TW202226609A - Beam-shaping secondary optical components for micro light emitting diodes - Google Patents

Beam-shaping secondary optical components for micro light emitting diodes Download PDF

Info

Publication number
TW202226609A
TW202226609A TW110138153A TW110138153A TW202226609A TW 202226609 A TW202226609 A TW 202226609A TW 110138153 A TW110138153 A TW 110138153A TW 110138153 A TW110138153 A TW 110138153A TW 202226609 A TW202226609 A TW 202226609A
Authority
TW
Taiwan
Prior art keywords
waveguide
light
layer
array
semiconductor die
Prior art date
Application number
TW110138153A
Other languages
Chinese (zh)
Inventor
薩米爾 麥祖阿里
安德莉亞 皮諾斯
Original Assignee
美商菲絲博克科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/154,762 external-priority patent/US20220199871A1/en
Application filed by 美商菲絲博克科技有限公司 filed Critical 美商菲絲博克科技有限公司
Publication of TW202226609A publication Critical patent/TW202226609A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0058Processes relating to semiconductor body packages relating to optical field-shaping elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Led Device Packages (AREA)

Abstract

The invention is directed towards employing semiconductor-based waveguides as secondary optical components that reduce the beam divergence of light generated by LEDs. A lighting source includes a first semiconductor die and a second semiconductor die. The first semiconductor die includes an LED. The second semiconductor die is bonded to the first semiconductor device and includes a crystalline waveguide having a first waveguide surface, a second waveguide surface, and a waveguide body. The first waveguide surface receives light from the LED. The waveguide body is comprised of a crystalline material that transmits the received light from the first waveguide surface to the second waveguide surface. The second waveguide surface emits the received portion of the light with a second beam divergence that is significantly less than the first beam divergence.

Description

用於微發光二極體的光束整形二次光學組件Beam-Shaping Secondary Optical Assemblies for Micro-Light Emitting Diodes

本發明相關於用於微發光二極體的光束整形二次光學組件。 <相關申請案之交叉參考> The present invention relates to beam shaping secondary optical assemblies for micro light emitting diodes. <Cross-reference to related applications>

本申請案主張2020年12月21日申請之題為「用於微發光二極體的光束整形二次光學組件(BEAM-SHAPING SECONDARY OPTICAL COMPONENTS FOR MICRO LIGHT EMITTING DIODES)」的美國臨時申請案第63/128,582號及2021年1月21日申請之美國非臨時申請案第17/154,762號的權益,該等申請案之全部內容以引用之方式併入本文中。This application claims US Provisional Application No. 63, filed on December 21, 2020, and entitled "BEAM-SHAPING SECONDARY OPTICAL COMPONENTS FOR MICRO LIGHT EMITTING DIODES" /128,582 and the benefit of US Non-Provisional Application No. 17/154,762, filed January 21, 2021, the entire contents of which are incorporated herein by reference.

發光二極體(light emitting diode;LED)將電能轉換成光能,且提供優於其他光源之許多益處,諸如減小之大小、改善之耐久性及提高之效率。LED可用作許多顯示系統中之光源,該等顯示系統諸如為電視、電腦監視器、膝上型電腦、平板電腦、智慧型手機、投影系統及可穿戴式電子裝置。已開始開發基於III族氮化物半導體(諸如,AlN、GaN、InN、AlGaInP之合金、其他四級磷組成物及其類似物)之微LED(micro-LED;「μLED」)以用於各種顯示器應用,此歸因於其小的大小(例如,具有小於100 μm、小於50 μm、小於10 μm或小於5 μm之線性尺寸)、高裝填密度(及因此較高解析度)及高亮度。舉例而言,發射不同色彩(例如,紅色、綠色及藍色)之光的微LED可用以形成諸如電視或近眼顯示器系統之顯示系統的子像素。Light emitting diodes (LEDs) convert electrical energy into light energy and offer many benefits over other light sources, such as reduced size, improved durability, and increased efficiency. LEDs can be used as light sources in many display systems, such as televisions, computer monitors, laptops, tablets, smartphones, projection systems, and wearable electronic devices. Development of micro-LEDs (micro-LEDs; "μLEDs") based on III-nitride semiconductors (such as alloys of AlN, GaN, InN, AlGaInP, other quaternary phosphorous compositions, and the like) has begun for various displays applications, due to its small size (eg, having linear dimensions of less than 100 μm, less than 50 μm, less than 10 μm, or less than 5 μm), high packing density (and thus higher resolution), and high brightness. For example, micro-LEDs that emit light of different colors (eg, red, green, and blue) can be used to form sub-pixels in display systems such as televisions or near-eye display systems.

本發明大體上係關於微發光二極體(微LED)。更具體而言,本發明係關於製造及使用結晶波導作為微LED之二次光學件,以使由LED發射之光準直及/或減小該光之光束發散度。波導及LED可組合地用於光源。根據某些具體實例,光源可包括第一半導體晶粒及第二半導體晶粒。第一半導體晶粒可包括第一發光裝置(LED)。第一LED可包括以第一光束發散度將光(在第一LED內產生)發射出第一LED之第一發光表面(light emitting surface;LES)。第二半導體晶粒可接合至第一半導體裝置且可包括第一結晶波導。第一波導可包括第一波導表面、第二波導表面及波導主體。第一波導表面可經組態以自第一LED之第一LES接收在第一LED內產生之光之至少一部分。第二波導表面可經組態為第二LES。波導主體可包含透明結晶材料,該透明結晶材料將由第一波導表面接收到之光透射至第二波導表面。第一波導表面、第二波導表面及波導主體可經組態使得第二波導表面以第二光束發散度將在第一LED內產生之光之所接收部分發射出第一波導。第二光束發散度可顯著小於第一光束發散度。The present invention generally relates to micro light emitting diodes (micro LEDs). More specifically, the present invention relates to the fabrication and use of crystalline waveguides as secondary optics for microLEDs to collimate and/or reduce the beam divergence of the light emitted by the LEDs. Waveguides and LEDs can be used in combination for the light source. According to some embodiments, the light source may include a first semiconductor die and a second semiconductor die. The first semiconductor die may include a first light emitting device (LED). The first LED may include a first light emitting surface (LES) that emits light (generated within the first LED) out of the first LED with a first beam divergence. The second semiconductor die can be bonded to the first semiconductor device and can include the first crystalline waveguide. The first waveguide may include a first waveguide surface, a second waveguide surface, and a waveguide body. The first waveguide surface can be configured to receive at least a portion of the light generated within the first LED from the first LES of the first LED. The second waveguide surface can be configured as a second LES. The waveguide body may comprise a transparent crystalline material that transmits light received by the first waveguide surface to the second waveguide surface. The first waveguide surface, the second waveguide surface, and the waveguide body can be configured such that the second waveguide surface emits the received portion of the light generated within the first LED out of the first waveguide with a second beam divergence. The second beam divergence may be significantly smaller than the first beam divergence.

在一些具體實例中,該光源包括於可穿戴式裝置中,該可穿戴式裝置為穿戴其之使用者產生虛擬實境環境。在其他具體實例中,該光源包括於可穿戴式裝置中,該可穿戴式裝置為穿戴其之使用者產生擴增實境環境。第一LED可為微發光二極體。第一LED之第一LES的空間尺寸可小於10微米。在一些具體實例中,第一波導表面及第二波導表面中之每一者的空間尺寸可小於5微米。第一波導表面可小於第二波導表面。In some embodiments, the light source is included in a wearable device that generates a virtual reality environment for a user wearing it. In other embodiments, the light source is included in a wearable device that generates an augmented reality environment for a user wearing it. The first LED can be a micro light emitting diode. The spatial dimension of the first LES of the first LED may be less than 10 microns. In some embodiments, the spatial dimension of each of the first waveguide surface and the second waveguide surface may be less than 5 microns. The first waveguide surface may be smaller than the second waveguide surface.

透明結晶材料可為生長於半導體基板上之氮化鎵(GaN)。第一波導之光學表面修整中的每一缺陷之每一空間尺寸可小於5奈米(nm)。第一半導體晶粒可包括LED陣列,其包括第一LED。第二半導體晶粒可包括波導陣列,其包括第一波導。LED陣列中之每一LED與波導陣列中之每一波導之間可存在一對一對應。第一LED可唯一地對應於第一波導。The transparent crystalline material may be gallium nitride (GaN) grown on a semiconductor substrate. Each spatial dimension of each defect in the optical resurfacing of the first waveguide may be less than 5 nanometers (nm). The first semiconductor die may include an LED array that includes the first LED. The second semiconductor die may include an array of waveguides that includes the first waveguide. There may be a one-to-one correspondence between each LED in the LED array and each waveguide in the waveguide array. The first LED may uniquely correspond to the first waveguide.

在一些具體實例中,波導陣列可形成於透明結晶材料之連續層上。波導陣列中之每一波導的波導主體可自透明結晶材料之連續層突出。波導陣列中之每一波導的近端表面可包括透明結晶材料之連續層之一部分。波導陣列中之每一波導的遠端表面可自透明結晶材料之連續層位移。In some embodiments, the waveguide array can be formed on a continuous layer of transparent crystalline material. The waveguide body of each waveguide in the waveguide array may protrude from a continuous layer of transparent crystalline material. The proximal surface of each waveguide in the waveguide array may comprise a portion of a continuous layer of transparent crystalline material. The distal surface of each waveguide in the waveguide array can be displaced from a continuous layer of transparent crystalline material.

在其他具體實例中,波導陣列可形成於透明結晶材料之不連續層上。透明結晶材料之不連續層可包括經由蝕刻製程形成之分別的介電層部分之陣列。分別的介電層部分之陣列中的每一介電層部分與波導陣列中之每一波導之間可存在一對一對應。In other embodiments, the waveguide array can be formed on discrete layers of transparent crystalline material. The discontinuous layer of transparent crystalline material may comprise an array of separate dielectric layer portions formed through an etching process. There may be a one-to-one correspondence between each dielectric layer portion in the array of respective dielectric layer portions and each waveguide in the waveguide array.

波導主體可具有錐形形狀,該錐形形狀經特徵界定為與透明結晶材料在半導體基板上之生長製程相關聯的錐角。歸因於結晶生長製程及/或錐形形狀,第一波導表面之第一表面積可小於第二波導表面之第二表面積。波導主體可具有至少部分地藉由經由蝕刻製程自第二半導體晶粒移除透明結晶材料之一部分而形成的台面形狀。The waveguide body may have a tapered shape characterized as a taper angle associated with the growth process of the transparent crystalline material on the semiconductor substrate. Due to the crystal growth process and/or the tapered shape, the first surface area of the first waveguide surface may be smaller than the second surface area of the second waveguide surface. The waveguide body may have a mesa shape formed at least in part by removing a portion of the transparent crystalline material from the second semiconductor die through an etching process.

第一波導可進一步包含囊封波導主體之一部分的反射層。波導主體可經組態以減少與波導主體相關聯之透射損失且減小在第一LED內產生之光的所接收部分之光束發散度。第二半導體晶粒可進一步包括囊封波導主體之至少一部分的第一介電層。第一介電層可覆蓋第一波導表面。第二半導體晶粒可進一步包括第二介電層及透明結晶材料層。第二介電層可覆蓋第二波導表面。透明結晶材料層可插入於第一介電層與第二介電層之間。The first waveguide may further include a reflective layer encapsulating a portion of the waveguide body. The waveguide body can be configured to reduce transmission losses associated with the waveguide body and to reduce the beam divergence of the received portion of the light generated within the first LED. The second semiconductor die may further include a first dielectric layer encapsulating at least a portion of the waveguide body. The first dielectric layer may cover the first waveguide surface. The second semiconductor die may further include a second dielectric layer and a transparent crystalline material layer. The second dielectric layer may cover the second waveguide surface. A layer of transparent crystalline material may be interposed between the first dielectric layer and the second dielectric layer.

第二半導體晶粒可進一步包括不透明的隔板結構。隔板結構可圍繞第二波導表面之周邊之至少一部分而定位且延伸超出第二半導體晶粒之平面。隔板結構之定位可界定延伸超出第二半導體晶粒之平面的柱狀體積。隔板結構可經組態以將由第二波導表面發射且離開第二半導體晶粒之光的透射限制在延伸超出第二半導體晶粒之平面的柱狀體積內。The second semiconductor die may further include an opaque spacer structure. The spacer structure can be positioned around at least a portion of the perimeter of the second waveguide surface and extend beyond the plane of the second semiconductor die. The positioning of the spacer structure can define a columnar volume that extends beyond the plane of the second semiconductor die. The spacer structure can be configured to confine the transmission of light emitted by the second waveguide surface and exiting the second semiconductor die within a columnar volume extending beyond the plane of the second semiconductor die.

在一些具體實例中,第二波導表面可具有至少部分地藉由經由蝕刻製程自第二半導體晶粒移除透明結晶材料之一部分而形成的彎曲形狀,使得第二波導表面之彎曲形狀經組態以減小由第二波導表面發射且離開第二半導體晶粒之光的光束發散度。In some embodiments, the second waveguide surface can have a curved shape formed at least in part by removing a portion of the transparent crystalline material from the second semiconductor die through an etching process, such that the curved shape of the second waveguide surface is configured In order to reduce the beam divergence of the light emitted from the second waveguide surface and leaving the second semiconductor die.

在至少一個具體實例中,第二波導表面之形狀為平坦表面。第二半導體晶粒可包括凸介電透鏡,例如包含介電材料及/或由介電材料製造之凸透鏡。在一些具體實例中,介電材料可包括二氧化矽或包括足夠光折射性質之任何其他介電材料。凸介電透鏡可覆蓋第二波導表面,該凸介電透鏡接收在第一LED內產生且由第二波導表面以第二光束發散度發射之光之部分。凸介電透鏡可以小於第二光束發散度之第三光束發散度發射光之所接收部分。光源可進一步包括透明玻璃基板,該透明玻璃基板接合至第二半導體晶粒且覆蓋第二波導表面。第二半導體晶粒可插入於第一半導體晶粒與玻璃基板之間。In at least one embodiment, the shape of the second waveguide surface is a flat surface. The second semiconductor die may include a convex dielectric lens, eg, a convex lens including and/or fabricated from a dielectric material. In some embodiments, the dielectric material may include silicon dioxide or any other dielectric material that includes sufficient photorefractive properties. The second waveguide surface may be covered by a convex dielectric lens that receives a portion of the light generated within the first LED and emitted by the second waveguide surface with the second beam divergence. The convex dielectric lens may emit a received portion of light with a third beam divergence that is smaller than the second beam divergence. The light source may further include a transparent glass substrate bonded to the second semiconductor die and covering the second waveguide surface. The second semiconductor die may be inserted between the first semiconductor die and the glass substrate.

在一些具體實例中,一種製造光源之方法可包括在定位於第一半導體晶圓上之結晶材料層上生長結晶波導陣列。金屬化層可沈積及/或形成於結晶材料之至少一部分上。金屬化層可提供結晶波導陣列中之每一波導與該波導陣列中之其他波導中之每一者的光學隔離。結晶波導陣列可自第一半導體晶圓實體地移除。波導陣列可接合至發光裝置(LED)之陣列。結晶波導陣列中之每一波導與LED陣列中之每一LED之間可存在一對一對應。結晶波導陣列中之每一波導可經組態以減小自對應LED發射之光的光束發散度。In some embodiments, a method of fabricating a light source can include growing an array of crystalline waveguides on a layer of crystalline material positioned on a first semiconductor wafer. A metallization layer can be deposited and/or formed over at least a portion of the crystalline material. The metallization layer can provide optical isolation of each waveguide in the array of crystalline waveguides from each of the other waveguides in the array of waveguides. The crystalline waveguide array is physically removable from the first semiconductor wafer. The waveguide array can be bonded to an array of light emitting devices (LEDs). There may be a one-to-one correspondence between each waveguide in the crystalline waveguide array and each LED in the LED array. Each waveguide in the array of crystalline waveguides can be configured to reduce the beam divergence of light emitted from the corresponding LED.

用於製造光源之另一方法包括在結晶材料層上生長三維(three-dimensional;3D)結晶結構之陣列。結晶材料層可定位於第一半導體晶圓上。3D結晶結構之陣列可用以製造壓印及/或壓花工具。壓印工具可具有與3D結晶結構之陣列之形狀互補的形狀。在一些具體實例中,壓印工具為軟壓印及/或壓花工具。在其他具體實例中,壓印工具為硬壓印及/或壓花工具。壓印工具可用以形成波導陣列。波導陣列可接合至發光裝置(LED)之陣列以形成光源。波導陣列可經組態以減小自LED陣列發射之光的光束發散度。Another method for fabricating a light source includes growing an array of three-dimensional (3D) crystalline structures on a layer of crystalline material. A layer of crystalline material can be positioned on the first semiconductor wafer. Arrays of 3D crystalline structures can be used to make imprinting and/or embossing tools. The imprinting tool may have a shape complementary to the shape of the array of 3D crystalline structures. In some embodiments, the embossing tool is a soft embossing and/or embossing tool. In other embodiments, the embossing tool is a hard embossing and/or embossing tool. Imprinting tools can be used to form waveguide arrays. An array of waveguides can be bonded to an array of light emitting devices (LEDs) to form a light source. The waveguide array can be configured to reduce the beam divergence of light emitted from the LED array.

此發明內容既不意欲識別所主張主題之關鍵或基本特徵,亦不意欲單獨使用以判定所主張主題之範圍。應參考本發明之整篇說明書之適當部分、任何或所有圖式及每一技術方案來理解該主題。下文將在以下說明書、申請專利範圍及隨附圖式中更詳細地描述前述內容連同其他特徵及實例。This Summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used alone to determine the scope of the claimed subject matter. This subject matter should be understood with reference to appropriate portions of the entire specification, any or all drawings, and each solution of the invention. The foregoing, along with other features and examples, are described in greater detail below in the following specification, scope of claims, and accompanying drawings.

本發明大體上係關於發光二極體(LED)。更具體而言且非限制性地,本文中揭示用於製造及使用基於半導體之光學波導作為用於發光二極體(LED)及/或微LED(μLED)之二次光學組件的技術。The present invention generally relates to light emitting diodes (LEDs). More specifically and without limitation, disclosed herein are techniques for fabricating and using semiconductor-based optical waveguides as secondary optical components for light emitting diodes (LEDs) and/or micro LEDs (μLEDs).

給定其小的大小及質量以及其低功率要求,μLED為各種裝置中之光源的良好候選者,該等裝置諸如但不限於具有基於像素之顯示器的行動裝置及具有頭戴式及/或近眼顯示器之可穿戴式裝置。然而,由μLED產生之光可能無法直接用作一些應用及/或裝置之光源。至少因為由μLED產生之光的角分佈相對較寬及/或分散,所以由μLED產生之光可能過於漫射而無法直接用作需要具有相對較小及/或明確界定之光束點之光的裝置及/或應用之光源。亦即,由μLED產生及發射之光束可能相對發散及/或未準直,使得發散光束不可用作裝置及/或應用中之顯示器的光源。舉例而言,典型的μLED可輻射光束輪廓近似於朗伯餘弦定律之光束。類朗伯光束之強度的角分佈可大致與

Figure 02_image001
成比例,其中θ為如自正交於LED之發光表面(LES)之向量量測的角度。由此等類朗伯LED發射之光束的角分佈(或光束發散度)可特徵界定為大約120°之半高全寬(full width at half maximum;FWHM),(亦即,
Figure 02_image003
)。對於類朗伯光束發散度之實例,參見圖11A之角分佈1108。 Given its small size and mass, and its low power requirements, μLEDs are good candidates for light sources in various devices such as, but not limited to, mobile devices with pixel-based displays and those with head-mounted and/or near-eye Wearable device for display. However, the light generated by μLEDs may not be directly used as a light source for some applications and/or devices. At least because the angular distribution of the light produced by the μLEDs is relatively broad and/or dispersed, the light produced by the μLEDs may be too diffuse for direct use in devices that require light with a relatively small and/or well-defined beam spot and/or applied light source. That is, the light beams generated and emitted by the μLEDs may be relatively divergent and/or misaligned, making the divergent light beams unusable as light sources for displays in devices and/or applications. For example, a typical μLED can radiate a beam with a beam profile that approximates Lambert's cosine law. The angular distribution of the intensity of a Lambertian-like beam can be roughly equal to
Figure 02_image001
is proportional, where θ is the angle as measured from a vector normal to the light emitting surface (LES) of the LED. The angular distribution (or beam divergence) of the beam emitted by such Lambertian-like LEDs can be characterized as a full width at half maximum (FWHM) of approximately 120°, (ie,
Figure 02_image003
). For an example of Lambertian-like beam divergence, see angular distribution 1108 of Figure 11A.

光之朗伯分佈對於許多應用可能過於漫射,該等應用諸如為使用μLED作為顯示器中之一或多個像素之光源的彼等應用。舉例而言,一些應用可能需要LED之光學輸出的相當大部分(例如,光束強度或功率之80%)在具有相對較小張角及/或發射角(例如,20°)之發射錐內。因而,技術人員已考慮使用習知的光束整形技術來使μLED之光束輪廓準直(或減小其光束發散度)。The Lambertian distribution of light can be too diffuse for many applications, such as those using μLEDs as the light source for one or more pixels in a display. For example, some applications may require a substantial portion of the optical output of an LED (eg, 80% of beam intensity or power) to be within an emission cone with a relatively small opening and/or emission angle (eg, 20°). Accordingly, skilled artisans have considered using conventional beam shaping techniques to collimate the beam profile of the μLED (or reduce its beam divergence).

用於由μLED產生之光的此類習知光束整形(例如,光束準直)技術包括使用透鏡(例如,微透鏡)作為用以減小光束之發散度的二次光學組件。然而,習知微透鏡可能無法充分減小光束發散度。因此,甚至在穿過習知微透鏡之後,相對於使用μLED作為光源之各種應用,μLED之光束的相當大一部分仍可分佈在所期望的發射錐之外。習知地,經由對非晶(或非結晶)材料(例如,熔融二氧化矽)執行之壓印及/或壓花製程(例如,奈米壓印微影製程)來製造微透鏡。習知奈米壓印微影可能需要使用昂貴的「硬」壓花工具。除了工具之高昂成本以外,習知地製造之硬壓花工具的表面修整可能不具有足以壓花減小μLED之光束發散度所需的大小之微透鏡的品質。歸因於μLED之發光表面的小表面積,使光束準直所需之微透鏡的表面積可為約幾平方微米。可靠地製造具有實體大小約為幾微米之特徵的硬壓印工具為困難且昂貴的。使光束充分準直及/或減小此微透鏡之光束發散度可能需要透鏡之表面修整上的任何缺陷小於大約5奈米。製造硬工具之習知方法可能無法可靠地產生此類小特徵大小及/或足夠光滑的表面修整。若微透鏡之特徵大小不夠小或若相對較大(例如,>5奈米)之缺陷存在於壓花工具之表面修整中,則微透鏡可能無法充分減小光束發散度。對於許多應用,經由硬壓花工具或其他習知方法製造之微透鏡可能無法充分減小由μLED發射之光的光束發散度。Such conventional beam shaping (eg, beam collimation) techniques for light produced by μLEDs include the use of lenses (eg, microlenses) as secondary optical components to reduce the divergence of the beam. However, conventional microlenses may not sufficiently reduce beam divergence. Thus, even after passing through conventional microlenses, a substantial portion of the light beam of the μLED can be distributed outside the desired emission cone relative to various applications using the μLED as a light source. Conventionally, microlenses are fabricated via imprinting and/or embossing processes (eg, nanoimprint lithography processes) performed on amorphous (or non-crystalline) materials (eg, fused silica). Conventional nanoimprint lithography may require the use of expensive "hard" embossing tools. In addition to the high cost of the tool, the surface finish of conventionally manufactured hard embossing tools may not be of sufficient quality to emboss microlenses of the size required to reduce the beam divergence of the μLED. Due to the small surface area of the light emitting surface of the μLED, the surface area of the microlenses required to collimate the beam can be on the order of a few square microns. It is difficult and expensive to reliably manufacture hard imprint tools with features on the order of a few microns in size. Adequately collimating the beam and/or reducing the beam divergence of this microlens may require any imperfections in the surface finish of the lens to be less than about 5 nm. Conventional methods of making hard tools may not be able to reliably produce such small feature sizes and/or sufficiently smooth surface finishes. If the feature size of the microlens is not small enough or if relatively large (eg, >5 nm) defects are present in the surface modification of the embossing tool, the microlens may not adequately reduce beam divergence. For many applications, microlenses fabricated via hard embossing tools or other conventional methods may not adequately reduce the beam divergence of the light emitted by the μLEDs.

因而且相比習知基於微透鏡之方法,本文中之各種具體實例係有關於製造及使用基於半導體之波導作為二次光學組件,以減小由LED及μLED產生之光的光束發散度。舉例而言,光束整形二次光學組件(例如,本文中所論述之波導中之任一者)可用以對由μLED產生之光的光束輪廓進行整形(例如,減小光束發散度)。因此,光束整形光學元件可用以在需要良好準直光及/或較小漫射光學強度及/或功率分佈之應用中使用μLED。Thus, and compared to conventional microlens-based approaches, various embodiments herein relate to the fabrication and use of semiconductor-based waveguides as secondary optical components to reduce the beam divergence of light produced by LEDs and μLEDs. For example, beam shaping secondary optics (eg, any of the waveguides discussed herein) can be used to shape the beam profile (eg, reduce beam divergence) of light produced by the μLED. Thus, beam shaping optics can be used to use μLEDs in applications that require well-collimated light and/or less diffuse optical intensity and/or power distribution.

更具體而言,在各種具體實例中,使用基於半導體之非習知且新穎的波導結構(例如,由結晶半導體材料製造之增強波導)作為用於μLED之二次光學組件。基於半導體之波導用以使由LED及/或μLED產生之光準直及/或減小該光之光束發散度。減小光束發散度可充分增加LED之光束的光學功率密度,以在需要高度準直光及/或嚴格控制光束輪廓(例如,具有相對較小發散度及/或明確界定之光束點的光束)之各種應用中使用LED。本文中描述各種發明具體實例,該等具體實例係有關於製造及利用基於半導體之波導作為用於LED之二次光學組件。各種具體實例包括裝置、系統、方法、材料、壓印/壓花工具及其類似者。More specifically, in various embodiments, non-known and novel semiconductor-based waveguide structures (eg, enhanced waveguides fabricated from crystalline semiconductor materials) are used as secondary optical components for μLEDs. Semiconductor-based waveguides are used to collimate and/or reduce the beam divergence of light generated by LEDs and/or μLEDs. Reducing the beam divergence can substantially increase the optical power density of the LED's beam to require highly collimated light and/or tightly controlled beam profiles (eg, beams with relatively small divergence and/or well-defined beam spots) LEDs are used in various applications. Various inventive embodiments are described herein pertaining to the fabrication and utilization of semiconductor-based waveguides as secondary optical components for LEDs. Various specific examples include devices, systems, methods, materials, embossing/embossing tools, and the like.

在一些具體實例中,μLED可發射光束,該光束經特徵界定為第一光束發散度(例如,參見圖11A,其示出具有大約120°之FWHM的類朗伯光束)。當使用增強波導作為用於LED之二次光學組件,該光束(在穿過波導之後)可特徵界定為顯著小於第一光束發散度之第二光束發散度。舉例而言,第二光束發散度可使得大約80%的光束功率或強度被限制在大約20°之發射錐內。在不使用增強波導之情況下,僅大約11%的第一光束發散將處於此發射錐內。對於經由作為二次光學組件之波導減小光束發散度的實例,參見圖11C之角分佈1160。經由第一光束發散度(例如,圖11A之角分佈1108)與第二光束發散度(例如,圖11C之角分佈1160)之間的視覺比較來表明光束發散度之顯著減小。在光學耦合效率(μLED與波導之間)為大約70%之情況下,使用波導可導致透射增益超過在使用不具有波導之μLED的情況下之透射增益的至少5倍。舉例而言,如上文所提及,在波導不存在之情況下,大約11%的光被限制在20°之發射錐內,而在使用波導之情況下,總效率(在所期望的發射錐內)為大約

Figure 02_image005
。 In some embodiments, the μLED can emit a beam characterized by a first beam divergence (see, eg, FIG. 11A , which shows a Lambertian-like beam with a FWHM of about 120°). When using an enhanced waveguide as a secondary optical component for an LED, the beam (after passing through the waveguide) can be characterized as a second beam divergence that is significantly smaller than the first beam divergence. For example, the second beam divergence may be such that about 80% of the beam power or intensity is confined within an emission cone of about 20°. Without the use of enhanced waveguides, only about 11% of the first beam divergence would be within this emission cone. For an example of reducing beam divergence via a waveguide as a secondary optical component, see angular profile 1160 of Figure 11C. The significant reduction in beam divergence is indicated by a visual comparison between the first beam divergence (eg, angular profile 1108 of FIG. 11A ) and the second beam divergence (eg, angular profile 1160 of FIG. 11C ). With an optical coupling efficiency (between the μLED and the waveguide) of about 70%, the use of a waveguide can result in a transmission gain that is at least 5 times greater than the transmission gain using a μLED without a waveguide. For example, as mentioned above, without the waveguide, about 11% of the light is confined within the 20° emission cone, while with the waveguide, the overall efficiency (at the desired emission cone within) is approximately
Figure 02_image005
.

在各種具體實例中,波導結構可由諸如但不限於氮化鎵(GaN)之半導體材料製造。為了製造波導,半導體材料層可沈積於半導體基板(例如,半導體晶圓)上,該半導體基板由分別的半導體材料形成。波導結構之半導體材料可為生長結晶結構之材料。經由晶體生長,結晶結構可生長於所沈積之半導體材料層上。在結晶形式中,半導體材料對於由μLED發射之光的頻率可相對透明。歸因於結晶材料之光學性質(例如,其相對於結晶材料外之折射率的折射率),結晶結構可充分限制及透射所接收且充當μLED之頻率特性的波導。In various embodiments, the waveguide structures may be fabricated from semiconductor materials such as, but not limited to, gallium nitride (GaN). To fabricate the waveguide, layers of semiconductor material may be deposited on a semiconductor substrate (eg, a semiconductor wafer) formed from the respective semiconductor materials. The semiconductor material of the waveguide structure may be the material from which the crystalline structure is grown. Through crystal growth, a crystalline structure can grow on the deposited layer of semiconductor material. In crystalline form, the semiconductor material can be relatively transparent to the frequencies of light emitted by the μLED. Due to the optical properties of the crystalline material (eg, its index of refraction relative to the index of refraction outside the crystalline material), the crystalline structure can sufficiently confine and transmit the waveguide that is received and serves as the frequency characteristic of the μLED.

亦即,歸因於波導之光學性質及形狀,波導之側壁表面(例如,波導主體之通常與光束透射方向對準的彼等表面)可為波導內之光提供顯著內部反射。此外,由於在半導體基板上生長結晶結構之性質,波導結構可包括錐形形狀。至少歸因於錐形形狀(歸因於生長結晶結構之製程而產生),波導結構可用以減小所接收光之光束發散度以及增加波導側壁之內部反射。因此,波導結構可充當對所接收光束進行整形的聚焦及/或準直波導。此外,可至少形成(例如,經由蝕刻製程)波導之射出表面(例如,在光穿過波導主體之後發射光束的波導表面)之形狀,以包括進一步增加波導之聚焦及/或準直功率的透鏡(或光束整形)效應。舉例而言,波導之出射表面可經蝕刻及/或拋光成形狀類似於球面及/或凸透鏡的表面。That is, due to the optical properties and shape of the waveguide, the sidewall surfaces of the waveguide (eg, those surfaces of the waveguide body that are generally aligned with the beam transmission direction) can provide significant internal reflection of light within the waveguide. Furthermore, due to the nature of growing crystalline structures on semiconductor substrates, the waveguide structures may include tapered shapes. At least due to the tapered shape (created due to the process of growing the crystalline structure), the waveguide structure can be used to reduce the beam divergence of the received light and increase the internal reflection of the waveguide sidewalls. Thus, the waveguide structure can act as a focusing and/or collimating waveguide that shapes the received beam. In addition, at least the exit surface of the waveguide (eg, the surface of the waveguide that emits light after passing through the body of the waveguide) can be shaped (eg, via an etching process) to include lenses that further increase the focusing and/or collimating power of the waveguide (or beam shaping) effect. For example, the exit surface of the waveguide can be etched and/or polished to a surface shaped like a spherical and/or convex lens.

在一些具體實例中,一或多個μLED(例如,μLED之1D或2D陣列)或另一此類發光裝置之陣列可製造於第一半導體晶粒上及/或接合至第一半導體晶粒。一或多個波導(波導之對應1D或2D陣列)可製造於第二半導體晶粒上。第一半導體晶粒及第二半導體晶粒可經接合,使得每一μLED與對應波導對準(例如,在μLED與各別半導體晶粒之波導之間存在一對一對應)。LED陣列中之LED可包括發光表面(LES),該發光表面發射在LED之作用區內產生的光之至少一部分。由LED之LES發射的光可具有如藉由光束之角分佈所量測的第一光束發散度。舉例而言,第一光束發散度可為類朗伯的且特徵界定為具有大約120°之FWHM。In some embodiments, one or more μLEDs (eg, a 1D or 2D array of μLEDs) or an array of another such light emitting device can be fabricated on and/or bonded to the first semiconductor die. One or more waveguides (corresponding 1D or 2D arrays of waveguides) can be fabricated on the second semiconductor die. The first semiconductor die and the second semiconductor die may be bonded such that each μLED is aligned with a corresponding waveguide (eg, there is a one-to-one correspondence between the μLED and the waveguide of the respective semiconductor die). The LEDs in the LED array may include light emitting surfaces (LES) that emit at least a portion of the light generated within the active area of the LEDs. The light emitted by the LES of the LED may have a first beam divergence as measured by the angular distribution of the beam. For example, the first beam divergence may be Lambertian-like and characterized as having a FWHM of about 120°.

當接合第一半導體晶粒及第二半導體晶粒時,該等晶粒可對準使得LED陣列中之每一LED與波導陣列中之其對應波導對準。波導可包括第一波導表面、第二波導表面及波導主體,以及主體之側壁。第一波導表面可與LED之LES接近對準,使得第一波導表面接收由LED之LES發射的光,例如,LED之光入射於第一波導表面上且進入由波導主體界定之空間體積。在一些具體實例中,第一波導表面通常為平坦表面。光束透射之方向通常可能與第一波導表面之平面正交。因此,第一波導表面可經組態為光接收表面,該光接收表面充當LED之光或入射於第一波導表面上之其他光的入口(至由波導主體界定之空間體積中)。由波導主體界定之空間體積可填充有結晶材料。歸因於波導之顯著內部反射,結晶材料(及因此波導主體)可將所接收光之至少大部分自第一波導表面透射至第二波導表面,例如波導主體存在極少光吸收或光洩漏。When bonding the first semiconductor die and the second semiconductor die, the dies can be aligned such that each LED in the LED array is aligned with its corresponding waveguide in the waveguide array. The waveguide may include a first waveguide surface, a second waveguide surface, and a waveguide body, and sidewalls of the body. The first waveguide surface can be closely aligned with the LES of the LED such that the first waveguide surface receives light emitted by the LES of the LED, eg, the light of the LED is incident on the first waveguide surface and into the volume of space defined by the waveguide body. In some embodiments, the first waveguide surface is generally a flat surface. The direction of light beam transmission may generally be normal to the plane of the first waveguide surface. Thus, the first waveguide surface can be configured as a light receiving surface that acts as an entrance (into the volume of space defined by the waveguide body) for the light of the LED or other light incident on the first waveguide surface. The volume of space defined by the waveguide body may be filled with crystalline material. The crystalline material (and thus the waveguide body) can transmit at least a substantial portion of the received light from the first waveguide surface to the second waveguide surface due to the significant internal reflection of the waveguide, eg there is little light absorption or light leakage from the waveguide body.

第二波導表面可經組態以將光(例如,經由波導主體自第一波導表面透射至第二波導表面之光)發射出波導主體且發射至波導之周圍環境中。亦即,第二波導表面可經組態為波導之光射出表面及/或發光表面。波導主體之形狀及/或第二波導表面之形狀可用以使光束顯著準直及/或顯著減小光束發散度。此外,歸因於波導之光學透射效率(例如,波導之光學透明度)及其顯著光學內部反射特性,當光束之角發散度經由其穿過波導而減小時,光束經歷較小光學功率損失。The second waveguide surface can be configured to emit light (eg, light transmitted from the first waveguide surface to the second waveguide surface through the waveguide body) out of the waveguide body and into the surrounding environment of the waveguide. That is, the second waveguide surface can be configured as the light exit surface and/or the light emitting surface of the waveguide. The shape of the waveguide body and/or the shape of the second waveguide surface can be used to significantly collimate the beam and/or significantly reduce the beam divergence. Furthermore, due to the optical transmission efficiency of the waveguide (eg, the optical transparency of the waveguide) and its significant optical internal reflection properties, the light beam experiences less optical power loss as the angular divergence of the light beam is reduced through it passing through the waveguide.

如上文所提及,光束可經由第一波導表面以第一光束發散度進入波導。光束可經由第二波導表面以顯著小於第一光束發散度之第二光束發散度射出波導。舉例而言,第一光束發散度可特徵界定為大約120°之FWHM。第二光束發散度可經特徵界定使得大約80%的光束含於具有大約20°之張角的發射錐內。因此,波導可充當使LED之光準直或至少顯著減小該光之光束發散度的二次光學組件。As mentioned above, the light beam can enter the waveguide with a first beam divergence via the first waveguide surface. The light beam can exit the waveguide via the second waveguide surface with a second beam divergence that is significantly smaller than the first beam divergence. For example, the first beam divergence may be characterized as a FWHM of about 120°. The second beam divergence may be characterized such that approximately 80% of the beam is contained within the emission cone having an opening angle of approximately 20°. Thus, the waveguide can act as a secondary optical component that collimates or at least significantly reduces the beam divergence of the light from the LED.

