統107中,經由GUI 108呈現結果,和/或將結果發送到外部系統(例如,發送到YMS)。
本領域技術人員將容易地理解,本發明公開的主題的教導不受圖1中示出的系統束縛;等同和/或修改的功能性可以以另一種方式合併或劃分並可實現在軟體與固件和/或硬體的任何適當的組合中。
在不以任何方式限制本公開內容的範圍的情況下,還應注意,檢驗工具可被實施為各種類型的檢查機器,諸如光學成像機器、電子束檢查機器等。在一些情況下,同一檢驗工具可提供低解析度圖像資料和高解析度圖像資料。在一些情況下,至少一個檢驗工具可具有計量能力。
要注意,圖1中示出的檢驗系統可在分散式運算環境中實施,其中圖1中示出的前述功能模組可跨若干本端和/或遠端裝置分佈,並且可藉由通信網路來進行連結。要進一步注意,在其他實施例中,檢驗工具101和/或102、資料存儲庫109、存儲系統107和/或GUI 108中的至少一些可在檢驗系統100外部並以經由輸入介面105和輸出介面106與系統103進行資料通信的方式操作。系統103可實施為(多個)獨立電腦,以結合檢驗工具進行使用。替代地,所述系統的相應功能可至少部分地與一個或多個檢驗工具集成。
現在注意圖2和圖2A。
所提出的方法包括獲得(操作200)複數個訓練樣品。訓練樣品包括半導體樣本的圖像280。如圖2B的非限制性示例所示,圖像280包括複數個第一結構元素281。結構元素包括(所提供的示例不是限制性的)閘極、電晶體、觸點或這些元素的部分。結構元素的性質和/或形狀在圖像中可不同。
根據一些實施例,圖像280已經藉由電子束檢查工具(參見例如以上附圖標記102)(諸如掃描電子顯微鏡(SEM)或原子力顯微鏡(AFM))獲取。根據其他實施例,圖像280已經藉由光學檢查工具被採集(參見例如以上附圖標記101)。然而,這不是限制性的。
位移矩陣285針對圖像280初始化(換句話說,設定具有初始參數的位移矩陣285,如下文所說明,然後在訓練過程期間優化這些初始參數)。在基於訓練樣品的訓練開始之前,位移矩陣285可包括例如任意值(其可以是例如預定義的和/或可由操作員設定的)。例如,位移矩陣285可對應於零矩陣。然而,這不是限制性的。如下文所說明,位移矩陣285可用於減少或減弱圖像280的結構元素281中存在的過程變化。過程變化對應於例如在製造積體電路時電晶體的屬性(例如長度、寬度、氧化物厚度)的自然地發生的變化。位移矩陣285包括例如存儲複數個位移場的矩陣。每個給定位移場與圖像280的給定圖元或給定圖元組相關聯,並且提供要應用於給定圖元或給定圖元組的位移(在例如圖像280的二維參照中)的資訊。每個位移場可包括例如指示根據水平軸線(X軸)施加的位移的第一值(290)和指示根據豎直軸線(Y軸)施加的位移的第二值(291)。在圖2C的示例中,位移矩陣的大小為N*N並且包括第一值290
1,1至290
N,N和第二值291
1,1至291
N,N。在一些實施例中,位移矩陣285可被視為描述兩個圖像(在這種情況下是校正圖像294和類比圖像292)之間的光流的光流矩陣。
訓練樣品進一步包括基於設計資料生成的樣本的至少一個設計圖像286。例如,可使用CAD資料(例如,藉由光柵化CAD資料)來類比設計圖像286。圖2D中提供了設計圖像286的非限制性示例。設計圖像286包括第二結構元素287。設計圖像286是例如樣本(例如,管芯、單元等)的參考區域的圖像,其中相應的圖像資料被驗證為代表沒有缺陷的參考區域。
圖像280能與設計圖像286比較(例如,管芯到資料庫等)並且提供半導體樣本的第一區域的資訊。圖像280可提供與第一區域相關聯的複數個缺陷的資訊。第一區域被配置為滿足關於參考區域的相似性標準並且可屬於相同或不同的半導體樣本。例如,相似性標準可定義例如第一區域和參考區域對應於相同的物理部件或對應於半導體樣本的類似的區(例如,類似的管芯、單元等)。
需注意,為了確保圖像之間的相容性,圖像280(或已經從中生成圖像280的圖像)和設計圖像286可經歷配准程式。
所述方法還包括(操作205)訓練機器學習模組212。機器學習模組212可對應於例如DNN模組112。
對於複數個訓練樣品中的包括給定圖像280(給定位移矩陣285針對給定圖像280初始化)和給定設計圖像286的給定訓練樣品,訓練可包括最小化代表在由機器學習模組212基於給定設計圖像286生成的類比圖像292與對應於在根據給定位移矩陣285校正給定圖像280的圖元位置之後的給定圖像280的校正圖像294之間的差異的函數295。
最小化函數包括優化機器學習模組和給定位移矩陣的參數。這個函數可被視為損失函數。必須注意,最小化損失函數f等同於最大化損失函數f的倒數1/f。
