TW202226636A - Systems and fabrication methods for display panels with integrated micro-lens array - Google Patents

Systems and fabrication methods for display panels with integrated micro-lens array Download PDF

Info

Publication number
TW202226636A
TW202226636A TW109146098A TW109146098A TW202226636A TW 202226636 A TW202226636 A TW 202226636A TW 109146098 A TW109146098 A TW 109146098A TW 109146098 A TW109146098 A TW 109146098A TW 202226636 A TW202226636 A TW 202226636A
Authority
TW
Taiwan
Prior art keywords
microlens
layer
light
mesa
pixel unit
Prior art date
Application number
TW109146098A
Other languages
Chinese (zh)
Inventor
李起鳴
祝元坤
趙爽
Original Assignee
中國大陸商上海顯耀顯示科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中國大陸商上海顯耀顯示科技有限公司 filed Critical 中國大陸商上海顯耀顯示科技有限公司
Priority to TW109146098A priority Critical patent/TW202226636A/en
Publication of TW202226636A publication Critical patent/TW202226636A/en

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

Various embodiments include a display panel with an integrated micro-lens array. The display panel typically includes an array of mesas which includes an array of pixel light sources (e.g., LEDs) electrically coupled to corresponding pixel driver circuits (e.g., FETs). The array of micro-lenses is aligned to the mesas including the pixel light sources, and positioned to reduce the divergence of light produced by the pixel light sources. In some embodiments, the array of micro-lenses formed from a micro-lens material layer is formed directly on top of the mesas. The display panel may also include an integrated optical spacer formed from the same micro-lens material layer to maintain the positioning between the micro-lenses and pixel driver circuits.

Description

具有集成微透鏡陣列之顯示面板之系統及製造方法System and manufacturing method of display panel with integrated microlens array

本發明一般而言係關於顯示裝置,且更特定而言係關於用於與一微透鏡陣列整合在一起之顯示面板的系統及製造方法。The present invention relates generally to display devices, and more particularly to systems and methods of manufacture for display panels integrated with a microlens array.

顯示技術在現今之商業電子裝置中變得愈來愈受歡迎。此等顯示面板廣泛地用於諸如液晶顯示電視(LCD TV)及有機發光二極體電視(OLED TV)之固定大螢幕以及諸如膝上型個人電腦、智慧型電話、平板電腦及穿戴式電子裝置之可攜式電子裝置中。固定大螢幕之大部分開發針對於達成一高觀看角度以便適應多個觀眾且使得多個觀眾能夠自各種角度看到螢幕。舉例而言,已開發諸如超扭轉向列(STN)及膜補償超扭轉向列(FSTN)之各種液晶材料以達成一顯示面板中之每一個像素光源之一大觀看角度。Display technology is becoming more and more popular in today's commercial electronic devices. These display panels are widely used in fixed large screens such as Liquid Crystal Display TVs (LCD TVs) and Organic Light Emitting Diode TVs (OLED TVs) as well as in fixed large screens such as laptop personal computers, smart phones, tablet computers and wearable electronic devices in portable electronic devices. Much of the development of fixed large screens has been directed towards achieving a high viewing angle to accommodate multiple viewers and enable multiple viewers to see the screen from various angles. For example, various liquid crystal materials such as super twisted nematic (STN) and film-compensated super twisted nematic (FSTN) have been developed to achieve a large viewing angle for each pixel light source in a display panel.

然而,大多數可攜式電子裝置主要針對單個使用者而設計,且此等可攜式裝置之螢幕定向應經調整為係對應使用者之最佳觀看角度而非適應多個觀眾之一大觀看角度。舉例而言,一使用者之一適合觀看角度可垂直於螢幕表面。在此情形中,與固定大螢幕相比較,以一大觀看角度發射之光大部分浪費了。另外,大觀看角度會引起在公共區使用之可攜式電子裝置之隱私問題。However, most portable electronic devices are mainly designed for a single user, and the screen orientation of these portable devices should be adjusted to correspond to the best viewing angle of the user rather than to accommodate one of multiple viewers. angle. For example, a suitable viewing angle for a user may be perpendicular to the screen surface. In this case, most of the light emitted at a large viewing angle is wasted compared to a fixed large screen. In addition, large viewing angles can cause privacy concerns for portable electronic devices used in public areas.

另外,在基於一被動成像器裝置(諸如液晶顯示器(LCD)、數位鏡裝置(DMD)及矽上液晶(LCOS))之一習用投影系統中,該被動成像器裝置自身不發射光。具體而言,習用投影系統藉由光學地調變自一光源發射之經準直光(亦即,藉由在像素位準下透射(例如,由一LCD面板)或反射(例如,由一DMD面板)光之一部分)而將影像投影。然而,未經透射或反射之光之部分丟失,此降低投影系統之效率。此外,為了提供經準直光,複雜照射光學器件用於收集自光源發射之發散光。該等照射光學器件不僅致使系統龐大,而且將額外光學損耗引入至系統中,此進一步影響系統之效能。在一習用投影系統中,通常少於10%的由光源產生之照射光用於形成投影影像。Additionally, in conventional projection systems based on a passive imager device such as a liquid crystal display (LCD), digital mirror device (DMD), and liquid crystal on silicon (LCOS), the passive imager device itself does not emit light. Specifically, conventional projection systems operate by optically modulating collimated light emitted from a light source (ie, by transmission (eg, by an LCD panel) or reflection (eg, by a DMD) at the pixel level Panel) part of the light) to project the image. However, a portion of the light that is not transmitted or reflected is lost, which reduces the efficiency of the projection system. Furthermore, in order to provide collimated light, complex illumination optics are used to collect the divergent light emitted from the light source. These illumination optics not only make the system bulky, but also introduce additional optical losses into the system, which further affects the performance of the system. In a conventional projection system, typically less than 10% of the illumination light generated by the light source is used to form the projected image.

由半導體材料製成之發光二極體(LED)可用於單色或全色顯示器中。在採用LED之當前顯示器中,該等LED通常用作光源以提供待由(例如) LCD或DMD面板光學地調變之光。亦即,由該等LED發射之光不自身形成影像。亦已研究使用包含複數個LED模塊之LED面板作為成像器裝置之LED顯示器。在此一LED顯示器中,LED面板係一自發射式成像器裝置,其中每一像素可包含一個LED模塊(單色顯示器)或複數個LED模塊,該複數個LED模塊中之每一者表示原色中之一者(全色顯示器)。然而,由LED模塊發射之光係因自發發射而產生的且因此並非定向的,從而產生一大發散角。該大發散角可導致一LED顯示器中之各種問題。舉例而言,由於該大發散角,因此由LED模塊發射之光可在LED顯示器中更容易散射及/或反射。該散射/反射光可照射其他像素,從而導致像素之間的光串擾、清晰度損失及對比度損失。Light emitting diodes (LEDs) made of semiconductor materials can be used in monochrome or full-color displays. In current displays employing LEDs, the LEDs are typically used as light sources to provide light to be optically modulated by, for example, an LCD or DMD panel. That is, the light emitted by the LEDs does not form an image by itself. LED displays using LED panels comprising a plurality of LED modules as imager devices have also been studied. In such an LED display, the LED panel is a self-emissive imager device in which each pixel can include one LED module (monochromatic display) or a plurality of LED modules, each of the plurality of LED modules representing a primary color One of them (full color display). However, the light emitted by the LED modules is generated by spontaneous emission and is therefore not directional, resulting in a large divergence angle. The large divergence angle can cause various problems in an LED display. For example, due to the large divergence angle, the light emitted by the LED module may be more easily scattered and/or reflected in the LED display. This scattered/reflected light can illuminate other pixels, resulting in optical crosstalk between pixels, loss of sharpness, and loss of contrast.

需要改良習用顯示系統(諸如上文所闡述之彼等顯示系統)且幫助解決該等習用顯示系統之缺點之經改良顯示器設計。特定而言,需要具有經減小觀看角度以更好地保護使用者隱私及/或具有經減少光浪費以減少功耗且減少具有更好影像之像素之間的光干擾之顯示面板。There is a need for improved display designs that improve on conventional display systems, such as those described above, and help address the shortcomings of these conventional display systems. In particular, there is a need for display panels with reduced viewing angles to better protect user privacy and/or with reduced light waste to reduce power consumption and reduce light interference between pixels with better images.

各種實施例包含具有集成微透鏡陣列之一顯示面板。該顯示面板通常包含電耦合至對應像素驅動器電路(例如,FET)之一像素光源(例如,LED、OLED)陣列。該微透鏡陣列對準至該等像素光源且經定位以減小由該等像素光源產生之光之發散度。該顯示面板亦可包含一集成光學間隔件以維持該等微透鏡與該等像素驅動器電路之間的定位。Various embodiments include a display panel with an integrated microlens array. The display panel typically includes an array of pixel light sources (eg, LEDs, OLEDs) electrically coupled to corresponding pixel driver circuits (eg, FETs). The microlens array is aligned to the pixel light sources and positioned to reduce the divergence of light produced by the pixel light sources. The display panel may also include an integrated optical spacer to maintain alignment between the microlenses and the pixel driver circuits.

該微透鏡陣列減小由該等像素光源產生之光之發散角及該顯示面板之可用觀看角度。此又減少功率浪費,增加亮度及/或在公共區更好地保護使用者隱私。The microlens array reduces the divergence angle of the light generated by the pixel light sources and the usable viewing angle of the display panel. This in turn reduces power waste, increases brightness and/or better protects user privacy in public areas.

可使用各種製作方法製造具有集成微透鏡陣列之一顯示面板,從而產生各種裝置設計。在一項態樣中,將該微透鏡陣列直接製造為具有像素光源之基板之台面或突出部。在某些態樣中,自組裝、高溫回流、灰度遮罩光微影、模製/刻印/壓印及乾式蝕刻圖案轉印係可用於製造微透鏡陣列之技術。A display panel with an integrated microlens array can be fabricated using various fabrication methods, resulting in various device designs. In one aspect, the microlens array is fabricated directly as a mesa or protrusion of a substrate with pixel light sources. In some aspects, self-assembly, high temperature reflow, grayscale mask lithography, molding/imprinting/imprinting, and dry etch pattern transfer are techniques that can be used to fabricate microlens arrays.

其他態樣包含組件、裝置、系統、改良、方法及過程,其包含製作方法、應用及與以上各項中之任一者有關之其他技術。Other aspects include components, devices, systems, improvements, methods, and processes, including methods of manufacture, applications, and other techniques related to any of the above.

在一項態樣中,一發光像素單元包含形成於一基板上之至少一個台面。該發光像素單元亦包含自至少覆蓋該至少一個台面之一頂部之一微透鏡層形成之一微透鏡。在某些實施例中,該微透鏡層之材料不同於該至少一個台面之材料,且該微透鏡層與該至少一個台面直接實體接觸。In one aspect, a light-emitting pixel unit includes at least one mesa formed on a substrate. The light-emitting pixel unit also includes a microlens formed from at least a microlens layer covering a top of a top of the at least one mesa. In some embodiments, the material of the microlens layer is different from the material of the at least one mesa, and the microlens layer is in direct physical contact with the at least one mesa.

在該發光像素單元之某些實施例中,該微透鏡個別地形成於該至少一個台面之該頂部周圍。In some embodiments of the light-emitting pixel unit, the microlenses are individually formed around the top of the at least one mesa.

在該發光像素單元之某些實施例中,一間隔件自該至少一個台面與該微透鏡之間的同一微透鏡層形成。In some embodiments of the light-emitting pixel unit, a spacer is formed from the same microlens layer between the at least one mesa and the microlens.

在該發光像素單元之某些實施例中,該間隔件之厚度不多於1微米。In some embodiments of the light-emitting pixel unit, the spacer is no more than 1 micron thick.

在該發光像素單元之某些實施例中,該間隔件之材料與該微透鏡之材料相同。In some embodiments of the light-emitting pixel unit, the material of the spacer is the same as the material of the microlens.

在該發光像素單元之某些實施例中,該微透鏡由一介電材料構成。In some embodiments of the light-emitting pixel unit, the microlens is formed of a dielectric material.

在該發光像素單元之某些實施例中,該介電材料包括氧化矽。In some embodiments of the light-emitting pixel unit, the dielectric material includes silicon oxide.

在該發光像素單元之某些實施例中,該微透鏡之材料係光阻劑。In some embodiments of the light-emitting pixel unit, the material of the microlenses is photoresist.

在該發光像素單元之某些實施例中,該微透鏡之高度不多於2微米。In some embodiments of the light-emitting pixel unit, the height of the microlenses is no more than 2 microns.

在該發光像素單元之某些實施例中,該微透鏡之寬度不多於4微米。In some embodiments of the light-emitting pixel unit, the width of the microlenses is no more than 4 microns.

在該發光像素單元之某些實施例中,在該基板上,該至少一個台面位於一台面陣列矩陣內,且該微透鏡位於根據該台面陣列之放置而放置之一微透鏡陣列矩陣內。In some embodiments of the light emitting pixel unit, on the substrate, the at least one mesa is located in a mesa array matrix, and the microlenses are located in a microlens array matrix placed according to the placement of the mesa array.