一些具體實例可為「高填充因子」具體實例,其中波導主體之縱橫比增加。增加的縱橫比可提高波導之準直及/或發散度減小能力。各種具體實例可包括「隔板」結構,該結構光學隔離鄰近波導且仍提供波導之較大準直及/或發散度減小能力。另外及/或替代地,另外其他具體實例包括充當波導之二次光學組件(或LED之三次光學組件)的介電「透鏡」結構。此類介電透鏡結構可提供波導之甚至更大的準直及/或發散度減小能力。一些具體實例包括使用結晶波導生長製程來製造呈波導陣列形式之「軟」或「硬」壓印或壓花工具。此類壓印工具可用以在其他材料中製造類似形狀之波導結構。因此,本文中所論述之波導可經由其他方法(例如,壓印或壓花)及/或其他波導材料製造。Some embodiments may be "high fill factor" embodiments, where the aspect ratio of the waveguide body is increased. The increased aspect ratio can improve the collimation and/or divergence reduction capabilities of the waveguide. Various embodiments may include "spacer" structures that optically isolate adjacent waveguides and still provide greater collimation and/or divergence reduction capabilities of the waveguides. Additionally and/or alternatively, yet other specific examples include dielectric "lens" structures that act as a secondary optical component of a waveguide (or a tertiary optical component of an LED). Such dielectric lens structures can provide even greater collimation and/or divergence reduction capabilities of the waveguide. Some specific examples include the use of crystalline waveguide growth processes to fabricate "soft" or "hard" imprinting or embossing tools in the form of waveguide arrays. Such imprinting tools can be used to fabricate similarly shaped waveguide structures in other materials. Accordingly, the waveguides discussed herein can be fabricated via other methods (eg, embossing or embossing) and/or other waveguide materials.

相比使用用以聚焦來自LED之光的習知微透鏡,使用波導作為二次光學組件來減小由LED發射之光之光束發散度具有若干優點。對於習知微透鏡可能無法充分減小光束發散度之許多應用,增強波導之光束整形性質可顯著減小光束發散度且使得能夠用於應用中。因此,當用作用於μLED之二次光學組件時,本文中所論述之波導可使得能夠在微透鏡作為光束準直儀可能有缺陷之應用中使用μLED。亦即,μLED之光束在穿過波導之後的發散度可足夠小以用於各種應用中,其中基於微透鏡之習知方法無法充分減小光束發散度。因此,μLED與增強波導之組合可在需要相對較低光束發散度之光束之許多應用中用作光源。Using a waveguide as a secondary optical component to reduce the beam divergence of the light emitted by the LED has several advantages over the use of conventional microlenses for focusing the light from the LED. For many applications where conventional microlenses may not adequately reduce beam divergence, enhancing the beam shaping properties of the waveguide can significantly reduce beam divergence and enable use in the application. Thus, when used as secondary optical components for μLEDs, the waveguides discussed herein may enable the use of μLEDs in applications where microlenses may be deficient as beam collimators. That is, the divergence of the beam of the μLED after passing through the waveguide can be sufficiently small to be used in various applications where conventional methods based on microlenses cannot sufficiently reduce the beam divergence. Thus, the combination of μLEDs and enhanced waveguides can be used as a light source in many applications where a beam of relatively low beam divergence is required.

如上文所提及,製造習知微透鏡可能需要使用相對昂貴的「硬」壓印或壓花工具。相比基於壓花之製造,經由半導體製造製程形成本文中所論述之波導。此類製程包括但不限於在晶圓上生長波導之結晶結構;在晶圓之部分上沈積氧化物及/或金屬化層(例如,經由微影製程);及蝕刻晶圓及/或波導之表面(例如,經由蝕刻製程)。此類半導體製程不需要昂貴的壓印工具。如上文所提及,習知壓印工具之表面可能不夠光滑而無法精確且均勻地壓印具有大約幾微米之特徵大小的微透鏡。舉例而言,壓印工具之壓印表面上的缺陷可大於5 nm,且對於一些應用,所得微透鏡可能無法使光充分準直。亦即,習知壓印工具中之表面缺陷可能導致微透鏡提供待準直之光束的顯著散射及/或分散。因此,相較於使用微透鏡,本文中所論述之各種波導具體實例可提供顯著更多的準直及/或光束發散度減小。As mentioned above, manufacturing conventional microlenses may require the use of relatively expensive "hard" imprinting or embossing tools. In contrast to embossing-based fabrication, the waveguides discussed herein are formed through a semiconductor fabrication process. Such processes include, but are not limited to, growing the crystalline structure of the waveguide on the wafer; depositing oxide and/or metallization layers on portions of the wafer (eg, via a lithography process); and etching the wafer and/or the waveguides. surface (eg, via an etch process). Such semiconductor processes do not require expensive imprinting tools. As mentioned above, the surfaces of conventional imprinting tools may not be smooth enough to accurately and uniformly imprint microlenses with feature sizes on the order of a few microns. For example, defects on the imprint surface of the imprint tool may be larger than 5 nm, and for some applications, the resulting microlenses may not adequately collimate light. That is, surface defects in conventional imprinting tools can cause the microlenses to provide significant scattering and/or dispersion of the light beam to be collimated. Thus, the various waveguide embodiments discussed herein can provide significantly more collimation and/or beam divergence reduction than using microlenses.

替代使用昂貴及/或不夠「光滑」(例如,不含大於特徵大小臨限值之表面缺陷)的壓印工具,製造本文中所論述之波導包括生長包含波導之結晶主體的結晶結構。結晶生長製程可使得生長於晶圓(例如,半導體基板)上之結晶結構在整個晶圓上極其均勻(在形狀及晶體結構上)。如上文所提及,波導主體可包括錐形形狀(例如,截角錐及/或台面結構),其中歸因於晶體生長製程,整個晶圓上之波導的錐形形狀極其均勻。波導之精確形狀及均勻性可導致精確且均勻的光學性質,從而導致跨越晶圓製造之波導的光束發散度顯著且均勻地減小。相較於使用習知微透鏡來使LED之光束準直,使用波導作為二次光學組件之具體實例可提供光束發散度之顯著更多減小,且製造成本可顯著更便宜。Instead of using imprinting tools that are expensive and/or not sufficiently "smooth" (eg, free of surface defects greater than a feature size threshold), fabricating the waveguides discussed herein involves growing a crystalline structure comprising a crystalline host of the waveguide. The crystal growth process can result in crystal structures grown on a wafer (eg, a semiconductor substrate) that are extremely uniform (in shape and crystal structure) across the wafer. As mentioned above, the waveguide body may include a tapered shape (eg, a truncated pyramid and/or a mesa structure), where the tapered shape of the waveguide is extremely uniform across the wafer due to the crystal growth process. The precise shape and uniformity of the waveguides can result in precise and uniform optical properties, resulting in a significant and uniform reduction in beam divergence across wafer-fabricated waveguides. The use of a waveguide as an example of a secondary optical component can provide significantly more reduction in beam divergence, and can be significantly cheaper to manufacture, than using conventional microlenses to collimate the LED's beam.

本文中所描述之微LED及波導可結合諸如人工實境系統之各種技術來使用。諸如頭戴式顯示器(HMD)或抬頭顯示器(heads-up display;HUD)系統之人工實境系統通常包括經組態以呈現描繪虛擬環境中之物件之人工影像的顯示器。顯示器可呈現虛擬物件或將真實物件之影像與虛擬物件組合,如在虛擬實境(virtual reality;VR)、擴增實境(augmented reality;AR)或混合實境(mixed reality;MR)應用中。舉例而言,在AR系統中,使用者可藉由例如透視透明顯示眼鏡或透鏡(常常被稱作光學透視)或觀看由攝影機俘獲的周圍環境之所顯示影像(常常被稱作視訊透視)來觀看虛擬物件之所顯示影像(例如,電腦產生影像(computer-generated image;CGI))及周圍環境之所顯示影像兩者。在一些AR系統中,可使用基於LED之顯示子系統來向使用者呈現人工影像。The microLEDs and waveguides described herein can be used in conjunction with various technologies such as artificial reality systems. Artificial reality systems, such as head mounted display (HMD) or heads-up display (HUD) systems, typically include displays configured to present artificial images depicting objects in a virtual environment. Displays can present virtual objects or combine images of real objects with virtual objects, such as in virtual reality (VR), augmented reality (AR), or mixed reality (MR) applications . In AR systems, for example, a user can see through, for example, see-through transparent display glasses or lenses (often called optical see-through) or by viewing a displayed image of the surrounding environment captured by a camera (often called video see-through). View both the displayed image of the virtual object (eg, computer-generated image (CGI)) and the displayed image of the surrounding environment. In some AR systems, an LED-based display subsystem may be used to present artificial images to the user.

如本文中所使用,術語「發光二極體(LED)」係指至少包括n型半導體層、p型半導體層及n型半導體層與p型半導體層之間的發光區(亦即,作用區)的光源。發光區可包括形成諸如量子井之一或多個異質結構的一或多個半導體層。在一些具體實例中,發光區可包括形成一或多個多量子井(multiple-quantum-well;MQW)之多個半導體層,該一或多個多量子井各自包括多個(例如,約2至6個)量子井。As used herein, the term "light emitting diode (LED)" refers to at least an n-type semiconductor layer, a p-type semiconductor layer, and a light-emitting region (ie, an active region) between the n-type semiconductor layer and the p-type semiconductor layer. ) of the light source. The light emitting region may include one or more semiconductor layers forming one or more heterostructures such as quantum wells. In some embodiments, the light emitting region may include multiple semiconductor layers forming one or more multiple-quantum-wells (MQWs), each of the one or more multiple-quantum wells including multiple (eg, about 2 to 6) quantum wells.

如本文中所使用,術語「微LED」或「μLED」係指具有晶片之LED,其中該晶片之線性尺寸小於約200 μm,諸如小於100 μm,小於50 μm,小於20 μm,小於10 μm或更小。舉例而言,微LED之線性尺寸可小至6 μm、5 μm、4 μm、2 μm或更小。一些微LED可具有與少數載子擴散長度相當的線性尺寸(例如,長度或直徑)。然而,本文中之揭示內容不限於微LED,且亦可應用於小型LED及大型LED。As used herein, the term "micro LED" or "μLED" refers to an LED having a chip with a linear dimension of less than about 200 μm, such as less than 100 μm, less than 50 μm, less than 20 μm, less than 10 μm or smaller. For example, the linear dimensions of microLEDs can be as small as 6 μm, 5 μm, 4 μm, 2 μm or less. Some microLEDs may have linear dimensions (eg, length or diameter) comparable to the minority carrier diffusion length. However, the disclosures herein are not limited to micro LEDs, and can also be applied to small and large LEDs.

如本文中所使用,術語「接合」可指用於實體地及/或電連接兩個或多於兩個裝置及/或晶圓之各種方法,諸如黏接、金屬間接合、金屬氧化物接合、晶圓間接合、晶粒至晶圓接合、混合接合、焊接、凸塊下金屬化及其類似者。舉例而言,黏接可使用可固化黏著劑(例如,環氧樹脂)以經由黏著來實體地接合兩個或多於兩個裝置及/或晶圓。金屬間接合可包括例如在金屬之間使用焊接界面(例如,墊或球)、導電黏著劑或熔接接頭之線接合或覆晶接合。金屬氧化物接合可在每一表面上形成金屬及氧化物圖案,將氧化物區段接合在一起,且接著將金屬區段接合在一起以產生導電路徑。晶圓間接合可接合兩個晶圓(例如,矽晶圓或其他半導體晶圓)而無任何中間層,且係基於兩個晶圓之表面之間的化學鍵。晶圓間接合可包括晶圓清潔及其他預處理、在室溫下之對準及預接合,以及在諸如約250℃或更高之高溫下的退火。晶粒至晶圓接合可使用一個晶圓上之凸塊以將預成型晶片之特徵與晶圓之驅動器對準。混合接合可包括例如晶圓清潔、一個晶圓之接點與另一晶圓之接點的高精度對準、晶圓內之介電材料在室溫下的介電接合,及藉由在例如250℃至300℃或更高溫度下退火而進行的接點之金屬接合。如本文中所使用,術語「凸塊」通常可指在接合期間使用或形成之金屬互連件。As used herein, the term "bonding" may refer to various methods used to physically and/or electrically connect two or more devices and/or wafers, such as bonding, metal-to-metal bonding, metal-oxide bonding , wafer-to-wafer bonding, die-to-wafer bonding, hybrid bonding, soldering, under bump metallization, and the like. For example, bonding may use a curable adhesive (eg, epoxy) to physically bond two or more devices and/or wafers through adhesion. Metal-to-metal bonding may include, for example, wire bonding or flip-chip bonding between metals using solder interfaces (eg, pads or balls), conductive adhesives, or welded joints. Metal oxide bonding can form metal and oxide patterns on each surface, bond the oxide segments together, and then bond the metal segments together to create conductive paths. Wafer-to-wafer bonding can bond two wafers (eg, silicon wafers or other semiconductor wafers) without any intermediate layers and is based on chemical bonds between the surfaces of the two wafers. Wafer-to-wafer bonding can include wafer cleaning and other pretreatments, alignment and pre-bonding at room temperature, and annealing at elevated temperatures, such as about 250° C. or higher. Die-to-wafer bonding can use bumps on a wafer to align the features of the preformed chip with the drivers of the wafer. Hybrid bonding may include, for example, wafer cleaning, high precision alignment of contacts on one wafer to contacts on another wafer, dielectric bonding of dielectric materials within a wafer at room temperature, and Metal bonding of contacts by annealing at 250°C to 300°C or higher. As used herein, the term "bump" may generally refer to metal interconnects used or formed during bonding.

在以下描述中,出於解釋之目的,闡述特定細節以便提供對本發明之實例的透徹理解。然而,各種實例可在無此等特定細節之情況下實踐將為顯而易見的。舉例而言,裝置、系統、結構、總成、方法及其他組件可以方塊圖形式展示為組件,以免以不必要的細節混淆實例。在其他情況下,可在無必要細節之情況下展示熟知的裝置、製程、系統、結構及技術,以免混淆實例。諸圖及描述並不意欲為限制性的。已在本發明中使用之術語及表述用作描述之術語且不為限制性的,且在使用此類術語及表述時,不欲排除所展示及描述之特徵或其部分的任何等效物。詞「實例」在本文中用以意謂「充當實例、例項或說明」。不必將本文中描述為「實例」之任何具體實例或設計解釋為比其他具體實例或設計較佳或有利。 用作光源之微 LED In the following description, for purposes of explanation, specific details are set forth in order to provide a thorough understanding of the examples of the present invention. It will be apparent, however, that various examples may be practiced without these specific details. For example, devices, systems, structures, assemblies, methods, and other components may be shown as components in block diagram form so as not to obscure the examples in unnecessary detail. In other instances, well-known devices, processes, systems, structures and techniques may be shown without necessary detail in order not to obscure the examples. The figures and descriptions are not intended to be limiting. The terms and expressions that have been used in this disclosure are used as terms of description and are not limiting and are not intended to exclude any equivalents of the features shown and described, or parts thereof, when such terms and expressions are used. The word "instance" is used herein to mean "serving as an instance, instance, or illustration." Any particular example or design described herein as an "example" is not necessarily to be construed as preferred or advantageous over other particular examples or designs. Micro LED used as light source

1為根據某些具體實例之包括近眼顯示器120的人工實境系統環境100之實例的簡化方塊圖。圖1中所展示之人工實境系統環境100可包括近眼顯示器120、可選外部成像裝置150及可選輸入/輸出介面140,其中之每一者可耦接至可選控制台110。雖然圖1展示包括一個近眼顯示器120、一個外部成像裝置150及一個輸入/輸出介面140之人工實境系統環境100之實例,但可在人工實境系統環境100中包括任何數目個此等組件,或可省略該等組件中之任一者。舉例而言,可能存在由與控制台110通信之一或多個外部成像裝置150監視的多個近眼顯示器120。在一些組態中,人工實境系統環境100可能不包括外部成像裝置150、可選輸入/輸出介面140及可選控制台110。在替代組態中,不同組件或額外組件可包括於人工實境系統環境100中。 1 is a simplified block diagram of an example of an artificial reality system environment 100 including a near-eye display 120, according to some specific examples. The artificial reality system environment 100 shown in FIG. 1 may include a near-eye display 120 , an optional external imaging device 150 , and an optional input/output interface 140 , each of which may be coupled to an optional console 110 . Although FIG. 1 shows an example of an artificial reality system environment 100 including a near-eye display 120, an external imaging device 150, and an input/output interface 140, any number of these components may be included in the artificial reality system environment 100, Or any of these components may be omitted. For example, there may be multiple near-eye displays 120 monitored by one or more external imaging devices 150 in communication with the console 110 . In some configurations, the augmented reality system environment 100 may not include the external imaging device 150 , the optional input/output interface 140 , and the optional console 110 . In alternate configurations, different components or additional components may be included in the artificial reality system environment 100 .

近眼顯示器120可為將內容呈現給使用者之頭戴式顯示器。由近眼顯示器120呈現之內容的實例包括影像、視訊、音訊或其任何組合中之一或多者。在一些具體實例中,音訊可經由外部裝置(例如,揚聲器及/或頭戴式耳機)呈現,該外部裝置自近眼顯示器120、控制台110或其兩者接收音訊資訊,且基於音訊資訊呈現音訊資料。近眼顯示器120可包括一或多個剛體,該一或多個剛體可剛性地或非剛性地耦接至彼此。剛體之間的剛性耦接可使得耦接的剛體充當單個剛性實體。剛體之間的非剛性耦接可允許剛體相對於彼此移動。在各種具體實例中,近眼顯示器120可以任何合適的外觀造型規格來實施,包括一副眼鏡。下文關於圖2及圖3進一步描述近眼顯示器120之一些具體實例。另外,在各種具體實例中,本文中所描述之功能性可用於將在近眼顯示器120外部之環境之影像與人工實境內容(例如,電腦產生影像)組合的耳機中。因此,近眼顯示器120可利用所產生之內容(例如,影像、視訊、聲音等)來擴增在近眼顯示器120外部之實體真實世界環境之影像,以將擴增實境呈現給使用者。The near-eye display 120 may be a head-mounted display that presents content to a user. Examples of content presented by near-eye display 120 include one or more of images, video, audio, or any combination thereof. In some embodiments, the audio may be presented via an external device (eg, speakers and/or headphones) that receives audio information from the near-eye display 120, the console 110, or both, and presents the audio based on the audio information material. The near-eye display 120 may include one or more rigid bodies, which may be rigidly or non-rigidly coupled to each other. Rigid coupling between rigid bodies allows the coupled rigid bodies to act as a single rigid body. A non-rigid coupling between rigid bodies allows the rigid bodies to move relative to each other. In various embodiments, the near-eye display 120 may be implemented in any suitable form factor, including a pair of glasses. Some specific examples of near-eye displays 120 are further described below with respect to FIGS. 2 and 3 . Additionally, in various embodiments, the functionality described herein may be used in a headset that combines images of the environment external to near-eye display 120 with artificial reality content (eg, computer-generated imagery). Accordingly, the near-eye display 120 can utilize the generated content (eg, images, video, sound, etc.) to augment the image of the physical real-world environment outside the near-eye display 120 to present the augmented reality to the user.

在各種具體實例中,近眼顯示器120可包括顯示電子裝置122、顯示光學件124及眼睛追蹤單元130中之一或多者。在一些具體實例中,近眼顯示器120亦可包括一或多個定位器126、一或多個位置感測器128及慣性量測單元(inertial measurement unit;IMU) 132。在各種具體實例中,近眼顯示器120可省略眼睛追蹤單元130、定位器126、位置感測器128及IMU 132中之任一者,或包括額外元件。另外,在一些具體實例中,近眼顯示器120可包括組合結合圖1所描述之各種元件之功能的元件。In various specific examples, near-eye display 120 may include one or more of display electronics 122 , display optics 124 , and eye tracking unit 130 . In some embodiments, the near-eye display 120 may also include one or more localizers 126 , one or more position sensors 128 , and an inertial measurement unit (IMU) 132 . In various specific examples, near-eye display 120 may omit any of eye tracking unit 130, locator 126, position sensor 128, and IMU 132, or include additional elements. Additionally, in some embodiments, near-eye display 120 may include elements that combine the functionality of the various elements described in connection with FIG. 1 .

顯示電子裝置122可根據自例如控制台110接收到之資料而向使用者顯示影像或促進向使用者顯示影像。在各種具體實例中,顯示電子裝置122可包括一或多個顯示面板,諸如液晶顯示器(liquid crystal display;LCD)、有機發光二極體(organic light emitting diode;OLED)顯示器、無機發光二極體(inorganic light emitting diode;ILED)顯示器、微發光二極體(μLED)顯示器、主動矩陣OLED顯示器(active-matrix OLED display;AMOLED)、透明OLED顯示器(transparent OLED display;TOLED)或某一其他顯示器。舉例而言,在近眼顯示器120之一個實施方案中,顯示電子裝置122可包括前TOLED面板、後顯示面板,及介於前顯示面板與後顯示面板之間的光學組件(例如,衰減器、偏振器,或繞射或光譜膜)。顯示電子裝置122可包括像素以發射諸如紅色、綠色、藍色、白色或黃色之主要色彩的光。在一些實施方案中,顯示電子裝置122可經由立體效應來顯示三維(3D)影像以產生影像深度之主觀感知,該等立體效應由二維面板產生。舉例而言,顯示電子裝置122可包括分別定位於使用者之左眼及右眼前方的左方顯示器及右方顯示器。左方顯示器及右方顯示器可呈現相對於彼此水平地移位之影像的複本,以產生立體效應(亦即,觀看影像之使用者對影像深度的感知)。Display electronics 122 may display or facilitate display of images to a user based on data received from, for example, console 110 . In various specific examples, display electronics 122 may include one or more display panels, such as a liquid crystal display (LCD), an organic light emitting diode (OLED) display, an inorganic light emitting diode (inorganic light emitting diode; ILED) display, micro light emitting diode (μLED) display, active-matrix OLED display (AMOLED), transparent OLED display (transparent OLED display; TOLED) or some other display. For example, in one implementation of near-eye display 120, display electronics 122 may include a front TOLED panel, a rear display panel, and optical components (eg, attenuators, polarizers, etc.) between the front and rear display panels filter, or diffractive or spectral coatings). Display electronics 122 may include pixels to emit light in a primary color such as red, green, blue, white, or yellow. In some implementations, the display electronics 122 may display three-dimensional (3D) images through stereoscopic effects, which are produced by a two-dimensional panel, to generate a subjective perception of image depth. For example, the display electronics 122 may include left and right displays positioned in front of the user's left and right eyes, respectively. The left and right displays may present copies of the image that are horizontally shifted relative to each other to create a stereoscopic effect (ie, the perception of depth of the image by a user viewing the image).

在某些具體實例中,顯示光學件124可以光學方式顯示影像內容(例如,使用光學波導及耦合器),或放大自顯示電子裝置122接收到之影像光,校正與影像光相關聯之光學誤差,且將經校正之影像光呈現給近眼顯示器120之使用者。在各種具體實例中,顯示光學件124可包括一或多個光學元件,諸如基板、光學波導、光圈、菲涅耳透鏡、凸透鏡、凹透鏡、濾光片、輸入/輸出耦合器,或可能影響自顯示電子裝置122發射之影像光的任何其他合適的光學元件。顯示光學件124可包括不同光學元件之組合,以及用以維持組合中之光學元件之相對間隔及定向的機械耦接件。顯示光學件124中之一或多個光學元件可具有光學塗層,諸如抗反射塗層、反射塗層、濾光塗層,或不同光學塗層之組合。In some embodiments, display optics 124 may optically display image content (eg, using optical waveguides and couplers), or amplify image light received from display electronics 122 to correct for optical errors associated with the image light , and the corrected image light is presented to the user of the near-eye display 120 . In various specific examples, display optics 124 may include one or more optical elements, such as substrates, optical waveguides, apertures, Fresnel lenses, convex lenses, concave lenses, filters, input/output couplers, or may affect self- Any other suitable optical element for the image light emitted by display electronics 122 . Display optics 124 may include a combination of different optical elements, as well as mechanical couplings to maintain relative spacing and orientation of the optical elements in the combination. One or more of the optical elements in display optics 124 may have an optical coating, such as an anti-reflective coating, a reflective coating, a filter coating, or a combination of different optical coatings.

顯示光學件124對影像光之放大可允許相比較大顯示器,顯示電子裝置122在實體上較小,重量較輕且消耗較少功率。另外,放大可增大所顯示內容之視場。顯示光學件124對影像光之放大的量可藉由調整、添加光學元件或自顯示光學件124移除光學元件來改變。在一些具體實例中,顯示光學件124可將所顯示影像投影至可比近眼顯示器120更遠離使用者之眼睛的一或多個影像平面。The magnification of the image light by the display optics 124 may allow the display electronics 122 to be physically smaller, lighter in weight and consume less power than larger displays. Additionally, zooming in increases the field of view of the displayed content. The amount of magnification of the image light by display optics 124 can be changed by adjusting, adding optical elements, or removing optical elements from display optics 124 . In some embodiments, display optics 124 may project the displayed image to one or more image planes that may be further away from the user's eye than near-eye display 120 .

顯示光學件124亦可經設計以校正一或多種類型之光學誤差,諸如二維光學誤差、三維光學誤差或其任何組合。二維誤差可包括在兩個維度上出現之光學像差。二維誤差之實例類型可包括桶形失真、枕形失真、縱向色像差及橫向色像差。三維誤差可包括在三個維度上出現之光學誤差。三維誤差之實例類型可包括球面像差、慧形像差、場彎曲及像散。Display optics 124 may also be designed to correct for one or more types of optical errors, such as two-dimensional optical errors, three-dimensional optical errors, or any combination thereof. Two-dimensional errors may include optical aberrations that occur in two dimensions. Example types of two-dimensional errors may include barrel distortion, pincushion distortion, longitudinal chromatic aberration, and lateral chromatic aberration. Three-dimensional errors may include optical errors that occur in three dimensions. Example types of three-dimensional errors may include spherical aberration, coma, curvature of field, and astigmatism.

定位器126可為相對於彼此且相對於近眼顯示器120上之參考點而位於近眼顯示器120上之特定位置中的物件。在一些實施方案中,控制台110可在由外部成像裝置150俘獲之影像中識別定位器126,以判定人工實境耳機之位置、定向或其兩者。定位器126可為LED、直角反射器(corner cube reflector)、反射標記、與近眼顯示器120進行操作所處之環境形成對比的一種類型之光源,或其任何組合。在定位器126為主動組件(例如,LED或其他類型之發光裝置)之具體實例中,定位器126可發射在可見光頻帶(例如,約380 nm至750 nm)中、在紅外線(IR)頻帶(例如,約750 nm至1 mm)中、在紫外線頻帶(例如,約10 nm至約380 nm)中、在電磁光譜之另一部分中或在電磁光譜之部分之任何組合中的光。The locators 126 may be objects located in particular locations on the near-eye display 120 relative to each other and relative to a reference point on the near-eye display 120 . In some implementations, the console 110 can identify the localizer 126 in the image captured by the external imaging device 150 to determine the position, orientation, or both of the artificial reality headset. The positioner 126 may be an LED, a corner cube reflector, a reflective marker, a type of light source that contrasts with the environment in which the near-eye display 120 operates, or any combination thereof. In the specific example where the locator 126 is an active component (eg, an LED or other type of light emitting device), the locator 126 may emit in the visible light band (eg, about 380 nm to 750 nm), in the infrared (IR) band ( For example, about 750 nm to 1 mm), in the ultraviolet band (eg, about 10 nm to about 380 nm), in another portion of the electromagnetic spectrum, or in any combination of portions of the electromagnetic spectrum.

外部成像裝置150可包括一或多個攝影機、一或多個視訊攝影機、能夠俘獲包括定位器126中之一或多者之影像的任何其他裝置,或其任何組合。另外,外部成像裝置150可包括一或多個濾光片(例如,以增加信雜比)。外部成像裝置150可經組態以偵測在外部成像裝置150之視場中的自定位器126發射或反射之光。在定位器126包括被動元件(例如,回反射器)之具體實例中,外部成像裝置150可包括照明定位器126中之一些或全部的光源,該等定位器可將光回反射至外部成像裝置150中之光源。可將慢速校準資料自外部成像裝置150傳達至控制台110,且外部成像裝置150可自控制台110接收一或多個校準參數,以調整一或多個成像參數(例如,焦距、焦點、圖框速率、感測器溫度、快門速度、孔徑等)。External imaging device 150 may include one or more cameras, one or more video cameras, any other device capable of capturing images including one or more of locators 126, or any combination thereof. Additionally, external imaging device 150 may include one or more filters (eg, to increase signal-to-noise ratio). External imaging device 150 may be configured to detect light emitted or reflected from locator 126 in the field of view of external imaging device 150 . In specific examples where the positioners 126 include passive elements (eg, retro-reflectors), the external imaging device 150 may include light sources that illuminate some or all of the positioners 126, which may reflect light back to the external imaging device Light source in 150. Slow calibration data may be communicated from external imaging device 150 to console 110, and external imaging device 150 may receive one or more calibration parameters from console 110 to adjust one or more imaging parameters (eg, focal length, focus, Frame rate, sensor temperature, shutter speed, aperture, etc.).

位置感測器128可回應於近眼顯示器120之運動而產生一或多個量測信號。位置感測器128之實例可包括加速度計、陀螺儀、磁力計、其他運動偵測或誤差校正感測器,或其任何組合。舉例而言,在一些具體實例中,位置感測器128可包括用以量測平移運動(例如,向前/向後、向上/向下或向左/向右)之多個加速度計及用以量測旋轉運動(例如,俯仰、橫偏或橫搖)之多個陀螺儀。在一些具體實例中,各種位置感測器可彼此正交地定向。The position sensor 128 may generate one or more measurement signals in response to movement of the near-eye display 120 . Examples of position sensors 128 may include accelerometers, gyroscopes, magnetometers, other motion detection or error correction sensors, or any combination thereof. For example, in some embodiments, the position sensor 128 may include a plurality of accelerometers to measure translational motion (eg, forward/backward, up/down, or left/right) and to Multiple gyroscopes that measure rotational motion (eg, pitch, yaw, or roll). In some specific examples, the various position sensors may be oriented orthogonal to each other.

IMU 132可為基於自位置感測器128中之一或多者接收到的量測信號而產生快速校準資料的電子裝置。位置感測器128可位於IMU 132外部、IMU 132內部或在外部與在內部之任何組合。基於來自一或多個位置感測器128之一或多個量測信號,IMU 132可產生快速校準資料,該快速校準資料指示相對於近眼顯示器120之初始位置的近眼顯示器120之估計位置。舉例而言,IMU 132可隨時間推移對自加速度計接收到之量測信號進行積分以估計速度向量,且隨時間推移對該速度向量進行積分以判定近眼顯示器120上之參考點的估計位置。替代地,IMU 132可將所取樣之量測信號提供至控制台110,該控制台可判定快速校準資料。雖然參考點通常可定義為空間中之點,但在各種具體實例中,參考點亦可定義為近眼顯示器120內之點(例如,IMU 132之中心)。The IMU 132 may be an electronic device that generates fast calibration data based on measurement signals received from one or more of the position sensors 128 . Position sensor 128 may be located external to IMU 132, internal to IMU 132, or any combination of external and internal. Based on one or more measurement signals from one or more position sensors 128 , IMU 132 may generate fast calibration data indicating the estimated position of near-eye display 120 relative to the initial position of near-eye display 120 . For example, IMU 132 may integrate measurement signals received from an accelerometer over time to estimate a velocity vector, and integrate the velocity vector over time to determine an estimated location of a reference point on near-eye display 120. Alternatively, the IMU 132 may provide the sampled measurement signals to the console 110, which may determine the quick calibration data. While a reference point may generally be defined as a point in space, in various embodiments, a reference point may also be defined as a point within near-eye display 120 (eg, the center of IMU 132).

眼睛追蹤單元130可包括一或多個眼睛追蹤系統。眼睛追蹤可指判定眼睛相對於近眼顯示器120之位置,包括眼睛之定向及方位。眼睛追蹤系統可包括成像系統以對一或多隻眼睛進行成像,且可視情況包括光發射器,該光發射器可產生導向眼睛之光,使得由眼睛反射之光可由成像系統俘獲。舉例而言,眼睛追蹤單元130可包括發射在可見光譜或紅外線光譜中之光的非相干或相干光源(例如,雷射二極體),及俘獲由使用者眼睛反射之光的攝影機。作為另一實例,眼睛追蹤單元130可俘獲由微型雷達單元發射之反射無線電波。眼睛追蹤單元130可使用低功率光發射器,該等低功率光發射器發射在將不會損傷眼睛或引起身體不適之頻率及強度下的光。眼睛追蹤單元130可經配置以增加由眼睛追蹤單元130俘獲之眼睛影像中的對比度,同時減小由眼睛追蹤單元130消耗之總功率(例如,減小由包括於眼睛追蹤單元130中之光發射器及成像系統消耗的功率)。舉例而言,在一些實施方案中,眼睛追蹤單元130可消耗小於100毫瓦之功率。Eye tracking unit 130 may include one or more eye tracking systems. Eye tracking may refer to determining the position of the eye relative to the near-eye display 120, including the orientation and orientation of the eye. The eye tracking system can include an imaging system to image one or more eyes, and optionally a light emitter that can generate light directed toward the eye so that light reflected by the eye can be captured by the imaging system. For example, eye tracking unit 130 may include incoherent or coherent light sources (eg, laser diodes) that emit light in the visible or infrared spectrum, and cameras that capture light reflected by the user's eyes. As another example, eye tracking unit 130 may capture reflected radio waves emitted by miniature radar units. Eye tracking unit 130 may use low power light transmitters that emit light at frequencies and intensities that will not damage the eyes or cause physical discomfort. Eye-tracking unit 130 may be configured to increase the contrast in the eye image captured by eye-tracking unit 130 while reducing the overall power consumed by eye-tracking unit 130 (eg, reducing light emission by the eye-tracking unit 130 ) the power consumed by the device and the imaging system). For example, in some implementations, eye tracking unit 130 may consume less than 100 milliwatts of power.

近眼顯示器120可使用眼睛之定向以例如判定使用者之瞳孔間距離(inter-pupillary distance;IPD),判定凝視方向,引入深度提示(例如,在使用者之主視線外的模糊影像),收集關於VR媒體中之使用者互動的啟發資訊(例如,花費在任何特定個體、物件或圖框上之時間,其依據所曝露刺激而變化),進行部分地基於使用者眼睛中之至少一者之定向的一些其他功能,或其任何組合。因為可判定使用者之兩隻眼睛的定向,所以眼睛追蹤單元130可能夠判定使用者正看向何處。舉例而言,判定使用者之凝視方向可包括基於使用者左眼及右眼之所判定定向而判定會聚點。會聚點可為使用者眼睛之兩個視窩軸線相交的點。使用者之凝視方向可為穿過會聚點以及使用者眼睛之瞳孔之間的中點的線之方向。The near-eye display 120 may use the orientation of the eyes to, for example, determine the user's inter-pupillary distance (IPD), determine the gaze direction, introduce depth cues (eg, blurry images outside the user's primary line of sight), collect information about Heuristics of user interaction in VR media (eg, time spent on any particular individual, object, or frame, which varies according to the stimuli exposed), is oriented in part based on at least one of the user's eyes some other features, or any combination thereof. Because the orientation of the user's two eyes can be determined, the eye tracking unit 130 may be able to determine where the user is looking. For example, determining the user's gaze direction may include determining a convergence point based on the determined orientation of the user's left and right eyes. The point of convergence may be the point where the two orbital axes of the user's eyes meet. The user's gaze direction may be the direction of a line passing through the point of convergence and the midpoint between the pupils of the user's eyes.

輸入/輸出介面140可為允許使用者將動作請求發送至控制台110之裝置。動作請求可為執行特定動作之請求。舉例而言,動作請求可為開始或結束應用程式或執行該應用程式內之特定動作。輸入/輸出介面140可包括一或多個輸入裝置。實例輸入裝置可包括鍵盤、滑鼠、遊戲控制器、手套、按鈕、觸控螢幕,或用於接收動作請求且將所接收之動作請求傳達至控制台110的任何其他合適之裝置。可將由輸入/輸出介面140接收之動作請求傳達至控制台110,該控制台可執行對應於所請求動作之動作。在一些具體實例中,輸入/輸出介面140可根據自控制台110接收到之指令將觸覺反饋提供至使用者。舉例而言,輸入/輸出介面140可在接收到動作請求時或在控制台110已執行所請求動作且將指令傳達至輸入/輸出介面140時提供觸覺反饋。在一些具體實例中,外部成像裝置150可用以追蹤輸入/輸出介面140,諸如追蹤控制器(其可包括例如IR光源)或使用者手之方位或位置以判定使用者之運動。在一些具體實例中,近眼顯示器120可包括一或多個成像裝置以追蹤輸入/輸出介面140,諸如追蹤控制器或使用者手之方位或位置以判定使用者之運動。The input/output interface 140 may be a device that allows the user to send action requests to the console 110 . An action request may be a request to perform a specific action. For example, an action request can be to start or end an application or to perform a specific action within the application. The input/output interface 140 may include one or more input devices. Example input devices may include keyboards, mice, game controllers, gloves, buttons, touch screens, or any other suitable device for receiving motion requests and communicating the received motion requests to console 110 . Action requests received by input/output interface 140 may be communicated to console 110, which may perform actions corresponding to the requested actions. In some embodiments, input/output interface 140 may provide haptic feedback to the user according to instructions received from console 110 . For example, input/output interface 140 may provide haptic feedback when an action request is received or when console 110 has performed the requested action and communicated instructions to input/output interface 140 . In some embodiments, the external imaging device 150 may be used to track the input/output interface 140, such as tracking a controller (which may include, for example, an IR light source) or the orientation or position of the user's hand to determine the user's movement. In some embodiments, the near-eye display 120 may include one or more imaging devices to track the input/output interface 140, such as tracking the position or position of a controller or a user's hand to determine the user's movement.

控制台110可根據自外部成像裝置150、近眼顯示器120及輸入/輸出介面140中之一或多者接收到的資訊而將內容提供至近眼顯示器120以供呈現給使用者。在圖1中所展示之實例中,控制台110可包括應用程式商店112、耳機追蹤模組114、人工實境引擎116及眼睛追蹤模組118。控制台110之一些具體實例可包括與結合圖1所描述之彼等模組不同的模組或額外模組。下文進一步所描述之功能可以與此處所描述之方式不同的方式分佈在控制台110之組件當中。Console 110 may provide content to near-eye display 120 for presentation to a user based on information received from one or more of external imaging device 150 , near-eye display 120 , and input/output interface 140 . In the example shown in FIG. 1 , the console 110 may include an application store 112 , a headset tracking module 114 , an artificial reality engine 116 , and an eye tracking module 118 . Some specific examples of console 110 may include different modules or additional modules than those described in connection with FIG. 1 . The functionality described further below may be distributed among the components of the console 110 in a manner different from that described here.