換句話說,對於給定訓練樣品,一旦最小化過程已經收斂,機器學習模組的一個或多個參數和給定訓練樣品的給定位移矩陣的一個或多個參數就被優化(對於每個參數,這可包括調整參數的先前值,或者,如果此參數沒有先前值,則這可包括決定此參數的值)。最小化過程可以是漸進的,直到例如滿足收斂標準(例如,損失函數具有足夠低的值)為止。
如上文所說明,機器學習模組212的參數可包括例如DNN 112的加權和/或閾值。關於給定位移矩陣,參數可包括位移場(參見例如(290
1,1;291
1,1)至(290
N,N;291
N,N))中的一個或多個。
優化機器學習模組(和位移矩陣)的參數可依賴於諸如前饋/反向傳播方法等技術並且可依賴於任何優化器(例如,隨機梯度下降-SGD、ADAM等—這不是限制性的)。
各種不同函數可用作損失函數295(交叉熵、均方誤差、合頁(hinge)損失等)。下文提供非限制性示例。根據一些實施例,損失函數295包括以下項:
方程1
方程1中,LF是損失函數295,
P
292 (
X, Y)對應於與在類比圖像292中的位置X,Y處的圖元相關聯的值,
P
294 ( X, Y )對應於與在校正圖像294中的位置X,Y處的圖元相關聯的值,並且
f對應於預決定函數(其可包括例如對數函數「log」、平均函數等)。
可以使用其他方程,如下所示:
方程1’
方程1’’
然而,損失函數的這些示例不是限制性的。
根據一些實施例,可在損失函數295中併入平滑項。平滑項影響在訓練階段中的位移矩陣285的參數的優化。根據一些實施例,平滑項確保DNN 112表徵物理現象(具有「平滑」行為)並且不會過度擬合圖像中存在的雜訊。在一些實施例中,平滑項可類似於存在於兩個圖像之間的光流校正中的平滑項。
如上文所說明,位於圖像280中的位置(x,y)處的的每個給定圖元與位移場(U(x,y);V(x,y))相關聯,其中U對應於根據水平軸線(X軸)的圖元位移並且V對應於根據豎直軸線(Y軸)的圖元位移。
圖2E示出了與在根據給定位移矩陣285校正給定圖像280的圖元位置之後的給定圖像280對應的校正圖像294(給定位移矩陣285的最終參數在使用損失函數295完成優化過程之後獲得)。如圖所示,校正圖像294的特殊之處在於結構元素的輪廓更平滑,具有較小過程變化(過程變化特別地導致結構元素的輪廓的不規則性)。這可藉由比較例如校正圖像294的線289和圖像280的對應線281來看出。因此,將位移矩陣285應用於圖像280使校正圖像294中的過程變化減少。然而,校正圖像294仍包括圖像280中存在的其他結構缺陷(參見例如缺陷298)。
如圖2所示,可針對另一個訓練樣品重複訓練(參見操作206),所述另一個訓練樣品也包括給定圖像和給定設計圖像。給定位移矩陣(包括例如要優化的初始值)針對給定圖像初始化。
在訓練過程的每次反覆運算時,可調整機器學習模組212的一個或多個參數(對於所有訓練樣品是共同的)。此外,在每次反覆運算時,都會生成位移矩陣(其特定於每個訓練樣品)的參數。最後,在訓練過程的每次反覆運算時,都會針對給定訓練樣品獲得校正圖像和類比圖像。類比圖像看起來類似於圖像,但是沒有隨機偽像(雜訊/缺陷)。
現在注意圖3和圖3A。
假定已經使用例如上述各種訓練方法獲得經訓練的機器學習模組312。機器學習模組312對應於例如在基於一個或多個訓練樣品執行機器學習模組212的訓練之後的機器學習模組212。
在預測階段期間(例如,在樣本的運行時檢驗期間),方法可包括獲得(操作300)樣本的基於設計資料生成的設計圖像386。設計圖像386可與不同於在訓練階段中已經獲得其設計圖像285和圖像286的樣本不同的樣本相關聯。換句話說,機器學習模組312不一定用在與用於其訓練的樣本相同的樣本上。
基於設計圖像386,期望生成樣本的類比圖像392。
所述方法包括將設計圖像386饋送(操作305)到經訓練的機器學習模組312,機器學習模組312進而輸出(操作310)類比圖像392。類比圖像392類似於樣本的圖像(如果已經使用檢驗工具101或102獲得樣本的圖像,則將已經獲得所述圖像),但是其中雜訊和/或缺陷已經減少或減弱(例如,雜訊、缺陷、過程變化、顏色變化、帶電或任何其他隨機偽像等)。換句話說,對於給定樣本,可使用機器學習模組312基於給定樣本的設計圖像(例如CAD圖像)來預測給定樣本的沒有隨機偽像的圖像。
類比圖像392可用於各種目的,諸如(但不限於)CAD到SEM配准(SEM圖像與源自CAD資料的圖像(在這種情況下為類比圖像392)之間的對準)、基於CAD的分割(基於CAD圖像(在這種情況下為類比圖像392)將SEM圖像分割/劃分為同質區域)和基於CAD的偵測(也稱為單圖像偵測,在這種情況下所述單圖像偵測包括使用類比圖像392作為偵測的參考)。
圖3B示出了在檢驗時給定樣本的設計圖像386和類比圖像392之間的比較。