在該發光像素單元之某些實施例中,該至少一個台面之頂部係平坦的,且該微透鏡之形狀係半球。In some embodiments of the light-emitting pixel unit, the top of the at least one mesa is flat and the microlens is hemispherical in shape.

在該發光像素單元之某些實施例中,該至少一個台面包含至少一發光裝置。In some embodiments of the light-emitting pixel unit, the at least one mesa includes at least one light-emitting device.

在該發光像素單元之某些實施例中,該發光裝置包含一PN節面。In some embodiments of the light-emitting pixel unit, the light-emitting device includes a PN junction.

在另一態樣中,一種製造一發光像素單元之方法包含: 提供一基板;在該基板上形成至少一個台面;及直接在該至少一個台面之至少一頂部上沈積一微透鏡材料層。在某些實施例中,該微透鏡材料層適形於該至少一個台面之一形狀且在該至少一個台面上具有一半球形狀。In another aspect, a method of fabricating a light emitting pixel unit includes: providing a substrate; forming at least one mesa on the substrate; and depositing a layer of microlens material directly on at least a top of the at least one mesa. In certain embodiments, the layer of microlens material conforms to a shape of the at least one mesa and has a hemispherical shape on the at least one mesa.

在該製造一發光像素單元之方法之某些實施例中,藉由一化學汽相沈積技術而沈積該微透鏡材料層。In certain embodiments of the method of fabricating a light emitting pixel unit, the layer of microlens material is deposited by a chemical vapor deposition technique.

在該製造一發光像素單元之方法之某些實施例中,用於沈積該微透鏡材料層之化學汽相沈積技術之某些參數包含: 功率係0 W至1000 W,壓力係100毫托至2000毫托,溫度係23℃至500℃,氣體流率係0 sccm至3000 sccm,且時間係1小時至3小時。In certain embodiments of the method of fabricating a light-emitting pixel unit, certain parameters of the chemical vapor deposition technique used to deposit the layer of microlens material include: power is 0 W to 1000 W, pressure is 100 mTorr to 2000 mTorr, temperature 23°C to 500°C, gas flow rate 0 sccm to 3000 sccm, and time 1 hour to 3 hours.

在該製造一發光像素單元之方法之某些實施例中,該微透鏡材料層由一介電材料構成。In certain embodiments of the method of fabricating a light-emitting pixel unit, the layer of microlens material is composed of a dielectric material.

在某些實施例中,該製造一發光像素單元之方法進一步包含: 將該微透鏡材料層圖案化以暴露該基板之一電極區。In some embodiments, the method of fabricating a light-emitting pixel unit further comprises: patterning the layer of microlens material to expose an electrode region of the substrate.

在該製造一發光像素單元之方法之某些實施例中,圖案化進一步包含: 在該微透鏡材料之表面上形成一遮罩;經由一光微影工藝將該遮罩圖案化,藉此在該遮罩中形成開口且在該至少一個台面之電極區上面暴露該微透鏡材料層;及在遮罩保護就位之情況下,蝕刻由該等開口暴露的該微透鏡材料層之部分。In some embodiments of the method of fabricating a light-emitting pixel unit, patterning further comprises: forming a mask on the surface of the microlens material; patterning the mask through a photolithography process, whereby the Openings are formed in the mask and the layer of microlens material is exposed over the electrode region of the at least one mesa; and with the mask in place, the portions of the layer of microlens material exposed by the openings are etched.

在該製造一發光像素單元之方法之某些實施例中,蝕刻係一濕式蝕刻方法。In certain embodiments of the method of fabricating a light-emitting pixel unit, the etching is a wet etching method.

在再一態樣中,一種製造一發光像素單元之方法包含: 提供一基板;在該基板上形成至少一個台面;及直接在該至少一個台面之至少一頂部上沈積一微透鏡材料層。在某些實施例中,該微透鏡材料層覆蓋該至少一個台面之該頂部且該微透鏡材料之頂部表面係平坦的。在某些實施例中,該製造一發光像素單元之方法進一步包含自該頂部向下將該微透鏡材料層圖案化,藉此在不貫穿該微透鏡材料層之情況下在該微透鏡材料層中形成至少一半球。在某些實施例中,該半球放置於該至少一個台面上面。In yet another aspect, a method of fabricating a light emitting pixel unit includes: providing a substrate; forming at least one mesa on the substrate; and depositing a layer of microlens material directly on at least a top of the at least one mesa. In certain embodiments, the layer of microlens material covers the top of the at least one mesa and the top surface of the microlens material is flat. In certain embodiments, the method of fabricating a light emitting pixel unit further comprises patterning the layer of microlens material from the top down, whereby the layer of microlens material is formed without penetrating the layer of microlens material form at least a hemisphere. In certain embodiments, the hemisphere is placed over the at least one table.

在某些實施例中,該製造一發光像素單元之方法進一步包含: 在該微透鏡材料層之表面上沈積一遮罩層;將該遮罩層圖案化以在該遮罩層中形成一半球圖案;及使用該半球圖案作為一遮罩,蝕刻該微透鏡材料層以在該微透鏡材料層中形成半球。In certain embodiments, the method of fabricating a light-emitting pixel unit further comprises: depositing a mask layer on the surface of the microlens material layer; patterning the mask layer to form a hemisphere in the mask layer patterning; and using the hemisphere pattern as a mask, etching the layer of microlens material to form hemispheres in the layer of microlens material.

在該製造一發光像素單元之方法之某些實施例中,在蝕刻該微透鏡材料層之後,未蝕穿該微透鏡材料層來暴露該至少一個台面之頂部表面,藉此在該至少一個台面之該頂部上形成一間隔件。In certain embodiments of the method of fabricating a light emitting pixel unit, after etching the layer of microlens material, the top surface of the at least one mesa is exposed without etching through the layer of microlens material, whereby the at least one mesa is A spacer is formed on the top.

在該製造一發光像素單元之方法之某些實施例中,藉由旋塗而沈積該微透鏡材料層。In certain embodiments of the method of fabricating a light emitting pixel unit, the layer of microlens material is deposited by spin coating.

在該製造一發光像素單元之方法之某些實施例中,首先藉由一光微影工藝且然後藉由一回流工藝將該遮罩層圖案化。In certain embodiments of the method of fabricating a light-emitting pixel unit, the mask layer is patterned first by a photolithography process and then by a reflow process.

在該製造一發光像素單元之方法之某些實施例中,藉由一光微影工藝蝕刻該微透鏡材料層。In some embodiments of the method of fabricating a light emitting pixel unit, the layer of microlens material is etched by a photolithography process.

在某些實施例中,該製造一發光像素單元之方法進一步包含:在形成該至少一個台面之後且在沈積該微透鏡材料層之前,在該圖案化工藝中形成具有用於對準至該微透鏡材料層之標記之一標記層。In certain embodiments, the method of fabricating a light emitting pixel unit further comprises: after forming the at least one mesa and before depositing the layer of microlens material, forming in the patterning process A marking layer of the marking of the lens material layer.

在某些實施例中,該製造一發光像素單元之方法進一步包含:在將該微透鏡材料層圖案化之後,將該微透鏡材料層圖案化以暴露該基板之一電極區。In some embodiments, the method of fabricating a light-emitting pixel unit further comprises: after patterning the layer of microlens material, patterning the layer of microlens material to expose an electrode region of the substrate.

本文中所揭示之顯示裝置及系統之設計利用藉由利用微透鏡材料之形狀適形於台面之形狀而在基板上之台面之頂部上直接形成微透鏡,藉此大大減少微透鏡製造之步驟且改良顯示面板結構形成之效率。此外,該等顯示系統之該製造可在不使用或保持額外基板之情況下可靠地且高效地形成微透鏡結構圖案。經減小觀看角度及經減少光干擾改良顯示系統之光發射效率、解析度及總體效能。因此,與使用習用顯示器相比較,實施具有微透鏡陣列之顯示系統可更好地滿足擴增實境(AR)及虛擬實境(VR)、抬頭顯示器(HUD)、行動裝置顯示器、穿戴式裝置顯示器、高清晰度投影機及車載顯示器之顯示要求。The designs of the display devices and systems disclosed herein utilize the direct formation of microlenses on top of the mesas on the substrate by utilizing the shape of the microlens material to conform to the shape of the mesas, thereby greatly reducing the steps of microlens fabrication and Improve the efficiency of display panel structure formation. Furthermore, the fabrication of these display systems can reliably and efficiently pattern microlens structures without using or maintaining additional substrates. The reduced viewing angle and reduced light interference improve the light emission efficiency, resolution and overall performance of the display system. Therefore, implementing a display system with a microlens array can better satisfy augmented reality (AR) and virtual reality (VR), head-up displays (HUD), mobile device displays, wearable devices, compared to using conventional displays Display requirements for monitors, high-definition projectors and in-vehicle monitors.

注意,上文所闡述之各種實施例可與本文中所闡述之任何其他實施例組合。說明書中所闡述之特徵及優點並非無所不包的,且特定而言,熟習此項技術者鑒於圖式、說明書及申請專利範圍將明瞭諸多額外特徵及優點。此外,應注意,說明書中所使用之語言原則上已出於易讀性及指導性目的而選擇,且可能並非為描寫或限制發明標的物而選擇。Note that the various embodiments set forth above may be combined with any other embodiments set forth herein. The features and advantages set forth in the specification are not all-inclusive, and in particular, numerous additional features and advantages will become apparent to those skilled in the art in view of the drawings, the description, and the scope of the patent application. Furthermore, it should be noted that the language used in the specification has been principally selected for readability and instructional purposes, and may not have been selected to describe or limit the inventive subject matter.

在本文中闡述眾多細節以便提供對附圖中所圖解說明之實例性實施例之一透徹理解。然而,可在不具有諸多具體細節之情況下實踐某些實施例,且申請專利範圍之範疇僅受申請專利範圍中具體陳述之彼等特徵及態樣限制。此外,未詳盡地闡述眾所周知之程序、組件及材料以便不會不必要地使本文中所闡述之實施例之相關態樣模糊。Numerous details are set forth herein in order to provide a thorough understanding of one of the example embodiments illustrated in the accompanying drawings. However, certain embodiments may be practiced without numerous specific details, and the scope of the patentable scope is limited only by the features and aspects specifically recited in the patentable scope. Furthermore, well-known procedures, components and materials have not been described in detail so as not to unnecessarily obscure the relevant aspects of the embodiments described herein.

如上文所論述,在某些實例中,LED模塊具有一大發散角,此可導致各種問題,諸如背景章節中所論述之彼等問題。此外,在採用具有複數個LED模塊之一LED陣列作為一自發射式成像器裝置之一投影系統中,需要一投影透鏡或一投影透鏡組將由該LED陣列產生之影像投影,且該投影透鏡可具有一有限數值孔徑。因此,由於該等LED模塊之該大發散角,由該等LED模塊發射之該光之僅一部分可由該投影透鏡收集。此降低基於LED之投影系統之亮度及/或增加功耗。As discussed above, in some instances, LED modules have a large divergence angle, which can lead to various problems, such as those discussed in the background section. In addition, in a projection system using an LED array having a plurality of LED modules as a self-emissive imager device, a projection lens or a projection lens group is required to project the image generated by the LED array, and the projection lens can has a finite numerical aperture. Therefore, due to the large divergence angle of the LED modules, only a portion of the light emitted by the LED modules can be collected by the projection lens. This reduces the brightness and/or increases power consumption of LED-based projection systems.

與本發明一致之實施例包含一集成顯示面板作為一自發射式成像器裝置,其包含具有一像素驅動器電路陣列之一基板、形成於該基板上方之一台面(舉例而言,其可包含LED模塊)陣列及形成於該台面陣列上方之一微透鏡陣列,且與本發明一致之實施例包含製成該顯示面板之方法。該顯示面板及基於該顯示面板之該等投影系統將光源、影像形成功能及光束準直功能組合至一單個單塊裝置中且能夠克服習用投影系統之缺點。Embodiments consistent with the present invention include an integrated display panel as a self-emissive imager device that includes a substrate having an array of pixel driver circuits, a mesa (which may include LEDs, for example) formed over the substrate module) array and a microlens array formed over the mesa array, and embodiments consistent with the present invention include methods of making the display panel. The display panel and the projection systems based on the display panel combine the light source, image forming function and beam collimation function into a single monolithic device and can overcome the disadvantages of conventional projection systems.