在一些具體實例中,控制台110可包括處理器及儲存可由該處理器執行之指令的非暫時性電腦可讀儲存媒體。該處理器可包括並行地執行指令之多個處理單元。非暫時性電腦可讀儲存媒體可為任何記憶體,諸如硬碟機、抽取式記憶體或固態磁碟機(例如,快閃記憶體或動態隨機存取記憶體(dynamic random access memory;DRAM))。在各種具體實例中,結合圖1所描述之控制台110的模組可編碼為非暫時性電腦可讀儲存媒體中之指令,該等指令在由處理器執行時使該處理器執行下文進一步所描述之功能。In some embodiments, console 110 may include a processor and a non-transitory computer-readable storage medium storing instructions executable by the processor. The processor may include multiple processing units that execute instructions in parallel. A non-transitory computer-readable storage medium can be any memory, such as a hard disk drive, removable memory, or solid state disk drive (eg, flash memory or dynamic random access memory (DRAM) ). In various embodiments, the modules of console 110 described in connection with FIG. 1 may be encoded as instructions in a non-transitory computer-readable storage medium that, when executed by a processor, cause the processor to perform the operations described further below. Describe the function.

應用程式商店112可保存一或多個應用程式以供控制台110執行。應用程式可包括在由處理器執行時產生內容以供呈現給使用者之一組指令。由應用程式產生之內容可回應於經由使用者眼睛之移動而自使用者接收到之輸入,或自輸入/輸出介面140接收到之輸入。應用程式之實例可包括遊戲應用程式、會議應用程式、視訊播放應用程式或其他合適的應用程式。The application store 112 may store one or more applications for execution by the console 110 . An application may include a set of instructions that, when executed by a processor, generate content for presentation to a user. The content generated by the application may be in response to input received from the user through the movement of the user's eyes, or input received from the input/output interface 140 . Examples of applications may include gaming applications, conferencing applications, video playback applications, or other suitable applications.

耳機追蹤模組114可使用來自外部成像裝置150之慢速校準資訊來追蹤近眼顯示器120之移動。舉例而言,耳機追蹤模組114可使用自慢速校準資訊觀測到之定位器及近眼顯示器120之模型來判定近眼顯示器120之參考點的位置。耳機追蹤模組114亦可使用來自快速校準資訊之位置資訊來判定近眼顯示器120之參考點的位置。另外,在一些具體實例中,耳機追蹤模組114可使用快速校準資訊、慢速校準資訊或其任何組合之部分來預測近眼顯示器120之未來方位。耳機追蹤模組114可將近眼顯示器120之估計或預測未來位置提供至人工實境引擎116。The headset tracking module 114 can use the slow calibration information from the external imaging device 150 to track the movement of the near-eye display 120 . For example, the headset tracking module 114 may use the locator observed from the slow calibration information and the model of the near-eye display 120 to determine the location of the reference point of the near-eye display 120. The headset tracking module 114 may also use the position information from the quick calibration information to determine the position of the reference point of the near-eye display 120 . Additionally, in some embodiments, the headset tracking module 114 may use portions of the fast calibration information, the slow calibration information, or any combination thereof, to predict the future orientation of the near-eye display 120 . The headset tracking module 114 may provide the estimated or predicted future position of the near-eye display 120 to the artificial reality engine 116 .

人工實境引擎116可執行人工實境系統環境100內之應用程式,且自耳機追蹤模組114接收近眼顯示器120之位置資訊、近眼顯示器120之加速度資訊、近眼顯示器120之速度資訊、近眼顯示器120之預測未來位置,或其任何組合。人工實境引擎116亦可自眼睛追蹤模組118接收估計的眼睛位置及定向資訊。基於所接收資訊,人工實境引擎116可判定待提供至近眼顯示器120以供呈現給使用者的內容。舉例而言,若所接收資訊指示使用者已向左看,則人工實境引擎116可產生用於近眼顯示器120之內容,該內容反映使用者眼球在虛擬環境中之移動。另外,人工實境引擎116可回應於自輸入/輸出介面140接收到之動作請求而執行在控制台110上執行之應用程式內的動作,且將指示該動作已執行之反饋提供至使用者。該反饋可為經由近眼顯示器120提供之視覺或聽覺反饋,或經由輸入/輸出介面140提供之觸覺反饋。The AR engine 116 can execute applications within the AR system environment 100 and receive the position information of the near-eye display 120 , the acceleration information of the near-eye display 120 , the speed information of the near-eye display 120 , the near-eye display 120 from the headset tracking module 114 . the predicted future position, or any combination thereof. The artificial reality engine 116 may also receive estimated eye position and orientation information from the eye tracking module 118 . Based on the received information, the artificial reality engine 116 can determine the content to be provided to the near-eye display 120 for presentation to the user. For example, if the received information indicates that the user has looked to the left, the artificial reality engine 116 may generate content for the near-eye display 120 that reflects the movement of the user's eye in the virtual environment. Additionally, the artificial reality engine 116 may execute an action within an application executing on the console 110 in response to an action request received from the input/output interface 140 and provide feedback to the user indicating that the action has been executed. The feedback may be visual or auditory feedback provided via the near-eye display 120 , or haptic feedback provided via the input/output interface 140 .

眼睛追蹤模組118可自眼睛追蹤單元130接收眼睛追蹤資料,且基於眼睛追蹤資料而判定使用者眼睛之位置。眼睛之位置可包括眼睛相對於近眼顯示器120或其任何元件之定向、方位或其兩者。因為眼睛之旋轉軸線依據眼睛在其眼窩中之方位而改變,所以判定眼睛在其眼窩中之方位可允許眼睛追蹤模組118更準確地判定眼睛之定向。The eye tracking module 118 can receive the eye tracking data from the eye tracking unit 130 and determine the position of the user's eyes based on the eye tracking data. The position of the eye may include the orientation, orientation, or both of the eye relative to the near-eye display 120 or any element thereof. Because the axis of rotation of the eye changes depending on the orientation of the eye in its socket, determining the orientation of the eye in its socket may allow the eye tracking module 118 to more accurately determine the orientation of the eye.

2為呈用於實施本文中所揭示之一些實例的HMD裝置200之形式的近眼顯示器之實例的透視圖。HMD裝置200可為例如VR系統、AR系統、MR系統或其任何組合之一部分。HMD裝置200可包括主體220及頭部綁帶230。圖2在透視圖中展示主體220之底側223、前側225及左側227。頭部綁帶230可具有可調整或可延伸的長度。HMD裝置200之主體220與頭部綁帶230之間可存在足夠的空間,以允許使用者將HMD裝置200安裝至使用者之頭部上。在各種具體實例中,HMD裝置200可包括額外組件、較少組件或不同組件。舉例而言,在一些具體實例中,HMD裝置200可包括如展示於例如下圖3中之眼鏡鏡腿及鏡腿尖端,而非頭部綁帶230。 2 is a perspective view of an example of a near-eye display in the form of an HMD device 200 for implementing some examples disclosed herein. The HMD device 200 may be part of, for example, a VR system, an AR system, an MR system, or any combination thereof. The HMD device 200 may include a body 220 and a head strap 230 . 2 shows the bottom side 223, the front side 225, and the left side 227 of the main body 220 in perspective view. The head strap 230 may have an adjustable or extendable length. There may be sufficient space between the body 220 of the HMD device 200 and the head strap 230 to allow the user to mount the HMD device 200 on the user's head. In various specific examples, HMD device 200 may include additional components, fewer components, or different components. For example, in some embodiments, instead of head strap 230, HMD device 200 may include temples and temple tips as shown, for example, in FIG. 3 below.

HMD裝置200可將包括具有電腦產生元素之實體真實世界環境之虛擬及/或擴增視圖的媒體呈現給使用者。由HMD裝置200呈現之媒體的實例可包括影像(例如,二維(2D)或三維(3D)影像)、視訊(例如,2D或3D視訊)、音訊,或其任何組合。該等影像及視訊可由圍封於HMD裝置200之主體220中的一或多個顯示總成(圖2中未展示)呈現給使用者之每隻眼睛。在各種具體實例中,一或多個顯示總成可包括單個電子顯示面板或多個電子顯示面板(例如,使用者之每隻眼睛一個顯示面板)。電子顯示面板之實例可包括例如LCD、OLED顯示器、ILED顯示器、μLED顯示器、AMOLED、TOLED、某一其他顯示器,或其任何組合。HMD裝置200可包括兩個眼框區。The HMD device 200 may present media to a user that includes a virtual and/or augmented view of a physical real-world environment with computer-generated elements. Examples of media presented by HMD device 200 may include imagery (eg, two-dimensional (2D) or three-dimensional (3D) imagery), video (eg, 2D or 3D video), audio, or any combination thereof. Such images and video may be presented to each eye of the user by one or more display assemblies (not shown in FIG. 2 ) enclosed in the body 220 of the HMD device 200 . In various embodiments, one or more display assemblies may include a single electronic display panel or multiple electronic display panels (eg, one display panel for each eye of a user). Examples of electronic display panels may include, for example, LCDs, OLED displays, ILED displays, μLED displays, AMOLED, TOLED, some other display, or any combination thereof. HMD device 200 may include two eyebox regions.

在一些實施方案中,HMD裝置200可包括各種感測器(圖中未示),諸如深度感測器、運動感測器、位置感測器及眼睛追蹤感測器。此等感測器中之一些可使用結構化之光圖案以用於感測。在一些實施方案中,HMD裝置200可包括用於與控制台通信之輸入/輸出介面。在一些實施方案中,HMD裝置200可包括虛擬實境引擎(圖中未示),該虛擬實境引擎可執行HMD裝置200內之應用程式,且自各種感測器接收HMD裝置200之深度資訊、位置資訊、加速度資訊、速度資訊、預測未來位置或其任何組合。在一些實施方案中,由虛擬實境引擎接收之資訊可用於為一或多個顯示總成產生信號(例如,顯示指令)。在一些實施方案中,HMD裝置200可包括相對於彼此且相對於參考點位於主體220上之固定位置中的定位器(圖中未示,諸如定位器126)。該等定位器中之每一者可發射可由外部成像裝置偵測之光。In some implementations, HMD device 200 may include various sensors (not shown), such as depth sensors, motion sensors, position sensors, and eye tracking sensors. Some of these sensors may use structured light patterns for sensing. In some implementations, HMD device 200 may include an input/output interface for communicating with a console. In some implementations, HMD device 200 may include a virtual reality engine (not shown) that executes applications within HMD device 200 and receives depth information of HMD device 200 from various sensors , location information, acceleration information, velocity information, predicted future location, or any combination thereof. In some implementations, the information received by the virtual reality engine may be used to generate signals (eg, display commands) for one or more display assemblies. In some implementations, HMD device 200 may include positioners (not shown, such as positioner 126 ) in fixed positions on body 220 relative to each other and relative to a reference point. Each of these locators can emit light that can be detected by an external imaging device.

3為呈用於實施本文中所揭示之一些實例的一副眼鏡之形式的近眼顯示器300之實例的透視圖。近眼顯示器300可為圖1之近眼顯示器120的特定實施方案,且可經組態以作為虛擬實境顯示器、擴增實境顯示器及/或混合實境顯示器來操作。近眼顯示器300可包括框架305及顯示器310。顯示器310可經組態以將內容呈現給使用者。在一些具體實例中,顯示器310可包括顯示電子裝置及/或顯示光學件。舉例而言,如上文關於圖1之近眼顯示器120所描述,顯示器310可包括LCD顯示面板、LED顯示面板或光學顯示面板(例如,波導顯示總成)。 3 is a perspective view of an example of a near-eye display 300 in the form of a pair of glasses for implementing some of the examples disclosed herein. Near-eye display 300 may be a specific implementation of near-eye display 120 of FIG. 1, and may be configured to operate as a virtual reality display, augmented reality display, and/or mixed reality display. Near-eye display 300 may include frame 305 and display 310 . Display 310 may be configured to present content to a user. In some specific examples, display 310 may include display electronics and/or display optics. For example, as described above with respect to the near-eye display 120 of FIG. 1, the display 310 may include an LCD display panel, an LED display panel, or an optical display panel (eg, a waveguide display assembly).

近眼顯示器300可進一步包括在框架305上或內之各種感測器350a、350b、350c、350d及350e。在一些具體實例中,感測器350a至350e可包括一或多個深度感測器、運動感測器、位置感測器、慣性感測器或周圍光感測器。在一些具體實例中,感測器350a至350e可包括一或多個影像感測器,該一或多個影像感測器經組態以產生表示不同方向上之不同視場的影像資料。在一些具體實例中,感測器350a至350e可用作輸入裝置以控制或影響近眼顯示器300之所顯示內容,及/或向近眼顯示器300之使用者提供互動式VR/AR/MR體驗。在一些具體實例中,感測器350a至350e亦可用於立體成像。The near-eye display 300 may further include various sensors 350a, 350b, 350c, 350d, and 350e on or within the frame 305. In some specific examples, sensors 350a-350e may include one or more depth sensors, motion sensors, position sensors, inertial sensors, or ambient light sensors. In some embodiments, sensors 350a-350e may include one or more image sensors configured to generate image data representing different fields of view in different directions. In some embodiments, sensors 350a - 350e may be used as input devices to control or affect the displayed content of near-eye display 300 and/or provide an interactive VR/AR/MR experience to a user of near-eye display 300 . In some embodiments, sensors 350a-350e may also be used for stereoscopic imaging.

在一些具體實例中,近眼顯示器300可進一步包括一或多個照明器330以將光投影至實體環境中。投影之光可與不同頻帶(例如,可見光、紅外光、紫外光等)相關聯,且可用於各種目的。舉例而言,照明器330可將光投影於黑暗環境中(或具有低強度之紅外光、紫外光等的環境中),以輔助感測器350a至350e俘獲黑暗環境內之不同物件的影像。在一些具體實例中,照明器330可用以將某些光圖案投影至環境內之物件上。在一些具體實例中,照明器330可用作定位器,諸如上文關於圖1所描述之定位器126。In some specific examples, the near-eye display 300 may further include one or more illuminators 330 to project light into the physical environment. The projected light can be associated with different frequency bands (eg, visible light, infrared light, ultraviolet light, etc.) and can be used for various purposes. For example, illuminator 330 may project light in a dark environment (or in an environment with low intensity infrared light, ultraviolet light, etc.) to assist sensors 350a-350e in capturing images of different objects within the dark environment. In some embodiments, illuminator 330 may be used to project certain light patterns onto objects within the environment. In some embodiments, illuminator 330 may be used as a positioner, such as positioner 126 described above with respect to FIG. 1 .

在一些具體實例中,近眼顯示器300亦可包括高解析度攝影機340。攝影機340可俘獲視場中之實體環境的影像。所俘獲影像可例如藉由虛擬實境引擎(例如,圖1之人工實境引擎116)處理,以將虛擬物件添加至所俘獲影像或修改所俘獲影像中之實體物件,且經處理影像可由顯示器310顯示給使用者以用於AR或MR應用。In some embodiments, the near-eye display 300 may also include a high-resolution camera 340 . Camera 340 may capture images of the physical environment in the field of view. The captured image may be processed, for example, by a virtual reality engine (eg, the artificial reality engine 116 of FIG. 1 ) to add virtual objects to the captured image or to modify physical objects in the captured image, and the processed image may be displayed by a display 310 is displayed to the user for AR or MR applications.

4示出根據某些具體實例之包括波導顯示器的光學透視擴增實境系統400之實例。擴增實境系統400可包括投影機410及組合器415。投影機410可包括光源或影像源412及投影機光學件414。在一些具體實例中,光源或影像源412可包括上文所描述之一或多個微LED裝置。在一些具體實例中,影像源412可包括顯示虛擬物件之複數個像素,諸如LCD顯示面板或LED顯示面板。在一些具體實例中,影像源412可包括產生相干或部分相干光之光源。舉例而言,影像源412可包括雷射二極體、垂直腔面發射雷射、LED及/或上文所描述之微LED。在一些具體實例中,影像源412可包括各自發射對應於原色(例如,紅色、綠色或藍色)之單色影像光的複數個光源(例如,上文所描述之微LED之陣列)。在一些具體實例中,影像源412可包括微LED之三個二維陣列,其中微LED之每一二維陣列可包括經組態以發射原色(例如,紅色、綠色或藍色)光之微LED。在一些具體實例中,影像源412可包括光學圖案產生器,諸如空間光調變器。投影機光學件414可包括可調節來自影像源412之光的一或多個光學組件,諸如擴展光、使光準直、使光進行掃描或將光自影像源412投影至組合器415。一或多個光學組件可包括例如一或多個透鏡、液體透鏡、鏡面、光圈及/或光柵。舉例而言,在一些具體實例中,影像源412可包括微LED之一或多個一維陣列或細長二維陣列,且投影機光學件414可包括經組態以掃描微LED之一維陣列或細長二維陣列以產生影像圖框的一或多個一維掃描器(例如,微鏡或稜鏡)。在一些具體實例中,投影機光學件414可包括具有複數個電極之液體透鏡(例如,液晶透鏡),該液體透鏡允許來自影像源412之光的掃描。 4 illustrates an example of an optical see-through augmented reality system 400 including a waveguide display, according to some embodiments. Augmented reality system 400 may include projector 410 and combiner 415 . Projector 410 may include a light source or image source 412 and projector optics 414 . In some embodiments, the light source or image source 412 may comprise one or more of the micro-LED devices described above. In some embodiments, the image source 412 may include a plurality of pixels that display virtual objects, such as an LCD display panel or an LED display panel. In some embodiments, image source 412 may include a light source that produces coherent or partially coherent light. For example, image source 412 may include laser diodes, vertical cavity surface emitting lasers, LEDs, and/or the microLEDs described above. In some embodiments, image source 412 may include a plurality of light sources (eg, the array of microLEDs described above) each emitting monochromatic image light corresponding to a primary color (eg, red, green, or blue). In some embodiments, image source 412 can include three two-dimensional arrays of microLEDs, wherein each two-dimensional array of microLEDs can include a microLED configured to emit light of a primary color (eg, red, green, or blue) LED. In some embodiments, image source 412 may include an optical pattern generator, such as a spatial light modulator. Projector optics 414 may include one or more optical components that may condition the light from image source 412 , such as expanding the light, collimating light, scanning the light, or projecting light from image source 412 to combiner 415 . The one or more optical components may include, for example, one or more lenses, liquid lenses, mirrors, apertures, and/or gratings. For example, in some embodiments, image source 412 may include one or more one-dimensional arrays or elongated two-dimensional arrays of microLEDs, and projector optics 414 may include a one-dimensional array configured to scan microLEDs Or one or more one-dimensional scanners (eg, micromirrors or microscopes) that elongate a two-dimensional array to generate image frames. In some embodiments, projector optics 414 may include a liquid lens (eg, a liquid crystal lens) having a plurality of electrodes that allows scanning of light from image source 412 .

組合器415可包括用於將來自投影機410之光耦合至組合器415之基板420中的輸入耦合器430。組合器415可透射第一波長範圍內之光的至少50%且反射第二波長範圍內之光的至少25%。舉例而言,第一波長範圍可為自約400 nm至約650 nm之可見光,且第二波長範圍可在例如自約800 nm至約1000 nm之紅外線頻帶內。輸入耦合器430可包括體積全像光柵、繞射光學元件(diffractive optical element;DOE)(例如,表面起伏光柵)、基板420之傾斜表面,或折射耦合器(例如,楔狀物或稜鏡)。舉例而言,輸入耦合器430可包括反射式體積布拉格光柵或透射式體積布拉格光柵。對於可見光,輸入耦合器430可具有大於30%、50%、75%、90%或更高之耦合效率。耦合至基板420中之光可經由例如全內反射(total internal reflection;TIR)在基板420內傳播。基板420可呈一副眼鏡之透鏡的形式。基板420可具有平坦或彎曲表面,且可包括一或多種類型之介電材料,諸如玻璃、石英、塑膠、聚合物、聚(甲基丙烯酸甲酯)(PMMA)、晶體或陶瓷。基板之厚度可在例如小於約1 mm至約10 mm或大於10 mm之範圍內。基板420對於可見光可為透明的。Combiner 415 may include an input coupler 430 for coupling light from projector 410 into substrate 420 of combiner 415 . The combiner 415 can transmit at least 50% of the light in the first wavelength range and reflect at least 25% of the light in the second wavelength range. For example, the first wavelength range may be visible light from about 400 nm to about 650 nm, and the second wavelength range may be in the infrared band, eg, from about 800 nm to about 1000 nm. The input coupler 430 may include a volume holographic grating, a diffractive optical element (DOE) (eg, a surface relief grating), a sloped surface of the substrate 420 , or a refractive coupler (eg, a wedge or horn) . For example, the input coupler 430 may comprise a reflective volume Bragg grating or a transmissive volume Bragg grating. For visible light, the input coupler 430 may have a coupling efficiency greater than 30%, 50%, 75%, 90%, or higher. Light coupled into substrate 420 may propagate within substrate 420 via, for example, total internal reflection (TIR). Substrate 420 may be in the form of the lenses of a pair of eyeglasses. Substrate 420 may have a flat or curved surface, and may include one or more types of dielectric materials, such as glass, quartz, plastic, polymer, poly(methyl methacrylate) (PMMA), crystal, or ceramic. The thickness of the substrate may range, for example, from less than about 1 mm to about 10 mm or greater than 10 mm. The substrate 420 may be transparent to visible light.

基板420可包括或可耦接至複數個輸出耦合器440,該複數個輸出耦合器各自經組態以自基板420提取由基板420導引且在基板內傳播的光之至少一部分,且將所提取光460引導至當擴增實境系統400在使用中時擴增實境系統400之使用者的眼睛490可位於的眼眶495。複數個輸出耦合器440可複製出射光瞳以增加眼眶495之大小,使得所顯示影像在較大區域中可見。如輸入耦合器430,輸出耦合器440可包括光柵耦合器(例如,體積全像光柵或表面起伏光柵)、其他繞射光學元件(DOE)、稜鏡等。舉例而言,輸出耦合器440可包括反射式體積布拉格光柵或透射式體積布拉格光柵。輸出耦合器440在不同方位處可具有不同的耦合(例如,繞射)效率。基板420亦可允許來自組合器415前方之環境的光450在損失極少或無損失之情況下穿過。輸出耦合器440亦可允許光450在損失極少之情況下穿過。舉例而言,在一些實施方案中,輸出耦合器440對於光450可具有極低繞射效率,使得光450可在損失極少之情況下折射或以其他方式穿過輸出耦合器440,且因此可具有高於所提取光460之強度。在一些實施方案中,輸出耦合器440對於光450可具有高繞射效率,且可在損失極少之情況下在某些期望方向上(亦即,以某些期望繞射角)繞射光450。結果,使用者可能夠觀看組合器415前方之環境與由投影機410投影之虛擬物件之影像的組合影像。The substrate 420 may include or be coupled to a plurality of output couplers 440 each configured to extract from the substrate 420 at least a portion of the light directed by the substrate 420 and propagating within the substrate, and to divert all of the light from the substrate 420. The extracted light 460 is directed to the orbit 495 where the eyes 490 of the user of the augmented reality system 400 may be located when the augmented reality system 400 is in use. The plurality of output couplers 440 can replicate the exit pupil to increase the size of the eye socket 495 so that the displayed image is visible in a larger area. Like the input coupler 430, the output coupler 440 may include a grating coupler (eg, a volume holographic grating or a surface relief grating), other diffractive optical elements (DOE), crystals, and the like. For example, the output coupler 440 may comprise a reflective volume Bragg grating or a transmissive volume Bragg grating. The output coupler 440 may have different coupling (eg, diffraction) efficiencies at different orientations. Substrate 420 may also allow light 450 from the environment in front of combiner 415 to pass through with little or no loss. Output coupler 440 may also allow light 450 to pass through with minimal loss. For example, in some implementations, output coupler 440 may have very low diffraction efficiency for light 450, such that light 450 may be refracted or otherwise pass through output coupler 440 with little loss, and thus may Has an intensity higher than the extracted light 460. In some implementations, output coupler 440 can have high diffraction efficiency for light 450 and can diffract light 450 in certain desired directions (ie, at certain desired diffraction angles) with little loss. As a result, the user may be able to view a combined image of the environment in front of the combiner 415 and the image of the virtual object projected by the projector 410 .

5A示出根據某些具體實例之包括波導顯示器530的近眼顯示器(near-eye display;NED)裝置500之實例。NED裝置500可為近眼顯示器120、擴增實境系統400或另一類型之顯示裝置的實例。NED裝置500可包括光源510、投影光學件520及波導顯示器530。光源510可包括用於不同色彩之光發射器之多個面板,諸如紅光發射器512之面板、綠光發射器514之面板及藍光發射器516之面板。紅光發射器512經組織成陣列;綠光發射器514經組織成陣列;且藍光發射器516經組織成陣列。光源510中之光發射器的尺寸及間距可為小的。舉例而言,每一光發射器可具有小於2 μm(例如,約1.2 μm)之直徑,且間距可小於2 μm(例如,約1.5 μm)。因而,每一紅光發射器512、綠光發射器514及藍光發射器516中之光發射器之數目可等於或大於顯示影像中之像素之數目,諸如960×720、1280×720、1440×1080、1920×1080、2160×1080或2560×1080個像素。因此,顯示影像可由光源510同時產生。掃描元件可能不用於NED裝置500中。 5A illustrates an example of a near-eye display (NED) device 500 including a waveguide display 530, according to some specific examples. NED device 500 may be an example of near-eye display 120, augmented reality system 400, or another type of display device. NED device 500 may include light source 510 , projection optics 520 and waveguide display 530 . Light source 510 may include multiple panels for light emitters of different colors, such as a panel for red light emitters 512 , a panel for green light emitters 514 , and a panel for blue light emitters 516 . Red light emitters 512 are organized into arrays; green light emitters 514 are organized into arrays; and blue light emitters 516 are organized into arrays. The size and spacing of the light emitters in light source 510 can be small. For example, each light emitter can have a diameter of less than 2 μm (eg, about 1.2 μm), and the pitch can be less than 2 μm (eg, about 1.5 μm). Thus, the number of light emitters in each of red light emitter 512, green light emitter 514, and blue light emitter 516 may be equal to or greater than the number of pixels in the display image, such as 960x720, 1280x720, 1440x 1080, 1920×1080, 2160×1080 or 2560×1080 pixels. Therefore, the display image can be simultaneously generated by the light sources 510 . Scanning elements may not be used in NED device 500 .

在到達波導顯示器530之前,由光源510發射之光可由投影光學件520調節,該投影光學件可包括透鏡陣列。投影光學件520可使由光源510發射之光準直或將該光聚焦至波導顯示器530,該波導顯示器可包括用於將由光源510發射之光耦合至波導顯示器530中的耦合器532。耦合至波導顯示器530中之光可例如經由如上文關於圖4所描述之全內反射在波導顯示器530內傳播。耦合器532亦可將在波導顯示器530內傳播之光的部分耦合出波導顯示器530且導向使用者之眼睛590。Before reaching waveguide display 530, the light emitted by light source 510 may be conditioned by projection optics 520, which may include an array of lenses. Projection optics 520 may collimate or focus light emitted by light source 510 to waveguide display 530 , which may include a coupler 532 for coupling light emitted by light source 510 into waveguide display 530 . Light coupled into waveguide display 530 may propagate within waveguide display 530, eg, via total internal reflection as described above with respect to FIG. 4 . The coupler 532 may also couple a portion of the light propagating within the waveguide display 530 out of the waveguide display 530 and towards the eye 590 of the user.

5B示出根據某些具體實例之包括波導顯示器580的近眼顯示器(NED)裝置550之實例。在一些具體實例中,NED裝置550可使用掃描鏡面570以將來自光源540之光投影至影像場,其中使用者之眼睛590可位於該影像場中。NED裝置550可為近眼顯示器120、擴增實境系統400或另一類型之顯示裝置的實例。光源540可包括一或多列或一或多行不同色彩之光發射器,諸如多列紅光發射器542、多列綠光發射器544及多列藍光發射器546。舉例而言,紅光發射器542、綠光發射器544及藍光發射器546可各自包括N列,每一列包括例如2560個光發射器(像素)。紅光發射器542經組織成陣列;綠光發射器544經組織成陣列;且藍光發射器546經組織成陣列。在一些具體實例中,光源540可針對每一色彩包括單行光發射器。在一些具體實例中,光源540可針對紅色、綠色及藍色中之每一者包括多行光發射器,其中每一行可包括例如1080個光發射器。在一些具體實例中,光源540中之光發射器之尺寸及/或間距可相對較大(例如,約3至5 μm),且因此光源540可能不包括用於同時產生完整顯示影像之足夠的光發射器。舉例而言,用於單種色彩之光發射器之數目可小於顯示影像中之像素之數目(例如,2560×1080個像素)。由光源540發射之光可為準直或發散光束之集合。 5B shows an example of a near-eye display (NED) device 550 including a waveguide display 580, according to some specific examples. In some embodiments, NED device 550 may use scanning mirror 570 to project light from light source 540 into an image field in which the user's eye 590 may be located. NED device 550 may be an example of near-eye display 120, augmented reality system 400, or another type of display device. Light source 540 may include one or more columns or rows of light emitters of different colors, such as columns of red light emitters 542 , columns of green light emitters 544 , and columns of blue light emitters 546 . For example, red light emitters 542, green light emitters 544, and blue light emitters 546 may each include N columns, each column including, for example, 2560 light emitters (pixels). Red light emitters 542 are organized into arrays; green light emitters 544 are organized into arrays; and blue light emitters 546 are organized into arrays. In some specific examples, light source 540 may include a single row of light emitters for each color. In some specific examples, light source 540 may include multiple rows of light emitters for each of red, green, and blue, where each row may include, for example, 1080 light emitters. In some embodiments, the size and/or spacing of the light emitters in light source 540 may be relatively large (eg, about 3 to 5 μm), and thus light source 540 may not include enough to simultaneously produce a complete display image light transmitter. For example, the number of light emitters for a single color may be less than the number of pixels in the displayed image (eg, 2560x1080 pixels). The light emitted by light source 540 may be a collection of collimated or diverging beams.

在到達掃描鏡面570之前,由光源540發射之光可由諸如準直透鏡或自由形式光學元件560之各種光學裝置來調節。自由形式光學元件560可包括例如可將由光源540發射之光導向掃描鏡面570的多琢面稜鏡或另一光摺疊元件,諸如將由光源540發射之光之傳播方向改變例如約90°或更大。在一些具體實例中,自由形式光學元件560可旋轉以使光進行掃描。掃描鏡面570及/或自由形式光學元件560可將由光源540發射之光反射及投影至波導顯示器580,該波導顯示器可包括用於將由光源540發射之光耦合至波導顯示器580中的耦合器582。耦合至波導顯示器580中之光可例如經由如上文關於圖4所描述之全內反射在波導顯示器580內傳播。耦合器582亦可將在波導顯示器580內傳播之光的部分耦合出波導顯示器580且導向使用者之眼睛590。The light emitted by the light source 540 may be conditioned by various optical devices such as collimating lenses or free-form optical elements 560 before reaching the scanning mirror 570 . Free-form optical element 560 may include, for example, a faceted facet or another light-folding element that may direct light emitted by light source 540 toward scanning mirror 570, such as to change the direction of propagation of light emitted by light source 540, for example, by about 90° or more . In some specific examples, the free-form optical element 560 can be rotated to scan the light. Scanning mirror 570 and/or free-form optical element 560 can reflect and project light emitted by light source 540 to waveguide display 580 , which can include a coupler 582 for coupling the light emitted by light source 540 into waveguide display 580 . Light coupled into waveguide display 580 may propagate within waveguide display 580, eg, via total internal reflection as described above with respect to FIG. 4 . The coupler 582 may also couple a portion of the light propagating within the waveguide display 580 out of the waveguide display 580 and towards the eye 590 of the user.

掃描鏡面570可包括微機電系統(MEMS)鏡面或任何其他合適鏡面。掃描鏡面570可旋轉以在一個或兩個維度上進行掃描。在掃描鏡面570旋轉時,由光源540發射之光可被導向波導顯示器580之不同區域,使得完整顯示影像可在每個掃描循環中被投影至波導顯示器580上且由波導顯示器580導向使用者之眼睛590。舉例而言,在光源540包括一或多列或行中之所有像素之光發射器的具體實例中,掃描鏡面570可在行方向或列方向(例如,x方向或y方向)上旋轉以掃描影像。在光源540包括一或多列或行中之一些但非所有像素之光發射器的具體實例中,掃描鏡面570可在列方向及行方向兩者(例如,x方向及y方向兩者)上旋轉以投影顯示影像(例如,使用光柵型掃描圖案)。Scanning mirror 570 may comprise a microelectromechanical system (MEMS) mirror or any other suitable mirror. Scanning mirror 570 can be rotated to scan in one or two dimensions. As scanning mirror 570 rotates, light emitted by light source 540 may be directed to different areas of waveguide display 580 so that the complete display image may be projected onto waveguide display 580 and directed by waveguide display 580 to the user during each scan cycle Eye 590. For example, in embodiments where light source 540 includes light emitters for all pixels in one or more columns or rows, scanning mirror 570 may be rotated in a row or column direction (eg, x-direction or y-direction) to scan image. In embodiments where light source 540 includes light emitters of some, but not all, pixels in one or more columns or rows, scanning mirror 570 may be in both the column and row directions (eg, both the x-direction and the y-direction) Rotate to project the display image (for example, using a raster-type scan pattern).

NED裝置550可在預定義顯示週期中操作。顯示週期(例如,顯示循環)可指掃描或投影完整影像之持續時間。舉例而言,顯示週期可為期望圖框速率之倒數。在包括掃描鏡面570之NED裝置550中,顯示週期亦可被稱作掃描週期或掃描循環。由光源540進行之光產生可與掃描鏡面570之旋轉同步。舉例而言,每一掃描循環可包括多個掃描步驟,其中光源540可在每一各別掃描步驟中產生不同光圖案。The NED device 550 may operate in a predefined display period. A display period (eg, a display cycle) may refer to the duration of scanning or projecting a complete image. For example, the display period may be the inverse of the desired frame rate. In the NED device 550 including the scan mirror 570, the display period may also be referred to as a scan period or scan cycle. The light generation by the light source 540 can be synchronized with the rotation of the scanning mirror 570 . For example, each scan cycle may include multiple scan steps, wherein the light source 540 may generate a different light pattern in each respective scan step.

在每一掃描循環中,在掃描鏡面570旋轉時,顯示影像可被投影至波導顯示器580及使用者之眼睛590上。顯示影像之給定像素方位的實際色值及光強度(例如,亮度)可為在掃描週期期間照明該像素方位之三種色彩(例如,紅色、綠色及藍色)之光束的平均值。在完成掃描週期之後,掃描鏡面570可回復至初始位置以投影下一顯示影像之前幾列的光,或可在反方向上或以掃描圖案旋轉以投影下一顯示影像之光,其中新的一組驅動信號可被饋送至光源540。當掃描鏡面570在每一掃描循環中旋轉時,可重複相同程序。因而,可在不同掃描循環中將不同影像投影至使用者之眼睛590。During each scan cycle, the display image can be projected onto the waveguide display 580 and the user's eye 590 as the scan mirror 570 rotates. The actual color value and light intensity (eg, brightness) for a given pixel orientation of the displayed image may be the average of the three colors (eg, red, green, and blue) beams illuminating that pixel orientation during a scan cycle. After the scanning cycle is completed, the scanning mirror 570 can be returned to the initial position to project the light of the previous columns of the next display image, or can be rotated in the opposite direction or in a scanning pattern to project the light of the next display image, in which a new set of The driving signal may be fed to the light source 540 . The same procedure can be repeated as the scan mirror 570 is rotated in each scan cycle. Thus, different images can be projected to the user's eye 590 in different scan cycles.

6示出根據某些具體實例之近眼顯示器系統600中的影像源總成610之實例。影像源總成610可包括例如可產生待投影至使用者之眼睛之顯示影像的顯示面板640,及可將由顯示面板640產生之顯示影像投影至如上文關於圖4至圖5B所描述之波導顯示器的投影機650。顯示面板640可包括光源642及用於光源642之驅動器電路644。光源642可包括例如光源510或540。投影機650可包括例如上文所描述之自由形式光學元件560、掃描鏡面570及/或投影光學件520。近眼顯示器系統600亦可包括同步地控制光源642及投影機650(例如,掃描鏡面570)之控制器620。影像源總成610可產生影像光且將影像光輸出至波導顯示器(圖6中未展示),諸如波導顯示器530或580。如上文所描述,波導顯示器可在一或多個輸入耦合元件處接收影像光,且將所接收影像光導引至一或多個輸出耦合元件。輸入及輸出耦合元件可包括例如繞射光柵、全像光柵、稜鏡或其任何組合。輸入耦合元件可經選擇使得波導顯示器發生全內反射。輸出耦合元件可將經全內反射之影像光之部分耦合出波導顯示器。 6 illustrates an example of an image source assembly 610 in a near-eye display system 600 according to some embodiments. Image source assembly 610 may include, for example, a display panel 640 that may generate a display image to be projected to a user's eye, and may project the display image generated by display panel 640 to a waveguide display as described above with respect to FIGS. 4-5B projector 650. The display panel 640 may include a light source 642 and a driver circuit 644 for the light source 642 . Light source 642 may include light source 510 or 540, for example. Projector 650 may include, for example, free-form optics 560, scanning mirror 570, and/or projection optics 520, as described above. The near-eye display system 600 may also include a controller 620 that synchronously controls the light source 642 and the projector 650 (eg, the scanning mirror 570). Image source assembly 610 may generate and output image light to a waveguide display (not shown in FIG. 6 ), such as waveguide display 530 or 580 . As described above, a waveguide display can receive image light at one or more in-coupling elements and direct the received image light to one or more out-coupling elements. The input and output coupling elements may include, for example, diffraction gratings, holographic gratings, crystals, or any combination thereof. The input coupling elements can be selected such that total internal reflection of the waveguide display occurs. The out-coupling element may couple a portion of the TIR image light out of the waveguide display.