根據一些實施例,一旦已經訓練機器學習模組,就可執行經訓練的機器學習模組的驗證方法,如參考圖4所述。根據一些實施例,驗證過程包括基於設計資料(參見例如設計圖像286、386)和樣本的真實圖像(例如樣本的真實SEM圖像)獲得(操作400)樣本的設計圖像。所述方法進一步包括將設計圖像饋送(操作405)到經訓練的機器學習模組。經訓練的機器學習模組輸出類比圖像(操作410)。然後將類比圖像與圖像比較(操作415)以驗證類比圖像類似於圖像但沒有(或至少具有更少的)雜訊和/或缺陷。這種比較可手動(例如由操作員)和/或藉由電腦化方法(例如允許圖像的比較的影像處理方法)進行。比較指示經訓練的機器學習模組是否已經被充分地訓練或應當進行進一步訓練(例如使用附加的訓練樣品)。
現在注意圖5和圖5A。
圖5和圖5A的方法可例如在樣本的檢驗階段(運行時)期間執行。
方法包括獲得(操作500)半導體樣本的圖像580(類似於圖像280)和樣本的基於設計資料生成的設計圖像586(類似於設計圖像286)。位移矩陣585(類似於位移矩陣285)針對圖像580初始化。
假定機器學習模組512是可用的(類似於機器學習模組212)並且已經至少部分地基於一個或多個訓練樣品來進行了訓練,如上文所說明。
所述方法包括最小化(操作505)代表由機器學習模組512基於設計圖像586生成的類比圖像592與對應於在根據位移矩陣585校正圖像580的圖元位置之後的圖像580的校正圖像594之間的差異的函數(損失函數),其中最小化包括生成位移矩陣585的參數。
所述函數(稱為595)可類似於上述函數295。儘管最小化過程類似於操作205,但是在此方法中,當函數595被最小化時,機器學習模組512的參數沒有被優化,並且僅位移矩陣585的參數被優化。如上文所說明,在操作205處,當最小化損失函數295時,機器學習模組212的參數和位移矩陣285的參數都被優化。
一旦損失函數595已經被最小化並且位移矩陣585的參數已被優化,則獲得校正圖像594(對應於根據包括優化參數的位移矩陣585校正的圖像580)。
所述方法包括輸出(操作510)校正圖像594。如上文所說明,校正圖像594的特殊之處在於,圖像中存在的結構元素的輪廓更平滑,其中過程變化較小(過程變化特別低導致結構元素的輪廓的不規則性)。
校正圖像594可與類比圖像592一起用於各種目的,諸如(但不限於)CAD到SEM配准(類比圖像592和校正圖像594之間的配准)、基於CAD的分割(基於類比圖像592分割修正圖像594)和基於CAD的偵測(基於用作參考的類比圖像592來偵測校正圖像594中的缺陷)。由於校正圖像594包括比原始圖像580少的過程變化,因此它可比原始圖像580更靈敏地用於這些應用中。
將理解,本發明的應用不限於本文中包含的描述中闡述的或附圖中示出的細節。
還將理解,根據本發明的系統可至少部分地實現在合適地程式設計的電腦上。同樣地,本發明設想了可由電腦讀取來執行本發明的方法的電腦程式。本發明進一步設想了有形地體現可由電腦執行來執行本發明的方法的指令程式的非瞬態電腦可讀記憶體。
本發明能夠具有其他實施例並能夠以各種方式實踐或進行。因此,將理解,本文使用的措辭和術語是出於描述目的並且不應視為限制性的。因此,本領域技術人員將瞭解,本公開內容所基於的概念可容易地用作設計用於進行本發明公開的主題的若干目的的其他結構、方法和系統的基礎。
本領域技術人員將容易地瞭解,在不脫離本發明的在所附申請專利範圍中並由所附申請專利範圍定義的範圍的情況下,可對如上所述的本發明的實施例應用各種修改和改變。
100:檢驗系統
101:低解析度檢驗工具
102:高解析度檢驗工具
103:系統
104:處理器和記憶體電路
105:輸入介面
106:輸出介面
107:存儲系統
108:圖形化使用者介面
109:資料存儲庫
110: CAD伺服器
112:深度神經網路
121:低解析度圖像資料
122:高解析度圖像資料
123:指令相關資料
124:指令相關資料
200:操作
205:操作
206:操作
212:機器學習模組
280:圖像
281:第一結構元素
285:位移矩陣
286:設計圖像
287:第二結構元素
289:線
292:類比圖像
294:校正圖像
295:函數
298:缺陷
300:操作
305:操作
310:操作
312:機器學習模組
386:設計圖像
392:類比圖像
400:操作
405:操作
410:操作
415:操作
500:操作
505:操作
510:操作
512:機器學習模組
580:圖像
585:位移矩陣
586:設計圖像
592:類比圖像
594:校正圖像
595:函數
為了理解本公開內容並瞭解在實踐中可如何進行本公開內容,現在將參考附圖僅藉由非限制性示例來描述實施例,在附圖中:
圖1示出了根據本發明公開的主題的某些實施例的檢驗系統的一般化框圖。
圖2示出了訓練機器學習模組以基於在設計資料的基礎上的設計圖像來生成類比圖像的方法的一般化流程圖。
圖2A示出了可用於訓練機器學習模組的架構。
圖2B示出了樣本的圖像的非限制性示例。
圖2C示出了與圖像相關聯的位移矩陣的非限制性示例。
圖2D示出了圖2B的樣本的設計圖像的非限制性示例。
圖2E示出了在根據位移矩陣校正圖像之後獲得的校正圖像的非限制性示例。
圖3示出了在檢驗階段期間生成類比圖像的方法的一般化流程圖。
圖3A示出了可用於執行圖3的方法的架構。
圖3B示出了圖3的方法的輸入和輸出之間的比較。
圖4示出了驗證機器學習模組的訓練的方法的一般化流程圖。
圖5示出了基於圖像和設計圖像來生成校正圖像的方法的一般化流程圖。
圖5A示出了可用於執行圖5的方法的架構。
國內寄存資訊(請依寄存機構、日期、號碼順序註記)
無
國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記)
無
200:操作
205:操作
206:操作
Claims (15)
- 一種檢驗一半導體樣本的系統,該系統包括一處理器和記憶體電路系統(PMC),該處理器和PMC被配置為: 獲得複數個訓練樣品,每個訓練樣品包括: 一半導體樣本的一圖像,以及 基於設計資料的一設計圖像, 基於包括一給定圖像和一給定設計圖像的一給定訓練樣品來訓練一機器學習模組,其中一給定位移矩陣針對該給定圖像初始化, 其中該訓練包括最小化代表在以下項之間的一差異的一函數: 由該機器學習模組基於該給定設計圖像來生成的一類比圖像,以及 與在根據該給定位移矩陣校正該給定圖像的圖元位置之後的該給定圖像相對應的一校正圖像, 其中該最小化包括優化該機器學習模組的和該給定位移矩陣的參數, 其中該機器學習模組能用於在該訓練之後基於一半導體樣本的一設計圖像來生成該半導體樣本的一類比圖像。
- 如請求項1所述的系統,其中該給定位移矩陣提供要應用於該給定圖像的圖元的位移場的資訊。
- 如請求項1所述的系統,其中該校正圖像包括具有比該給定圖像的結構元素小的過程變化的結構元素。
- 如請求項1所述的系統,其中該函數包括影響該給定位移矩陣的參數的優化的一平滑項。
- 如請求項1所述的系統,其中該類比圖像對應於該給定圖像中不存在缺陷的該給定圖像的一估計或對應於具有較少缺陷的該給定圖像的一估計。
- 如請求項1所述的系統,該系統被配置為: 將基於設計資料來生成的一樣本的一設計圖像在其訓練之後饋送到該機器學習模組,以及 生成該樣本的一類比圖像。
- 如請求項1所述的系統,該系統被配置為: 獲得一半導體樣本的一第一圖像和基於設計資料的一第一設計圖像,其中一第一位移矩陣針對該第一圖像初始化, 最小化代表在以下項之間的一差異的一函數: 由該機器學習模組基於該第一設計圖像來生成的一類比圖像,以及 與在根據該第一位移矩陣校正該第一圖像的圖元位置之後的該第一圖像相對應的一校正圖像, 其中該最小化包括優化該第一位移矩陣的參數,以及 輸出該校正圖像。
- 一種檢驗一半導體樣本的方法,該方法包括由一處理器和記憶體電路系統(PMC)進行以下步驟: 獲得複數個訓練樣品,每個訓練樣品包括: 一半導體樣本的一圖像,以及 基於設計資料的一設計圖像, 基於包括一給定圖像和一給定設計圖像的一給定訓練樣品來訓練一機器學習模組,其中一給定位移矩陣針對該給定圖像初始化, 其中該訓練包括最小化代表在以下項之間的一差異的一函數: 由該機器學習模組基於該給定設計圖像來生成的一類比圖像,以及 與在根據該給定位移矩陣校正該給定圖像的圖元位置之後的該給定圖像相對應的一校正圖像, 其中該最小化包括優化該機器學習模組的和該給定位移矩陣的參數, 其中該機器學習模組能用於在該訓練之後基於一樣本的一設計圖像來生成該樣本的一類比圖像。
- 如請求項8所述的方法,其中該給定位移矩陣提供要應用於該給定圖像的圖元的位移場的資訊。
- 如請求項8所述的方法,其中該校正圖像包括具有比該給定圖像的結構元素小的過程變化的結構元素。
- 如請求項8所述的方法,其中該函數包括影響該給定位移矩陣的參數的優化的一平滑項。
- 如請求項8所述的方法,其中該類比圖像對應於該給定圖像中不存在缺陷的該給定圖像的一估計或對應於具有較少缺陷的該給定圖像的一估計。
- 如請求項8所述的方法,包括以下步驟: 將基於設計資料來生成的一樣本的一設計圖像在其訓練之後饋送到該機器學習模組,以及 生成該樣本的一類比圖像。
- 如請求項8所述的方法,包括以下步驟: 獲得一半導體樣本的一第一圖像和基於設計資料的一第一設計圖像,其中一第一位移矩陣針對該第一圖像初始化, 最小化代表在以下項之間的一差異的一函數: 由該機器學習模組基於該第一設計圖像來生成的一類比圖像,以及 與在根據該第一位移矩陣校正該第一圖像的圖元位置之後的該第一圖像相對應的一校正圖像, 其中該最小化包括優化該第一位移矩陣的參數,以及 輸出該校正圖像。