圖1係根據某些實施例之與一微透鏡陣列120整合在一起之一實例性顯示面板100之一剖視圖。在圖1中,成品顯示面板100包含一無透鏡顯示面板110 (亦即,不具有一微透鏡陣列)及一微透鏡陣列120。顯示面板100包含在每一個別像素(諸如在像素112P處展示)內之一個別台面陣列102。在某些實施例中,台面陣列102形成於基板130上。在某些實施例中,該基板係一半導體基板。在某些實施例中,像素112P中之每一者進一步包含在個別台面102M內之一像素驅動器電路(圖1中未展示)及一對應像素光源112S。在微透鏡陣列120內之微透鏡122M至少覆蓋台面102M之頂部。在某些實施例中,微透鏡122M直接覆蓋且觸碰台面102M。在某些實施例中,微透鏡122M適形於台面102M之形狀且在台面102M上形成一半球。舉例而言,微透鏡形成於台面102M之頂部及外側上。在某些實施例中,微透鏡陣列120之組合物不同於台面102M之組合物。在某些實施例中,台面102M之頂部係大體平坦的且微透鏡122M之形狀係大體半球。在某些實施例中,台面102M係一圓形平臺。在某些實施例中,微透鏡122M在其形成於台面102M之頂部上之後不接觸。1 is a cross-sectional view of an exemplary display panel 100 integrated with a microlens array 120 in accordance with certain embodiments. In FIG. 1 , the finished display panel 100 includes a lensless display panel 110 (ie, without a microlens array) and a microlens array 120 . Display panel 100 includes an individual mesa array 102 within each individual pixel, such as shown at pixel 112P. In some embodiments, the mesa array 102 is formed on the substrate 130 . In some embodiments, the substrate is a semiconductor substrate. In certain embodiments, each of the pixels 112P further includes a pixel driver circuit (not shown in FIG. 1 ) and a corresponding pixel light source 112S within the respective mesas 102M. The microlenses 122M within the microlens array 120 cover at least the tops of the mesas 102M. In some embodiments, the microlenses 122M directly cover and touch the mesa 102M. In some embodiments, the microlenses 122M conform to the shape of the mesas 102M and form a hemisphere on the mesas 102M. For example, microlenses are formed on the top and outside of mesas 102M. In certain embodiments, the composition of the microlens array 120 is different from the composition of the mesa 102M. In certain embodiments, the tops of the mesas 102M are generally flat and the microlenses 122M are generally hemispherical in shape. In some embodiments, the mesa 102M is a circular platform. In some embodiments, the microlenses 122M do not touch after they are formed on top of the mesas 102M.

在某些實施例中,微透鏡陣列120由諸如氧化矽之介電材料製成。在某些實施例中,介電材料係一透明氧化物,諸如氮化矽、碳化矽、氧化鋁等。在某些實施例中,微透鏡陣列120由光阻劑製成。在某些實施例中,微透鏡122M之高度不多於2微米。在某些實施例中,微透鏡122M之高度不多於1微米。在某些實施例中,微透鏡122M之高度不多於0.5微米。在某些實施例中,微透鏡122M之寬度不多於4微米。在某些實施例中,微透鏡122M之寬度不多於3微米。在某些實施例中,微透鏡122M之寬度不多於2微米。在某些實施例中,微透鏡122M之寬度不多於1微米。在某些實施例中,微透鏡122M之寬度與高度之比率多於2。In some embodiments, the microlens array 120 is made of a dielectric material such as silicon oxide. In some embodiments, the dielectric material is a transparent oxide, such as silicon nitride, silicon carbide, aluminum oxide, or the like. In some embodiments, the microlens array 120 is made of photoresist. In some embodiments, the height of the microlenses 122M is no more than 2 microns. In some embodiments, the height of the microlenses 122M is no more than 1 micron. In some embodiments, the height of the microlenses 122M is no more than 0.5 microns. In some embodiments, the width of the microlenses 122M is no more than 4 microns. In some embodiments, the width of the microlenses 122M is no more than 3 microns. In some embodiments, the width of the microlenses 122M is no more than 2 microns. In some embodiments, the width of the microlenses 122M is no more than 1 micron. In some embodiments, the ratio of width to height of microlenses 122M is greater than two.

每一像素光源112S電耦合至像素驅動器電路且由像素驅動器電路驅動。像素光源112S係可個別地控制的。微透鏡陣列120形成於無透鏡顯示面板110上面,其中微透鏡122M對準至包含像素光源112S之對應台面102 (圖1上未單獨展示)。出於本發明之目的,諸如「上面」及「頂部」之術語意味光傳播遠離像素光源112A且朝向觀看者之方向。包含像素光源112S之台面陣列102、像素驅動器電路陣列(未展示)及微透鏡陣列全部整合於一共同基板130上。在某些實施例中,像素光源112S中之每一者包含一PN節面。Each pixel light source 112S is electrically coupled to and driven by the pixel driver circuit. The pixel light sources 112S are individually controllable. A microlens array 120 is formed over the lensless display panel 110, with the microlenses 122M aligned to the corresponding mesas 102 (not separately shown in FIG. 1 ) containing the pixel light sources 112S. For the purposes of this disclosure, terms such as "above" and "top" mean that light travels in a direction away from pixel light source 112A and toward the viewer. The mesa array 102 including the pixel light sources 112S, the pixel driver circuit array (not shown) and the microlens array are all integrated on a common substrate 130 . In some embodiments, each of the pixel light sources 112S includes a PN node plane.

為了清晰,圖1在顯示面板100中展示僅三個個別像素112P,其中之每一者包含與一單個微透鏡122M對應之一個像素光源112S。應理解,一全顯示面板100將包含諸多個別像素112P及諸多微透鏡122M之一陣列。另外,微透鏡122M與包含像素光源112S之台面102M之間的一一對應性係不必要的,像素驅動器電路(未展示)與像素光源之間的一一對應性亦係不必要的。像素光源亦可由多個個別光元件(舉例而言,並聯連接之LED)製成。在某些實施例中,一個微透鏡122M可覆蓋數個台面102M。For clarity, FIG. 1 shows only three individual pixels 112P in display panel 100, each of which includes one pixel light source 112S corresponding to a single microlens 122M. It should be understood that a full display panel 100 will include an array of individual pixels 112P and an array of microlenses 122M. Additionally, a one-to-one correspondence between microlenses 122M and mesas 102M containing pixel light sources 112S is unnecessary, as is a one-to-one correspondence between pixel driver circuits (not shown) and pixel light sources. A pixel light source can also be made from a plurality of individual light elements (eg, LEDs connected in parallel). In some embodiments, one microlens 122M may cover several mesas 102M.

像素光源112S為顯示面板100產生光。可使用不同類型之像素光源112S,舉例而言,包含個別微型LED之一陣列之一微型LED陣列、包含個別微型OLED之一陣列之一微型OLED陣列或包含個別微型LCD之一陣列之一微型LCD陣列。注意,在LCD陣列中,「像素光源」實際上調變自一背光燈或別處產生之光(與由電產生光相反),但仍將在本文中稱為一像素光源,除非另有陳述。在一項實施例中,每一個別像素光源112S包含一單個光元件。在另一實施例中,每一個別像素光源112S包含多個光元件,舉例而言,並聯耦合之LED。The pixel light sources 112S generate light for the display panel 100 . Different types of pixel light sources 112S can be used, for example, a micro LED array comprising an array of individual micro LEDs, a micro OLED array comprising an array of individual micro OLEDs, or a micro LCD comprising an array of individual micro LCDs array. Note that in LCD arrays, a "pixel light source" is actually modulated from light generated by a backlight or elsewhere (as opposed to electrically generating light), but will still be referred to herein as a pixel light source unless otherwise stated. In one embodiment, each individual pixel light source 112S includes a single light element. In another embodiment, each individual pixel light source 112S includes multiple light elements, eg, LEDs coupled in parallel.

在圖1中,微透鏡陣列120包含個別微透鏡122M之一陣列,且每一微透鏡對準至一對應像素光源112S。個別微透鏡122M具有正光學功率且經定位以減小自對應像素光源112S發射之光(如由圖1中之光射線116至118展示)之發散或觀看角度。光射線116表示自像素光源112S發射之光束之邊緣,光源112S具有相當寬之一原始發散角126。在一項實施例中,原始角126大於60度。微透鏡122M使光彎曲,使得新邊緣光射線118現在具有一經減小發散角128。在一項實施例中,經減小角128小於30度。微透鏡陣列120中之微透鏡122M通常係相同的。微透鏡之實例包含球形微透鏡、非球形微透鏡、夫瑞乃微透鏡及圓柱形微透鏡。In FIG. 1, the microlens array 120 includes an array of individual microlenses 122M, and each microlens is aligned to a corresponding pixel light source 112S. Individual microlenses 122M have positive optical power and are positioned to reduce the divergence or viewing angle of light emitted from corresponding pixel light sources 112S (as shown by light rays 116-118 in FIG. 1). Light ray 116 represents the edge of the light beam emitted from pixel light source 112S, which has a relatively wide original divergence angle 126 . In one embodiment, the original angle 126 is greater than 60 degrees. The microlens 122M bends the light so that the new edge light ray 118 now has a reduced divergence angle 128 . In one embodiment, the reduced angle 128 is less than 30 degrees. The microlenses 122M in the microlens array 120 are generally the same. Examples of microlenses include spherical microlenses, aspherical microlenses, Frenaline microlenses, and cylindrical microlenses.

微透鏡陣列120通常具有一平坦側及一彎曲側。在圖1中,微透鏡122M之底部係平坦側,且微透鏡122M之頂部係彎曲側。每一微透鏡122M之底座之典型形狀包含圓形、正方形、矩形及六邊形。個別微透鏡122M可在以下各項方面係相同的或不同的: 形狀、曲率、光學功率、大小、底座、間距等。在圖1之實例中,微透鏡122M之圓形底座具有與個別像素112P相同之一寬度,但具有一較小面積,此乃因微透鏡底座係一圓形且個別像素112P係一正方形。在某些實施例中,微透鏡底座面積大於像素光源112S之面積。The microlens array 120 generally has a flat side and a curved side. In FIG. 1, the bottom of the microlens 122M is the flat side, and the top of the microlens 122M is the curved side. Typical shapes for the base of each microlens 122M include circle, square, rectangle and hexagon. Individual microlenses 122M may be the same or different in shape, curvature, optical power, size, mount, spacing, and the like. In the example of FIG. 1, the circular base of the microlens 122M has the same width as the individual pixels 112P, but has a smaller area because the microlens base is circular and the individual pixels 112P are square. In some embodiments, the area of the microlens base is larger than the area of the pixel light source 112S.

在某些實施例中,一光學間隔件140形成於無透鏡顯示面板110與微透鏡陣列120之間。在某些實施例中,一光學間隔件140形成於台面陣列102與微透鏡陣列120之間。In some embodiments, an optical spacer 140 is formed between the lensless display panel 110 and the microlens array 120 . In some embodiments, an optical spacer 140 is formed between the mesa array 102 and the microlens array 120 .

光學間隔件140係經形成以維持微透鏡陣列120相對於像素光源陣列112S之位置之一光學透明層。光學間隔件140可由在自像素光源112發射之波長下透明之各種材料製成。光學間隔件140之實例性透明材料包含聚合物、介電質及半導體。用於製成光學間隔件140之材料可相同於或不同於用於製成微透鏡陣列120之材料。在其中形成適形於台面102M之形狀之微透鏡122M之某些實施例中,可在同一程序中藉助同一材料與微透鏡122M一起形成光學間隔件層140。在某些實施例中,可在同一過程中藉助同一材料在微透鏡122M下面形成光學間隔件層140。在某些實施例中,台面102M之高度大於、相同於或小於自基板130之底部量測的光學間隔件140之厚度。Optical spacer 140 is an optically transparent layer formed to maintain the position of microlens array 120 relative to pixel light source array 112S. Optical spacers 140 may be made of various materials that are transparent at the wavelengths emitted from pixel light sources 112 . Exemplary transparent materials for optical spacers 140 include polymers, dielectrics, and semiconductors. The material used to make the optical spacer 140 may be the same or different from the material used to make the microlens array 120 . In certain embodiments in which the microlenses 122M are formed to conform to the shape of the mesas 102M, the optical spacer layer 140 may be formed with the microlenses 122M in the same process with the same material. In certain embodiments, the optical spacer layer 140 may be formed under the microlenses 122M with the same material in the same process. In some embodiments, the height of the mesa 102M is greater than, the same as, or less than the thickness of the optical spacer 140 as measured from the bottom of the substrate 130 .