如上文所描述,光源642可包括以陣列或矩陣配置之複數個光發射器。每一光發射器可發射單色光,諸如紅光、藍光、綠光、紅外光及其類似者。雖然在本發明中常常論述RGB色彩,但本文中所描述之具體實例不限於將紅色、綠色及藍色用作原色。其他色彩亦可用作近眼顯示器系統600之原色。在一些具體實例中,根據一具體實例之顯示面板可使用多於三種原色。光源642中之每一像素可包括三個子像素,該等子像素包括紅色微LED、綠色微LED及藍色微LED。半導體LED通常包括多個半導體材料層內之作用發光層。多個半導體材料層可包括不同的化合物材料或具有不同摻雜劑及/或不同摻雜密度之相同基底材料。舉例而言,多個半導體材料層可包括n型材料層、可包括異質結構(例如,一或多個量子井)之作用區,及P型材料層。多個半導體材料層可生長於具有某一定向之基板的表面上。在一些具體實例中,為了提高光提取效率,可形成包括該等半導體材料層中之至少一些的台面。As described above, light source 642 may include a plurality of light emitters configured in an array or matrix. Each light emitter can emit monochromatic light, such as red light, blue light, green light, infrared light, and the like. While RGB colors are often discussed in this disclosure, the specific examples described herein are not limited to the use of red, green, and blue as primary colors. Other colors can also be used as the primary colors of the near-eye display system 600 . In some embodiments, a display panel according to an embodiment may use more than three primary colors. Each pixel in light source 642 may include three sub-pixels including red micro-LEDs, green micro-LEDs, and blue micro-LEDs. Semiconductor LEDs typically include functional light-emitting layers within multiple layers of semiconductor material. The multiple layers of semiconductor material may include different compound materials or the same base material with different dopants and/or different doping densities. For example, the plurality of layers of semiconductor material can include layers of n-type material, active regions that can include heterostructures (eg, one or more quantum wells), and layers of p-type material. Multiple layers of semiconductor material can be grown on the surface of a substrate having a certain orientation. In some embodiments, to improve light extraction efficiency, mesas may be formed that include at least some of the layers of semiconductor material.

控制器620可控制影像源總成610之影像顯現操作,諸如光源642及/或投影機650之操作。舉例而言,控制器620可判定供影像源總成610顯現一或多個顯示影像之指令。該等指令可包括顯示指令及掃描指令。在一些具體實例中,顯示指令可包括影像檔案(例如,位元映像檔案)。可自例如控制台接收顯示指令,該控制台諸如為上文關於圖1所描述之控制台110。掃描指令可由影像源總成610使用以產生影像光。掃描指令可指定例如影像光源之類型(例如,單色或多色)、掃描速率、掃描設備之定向、一或多個照明參數,或其任何組合。控制器620可包括此處未展示以免混淆本發明之其他態樣的硬體、軟體及/或韌體之組合。The controller 620 may control the image rendering operations of the image source assembly 610 , such as the operation of the light source 642 and/or the projector 650 . For example, controller 620 may determine instructions for image source assembly 610 to present one or more display images. The commands may include display commands and scan commands. In some embodiments, the display instructions may include an image file (eg, a bitmap file). Display instructions may be received from, for example, a console, such as console 110 described above with respect to FIG. 1 . Scan commands may be used by image source assembly 610 to generate image light. The scan instructions may specify, for example, the type of image light source (eg, monochromatic or polychromatic), the scan rate, the orientation of the scanning device, one or more lighting parameters, or any combination thereof. Controller 620 may include a combination of hardware, software and/or firmware not shown here in order not to obscure other aspects of the present invention.

在一些具體實例中,控制器620可為顯示裝置之圖形處理單元(graphics processing unit;GPU)。在其他具體實例中,控制器620可為其他種類之處理器。由控制器620執行之操作可包括獲取用於顯示之內容及將內容劃分成離散區段。控制器620可將掃描指令提供至光源642,該等掃描指令包括對應於光源642之個別源元件的位址及/或施加至個別源元件之電偏壓。控制器620可指示光源642使用對應於最終顯示給使用者之影像中的一或多列像素之光發射器來依序呈現離散區段。控制器620亦可指示投影機650執行對光之不同調整。舉例而言,控制器620可控制投影機650以將離散區段掃描至如上文關於圖5B所描述之波導顯示器(例如,波導顯示器580)的耦合元件之不同區域。因而,在波導顯示器之出射光瞳處,每一離散部分呈現於不同各別方位中。雖然在不同各別時間呈現每一離散區段,但離散區段之呈現及掃描足夠快速地進行,使得使用者之眼睛可將不同區段整合成單個影像或一系列影像。In some embodiments, the controller 620 may be a graphics processing unit (GPU) of the display device. In other embodiments, the controller 620 may be other kinds of processors. Operations performed by controller 620 may include acquiring content for display and dividing the content into discrete segments. Controller 620 may provide scan commands to light source 642, the scan commands including addresses corresponding to individual source elements of light source 642 and/or electrical biases applied to the individual source elements. The controller 620 may instruct the light source 642 to sequentially render discrete segments using light emitters corresponding to one or more columns of pixels in the image ultimately displayed to the user. The controller 620 can also instruct the projector 650 to perform various adjustments to the light. For example, controller 620 may control projector 650 to scan discrete segments to different regions of the coupling elements of a waveguide display (eg, waveguide display 580) as described above with respect to FIG. 5B. Thus, at the exit pupil of the waveguide display, each discrete portion appears in a different respective orientation. Although each discrete segment is presented at different separate times, the presentation and scanning of the discrete segments occurs quickly enough that the user's eye can integrate the different segments into a single image or series of images.

影像處理器630可為專用於執行本文中所描述之特徵的一通用處理器及/或一或多個特殊應用電路。在一個具體實例中,通用處理器可耦接至記憶體以執行使處理器執行本文中所描述之某些程序的軟體指令。在另一具體實例中,影像處理器630可為專用於執行某些特徵之一或多個電路。雖然影像處理器630在圖6中展示為與控制器620及驅動器電路644分離之獨立單元,但在其他具體實例中,影像處理器630可為控制器620或驅動器電路644之子單元。換言之,在彼等具體實例中,控制器620或驅動器電路644可執行影像處理器630之各種影像處理功能。影像處理器630亦可被稱作影像處理電路。Image processor 630 may be a general-purpose processor and/or one or more application-specific circuits dedicated to performing the features described herein. In one embodiment, a general-purpose processor may be coupled to memory to execute software instructions that cause the processor to perform certain programs described herein. In another embodiment, image processor 630 may be one or more circuits dedicated to performing certain features. Although image processor 630 is shown in FIG. 6 as a separate unit from controller 620 and driver circuit 644, in other embodiments, image processor 630 may be a subunit of controller 620 or driver circuit 644. In other words, controller 620 or driver circuit 644 may perform various image processing functions of image processor 630 in these specific examples. The image processor 630 may also be referred to as an image processing circuit.

在圖6中所展示之實例中,光源642可由驅動器電路644基於自控制器620或影像處理器630發送之資料或指令(例如,顯示及掃描指令)來驅動。在一個具體實例中,驅動器電路644可包括連接至光源642之各種光發射器且機械地固持該等光發射器之電路面板。光源642可根據由控制器620設定且由影像處理器630及驅動電路644潛在地調整之一或多個照明參數來發射光。照明參數可由光源642使用以產生光。照明參數可包括例如源波長、脈衝速率、脈衝振幅、光束類型(連續或脈衝式)、可影響所發射光之其他參數,或其任何組合。在一些具體實例中,由光源642產生之源光可包括多個紅光、綠光及藍光光束,或其任何組合。In the example shown in FIG. 6 , light source 642 may be driven by driver circuit 644 based on data or commands sent from controller 620 or image processor 630 (eg, display and scan commands). In one specific example, the driver circuit 644 may include a circuit panel that connects to the various light emitters of the light source 642 and mechanically holds the light emitters. Light source 642 may emit light according to one or more illumination parameters set by controller 620 and potentially adjusted by image processor 630 and driver circuit 644 . Lighting parameters may be used by light source 642 to generate light. Illumination parameters can include, for example, source wavelength, pulse rate, pulse amplitude, beam type (continuous or pulsed), other parameters that can affect the light emitted, or any combination thereof. In some embodiments, the source light generated by light source 642 may include a plurality of red, green, and blue light beams, or any combination thereof.

投影機650可執行一組光學功能,諸如將由光源642產生之影像光進行聚焦、組合、調節或掃描。在一些具體實例中,投影機650可包括組合總成、光調節總成或掃描鏡面總成。投影機650可包括以光學方式調整且潛在地重導向來自光源642之光的一或多個光學組件。光調整之一個實例可包括調節光,諸如擴展、準直、校正一或多個光學誤差(例如,場彎曲、色像差等)、一些其他光調整,或其任何組合。投影機650之光學組件可包括例如透鏡、鏡面、光圈、光柵,或其任何組合。Projector 650 may perform a set of optical functions, such as focusing, combining, conditioning, or scanning the image light produced by light source 642 . In some specific examples, projector 650 may include a combination assembly, a light conditioning assembly, or a scanning mirror assembly. Projector 650 may include one or more optical components that optically adjust and potentially redirect light from light source 642 . An example of light conditioning may include conditioning the light, such as expanding, collimating, correcting one or more optical errors (eg, curvature of field, chromatic aberrations, etc.), some other light conditioning, or any combination thereof. The optical components of projector 650 may include, for example, lenses, mirrors, apertures, gratings, or any combination thereof.

投影機650可經由其一或多個反射及/或折射部分重導向影像光,使得影像光以某些定向朝向波導顯示器投影。影像光經重導向波導顯示器之方位可取決於一或多個反射及/或折射部分之特定定向。在一些具體實例中,投影機650包括在至少兩個維度上掃描之單個掃描鏡面。在其他具體實例中,投影機650可包括各自在彼此正交之方向上掃描的複數個掃描鏡面。投影機650可執行光柵掃描(水平地或垂直地)、雙諧振掃描,或其任何組合。在一些具體實例中,投影機650可以特定振盪頻率沿著水平及/或垂直方向執行受控振動,以沿著兩個維度掃描且產生呈現給使用者之眼睛的媒體之二維投影影像。在其他具體實例中,投影機650可包括可用於與一或多個掃描鏡面類似或相同之功能的透鏡或稜鏡。在一些具體實例中,影像源總成610可能不包括投影機,其中由光源642發射之光可直接入射於波導顯示器上。Projector 650 may redirect image light via one or more reflective and/or refractive portions thereof such that the image light is projected toward the waveguide display in certain orientations. The orientation of the image light redirected to the waveguide display may depend on the particular orientation of one or more reflective and/or refractive moieties. In some embodiments, projector 650 includes a single scanning mirror that scans in at least two dimensions. In other embodiments, projector 650 may include a plurality of scanning mirrors that each scan in directions orthogonal to each other. Projector 650 may perform raster scanning (horizontal or vertical), dual resonance scanning, or any combination thereof. In some embodiments, the projector 650 may perform controlled vibration along the horizontal and/or vertical directions at a particular oscillation frequency to scan in two dimensions and produce a two-dimensional projected image of the media presented to the user's eye. In other embodiments, projector 650 may include a lens or lens that may be used for similar or the same function as one or more scanning mirrors. In some embodiments, image source assembly 610 may not include a projector, wherein light emitted by light source 642 may be directly incident on the waveguide display.

在半導體LED中,通常經由作用區(例如,一或多個半導體層)內電子與電洞之重組以某一內部量子效率產生光子,其中內部量子效率為發射光子之作用區中的輻射電子-電洞重組之比例。可接著在特定方向上或在特定立體角內自LED提取所產生之光。自LED提取之所發射光子的數目與通過LED之電子的數目之間的比率被稱作外部量子效率,其描述LED將所注入電子轉換為自裝置提取之光子的效率。In semiconductor LEDs, photons are typically generated via recombination of electrons and holes within the active region (eg, one or more semiconductor layers) with some internal quantum efficiency, where the internal quantum efficiency is the radiated electrons in the active region where the photons are emitted - The ratio of hole reorganization. The resulting light can then be extracted from the LED in a specific direction or within a specific solid angle. The ratio between the number of emitted photons extracted from the LED and the number of electrons passed through the LED is called the external quantum efficiency, which describes the efficiency with which the LED converts injected electrons into photons extracted from the device.

外部量子效率可與注入效率、內部量子效率及提取效率成比例。注入效率係指通過裝置的注入至作用區中的電子之比例。提取效率為在作用區中產生之自裝置逸出的光子之比例。對於LED,且特定而言,對於具有減小之實體尺寸的微LED,改善內部及外部量子效率及/或控制發射光譜可具挑戰性。在一些具體實例中,為了提高光提取效率,可形成包括半導體材料層中之至少一些的台面。The external quantum efficiency can be proportional to the injection efficiency, the internal quantum efficiency and the extraction efficiency. Injection efficiency refers to the proportion of electrons injected into the active region through the device. Extraction efficiency is the fraction of photons generated in the active region that escape from the device. For LEDs, and in particular for microLEDs with reduced physical size, improving internal and external quantum efficiency and/or controlling the emission spectrum can be challenging. In some embodiments, to improve light extraction efficiency, mesas may be formed that include at least some of the layers of semiconductor material.

7A示出具有垂直台面結構之LED 700的實例。LED 700可為光源510、540或642中之光發射器。LED 700可為由諸如多個半導體材料層之無機材料製成的微LED。分層半導體發光裝置可包括多個III-V族半導體材料層。III-V族半導體材料可包括一或多種III族元素,諸如鋁(Al)、鎵(Ga)或銦(In),以及V族元素,諸如氮(N)、磷(P)、砷(As)或銻(Sb)。當III-V族半導體材料之V族元素包括氮時,III-V族半導體材料被稱作III族氮化物材料。分層半導體發光裝置可藉由使用諸如以下各者之技術在基板上生長多個磊晶層來製造:氣相磊晶法(vapor-phase epitaxy;VPE)、液相磊晶法(liquid-phase epitaxy;LPE)、分子束磊晶法(molecular beam epitaxy;MBE)或金屬有機化學氣相沈積(metalorganic chemical vapor deposition;MOCVD)。舉例而言,半導體材料層可以某一晶格定向(例如,極性、非極性或半極性定向)在基板上逐層生長,該基板諸如為GaN、GaAs或GaP基板,或包括但不限於以下各者之基板:藍寶石、碳化矽、矽、氧化鋅、氮化硼、鋁酸鋰、鈮酸鋰、鍺、氮化鋁、鎵酸鋰、部分取代之尖晶石或共用β-LiAlO 2結構之四元四方氧化物,其中該基板可在特定方向上經切割以曝露特定平面作為生長表面。 FIG. 7A shows an example of an LED 700 having a vertical mesa structure. LED 700 may be a light emitter in light source 510 , 540 or 642 . LED 700 may be a micro-LED made of inorganic material, such as multiple layers of semiconductor material. The layered semiconductor light emitting device may include a plurality of layers of III-V semiconductor materials. Group III-V semiconductor materials may include one or more group III elements, such as aluminum (Al), gallium (Ga), or indium (In), and group V elements, such as nitrogen (N), phosphorus (P), arsenic (As ) or antimony (Sb). When the group V element of the III-V semiconductor material includes nitrogen, the III-V semiconductor material is referred to as a III-nitride material. Layered semiconductor light emitting devices can be fabricated by growing multiple epitaxial layers on a substrate using techniques such as: vapor-phase epitaxy (VPE), liquid-phase epitaxy (liquid-phase) epitaxy; LPE), molecular beam epitaxy (MBE), or metalorganic chemical vapor deposition (MOCVD). For example, layers of semiconductor material may be grown layer by layer in a lattice orientation (eg, polar, non-polar, or semi-polar orientation) on a substrate, such as a GaN, GaAs, or GaP substrate, or including but not limited to the following Substrates: sapphire, silicon carbide, silicon, zinc oxide, boron nitride, lithium aluminate, lithium niobate, germanium, aluminum nitride, lithium gallate, partially substituted spinel, or those with a shared β-LiAlO 2 structure Quaternary tetragonal oxides, where the substrate can be cut in specific directions to expose specific planes as growth surfaces.

在圖7A中所展示之實例中,LED 700可包括基板710,該基板可包括例如藍寶石基板或GaN基板。半導體層720可生長於基板710上。半導體層720可包括III-V族材料,諸如GaN,且可經p摻雜(例如,摻雜有Mg、Ca、Zn或Be)或經n摻雜(例如,摻雜有Si或Ge)。一或多個作用層730可生長於半導體層720上以形成作用區。作用層730可包括III-V族材料,諸如一或多個InGaN層、一或多個AlInGaP層及/或一或多個GaN層,該等層可形成一或多個異質結構,諸如一或多個量子井或MQW。半導體層740可生長於作用層730上。半導體層740可包括III-V族材料,諸如GaN,且可經p摻雜(例如,摻雜有Mg、Ca、Zn或Be)或經n摻雜(例如,摻雜有Si或Ge)。半導體層720及半導體層740中之一者可為p型層,且另一者可為n型層。半導體層720及半導體層740包夾作用層730以形成發光區。舉例而言,LED 700可包括InGaN層,該層位於摻雜有鎂之p型GaN層與摻雜有矽或氧之n型GaN層之間。在一些具體實例中,LED 700可包括AlInGaP層,該層位於摻雜有鋅或鎂之P型AlInGaP層與摻雜有硒、矽或碲之n型AlInGaP層之間。In the example shown in FIG. 7A, LED 700 may include a substrate 710, which may include, for example, a sapphire substrate or a GaN substrate. The semiconductor layer 720 may be grown on the substrate 710 . The semiconductor layer 720 may include a III-V material, such as GaN, and may be p-doped (eg, doped with Mg, Ca, Zn, or Be) or n-doped (eg, doped with Si or Ge). One or more active layers 730 may be grown on the semiconductor layer 720 to form active regions. The active layer 730 may comprise III-V materials, such as one or more InGaN layers, one or more AlInGaP layers, and/or one or more GaN layers, which may form one or more heterostructures, such as one or more Multiple quantum wells or MQWs. The semiconductor layer 740 may be grown on the active layer 730 . The semiconductor layer 740 may include a III-V material, such as GaN, and may be p-doped (eg, doped with Mg, Ca, Zn, or Be) or n-doped (eg, doped with Si or Ge). One of the semiconductor layer 720 and the semiconductor layer 740 may be a p-type layer, and the other may be an n-type layer. The semiconductor layer 720 and the semiconductor layer 740 sandwich the active layer 730 to form a light emitting region. For example, LED 700 may include an InGaN layer between a p-type GaN layer doped with magnesium and an n-type GaN layer doped with silicon or oxygen. In some embodiments, LED 700 may include an AlInGaP layer between a p-type AlInGaP layer doped with zinc or magnesium and an n-type AlInGaP layer doped with selenium, silicon, or tellurium.

在一些具體實例中,可生長電子阻擋層(electron-blocking layer;EBL)(圖7A中未展示)以在作用層730與半導體層720或半導體層740中之至少一者之間形成層。EBL可減小電子洩漏電流且改善LED之效率。在一些具體實例中,諸如P +或P ++半導體層之重摻雜半導體層750可形成於半導體層740上且充當用於形成歐姆接觸且減小裝置之接觸阻抗的接觸層。在一些具體實例中,導電層760可形成於重摻雜半導體層750上。導電層760可包括例如氧化銦錫(indium tin oxide;ITO)或Al/Ni/Au膜。在一個實例中,導電層760可包括透明ITO層。 In some embodiments, an electron-blocking layer (EBL) (not shown in FIG. 7A ) can be grown to form a layer between active layer 730 and at least one of semiconductor layer 720 or semiconductor layer 740 . EBL can reduce electron leakage current and improve the efficiency of LED. In some embodiments, a heavily doped semiconductor layer 750, such as a P + or P ++ semiconductor layer, can be formed on semiconductor layer 740 and serve as a contact layer for forming ohmic contacts and reducing the contact resistance of the device. In some embodiments, conductive layer 760 may be formed on heavily doped semiconductor layer 750 . The conductive layer 760 may include, for example, indium tin oxide (ITO) or an Al/Ni/Au film. In one example, the conductive layer 760 may include a transparent ITO layer.

為了與半導體層720(例如,n-GaN層)接觸且為了更高效地自LED 700提取由作用層730發射之光,半導體材料層(包括重摻雜半導體層750、半導體層740、作用層730及半導體層720)可經蝕刻以曝露半導體層720且形成包括層720至760之台面結構。台面結構可將載流子限於裝置內。蝕刻台面結構可導致形成可正交於生長平面之台面側壁732。鈍化層770可形成於台面結構之側壁732上。鈍化層770可包括氧化物層,諸如SiO 2層,且可充當反射器以將所發射光反射出LED 700。接觸層780可包括金屬層,諸如Al、Au、Ni、Ti或其任何組合,該接觸層可形成於半導體層720上且可充當LED 700之電極。此外,諸如Al/Ni/Au金屬層之另一接觸層790可形成於導電層760上且可充當LED 700之另一電極。 In order to make contact with the semiconductor layer 720 (eg, n-GaN layer) and to more efficiently extract the light emitted by the active layer 730 from the LED 700, the semiconductor material layers (including the heavily doped semiconductor layer 750, the semiconductor layer 740, the active layer 730 and semiconductor layer 720) may be etched to expose semiconductor layer 720 and form mesa structures including layers 720-760. The mesa structure can confine charge carriers within the device. Etching the mesa structures can result in the formation of mesa sidewalls 732 that can be normal to the growth plane. A passivation layer 770 may be formed on the sidewalls 732 of the mesa structure. Passivation layer 770 may include an oxide layer, such as a SiO 2 layer, and may act as a reflector to reflect the emitted light out of LED 700 . Contact layer 780 , which can include a metal layer, such as Al, Au, Ni, Ti, or any combination thereof, can be formed on semiconductor layer 720 and can serve as an electrode for LED 700 . Furthermore, another contact layer 790 such as an Al/Ni/Au metal layer can be formed on the conductive layer 760 and can serve as another electrode of the LED 700 .

當將電壓信號施加至接觸層780及790時,電子及電洞可在作用層730中重組,其中電子及電洞之重組可引起光子發射。所發射光子之波長及能量可取決於作用層730中之價帶與導電帶之間的能帶間隙。舉例而言,InGaN作用層可發射綠光或藍光,AlGaN作用層可發射藍光至紫外光,而AlInGaP作用層可發射紅光、橙光、黃光或綠光。所發射光子可由鈍化層770反射且可自頂部(例如,導電層760及接觸層790)或底部(例如,基板710)射出LED 700。When a voltage signal is applied to contact layers 780 and 790, electrons and holes can recombine in active layer 730, where the recombination of electrons and holes can cause photon emission. The wavelength and energy of the emitted photons may depend on the energy band gap between the valence and conduction bands in active layer 730 . For example, the InGaN active layer can emit green or blue light, the AlGaN active layer can emit blue to ultraviolet light, and the AlInGaP active layer can emit red, orange, yellow, or green light. The emitted photons may be reflected by passivation layer 770 and may exit LED 700 from the top (eg, conductive layer 760 and contact layer 790 ) or the bottom (eg, substrate 710 ).

在一些具體實例中,LED 700可在諸如基板710之光發射表面上包括一或多個其他組件,諸如透鏡,以使所發射光聚焦或準直或將所發射光耦合至波導中。在一些具體實例中,LED可包括另一形狀之台面,諸如平面、圓錐形、半拋物線形或拋物線形形狀,且台面之基底區域可為圓形、矩形、六邊形或三角形。舉例而言,LED可包括彎曲形狀(例如,抛物面形狀)及/或非彎曲形狀(例如,圓錐形狀)之台面。該台面可經截斷或未經截斷。In some specific examples, LED 700 may include one or more other components, such as lenses, on a light emitting surface, such as substrate 710, to focus or collimate emitted light or to couple emitted light into a waveguide. In some embodiments, the LED can include a mesa of another shape, such as a planar, conical, semi-parabolic, or parabolic shape, and the base area of the mesa can be circular, rectangular, hexagonal, or triangular. For example, LEDs may include mesas in a curved shape (eg, a parabolic shape) and/or a non-curved shape (eg, a conical shape). The table top can be truncated or untruncated.

7B為具有拋物線形台面結構之LED 705之實例的橫截面圖。類似於LED 700,LED 705可包括多個半導體材料層,諸如多個III-V族半導體材料層。半導體材料層可磊晶生長於基板715上,該基板諸如為GaN基板或藍寶石基板。舉例而言,半導體層725可生長於基板715上。半導體層725可包括III-V族材料,諸如GaN,且可經p摻雜(例如,摻雜有Mg、Ca、Zn或Be)或經n摻雜(例如,摻雜有Si或Ge)。一或多個作用層735可生長於半導體層725上。作用層735可包括III-V族材料,諸如一或多個InGaN層、一或多個AlInGaP層及/或一或多個GaN層,該等層可形成一或多個異質結構,諸如一或多個量子井。半導體層745可生長於作用層735上。半導體層745可包括III-V族材料,諸如GaN,且可經p摻雜(例如,摻雜有Mg、Ca、Zn或Be)或經n摻雜(例如,摻雜有Si或Ge)。半導體層725及半導體層745中之一者可為p型層,且另一者可為n型層。 7B is a cross-sectional view of an example of an LED 705 having a parabolic mesa structure. Similar to LED 700, LED 705 may include multiple layers of semiconductor material, such as multiple layers of III-V semiconductor material. A layer of semiconductor material may be epitaxially grown on a substrate 715, such as a GaN substrate or a sapphire substrate. For example, semiconductor layer 725 may be grown on substrate 715 . The semiconductor layer 725 may include a III-V material, such as GaN, and may be p-doped (eg, doped with Mg, Ca, Zn, or Be) or n-doped (eg, doped with Si or Ge). One or more active layers 735 may be grown on the semiconductor layer 725 . The active layer 735 may comprise III-V materials, such as one or more InGaN layers, one or more AlInGaP layers, and/or one or more GaN layers, which may form one or more heterostructures, such as one or more Multiple quantum wells. The semiconductor layer 745 may be grown on the active layer 735 . The semiconductor layer 745 may include a III-V material, such as GaN, and may be p-doped (eg, doped with Mg, Ca, Zn, or Be) or n-doped (eg, doped with Si or Ge). One of the semiconductor layer 725 and the semiconductor layer 745 may be a p-type layer, and the other may be an n-type layer.

為了與半導體層725(例如,n型GaN層)接觸且為了更高效地自LED 705提取由作用層735發射之光,半導體層可經蝕刻以曝露半導體層725且形成包括層725至745之台面結構。台面結構可將載流子限於裝置之注入區域內。蝕刻台面結構可導致形成台面側壁(在本文中亦被稱作琢面),該等台面側壁可能不平行於或在一些狀況下正交於與層725至745之結晶生長相關聯的生長平面。In order to contact semiconductor layer 725 (eg, an n-type GaN layer) and to more efficiently extract light emitted by active layer 735 from LED 705, the semiconductor layer may be etched to expose semiconductor layer 725 and form mesas comprising layers 725-745 structure. The mesa structure can confine charge carriers within the implanted region of the device. Etching the mesa structures may result in the formation of mesa sidewalls (also referred to herein as facets) that may not be parallel or in some cases orthogonal to the growth planes associated with the crystalline growth of layers 725-745.

如圖7B中所展示,LED 705可具有包括平坦頂部之台面結構。介電層775(例如,SiO 2或SiNx)可形成於台面結構之琢面上。在一些具體實例中,介電層775可包括多個介電材料層。在一些具體實例中,金屬層795可形成於介電層775上。金屬層795可包括一或多種金屬或金屬合金材料,諸如鋁(Al)、銀(Ag)、金(Au)、鉑(Pt)、鈦(Ti)、銅(Cu),或其任何組合。介電層775及金屬層795可形成可朝向基板715反射由作用層735發射之光的台面反射器。在一些具體實例中,台面反射器可為拋物線形以充當可至少部分地使所發射光準直之拋物線反射器。 As shown in Figure 7B, LED 705 may have a mesa structure including a flat top. A dielectric layer 775 (eg, SiO 2 or SiNx) may be formed on the facets of the mesa structure. In some specific examples, the dielectric layer 775 may include multiple layers of dielectric material. In some embodiments, metal layer 795 may be formed on dielectric layer 775 . Metal layer 795 may include one or more metals or metal alloy materials, such as aluminum (Al), silver (Ag), gold (Au), platinum (Pt), titanium (Ti), copper (Cu), or any combination thereof. Dielectric layer 775 and metal layer 795 can form a mesa reflector that can reflect light emitted by active layer 735 toward substrate 715 . In some embodiments, the mesa reflector can be parabolically shaped to act as a parabolic reflector that can at least partially collimate the emitted light.

電接點765及電接點785可分別形成於半導體層745及半導體層725上以充當電極。電接點765及電接點785可各自包括導電材料,諸如Al、Au、Pt、Ag、Ni、Ti、Cu或其任何組合(例如,Ag/Pt/Au或Al/Ni/Au),且可充當LED 705之電極。在圖7B中所展示之實例中,電接點785可為n接點,且電接點765可為p接點。電接點765及半導體層745(例如,p型半導體層)可形成背向反射器以用於將由作用層735發射之光朝向基板715反射回。在一些具體實例中,電接點765及金屬層795包括相同材料,且可使用相同製程形成。在一些具體實例中,可包括額外導電層(圖中未示)作為電接點765及785與半導體層之間的中間導電層。Electrical contacts 765 and 785 may be formed on semiconductor layer 745 and semiconductor layer 725, respectively, to serve as electrodes. Electrical contact 765 and electrical contact 785 may each include a conductive material, such as Al, Au, Pt, Ag, Ni, Ti, Cu, or any combination thereof (eg, Ag/Pt/Au or Al/Ni/Au), and Can act as an electrode for LED 705. In the example shown in FIG. 7B, electrical contact 785 can be an n-contact, and electrical contact 765 can be a p-contact. Electrical contacts 765 and semiconductor layer 745 (eg, a p-type semiconductor layer) may form a back reflector for reflecting light emitted by active layer 735 back toward substrate 715 . In some embodiments, electrical contacts 765 and metal layer 795 comprise the same material and can be formed using the same process. In some embodiments, additional conductive layers (not shown) may be included as intermediate conductive layers between electrical contacts 765 and 785 and the semiconductor layer.

當在接點765及785上施加電壓信號時,電子及電洞可在作用層735中重組。電子及電洞之重組可引起光子發射,因此產生光。所發射光子之波長及能量可取決於作用層735中之價帶與導電帶之間的能帶間隙。舉例而言,InGaN作用層可發射綠光或藍光,而AlInGaP作用層可發射紅光、橙光、黃光或綠光。所發射光子可在許多不同方向上傳播,且可由台面反射器及/或背向反射器反射,且可例如自圖7B中所展示之底側(例如,基板715)射出LED 705。一或多個其他二次光學組件,諸如透鏡或光柵,可形成於諸如基板715之光發射表面上,以使所發射光聚焦或準直及/或將所發射光耦合至波導中。Electrons and holes can recombine in active layer 735 when voltage signals are applied across contacts 765 and 785 . The recombination of electrons and holes can cause photons to be emitted, thus producing light. The wavelength and energy of the emitted photons may depend on the energy band gap between the valence and conduction bands in active layer 735 . For example, the InGaN active layer can emit green or blue light, while the AlInGaP active layer can emit red, orange, yellow, or green light. The emitted photons can travel in many different directions, and can be reflected by the mesa reflector and/or back reflector, and can exit the LED 705, eg, from the bottom side (eg, substrate 715) shown in Figure 7B. One or more other secondary optical components, such as lenses or gratings, may be formed on a light emitting surface, such as substrate 715, to focus or collimate and/or couple the emitted light into a waveguide.

可在晶圓上製造上文所描述之LED的一維或二維陣列以形成光源(例如,光源642)。可使用CMOS製程在例如矽晶圓上製造驅動器電路(例如,驅動器電路644)。晶圓上之LED及驅動器電路可經切割且接著接合在一起,或可在晶圓級上接合且接著經切割。各種接合技術可用於接合LED及驅動器電路,諸如黏接、金屬間接合、金屬氧化物接合、晶圓間接合、晶粒至晶圓接合、混合接合及其類似者。One-dimensional or two-dimensional arrays of the LEDs described above can be fabricated on a wafer to form a light source (eg, light source 642). The driver circuit (eg, driver circuit 644 ) may be fabricated on, for example, a silicon wafer using a CMOS process. The LED and driver circuits on the wafer can be diced and then bonded together, or can be bonded at the wafer level and then diced. Various bonding techniques can be used to bond the LEDs and driver circuits, such as bonding, metal-to-metal bonding, metal oxide bonding, wafer-to-wafer bonding, die-to-wafer bonding, hybrid bonding, and the like.

8A示出根據某些具體實例之用於LED陣列的晶粒至晶圓接合方法之實例。在圖8A中所展示之實例中,LED陣列801可包括載體基板805上之複數個LED 807。載體基板805可包括各種材料,諸如GaAs、InP、GaN、AlN、藍寶石、SiC、Si或其類似物。LED 807可藉由例如在執行接合之前生長各種磊晶層、形成台面結構及形成電接點或電極來製造。磊晶層可包括各種材料,諸如GaN、InGaN、(AlGaIn)P、(AlGaIn)AsP、(AlGaIn)AsN、(AlGaIn)Pas、(Eu:InGa)N、(AlGaIn)N或其類似物,且可包括n型層、p型層及作用層,該作用層包括一或多個異質結構,諸如一或多個量子井或MQW。電接點可包括各種導電材料,諸如金屬或金屬合金。 8A shows an example of a die-to-wafer bonding method for an LED array according to some embodiments . In the example shown in FIG. 8A , LED array 801 may include a plurality of LEDs 807 on carrier substrate 805 . Carrier substrate 805 may include various materials such as GaAs, InP, GaN, AlN, sapphire, SiC, Si, or the like. LED 807 can be fabricated by, for example, growing various epitaxial layers, forming mesa structures, and forming electrical contacts or electrodes before performing bonding. The epitaxial layer may include various materials such as GaN, InGaN, (AlGaIn)P, (AlGaIn)AsP, (AlGaIn)AsN, (AlGaIn)Pas, (Eu:InGa)N, (AlGaIn)N, or the like, and An n-type layer, a p-type layer, and an active layer may be included, the active layer including one or more heterostructures, such as one or more quantum wells or MQWs. The electrical contacts may include various conductive materials, such as metals or metal alloys.

晶圓803可包括上面製造有被動或主動積體電路(例如,驅動器電路811)之基底層809。基底層809可包括例如矽晶圓。驅動器電路811可用以控制LED 807之操作。舉例而言,用於每一LED 807之驅動器電路可包括具有兩個電晶體及一個電容器之2T1C像素結構。晶圓803亦可包括接合層813。接合層813可包括各種材料,諸如金屬、氧化物、介電質、CuSn、AuTi及其類似物。在一些具體實例中,經圖案化層815可形成於接合層813之表面上,其中經圖案化層815可包括由諸如Cu、Ag、Au、Al或其類似物之導電材料製成的金屬柵格。Wafer 803 may include base layer 809 on which passive or active integrated circuits (eg, driver circuits 811 ) are fabricated. The base layer 809 may include, for example, a silicon wafer. The driver circuit 811 may be used to control the operation of the LED 807 . For example, the driver circuit for each LED 807 may include a 2T1C pixel structure with two transistors and one capacitor. Wafer 803 may also include bonding layer 813 . The bonding layer 813 may include various materials such as metals, oxides, dielectrics, CuSn, AuTi, and the like. In some embodiments, a patterned layer 815 can be formed on the surface of the bonding layer 813, where the patterned layer 815 can include a metal gate made of a conductive material such as Cu, Ag, Au, Al, or the like grid.

LED陣列801可經由接合層813或經圖案化層815接合至晶圓803。舉例而言,經圖案化層815可包括由諸如CuSn、AuSn或奈米多孔Au之各種材料製成的金屬墊或凸塊,該等金屬墊或凸塊可用以將LED陣列801中之LED 807與晶圓803上之對應驅動器電路811對準。在一個實例中,可使LED陣列801朝向晶圓803,直至LED 807與對應於驅動器電路811之各別金屬墊或凸塊接觸。LED 807中之一些或全部可與驅動器電路811對準,且可接著藉由諸如金屬間接合之各種接合技術經由經圖案化層815接合至晶圓803。在LED 807已接合至晶圓803之後,可自LED 807移除載體基板805。LED array 801 can be bonded to wafer 803 via bonding layer 813 or patterned layer 815 . For example, patterned layer 815 can include metal pads or bumps made of various materials such as CuSn, AuSn, or nanoporous Au, which can be used to connect LEDs 807 in LED array 801 Aligned with corresponding driver circuits 811 on wafer 803 . In one example, LED array 801 can be directed toward wafer 803 until LEDs 807 are in contact with respective metal pads or bumps corresponding to driver circuits 811 . Some or all of the LEDs 807 can be aligned with the driver circuit 811 and can then be bonded to the wafer 803 through the patterned layer 815 by various bonding techniques such as metal-to-metal bonding. After the LEDs 807 have been bonded to the wafer 803 , the carrier substrate 805 can be removed from the LEDs 807 .

8B示出根據某些具體實例之用於LED陣列的晶圓間接合方法之實例。如圖8B中所展示,第一晶圓802可包括基板804、第一半導體層806、作用層808及第二半導體層810。基板804可包括各種材料,諸如GaAs、InP、GaN、AlN、藍寶石、SiC、Si或其類似物。第一半導體層806、作用層808及第二半導體層810可包括各種半導體材料,諸如GaN、InGaN、(AlGaIn)P、(AlGaIn)AsP、(AlGaIn)AsN、(AlGaIn)Pas、(Eu:InGa)N、(AlGaIn)N或其類似物。在一些具體實例中,第一半導體層806可為n型層,且第二半導體層810可為p型層。舉例而言,第一半導體層806可為n摻雜GaN層(例如,摻雜有Si或Ge),且第二半導體層810可為p摻雜GaN層(例如,摻雜有Mg、Ca、Zn或Be)。作用層808可包括例如一或多個GaN層、一或多個InGaN層、一或多個AlInGaP層及其類似者,該等層可形成一或多個異質結構,諸如一或多個量子井或MQW。 8B illustrates an example of an inter-wafer bonding method for an LED array according to some embodiments. As shown in FIG. 8B , the first wafer 802 may include a substrate 804 , a first semiconductor layer 806 , an active layer 808 , and a second semiconductor layer 810 . Substrate 804 may include various materials such as GaAs, InP, GaN, AlN, sapphire, SiC, Si, or the like. The first semiconductor layer 806, the active layer 808, and the second semiconductor layer 810 may include various semiconductor materials, such as GaN, InGaN, (AlGaIn)P, (AlGaIn)AsP, (AlGaIn)AsN, (AlGaIn)Pas, (Eu:InGa) )N, (AlGaIn)N or the like. In some embodiments, the first semiconductor layer 806 can be an n-type layer, and the second semiconductor layer 810 can be a p-type layer. For example, the first semiconductor layer 806 may be an n-doped GaN layer (eg, doped with Si or Ge), and the second semiconductor layer 810 may be a p-doped GaN layer (eg, doped with Mg, Ca, Zn or Be). The active layer 808 may include, for example, one or more layers of GaN, one or more layers of InGaN, one or more layers of AlInGaP, and the like, which layers may form one or more heterostructures, such as one or more quantum wells or MQW.