- 一種非瞬態電腦可讀媒體,該非瞬態電腦可讀媒體包括指令,該指令在由一PMC執行時使該PMC執行包括以下的操作: 獲得複數個訓練樣品,每個訓練樣品包括: 一半導體樣本的一圖像,以及 基於設計資料的一設計圖像, 基於包括一給定圖像和一給定設計圖像的一給定訓練樣品來訓練一機器學習模組,其中一給定位移矩陣針對該給定圖像初始化, 其中該訓練包括最小化代表在以下項之間的一差異的一函數: 由該機器學習模組基於該給定設計圖像來生成的一類比圖像,以及 與在根據該給定位移矩陣校正該給定圖像的圖元位置之後的該給定圖像相對應的一校正圖像, 其中該最小化包括優化該機器學習模組的參數和該給定位移矩陣的參數, 其中該機器學習模組能用於在該訓練之後基於一樣本的一設計圖像來生成該樣本的一類比圖像。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/011,949 | 2020-09-03 | ||
US17/011,949 US11562476B2 (en) | 2020-09-03 | 2020-09-03 | Determination of a simulated image of a specimen |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202228068A true TW202228068A (zh) | 2022-07-16 |
Family
ID=80356829
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110127081A TW202228068A (zh) | 2020-09-03 | 2021-07-23 | 樣本的類比圖像的決定 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11562476B2 (zh) |
KR (1) | KR20220030897A (zh) |
CN (2) | CN118247248A (zh) |
TW (1) | TW202228068A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI816500B (zh) * | 2022-08-03 | 2023-09-21 | 和碩聯合科技股份有限公司 | 應用於模型再訓練之圖片選取方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11988613B2 (en) * | 2022-02-14 | 2024-05-21 | Applied Materials Israel Ltd. | Care area based defect detection |
US20230420278A1 (en) * | 2022-06-24 | 2023-12-28 | Kla Corporation | Image Modeling-Assisted Contour Extraction |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108475351B (zh) * | 2015-12-31 | 2022-10-04 | 科磊股份有限公司 | 用于训练基于机器学习的模型的系统和计算机实施方法 |
US10387765B2 (en) * | 2016-06-23 | 2019-08-20 | Siemens Healthcare Gmbh | Image correction using a deep generative machine-learning model |
US11199506B2 (en) * | 2018-02-21 | 2021-12-14 | Applied Materials Israel Ltd. | Generating a training set usable for examination of a semiconductor specimen |
KR20200123858A (ko) * | 2018-03-21 | 2020-10-30 | 케이엘에이 코포레이션 | 합성 이미지를 사용한 머신 러닝 모델 트레이닝 |
CN113016009B (zh) * | 2018-09-13 | 2024-08-16 | 辉达公司 | 使用一个或更多个神经网络的多级图像重建 |