光學間隔件140之厚度經設計以維持微透鏡陣列120與像素光源陣列112S之間的恰當間距。作為一項實例,對於維持像素光源與微透鏡之間的一光學間距(其多於微透鏡之一焦距)之一光學間隔件,在一特定距離處形成一單個像素之一影像。作為另一實例,對於維持像素光源與微透鏡之間的一光學間距(其少於微透鏡之一焦距)之一光學間隔件,達成一經減小發散/觀看角度。發散/觀看角度之減小量亦部分地取決於自台面102M之頂部表面量測的光學間隔件140之厚度。在某些實施例中,自台面102M之頂部表面量測的間隔件140之厚度不多於1微米。在某些實施例中,自台面102M之頂部表面量測的光學間隔件140之厚度不多於0.5微米。在某些實施例中,自台面102M之頂部表面量測的光學間隔件140之厚度不多於0.2微米。在某些實施例中,自台面102M之頂部表面量測的光學間隔件140之厚度係大約1微米。在某些實施例中,光學間隔件140之材料與微透鏡陣列120之材料相同。The thickness of the optical spacers 140 is designed to maintain the proper spacing between the microlens array 120 and the pixel light source array 112S. As an example, for an optical spacer that maintains an optical separation between the pixel light source and the microlens (which is more than a focal length of the microlens), an image of a single pixel is formed at a particular distance. As another example, a reduced divergence/viewing angle is achieved for an optical spacer that maintains an optical separation between the pixel light source and the microlens that is less than a focal length of the microlens. The amount of divergence/view angle reduction also depends in part on the thickness of the optical spacer 140 as measured from the top surface of the mesa 102M. In some embodiments, the thickness of the spacers 140 is no more than 1 micron as measured from the top surface of the mesa 102M. In certain embodiments, the thickness of the optical spacer 140 is no more than 0.5 microns as measured from the top surface of the mesa 102M. In certain embodiments, the thickness of the optical spacer 140 is no more than 0.2 microns as measured from the top surface of the mesa 102M. In some embodiments, the thickness of the optical spacer 140 is about 1 micron as measured from the top surface of the mesa 102M. In some embodiments, the material of the optical spacers 140 is the same as the material of the microlens array 120 .

在某些實施例中,經由將一微透鏡陣列整合至顯示面板上達成一亮度增強效應。在某些實例中,由於微透鏡之光集中效應,因此在具有微透鏡陣列之情況下之亮度在垂直於顯示表面之方向上係在不具有微透鏡陣列之情況下之亮度之4倍。在替代實施例中,亮度增強因子可根據微透鏡陣列及光學間隔件之不同設計而變化。舉例而言,可達成大於8之一因子。In some embodiments, a brightness enhancement effect is achieved by integrating a microlens array into the display panel. In some instances, the brightness with the microlens array is 4 times as bright as without the microlens array in the direction normal to the display surface due to the light concentration effect of the microlens. In alternative embodiments, the brightness enhancement factor may vary according to different designs of the microlens array and optical spacers. For example, a factor greater than 8 can be achieved.

圖2A至圖2B係根據某些實施例之與一球形微透鏡陣列整合在一起之實例性單色顯示面板之俯視圖。更具體而言,圖2A係具有像素之一正方形陣列配置之一實例性單色顯示面板200之一俯視圖,且圖2B係圖解說明像素之一三角形及一六邊形陣列配置之一實例性單色顯示面板250之一俯視圖。作為一實例,在圖2B中展示一三角形陣列配置230之一實施例及一六邊形陣列配置235之一實施例。顯示面板200、250兩者皆包含一微透鏡210、260陣列、在微透鏡210下方包含像素光源220、270之一台面陣列及形成於該微透鏡陣列與該台面陣列之間的選用光學間隔件240、290。每一個別微透鏡對準至包含個別像素光源之一台面。更詳細地,具有正方形矩陣配置之顯示面板200包含個別微透鏡210之一陣列、包含像素光源220之一對應台面陣列及其間之一選用光學間隔件240,且具有三角形矩陣或六邊形配置之顯示面板250包含個別微透鏡260之一陣列、包含像素光源270之一對應台面陣列及其間之一選用光學間隔件290。在顯示面板200、250兩者中,像素光源係全部產生同一色彩光之單色像素光源,舉例而言,形成單色顯示面板之單色LED。2A-2B are top views of exemplary monochrome display panels integrated with a spherical microlens array in accordance with certain embodiments. More specifically, FIG. 2A is a top view of an example monochrome display panel 200 having a square array configuration of pixels, and FIG. 2B illustrates an example single color display panel 200 of a triangular and a hexagonal array configuration of pixels. A top view of the color display panel 250. As an example, an embodiment of a triangular array configuration 230 and an embodiment of a hexagonal array configuration 235 are shown in FIG. 2B. Both display panels 200, 250 include an array of microlenses 210, 260, a mesa array including pixel light sources 220, 270 below the microlens 210, and optional optical spacers formed between the microlens array and the mesa array 240, 290. Each individual microlens is aligned to a mesa containing an individual pixel light source. In more detail, the display panel 200 having a square matrix configuration includes an array of individual microlenses 210, a corresponding mesa array including pixel light sources 220, and an optional optical spacer 240 therebetween, and has a triangular matrix or a hexagonal configuration. The display panel 250 includes an array of individual microlenses 260 , a corresponding mesa array including pixel light sources 270 , and an optional optical spacer 290 therebetween. In both the display panels 200 and 250, the pixel light sources are all monochromatic pixel light sources that generate light of the same color, for example, monochromatic LEDs forming a monochromatic display panel.

在圖2A至圖2B中,對應顯示面板200、250之個別微透鏡210、260係配置成一正方形、三角形或六邊形矩陣之球形微透鏡。在替代實施例中,該等微透鏡可具有非球形形狀。該等微透鏡亦可配置成其他矩陣配置,諸如一矩形矩陣配置或一八邊形矩陣配置或幾何矩陣配置之組合。In FIGS. 2A to 2B , the individual microlenses 210 and 260 corresponding to the display panels 200 and 250 are configured as spherical microlenses in a square, triangular or hexagonal matrix. In alternative embodiments, the microlenses may have a non-spherical shape. The microlenses can also be configured in other matrix configurations, such as a rectangular matrix configuration or an octagonal matrix configuration or a combination of geometric matrix configurations.

圖3A至圖3B係根據某些實施例之與一球形微透鏡陣列整合在一起之實例性多色顯示面板之俯視圖。更具體而言,圖3A係具有像素之一正方形陣列配置之一實例性多色顯示面板300之一俯視圖,且圖3B係具有像素之一三角形陣列配置之一實例性多色顯示面板350之一俯視圖。顯示面板300、350兩者皆包含一微透鏡陣列310、360、包含像素光源320、370之一台面陣列及形成於該微透鏡陣列與該像素光源陣列之間的一選用光學間隔件340、390,且每一微透鏡對準至包含個別像素光源之一對應台面。3A-3B are top views of exemplary multi-color display panels integrated with a spherical microlens array in accordance with certain embodiments. More specifically, FIG. 3A is a top view of an example multicolor display panel 300 having a square array configuration of pixels, and FIG. 3B is an example multicolor display panel 350 having a triangular array configuration of pixels Top view. Both display panels 300, 350 include a microlens array 310, 360, a mesa array including pixel light sources 320, 370, and an optional optical spacer 340, 390 formed between the microlens array and the pixel light source array , and each microlens is aligned with a corresponding mesa including the individual pixel light source.

更詳細地,具有正方形矩陣配置之顯示面板300包含個別微透鏡310之一陣列、包含像素光源320之一對應台面陣列及其間之一選用光學間隔件340。不同於圖2A至圖2B中所展示之單色顯示面板200、250,顯示面板300中之像素光源陣列包含與不同發射波長相關聯之像素光源,從而產生一多色顯示面板。舉例而言,像素光源320R產生紅光且對應微透鏡310R對準至紅色像素光源,像素光源320G產生綠光且對應微透鏡310G對準至綠色像素光源,而且像素光源320B產生藍光且對應微透鏡310B對準至藍色像素光源。在一項實施例中,具有不同色彩之數個像素光源320以一特定比率分組在一起以形成一RGB全色彩像素。舉例而言,具有不同色彩之數個像素光源320以一三角形、矩形或六邊形矩陣配置分組在一起。舉例而言,在一常見設計中,紅色像素光源320R、綠色像素光源320G及藍色像素光源320B以1:2:1之一比率來分組以形成具有一2×2正方形光源配置之一單個全色彩像素330。In more detail, the display panel 300 having a square matrix configuration includes an array of individual microlenses 310 , a corresponding mesa array including pixel light sources 320 , and an optional optical spacer 340 therebetween. Unlike the monochrome display panels 200, 250 shown in FIGS. 2A-2B, the pixel light source array in display panel 300 includes pixel light sources associated with different emission wavelengths, resulting in a multicolor display panel. For example, pixel light source 320R produces red light and the corresponding microlens 310R is aligned to the red pixel light source, pixel light source 320G produces green light and the corresponding microlens 310G is aligned to the green pixel light source, and pixel light source 320B produces blue light and corresponds to the microlens 310B is aligned to the blue pixel light source. In one embodiment, several pixel light sources 320 of different colors are grouped together at a specific ratio to form an RGB full-color pixel. For example, several pixel light sources 320 of different colors are grouped together in a triangular, rectangular or hexagonal matrix configuration. For example, in one common design, red pixel light sources 320R, green pixel light sources 320G, and blue pixel light sources 320B are grouped in a ratio of 1:2:1 to form a single full light source having a 2x2 square light source configuration Color pixel 330.

在圖3A至圖3B中,對應顯示面板300、350之個別微透鏡310、360係球形微透鏡。在替代實施例中,該等微透鏡可具有非球形形狀。該等微透鏡亦可配置成其他矩陣配置,諸如一矩形矩陣配置或一六邊形矩陣配置。In FIGS. 3A to 3B , the respective microlenses 310 and 360 corresponding to the display panels 300 and 350 are spherical microlenses. In alternative embodiments, the microlenses may have a non-spherical shape. The microlenses can also be configured in other matrix configurations, such as a rectangular matrix configuration or a hexagonal matrix configuration.

具有三角形矩陣配置之顯示面板350亦包含個別微透鏡360之一陣列、包含像素光源370之一對應台面陣列及其間之一光學間隔件390,且像素光源370亦與不同發射波長相關聯以提供不同光色彩。舉例而言,像素光源370R發射紅光且對應微透鏡360R對準至紅色像素光源,像素光源370G發射綠光且對應微透鏡360G對準至綠色像素光源,而且像素光源370B發射藍光且對應微透鏡360B對準至藍色像素光源。在此實例中,紅色像素光源320R、綠色像素光源320G及藍色像素光源320B以1:1:1之一比率來分組以形成具有一三角形光源配置之一單個全色彩像素380。在某些實施例中,一圓柱形微透鏡陣列可形成於台面之頂部上。The display panel 350 having a triangular matrix configuration also includes an array of individual microlenses 360, a corresponding mesa array including pixel light sources 370 and an optical spacer 390 therebetween, and the pixel light sources 370 are also associated with different emission wavelengths to provide different light color. For example, pixel light source 370R emits red light and the corresponding microlens 360R is aligned to the red pixel light source, pixel light source 370G emits green light and the corresponding microlens 360G is aligned to the green pixel light source, and pixel light source 370B emits blue light and corresponds to the microlens 360B is aligned to the blue pixel light source. In this example, red pixel light sources 320R, green pixel light sources 320G, and blue pixel light sources 320B are grouped in a ratio of 1:1:1 to form a single full-color pixel 380 having a triangular light source configuration. In some embodiments, an array of cylindrical microlenses can be formed on top of the mesas.

圖4至圖5展示根據各種實施例形成與一微透鏡陣列整合在一起之一顯示面板之不同製造方法之實例。4-5 show examples of different fabrication methods for forming a display panel integrated with a microlens array in accordance with various embodiments.

圖4展示根據某些實施例在與一微透鏡陣列整合在一起之一顯示面板上形成一發光像素單元之一製造方法之一流程圖。可執行與圖1中所闡述之實施例對應的方法400之操作(例如,步驟)。4 shows a flowchart of a method of manufacturing a light-emitting pixel unit on a display panel integrated with a microlens array, according to some embodiments. The operations (eg, steps) of method 400 corresponding to the embodiment illustrated in FIG. 1 may be performed.

方法400包含提供一基板之一步驟402。舉例而言,圖1展示一基板130之一剖視圖。在某些實施例中,基板130係諸如矽之一半導體基板。在某些實施例中,基板130之材料來自II族至III族化合物、藍寶石、氧化鋁、氮化鎵等。The method 400 includes a step 402 of providing a substrate. For example, FIG. 1 shows a cross-sectional view of a substrate 130 . In some embodiments, the substrate 130 is a semiconductor substrate such as silicon. In some embodiments, the material of the substrate 130 is selected from Group II to Group III compounds, sapphire, aluminum oxide, gallium nitride, and the like.