在一些具體實例中,第一晶圓802亦可包括接合層。接合層812可包括各種材料,諸如金屬、氧化物、介電質、CuSn、AuTi或其類似物。在一個實例中,接合層812可包括p接點及/或n接點(圖中未示)。在一些具體實例中,其他層亦可包括於第一晶圓802上,諸如基板804與第一半導體層806之間的緩衝層。緩衝層可包括各種材料,諸如多晶GaN或AlN。在一些具體實例中,接觸層可在第二半導體層810與接合層812之間。接觸層可包括用於將電接點提供至第二半導體層810及/或第一半導體層806之任何合適材料。In some embodiments, the first wafer 802 may also include a bonding layer. Bonding layer 812 may include various materials such as metals, oxides, dielectrics, CuSn, AuTi, or the like. In one example, the bonding layer 812 may include p-contacts and/or n-contacts (not shown). In some embodiments, other layers may also be included on the first wafer 802 , such as a buffer layer between the substrate 804 and the first semiconductor layer 806 . The buffer layer may include various materials such as polycrystalline GaN or AlN. In some specific examples, the contact layer may be between the second semiconductor layer 810 and the bonding layer 812 . The contact layer may include any suitable material for providing electrical contacts to the second semiconductor layer 810 and/or the first semiconductor layer 806 .

第一晶圓802可經由接合層813及/或接合層812接合至包括如上文所描述之驅動器電路811及接合層813的晶圓803。接合層812及接合層813可由相同材料或不同材料製成。接合層813及接合層812可為實質上平坦的。第一晶圓802可藉由各種方法接合至晶圓803,該等方法諸如為金屬間接合、共晶接合、金屬氧化物接合、陽極接合、熱壓縮接合、紫外線(UV)接合及/或熔融接合。The first wafer 802 may be bonded to the wafer 803 including the driver circuit 811 and the bonding layer 813 as described above via the bonding layer 813 and/or the bonding layer 812 . The bonding layer 812 and the bonding layer 813 may be made of the same material or different materials. Bonding layer 813 and bonding layer 812 may be substantially flat. The first wafer 802 can be bonded to the wafer 803 by various methods, such as intermetallic bonding, eutectic bonding, metal oxide bonding, anodic bonding, thermocompression bonding, ultraviolet (UV) bonding, and/or melting engage.

如圖8B中所展示,第一晶圓802可在第一晶圓802之p側(例如,第二半導體層810)面向下(亦即,朝向晶圓803)的情況下接合至晶圓803。在接合之後,可自第一晶圓802移除基板804,且可接著自n側處理第一晶圓802。處理可包括例如形成用於個別LED之某些台面形狀,以及形成對應於個別LED之光學組件。As shown in FIG. 8B , first wafer 802 may be bonded to wafer 803 with the p-side of first wafer 802 (eg, second semiconductor layer 810 ) facing down (ie, toward wafer 803 ). . After bonding, the substrate 804 can be removed from the first wafer 802, and the first wafer 802 can then be processed from the n-side. Processing may include, for example, forming certain mesa shapes for individual LEDs, and forming optical components corresponding to individual LEDs.

9A 至圖 9D示出根據某些具體實例之用於LED陣列之混合接合的方法之實例。混合接合通常可包括晶圓清潔及活化、一個晶圓之接點與另一晶圓之接點的高精度對準、介電材料在室溫下在晶圓之表面處的介電接合,及藉由在高溫下退火而進行的接點之金屬接合。 9A展示上面製造有被動或主動電路920之基板910。如上文關於圖8A至圖8B所描述,基板910可包括例如矽晶圓。電路920可包括用於LED陣列之驅動器電路。接合層可包括介電區940及經由電互連件922連接至電路920之接觸墊930。接觸墊930可包括例如Cu、Ag、Au、Al、W、Mo、Ni、Ti、Pt、Pd或其類似物。介電區940中之介電材料可包括SiCN、SiO 2、SiN、Al 2O 3、HfO 2、ZrO 2、Ta 2O 5或其類似物。接合層可使用例如化學機械拋光來進行平坦化及拋光,其中平坦化或拋光可引起接觸墊中之凹陷(碗狀輪廓)。接合層之表面可藉由例如離子(例如,電漿)或快速原子(例如,Ar)束905來清潔及活化。經活化表面可在原子級上清潔且在晶圓例如在室溫下接觸時可為反應性的,以用於在晶圓之間形成直接接合。 9A - 9D illustrate an example of a method for hybrid bonding of LED arrays according to certain embodiments. Hybrid bonding may typically include wafer cleaning and activation, high precision alignment of contacts on one wafer to contacts on another wafer, dielectric bonding of dielectric materials at the surface of the wafer at room temperature, and Metal bonding of contacts by annealing at high temperature. Figure 9A shows a substrate 910 on which passive or active circuits 920 are fabricated. As described above with respect to FIGS. 8A-8B, the substrate 910 may include, for example, a silicon wafer. Circuit 920 may include driver circuitry for the LED array. The bonding layer may include dielectric regions 940 and contact pads 930 connected to circuit 920 via electrical interconnects 922 . The contact pads 930 may include, for example, Cu, Ag, Au, Al, W, Mo, Ni, Ti, Pt, Pd, or the like. The dielectric material in the dielectric region 940 may include SiCN, SiO 2 , SiN, Al 2 O 3 , HfO 2 , ZrO 2 , Ta 2 O 5 or the like. The bonding layer can be planarized and polished using, for example, chemical mechanical polishing, where the planarization or polishing can cause a depression (bowl-like profile) in the contact pad. The surface of the bonding layer can be cleaned and activated by, for example, an ion (eg, plasma) or fast atom (eg, Ar) beam 905 . The activated surface can be atomically clean and reactive when the wafers are contacted, eg, at room temperature, for forming a direct bond between the wafers.

9B示出晶圓950,該晶圓包括製造於其上之微LED 970之陣列,如上文關於例如圖7A至圖8B所描述。晶圓950可為載體晶圓,且可包括例如GaAs、InP、GaN、AlN、藍寶石、SiC、Si或其類似物。微LED 970可包括磊晶生長於晶圓950上之n型層、作用區及p型層。磊晶層可包括上文所描述之各種III-V族半導體材料,且可自p型層側經處理以蝕刻磊晶層中之台面結構,諸如實質上垂直結構、拋物線形結構、圓錐結構或其類似者。鈍化層及/或反射層可形成於台面結構之側壁上。p接點980及n接點982可形成於沈積在台面結構上之介電材料層960中,且可分別與p型層及n型層進行電接觸。介電材料層960中之介電材料可包括例如SiCN、SiO 2、SiN、Al 2O 3、HfO 2、ZrO 2、Ta 2O 5或其類似物。p接點980及n接點982可包括例如Cu、Ag、Au、Al、W、Mo、Ni、Ti、Pt、Pd或其類似物。p接點980、n接點982及介電材料層960之頂表面可形成接合層。接合層可使用例如化學機械拋光來進行平坦化及拋光,其中拋光可引起p接點980及n接點982中之凹陷。接合層可接著藉由例如離子(例如,電漿)或快速原子(例如,Ar)束915來清潔及活化。經活化表面可在原子級上清潔且在晶圓例如在室溫下接觸時為反應性的,以用於在晶圓之間形成直接接合。 Figure 9B shows a wafer 950 that includes an array of microLEDs 970 fabricated thereon, as described above with respect to, eg, Figures 7A-8B. Wafer 950 may be a carrier wafer, and may include, for example, GaAs, InP, GaN, AlN, sapphire, SiC, Si, or the like. Micro LED 970 may include an n-type layer, an active region, and a p-type layer epitaxially grown on wafer 950 . The epitaxial layer may include the various III-V semiconductor materials described above, and may be processed from the p-type layer side to etch mesa structures in the epitaxial layer, such as substantially vertical structures, parabolic structures, conical structures, or its similar. A passivation layer and/or a reflective layer may be formed on the sidewalls of the mesa structure. A p-contact 980 and an n-contact 982 can be formed in the dielectric material layer 960 deposited on the mesa structure and can be in electrical contact with the p-type and n-type layers, respectively. The dielectric material in the dielectric material layer 960 may include, for example, SiCN, SiO 2 , SiN, Al 2 O 3 , HfO 2 , ZrO 2 , Ta 2 O 5 , or the like. The p-contact 980 and the n-contact 982 may include, for example, Cu, Ag, Au, Al, W, Mo, Ni, Ti, Pt, Pd, or the like. The top surfaces of p-contact 980, n-contact 982 and dielectric material layer 960 may form a bonding layer. The bonding layer can be planarized and polished using, for example, chemical mechanical polishing, where polishing can cause recesses in p-contact 980 and n-contact 982 . The bonding layer can then be cleaned and activated by, for example, an ion (eg, plasma) or fast atom (eg, Ar) beam 915 . Activated surfaces can be atomically clean and reactive when the wafers are contacted, eg, at room temperature, for forming direct bonds between wafers.

9C示出用於接合該等接合層中之介電材料的室溫接合製程。舉例而言,在包括介電區940及接觸墊930之接合層以及包括p接點980、n接點982及介電材料層960之接合層經表面活化之後,可倒置晶圓950及微LED 970且使其與基板910及形成於其上之電路接觸。在一些具體實例中,可將壓縮壓力925施加至基板910及晶圓950,使得接合層彼此壓靠。歸因於表面活化及接點中之凹陷,介電區940及介電材料層960可因為表面吸引力而直接接觸,且可進行反應並在其間形成化學鍵,此係因為表面原子可具有懸鍵且在活化之後可處於不穩定能態。因此,可在具有或不具有熱處理或壓力之情況下將介電區940及介電材料層960中之介電材料接合在一起。 Figure 9C shows a room temperature bonding process for bonding the dielectric materials in the bonding layers. For example, after surface activation of the bonding layer including dielectric regions 940 and contact pads 930 and the bonding layer including p-contact 980, n-contact 982 and dielectric material layer 960, wafer 950 and micro LEDs may be inverted 970 and make contact with the substrate 910 and the circuits formed thereon. In some embodiments, compressive pressure 925 may be applied to substrate 910 and wafer 950 such that the bonding layers are pressed against each other. Due to surface activation and recesses in the contacts, the dielectric region 940 and the layer of dielectric material 960 can be in direct contact due to surface attractive forces and can react and form chemical bonds therebetween because the surface atoms can have dangling bonds And can be in an unstable energy state after activation. Thus, the dielectric regions 940 and the dielectric material in the dielectric material layer 960 can be bonded together with or without thermal treatment or pressure.

9D示出用於在接合該等接合層中之介電材料之後接合該等接合層中之接點的退火製程。舉例而言,接觸墊930及p接點980或n接點982可藉由在例如約200℃至400℃或更高之溫度下進行退火而接合在一起。在退火製程期間,熱935可使接點比介電材料膨脹更多(歸因於不同熱膨脹係數),且因此可閉合接點之間的凹陷間隙,使得接觸墊930及p接點980或n接點982可進行接觸且可在經活化表面處形成直接金屬接合。 9D illustrates an annealing process for bonding the contacts in the bonding layers after bonding the dielectric material in the bonding layers. For example, contact pads 930 and p-contacts 980 or n-contacts 982 may be joined together by annealing, eg, at a temperature of about 200°C to 400°C or higher. During the annealing process, the heat 935 can cause the contacts to expand more than the dielectric material (due to the different coefficients of thermal expansion), and thus can close the recessed gap between the contacts such that the contact pad 930 and p-contact 980 or n Contacts 982 can make contact and can form a direct metal bond at the activated surface.

在兩個經接合晶圓包括具有不同熱膨脹係數(coefficient of thermal expansion;CTE)之材料的一些具體實例中,在室溫下接合之介電材料可幫助減少或防止由不同熱膨脹造成的接觸墊之未對準。在一些具體實例中,為了進一步減少或避免接觸墊在退火期間在高溫下之未對準,可在接合之前在微LED之間、在微LED之群組之間、穿過基板中之部分或全部或在類似處形成溝槽。In some embodiments where the two bonded wafers include materials with different coefficients of thermal expansion (CTE), the dielectric material bonded at room temperature can help reduce or prevent contact pads from different thermal expansion. misaligned. In some embodiments, to further reduce or avoid misalignment of contact pads at high temperatures during annealing, between microLEDs, between groups of microLEDs, through portions in the substrate, or Grooves are formed all or the like.

在微LED接合至驅動器電路之後,上面製造有微LED之基板可經薄化或移除,且各種二次光學組件可製造於微LED之發光表面上,以例如提取、準直及重導向自微LED之作用區發射的光。在一個實例中,微透鏡可形成於微LED上,其中每一微透鏡可對應於各別微LED,且可幫助改善光提取效率且使由微LED發射之光準直。在一些具體實例中,二次光學組件可製造於基板或微LED之n型層中。在一些具體實例中,二次光學組件可製造於沈積在微LED之n型側上的介電層中。二次光學組件之實例可包括透鏡、光柵、抗反射(AR)塗層、稜鏡、光子晶體或其類似者。After the microLEDs are bonded to the driver circuit, the substrate on which the microLEDs are fabricated can be thinned or removed, and various secondary optical components can be fabricated on the light-emitting surface of the microLEDs, such as to extract, collimate, and redirect from The light emitted by the active area of the micro LED. In one example, microlenses can be formed on the microLEDs, where each microlens can correspond to a respective microLED, and can help improve light extraction efficiency and collimate light emitted by the microLEDs. In some embodiments, the secondary optical components can be fabricated in the substrate or in the n-type layer of the microLED. In some embodiments, the secondary optical components can be fabricated in a dielectric layer deposited on the n-type side of the microLED. Examples of secondary optical components may include lenses, gratings, anti-reflection (AR) coatings, crystals, photonic crystals, or the like.

10示出根據某些具體實例之上面製造有二次光學組件的LED陣列1000之實例。可藉由使用上文關於例如圖8A至圖9D所描述之任何合適的接合技術將LED晶片或晶圓與矽晶圓接合來製造LED陣列1000,該矽晶圓包括製造於其上的電路。在圖10中所展示之實例中,可使用如上文關於圖9A至圖9D所描述之晶圓間混合接合技術來接合LED陣列1000。LED陣列1000可包括基板1010,該基板可為例如矽晶圓。諸如LED驅動器電路之積體電路1020可製造於基板1010上。積體電路1020可經由互連件1022及接觸墊1030連接至微LED 1070之p接點1074及n接點1072,其中接觸墊1030可與p接點1074及n接點1072形成金屬接合。基板1010上之介電層1040可經由熔融接合而接合至介電層1060。 FIG. 10 shows an example of an LED array 1000 with a secondary optical component fabricated thereon, according to some specific examples. LED array 1000 may be fabricated by bonding an LED chip or wafer to a silicon wafer including circuits fabricated thereon using any suitable bonding technique such as described above with respect to FIGS. 8A-9D. In the example shown in Figure 10, LED array 1000 may be bonded using hybrid bonding techniques between wafers as described above with respect to Figures 9A-9D. The LED array 1000 may include a substrate 1010, which may be, for example, a silicon wafer. Integrated circuits 1020 such as LED driver circuits can be fabricated on substrate 1010 . The integrated circuit 1020 can be connected to the p-contact 1074 and the n-contact 1072 of the microLED 1070 via interconnects 1022 and contact pads 1030, which can form a metal bond with the p-contact 1074 and the n-contact 1072. The dielectric layer 1040 on the substrate 1010 may be bonded to the dielectric layer 1060 via fusion bonding.

LED晶片或晶圓之基板(圖中未示)可經薄化或可被移除以曝露微LED 1070之n型層1050。諸如球面微透鏡1082、光柵1084、微透鏡1086、抗反射層1088及其類似者之各種二次光學組件可形成於n型層1050中或該n型層之頂部上。舉例而言,可使用灰度光罩及對曝露光具有線性回應之光阻,或使用藉由經圖案化光阻層之熱回焊形成的蝕刻光罩在微LED 1070之半導體材料中蝕刻球面微透鏡陣列。亦可使用類似光微影技術或其他技術在沈積於n型層1050上之介電層中蝕刻二次光學組件。舉例而言,微透鏡陣列可經由使用二元光罩圖案化之聚合物層的熱回焊而形成於聚合物層中。聚合物層中之微透鏡陣列可用作二次光學組件或可用作蝕刻光罩以用於將微透鏡陣列之輪廓轉移至介電層或半導體層中。介電層可包括例如SiCN、SiO 2、SiN、Al 2O 3、HfO 2、ZrO 2、Ta 2O 5或其類似物。在一些具體實例中,微LED 1070可具有多個對應二次光學組件,諸如微透鏡及抗反射塗層、在半導體材料中蝕刻之微透鏡及在介電材料層中蝕刻之微透鏡、微透鏡及光柵、球面透鏡及非球面透鏡,以及其類似者。圖10中示出三個不同的二次光學組件以展示可形成於微LED 1070上之二次光學組件之一些實例,此未必暗示針對每個LED陣列同時使用不同的二次光學組件。 用以減小由 LED 產生之光之光束發散度的結晶波導 The substrate of the LED chip or wafer (not shown) can be thinned or removed to expose the n-type layer 1050 of the microLED 1070 . Various secondary optical components such as spherical microlenses 1082, gratings 1084, microlenses 1086, antireflection layers 1088, and the like can be formed in or on top of n-type layer 1050. For example, a grayscale mask and a photoresist that responds linearly to exposure light can be used, or an etch mask formed by thermal reflow of a patterned photoresist layer can be used to etch spheres in the semiconductor material of the microLED 1070 Microlens array. Secondary optical components may also be etched in the dielectric layer deposited over n-type layer 1050 using similar photolithography or other techniques. For example, a microlens array can be formed in the polymer layer via thermal reflow of the polymer layer patterned using a binary mask. The microlens array in the polymer layer can be used as a secondary optical component or can be used as an etch mask for transferring the profile of the microlens array into a dielectric or semiconductor layer. The dielectric layer may include, for example, SiCN, SiO 2 , SiN, Al 2 O 3 , HfO 2 , ZrO 2 , Ta 2 O 5 , or the like. In some embodiments, the micro-LED 1070 may have a plurality of corresponding secondary optical components, such as micro-lenses and anti-reflection coatings, micro-lenses etched in semiconductor material and micro-lenses etched in dielectric material layers, micro-lenses and gratings, spherical and aspherical lenses, and the like. Three different secondary optical components are shown in FIG. 10 to show some examples of secondary optical components that can be formed on microLED 1070, which does not necessarily imply the simultaneous use of different secondary optical components for each LED array. Crystalline waveguide for reducing the beam divergence of light produced by an LED

除結合圖10所論述之二次光學組件以外及/或替代該等二次光學組件,在一些具體實例中,基於半導體之波導亦可用作二次光學組件。如上文所提及,由LED發射之光束可能過於發散及/或漫射而無法用於許多應用中(例如,作為頭戴式顯示器、近眼顯示器、抬頭顯示器及其類似者中之光源)。舉例而言,在不具有使光束準直及/或減小光束發散度之一些二次光學組件的情況下,可能無法直接使用發射具有類朗伯角分佈之光束的LED。可使用本文中所論述之波導作為二次光學組件以對LED之光束進行整形(例如,使光束準直及/或減小光束發散度)。當使用波導作為二次光學組件時,此等類朗伯LED可用於需要相對準直光源及/或具有窄光束輪廓之光束(例如,具有小光束發散度之光束)的應用中。In addition to and/or in place of the secondary optical components discussed in connection with Figure 10, in some embodiments, semiconductor-based waveguides may also be used as secondary optical components. As mentioned above, the light beams emitted by LEDs can be too divergent and/or diffuse to be useful in many applications (eg, as light sources in head mounted displays, near eye displays, head up displays, and the like). For example, it may not be possible to directly use an LED emitting a beam with a Lambertian-like distribution without having some secondary optical components to collimate the beam and/or reduce the beam divergence. The waveguides discussed herein can be used as secondary optical components to shape the beam of an LED (eg, to collimate the beam and/or reduce beam divergence). When using waveguides as secondary optical components, these Lambertian-like LEDs can be used in applications that require relatively collimated light sources and/or beams with narrow beam profiles (eg, beams with small beam divergence).

11A示出根據某些具體實例之由類朗伯發光裝置1102發射的光1106之實例角分佈1108。發光裝置1102可為LED,諸如本文中所論述之任何LED,包括但不限於圖7A之LED 700、圖7B之LED 705及/或圖10之LED 1070。LED 1102可為微發光二極體(μLED)。因而,LED 1102可包括以第一光束發散度發射光(如由箭頭1106指示)之發光表面(LES) 1126。LES 1126之線性尺寸可小於10微米。第一光束發散度可特徵界定為類朗伯角分佈1108,例如,

Figure 02_image007
,其中I為光束強度且θ為自正交於LES 1126之向量量測的角度。在類朗伯角分佈1108之曲線中,y軸表示光束強度( I)且x軸表示角分佈(θ)之角度。因為大量的光1106之強度及/或功率在窄角度範圍(例如,
Figure 02_image009
)之外,所以角分佈1108可能過於漫射及/或分散而無法在許多應用中直接使用LED 1102作為光源1102。 11A shows an example angular distribution 1108 of light 1106 emitted by a Lambertian-like light emitting device 1102, according to some specific examples . Lighting device 1102 may be an LED, such as any LED discussed herein, including but not limited to LED 700 of FIG. 7A , LED 705 of FIG. 7B , and/or LED 1070 of FIG. 10 . The LEDs 1102 may be micro light emitting diodes (μLEDs). Thus, the LED 1102 can include a light emitting surface (LES) 1126 that emits light (as indicated by arrow 1106 ) at a first beam divergence. The linear dimensions of the LES 1126 may be less than 10 microns. The first beam divergence can be characterized as a Lambertian-like distribution 1108, eg,
Figure 02_image007
, where I is the beam intensity and θ is the angle measured from a vector normal to the LES 1126 . In the plot of the Lambertian-like distribution 1108, the y-axis represents the beam intensity ( I ) and the x-axis represents the angle of the angular distribution (θ). Because a large amount of light 1106 has an intensity and/or power over a narrow angular range (eg,
Figure 02_image009
), so the angular distribution 1108 may be too diffuse and/or diffuse to directly use the LED 1102 as the light source 1102 in many applications.

11B示出根據一些具體實例之光源1110的橫截面圖,該光源包括波導陣列1114作為用於發光裝置陣列1112之光束準直二次光學組件。相比圖11A中所示出之不使用任何二次光學組件的僅發光裝置1102,圖11B之光源1100可用於需要具有減小之光束發散度之相對準直光束的各種應用中。波導陣列1114可包括第一波導1140。發光裝置陣列可包括第一發光裝置(例如,圖11A之發光裝置1102)。如由圖11A之朗伯角分佈1108所展示,發光裝置1102之發光表面(LES) 1126可以第一光束發散度發射光束。發光裝置陣列1112中之其他發光裝置中之每一者可為發光裝置1102之另一例項。因此,陣列1112中之每一發光裝置可發射具有類朗伯角分佈1008(例如,第一光束發散度)之相對未準直光束。對於波導陣列1114之三維(3D)結構的例示性(但非限制性)具體實例之投影視圖,參見圖12A之底部。在圖12A中,波導陣列1114為二維(2D)波導陣列。在其他具體實例中,波導陣列1114可為一維(1D)波導陣列。 11B shows a cross-sectional view of a light source 1110 that includes an array of waveguides 1114 as a beam collimating secondary optical component for an array of light emitting devices 1112, according to some embodiments. The light source 1100 of FIG. 11B can be used in a variety of applications where a relatively collimated beam with reduced beam divergence is desired compared to the light-emitting-only device 1102 shown in FIG. 11A that does not use any secondary optical components. The waveguide array 1114 may include a first waveguide 1140 . The array of light emitting devices may include a first light emitting device (eg, light emitting device 1102 of FIG. 11A ). As shown by the Lambertian angle distribution 1108 of FIG. 11A, the light emitting surface (LES) 1126 of the light emitting device 1102 can emit a light beam at a first beam divergence. Each of the other light emitting devices in light emitting device array 1112 may be another instance of light emitting device 1102 . Thus, each light emitting device in the array 1112 can emit a relatively uncollimated light beam having a Lambertian-like distribution 1008 (eg, a first beam divergence). See the bottom of FIG. 12A for a projected view of an illustrative (but non-limiting) embodiment of the three-dimensional (3D) structure of the waveguide array 1114. In Figure 12A, the waveguide array 1114 is a two-dimensional (2D) waveguide array. In other specific examples, the waveguide array 1114 may be a one-dimensional (1D) waveguide array.

發光裝置陣列1112可類似於圖8A之LED陣列801、圖9B至圖9D之LED陣列970及/或圖10之LED陣列1000中之至少一者。因此,儘管圖11B中未展示,但LED陣列1114可包括於半導體晶圓(或半導體晶圓之一部分,例如半導體晶粒)中,諸如但不限於圖8B之第一晶圓802或圖9B至圖9D之晶圓950。在一些具體實例中,LED陣列1114可包括或嵌入於圖11B中未展示之第一半導體晶粒(例如,已移除或與晶圓之其他部分分離的晶圓之一部分)內。Light emitting device array 1112 may be similar to at least one of LED array 801 of FIG. 8A , LED array 970 of FIGS. 9B-9D , and/or LED array 1000 of FIG. 10 . Thus, although not shown in FIG. 11B , the LED array 1114 may be included in a semiconductor wafer (or a portion of a semiconductor wafer, eg, a semiconductor die), such as, but not limited to, the first wafer 802 of FIG. 8B or the first wafer 802 of FIGS. 9B to 9B Wafer 950 of Figure 9D. In some embodiments, the LED array 1114 may include or be embedded within a first semiconductor die (eg, a portion of the wafer that has been removed or separated from other portions of the wafer) not shown in FIG. 11B .

類似地,波導陣列1114可包括於第二半導體晶粒1120中。第二半導體晶粒1120可接合至包括LED陣列1112之第一半導體晶粒。第一半導體晶粒(圖11B中未展示)及第二半導體晶粒1120可對準,使得LED陣列1112中之每一LED與波導陣列1114中之每一波導之間存在一對一對應。舉例而言,LED陣列1112中之第一LED 1102唯一地對應於波導陣列1114中之第一波導1140。Similarly, the waveguide array 1114 may be included in the second semiconductor die 1120 . The second semiconductor die 1120 may be bonded to the first semiconductor die including the LED array 1112 . The first semiconductor die (not shown in FIG. 11B ) and the second semiconductor die 1120 may be aligned such that there is a one-to-one correspondence between each LED in the LED array 1112 and each waveguide in the waveguide array 1114 . For example, the first LED 1102 in the LED array 1112 uniquely corresponds to the first waveguide 1140 in the waveguide array 1114 .

波導陣列1114中包括第一波導1140之波導中之每一者可包含半導體材料。在一些具體實例中,半導體材料可包括結晶結構,亦即,半導體材料可為結晶材料。在一些非限制性具體實例中,波導之半導體材料可為氮化鎵(GaN)。波導之半導體材料可為光學透明材料(例如,對於由LED陣列1112中之LED產生之光的頻率之至少大部分為光學透明的)。光學透明結晶半導體材料在圖11B中由第一波導1140以及波導陣列1114中之其他波導中之每一者中所展示的交叉影線圖案說明。Each of the waveguides in the waveguide array 1114 that includes the first waveguide 1140 may include a semiconductor material. In some embodiments, the semiconductor material may comprise a crystalline structure, that is, the semiconductor material may be a crystalline material. In some non-limiting embodiments, the semiconductor material of the waveguide may be gallium nitride (GaN). The semiconductor material of the waveguide can be an optically transparent material (eg, optically transparent for at least a majority of the frequencies of light generated by the LEDs in the LED array 1112). The optically transparent crystalline semiconductor material is illustrated in FIG. 11B by the cross-hatched pattern shown in the first waveguide 1140 and each of the other waveguides in the waveguide array 1114 .

第一波導1140可包括第一波導表面1142、第二波導表面1144及波導主體1146。如由波導陣列1114中之波導(包括但不限於第一波導1140)中所展示的交叉影線圖案指示,由波導主體1146界定之空間體積可由結晶半導體材料填充。如結合至少圖12進一步所論述,可經由一或多個半導體製程製造波導。半導體製程可使得能夠在波導上進行精細的表面修整。舉例而言,第一波導表面1142及/或第二波導表面1144之任何缺陷的空間尺寸可小於5奈米(nm)。The first waveguide 1140 may include a first waveguide surface 1142 , a second waveguide surface 1144 and a waveguide body 1146 . As indicated by the cross-hatched pattern shown in the waveguides in the waveguide array 1114, including but not limited to the first waveguide 1140, the volume of space defined by the waveguide body 1146 may be filled with crystalline semiconductor material. As discussed further in connection with at least FIG. 12, the waveguides may be fabricated through one or more semiconductor processes. Semiconductor processing can enable fine surface finishing on waveguides. For example, the spatial dimensions of any defects in the first waveguide surface 1142 and/or the second waveguide surface 1144 may be less than 5 nanometers (nm).

第一半導體晶粒(圖11B中未展示)及第二半導體晶粒1120可對準使得第一LED 1102對應於第一波導1140。因此,第一波導表面1142可經組態及/或配置以自第一LED 1102之LES 1126接收在第一LED 1102內產生之光之至少一部分。根據某些具體實例,所接收光可具有由類朗伯光源1102發射之光1106之第一光束發散度(例如,特徵界定為角分佈1108)。在光束進入第一波導1140後,波導主體1146可將光束透射至第二波導表面1144。第二波導表面1144可經組態以將光(例如,經由波導主體1146自第一波導表面1142透射至第二波導表面1144之光)發射出波導主體1146且發射至第一波導之周圍環境中。亦即,第二波導表面1144可經組態為波導之光射出表面及/或發光表面。射出第二波導表面1144之光可具有第二光束發散度,該第二光束發散度顯著小於進入第一波導表面1142之光束的第一光束發散度(例如,第二光束發散度小於第一光束發散度)。The first semiconductor die (not shown in FIG. 11B ) and the second semiconductor die 1120 may be aligned such that the first LED 1102 corresponds to the first waveguide 1140 . Accordingly, the first waveguide surface 1142 may be configured and/or configured to receive at least a portion of the light generated within the first LED 1102 from the LES 1126 of the first LED 1102. According to some embodiments, the received light may have a first beam divergence (eg, characterized as an angular distribution 1108 ) of the light 1106 emitted by the Lambertian-like light source 1102 . After the light beam enters the first waveguide 1140 , the waveguide body 1146 may transmit the light beam to the second waveguide surface 1144 . The second waveguide surface 1144 can be configured to emit light (eg, light transmitted from the first waveguide surface 1142 to the second waveguide surface 1144 via the waveguide body 1146 ) out of the waveguide body 1146 and into the surrounding environment of the first waveguide . That is, the second waveguide surface 1144 can be configured as the light exit surface and/or the light emitting surface of the waveguide. The light exiting the second waveguide surface 1144 may have a second beam divergence that is substantially less than the first beam divergence of the light beam entering the first waveguide surface 1142 (eg, the second beam divergence is less than the first beam divergence) Divergence).

波導主體1146之形狀以及第一波導表面1142及/或第二波導表面1144之形狀可用以在光束透射穿過第一波導1140時使光束顯著準直及/或顯著減小光束發散度。此外,歸因於第一波導1140之光學透射效率(例如,結晶半導體材料之光學透明度)及其顯著的光學內部反射特性,當光束之角發散度經由其橫穿波導而減小時,光束經歷微不足道的光學功率損失。The shape of the waveguide body 1146 and the shape of the first waveguide surface 1142 and/or the second waveguide surface 1144 can be used to significantly collimate and/or significantly reduce beam divergence when the beam is transmitted through the first waveguide 1140 . Furthermore, due to the optical transmission efficiency of the first waveguide 1140 (eg, the optical transparency of crystalline semiconductor materials) and its significant optical internal reflection properties, the light beam experiences negligible as the angular divergence of the light beam is reduced through it traverses the waveguide optical power loss.

如圖11B中所展示,波導主體1146之形狀可為錐形形狀,其中包括第一波導表面1142之末端的表面積小於包括第二波導表面1144之末端的表面積。錐形形狀可特徵界定為錐角(例如,由第一波導表面1142與波導主體1146之側壁之相交形成的角度)。錐角可為用於半導體基板上之波導的結晶生長製程之特性。波導主體1146之錐形形狀可用以增加第一波導1140之內部反射(例如,減小與波導主體1146相關聯之透射損失)以及增強光束發散度自第一光束發散度至第二光束發散度之減小。As shown in FIG. 11B , the shape of the waveguide body 1146 may be tapered in which the surface area of the end including the first waveguide surface 1142 is less than the surface area of the end including the second waveguide surface 1144 . The tapered shape may be characterized as a taper angle (eg, the angle formed by the intersection of the first waveguide surface 1142 and the sidewall of the waveguide body 1146). The taper angle can be a characteristic of the crystal growth process used for waveguides on semiconductor substrates. The tapered shape of the waveguide body 1146 can be used to increase the internal reflection of the first waveguide 1140 (eg, reduce transmission losses associated with the waveguide body 1146) and enhance the beam divergence from the first beam divergence to the second beam divergence decrease.

為了進一步增加與波導相關聯之內部反射以及為了進一步增強光束發散度自第一光束發散度至第二光束發散度之減小,光學反射層1152可包括於第二半導體晶粒1120中。反射層1152可囊封波導主體1146之至少一部分(例如,波導主體1146之側壁)。反射層1152可為防止自波導主體1146之側壁之光洩漏的金屬化層(例如,鋁及/或金層)。To further increase the internal reflection associated with the waveguide and to further enhance the reduction of beam divergence from the first beam divergence to the second beam divergence, an optically reflective layer 1152 may be included in the second semiconductor die 1120 . The reflective layer 1152 can encapsulate at least a portion of the waveguide body 1146 (eg, sidewalls of the waveguide body 1146 ). The reflective layer 1152 may be a metallization layer (eg, aluminum and/or gold layer) that prevents light leakage from the sidewalls of the waveguide body 1146 .

可形成第二波導表面1144之形狀以進一步減小由第一波導1140發射之光的光束發散度。如圖11B中所展示,第二波導表面之形狀可類似於球面及/或凸透鏡。亦即,第二波導表面之形狀可為彎曲形狀。此彎曲形狀可進一步使光束準直及/或聚焦。The shape of the second waveguide surface 1144 can be formed to further reduce the beam divergence of the light emitted by the first waveguide 1140 . As shown in FIG. 11B, the shape of the second waveguide surface may resemble a spherical and/or convex lens. That is, the shape of the second waveguide surface may be a curved shape. This curved shape can further collimate and/or focus the beam.

11C示出根據某些具體實例之由類朗伯發光裝置1102發射的光之實例角分佈1160,該發光裝置使用波導1140作為二次光學組件。如上文所論述,由波導1140發射之光可具有第二光束發散度,該第二光束發散度顯著小於由LED 1102發射之光的第一光束發散度。第二光束發散度可特徵界定為圖11C之角分佈1160,其中I為光束強度且θ為自正交於第一LED 1102之LES 1126之向量量測的角度。在由第一波導1140發射之光之角分佈1108的曲線中,y軸表示光束強度( I)且x軸表示角分佈(θ)之角度。角分佈1160與圖11A之角分佈1108的比較清楚地指示,第二光束發散度顯著小於第一光束發散度。第二光束發散度可使得大約80%的光束功率或強度被限制在大約20°之發射錐內。因此,當用作第一LED 1102之二次光學組件時,第一波導1140可充當顯著減小由第一LED 1102發射之光束之光束發散度的光束準直波導。波導陣列1114中之每一波導可類似於第一波導1140。因此,波導陣列1114中之每一波導可充當顯著減小LED陣列1112中其對應LED之光束之光束發散度的光束準直波導。 11C shows an example angular distribution 1160 of light emitted by a Lambertian-like light emitting device 1102 that uses a waveguide 1140 as a secondary optical component, according to some embodiments . As discussed above, the light emitted by the waveguide 1140 may have a second beam divergence that is significantly less than the first beam divergence of the light emitted by the LEDs 1102 . The second beam divergence can be characterized as the angular distribution 1160 of FIG. 11C , where I is the beam intensity and θ is the angle measured from the vector normal to the LES 1126 of the first LED 1102. In the graph of the angular distribution 1108 of light emitted by the first waveguide 1140, the y-axis represents the beam intensity ( I ) and the x-axis represents the angle of the angular distribution (θ). A comparison of the angular distribution 1160 with the angular distribution 1108 of FIG. 11A clearly indicates that the second beam divergence is significantly less than the first beam divergence. The second beam divergence may allow about 80% of the beam power or intensity to be confined within an emission cone of about 20°. Thus, when used as a secondary optical component of the first LED 1102, the first waveguide 1140 can act as a beam collimating waveguide that significantly reduces the beam divergence of the beam emitted by the first LED 1102. Each waveguide in the waveguide array 1114 may be similar to the first waveguide 1140 . Thus, each waveguide in the waveguide array 1114 can act as a beam collimating waveguide that significantly reduces the beam divergence of the beams of its corresponding LEDs in the LED array 1112.