US11232612B2 (en) * | 2019-03-15 | 2022-01-25 | University Of Florida Research Foundation, Incorporated | Highly accurate and efficient forward and back projection methods for computed tomography |
-
2020
- 2020-09-03 US US17/011,949 patent/US11562476B2/en active Active
-
2021
- 2021-07-23 TW TW110127081A patent/TW202228068A/zh unknown
- 2021-08-05 CN CN202410367758.2A patent/CN118247248A/zh active Pending
- 2021-08-05 CN CN202110897385.6A patent/CN114219749B/zh active Active
- 2021-08-30 KR KR1020210114598A patent/KR20220030897A/ko active Search and Examination
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI816500B (zh) * | 2022-08-03 | 2023-09-21 | 和碩聯合科技股份有限公司 | 應用於模型再訓練之圖片選取方法 |
Also Published As
Publication number | Publication date |
---|---|
US11562476B2 (en) | 2023-01-24 |
CN114219749A (zh) | 2022-03-22 |
US20230096362A1 (en) | 2023-03-30 |
KR20220030897A (ko) | 2022-03-11 |
US20220067918A1 (en) | 2022-03-03 |
CN118247248A (zh) | 2024-06-25 |
CN114219749B (zh) | 2024-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11199506B2 (en) | Generating a training set usable for examination of a semiconductor specimen | |
TWI834916B (zh) | 基於機器學習的取樣缺陷檢測 | |
CN110945528B (zh) | 产生可用于检查半导体样品的训练集的方法及其系统 | |
CN111512324B (zh) | 半导体样品的基于深度学习的检查的方法及其系统 | |
US20220222806A1 (en) | Machine learning-based classification of defects in a semiconductor specimen | |
CN114219749B (zh) | 样本的模拟图像的确定 | |
US20220210525A1 (en) | Prediction of electrical properties of a semiconductor specimen | |
US11423529B2 (en) | Determination of defect location for examination of a specimen | |
TWI763451B (zh) | 利用自動地選擇演算法模組來檢驗樣本的系統、方法、和非暫時性電腦可讀媒體 | |
US20230230349A1 (en) | Identification of an array in a semiconductor specimen | |
TW202339038A (zh) | 基於機器學習的半導體樣品的檢查及其訓練 | |
US12131458B2 (en) | Determination of a simulated image of a specimen | |
US11854184B2 (en) | Determination of defects and/or edge roughness in a specimen based on a reference image | |
JP7530330B2 (ja) | 半導体試料の画像のセグメンテーション |