方法400亦包含在該基板上形成至少一個台面之一步驟404。在某些實施例中,台面係具有陡側之自基板起之一平頂突出部,該平頂突出部藉由諸如沈積、光微影及蝕刻之現有半導體製造方法而形成。在某些實施例中,台面可呈矩形、正方形、三角形、梯形、多邊形等之形狀。在某些實施例中,台面包含至少一PN節面。舉例而言,圖1展示一台面102M之一剖視圖。基板130已包含各自具有在台面102M內之一對應像素光源112S之個別像素112P之一集成陣列。在一項實施例中,控制對應像素光源陣列之像素驅動器電路(未展示)之一陣列亦整合於基板130上。圖4中之實施例自此結構開始,該結構稱為如圖1中所展示之無透鏡顯示面板110。Method 400 also includes a step 404 of forming at least one mesa on the substrate. In certain embodiments, the mesa has a steep-sided flat-topped protrusion from the substrate formed by existing semiconductor fabrication methods such as deposition, photolithography, and etching. In certain embodiments, the mesa may be in the shape of a rectangle, square, triangle, trapezoid, polygon, or the like. In some embodiments, the mesa includes at least one PN node. For example, FIG. 1 shows a cross-sectional view of a mesa 102M. Substrate 130 has included an integrated array of individual pixels 112P each having a corresponding pixel light source 112S within mesas 102M. In one embodiment, an array of pixel driver circuits (not shown) that control the corresponding array of pixel light sources is also integrated on the substrate 130 . The embodiment in FIG. 4 begins with this structure, which is referred to as the lensless display panel 110 as shown in FIG. 1 .

方法400進一步包含直接在一個台面之至少頂部上且與該台面直接實體接觸地沈積一微透鏡材料層的一步驟406。在某些實施例中,如圖1中所展示,微透鏡材料層之形狀適形於台面102M之形狀且在該台面上形成一半球。在某些實施例中,台面102M之頂部係大體平坦的且所形成微透鏡122M之形狀係大體半球形的。在某些實施例中,藉由化學汽相沈積(CVD)技術將微透鏡材料層直接沈積於基板上。在某些實施例中,CVD工藝之沈積參數係: 功率係大約0 W至大約1000 W,壓力係大約100毫托至大約2000毫托,溫度係約23℃至約500℃,氣流係大約0至大約3000 sccm (標準立方公分/分鐘),且時間係大約1小時至大約3小時。在某些實施例中,微透鏡材料層之材料係諸如二氧化矽之一介電材料。The method 400 further includes a step 406 of depositing a layer of microlens material directly on at least a top of a mesa and in direct physical contact with the mesa. In certain embodiments, as shown in FIG. 1 , the shape of the layer of microlens material conforms to the shape of the mesas 102M and forms a hemisphere on the mesas. In certain embodiments, the tops of the mesas 102M are generally flat and the shape of the formed microlenses 122M is generally hemispherical. In some embodiments, the layer of microlens material is deposited directly on the substrate by chemical vapor deposition (CVD) techniques. In some embodiments, the deposition parameters of the CVD process are: power from about 0 W to about 1000 W, pressure from about 100 mTorr to about 2000 mTorr, temperature from about 23°C to about 500°C, gas flow about 0 to about 3000 sccm (standard cubic centimeters per minute), and the time is about 1 hour to about 3 hours. In some embodiments, the material of the microlens material layer is a dielectric material such as silicon dioxide.

方法400進一步包含將微透鏡材料層圖案化以暴露基板之電極區(圖1中未展示)之一步驟408。在某些實施例中,將微透鏡材料層圖案化之步驟408包含一蝕刻步驟。在某些實施例中,該蝕刻步驟包含在微透鏡材料之表面上形成一遮罩之一步驟。該蝕刻步驟亦包含經由一光微影工藝將遮罩圖案化藉此在遮罩中形成開口且在台面之電極區上面暴露微透鏡材料層之一步驟。該蝕刻步驟進一步包含蝕刻在遮罩保護就位之情況下由開口暴露的微透鏡材料層之部分之一步驟。在某些實施例中,藉由一濕式蝕刻方法蝕刻經暴露微透鏡材料層。The method 400 further includes a step 408 of patterning the layer of microlens material to expose electrode regions (not shown in FIG. 1 ) of the substrate. In some embodiments, the step 408 of patterning the layer of microlens material includes an etching step. In some embodiments, the etching step includes the step of forming a mask on the surface of the microlens material. The etching step also includes the step of patterning the mask through a photolithography process thereby forming openings in the mask and exposing the layer of microlens material over the electrode regions of the mesas. The etching step further includes a step of etching the portion of the layer of microlens material exposed by the opening with the mask protection in place. In some embodiments, the exposed layer of microlens material is etched by a wet etch method.

圖5展示根據某些實施例在與一微透鏡陣列整合在一起之一顯示面板上形成一發光像素單元之一製造方法之一流程圖。可執行與圖1中所闡述之實施例對應的方法500之操作(例如,步驟)。5 shows a flowchart of a method of manufacturing a light-emitting pixel unit on a display panel integrated with a microlens array, according to some embodiments. The operations (eg, steps) of method 500 corresponding to the embodiment illustrated in FIG. 1 may be performed.

方法500包含提供一基板之一步驟502。舉例而言,圖1展示一基板130之一剖視圖。在某些實施例中,基板130係諸如矽之一半導體基板。The method 500 includes a step 502 of providing a substrate. For example, FIG. 1 shows a cross-sectional view of a substrate 130 . In some embodiments, the substrate 130 is a semiconductor substrate such as silicon.

方法500亦包含在該基板上形成至少一台面之一步驟504。在某些實施例中,台面係具有陡側之自基板起之一平頂突出部,該平頂突出部藉由諸如沈積、光微影及蝕刻之現有半導體製造方法而形成。在某些實施例中,台面可呈矩形、正方形、三角形、梯形、多邊形等之形狀。在某些實施例中,台面包含至少一PN節面。舉例而言,圖1展示一台面102M之一剖視圖。基板130已包含各自具有在台面102M內之一對應像素光源112S之個別像素112P之一集成陣列。在一項實施例中,控制對應像素光源陣列之像素驅動器電路(未展示)之一陣列亦整合於基板130上。圖5中之實施例自此結構開始,該結構稱為如圖1中所展示之無透鏡顯示面板110。Method 500 also includes a step 504 of forming at least one mesa on the substrate. In certain embodiments, the mesa has a steep-sided flat-topped protrusion from the substrate formed by existing semiconductor fabrication methods such as deposition, photolithography, and etching. In certain embodiments, the mesa may be in the shape of a rectangle, square, triangle, trapezoid, polygon, or the like. In some embodiments, the mesa includes at least one PN node. For example, FIG. 1 shows a cross-sectional view of a mesa 102M. Substrate 130 has included an integrated array of individual pixels 112P each having a corresponding pixel light source 112S within mesas 102M. In one embodiment, an array of pixel driver circuits (not shown) that control the corresponding array of pixel light sources is also integrated on the substrate 130 . The embodiment in FIG. 5 begins with this structure, which is referred to as the lensless display panel 110 as shown in FIG. 1 .

在某些實施例中,方法500亦包含形成具有用於對準至在稍後步驟中沈積之微透鏡材料層之標記之一標記層的一選用步驟506。舉例而言,形成該標記層以將發光像素之單元對準至微透鏡材料層以便在發光像素之中心處形成微透鏡。在某些實施例中,形成該標記層以將台面對準至其上面之層(特別係微透鏡材料層)以便在台面之頂部上形成微透鏡。In some embodiments, method 500 also includes an optional step 506 of forming a marker layer having markers for alignment to a layer of microlens material deposited in a later step. For example, the marking layer is formed to align cells of light-emitting pixels to a layer of microlens material to form microlenses at the center of the light-emitting pixels. In some embodiments, the marking layer is formed to align the mesas to a layer above it (particularly a layer of microlens material) to form microlenses on top of the mesas.

方法500進一步包含直接在一個台面之至少頂部上沈積一微透鏡材料層之一步驟508。根據某些實施例,圖6A至圖6B進一步展示使用自上而下圖案轉印形成與一微透鏡陣列整合在一起之一顯示面板之一製造方法。在某些實施例中,微透鏡材料層645覆蓋台面602M之頂部,如圖6A中所展示,且微透鏡材料層645之頂部表面係平坦的。在某些實施例中,藉由旋塗將微透鏡材料層645沈積於台面陣列602之頂部上。在某些實施例中,微透鏡材料層645之材料係光阻劑。在某些實施例中,微透鏡材料層645之材料係諸如氧化矽之介電材料。The method 500 further includes a step 508 of depositing a layer of microlens material directly on at least the top of a mesa. 6A-6B further illustrate a method of fabricating a display panel integrated with a microlens array using top-down pattern transfer, according to certain embodiments. In certain embodiments, the microlens material layer 645 covers the top of the mesa 602M, as shown in FIG. 6A, and the top surface of the microlens material layer 645 is flat. In some embodiments, a layer of microlens material 645 is deposited on top of the mesa array 602 by spin coating. In some embodiments, the material of the microlens material layer 645 is photoresist. In some embodiments, the material of the microlens material layer 645 is a dielectric material such as silicon oxide.

方法500進一步包含自頂部向下將微透鏡材料層圖案化藉此在微透鏡材料層中形成至少一半球(如圖6A至圖6B中所展示)的一步驟510。在某些實施例中,在不貫穿微透鏡材料層645或蝕刻至微透鏡材料層645之底部之情況下實施圖案化。在某些實施例中,微透鏡620之半球放置於至少一個台面602M上面。The method 500 further includes a step 510 of patterning the layer of microlens material from the top down, thereby forming at least hemispheres in the layer of microlens material (as shown in FIGS. 6A-6B ). In some embodiments, patterning is performed without penetrating through or etching to the bottom of the microlens material layer 645 . In some embodiments, a hemisphere of microlens 620 is placed on at least one mesa 602M.

在某些實施例中,步驟510進一步包含在微透鏡材料層645之表面上沈積一遮罩層630 (如圖6A中所展示)之一第一步驟。In certain embodiments, step 510 further includes a first step of depositing a mask layer 630 (as shown in FIG. 6A ) on the surface of the layer 645 of microlens material.

步驟510亦包含將遮罩層630圖案化以在遮罩層630中形成一半球圖案之一第二步驟。在某些實例中,首先藉由一光微影工藝且然後藉由一回流工藝將遮罩層630圖案化。在某些實施例中,將光敏聚合物遮罩層630圖案化成孤立單元640,如圖6A中以虛線矩形單元所展示,以準備形成半球圖案。作為一項實例,經由一光微影工藝圖案化且形成孤立單元640。然後使用高溫回流工藝將具有孤立單元640之經圖案化光敏聚合物遮罩層650塑形成半球圖案660。在一個方法中,經由高溫回流將孤立單元640形成為孤立半球圖案660。在某些實施例中,一個像素之孤立半球圖案660不與一毗鄰像素之一半球圖案直接實體接觸。在某些實施例中,一個像素之半球圖案660僅在半球圖案660之底部處與一毗鄰像素之一半球圖案接觸。將經圖案化光敏聚合物遮罩層650加熱至高於聚合物材料之熔點之一溫度達一特定時間。在聚合物材料熔化成一液化狀態之後,液化材料之表面張力將使其呈現出具有一平滑曲率表面之一形狀。對於具有一半徑R之一圓底座之一單元(當單元之高度係2R/3時),在回流工藝之後將形成一半球形形狀/圖案。圖6A展示在完成高溫回流工藝之後與半球圖案660陣列整合在一起之一顯示面板。在某些實施例中,可藉由包含方法400中所闡述之用於微透鏡之製造方法之其他製造方法而形成遮罩層中之半球圖案。在某些其他實施例中,可使用灰度遮罩光微影曝光來形成遮罩層中之半球圖案。在某些其他實施例中,可經由一模製/壓印工藝形成遮罩層中之半球圖案。Step 510 also includes a second step of patterning the mask layer 630 to form a hemispherical pattern in the mask layer 630 . In some examples, the mask layer 630 is patterned first by a photolithography process and then by a reflow process. In certain embodiments, photopolymer mask layer 630 is patterned into isolated cells 640, as shown in FIG. 6A as dashed rectangular cells, in preparation for forming a hemispherical pattern. As an example, isolated cells 640 are patterned and formed via a photolithography process. The patterned photopolymer mask layer 650 with the isolated cells 640 is then shaped into a hemispherical pattern 660 using a high temperature reflow process. In one method, isolated cells 640 are formed into isolated hemispherical patterns 660 via high temperature reflow. In some embodiments, the isolated hemispherical pattern 660 of a pixel is not in direct physical contact with a hemispherical pattern of an adjacent pixel. In some embodiments, the hemispherical pattern 660 of one pixel contacts the hemispherical pattern of an adjacent pixel only at the bottom of the hemispherical pattern 660 . The patterned photopolymer mask layer 650 is heated to a temperature above the melting point of the polymer material for a specified time. After the polymer material has melted into a liquefied state, the surface tension of the liquefied material will cause it to assume a shape with a smoothly curved surface. For a cell with a circular base of a radius R (when the height of the cell is 2R/3), a hemispherical shape/pattern will be formed after the reflow process. 6A shows a display panel integrated with an array of hemisphere patterns 660 after completion of the high temperature reflow process. In certain embodiments, the hemispherical pattern in the mask layer may be formed by other fabrication methods including the fabrication method for microlenses described in method 400 . In certain other embodiments, grayscale mask photolithographic exposure may be used to form the hemispherical pattern in the mask layer. In certain other embodiments, the hemispherical pattern in the mask layer can be formed via a molding/imprinting process.