返回圖11B,波導(例如,第一波導1140)之縱向尺寸或方向可指波導內之光束傳播或透射的方向。因此,第一波導1140之縱向方向可與正交於第一波導表面1142之向量之方向(例如,圖11B之垂直方向)實質上對準。第一波導1140(或波導主體1146)之長度可指第一波導表面1142與第二波導表面1144之間的空間距離。波導之側向方向及/或尺寸可指實質上正交於縱向方向及/或尺寸之方向及/或尺寸。在一些具體實例中,可自第一波導表面1142(其在圖11B中所示出之具體實例中為平坦表面)至第二波導表面1144之曲率「頂點」來量測對應於第一波導長度之空間距離,該頂點例如為第二波導表面1144之曲率上最遠離第一波導表面1142之平面的點。波導(例如,第一波導1140)之橫向(或側向)尺寸或方向可指正交於波導之縱向尺寸的方向。因此,第一波導1140之橫向(或側向)尺寸可與實質上處於第一波導表面1142之「平面」內的向量(例如,圖11B之水平方向)對準。第一波導1140(或波導主體1146)之寬度可指波導主體1146之側壁上的相對點之間的空間距離。歸因於波導主體1146之錐形形狀,該寬度沿著縱向尺寸改變。因此,第一波導1140之寬度可指波導主體1146之「平均」寬度(例如,如經由沿著波導主體1146之縱向方向的積分而判定)。波導之縱橫比可指波導長度與波導寬度(或平均寬度)之比率。Returning to FIG. 11B, the longitudinal dimension or direction of the waveguide (eg, first waveguide 1140) may refer to the direction of light beam propagation or transmission within the waveguide. Thus, the longitudinal direction of the first waveguide 1140 can be substantially aligned with the direction of the vector normal to the first waveguide surface 1142 (eg, the vertical direction of FIG. 11B ). The length of the first waveguide 1140 (or the waveguide body 1146 ) may refer to the spatial distance between the first waveguide surface 1142 and the second waveguide surface 1144 . The lateral direction and/or dimension of the waveguide may refer to a direction and/or dimension that is substantially orthogonal to the longitudinal direction and/or dimension. In some embodiments, the curvature "apex" corresponding to the first waveguide length may be measured from the first waveguide surface 1142 (which is a flat surface in the embodiment shown in FIG. 11B ) to the second waveguide surface 1144 The apex is, for example, the point on the curvature of the second waveguide surface 1144 that is farthest from the plane of the first waveguide surface 1142 . The transverse (or lateral) dimension or direction of the waveguide (eg, first waveguide 1140) may refer to a direction orthogonal to the longitudinal dimension of the waveguide. Thus, the lateral (or lateral) dimension of the first waveguide 1140 can be aligned with a vector that is substantially within the "plane" of the first waveguide surface 1142 (eg, the horizontal direction of FIG. 11B ). The width of the first waveguide 1140 (or the waveguide body 1146 ) may refer to the spatial distance between opposing points on the sidewalls of the waveguide body 1146 . Due to the tapered shape of the waveguide body 1146, the width varies along the longitudinal dimension. Thus, the width of the first waveguide 1140 may refer to the "average" width of the waveguide body 1146 (eg, as determined via integration along the longitudinal direction of the waveguide body 1146). The aspect ratio of a waveguide may refer to the ratio of the length of the waveguide to the width (or average width) of the waveguide.

第二半導體晶粒1120可包括囊封波導陣列1114之第一介電層1122及第二介電層1124。介電層1122/1124中之至少一者可包含氧化物材料,諸如但不限於二氧化矽(SiO 2)。因此,介電層中之至少一者可為氧化物層(例如,二氧化矽層)。在其他具體實例中,介電層1122/1124中之至少一者可包含氮化物材料,諸如但不限於氮化矽。因此,介電層中之至少一者可為氮化物層(例如,氮化矽層)。第一介電層1122可囊封波導主體1146之至少一部分。第一介電層1122可覆蓋第一波導表面1142之至少一部分。第二介電層1124可覆蓋第二波導表面1144之至少一部分。第二半導體晶粒1120可另外包括插入於第一半導體晶粒與第二半導體晶粒1120之間的結晶材料層1150。第一介電層1122及/或第二介電層1124可充當半導體層1150以及波導中之每一者(例如,第一波導1140)的鈍化層。 The second semiconductor die 1120 may include a first dielectric layer 1122 and a second dielectric layer 1124 that encapsulate the waveguide array 1114 . At least one of the dielectric layers 1122/1124 may include an oxide material, such as, but not limited to, silicon dioxide ( SiO2 ). Accordingly, at least one of the dielectric layers may be an oxide layer (eg, a silicon dioxide layer). In other embodiments, at least one of the dielectric layers 1122/1124 may include a nitride material, such as, but not limited to, silicon nitride. Accordingly, at least one of the dielectric layers may be a nitride layer (eg, a silicon nitride layer). The first dielectric layer 1122 can encapsulate at least a portion of the waveguide body 1146 . The first dielectric layer 1122 may cover at least a portion of the first waveguide surface 1142 . The second dielectric layer 1124 may cover at least a portion of the second waveguide surface 1144 . The second semiconductor die 1120 may additionally include a layer of crystalline material 1150 interposed between the first semiconductor die and the second semiconductor die 1120 . The first dielectric layer 1122 and/or the second dielectric layer 1124 may serve as a passivation layer for the semiconductor layer 1150 and each of the waveguides (eg, the first waveguide 1140).

如結合至少圖12進一步所論述,波導陣列1114可生長及/或形成於連續結晶材料層1150上。每一波導之波導主體可自連續結晶材料層1150垂直地突出及/或突出超過連續結晶材料層。波導陣列中之每一波導的相對於對應LED之近端(或接近)表面(例如,第一波導1140之第一波導表面1142)可包括連續透明結晶材料層1150之一部分。波導陣列中之每一波導的相對於對應LED之遠端表面(例如,第一波導1140之第二波導表面1144)可自連續透明結晶材料層1150垂直地位移。第二波導表面1144之彎曲形狀可經由結晶材料層1150上之蝕刻製程形成。如本文中所使用,術語遠端及近端可指波導之實質上相對的方向或部分。波導之近端(或接近)部分可指波導之更接近將照明波導之LED的部分,例如波導1140之包括第一波導表面1142之部分。波導1140之遠端部分或末端為包括第二波導表面1144之部分。As discussed further in connection with at least FIG. 12 , the waveguide array 1114 may be grown and/or formed on a continuous layer of crystalline material 1150 . The waveguide body of each waveguide can protrude vertically from and/or beyond the continuous layer of crystalline material 1150. The proximal (or proximate) surface of each waveguide in the waveguide array relative to the corresponding LED (eg, the first waveguide surface 1142 of the first waveguide 1140 ) may include a portion of the continuous layer 1150 of transparent crystalline material. The distal surface of each waveguide in the waveguide array relative to the corresponding LED (eg, the second waveguide surface 1144 of the first waveguide 1140 ) can be displaced vertically from the continuous layer of transparent crystalline material 1150 . The curved shape of the second waveguide surface 1144 can be formed by an etching process on the layer 1150 of crystalline material. As used herein, the terms distal and proximal can refer to substantially opposite directions or portions of a waveguide. The proximal (or proximate) portion of the waveguide may refer to the portion of the waveguide that is closer to the LED that will illuminate the waveguide, such as the portion of the waveguide 1140 that includes the first waveguide surface 1142. The distal portion or end of the waveguide 1140 is the portion that includes the second waveguide surface 1144 .

光源1110可視情況包括透明基板層1130。透明基板層1130可為接合至第二半導體晶粒1120之透明玻璃層,使得第二半導體晶粒1120插入於第一半導體晶粒與透明基板層1130之間。在一些具體實例中,透明基板層1130可接合至第二介電層1124,以覆蓋波導之射出表面(例如,第二波導表面1144)。第二介電層1124(及/或第一介電層1122)可包含SiO 2。因此,第二介電層1124可充當波導之發光表面(例如,第二波導表面1144)及/或半導體材料層1150的鈍化層。由第二波導表面1144(以及其他波導中之任一者的發光表面)發射之光可透射穿過鈍化的第二介電層1124及/或透明基板層1130而無顯著的功率衰減/吸收及/或分散。 The light source 1110 may optionally include a transparent substrate layer 1130 . The transparent substrate layer 1130 may be a transparent glass layer bonded to the second semiconductor die 1120 such that the second semiconductor die 1120 is interposed between the first semiconductor die and the transparent substrate layer 1130 . In some embodiments, the transparent substrate layer 1130 can be bonded to the second dielectric layer 1124 to cover the exit surface of the waveguide (eg, the second waveguide surface 1144). The second dielectric layer 1124 (and/or the first dielectric layer 1122 ) may include SiO 2 . Thus, the second dielectric layer 1124 may serve as a light emitting surface of the waveguide (eg, the second waveguide surface 1144 ) and/or a passivation layer for the layer of semiconductor material 1150 . Light emitted by the second waveguide surface 1144 (and the light emitting surface of any of the other waveguides) can be transmitted through the passivated second dielectric layer 1124 and/or the transparent substrate layer 1130 without significant power attenuation/absorption and / or scattered.

歸因於減小之光束發散度(例如,特徵界定為圖11C之角分佈1160),可使用及/或包括光源1110(或本文中所論述之其他光源中之任一者)作為可穿戴式裝置中之光源。舉例而言,光源1100可包括於可穿戴式裝置中,該可穿戴式裝置為穿戴其之使用者產生虛擬實境環境(例如,圖2之頭戴式顯示器裝置200)。作為另一實例,光源1100可包括於可穿戴式裝置中,該可穿戴式裝置為穿戴其之使用者產生擴增實境環境(例如,圖3之近眼顯示器300)。Due to the reduced beam divergence (eg, characterized by angular distribution 1160 of FIG. 11C ), light source 1110 (or any of the other light sources discussed herein) can be used and/or included as a wearable The light source in the installation. For example, the light source 1100 may be included in a wearable device that generates a virtual reality environment for a user wearing it (eg, the head mounted display device 200 of FIG. 2 ). As another example, the light source 1100 may be included in a wearable device that creates an augmented reality environment for a user wearing it (eg, the near-eye display 300 of FIG. 3 ).

12A示出根據某些具體實例之用於製造圖11B之波導陣列1114的半導體製程1200。關於半導體製程1200之論述的部分將參考圖11B之光源1100。半導體製程1200可在步驟1202處開始,其中結晶材料層1150形成於半導體基板1104上。在一些具體實例中,半導體基板1104可為包含諸如但不限於Si/AlO 3之生長材料的晶體生長基板晶圓。結晶材料層1150之結晶材料可包括但不限於GaN。結晶結構陣列生長於晶體生長基板1104上。結晶結構陣列至少包括第一結晶結構(其對應於第一波導1140,且因此第一波導1140及第一結晶結構1140可貫穿全文互換地提及)。 12A illustrates a semiconductor process 1200 for fabricating the waveguide array 1114 of FIG. 11B, according to some embodiments. Portions of the discussion regarding semiconductor process 1200 will refer to light source 1100 of FIG. 11B. The semiconductor process 1200 may begin at step 1202 in which a layer 1150 of crystalline material is formed on the semiconductor substrate 1104 . In some embodiments, the semiconductor substrate 1104 may be a crystalline growth substrate wafer including a growth material such as, but not limited to, Si/AlO 3 . The crystalline material of the crystalline material layer 1150 may include, but is not limited to, GaN. The array of crystal structures is grown on the crystal growth substrate 1104 . The array of crystalline structures includes at least a first crystalline structure (which corresponds to the first waveguide 1140, and thus the first waveguide 1140 and the first crystalline structure 1140 may be referred to interchangeably throughout).

經由製程1200之步驟,陣列中之每一結晶結構形成為波導陣列1114(或圖11B)中之波導。結晶結構陣列對應於波導陣列1114,且結晶結構陣列中之第一結晶結構1140(或第一波導1140)對應於波導陣列1114中之第一波導1140。因此,術語結晶結構及波導可在本文中互換使用。一旦生長,包括第一波導1140之結晶(或波導)陣列中的每一結晶結構(或波導)便延伸超出結晶材料層1150。歸因於晶體生長製程,結晶結構之形狀及結構在整個結晶結構陣列上為顯著均勻的。因此,第一結晶結構(或波導) 1140之以下論述適用於結晶結構(或波導)中之每一者。Through the steps of process 1200, each crystalline structure in the array is formed as a waveguide in waveguide array 1114 (or FIG. 11B). The array of crystalline structures corresponds to the array of waveguides 1114 , and the first crystalline structure 1140 (or the first waveguide 1140 ) in the array of crystalline structures corresponds to the first waveguide 1140 in the array of waveguides 1114 . Thus, the terms crystalline structure and waveguide are used interchangeably herein. Once grown, each crystalline structure (or waveguide) in the crystalline (or waveguide) array comprising the first waveguide 1140 extends beyond the layer 1150 of crystalline material. Due to the crystal growth process, the shape and structure of the crystal structures are remarkably uniform throughout the array of crystal structures. Accordingly, the following discussion of the first crystalline structure (or waveguide) 1140 applies to each of the crystalline structures (or waveguides).

第一結晶結構1140延伸超出結晶材料層1150及/或自結晶材料層突出。第一結晶結構1140包括波導主體1146、主體1146之側壁1148及第一表面1142。第一表面1142為相對於結晶材料層1150之遠端表面。歸因於晶體生長製程,側壁1148與結晶材料層1150之表面的法向向量形成錐角。錐角為向內角使得在第一表面1142附近,側壁1148相比其在結晶材料層1150之表面附近更靠近在一起。因此,側壁1148之定向、錐角及第一表面1142界定波導主體1146之錐形形狀的特徵。儘管在圖12A中之製程1200之步驟的橫截面圖中未展示,但第一結晶結構1140(或第一波導1140)為對稱三維(3D)結構。歸因於其錐形形狀,3D波導主體1146可為棱錐形結晶主體1146。第一表面1142可形成截斷的棱錐形波導主體1146。在一些具體實例中,晶體生長製程導致錐形波導主體1146具有經由第一表面1142截斷之六棱錐形狀。The first crystalline structure 1140 extends beyond and/or protrudes from the crystalline material layer 1150. The first crystalline structure 1140 includes a waveguide body 1146 , sidewalls 1148 of the body 1146 and a first surface 1142 . The first surface 1142 is the distal surface relative to the layer 1150 of crystalline material. Due to the crystal growth process, the sidewall 1148 forms a taper angle with the normal vector to the surface of the crystalline material layer 1150 . The taper angle is inward such that the sidewalls 1148 are closer together near the first surface 1142 than they are near the surface of the crystalline material layer 1150 . Accordingly, the orientation, taper angle, and first surface 1142 of the sidewalls 1148 define the features of the tapered shape of the waveguide body 1146 . Although not shown in the cross-sectional view of the steps of the process 1200 in Figure 12A, the first crystalline structure 1140 (or the first waveguide 1140) is a symmetrical three-dimensional (3D) structure. Due to its tapered shape, the 3D waveguide body 1146 may be a pyramid-shaped crystalline body 1146 . The first surface 1142 may form a truncated pyramid-shaped waveguide body 1146 . In some embodiments, the crystal growth process results in the tapered waveguide body 1146 having a hexagonal pyramid shape truncated through the first surface 1142 .

圖12A之底部示出波導陣列1114(其經由製程1200之步驟自結晶結構陣列形成)之三維(3D)結構的例示性(但非限制性)具體實例之透視圖。如圖12A之底部中所展示,波導陣列1114為二維(2D)波導陣列。在其他具體實例中,波導陣列1114可為一維(1D)波導陣列。注意包括於波導陣列1114中之波導的截斷六棱錐形狀。光接收表面(例如,第一波導1140之第一波導表面1142)在波導陣列1114之透視圖中展示為面向上,而發光表面(例如,第一波導1140之第二波導表面1144)自此視角不可見。應注意,圖12A中所展示之波導陣列1114的垂直定向(相對於頁面平面)自圖11B中所展示之波導陣列的垂直定向反轉。舉例而言,如此投影視圖中所展示之「下」平面可表示第二介電層1124或透明基板層1130。應注意,圖12A中所展示之波導陣列1114的垂直定向(相對於頁面平面)自圖11B中所展示之波導陣列的垂直定向反轉。同樣地,圖12A中所展示之製程1200之步驟1202至1208的圖示之垂直定向自圖11B中所展示之波導陣列1114之垂直定向反轉。圖12A中所展示之製程1200的步驟1210至1218之垂直圖示與圖11B中所展示之波導1114的垂直定向相同。The bottom of FIG. 12A shows a perspective view of an illustrative (but non-limiting) embodiment of a three-dimensional (3D) structure of waveguide array 1114 (which is formed from an array of crystalline structures through the steps of process 1200). As shown in the bottom of Figure 12A, the waveguide array 1114 is a two-dimensional (2D) waveguide array. In other specific examples, the waveguide array 1114 may be a one-dimensional (1D) waveguide array. Note the truncated hexagonal pyramid shape of the waveguides included in the waveguide array 1114. Light receiving surfaces (eg, first waveguide surface 1142 of first waveguide 1140 ) are shown facing up in perspective view of waveguide array 1114 , while light emitting surfaces (eg, second waveguide surface 1144 of first waveguide 1140 ) are viewed from this perspective Invisible. It should be noted that the vertical orientation (relative to the plane of the page) of the waveguide array 1114 shown in Figure 12A is reversed from the vertical orientation of the waveguide array shown in Figure 11B. For example, the "lower" plane shown in such a projected view may represent the second dielectric layer 1124 or the transparent substrate layer 1130 . It should be noted that the vertical orientation (relative to the plane of the page) of the waveguide array 1114 shown in Figure 12A is reversed from the vertical orientation of the waveguide array shown in Figure 11B. Likewise, the vertical orientation of the illustration of steps 1202-1208 of process 1200 shown in FIG. 12A is reversed from the vertical orientation of waveguide array 1114 shown in FIG. 11B. The vertical illustration of steps 1210-1218 of process 1200 shown in FIG. 12A is the same as the vertical orientation of waveguide 1114 shown in FIG. 11B.

製程1200接下來可進行至步驟1204,其中光學反射層1152可形成於結晶結構陣列上。反射層1152可形成於結晶材料層1150之「上」表面上。如步驟1204中所展示,反射層1152可覆蓋第一結晶結構1140之側壁1148,但不覆蓋第一表面1142。亦如步驟1204中所展示,反射層1152可覆蓋結晶材料層1150之上表面之至少部分,其中所覆蓋部分處於結晶結構陣列中之鄰近結晶結構之間。反射層1152可囊封波導主體1146之至少一部分。反射層1152可為防止自波導主體1146之側壁1148之光洩漏的金屬化層(例如,鋁層)。Process 1200 may then proceed to step 1204, where an optically reflective layer 1152 may be formed on the array of crystalline structures. The reflective layer 1152 may be formed on the "upper" surface of the crystalline material layer 1150 . As shown in step 1204, the reflective layer 1152 may cover the sidewalls 1148 of the first crystalline structure 1140, but not the first surface 1142. As also shown in step 1204, the reflective layer 1152 can cover at least a portion of the upper surface of the layer of crystalline material 1150, wherein the covered portion is between adjacent crystalline structures in the array of crystalline structures. The reflective layer 1152 can encapsulate at least a portion of the waveguide body 1146 . The reflective layer 1152 may be a metallization layer (eg, an aluminum layer) that prevents light leakage from the sidewalls 1148 of the waveguide body 1146 .

亦在步驟1204處,第一介電層1122可形成於結晶結構陣列上,使得結晶結構(包括第一結晶結構1140)中之每一者插入於第一介電層1122與晶體生長基板1104之間。第一介電層1122可為包含二氧化矽(SiO 2)或另一光學透明二氧化物之二氧化物層。在其他具體實例中,第一介電層1122可為氮化物層,例如氮化矽層。第一介電層1122可囊封波導主體1146之至少一部分。第一介電層1122可覆蓋第一表面1142之至少一部分。如步驟1204中所展示,反射層1152可插入於結晶材料層1150與第一介電層1122之間。 Also at step 1204, a first dielectric layer 1122 may be formed over the array of crystalline structures such that each of the crystalline structures (including the first crystalline structure 1140) is interposed between the first dielectric layer 1122 and the crystal growth substrate 1104. between. The first dielectric layer 1122 may be a dioxide layer including silicon dioxide (SiO 2 ) or another optically transparent dioxide. In other embodiments, the first dielectric layer 1122 may be a nitride layer, such as a silicon nitride layer. The first dielectric layer 1122 can encapsulate at least a portion of the waveguide body 1146 . The first dielectric layer 1122 may cover at least a portion of the first surface 1142 . As shown in step 1204, a reflective layer 1152 may be interposed between the crystalline material layer 1150 and the first dielectric layer 1122.

在步驟1206處,可將轉移晶圓1154接合至第一介電層1122,使得結晶材料層1150、反射層1152及第一介電層1122中之每一者插入於晶體生長基板1104與轉移晶圓1154之間。製程1200可進行至步驟1208,其中可自結晶材料層1150移除晶體生長基板1104。亦應注意,至少出於說明之目的,接合的轉移晶圓1154、第一介電層1122及結晶材料層1150已旋轉180 °(在頁面平面中),使得其垂直定向中之每一者已翻轉。 At step 1206, transfer wafer 1154 may be bonded to first dielectric layer 1122 such that each of crystalline material layer 1150, reflective layer 1152, and first dielectric layer 1122 is interposed between crystal growth substrate 1104 and the transfer wafer Between circles 1154. Process 1200 may proceed to step 1208 where crystal growth substrate 1104 may be removed from layer 1150 of crystalline material. It should also be noted that, at least for purposes of illustration, the bonded transfer wafer 1154, first dielectric layer 1122, and crystalline material layer 1150 have been rotated 180 ° (in the plane of the page) such that each of their vertical orientations have been rotated flip.

在步驟1210處,可使用半導體蝕刻製程以移除結晶材料層1150之一部分。蝕刻製程可用以在結晶結構中之每一者上形成第二表面。步驟1210示出,除第一波導表面1142以外,第一波導結構1140亦包括第二波導表面1144。半導體蝕刻製程可包括為第二波導表面1144形成球面、凸面或任何其他類似透鏡的形狀。在步驟1212中,第二介電層1124可形成於波導陣列1114上。第二介電層1124可覆蓋波導之第二波導表面,包括但不限於第一波導1140之第二波導表面1144。因此,波導可插入於第一介電層1122與第二介電層1124之間。包括插入於第一介電層1122與第二介電層1124之間的波導陣列1114的結構可為半導體晶粒(或整個晶圓),諸如第二半導體晶粒1120。At step 1210, a semiconductor etch process may be used to remove a portion of the layer 1150 of crystalline material. An etching process can be used to form a second surface on each of the crystalline structures. Step 1210 shows that in addition to the first waveguide surface 1142 , the first waveguide structure 1140 also includes a second waveguide surface 1144 . The semiconductor etching process may include forming a spherical, convex, or any other lens-like shape for the second waveguide surface 1144 . In step 1212 , a second dielectric layer 1124 may be formed on the waveguide array 1114 . The second dielectric layer 1124 may cover the second waveguide surface of the waveguide, including but not limited to the second waveguide surface 1144 of the first waveguide 1140 . Therefore, the waveguide can be inserted between the first dielectric layer 1122 and the second dielectric layer 1124 . The structure including the waveguide array 1114 interposed between the first dielectric layer 1122 and the second dielectric layer 1124 may be a semiconductor die (or the entire wafer), such as the second semiconductor die 1120 .

製程1200可進行至步驟1214,其中可將透明基板層1130接合至第二介電層1124,使得第二介電層1124插入於波導陣列1114與透明基板層1130之間。在步驟1216處,可自第二半導體晶粒1120移除轉移晶圓1154。在步驟1218處,可將第二半導體晶粒1120接合至包括發光裝置陣列1112之第一半導體晶粒。第一半導體晶粒可接合至第二半導體晶粒1120之第一介電層1122。經由將包括波導陣列1114之第二半導體晶粒1120接合至包括LED陣列1112之第一半導體晶粒,形成圖11B之光源1110。Process 1200 may proceed to step 1214 where transparent substrate layer 1130 may be bonded to second dielectric layer 1124 such that second dielectric layer 1124 is interposed between waveguide array 1114 and transparent substrate layer 1130 . At step 1216 , the transfer wafer 1154 may be removed from the second semiconductor die 1120 . At step 1218 , the second semiconductor die 1120 may be bonded to the first semiconductor die including the light emitting device array 1112 . The first semiconductor die may be bonded to the first dielectric layer 1122 of the second semiconductor die 1120 . The light source 1110 of FIG. 11B is formed by bonding the second semiconductor die 1120 including the waveguide array 1114 to the first semiconductor die including the LED array 1112 .

12B示出根據某些具體實例之用於製造圖11B之光源1110的方法1220。方法1220可包括圖12A之半導體製程1200的一或多個步驟之至少部分。方法1220在區塊1222處開始,其中在沈積於半導體基板上之結晶材料層上生長結晶結構陣列。舉例而言,如在製程1200之步驟1202中,形成波導陣列1114之結晶結構可為生長的結晶材料層1150。結晶材料層可沈積及/或形成於半導體晶圓(例如,晶體生長基板1104)之至少一部分上。在區塊1224處,反射層(例如,金屬化層1252)可形成及/或沈積於結晶結構陣列(例如,波導陣列1114)之部分上,如製程1200之步驟1204的圖示中所展示。類似於製程1200之步驟1204,第一介電層(例如,第一介電層1122)可形成及/或沈積於反射層及/或波導陣列之部分上。 FIG. 12B illustrates a method 1220 for fabricating the light source 1110 of FIG. 11B according to some embodiments. The method 1220 can include at least part of one or more steps of the semiconductor process 1200 of FIG. 12A. Method 1220 begins at block 1222 in which an array of crystalline structures is grown on a layer of crystalline material deposited on a semiconductor substrate. For example, as in step 1202 of process 1200, the crystalline structure forming the waveguide array 1114 may be a layer of crystalline material 1150 grown. A layer of crystalline material may be deposited and/or formed on at least a portion of a semiconductor wafer (eg, crystal growth substrate 1104). At block 1224 , a reflective layer (eg, metallization layer 1252 ) may be formed and/or deposited over portions of an array of crystalline structures (eg, waveguide array 1114 ), as shown in the diagram of step 1204 of process 1200 . Similar to step 1204 of process 1200, a first dielectric layer (eg, first dielectric layer 1122) may be formed and/or deposited over portions of the reflective layer and/or the waveguide array.

在區塊1226處,可將轉移晶圓接合至第一介電層(例如,參見製程1200之步驟1206)。在區塊1228處,半導體基板(例如,晶體生長基板1104)可與結晶結構陣列及/或結晶材料層實體上分離(參見製程1200之步驟1208)。在區塊1230處,稍後移除(例如,經由蝕刻製程)結晶材料之部分以形成波導中之每一者的發光表面(例如,第二波導表面1144)(例如,參見製程1200之步驟1210)。At block 1226, the transfer wafer may be bonded to the first dielectric layer (eg, see step 1206 of process 1200). At block 1228, the semiconductor substrate (eg, crystal growth substrate 1104) may be physically separated from the array of crystalline structures and/or the layer of crystalline material (see step 1208 of process 1200). At block 1230, portions of the crystalline material are later removed (eg, via an etching process) to form light emitting surfaces (eg, second waveguide surface 1144) of each of the waveguides (eg, see step 1210 of process 1200 ). ).

在區塊1232處,第二介電層(例如,第二介電層1124)形成及/或沈積於結晶材料層上(例如,參見製程1200之步驟1212)。在區塊1234處,可將透明基板層(例如,透明基板層1130)接合至第二介電層(例如,參見製程1200之步驟1214)。在區塊1236處,轉移晶圓可與第一介電層實體上分離(例如,參見製程1200之步驟1216)。在區塊1238處,包括發光裝置陣列之第一半導體晶粒接合至包括波導陣列之第二半導體晶粒(例如,1120)(例如,參見製程1200之步驟1218)。At block 1232, a second dielectric layer (eg, second dielectric layer 1124) is formed and/or deposited over the layer of crystalline material (eg, see step 1212 of process 1200). At block 1234, a transparent substrate layer (eg, transparent substrate layer 1130) may be bonded to a second dielectric layer (eg, see step 1214 of process 1200). At block 1236, the transfer wafer may be physically separated from the first dielectric layer (eg, see step 1216 of process 1200). At block 1238, a first semiconductor die comprising an array of light emitting devices is bonded to a second semiconductor die (eg, 1120) comprising an array of waveguides (eg, see step 1218 of process 1200).

在製程1200及方法1220兩者以及本文中所論述之其他製程及方法的一些具體實例中,包括LED陣列之第一半導體晶粒(或另一晶粒)形成於第一半導體晶圓上。包括波導陣列之第二半導體晶粒(或另一晶粒)可形成於第二半導體晶粒上。第一半導體晶圓(例如,包括LED陣列之晶圓)可經鋸切(或分割)以形成包括第一半導體晶粒之第一複數個半導體晶粒。亦即,第一半導體晶粒可包括於第一半導體晶圓之第一部分中。可自第一半導體晶圓移除(例如,鋸掉及/或分割)第一半導體晶圓之第一部分以形成第一半導體晶粒。類似地,第二半導體晶圓(例如,包括波導陣列之晶圓)可經鋸切(或分割)以形成包括第二半導體晶粒之第二複數個半導體晶粒。亦即,第二半導體晶粒可包括於第二半導體晶圓之第一部分中。可自第二半導體晶圓移除(例如,鋸掉及/或分割)第二半導體晶圓之第一部分以形成第二半導體晶粒。In some embodiments of both process 1200 and method 1220, as well as other processes and methods discussed herein, a first semiconductor die (or another die) including an LED array is formed on a first semiconductor wafer. A second semiconductor die (or another die) including the waveguide array can be formed on the second semiconductor die. A first semiconductor wafer (eg, a wafer including an LED array) may be sawn (or diced) to form a first plurality of semiconductor dies including the first semiconductor die. That is, the first semiconductor die may be included in the first portion of the first semiconductor wafer. A first portion of the first semiconductor wafer may be removed (eg, sawed off and/or diced) from the first semiconductor wafer to form a first semiconductor die. Similarly, a second semiconductor wafer (eg, a wafer including a waveguide array) may be sawn (or diced) to form a second plurality of semiconductor dies including the second semiconductor die. That is, the second semiconductor die may be included in the first portion of the second semiconductor wafer. The first portion of the second semiconductor wafer may be removed (eg, sawed off and/or diced) from the second semiconductor wafer to form a second semiconductor die.

在一些具體實例中,在經由鋸切或分割對應晶圓形成晶粒之後,可將包括LED陣列之晶粒(例如,第一半導體晶粒)接合至包括波導陣列之晶粒(例如,第二半導體晶粒)。亦即,可在步驟1238之前分割第一半導體晶圓及第二半導體晶圓中之每一者。舉例而言,可在步驟1236與1238之間分割第二半導體晶圓以形成第二半導體晶粒。可在LED陣列製造於第一晶圓上之後分割第一半導體晶圓(以形成第一晶粒)。因此,在步驟1238處,第一半導體晶粒及第二半導體晶粒可對準及接合。此類具體實例可被稱作晶粒級具體實例,此係因為個別晶粒係在晶粒自各別晶圓鋸切之後接合至彼此。在其他具體實例中,第一及第二半導體晶粒可在分割晶圓之前接合。舉例而言,第一及第二半導體晶粒可在自第一及第二半導體晶圓分割第一及第二半導體晶粒之前接合,且同時第一及第二晶粒仍為其各別晶圓之部分。貫穿全文,此類具體實例可被稱作晶圓級具體實例。 高填充因子結晶波導 In some embodiments, the die comprising the LED array (eg, the first semiconductor die) may be bonded to the die comprising the waveguide array (eg, the second semiconductor die) after the die is formed by sawing or dicing the corresponding wafer semiconductor die). That is, each of the first semiconductor wafer and the second semiconductor wafer may be diced prior to step 1238 . For example, the second semiconductor wafer may be diced between steps 1236 and 1238 to form a second semiconductor die. The first semiconductor wafer may be singulated (to form the first die) after the LED array is fabricated on the first wafer. Thus, at step 1238, the first semiconductor die and the second semiconductor die may be aligned and bonded. Such instances may be referred to as die-level instances, since the individual dies are bonded to each other after the dies are sawn from the respective wafers. In other embodiments, the first and second semiconductor dies may be bonded prior to dicing the wafer. For example, the first and second semiconductor dies may be bonded prior to singulation of the first and second semiconductor dies from the first and second semiconductor wafers while the first and second dies remain their respective dies part of the circle. Throughout, such instances may be referred to as wafer-level instances. High fill factor crystalline waveguide

13示出高填充因子波導陣列1314之具體實例。圖13中所展示之波導具體實例可被稱作「高填充因子」具體實例。高填充因子具體實例包括波導陣列1314。波導陣列(或具體實例)之術語「填充因子」可指波導之發光表面(例如,波導之第二波導表面)的表面積(或線性尺寸)與波導之間距(例如,陣列中之鄰近波導之間的空間或直線距離)的比率。因此,高填充因子具體實例之此比率可大於結合圖11A至圖12B所論述之具體實例的此比率。 FIG. 13 shows a specific example of a high fill factor waveguide array 1314. The waveguide embodiment shown in Figure 13 may be referred to as a "high fill factor" embodiment. Specific examples of high fill factor include waveguide array 1314 . The term "fill factor" of a waveguide array (or specific instance) can refer to the surface area (or linear dimension) of the light emitting surface of the waveguide (eg, the second waveguide surface of the waveguide) and the spacing between the waveguides (eg, between adjacent waveguides in the array) the ratio of the spatial or linear distance). Thus, this ratio for high fill factor embodiments may be greater than this ratio for the embodiments discussed in connection with Figures 11A-12B.

如本文中的使用者,術語「間距」可指或以其他方式指示陣列(例如,波導陣列或LED陣列)中之鄰近元件之間的空間距離。在各種具體實例中,接合至波導陣列之LED陣列的每一LED/波導對可充當顯示器中之像素(例如,近眼顯示器中之像素)的光源。因此,LED/波導陣列之間距可匹配或至少類似於顯示器之像素陣列的光接收表面之間距。對於此類具體實例,波導/LED對完全及/或均勻地照明對應像素之光接收表面可為有利的。減少及/或最少化像素之鄰近光接收表面之間的照明之任何「暗點」亦可為有利的。藉由增加填充因子(例如,發射光之表面(例如,波導之發光表面)的面積與波導之發光表面之間距的比率),高填充因子具體實例達成像素照明之較大均勻性以及像素之鄰近光接收表面之間的照明之「暗點」的減少及/或衰減。各種高填充因子具體實例可藉由增加波導照明表面之表面積來增加填充因子比率。As used herein, the term "pitch" may refer to or otherwise indicate the spatial distance between adjacent elements in an array (eg, a waveguide array or an LED array). In various embodiments, each LED/waveguide pair bonded to the LED array of the waveguide array can serve as a light source for a pixel in a display (eg, a pixel in a near-eye display). Thus, the LED/waveguide array spacing may match or at least be similar to the light receiving surface spacing of a pixel array of a display. For such embodiments, waveguides/LEDs may be advantageous for fully and/or uniformly illuminating the light receiving surface of the corresponding pixel. It may also be beneficial to reduce and/or minimize any "dark spots" of illumination between adjacent light-receiving surfaces of pixels. By increasing the fill factor (eg, the ratio of the area of the surface that emits light (eg, the light emitting surface of the waveguide) to the distance between the light emitting surfaces of the waveguide), high fill factor embodiments achieve greater uniformity of pixel illumination and proximity of pixels Reduction and/or attenuation of "dark spots" of illumination between light-receiving surfaces. Various high fill factor embodiments can increase the fill factor ratio by increasing the surface area of the waveguide illumination surface.

在高填充因子具體實例中,波導之發光表面(例如,包括於波導陣列1314中之波導的第二波導表面)可具有大於結合圖11A至圖12B所論述之具體實例的波導之發光波導表面的表面積,例如較大填充因子。波導之第二波導表面的較大表面積可提供波導之對應LED充當光源的像素之更均勻及/或完全的照明。波導可用其較大發光表面均勻地照明像素。因此,鄰近像素之間的「暗點」(例如,自波導接收極少照明至無照明之區域)經由本文中所論述之高填充因子具體實例衰減、減少及/或最少化。相較於圖11B至圖12B中所示出及/或結合該等圖所論述之波導陣列1114,包括於波導陣列1314中之高填充因子波導可另外提供穿過波導之光的光束發散度之更多減小。In high fill factor embodiments, the light emitting surface of the waveguides (eg, the second waveguide surface of the waveguides included in the waveguide array 1314) may have a larger surface area than the light emitting waveguide surfaces of the waveguides of the embodiments discussed in connection with FIGS. 11A-12B surface area, such as a larger fill factor. The larger surface area of the second waveguide surface of the waveguide can provide more uniform and/or complete illumination of the pixels where the waveguide's corresponding LED acts as a light source. The waveguide can illuminate the pixel uniformly with its larger light emitting surface. Thus, "dark spots" between adjacent pixels (eg, areas that receive little to no illumination from the waveguide) are attenuated, reduced, and/or minimized by the high fill factor embodiments discussed herein. Compared to the waveguide array 1114 shown in and/or discussed in connection with FIGS. 11B-12B , the high fill factor waveguides included in the waveguide array 1314 may additionally provide a reduction in the beam divergence of the light passing through the waveguides. More decrease.

圖13展示高填充因子波導陣列1314之三個視圖:透視圖1302、俯視圖1304及橫截面圖1306。高填充因子波導陣列1314可包括第一高填充因子波導1340。如圖13中所展示,波導陣列1314為2D波導陣列。然而,類似於圖11B之非高填充因子波導陣列1114,高填充因子波導陣列1314可製造為高填充因子波導之1D陣列。高填充因子波導(例如,第一波導1340)可包括發光結構(例如,發光結構1358)作為其波導主體之一部分。發光結構可包含與波導主體所包含相同的材料(例如,GaN)。發光結構可定位於錐形波導主體之寬於波導主體之另一部分的部分上。亦即,波導之發光結構可位於波導遠端而非波導近端處。發光結構可進一步「加寬」波導之發光表面,此增加發光表面之表面積。因此,發光結構可增加陣列之填充因子。波導之發光表面(例如,第二波導表面1344)定位於透視圖1302之發光結構(例如,發光結構1358)的「下側」上。13 shows three views of a high fill factor waveguide array 1314: a perspective view 1302, a top view 1304, and a cross-sectional view 1306. The high fill factor waveguide array 1314 can include a first high fill factor waveguide 1340 . As shown in Figure 13, the waveguide array 1314 is a 2D waveguide array. However, similar to the non-high fill factor waveguide array 1114 of FIG. 11B, the high fill factor waveguide array 1314 can be fabricated as a ID array of high fill factor waveguides. A high fill factor waveguide (eg, first waveguide 1340) may include a light emitting structure (eg, light emitting structure 1358) as part of its waveguide body. The light emitting structure may comprise the same material (eg, GaN) as the waveguide body. The light emitting structure may be positioned on a portion of the tapered waveguide body that is wider than another portion of the waveguide body. That is, the light emitting structure of the waveguide can be located at the distal end of the waveguide instead of the proximal end of the waveguide. The light emitting structure can further "widen" the light emitting surface of the waveguide, which increases the surface area of the light emitting surface. Therefore, the light emitting structure can increase the fill factor of the array. The light emitting surface of the waveguide (eg, second waveguide surface 1344 ) is positioned on the "underside" of the light emitting structure (eg, light emitting structure 1358 ) of perspective 1302 .

在製造高填充因子具體實例期間,蝕刻製程可用以自側壁及波導主體之「預設」形狀更改及/或增強波導之側壁及波導主體的形狀(例如,改變至由晶體生長製程產生之預設形狀)。此增強形狀可包括形成上文所提及的發光結構(例如,發光結構1358)。形成於波導主體之遠端上的發光結構可經由此蝕刻製程形成。對於波導主體之預設形狀的一個此類變化之非限制性實例,參見結合圖13至圖14B所論述之高填充因子具體實例。增強形狀可增加波導之填充因子及光束準直及/或發散度減小效應。增強形狀可包括沿著波導之縱向尺寸改變波導主體之錐形(例如,錐角)。除經由蝕刻製程對波導進行「整形」以外,可增加波導之縱橫比。增加的縱橫比可進一步增強波導之準直及/或光束發散度減小性質。During the fabrication of high fill factor embodiments, an etch process may be used to alter and/or enhance the shape of the sidewalls and waveguide body of the waveguide from the "predetermined" shape of the sidewalls and waveguide body (eg, to a preset created by the crystal growth process) shape). This enhanced shape may include forming the light emitting structures mentioned above (eg, light emitting structure 1358). The light emitting structure formed on the distal end of the waveguide body can be formed through this etching process. For a non-limiting example of one such variation of the predetermined shape of the waveguide body, see the high fill factor specific example discussed in connection with Figures 13-14B. Enhanced shapes can increase the fill factor of the waveguide and beam collimation and/or divergence reducing effects. The enhanced shape may include changing the taper (eg, taper angle) of the waveguide body along the longitudinal dimension of the waveguide. In addition to "shaping" the waveguide through an etching process, the aspect ratio of the waveguide can be increased. The increased aspect ratio can further enhance the collimation and/or beam divergence reduction properties of the waveguide.

類似於波導陣列1114中之第一波導1140,波導陣列1314中之第一波導1340包括第一波導表面1342、第二波導表面1344及波導主體1346。應注意,第二波導表面1344位於發光結構1358上。第一波導表面1342接收由LED產生之光,且第二波導表面1344將所接收光透射出波導主體1346。波導主體1346之遠端(例如,波導主體1346之最遠離光接收波導表面(例如,第一波導表面1344)的部分)包括發光結構1358。在透視圖1302中,第二波導表面1344定位於發光結構1358之「下側」上。發光結構1358為由結晶材料形成之塊狀結構,該結晶材料包含波導主體1346,例如GaN。發光結構1358可為塊狀結構。在一些具體實例中,塊狀結構1358之形狀可為錐形形狀。發光結構1358之一或多個側向(或橫向)尺寸(例如,實質上正交於沿著光行進穿過波導主體1346之方向之尺寸的空間尺寸)可大於波導主體1346之其餘部分的側向尺寸。Similar to the first waveguide 1140 in the waveguide array 1114 , the first waveguide 1340 in the waveguide array 1314 includes a first waveguide surface 1342 , a second waveguide surface 1344 and a waveguide body 1346 . It should be noted that the second waveguide surface 1344 is located on the light emitting structure 1358. The first waveguide surface 1342 receives the light generated by the LED, and the second waveguide surface 1344 transmits the received light out of the waveguide body 1346 . The distal end of the waveguide body 1346 (eg, the portion of the waveguide body 1346 furthest away from the light-receiving waveguide surface (eg, the first waveguide surface 1344 )) includes a light emitting structure 1358 . In perspective view 1302, second waveguide surface 1344 is positioned on the "underside" of light emitting structure 1358. Light emitting structure 1358 is a bulk structure formed of a crystalline material including a waveguide body 1346, such as GaN. The light emitting structure 1358 may be a bulk structure. In some embodiments, the shape of the bulk structure 1358 may be a tapered shape. One or more lateral (or lateral) dimensions of light emitting structures 1358 (eg, a spatial dimension substantially orthogonal to a dimension along the direction in which light travels through waveguide body 1346 ) may be larger than the sides of the remainder of waveguide body 1346 to size.

如側視圖1306中所展示且類似於波導陣列1114,可將波導陣列1314接合至透明基板層1330。返回參看圖11B至圖12A,第一波導1140(及波導陣列1114中之其他波導中之每一者)可具有第一縱橫比。此處,縱橫比可指波導主體之大致縱向尺寸與波導主體之大致橫向或側向尺寸的比率。第一高填充因子波導1340(及高填充因子波導陣列1314中之其他波導中之每一者)具有第二縱橫比。橫截面圖1306與圖11B之光源1110的橫截面圖之間的視覺比較表明(第一波導1340之)第二縱橫比大於(第一波導1140之)第一縱橫比。發光結構1358之「高度」可促進縱橫比之增加。應注意,發光結構1358之「寬度」有助於波導1340之填充因子的增加。高填充因子波導之較大縱橫比及填充因子可經由蝕刻波導以改變波導主體之形狀來達成。相較於波導陣列1114之較小縱橫比,陣列1314中之高填充因子波導的較大縱橫比及填充因子可提供更進一步的光束準直及/或更多的光束發散度減小。結合圖14A至圖14B論述此類高填充因子波導之製造。然而,如透視圖1302及橫截面圖1306中所展示,波導主體1346之形狀接近六邊形台面。蝕刻製程可形成鄰近波導之間的溝槽1356。溝槽1356可減小波導之平均寬度,此增加波導之縱橫比。As shown in side view 1306 and similar to waveguide array 1114 , waveguide array 1314 may be bonded to transparent substrate layer 1330 . Referring back to Figures 11B-12A, the first waveguide 1140 (and each of the other waveguides in the waveguide array 1114) may have a first aspect ratio. Here, the aspect ratio may refer to the ratio of the approximate longitudinal dimension of the waveguide body to the approximate lateral or lateral dimension of the waveguide body. The first high fill factor waveguide 1340 (and each of the other waveguides in the high fill factor waveguide array 1314) has a second aspect ratio. A visual comparison between the cross-sectional view 1306 and the cross-sectional view of the light source 1110 of FIG. 11B shows that the second aspect ratio (of the first waveguide 1340 ) is greater than the first aspect ratio (of the first waveguide 1140 ). The "height" of the light emitting structure 1358 may facilitate an increase in the aspect ratio. It should be noted that the "width" of the light emitting structure 1358 contributes to the increase of the fill factor of the waveguide 1340. Larger aspect ratios and fill factors for high fill factor waveguides can be achieved by etching the waveguide to change the shape of the waveguide body. The larger aspect ratio and fill factor of the high fill factor waveguides in the array 1314 may provide further beam collimation and/or more beam divergence reduction compared to the smaller aspect ratio of the waveguide array 1114. The fabrication of such high fill factor waveguides is discussed in conjunction with Figures 14A-14B. However, as shown in perspective view 1302 and cross-sectional view 1306, the shape of waveguide body 1346 approximates a hexagonal mesa. The etching process can form trenches 1356 between adjacent waveguides. The trenches 1356 can reduce the average width of the waveguide, which increases the aspect ratio of the waveguide.

溝槽1356(經由蝕刻製程形成)之形狀可形成波導主體1346之「漸進」錐形形狀,其中漸進錐形形狀增強光束準直及/或光束發散度減小。蝕刻製程可沿著波導主體1346之縱向尺寸改變錐角。波導主體1346之形狀可特徵界定為兩個(或多於兩個)錐角。橫截面圖1306示出,第二波導表面1344附近之錐角小於較接近第一波導表面1342之錐角。亦即,光束自第一波導1340射出(經由第二波導表面1344)附近之錐角可小於光束進入第一波導1340(經由第一波導表面1342)附近之錐角。錐角減小(在光束透射穿過波導主體1346時)可導致更進一步的光束準直及/或光束發散度的增加。第一波導表面1342附近的較大錐角(相較於第二波導表面1342附近的較小錐角)可導致進入波導表面(例如,第一波導表面1342)之鄰近光之間的較大距離及/或間距。在一些具體實例中,錐角可沿著波導主體1346之縱向尺寸連續地改變。The shape of the trenches 1356 (formed through the etch process) may form a "progressive" tapered shape of the waveguide body 1346, where the tapered shape enhances beam collimation and/or reduces beam divergence. The etching process can vary the taper angle along the longitudinal dimension of the waveguide body 1346 . The shape of the waveguide body 1346 may be characterized as two (or more than two) taper angles. The cross-sectional view 1306 shows that the taper angle near the second waveguide surface 1344 is smaller than the taper angle nearer the first waveguide surface 1342. That is, the taper angle of the light beam exiting from the first waveguide 1340 (via the second waveguide surface 1344 ) may be smaller than the taper angle of the light beam entering the vicinity of the first waveguide 1340 (via the first waveguide surface 1342 ). A reduction in the cone angle (as the beam is transmitted through the waveguide body 1346) may result in further beam collimation and/or an increase in beam divergence. A larger taper angle near the first waveguide surface 1342 (compared to a smaller taper angle near the second waveguide surface 1342) can result in a larger distance between adjacent light entering the waveguide surface (eg, the first waveguide surface 1342) and/or spacing. In some embodiments, the taper angle may vary continuously along the longitudinal dimension of the waveguide body 1346.

此等視圖亦展示發光結構(例如,發光結構1358)經由不連續的結晶材料層形成。發光結構之GaN中的此等不連續性可至少部分地光學隔離波導陣列1314中之波導。此光學隔離可導致波導陣列1314中之實體上鄰近的波導之間的較少「光洩漏」。此類不連續性可導致結晶材料結構陣列充當增加波導陣列之填充因子的發光結構。發光結構可經由結晶材料之蝕刻製程形成及/或製造。These views also show that light emitting structures (eg, light emitting structure 1358) are formed through discontinuous layers of crystalline material. These discontinuities in the GaN of the light emitting structure may at least partially optically isolate the waveguides in the waveguide array 1314. This optical isolation can result in less "light leakage" between physically adjacent waveguides in the waveguide array 1314. Such discontinuities can cause the array of crystalline material structures to act as light emitting structures that increase the fill factor of the waveguide array. The light emitting structures can be formed and/or fabricated through etching processes of crystalline materials.

14A示出根據某些具體實例之用於製造圖13之高填充因子波導陣列1314的半導體製程1400。關於半導體製程1400之論述的部分將參考圖13之高填充因子波導陣列1314以及圖12A之製程1200。半導體製程1400可在步驟1402處開始,其中結晶材料層1350形成於半導體基板1304上。類似於步驟1202,可在沈積於半導體基板1304上之結晶材料層1350上生長結晶結構陣列。因此,基板1304之半導體材料可為晶體生長基板。經由製程1400之步驟的結晶材料層之蝕刻,結晶結構陣列形成為高填充因子波導陣列1314。波導陣列1314包括第一高填充因子波導1340。第一波導1340包括第一波導表面1342及側壁1348。 14A illustrates a semiconductor process 1400 for fabricating the high fill factor waveguide array 1314 of FIG. 13 according to some embodiments. Portions of the discussion regarding semiconductor process 1400 will refer to the high fill factor waveguide array 1314 of FIG. 13 and the process 1200 of FIG. 12A. The semiconductor process 1400 may begin at step 1402 where a layer 1350 of crystalline material is formed on the semiconductor substrate 1304 . Similar to step 1202, an array of crystalline structures may be grown on the layer of crystalline material 1350 deposited on the semiconductor substrate 1304. Thus, the semiconductor material of substrate 1304 may be a crystal growth substrate. Through the etching of the crystalline material layer in the step of process 1400 , the array of crystalline structures is formed into a high fill factor waveguide array 1314 . The waveguide array 1314 includes a first high fill factor waveguide 1340 . The first waveguide 1340 includes a first waveguide surface 1342 and sidewalls 1348 .

步驟1402之圖示與步驟1202的比較表明:對於高填充因子具體實例,結晶材料層(例如,結晶材料層1350)之初始厚度可大於非高填充因子具體實例之對應結晶材料層的厚度(例如,結晶材料層1150之厚度)。結晶材料層1350之增加厚度可增加第一波導1340之填充因子。舉例而言,如步驟1403中所展示,蝕刻掉結晶材料層1350(具有其增加的厚度)之部分使得能夠對第一波導1340進行整形,以在光束行進穿過第一波導1340時提供光束發散度之較多減小。在一些具體實例中,增加的厚度增加了高填充因子具體實例之縱橫比。A comparison of the illustration of step 1402 with step 1202 shows that for high fill factor embodiments, the initial thickness of the crystalline material layer (eg, crystalline material layer 1350 ) may be greater than the thickness of the corresponding crystalline material layer (eg, crystalline material layer 1350 ) for non-high fill factor embodiments. , the thickness of the crystalline material layer 1150). The increased thickness of the crystalline material layer 1350 can increase the fill factor of the first waveguide 1340 . For example, as shown in step 1403, etching away portions of the crystalline material layer 1350 (with its increased thickness) enables the first waveguide 1340 to be shaped to provide beam divergence as the beam travels through the first waveguide 1340 The greater the degree of reduction. In some embodiments, the increased thickness increases the aspect ratio of the high fill factor embodiment.

在步驟1403處,對結晶材料層1350執行半導體蝕刻製程。如步驟1403之圖示中所展示,蝕刻製程可選擇性地移除結晶材料層之增加厚度之部分,以增加第一波導1340之填充因子。在一些具體實例中,蝕刻對第一波導1340以及其他波導中之每一者進行整形,以形成六邊台面形波導主體,其中在波導主體之遠端部分上具有塊狀發光結構。蝕刻會更改波導側壁1348之形狀以形成波導主體1346之漸進錐形形狀。蝕刻製程可在鄰近波導以及發光結構1358之間產生溝槽1356。波導主體1346、發光結構1358及溝槽1356之形狀可藉由改變蝕刻製程而改變。At step 1403, a semiconductor etch process is performed on the crystalline material layer 1350. As shown in the illustration of step 1403 , the etching process can selectively remove portions of the crystalline material layer of increased thickness to increase the fill factor of the first waveguide 1340 . In some embodiments, the etching shapes each of the first waveguide 1340 and the other waveguides to form a hexagonal mesa-shaped waveguide body with a bulk light emitting structure on a distal portion of the waveguide body. Etching alters the shape of the waveguide sidewalls 1348 to form the progressively tapered shape of the waveguide body 1346 . The etching process can create trenches 1356 between adjacent waveguides and light emitting structures 1358 . The shape of the waveguide body 1346, the light emitting structure 1358 and the trench 1356 can be changed by changing the etching process.

在一些具體實例中,半導體基板1304可為包含諸如但不限於Si/AlO 3之生長材料的晶體生長基板晶圓。結晶材料層1350之結晶材料可包括但不限於GaN。結晶結構陣列生長於晶體生長基板1304上。結晶結構陣列包括至少第一結晶結構1340。 In some embodiments, the semiconductor substrate 1304 may be a crystalline growth substrate wafer including a growth material such as, but not limited to, Si/AlO 3 . The crystalline material of the crystalline material layer 1350 may include, but is not limited to, GaN. The crystal structure array is grown on the crystal growth substrate 1304 . The array of crystalline structures includes at least a first crystalline structure 1340 .

製程1400接下來可進行至步驟1404,其中光學反射層1352可形成於結晶結構陣列上。類似於步驟1204,步驟1404處之反射層1352可形成於結晶材料層1350之「上」表面上。亦類似於步驟1204,在步驟1404處,第一介電層1322可形成於結晶結構陣列上,使得結晶結構(包括第一結晶結構1340)中之每一者插入於第一介電層1322與晶體生長基板1304之間。Process 1400 may then proceed to step 1404, where an optically reflective layer 1352 may be formed on the array of crystalline structures. Similar to step 1204, a reflective layer 1352 at step 1404 may be formed on the "upper" surface of the layer 1350 of crystalline material. Also similar to step 1204, at step 1404 a first dielectric layer 1322 may be formed over the array of crystalline structures such that each of the crystalline structures (including the first crystalline structure 1340) is interposed between the first dielectric layer 1322 and the between the crystal growth substrates 1304 .

類似於步驟1206,在步驟1406處,可將轉移晶圓1354接合至第一介電層1322,使得結晶材料層1350、反射層1352及第一介電層1322中之每一者插入於晶體生長基板1304與轉移晶圓1354之間。製程1400可進行至步驟1408。步驟1408與步驟1208的類似之處可在於,可自結晶材料層1350移除晶體生長基板1304。亦類似於步驟1208,在步驟1408處,接合的轉移晶圓1354、第一介電層1322及結晶材料層1350已旋轉180 °(在頁面平面中),使得其垂直定向中之每一者已翻轉。 Similar to step 1206, at step 1406, the transfer wafer 1354 may be bonded to the first dielectric layer 1322 such that each of the crystalline material layer 1350, the reflective layer 1352, and the first dielectric layer 1322 is inserted into the crystal growth Between the substrate 1304 and the transfer wafer 1354 . Process 1400 may proceed to step 1408 . Step 1408 may be similar to step 1208 in that the crystal growth substrate 1304 may be removed from the layer of crystalline material 1350 . Also similar to step 1208, at step 1408 the bonded transfer wafer 1354, first dielectric layer 1322 and crystalline material layer 1350 have been rotated 180 ° (in the plane of the page) such that each of their vertical orientations have been rotated flip.

類似於步驟1210,在步驟1410處,可使用半導體蝕刻製程以移除結晶材料層1350之一部分。蝕刻製程可用以在結晶結構中之每一者上形成第二表面。應注意,對結晶材料層1350之表面執行在步驟1410處執行之蝕刻製程,該表面與被執行步驟1403之蝕刻製程的結晶材料層1350之表面相對。步驟1410示出,除第一波導表面1342以外,第一波導結構1340亦包括第二波導表面1344。半導體蝕刻製程可包括為第二波導表面1344形成球面、凸面或任何其他類似透鏡的形狀。類似於步驟1212,在步驟1412處,第二介電層1324可形成於波導陣列1314上。第二介電層1324可覆蓋波導之第二波導表面,包括但不限於第一波導1340之第二波導表面1344。因此,波導可插入於第一介電層1322與第二介電層1324之間。包括插入於第一介電層1322與第二介電層1324之間的波導陣列1314的結構可為半導體晶粒(或整個晶圓),諸如第二半導體晶粒1320。Similar to step 1210, at step 1410, a semiconductor etch process may be used to remove a portion of the layer 1350 of crystalline material. An etching process can be used to form a second surface on each of the crystalline structures. It should be noted that the etching process performed at step 1410 is performed on the surface of the crystalline material layer 1350 that is opposite to the surface of the crystalline material layer 1350 on which the etching process of step 1403 is performed. Step 1410 shows that in addition to the first waveguide surface 1342 , the first waveguide structure 1340 also includes a second waveguide surface 1344 . The semiconductor etching process may include forming a spherical, convex, or any other lens-like shape for the second waveguide surface 1344 . Similar to step 1212, at step 1412, a second dielectric layer 1324 may be formed on the waveguide array 1314. The second dielectric layer 1324 may cover the second waveguide surface of the waveguide, including but not limited to the second waveguide surface 1344 of the first waveguide 1340 . Therefore, the waveguide can be inserted between the first dielectric layer 1322 and the second dielectric layer 1324 . The structure including the waveguide array 1314 interposed between the first dielectric layer 1322 and the second dielectric layer 1324 may be a semiconductor die (or the entire wafer), such as the second semiconductor die 1320 .

製程1400可進行至步驟1414,其中類似於步驟1214,可將透明基板層1330接合至第二介電層1324,使得第二介電層1324插入於波導陣列1314與第二介電層1324之間。在步驟1416處,可自第二半導體晶粒1320移除轉移晶圓1354。Process 1400 may proceed to step 1414 where, similar to step 1214, transparent substrate layer 1330 may be bonded to second dielectric layer 1324 such that second dielectric layer 1324 is interposed between waveguide array 1314 and second dielectric layer 1324 . At step 1416 , transfer wafer 1354 may be removed from second semiconductor die 1320 .

14B示出根據某些具體實例之用於製造圖13之高填充因子波導陣列1314的方法1420。方法1420可包括圖14A之半導體製程1400的一或多個步驟之至少部分。方法1420在區塊1422處開始,其中在沈積於半導體基板上之結晶材料層上生長結晶結構陣列。舉例而言,如在製程1400之步驟1402中,形成波導陣列1314之結晶結構可為生長的結晶材料層1350。結晶材料層可沈積及/或形成於半導體晶圓(例如,晶體生長基板1304)之至少一部分上。 14B illustrates a method 1420 for fabricating the high fill factor waveguide array 1314 of FIG. 13, according to some embodiments. The method 1420 can include at least part of one or more steps of the semiconductor process 1400 of Figure 14A. The method 1420 begins at block 1422 in which an array of crystalline structures is grown on a layer of crystalline material deposited on a semiconductor substrate. For example, as in step 1402 of process 1400, the crystalline structure forming the waveguide array 1314 may be a layer 1350 of grown crystalline material. A layer of crystalline material may be deposited and/or formed on at least a portion of a semiconductor wafer (eg, crystal growth substrate 1304).

在區塊1423處,自結晶結構移除結晶材料層之部分以對波導主體進行整形。可經由半導體蝕刻製程移除結晶材料之部分,如結合製程1400之步驟1403所論述。在區塊1424處,反射層(例如,金屬化層1352)可形成及/或沈積於結晶結構陣列(例如,波導陣列1314)之部分上,如製程1400之步驟1404的圖示中所展示。類似於製程1400之步驟1404,第一介電層(例如,第一介電層1322)可形成及/或沈積於反射層及/或波導陣列之部分上。在區塊1426處,可將轉移晶圓接合至第一介電層(例如,參見製程1400之步驟1406)。在區塊1428處,半導體基板(例如,晶體生長基板1304)可與結晶結構陣列及/或結晶材料層實體上分離(參見製程1400之步驟1408)。在區塊1430處,稍後移除(例如,經由蝕刻製程)結晶材料之部分以形成波導中之每一者的發光表面(例如,第二波導表面1344)(例如,參見製程1400之步驟1410)。應注意,對結晶材料層1350之表面執行在步驟1430處執行之蝕刻製程,該表面與被執行步驟1423之蝕刻製程的結晶材料層1350之表面相對。At block 1423, portions of the crystalline material layer are removed from the crystalline structure to shape the waveguide body. Portions of the crystalline material may be removed through a semiconductor etch process, as discussed in connection with step 1403 of process 1400 . At block 1424 , a reflective layer (eg, metallization layer 1352 ) may be formed and/or deposited over portions of an array of crystalline structures (eg, waveguide array 1314 ), as shown in the illustration of step 1404 of process 1400 . Similar to step 1404 of process 1400, a first dielectric layer (eg, first dielectric layer 1322) may be formed and/or deposited over portions of the reflective layer and/or the waveguide array. At block 1426, the transfer wafer may be bonded to the first dielectric layer (eg, see step 1406 of process 1400). At block 1428, the semiconductor substrate (eg, crystal growth substrate 1304) may be physically separated from the array of crystalline structures and/or the layer of crystalline material (see step 1408 of process 1400). At block 1430 , portions of the crystalline material are later removed (eg, via an etching process) to form light emitting surfaces (eg, second waveguide surface 1344 ) of each of the waveguides (eg, see step 1410 of process 1400 ) ). It should be noted that the etching process performed at step 1430 is performed on the surface of the crystalline material layer 1350 opposite to the surface of the crystalline material layer 1350 on which the etching process of step 1423 was performed.

在區塊1432處,第二介電層(例如,第二介電層1324)形成及/或沈積於結晶材料層上(例如,參見製程1400之步驟1412)。在區塊1434處,可將透明基板層(例如,透明基板層1330)接合至第二介電層(例如,參見製程1400之步驟1414)。在區塊1436處,轉移晶圓可與第一介電層實體上分離(例如,參見製程1400之步驟1416)。在區塊1238處,包括發光裝置陣列之第一半導體晶粒接合至包括波導陣列之第二半導體晶粒(例如,1120)(例如,參見製程1200之步驟1218)。 帶隔板( baffled )波導 At block 1432, a second dielectric layer (eg, second dielectric layer 1324) is formed and/or deposited over the layer of crystalline material (eg, see step 1412 of process 1400). At block 1434, a transparent substrate layer (eg, transparent substrate layer 1330) may be bonded to a second dielectric layer (eg, see step 1414 of process 1400). At block 1436, the transfer wafer may be physically separated from the first dielectric layer (eg, see step 1416 of process 1400). At block 1238, a first semiconductor die comprising an array of light emitting devices is bonded to a second semiconductor die (eg, 1120) comprising an array of waveguides (eg, see step 1218 of process 1200). With baffled ( baffled ) waveguide

15示出結晶帶隔板波導陣列1514之具體實例。圖15中所展示之波導具體實例可被稱作「帶隔板」具體實例,此係因為光學隔離每一波導與鄰近波導之不透明隔板結構提供穿過波導之光束的增強準直及/或發散度減小。隔板結構之光學隔離亦減少鄰近波導之間的「光洩漏」。波導可另外及/或替代地包括氧化物「透鏡」結構,該等結構充當提供穿過波導之光束之甚至進一步準直及/或發散度減小的二次或三次光學組件。在貫穿全文論述之各種具體實例中,結合至少圖15至圖16B所論述之半導體隔板結構及/或介電透鏡結構中之一者或兩者可經調適及另外部署於結合圖11B至圖14B所論述之具體實例中之任一者中。 FIG. 15 shows a specific example of an array 1514 of crystalline ribbon spacer waveguides. The waveguide embodiments shown in FIG. 15 may be referred to as "baffled" embodiments because the opaque baffle structure that optically isolates each waveguide from adjacent waveguides provides enhanced collimation and/or enhanced collimation of the light beam passing through the waveguides. Divergence is reduced. The optical isolation of the spacer structure also reduces "light leakage" between adjacent waveguides. The waveguide may additionally and/or alternatively include oxide "lens" structures that act as secondary or tertiary optical components that provide even further collimation and/or divergence reduction of the light beam passing through the waveguide. In various specific examples discussed throughout, at least one or both of the semiconductor spacer structures and/or dielectric lens structures discussed in connection with Figures 15-16B may be adapted and additionally deployed in connection with Figures 11B-11B in any of the specific examples discussed in 14B.

如圖15中所展示,結晶波導1514包括第一波導1540。類似於貫穿全文所論述之其他波導,第一波導1540包括供LED之光進入第一波導1540之波導主體1546的第一波導表面1542。波導主體1546將光自第一波導表面1542透射至第二波導表面1544(其在圖15中為平坦表面)。類似於貫穿全文所論述之其他具體實例,第二波導表面1544可將光束(具有其減小的光束發散度)發射出波導主體1546。如下文進一步論述,所發射光束可進入介電透鏡結構1560以用於進一步光束整形(例如,準直及/或發散度減小)。As shown in FIG. 15 , the crystalline waveguide 1514 includes a first waveguide 1540 . Similar to the other waveguides discussed throughout, the first waveguide 1540 includes a first waveguide surface 1542 for the light of the LED to enter the waveguide body 1546 of the first waveguide 1540 . The waveguide body 1546 transmits light from the first waveguide surface 1542 to the second waveguide surface 1544 (which is a flat surface in Figure 15). Similar to the other specific examples discussed throughout, the second waveguide surface 1544 may emit a light beam (with its reduced beam divergence) out of the waveguide body 1546 . As discussed further below, the emitted beam may enter the dielectric lens structure 1560 for further beam shaping (eg, collimation and/or divergence reduction).

介電透鏡結構1560可包含透明的二氧化物材料,諸如但不限於SiO 2。因此,介電透鏡結構1560可為二氧化物透鏡結構。在其他具體實例中,用以製造介電透鏡結構1560之介電材料可為氮化矽。歸因於波導主體1546之半導體材料的折射率與介電透鏡結構1560之介電材料(例如,二氧化矽或氮化矽)的折射率之間的差,光可經由透鏡結構1560折射及/或透鏡化。如圖15中所展示,介電透鏡結構1560之至少一個表面(例如,充當透鏡1560之發光表面的第二透鏡表面1564)可具有類似於球面及/或凸透鏡之形狀。介電透鏡結構1560之另一表面(例如,充當透鏡光進入表面之第一透鏡表面1562)可為平坦表面以與第一波導1540之發光表面(例如,第二波導表面1544)配合。由第二波導表面1544發射之光可被第一透鏡表面1562接收,穿過透鏡結構1560且藉由第二透鏡表面1564發射。因此,透鏡結構1560可進一步對由第一波導1540發射之光束的輪廓進行整形,例如,透鏡結構1560可進一步使LED之光束準直及/或減小該光束之發散度。應注意,介電透鏡結構1560可充當第一波導1540之鈍化層。一或多個隔板結構(例如,第一隔板結構1582及第二隔板結構1584)可自半導體材料層1550(或二次介電層,諸如但不限於圖11B之第二介電層1124及/或圖14A之第二介電層1324)延伸及/或突出。如下文所論述,隔板結構可用以進一步光學隔離光束輪廓及/或對光束輪廓進行整形(例如,增加準直及/或減小光束發散度)。儘管在圖15中展示為兩個分別的隔板結構,但第一隔板結構1582及第二隔板結構1584可為延伸至頁面中及延伸出頁面的單個3D隔板結構。 The dielectric lens structure 1560 may include a transparent dioxide material such as, but not limited to, SiO 2 . Therefore, the dielectric lens structure 1560 may be a dioxide lens structure. In other embodiments, the dielectric material used to fabricate the dielectric lens structure 1560 may be silicon nitride. Due to the difference between the refractive index of the semiconductor material of the waveguide body 1546 and the refractive index of the dielectric material of the dielectric lens structure 1560 (eg, silicon dioxide or silicon nitride), light can be refracted through the lens structure 1560 and/or or lensing. As shown in FIG. 15, at least one surface of the dielectric lens structure 1560 (eg, the second lens surface 1564 serving as the light emitting surface of the lens 1560) may have a shape similar to a spherical and/or convex lens. Another surface of the dielectric lens structure 1560 (eg, the first lens surface 1562 serving as the lens light entry surface) can be a flat surface to mate with the light emitting surface of the first waveguide 1540 (eg, the second waveguide surface 1544). Light emitted by the second waveguide surface 1544 may be received by the first lens surface 1562 , pass through the lens structure 1560 and be emitted by the second lens surface 1564 . Accordingly, the lens structure 1560 can further shape the profile of the light beam emitted by the first waveguide 1540, eg, the lens structure 1560 can further collimate and/or reduce the divergence of the light beam of the LED. It should be noted that the dielectric lens structure 1560 can act as a passivation layer for the first waveguide 1540 . One or more spacer structures (eg, first spacer structure 1582 and second spacer structure 1584 ) can be formed from semiconductor material layer 1550 (or a secondary dielectric layer, such as, but not limited to, the second dielectric layer of FIG. 11B ) 1124 and/or the second dielectric layer 1324 of FIG. 14A) extend and/or protrude. As discussed below, the baffle structure can be used to further optically isolate and/or shape the beam profile (eg, increase collimation and/or reduce beam divergence). Although shown in FIG. 15 as two separate spacer structures, the first spacer structure 1582 and the second spacer structure 1584 may be a single 3D spacer structure extending into and out of the page.

隔板結構(第一隔板結構1582及第二隔板結構1584)可包含不透明的半導體材料,諸如但不限於矽(Si)。不透明的半導體材料可為光學吸收材料,至少對於由LED發射之頻率而言。波導之隔板結構可用以有效地吸收光束(由波導發射)的將「干涉」由鄰近波導發射之光束的部分。亦即,隔板結構藉由移除光束之在光束輪廓邊緣附近的部分來進一步使由波導發射之光束準直,該等部分仍落在使用LED作為光源之各種應用的期望發射錐之外。The spacer structures (the first spacer structure 1582 and the second spacer structure 1584 ) may include opaque semiconductor materials such as, but not limited to, silicon (Si). The opaque semiconductor material may be an optically absorbing material, at least for the frequencies emitted by the LED. The baffle structure of the waveguides can be used to effectively absorb the portion of the light beam (emitted by the waveguide) that will "interfere" with the light beam emitted by adjacent waveguides. That is, the baffle structure further collimates the beam emitted by the waveguide by removing portions of the beam near the edge of the beam profile that still fall outside the desired emission cone for various applications using LEDs as light sources.

如上文所提及,波導可另外及/或替代地包括與波導之發光表面(第一波導1540之第二波導表面1544)對準的介電透鏡結構(例如,介電透鏡結構1560)。介電透鏡結構可包含光學透明半導體材料(例如,介電材料),該光學透明半導體材料折射入射光使得在行進穿過透鏡結構時,入射光束之光束發散度減小。介電材料可為二氧化物,諸如但不限於二氧化矽(SiO 2)。因此,介電透鏡可為氧化物透鏡。介電透鏡結構與其對應波導的對準使得透鏡結構接收自波導之發光表面發射的光束。如貫穿全文所論述,由波導之發射表面發射的光之角發散度已經由其穿過波導主體而顯著減小。由波導發射之光束透射穿過介電透鏡結構(且由介電透鏡結構折射)以用於進一步準直及/或發散度減小。介電透鏡結構可充當用以進一步使光束準直及/或減小光束發散度之球面及/或凸透鏡。亦即,介電透鏡結構可充當LED及半導體波導之組合的準直二次光學組件(或充當LED之三次光學組件)。 As mentioned above, the waveguide may additionally and/or alternatively include a dielectric lens structure (eg, dielectric lens structure 1560) aligned with the light emitting surface of the waveguide (second waveguide surface 1544 of the first waveguide 1540). The dielectric lens structure may include an optically transparent semiconductor material (eg, a dielectric material) that refracts incident light such that the beam divergence of the incident light beam is reduced as it travels through the lens structure. The dielectric material may be a dioxide such as, but not limited to, silicon dioxide (SiO 2 ). Thus, the dielectric lens may be an oxide lens. Alignment of the dielectric lens structures with their corresponding waveguides allows the lens structures to receive light beams emitted from the light emitting surfaces of the waveguides. As discussed throughout, the angular divergence of light emitted by the emitting surface of the waveguide has been significantly reduced by its passage through the waveguide body. The light beam emitted by the waveguide is transmitted through (and refracted by) the dielectric lens structure for further collimation and/or divergence reduction. The dielectric lens structures can act as spherical and/or convex lenses to further collimate and/or reduce beam divergence. That is, the dielectric lens structure can act as a collimating secondary optical component for the combination of the LED and semiconductor waveguide (or as a tertiary optical component for the LED).

16A示出根據某些具體實例之用於製造圖15之帶隔板波導陣列1514的半導體製程1600。關於半導體製程1600之論述的部分將參考圖15之帶隔板波導陣列1514以及圖12A之製程1200及/或圖14A之製程1400。舉例而言,製程1200及/或製程1400可經調適以包括用於對應波導陣列中之波導的半導體隔板結構(第一隔板結構1582及第二隔板結構1584)及/或介電透鏡結構(介電透鏡結構1560)。 16A illustrates a semiconductor process 1600 for fabricating the spacer waveguide array 1514 of FIG. 15, according to some embodiments. Portions of the discussion of semiconductor process 1600 will refer to spaced waveguide array 1514 of FIG. 15 and process 1200 of FIG. 12A and/or process 1400 of FIG. 14A. For example, process 1200 and/or process 1400 may be adapted to include semiconductor spacer structures (first spacer structure 1582 and second spacer structure 1584) and/or dielectric lenses for the waveguides in the corresponding waveguide arrays structure (dielectric lens structure 1560).

半導體製程1600可在步驟1602處開始,其中結晶材料層1550形成於半導體基板1504上。類似於製程1200之步驟1202,可在沈積於半導體基板1504上之結晶材料層1550上生長結晶結構陣列。因此,基板1504之半導體材料可為晶體生長基板。半導體基板1504可為半導體晶圓。基板1504之半導體材料可為光學不透明及/或光學吸收材料,諸如但不限於矽(Si)。半導體基板1504可為矽晶圓。結晶結構陣列經由製程1600之步驟形成為帶隔板波導陣列1514。波導陣列1514包括第一帶隔板波導1540。第一波導1540包括第一波導表面1542、波導主體1546及包圍波導主體1546之側壁1548。The semiconductor process 1600 may begin at step 1602 where a layer 1550 of crystalline material is formed on the semiconductor substrate 1504 . Similar to step 1202 of process 1200, an array of crystalline structures may be grown on layer 1550 of crystalline material deposited on semiconductor substrate 1504. Thus, the semiconductor material of substrate 1504 may be a crystal growth substrate. The semiconductor substrate 1504 may be a semiconductor wafer. The semiconductor material of substrate 1504 may be an optically opaque and/or optically absorbing material such as, but not limited to, silicon (Si). The semiconductor substrate 1504 can be a silicon wafer. The array of crystalline structures is formed through the steps of process 1600 into an array of spaced waveguides 1514 . The waveguide array 1514 includes a first baffled waveguide 1540 . The first waveguide 1540 includes a first waveguide surface 1542 , a waveguide body 1546 , and sidewalls 1548 surrounding the waveguide body 1546 .

在步驟1604處(且類似於製程1200之步驟1204),光學反射層1552可形成於結晶結構陣列上。在步驟1604處形成的反射層1552可形成於結晶材料層1550之「上」表面上。亦類似於步驟1204,在步驟1604處,第一介電層1522可形成於結晶結構陣列上,使得結晶結構中之每一者的主體(包括第一結晶結構1540之波導主體1546)插入於第一介電層1522與半導體基板1504之間。應注意,對於波導陣列1114中之第一波導1140(例如,參見圖12A),第一介電層之薄部分覆蓋第一波導1140之平坦的第一波導表面1142。相比之下,帶隔板波導陣列1514之第一介電層1522(例如,參見圖15)不覆蓋第一波導1540之平坦的第一波導表面1542。具體實例可改變,且在一些具體實例(例如,第一波導1140、第一波導1340及第一波導主體1540)中,光學透明的第一介電層(例如,第一介電層1122、第一介電層1322及第一介電層1522)可完全覆蓋光進入第一波導表面(例如,第一波導表面1142、第一波導表面1342及第一波導表面1542)。在其他具體實例中,第一介電層可僅部分地覆蓋或根本不覆蓋波導之第一波導表面。At step 1604 (and similar to step 1204 of process 1200), an optically reflective layer 1552 may be formed on the array of crystalline structures. The reflective layer 1552 formed at step 1604 may be formed on the "upper" surface of the crystalline material layer 1550. Also similar to step 1204, at step 1604, a first dielectric layer 1522 may be formed over the array of crystalline structures such that the body of each of the crystalline structures (including the waveguide body 1546 of the first crystalline structure 1540) is inserted into the first crystalline structure 1540. Between a dielectric layer 1522 and the semiconductor substrate 1504 . Note that for the first waveguide 1140 in the waveguide array 1114 (see, eg, FIG. 12A ), a thin portion of the first dielectric layer covers the flat first waveguide surface 1142 of the first waveguide 1140 . In contrast, the first dielectric layer 1522 of the baffled waveguide array 1514 (eg, see FIG. 15 ) does not cover the flat first waveguide surface 1542 of the first waveguide 1540 . Specific examples may vary, and in some specific examples (eg, first waveguide 1140, first waveguide 1340, and first waveguide body 1540), an optically transparent first dielectric layer (eg, first dielectric layer 1122, A dielectric layer 1322 and first dielectric layer 1522) can completely cover light entering the first waveguide surfaces (eg, first waveguide surface 1142, first waveguide surface 1342, and first waveguide surface 1542). In other embodiments, the first dielectric layer may only partially cover or not cover the first waveguide surface of the waveguide at all.