步驟510進一步包含使用半球圖案660作為一遮罩來蝕刻微透鏡材料層645以在微透鏡材料層645中形成半球之一第三步驟。在某些實例中,藉由一光微影工藝蝕刻微透鏡材料層645。在某些實例中,藉由諸如等離子蝕刻工藝635 (如圖6A中所展示)之一乾式蝕刻來蝕刻微透鏡材料層645。在某些實施例中,在蝕刻微透鏡材料層645之後,未蝕穿微透鏡材料層645來暴露台面602M之頂部表面(如圖6A至圖6B中所展示),藉此形成在台面602M之頂部上或覆蓋台面602M之頂部(如圖6B中所展示)之一間隔件670。Step 510 further includes a third step of etching the microlens material layer 645 using the hemisphere pattern 660 as a mask to form hemispheres in the microlens material layer 645 . In some examples, the microlens material layer 645 is etched by a photolithography process. In some examples, the microlens material layer 645 is etched by a dry etch, such as a plasma etch process 635 (as shown in FIG. 6A). In some embodiments, after the microlens material layer 645 is etched, the top surfaces of the mesas 602M are not etched through the microlens material layer 645 (as shown in FIGS. 6A-6B ), thereby forming over the mesas 602M A spacer 670 on top or covering the top of mesa 602M (as shown in Figure 6B).

方法500進一步包含將微透鏡材料層圖案化以暴露基板之電極區(圖6B中未展示)之一步驟512。在某些實施例中,將微透鏡材料層圖案化之步驟512包含一蝕刻步驟。在某些實施例中,該蝕刻步驟包含在微透鏡材料之表面上形成一遮罩之一步驟。該蝕刻步驟亦包含經由一光微影工藝將該遮罩圖案化藉此在該遮罩中形成開口且在台面之電極區上面暴露微透鏡材料層之一步驟。該蝕刻步驟進一步包含在具有遮罩保護之情況下蝕刻經暴露微透鏡材料層之一步驟。在某些實施例中,藉由一濕式蝕刻方法蝕刻經暴露微透鏡材料層。在某些實施例中,用於一電極之開口定位於顯示陣列區外側。The method 500 further includes a step 512 of patterning the layer of microlens material to expose electrode regions (not shown in FIG. 6B ) of the substrate. In some embodiments, the step 512 of patterning the layer of microlens material includes an etching step. In some embodiments, the etching step includes the step of forming a mask on the surface of the microlens material. The etching step also includes a step of patterning the mask through a photolithography process whereby openings are formed in the mask and a layer of microlens material is exposed over the electrode regions of the mesas. The etching step further includes the step of etching the exposed layer of microlens material with mask protection. In some embodiments, the exposed layer of microlens material is etched by a wet etch method. In some embodiments, the opening for an electrode is positioned outside the display array area.

如上文所闡述,圖1、圖4、圖5、圖6A及圖6B展示形成與一微透鏡陣列整合在一起之一顯示面板之各種製造方法。應理解,此等實例僅僅係實例,且亦可使用其他製造技術。As set forth above, Figures 1, 4, 5, 6A, and 6B show various fabrication methods for forming a display panel integrated with a microlens array. It should be understood that these examples are merely examples and other fabrication techniques may also be used.

儘管詳細說明含有諸多特定細節,但此等不應視為限制本發明之範疇,而應僅視為圖解說明本發明之不同實例及態樣。應瞭解,本發明之範疇包含上文未詳細地論述之其他實施例。舉例而言,亦可使用具有不同形狀底座之微透鏡,諸如正方形底座或其他多邊形底座。可在不背離如隨附申請專利範圍中所界定之本發明之精神及範疇之情況下在本文中所揭示之本發明之方法及設備之配置、操作及細節方面做出熟習此項技術者將明瞭之各種其他修改、改變及變化。因此,本發明之範疇應由隨附申請專利範圍及其法定等效內容判定。Although the detailed description contains numerous specific details, these should not be construed as limiting the scope of the invention, but merely as illustrating various examples and aspects of the invention. It should be understood that the scope of the present invention includes other embodiments not discussed in detail above. For example, microlenses with differently shaped mounts can also be used, such as square mounts or other polygonal mounts. Those skilled in the art will appreciate the configuration, operation and details of the methods and apparatus of the present invention disclosed herein without departing from the spirit and scope of the invention as defined in the appended claims. Various other modifications, changes, and changes are apparent. Accordingly, the scope of the present invention should be determined by the appended claims and their legal equivalents.

額外實施例亦包含以上實施例之各種子組,包含在各種其他實施例中經組合或以其他方式重新組合的圖1、圖2A、圖2B、圖3A、圖3B、圖4、圖5、圖6A及圖6B中所展示之實施例。Additional embodiments also include various subgroups of the above embodiments, including Figures 1, 2A, 2B, 3A, 3B, 4, 5, The embodiment shown in Figures 6A and 6B.

圖7係根據某些實施例之一微型LED顯示面板700之一俯視圖。顯示面板700包含一數據介面710、一控制模組720及一像素區域750。數據介面710接收定義待顯示之影像之數據。此數據之來源及格式將取決於應用而變化。控制模組720接收傳入數據且將其轉換為適合於驅動顯示面板中之像素之一格式。控制模組720可包含:數位邏輯及/或狀態機,其用以自所接收格式轉換為對於像素區域750適當之格式;移位暫存器或其他類型之緩衝器及記憶體,其用以儲存及轉移數據;數位轉類比轉換器及位準移位器;及掃描控制器,其包含計時電路系統。FIG. 7 is a top view of a micro LED display panel 700 according to some embodiments. The display panel 700 includes a data interface 710 , a control module 720 and a pixel area 750 . Data interface 710 receives data defining the image to be displayed. The source and format of this data will vary depending on the application. The control module 720 receives the incoming data and converts it into a format suitable for driving the pixels in the display panel. Control module 720 may include: digital logic and/or state machines for converting from the received format to the format appropriate for pixel area 750; shift registers or other types of buffers and memory for Store and transfer data; digital-to-analog converters and level shifters; and scan controllers that include timing circuitry.

像素區域750包含含有像素之一台面(未與圖7中之LED 734分開地展示)陣列。該等像素包含與像素驅動器整合在一起之微型LED,諸如一單色或多色LED 734,舉例而言如上文所闡述。一微透鏡(未與圖7中之LED 734分開地展示)陣列覆蓋台面陣列之頂部。在此實例中,顯示面板700係一色彩RGB顯示面板。其包含紅色、綠色及藍色像素。在每一像素內,由一像素驅動器控制LED 734。根據先前所展示之實施例,像素經由一接地墊736與一供應電壓(未展示)及接地進行接觸,且亦與一控制信號進行接觸。儘管圖7中未展示,但LED 734之p電極與驅動電晶體之輸出電連接。根據各種實施例與像素驅動器之閘極進行LED電流驅動信號連接(LED之p電極與像素驅動器之輸出之間)、接地連接(n電極與系統接地之間)、供應電壓Vdd連接(像素驅動器之源與系統Vdd之間)及控制信號連接。本文中所揭示之微透鏡陣列之任一者可與微型LED顯示面板700一起經實施。Pixel area 750 includes an array of mesas (not shown separately from LEDs 734 in FIG. 7) containing pixels. The pixels include micro LEDs, such as a single-color or multi-color LED 734, integrated with a pixel driver, for example as described above. An array of microlenses (not shown separately from LEDs 734 in Figure 7) covers the top of the mesa array. In this example, display panel 700 is a color RGB display panel. It contains red, green and blue pixels. Within each pixel, LEDs 734 are controlled by a pixel driver. According to the previously shown embodiment, the pixel is in contact with a supply voltage (not shown) and ground via a ground pad 736, and is also in contact with a control signal. Although not shown in Figure 7, the p-electrode of LED 734 is electrically connected to the output of the drive transistor. LED current drive signal connection (between p-electrode of LED and output of pixel driver), ground connection (between n-electrode and system ground), supply voltage Vdd connection (between pixel driver's gate) according to various embodiments source and system Vdd) and control signal connections. Any of the microlens arrays disclosed herein can be implemented with micro LED display panel 700 .

圖7僅僅係一代表圖。將明瞭其他設計。舉例而言,色彩不必須係紅色、綠色及藍色。其亦不必須配置成列或條帶。作為一項實例,除了圖7中所展示之一正方形像素矩陣之配置,一六邊形像素矩陣配置亦可用於形成顯示面板700。FIG. 7 is only a representative diagram. Other designs will become apparent. For example, the colors do not have to be red, green and blue. It also does not have to be configured in columns or stripes. As an example, in addition to a square pixel matrix configuration shown in FIG. 7 , a hexagonal pixel matrix configuration may also be used to form display panel 700 .

在某些應用中,一完全可程式化矩形像素陣列係不必要的。亦可使用本文中所闡述之裝置結構形成具有各種形狀及顯示器之其他顯示面板設計。一個類別之實例係特殊應用,包含標牌及汽車。舉例而言,多個像素可配置成一星星或一螺旋線之形狀以形成一顯示面板,且可藉由接通及關斷LED而產生顯示面板上之不同圖案。另一特殊實例係汽車頭燈及智慧照明裝置,其中特定像素分組在一起以形成各種照射圖案且可藉由個別像素驅動器接通或關斷或以其他方式調整每一LED像素群組。In some applications, a fully programmable rectangular pixel array is not necessary. Other display panel designs with various shapes and displays can also be formed using the device structures described herein. Examples of one class are special applications, including signage and automobiles. For example, a plurality of pixels can be configured in the shape of a star or a spiral to form a display panel, and different patterns on the display panel can be created by turning LEDs on and off. Another special example is automotive headlights and smart lighting devices, where specific pixels are grouped together to form various illumination patterns and each group of LED pixels can be turned on or off or otherwise adjusted by individual pixel drivers.

甚至每一像素內之橫向裝置配置可變化。在圖1、圖6A及圖6B中,LED及像素驅動器垂直地配置,亦即,每一LED位於對應像素驅動器電路之頂部上。其他配置亦係可能的。舉例而言,像素驅動器亦可位於LED「後面」、「前面」或「旁邊」。Even the lateral device configuration within each pixel can vary. In Figures 1, 6A and 6B, the LEDs and pixel drivers are arranged vertically, that is, each LED is on top of the corresponding pixel driver circuit. Other configurations are also possible. For example, pixel drivers can also be located "behind", "before" or "beside" the LEDs.

可製造不同類型之顯示面板。舉例而言,一顯示面板之解析度可通常介於自8×8至3840×2160之範圍內。常見顯示器解析度包含具有320×240解析度及4:3之一縱橫比之QVGA、具有1024×768解析度及4:3之一縱橫比之XGA、具有1280×720解析度及16:9之一縱橫比之D、具有1920×1080解析度及16:9之一縱橫比之FHD、具有3840×2160解析度及16:9之一縱橫比之UHD以及具有4096×2160解析度之4K。亦可存在各種像素大小,範圍介於自亞微米及低於亞微米至10 mm及高於10 mm。總體顯示區域之大小亦可相差很大,範圍介於自小至數十微米或更少之對角線高達數千英吋或更多。Different types of display panels can be manufactured. For example, the resolution of a display panel may typically range from 8×8 to 3840×2160. Common display resolutions include QVGA with 320×240 resolution and an aspect ratio of 4:3, XGA with 1024×768 resolution and an aspect ratio of 4:3, 1280×720 resolution and 16:9 One aspect ratio D, FHD with 1920x1080 resolution and 16:9 aspect ratio, UHD with 3840x2160 resolution and 16:9 aspect ratio, and 4K with 4096x2160 resolution. Various pixel sizes can also exist, ranging from sub-micron and sub-sub-micron to 10 mm and above. The size of the overall display area can also vary widely, ranging from as small as tens of microns or less diagonally up to thousands of inches or more.

不同應用亦將具有對光學亮度及觀看角度之不同要求。實例性應用包含直視顯示螢幕、用於家用/辦公室投影機及可攜式電子裝置(諸如智慧型電話、膝上型電腦、穿戴式電子裝置、AR及VR眼鏡)之光引擎以及視網膜投影。功耗可自低達視網膜投影機之幾毫瓦至高達大螢幕戶外顯示器、投影機及智慧汽車頭燈之幾千瓦不等。就圖框率而言,由於無機LED之快速回應(納秒),因此圖框率對於小解析度可係高達KHz或甚至MHz。Different applications will also have different requirements for optical brightness and viewing angles. Example applications include direct view display screens, light engines for home/office projectors and portable electronic devices such as smartphones, laptops, wearable electronic devices, AR and VR glasses, and retinal projection. Power consumption can range from as low as a few milliwatts for retina projectors to as high as several kilowatts for large-screen outdoor displays, projectors, and smart car headlights. In terms of frame rate, due to the fast response (nanoseconds) of inorganic LEDs, the frame rate can be as high as KHz or even MHz for small resolutions.

額外實施例亦包含以上實施例之各種子組,包含在各種其他實施例中經組合或以其他方式重新組合的圖1、圖2A、圖2B、圖3A、圖3B、圖4、圖5、圖6A、圖6B及圖7中所展示之實施例。Additional embodiments also include various subgroups of the above embodiments, including Figures 1, 2A, 2B, 3A, 3B, 4, 5, The embodiment shown in FIGS. 6A , 6B and 7 .

儘管詳細說明含有諸多特定細節,但此等不應視為限制本發明之範疇,而應僅視為圖解說明本發明之不同實例及態樣。應瞭解,本發明之範疇包含上文未詳細地論述之其他實施例。舉例而言,上文所闡述之方法可應用於將除LED及OLED以外之功能裝置與除像素驅動器以外之控制電路系統整合在一起。非LED裝置之實例包含垂直腔表面發射雷射(VCSEL)、光電偵測器、微機電系統(MEMS)、矽光子裝置、功率電子裝置及分佈回饋雷射(DFB)。其他控制電路系統之實例包含電流驅動器、電壓驅動器、跨阻抗放大器及邏輯電路。Although the detailed description contains numerous specific details, these should not be construed as limiting the scope of the invention, but merely as illustrating various examples and aspects of the invention. It should be understood that the scope of the present invention includes other embodiments not discussed in detail above. For example, the methods set forth above can be applied to integrate functional devices other than LEDs and OLEDs with control circuitry other than pixel drivers. Examples of non-LED devices include vertical cavity surface emitting lasers (VCSELs), photodetectors, microelectromechanical systems (MEMS), silicon photonics devices, power electronic devices, and distributed feedback lasers (DFBs). Examples of other control circuitry include current drivers, voltage drivers, transimpedance amplifiers, and logic circuits.

對所揭示實施例之前述說明經提供以使得熟習此項技術者能夠做出或使用本文中所闡述之實施例及其變化形式。熟習此項技術者將容易地明瞭此等實施例之各種修改,且在本文中所定義之通用原理可在不背離本文中所揭示之標的物之精神或範疇之情況下應用於其他實施例。因此,本發明並不意欲限於本文中所展示之實施例,而是被賦予與之隨附申請專利範圍以及本文中所揭示之原理及新穎特徵相一致之最寬廣範疇。The foregoing descriptions of the disclosed embodiments are provided to enable those skilled in the art to make or use the embodiments set forth herein and variations thereof. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of the subject matter disclosed herein. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the scope of the appended claims and the principles and novel features disclosed herein.

可在一電腦程式產品中、使用該電腦程式產品或藉助於電腦程式產品實施本發明之特徵,諸如上面儲存有指令/其中可用於程式化一處理系統以執行本文中所呈現之特徵中之任一者的一(若干)儲存媒體或電腦可讀儲存媒體。該儲存媒體可包含但不限於高速隨機存取記憶體,諸如DRAM、SRAM、DDR RAM或其他隨機存取固態記憶體裝置,且可包含非揮發性記憶體,諸如一或多個磁碟儲存裝置、光碟儲存裝置、快閃記憶體裝置或其他非揮發性固態儲存裝置。記憶體視情況包含位於CPU遠端之一或多個儲存裝置。記憶體或替代地記憶體內之非揮發性記憶體裝置包括一非暫時性電腦可讀儲存媒體。Features of the present invention may be implemented in, using, or by means of a computer program product, such as instructions stored thereon/wherein may be used to program a processing system to perform any of the features presented herein A storage medium(s) of one or a computer-readable storage medium. The storage medium may include, but is not limited to, high speed random access memory, such as DRAM, SRAM, DDR RAM, or other random access solid state memory devices, and may include non-volatile memory, such as one or more magnetic disk storage devices , optical disc storage devices, flash memory devices or other non-volatile solid state storage devices. Memory optionally includes one or more storage devices remote from the CPU. A memory, or alternatively a non-volatile memory device within a memory, includes a non-transitory computer-readable storage medium.

儲存於任一(何)機器可讀媒體上,本發明之特徵可併入於軟體及/或韌體中以用於控制一處理系統之硬體,且使得一處理系統能夠利用本發明之結果與其他機構互動。此軟體或韌體可包含但不限於應用程式碼、裝置驅動器、作業系統及執行環境/容器。Stored on any machine-readable medium(s), the features of the present invention may be incorporated into software and/or firmware for controlling the hardware of a processing system and enabling a processing system to utilize the results of the present invention Interact with other agencies. Such software or firmware may include, but is not limited to, application code, device drivers, operating systems, and execution environments/containers.

將理解,儘管本文中可使用術語「第一」、「第二」等來闡述各種元件或步驟,但此等元件或步驟不應受此等術語限制。此等術語僅用於將一個元件或步驟與另一元件或步驟區分開。It will be understood that, although the terms "first," "second," etc. may be used herein to describe various elements or steps, these elements or steps should not be limited by these terms. These terms are only used to distinguish one element or step from another element or step.

本文中所使用之術語僅用於闡述特定實施例之目的而並非意欲限制申請專利範圍。如對實施例之說明及隨附申請專利範圍中所使用,除非內容脈絡另外明確指示,否則單數形式「一(a、an)」及「該(the)」亦意欲包含複數形式。亦將理解,如本文中所使用之術語「及/或」係指且囊括相關聯所列物項中之一或多者之任何及所有可能組合。將進一步理解,術語「包括(comprises)」及/或「包括(包括)」在本說明書中使用時指定存在所陳述特徵、整數、步驟、操作、元件及/或組件,但並不排除存在或添加一或多個其他特徵、整數、步驟、操作、元件、組件及/或其群組。The terminology used herein is for the purpose of describing particular embodiments only and is not intended to limit the scope of the claims. As used in the description of the embodiments and the appended claims, the singular forms "a (a, an)" and "the (the)" are also intended to include the plural forms unless the context clearly dictates otherwise. It will also be understood that the term "and/or" as used herein refers to and includes any and all possible combinations of one or more of the associated listed items. It will be further understood that the terms "comprises" and/or "includes" when used in this specification designate the presence of stated features, integers, steps, operations, elements and/or components, but do not exclude the presence or Add one or more other features, integers, steps, operations, elements, components, and/or groups thereof.

如本文中所使用,取決於內容脈絡,術語「若…,則…」可解釋為意指「當一所陳述先決條件為真時」或「基於一所陳述先決條件為真」或「回應於判定一所陳述先決條件為真」或「根據一所陳述先決條件為真之一判定」或「回應於偵測到一所陳述先決條件為真」。類似地,取決於內容脈絡,片語「若判定[一所陳述先決條件為真],則…」或「若[一所陳述先決條件為真],則…」或「當[一所陳述先決條件為真]時」可解釋為意指「基於判定該所陳述先決條件為真」或「回應於判定該所陳述先決條件為真」或「根據該所陳述先決條件為真之一判定」或「基於偵測到該所陳述先決條件為真」或「回應於偵測到該所陳述先決條件為真」。As used herein, depending on the context, the term "if, then..." can be interpreted to mean "when a stated precondition is true" or "based on a stated precondition being true" or "response to Determining that a stated precondition is true" or "in accordance with a determination that a stated precondition is true" or "in response to detecting that a stated precondition is true". Similarly, depending on context, the phrase "if it is determined that [a stated precondition is true], then..." or "if [a stated precondition is true], then..." or "when [a stated precondition is true]..." The condition is true] can be interpreted to mean "based on a determination that the stated precondition is true" or "in response to a determination that the stated precondition is true" or "based on a determination that the stated precondition is true" or "Based on detecting that the stated prerequisite is true" or "in response to detecting that the stated prerequisite is true".

出於闡釋之目的,已參考特定實施例闡述了前述說明。然而,說明性論述並不意欲為窮盡性的或將申請專利範圍限制於所揭示之精確形式。鑒於以上教示,諸多修改及變化係可能的。選擇且闡述實施例以便最佳地闡釋操作及實際應用之原理,以藉此使得熟習此項技術者得以最佳地利用本發明及各種實施例。For purposes of explanation, the foregoing description has been set forth with reference to specific embodiments. However, the illustrative discussions are not intended to be exhaustive or to limit the scope of the claims to the precise forms disclosed. Numerous modifications and variations are possible in light of the above teachings. The embodiments were chosen and described in order to best explain the principles of operation and practical application, to thereby enable those skilled in the art to best utilize the invention and various embodiments.

100:顯示面板/成品顯示面板/全顯示面板 102:個別台面陣列/台面陣列/台面 102M:台面 110:無透鏡顯示面板 112P:像素 112S:像素光源/光源/像素光源陣列 116:光射線 118:光射線/新邊緣光射線 120:微透鏡陣列 122M:微透鏡 126:原始發散角/原始角 128:經減小發散角/經減小角 130:基板 140:光學間隔件/光學間隔件層 200:單色顯示面板/顯示面板 210:微透鏡 220:像素光源 230:三角形陣列配置 235:六邊形陣列配置 240:光學間隔件 250:單色顯示面板/顯示面板 260:微透鏡 270:像素光源 290:光學間隔件 300:多色顯示面板/顯示面板 310B:微透鏡 310G:微透鏡 310R:微透鏡 320B:像素光源/藍色像素光源 320G:像素光源/綠色像素光源 320R:像素光源/紅色像素光源 330:全色彩像素 340:光學間隔件 350:多色顯示面板/顯示面板 360B:微透鏡 360G:微透鏡 360R:微透鏡 370B:像素光源 370G:像素光源 370R:像素光源 380:全色彩像素 390:光學間隔件 400:方法 402:步驟 404:步驟 406:步驟 408:步驟 500:方法 502:步驟 504:步驟 506:步驟 508:步驟 510:步驟 512:步驟 602:台面陣列 602M:台面 620:微透鏡 630:遮罩層/光敏聚合物遮罩層 635:等離子蝕刻工藝 640:孤立單元 645:微透鏡材料層 650:經圖案化光敏聚合物遮罩層 660:半球圖案 670:間隔件 700:微型發光二極體顯示面板/顯示面板 710:數據介面 720:控制模組 734:發光二極體 736:接地墊 750:像素區域 100: display panel/finished display panel/full display panel 102: Individual Countertop Arrays / Countertop Arrays / Countertops 102M: Countertop 110: Lensless display panel 112P: Pixel 112S: Pixel light source/light source/pixel light source array 116: Ray of Light 118: Ray of Light/New Edge Ray of Light 120: Micro lens array 122M: Micro lens 126: Primitive Divergence Angle / Primitive Angle 128: Reduced Divergence Angle / Reduced Angle 130: Substrate 140: Optical Spacer/Optical Spacer Layer 200: Monochrome display panel/display panel 210: Micro lens 220: pixel light source 230: Triangular array configuration 235: Hexagon Array Configuration 240: Optical Spacer 250: Monochrome display panel/display panel 260: Micro lens 270: pixel light source 290: Optical Spacer 300: Multicolor Display Panel/Display Panel 310B: Micro lens 310G: Micro lens 310R: Micro lens 320B: pixel light source/blue pixel light source 320G: pixel light source/green pixel light source 320R: pixel light source/red pixel light source 330: full color pixels 340: Optical Spacer 350: Multicolor Display Panel / Display Panel 360B: Micro lens 360G: Micro lens 360R: Micro lens 370B: Pixel light source 370G: pixel light source 370R: Pixel light source 380: full color pixels 390: Optical Spacer 400: Method 402: Step 404: Step 406: Step 408: Step 500: Method 502: Step 504: Step 506: Steps 508: Steps 510: Steps 512: Steps 602: Countertop Array 602M: Countertop 620: Micro lens 630: mask layer/photopolymer mask layer 635: Plasma Etching Process 640: Isolated unit 645: Micro lens material layer 650: Patterned photopolymer mask layer 660: Hemisphere pattern 670: Spacer 700: Micro LED Display Panel/Display Panel 710: Data Interface 720: Control Module 734: Light Emitting Diode 736: Ground Pad 750: Pixel area

為了可更詳細地理解本發明,可參考各種實施例之特徵進行一更特定說明,在附圖中圖解說明該等實施例中之某些實施例。然而,附圖僅僅圖解說明本發明之相關特徵且因此不被視為限制性的,因為說明可准許其他有效特徵。In order that the present invention may be understood in greater detail, reference may be made to a more specific description of the features of various embodiments, some of which are illustrated in the accompanying drawings. However, the drawings illustrate only relevant features of the invention and are therefore not to be regarded as limiting, as the description may allow for other effective features.

圖1係根據某些實施例之與一微透鏡陣列整合在一起之一實例性顯示面板之一剖視圖。1 is a cross-sectional view of an exemplary display panel integrated with a microlens array in accordance with certain embodiments.

圖2A係根據某些實施例之具有像素之一正方形陣列配置之一實例性單色顯示面板之一俯視圖。2A is a top view of an exemplary monochrome display panel having a square array configuration of pixels in accordance with certain embodiments.

圖2B係根據一項實施例圖解說明像素之一三角形及一六邊形陣列配置的一實例性單色顯示面板之一俯視圖。2B is a top view of an example monochrome display panel illustrating a triangular and a hexagonal array configuration of pixels, according to an embodiment.

圖3A係根據某些實施例之具有像素之一正方形陣列配置之一實例性多色顯示面板之一俯視圖。3A is a top view of an example multicolor display panel having a square array configuration of pixels in accordance with certain embodiments.

圖3B係根據某些實施例之具有像素之一三角形陣列配置之一實例性多色顯示面板之一俯視圖。3B is a top view of an example multicolor display panel having a triangular array configuration of pixels in accordance with certain embodiments.

圖4展示根據某些實施例在與一微透鏡陣列整合在一起之一顯示面板上形成一發光像素單元之一製造方法之一流程圖。4 shows a flowchart of a method of manufacturing a light-emitting pixel unit on a display panel integrated with a microlens array, according to some embodiments.

圖5展示根據某些實施例在與一微透鏡陣列整合在一起之一顯示面板上形成一發光像素單元之一製造方法之一流程圖。5 shows a flowchart of a method of manufacturing a light-emitting pixel unit on a display panel integrated with a microlens array, according to some embodiments.

圖6A展示根據某些實施例使用自上而下圖案轉印形成與一微透鏡陣列整合在一起之一顯示面板之一製造方法。6A shows a method of fabricating a display panel integrated with a microlens array using top-down pattern transfer according to certain embodiments.

圖6B展示根據某些實施例使用自下而上圖案轉印形成與一微透鏡陣列整合在一起之一顯示面板之一製造方法。6B shows a method of fabricating a display panel integrated with a microlens array using bottom-up pattern transfer according to certain embodiments.

圖7係根據某些實施例之一微型LED顯示面板之一俯視圖。7 is a top view of a micro LED display panel according to some embodiments.

根據慣例,圖式中所圖解說明之各種特徵可未必按比例繪製。相應地,各種特徵之尺寸可為了清晰而任意地擴大或減小。另外,圖式中之某些圖式可未繪示一給定系統、方法或裝置之組件中之所有組件。最後,相似元件符號可用於在說明書及圖中表示相似特徵。In accordance with common practice, the various features illustrated in the drawings may not necessarily be drawn to scale. Accordingly, the dimensions of the various features may be arbitrarily expanded or reduced for clarity. Additionally, some of the figures may not depict all of the components of a given system, method, or apparatus. Finally, similar reference numerals may be used to designate similar features in the specification and drawings.

100:顯示面板/成品顯示面板/全顯示面板 100: display panel/finished display panel/full display panel

102:個別台面陣列/台面陣列/台面 102: Individual Countertop Arrays / Countertop Arrays / Countertops

102M:台面 102M: Countertop

110:無透鏡顯示面板 110: Lensless display panel

112P:像素 112P: Pixel

112S:像素光源/光源/像素光源陣列 112S: Pixel light source/light source/pixel light source array

116:光射線 116: Ray of Light

118:光射線/新邊緣光射線 118: Ray of Light/New Edge Ray of Light

120:微透鏡陣列 120: Micro lens array

122M:微透鏡 122M: Micro lens

126:原始發散角/原始角 126: Primitive Divergence Angle / Primitive Angle

128:經減小發散角/經減小角 128: Reduced Divergence Angle / Reduced Angle

130:基板 130: Substrate

140:光學間隔件/光學間隔件層 140: Optical Spacer/Optical Spacer Layer

Claims (23)

一種發光像素單元,其包括: 至少一個台面,其形成於一基板上;及 一微透鏡,其自覆蓋該至少一個台面之至少一頂部之一微透鏡層形成; 其中: 該微透鏡層之材料不同於該至少一個台面之材料,且 該微透鏡層與該至少一個台面直接實體接觸。 A light-emitting pixel unit, comprising: at least one mesa formed on a substrate; and a microlens formed from a microlens layer covering at least a top of the at least one mesa; in: The material of the microlens layer is different from the material of the at least one mesa, and The microlens layer is in direct physical contact with the at least one mesa. 如請求項1之發光像素單元,其中該微透鏡個別地形成於該至少一個台面之該頂部周圍。The light-emitting pixel unit of claim 1, wherein the microlenses are individually formed around the top of the at least one mesa. 如請求項1之發光像素單元,其中一間隔件自該至少一個台面與該微透鏡之間的同一微透鏡層形成。The light-emitting pixel unit of claim 1, wherein a spacer is formed from the same microlens layer between the at least one mesa and the microlens. 如請求項3之發光像素單元,其中該間隔件之材料與該微透鏡之材料相同。The light-emitting pixel unit of claim 3, wherein the material of the spacer is the same as the material of the microlens. 如請求項1之發光像素單元,其中該微透鏡由一介電材料構成。The light-emitting pixel unit of claim 1, wherein the microlens is formed of a dielectric material. 如請求項1之發光像素單元,其中該微透鏡之材料係光阻劑。The light-emitting pixel unit of claim 1, wherein the material of the microlens is a photoresist. 如請求項1之發光像素單元,其中該微透鏡之高度不多於2微米。The light-emitting pixel unit of claim 1, wherein the height of the microlens is no more than 2 microns. 如請求項1之發光像素單元,其中該微透鏡之寬度不多於4微米。The light-emitting pixel unit of claim 1, wherein the width of the microlens is no more than 4 microns. 如請求項1之發光像素單元,其中,在該基板上,該至少一個台面位於一台面陣列矩陣內,且該微透鏡位於根據該台面陣列之放置而放置之一微透鏡陣列矩陣內。The light-emitting pixel unit of claim 1, wherein, on the substrate, the at least one mesa is located in a mesa array matrix, and the microlenses are located in a microlens array matrix placed according to the placement of the mesa array. 如請求項1之發光像素單元,其中該至少一個台面之該頂部係平坦的,且該微透鏡之形狀係半球。The light-emitting pixel unit of claim 1, wherein the top of the at least one mesa is flat, and the shape of the microlens is a hemisphere. 如請求項1之發光像素單元,其中該至少一個台面包含至少一發光裝置。The light-emitting pixel unit of claim 1, wherein the at least one mesa comprises at least one light-emitting device. 一種製造一發光像素單元之方法,其包括: 提供一基板; 在該基板上形成至少一個台面;及 直接在該至少一個台面之至少一頂部上沈積一微透鏡材料層,其中該微透鏡材料層適形於該至少一個台面之一形狀且在該至少一個台面上具有一半球形狀。 A method of manufacturing a light-emitting pixel unit, comprising: providing a substrate; forming at least one mesa on the substrate; and A layer of microlens material is deposited directly on top of at least one of the at least one mesas, wherein the layer of microlens material conforms to a shape of one of the at least one mesas and has a hemispherical shape on the at least one mesa. 如請求項12之製造一發光像素單元之方法,其中藉由一化學汽相沈積技術而沈積該微透鏡材料層。The method of manufacturing a light-emitting pixel unit of claim 12, wherein the layer of microlens material is deposited by a chemical vapor deposition technique. 如請求項12之製造一發光像素單元之方法,其進一步包括: 將該微透鏡材料層圖案化以暴露該基板之一電極區。The method of manufacturing a light-emitting pixel unit of claim 12, further comprising: patterning the microlens material layer to expose an electrode region of the substrate. 如請求項14之製造一發光像素單元之方法,其中圖案化進一步包含: 在該微透鏡材料之表面上形成一遮罩; 經由一光微影工藝將該遮罩圖案化,藉此在該遮罩中形成開口且在該至少一個台面之該電極區上面暴露該微透鏡材料層;及 在遮罩保護就位之情況下,蝕刻由該等開口暴露的該微透鏡材料層之部分。 The method of manufacturing a light-emitting pixel unit of claim 14, wherein the patterning further comprises: forming a mask on the surface of the microlens material; patterning the mask through a photolithography process, thereby forming openings in the mask and exposing the layer of microlens material over the electrode region of the at least one mesa; and With the mask protection in place, the portions of the layer of microlens material exposed by the openings are etched. 如請求項15之製造一發光像素單元之方法,其中蝕刻係一濕式蝕刻方法。The method of manufacturing a light-emitting pixel unit of claim 15, wherein the etching is a wet etching method. 一種製造一發光像素單元之方法,其包括: 提供一基板; 在該基板上形成至少一個台面; 直接在該至少一個台面之至少一頂部上沈積一微透鏡材料層,其中該微透鏡材料層覆蓋該至少一個台面之頂部且該微透鏡材料之頂部表面係平坦的;及 自頂部向下將該微透鏡材料層圖案化,藉此在不貫穿該微透鏡材料層之情況下在該微透鏡材料層中形成至少一半球,其中該半球放置於該至少一個台面上面。 A method of manufacturing a light-emitting pixel unit, comprising: providing a substrate; forming at least one mesa on the substrate; depositing a layer of microlens material directly on at least a top of the at least one mesa, wherein the layer of microlens material covers the top of the at least one mesa and the top surface of the microlens material is flat; and The layer of microlens material is patterned from the top down, thereby forming at least a hemisphere in the layer of microlens material without penetrating the layer of microlens material, wherein the hemisphere is placed over the at least one mesa. 如請求項17之製造一發光像素單元之方法,其中藉由旋塗沈積該微透鏡材料層。A method of fabricating a light-emitting pixel unit as claimed in claim 17, wherein the layer of microlens material is deposited by spin coating. 如請求項17之製造一發光像素單元之方法,其進一步包括: 在形成該至少一個台面之後且在沈積該微透鏡材料層之前,在該圖案化工藝中形成具有用於對準至該微透鏡材料層之標記之一標記層。The method of fabricating a light-emitting pixel unit of claim 17, further comprising: after forming the at least one mesa and before depositing the layer of microlens material, forming in the patterning process a method for aligning to the microlens A marking layer of the marking of the material layer. 如請求項17之製造一發光像素單元之方法,其進一步包括: 在將該微透鏡材料層圖案化之後,將該微透鏡材料層圖案化以暴露該基板之一電極區。The method of manufacturing a light-emitting pixel unit of claim 17, further comprising: after patterning the microlens material layer, patterning the microlens material layer to expose an electrode region of the substrate. 如請求項17之製造一發光像素單元之方法,其進一步包含: 在該微透鏡材料層之表面上沈積一遮罩層; 將該遮罩層圖案化以在該遮罩層中形成一半球圖案;及 使用該半球圖案作為一遮罩,蝕刻該微透鏡材料層以在該微透鏡材料層中形成半球。 The method for manufacturing a light-emitting pixel unit of claim 17, further comprising: depositing a mask layer on the surface of the microlens material layer; patterning the mask layer to form a hemispherical pattern in the mask layer; and Using the hemisphere pattern as a mask, the layer of microlens material is etched to form hemispheres in the layer of microlens material. 如請求項21之製造一發光像素單元之方法,其中在蝕刻該微透鏡材料層之後,並未蝕穿該微透鏡材料層來暴露該至少一個台面之頂部表面,藉此在該至少一個台面之該頂部上形成一間隔件。The method of manufacturing a light-emitting pixel unit of claim 21, wherein after etching the layer of microlens material, the top surface of the at least one mesa is not etched through the layer of microlens material, whereby the top surface of the at least one mesa is not etched through. A spacer is formed on the top. 如請求項21之製造一發光像素單元之方法,其中首先藉由一光微影工藝且然後藉由一回流工藝將該遮罩層圖案化。The method of manufacturing a light-emitting pixel unit of claim 21, wherein the mask layer is patterned first by a photolithography process and then by a reflow process.
TW109146098A 2020-12-24 2020-12-24 Systems and fabrication methods for display panels with integrated micro-lens array TW202226636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109146098A TW202226636A (en) 2020-12-24 2020-12-24 Systems and fabrication methods for display panels with integrated micro-lens array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109146098A TW202226636A (en) 2020-12-24 2020-12-24 Systems and fabrication methods for display panels with integrated micro-lens array

Publications (1)

Publication Number Publication Date
TW202226636A true TW202226636A (en) 2022-07-01

Family

ID=83436805

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109146098A TW202226636A (en) 2020-12-24 2020-12-24 Systems and fabrication methods for display panels with integrated micro-lens array

Country Status (1)

Country Link
TW (1) TW202226636A (en)

Similar Documents

Publication Publication Date Title
US12074151B2 (en) Systems and methods for multi-color LED pixel unit with vertical light emission
US20220344313A1 (en) Systems and Methods for Multi-Color LED Pixel Unit
US11782191B2 (en) Systems and fabrication methods for display panels with integrated micro-lens array
US9977152B2 (en) Display panels with integrated micro lens array
US11967589B2 (en) Systems and methods for multi-color LED pixel unit with horizontal light emission
KR102473326B1 (en) A colour iled display on silicon
US12038590B2 (en) Display panels with an integrated off-axis micro-lens array
TW202226636A (en) Systems and fabrication methods for display panels with integrated micro-lens array
US20230307591A1 (en) Systems and fabrication methods for display panels with integrated micro-lens array
US20240322104A1 (en) Systems and methods for multi-color led pixel unit with vertical light emission