製程1600進行至步驟1606,其中對半導體基板1504執行蝕刻製程。如步驟1606之圖示中所展示,半導體蝕刻製程自半導體材料層1550選擇性地移除半導體基板1504之部分。蝕刻製程曝露波導中之每一者的發光表面。舉例而言,對於第一波導1540,曝露第二波導表面1544。第二波導表面1544將為第一波導1540之發光表面。在此具體實例中,第一波導1540之第一波導表面1542及第二波導表面1544中之每一者為平坦表面。相比之下且如圖12A中所展示,對於波導陣列1114中之第一波導1140,僅第一波導表面1142為平坦表面。第一波導1140之第二波導表面1144(例如,發光表面)為彎曲表面。本文中所論述之具體實例中之任一者可包括平坦發光表面(例如,波導之第二波導表面)。Process 1600 proceeds to step 1606 where an etching process is performed on semiconductor substrate 1504 . As shown in the illustration of step 1606, a semiconductor etch process selectively removes portions of the semiconductor substrate 1504 from the layer of semiconductor material 1550. The etching process exposes the light emitting surface of each of the waveguides. For example, for the first waveguide 1540, the second waveguide surface 1544 is exposed. The second waveguide surface 1544 will be the light emitting surface of the first waveguide 1540 . In this particular example, each of the first waveguide surface 1542 and the second waveguide surface 1544 of the first waveguide 1540 is a flat surface. In contrast and as shown in Figure 12A, for the first waveguide 1140 in the waveguide array 1114, only the first waveguide surface 1142 is a flat surface. The second waveguide surface 1144 (eg, the light emitting surface) of the first waveguide 1140 is a curved surface. Any of the specific examples discussed herein may include a flat light emitting surface (eg, the second waveguide surface of the waveguide).

未經由蝕刻製程移除之不透明(或不透光)半導體基板1504的部分形成不透明的隔板結構,該等隔板結構光學隔離波導中之每一者與其鄰近波導。如步驟1606中所展示,第一隔板結構1582及第二隔板結構1584光學隔離第一波導1540與波導陣列1514中之其他波導。因為第一隔板結構1582及第二隔板結構1584係沿著第一波導1540之縱向尺寸而定向,所以隔板結構可用以進一步使由第一波導1540之第二表面1544發射的光準直及/或減小該光之光束發散度。儘管圖16A之2D平面中未展示,但隔板結構可為完全環繞針對第一波導1540之第二波導表面1544發射之光束的3D隔板結構。在一些具體實例中,第一隔板結構1582及第二隔板結構1584可形成環繞由第一波導1540發射之光束的3D連續隔板結構。Portions of the opaque (or opaque) semiconductor substrate 1504 that are not removed by the etch process form opaque spacer structures that optically isolate each of the waveguides from its adjacent waveguides. As shown in step 1606, the first spacer structure 1582 and the second spacer structure 1584 optically isolate the first waveguide 1540 from the other waveguides in the waveguide array 1514. Because the first spacer structure 1582 and the second spacer structure 1584 are oriented along the longitudinal dimension of the first waveguide 1540, the spacer structure can be used to further collimate light emitted by the second surface 1544 of the first waveguide 1540 and/or reduce the beam divergence of the light. Although not shown in the 2D plane of FIG. 16A, the baffle structure may be a 3D baffle structure that completely surrounds the light beam emitted for the second waveguide surface 1544 of the first waveguide 1540. In some embodiments, the first spacer structure 1582 and the second spacer structure 1584 can form a 3D continuous spacer structure surrounding the light beam emitted by the first waveguide 1540 .

類似於步驟1212,在步驟1608中,第二介電層1524可形成於波導陣列1514上。第二介電層1524可覆蓋第二波導表面,例如波導之發光表面,包括但不限於第一波導1540之第二波導表面1544。如步驟1608之圖示中所展示,第二介電層1524可基本上囊封隔板結構(例如,第一隔板結構1582及第二隔板結構1584)。Similar to step 1212, in step 1608, a second dielectric layer 1524 may be formed on the waveguide array 1514. The second dielectric layer 1524 may cover the second waveguide surface, such as the light emitting surface of the waveguide, including but not limited to the second waveguide surface 1544 of the first waveguide 1540 . As shown in the illustration of step 1608, the second dielectric layer 1524 may substantially encapsulate the spacer structures (eg, the first spacer structure 1582 and the second spacer structure 1584).

製程1600可進行至步驟1610。至少為了清楚起見,波導陣列1514之垂直(或縱向)定向已翻轉以用於示出步驟1610。在步驟1610處,可對第二介電層1524執行蝕刻製程。蝕刻製程可特定於第二介電層1524之氧化物材料(例如,SiO 2)。亦即,步驟1608之蝕刻製程可能無法顯著蝕刻(或移除)隔板結構(例如,第一隔板結構1582及第二隔板結構1584)之半導體材料(例如,Si)或半導體材料層1550之半導體材料及/或波導(例如,GaN)。可執行蝕刻製程以移除第二介電層1524之部分,使得對於波導中之每一者(例如,第一帶隔板波導1540),僅保留介電透鏡結構(例如,介電透鏡結構1560)。 Process 1600 may proceed to step 1610 . The vertical (or longitudinal) orientation of waveguide array 1514 has been flipped for illustrating step 1610, at least for clarity. At step 1610, an etching process may be performed on the second dielectric layer 1524. The etching process can be specific to the oxide material (eg, SiO 2 ) of the second dielectric layer 1524 . That is, the etch process of step 1608 may not significantly etch (or remove) the semiconductor material (eg, Si) or the semiconductor material layer 1550 of the spacer structures (eg, the first spacer structure 1582 and the second spacer structure 1584 ) of semiconductor materials and/or waveguides (eg, GaN). An etch process may be performed to remove portions of the second dielectric layer 1524 such that for each of the waveguides (eg, the first baffled waveguide 1540 ), only the dielectric lens structures (eg, the dielectric lens structures 1560 ) remain ).

16B示出根據某些具體實例之用於製造圖15之帶隔板波導陣列1514的方法1620。方法1620可包括圖16A之半導體製程1600的一或多個步驟之至少部分。方法1620在區塊1622處開始,其中在沈積於半導體基板上之結晶材料層上生長結晶結構陣列。類似於圖16A之製程1600的步驟1602,形成波導陣列1514之結晶結構可為生長的結晶材料層1550。結晶材料層可沈積及/或形成於半導體晶圓(例如,晶體生長基板1504)之至少一部分上。 16B illustrates a method 1620 for fabricating the baffled waveguide array 1514 of FIG. 15, according to certain embodiments. The method 1620 can include at least part of one or more steps of the semiconductor process 1600 of FIG. 16A. Method 1620 begins at block 1622 with growing an array of crystalline structures on a layer of crystalline material deposited on a semiconductor substrate. Similar to step 1602 of process 1600 of FIG. 16A, the crystalline structure forming waveguide array 1514 may be a layer 1550 of grown crystalline material. A layer of crystalline material may be deposited and/or formed on at least a portion of a semiconductor wafer (eg, crystal growth substrate 1504).

在區塊1624處,反射層(例如,金屬化層1552)可形成及/或沈積於結晶結構陣列(例如,波導陣列1514)之部分上。類似於製程1200之步驟1204,第一介電層(例如,第一介電層1522)可形成及/或沈積於反射層及/或波導陣列之部分上。如製程1600之步驟1604中所展示,反射層可提供波導陣列中之每一波導與其他波導中之每一者的至少部分光學隔離。At block 1624, a reflective layer (eg, metallization layer 1552) may be formed and/or deposited over portions of an array of crystalline structures (eg, array of waveguides 1514). Similar to step 1204 of process 1200, a first dielectric layer (eg, first dielectric layer 1522) may be formed and/or deposited over portions of the reflective layer and/or the waveguide array. As shown in step 1604 of process 1600, the reflective layer may provide at least partial optical isolation of each waveguide in the array of waveguides from each of the other waveguides.

在區塊1626處,移除半導體基板之部分(例如,經由對半導體基板執行之半導體蝕刻製程)以形成用於波導陣列中之每一波導的發光表面之一或多個隔板結構。舉例而言,如製程1600之步驟1606的圖示中所展示,第一隔板結構1582及第二隔板結構1584可經由蝕刻半導體基板1504形成,以經由吸收製程阻隔(或約束)由第一波導1540之第二波導表面1544發射的光。在區塊1628處且如製程1600之步驟1608的圖示中所展示,可形成第二介電層以覆蓋結晶材料層(例如,結晶材料層1550)及/或波導之發光表面(例如,第一波導1540之第二波導表面1544)。在區塊1630處且如製程1600之步驟1610的圖示中所展示,移除第二介電層之部分(例如,經由對第二介電層執行之蝕刻製程)以形成用於波導陣列中之每一波導之發光表面的一或多個介電透鏡結構。舉例而言,如製程1600之步驟1610的圖示中所展示,可經由蝕刻第二介電層1524形成介電透鏡結構1560,以對經由第一波導1540之平坦第二波導表面1544發射的光束進行整形。 用於製造波導陣列之壓花工具 At block 1626, portions of the semiconductor substrate are removed (eg, via a semiconductor etching process performed on the semiconductor substrate) to form one or more spacer structures for the light emitting surface of each waveguide in the array of waveguides. For example, as shown in the illustration of step 1606 of process 1600, first spacer structure 1582 and second spacer structure 1584 may be formed by etching semiconductor substrate 1504 to block (or constrain) the first spacer structure 1584 through an absorption process Light emitted by the second waveguide surface 1544 of the waveguide 1540. At block 1628 and as shown in the illustration of step 1608 of process 1600, a second dielectric layer may be formed to cover the crystalline material layer (eg, crystalline material layer 1550) and/or the light emitting surface of the waveguide (eg, the first a second waveguide surface 1544 of a waveguide 1540). At block 1630 and as shown in the illustration of step 1610 of process 1600, portions of the second dielectric layer are removed (eg, via an etch process performed on the second dielectric layer) to form use in a waveguide array One or more dielectric lens structures on the light emitting surface of each waveguide. For example, as shown in the illustration of step 1610 of process 1600 , a dielectric lens structure 1560 may be formed by etching the second dielectric layer 1524 for beams emitted through the flat second waveguide surface 1544 of the first waveguide 1540 reshape. Embossing Tools for Fabricating Waveguide Arrays

各種具體實例可包括製造「軟」或「硬」壓印及/或壓花工具。可使用此壓花工具經由壓印及/或壓花製程(例如,奈米壓印微影製程)在除用以生長包含波導主體之結晶結構之結晶材料(例如,GaN)以外的材料中製造波導。舉例而言,此等工具可用以在非結晶材料(例如,二氧化矽或另一折射材料)中壓印及/或壓花類似於本文中所論述之波導的波導。圖17A至圖17B之製程1760及1780係有關於製造「軟」壓印及/或壓花工具。圖18A至圖18B之製程1860及1880係有關於製造「硬」壓印及/或壓花工具。Various specific examples may include making "soft" or "hard" stamping and/or embossing tools. This embossing tool can be used to fabricate in materials other than the crystalline material (eg, GaN) used to grow the crystalline structure comprising the waveguide body via imprinting and/or embossing processes (eg, nanoimprint lithography processes) waveguide. For example, such tools can be used to imprint and/or emboss waveguides similar to those discussed herein in amorphous materials (eg, silica or another refractive material). Processes 1760 and 1780 of Figures 17A-17B relate to making "soft" stamping and/or embossing tools. Processes 1860 and 1880 of Figures 18A-18B relate to making "hard" stamping and/or embossing tools.

17A示出根據某些具體實例之用於製造軟壓花工具1700的半導體製程1760,該軟壓花工具用於在非結晶材料中壓花波導陣列。關於半導體製程1760之論述的部分將參考圖11B之波導陣列1114以及圖12A之製程1200。半導體製程1760可在步驟1762處開始,其中結晶材料層1750形成於半導體基板1704上。類似於製程1200之步驟1202,可在沈積於半導體基板1704上之結晶材料層1750上生長結晶結構陣列1714。因此,基板1704之半導體材料可為晶體生長基板。歸因於結晶生長製程,結晶結構陣列1714之形狀類似於波導陣列1114。因此,基於晶體生長製程,結晶結構之形狀在整個結晶結構陣列1714上為顯著均勻的。製程1760包括將結晶結構陣列1714之形狀(及因此圖11B之波導陣列1114之形狀)「轉移」至軟壓花工具1700。因此,參考點1702展示於製程1760之步驟的圖示中以追蹤結晶結構陣列1714之形狀至軟壓花工具1700的轉移。 17A illustrates a semiconductor process 1760 for fabricating a soft embossing tool 1700 for embossing waveguide arrays in amorphous materials, according to some embodiments. Portions of the discussion regarding semiconductor process 1760 will refer to waveguide array 1114 of FIG. 11B and process 1200 of FIG. 12A. Semiconductor process 1760 may begin at step 1762 where a layer 1750 of crystalline material is formed on semiconductor substrate 1704 . Similar to step 1202 of process 1200, an array of crystalline structures 1714 may be grown on a layer of crystalline material 1750 deposited on semiconductor substrate 1704. Thus, the semiconductor material of substrate 1704 may be a crystal growth substrate. The shape of the array of crystalline structures 1714 is similar to the array of waveguides 1114 due to the crystal growth process. Therefore, the shape of the crystal structures is substantially uniform throughout the crystal structure array 1714 based on the crystal growth process. Process 1760 includes “transferring” the shape of the array of crystalline structures 1714 (and thus the shape of the waveguide array 1114 of FIG. Accordingly, reference point 1702 is shown in the diagram of the steps of process 1760 to track the transfer of the shape of crystalline structure array 1714 to soft embossing tool 1700 .

在步驟1764處,彈性(或「軟」)材料層1706可形成(或沈積)於結晶結構陣列1714上。在一些非限制性具體實例中,彈性材料層1706可為聚合物層,諸如但不限於聚矽氧(或類聚矽氧)材料層。在一些具體實例中,彈性材料層1706可包含聚二甲基矽氧烷(PDMS)。注意步驟1764之圖示中的參考點1702。因為彈性材料層1706與結晶結構陣列1714「配合」,所以彈性材料層1706之形狀與結晶結構陣列1714之形狀互補。在步驟1766處,可將轉移晶圓1754接合至彈性材料層1706。At step 1764, a layer 1706 of elastic (or "soft") material may be formed (or deposited) on the array 1714 of crystalline structures. In some non-limiting embodiments, the elastic material layer 1706 may be a polymer layer, such as, but not limited to, a polysiloxane (or polysiloxane-like) material layer. In some specific examples, the elastic material layer 1706 may include polydimethylsiloxane (PDMS). Note the reference point 1702 in the illustration of step 1764. Because the elastic material layer 1706 "mates" with the crystalline structure array 1714, the shape of the elastic material layer 1706 is complementary to the shape of the crystalline structure array 1714. At step 1766, transfer wafer 1754 may be bonded to elastic material layer 1706.

在步驟1768處,可自彈性材料層1706移除半導體基板1704及結晶結構陣列1714(將半導體基板及結晶結構陣列與彈性材料層實體上分離),以形成軟壓花工具1700。壓花工具1700可包括彈性材料層1706,該彈性材料層具有與圖11B之波導陣列1114之形狀互補的形狀。在一些具體實例中,壓花工具亦可包括轉移晶圓1754。在其他具體實例中,可將彈性材料層1706轉移至另一剛體(例如,另一晶圓)。為了清楚起見,彈性材料層1706及轉移晶圓1754之垂直定向在步驟1768之圖示中已翻轉。因為壓花工具1700(例如,彈性材料層1706)具有與圖11B之波導陣列1114互補的形狀,所以使用壓花工具1700壓花波導材料(例如,具有波導性質之材料及/或折射光之材料)將導致形狀為波導陣列1114之形狀的波導。At step 1768 , the semiconductor substrate 1704 and the array of crystalline structures 1714 may be removed from the layer of elastic material 1706 (physically separating the semiconductor substrate and array of crystalline structures from the layer of elastic material) to form a soft embossing tool 1700 . The embossing tool 1700 may include a layer of elastic material 1706 having a shape complementary to that of the waveguide array 1114 of Figure 11B. In some embodiments, the embossing tool may also include transfer wafer 1754 . In other embodiments, the layer of elastic material 1706 can be transferred to another rigid body (eg, another wafer). The vertical orientation of elastic material layer 1706 and transfer wafer 1754 has been flipped in the illustration of step 1768 for clarity. Because the embossing tool 1700 (eg, the layer of elastic material 1706 ) has a complementary shape to the waveguide array 1114 of FIG. 11B , the embossing tool 1700 is used to emboss a waveguide material (eg, a material with waveguide properties and/or a material that refracts light) ) will result in a waveguide shaped as the waveguide array 1114.

17B示出根據某些具體實例之用於製造圖17A之軟壓印工具1700的方法1780。方法1780可包括圖17A之半導體製程1760的一或多個步驟之至少部分。方法1780在區塊1782處開始,其中在沈積於半導體基板上之結晶材料層上生長結晶結構陣列。舉例而言,如在製程1760之步驟1762中,形成結晶結構陣列1714之結晶結構可為生長的結晶材料層1750。結晶材料層可沈積及/或形成於半導體晶圓(例如,晶體生長基板1704)之至少一部分上。 17B illustrates a method 1780 for fabricating the soft imprint tool 1700 of FIG. 17A, according to some embodiments. The method 1780 can include at least part of one or more steps of the semiconductor process 1760 of Figure 17A. Method 1780 begins at block 1782 with growing an array of crystalline structures on a layer of crystalline material deposited on a semiconductor substrate. For example, as in step 1762 of process 1760, the crystalline structure forming the crystalline structure array 1714 may be a layer of crystalline material 1750 grown. A layer of crystalline material may be deposited and/or formed on at least a portion of a semiconductor wafer (eg, crystal growth substrate 1704).

在區塊1784處且類似於製程1760之步驟1764,彈性材料層(例如,彈性材料層1706)可形成(或沈積)於結晶結構陣列上。在區塊1786處且類似於製程1760之步驟1766,可將轉移晶圓(例如,轉移晶圓1754)接合至彈性材料層。在區塊1788處且類似於步驟1768,可藉由自彈性材料層移除半導體基板及結晶結構陣列來形成軟壓花工具(例如,軟壓花工具1700)。在區塊1790處,可使用軟壓花工具以形成波導陣列(例如,經由奈米壓印微影製程)。在區塊1792處,可使用波導陣列以製造光源。At block 1784 and similar to step 1764 of process 1760, an elastic material layer (eg, elastic material layer 1706) may be formed (or deposited) on the array of crystalline structures. At block 1786 and similar to step 1766 of process 1760, a transfer wafer (eg, transfer wafer 1754) may be bonded to the layer of elastic material. At block 1788 and similar to step 1768, a soft embossing tool (eg, soft embossing tool 1700) may be formed by removing the semiconductor substrate and the array of crystalline structures from the layer of elastic material. At block 1790, a soft embossing tool may be used to form an array of waveguides (eg, via a nanoimprint lithography process). At block 1792, an array of waveguides can be used to fabricate a light source.

18A示出根據某些具體實例之用於製造硬壓花工具1800的半導體製程1860,該硬壓花工具用於在非結晶材料中壓花波導陣列。關於半導體製程1860之論述的部分將參考圖11B之波導陣列1114以及圖12A之製程1200。半導體製程1860可在步驟1862處開始,其中結晶材料層1850形成於半導體基板1804上。類似於製程1200之步驟1202,可在沈積於半導體基板1804上之結晶材料層1850上生長結晶結構陣列1814。因此,基板1804之半導體材料可為晶體生長基板。歸因於結晶生長製程,結晶結構陣列1814之形狀類似於波導陣列1114。因此,基於晶體生長製程,結晶結構之形狀在整個結晶結構陣列1814上為顯著均勻的。製程1860包括將結晶結構陣列1814之形狀(及因此波導陣列1114之形狀)「轉移」至硬壓花工具1800。因此,參考點1802展示於製程1860之步驟的圖示中以追蹤結晶結構陣列1804之形狀至硬壓花工具1800的轉移。 18A illustrates a semiconductor process 1860 for fabricating a hard embossing tool 1800 for embossing waveguide arrays in amorphous materials, according to some embodiments. Portions of the discussion regarding semiconductor process 1860 will refer to the waveguide array 1114 of FIG. 11B and the process 1200 of FIG. 12A. Semiconductor process 1860 may begin at step 1862 where a layer 1850 of crystalline material is formed on semiconductor substrate 1804 . Similar to step 1202 of process 1200, an array of crystalline structures 1814 may be grown on a layer of crystalline material 1850 deposited on a semiconductor substrate 1804. Thus, the semiconductor material of substrate 1804 may be a crystal growth substrate. The shape of the array of crystalline structures 1814 is similar to the array of waveguides 1114 due to the crystal growth process. Therefore, the shape of the crystal structures is substantially uniform throughout the crystal structure array 1814 based on the crystal growth process. Process 1860 includes “transferring” the shape of crystalline structure array 1814 (and thus the shape of waveguide array 1114 ) to hard embossing tool 1800 . Accordingly, reference point 1802 is shown in the diagram of the steps of process 1860 to track the transfer of the shape of crystalline structure array 1804 to hard embossing tool 1800 .

在步驟1864處,光阻材料層1806可形成(沈積)於結晶結構陣列1814上。注意步驟1864之圖示中的參考點1802。因為光阻層1806與結晶結構陣列1814「配合」,所以光阻層1806之形狀與結晶結構陣列1814之形狀互補。替代軟及/或彈性材料(例如,如在圖17A之製程1760之步驟1764處所使用的PDMS),可在步驟1864處使用光阻材料,使得可在製造硬壓花工具1800時形成一或多個「硬」層(例如,金屬層)(例如,參見製程1860之步驟1870及1874)。在步驟1866處,可將第一轉移晶圓1854接合至光阻層1806。At step 1864, a layer of photoresist material 1806 may be formed (deposited) on the array of crystalline structures 1814. Note the reference point 1802 in the illustration of step 1864. Because the photoresist layer 1806 "mates" with the crystalline structure array 1814, the shape of the photoresist layer 1806 is complementary to the shape of the crystalline structure array 1814. Instead of soft and/or elastic materials (eg, PDMS as used at step 1764 of process 1760 of FIG. 17A ), a photoresist material may be used at step 1864 such that one or more A "hard" layer (eg, a metal layer) (eg, see steps 1870 and 1874 of process 1860). At step 1866, the first transfer wafer 1854 can be bonded to the photoresist layer 1806.

在步驟1868處,可自光阻層1806移除半導體基板1804及結晶結構陣列1814(或將半導體基板及結晶結構陣列與光阻層實體上分離)。應注意,第一轉移晶圓1854及光阻層1806之垂直定向在步驟1868之圖示中已翻轉。在步驟1870處,第一「硬」材料層1808可由光阻層1806形成。第一硬材料層1808之硬材料可為第一金屬,諸如但不限於銅(Cu)。因此,第一硬層1808可為第一金屬層。因為第一金屬層1808與光阻層1806配合,所以第一硬金屬層1808之形狀可與光阻層1806之形狀互補。亦即,第一金屬層1808之形狀與結晶結構陣列1814之互補形狀互補,亦即,結晶結構陣列1814之形狀,其為經由硬壓花工具1800製造之波導陣列的形狀。為了壓花波導陣列,可能需要壓花工具之形狀類似於待壓花之波導陣列的形狀。因此,壓花工具1800可能需要光阻層1806之形狀。因此,可將第一金屬層1808之形狀轉移至第二金屬層(例如,參見步驟1874之第二金屬層1810)。亦在步驟1870處,可將第二轉移晶圓1856接合至第一金屬層1808。At step 1868, the semiconductor substrate 1804 and the array of crystalline structures 1814 may be removed from the photoresist layer 1806 (or physically separated from the photoresist layer). It should be noted that the vertical orientation of the first transfer wafer 1854 and the photoresist layer 1806 has been flipped in the illustration of step 1868 . At step 1870 , a first “hard” material layer 1808 may be formed from the photoresist layer 1806 . The hard material of the first hard material layer 1808 may be a first metal, such as, but not limited to, copper (Cu). Therefore, the first hard layer 1808 may be the first metal layer. Because the first metal layer 1808 cooperates with the photoresist layer 1806 , the shape of the first hard metal layer 1808 can be complementary to the shape of the photoresist layer 1806 . That is, the shape of the first metal layer 1808 is complementary to the complementary shape of the array of crystalline structures 1814 , that is, the shape of the array of crystalline structures 1814 , which is the shape of the waveguide array fabricated by the hard embossing tool 1800 . In order to emboss the waveguide array, it may be necessary to emboss the shape of the tool similar to the shape of the waveguide array to be embossed. Accordingly, the shape of the photoresist layer 1806 may be required by the embossing tool 1800. Accordingly, the shape of the first metal layer 1808 can be transferred to the second metal layer (eg, see second metal layer 1810 of step 1874). Also at step 1870, the second transfer wafer 1856 can be bonded to the first metal layer 1808.

在步驟1872處,可自第一金屬層1808移除第一轉移晶圓1854及光阻層1806。應注意,在步驟1872之圖示中,第二轉移晶圓1856及第一金屬層1808之垂直定向已翻轉。在步驟1874處,可將第一金屬層之形狀轉移至第二金屬層。舉例而言,第二金屬層1810可由第一金屬層1808形成。在非限制性具體實例中,第二金屬層可包含第二金屬,諸如但不限於鎳。因為第二金屬層1810與第一金屬層1808配合,所以第二金屬層1810之形狀與第一金屬層1808之形狀互補(例如,與待壓花之波導陣列之形狀互補的形狀)。亦在步驟1874處,可將第三轉移晶圓1858接合至第二金屬層1810。At step 1872, the first transfer wafer 1854 and the photoresist layer 1806 may be removed from the first metal layer 1808. It should be noted that in the illustration of step 1872, the vertical orientations of the second transfer wafer 1856 and the first metal layer 1808 have been flipped. At step 1874, the shape of the first metal layer can be transferred to the second metal layer. For example, the second metal layer 1810 may be formed from the first metal layer 1808 . In a non-limiting specific example, the second metal layer may include a second metal, such as, but not limited to, nickel. Because the second metal layer 1810 cooperates with the first metal layer 1808, the shape of the second metal layer 1810 is complementary to the shape of the first metal layer 1808 (eg, a shape complementary to the shape of the waveguide array to be embossed). Also at step 1874, the third transfer wafer 1858 can be bonded to the second metal layer 1810.

在步驟1876處,可藉由自第二金屬(或硬)層1810移除第二轉移晶圓1856及第一金屬層1808來形成硬壓花工具1800。同樣,為了清楚起見,第三轉移晶圓1858及第二金屬層1810之垂直定向已翻轉。因此,硬轉移工具可包括第二金屬層1810及第三轉移晶圓1858(或另一剛體)。硬壓花工具可用於以與軟壓花工具1700之方式類似的方式壓花或壓印波導陣列。At step 1876 , a hard embossing tool 1800 may be formed by removing the second transfer wafer 1856 and the first metal layer 1808 from the second metal (or hard) layer 1810 . Again, the vertical orientations of the third transfer wafer 1858 and the second metal layer 1810 have been flipped for clarity. Thus, the hard transfer tool may include the second metal layer 1810 and the third transfer wafer 1858 (or another rigid body). A hard embossing tool can be used to emboss or imprint the waveguide array in a manner similar to that of the soft embossing tool 1700 .

18B示出根據某些具體實例之用於製造圖18A之硬壓印工具1800的方法1880。方法1880可包括圖18A之半導體製程1860的一或多個步驟之至少部分。方法1880在區塊1882處開始,其中在沈積於半導體基板上之結晶材料層上生長結晶結構陣列。舉例而言,如在製程1860之步驟1862中,形成結晶結構陣列1814之結晶結構可為生長的結晶材料層1850。結晶材料層可沈積及/或形成於半導體晶圓(例如,晶體生長基板1804)之至少一部分上。 18B illustrates a method 1880 for manufacturing the hard imprint tool 1800 of FIG. 18A , according to some embodiments. The method 1880 can include at least part of one or more steps of the semiconductor process 1860 of Figure 18A. Method 1880 begins at block 1882 with growing an array of crystalline structures on a layer of crystalline material deposited on a semiconductor substrate. For example, as in step 1862 of process 1860, the crystalline structure forming the array of crystalline structures 1814 may be a layer of crystalline material 1850 grown. A layer of crystalline material may be deposited and/or formed on at least a portion of a semiconductor wafer (eg, crystal growth substrate 1804).

在區塊1884處且類似於製程1860之步驟1864,光阻層(例如,彈性材料層1806)可形成(或沈積)於結晶結構陣列上。因此,在區塊1884處,可將結晶結構陣列之形狀的互補形狀轉移至光阻層。在區塊1886處且類似於步驟1866,可將第一轉移晶圓(例如,第一轉移晶圓1854)接合至光阻層。在區塊1888處且類似於步驟1868,可自抗蝕劑層移除半導體基板及結晶結構陣列。在區塊1890處且類似於步驟1870,第一金屬層(例如,第一金屬層1808)可形成及/或沈積於光阻層上。因此,在區塊1890處,可將光阻層之層之形狀的互補形狀轉移至第一金屬層。亦在區塊1890處,可將第二轉移晶圓(例如,第二轉移晶圓1856)接合至第一金屬層。在區塊1892處且類似於步驟1872,可自第一金屬層移除第一轉移晶圓及光阻層。At block 1884 and similar to step 1864 of process 1860, a photoresist layer (eg, elastic material layer 1806) may be formed (or deposited) on the array of crystalline structures. Thus, at block 1884, the complementary shape of the shape of the array of crystalline structures can be transferred to the photoresist layer. At block 1886 and similar to step 1866, a first transfer wafer (eg, first transfer wafer 1854) may be bonded to the photoresist layer. At block 1888 and similar to step 1868, the semiconductor substrate and array of crystalline structures may be removed from the resist layer. At block 1890 and similar to step 1870, a first metal layer (eg, first metal layer 1808) may be formed and/or deposited on the photoresist layer. Thus, at block 1890, a complementary shape to the shape of the layers of the photoresist layer can be transferred to the first metal layer. Also at block 1890, a second transfer wafer (eg, second transfer wafer 1856) may be bonded to the first metal layer. At block 1892 and similar to step 1872, the first transfer wafer and photoresist layer may be removed from the first metal layer.

在步驟1894處且類似於步驟1874,第二金屬層(例如,第二金屬層1810)可形成於第一金屬層上。因此,在區塊1894處,可將第一金屬層之形狀的互補形狀轉移至第二金屬層。亦在區塊1894處,可將第三轉移晶圓(例如,第三轉移晶圓1858)接合至第二金屬層。在區塊1896處,可藉由自第二金屬層移除第二轉移晶圓及第一金屬層來形成硬壓花工具(例如,硬壓花工具1800)。 人工實境系統 At step 1894 and similar to step 1874, a second metal layer (eg, second metal layer 1810) may be formed on the first metal layer. Thus, at block 1894, the complementary shape of the shape of the first metal layer can be transferred to the second metal layer. Also at block 1894, a third transfer wafer (eg, third transfer wafer 1858) may be bonded to the second metal layer. At block 1896, a hard embossing tool (eg, hard embossing tool 1800) may be formed by removing the second transfer wafer and the first metal layer from the second metal layer. artificial reality system

本文中所揭示之具體實例可用以實施人工實境系統之組件,或可結合人工實境系統來實施。人工實境為在呈現給使用者之前已以某一方式調整的一種實境形式,其可包括例如虛擬實境、擴增實境、混合實境、混雜實境或其某一組合及/或衍生物。人工實境內容可包括完全產生內容或與所俘獲之(例如,真實世界)內容組合的所產生內容。人工實境內容可包括視訊、音訊、觸覺反饋或其某一組合,且其中之任一者可在單個通道中或在多個通道中呈現(諸如,對觀看者產生三維效應之立體聲視訊)。另外,在一些具體實例中,人工實境亦可與用以例如在人工實境中產生內容及/或以其他方式用於人工實境中(例如,在人工實境中執行活動)之應用程式、產品、配件、服務或其某一組合相關聯。提供人工實境內容之人工實境系統可實施於各種平台上,包括連接至主機電腦系統之HMD、獨立式HMD、行動裝置或計算系統或能夠將人工實境內容提供至一或多個觀看者之任何其他硬體平台。The specific examples disclosed herein may be used to implement components of an artificial reality system, or may be implemented in conjunction with an artificial reality system. Artificial reality is a form of reality that has been adjusted in some way before being presented to the user, which may include, for example, virtual reality, augmented reality, mixed reality, mixed reality, or some combination thereof and/or derivative. Artificial reality content may include generated content entirely or in combination with captured (eg, real-world) content. The artificial reality content may include video, audio, haptic feedback, or some combination thereof, and any of these may be presented in a single channel or in multiple channels (such as stereo video with a three-dimensional effect to the viewer). Additionally, in some embodiments, artificial environments may also be associated with applications used, for example, to generate content in artificial environments and/or otherwise be used in artificial environments (eg, to perform activities in artificial environments). , products, accessories, services, or some combination thereof. An augmented reality system that provides augmented reality content may be implemented on a variety of platforms, including HMDs connected to host computer systems, stand-alone HMDs, mobile devices or computing systems or capable of providing augmented reality content to one or more viewers any other hardware platform.

19為用於實施本文中所揭示之一些實例的實例近眼顯示器(例如,HMD裝置)之實例電子系統1900的簡化方塊圖。電子系統1900可用作HMD裝置或上文所描述之其他近眼顯示器之電子系統。在此實例中,電子系統1900可包括一或多個處理器1910及記憶體1920。處理器1910可經組態以執行用於在數個組件處執行操作之指令,且可為例如適合在攜帶型電子裝置內實施之通用處理器或微處理器。處理器1910可與電子系統1900內之複數個組件通信耦接。為了實現此通信耦接,處理器1910可跨越匯流排1940與其他所圖示之組件通信。匯流排1940可為適於在電子系統1900內傳送資料之任何子系統。匯流排1940可包括複數個電腦匯流排及額外電路系統以傳送資料。 19 is a simplified block diagram of an example electronic system 1900 for implementing an example near-eye display (eg, an HMD device) of some examples disclosed herein. The electronic system 1900 may be used as the electronic system of an HMD device or other near-eye displays described above. In this example, electronic system 1900 may include one or more processors 1910 and memory 1920. The processor 1910 may be configured to execute instructions for performing operations at several components, and may be, for example, a general-purpose processor or microprocessor suitable for implementation within a portable electronic device. The processor 1910 may be communicatively coupled with various components within the electronic system 1900. To achieve this communicative coupling, the processor 1910 can communicate across the bus 1940 with other illustrated components. Bus 1940 may be any subsystem suitable for communicating data within electronic system 1900. Bus 1940 may include a plurality of computer buses and additional circuitry to communicate data.

記憶體1920可耦合至處理器1910。在一些具體實例中,記憶體1920可提供短期儲存及長期儲存兩者,且可分成若干單元。記憶體1920可為揮發性的,諸如靜態隨機存取記憶體(static random access memory;SRAM)及/或動態隨機存取記憶體(DRAM),及/或為非揮發性的,諸如唯讀記憶體(read-only memory;ROM)、快閃記憶體及其類似者。此外,記憶體1920可包括抽取式儲存裝置,諸如安全數位(secure digital;SD)卡。記憶體1920可提供電腦可讀指令、資料結構、程式模組及用於電子系統1900之其他資料的儲存。在一些具體實例中,記憶體1920可分佈至不同硬體模組中。一組指令及/或程式碼可儲存於記憶體1920上。該等指令可呈可由電子系統1900執行之可執行程式碼之形式,及/或可呈原始程式碼及/或可安裝程式碼之形式,該原始程式碼及/或可安裝程式碼在編譯及/或安裝於電子系統1900上(例如,使用多種常用的編譯器、安裝程式、壓縮/解壓公用程式等中之任一者)後,可呈可執行程式碼之形式。Memory 1920 may be coupled to processor 1910 . In some embodiments, memory 1920 can provide both short-term storage and long-term storage, and can be divided into cells. Memory 1920 may be volatile, such as static random access memory (SRAM) and/or dynamic random access memory (DRAM), and/or non-volatile, such as read-only memory Body (read-only memory; ROM), flash memory and the like. Additionally, the memory 1920 may include removable storage devices, such as secure digital (SD) cards. Memory 1920 may provide storage of computer-readable instructions, data structures, program modules, and other data for electronic system 1900. In some embodiments, memory 1920 may be distributed among different hardware modules. A set of instructions and/or code may be stored on memory 1920 . The instructions may be in the form of executable code executable by electronic system 1900, and/or may be in the form of source code and/or installable code that is compiled and/or installed /or may be in the form of executable code after being installed on electronic system 1900 (eg, using any of a variety of commonly used compilers, installers, compression/decompression utilities, etc.).

在一些具體實例中,記憶體1920可儲存複數個應用程式模組1922至1924,該等應用程式模組可包括任何數目個應用程式。應用程式之實例可包括遊戲應用程式、會議應用程式、視訊播放應用程式或其他合適的應用程式。該等應用程式可包括深度感測功能或眼睛追蹤功能。應用程式模組1922至1924可包括待由處理器1910執行之特定指令。在一些具體實例中,某些應用程式或應用程式模組1922至1924之部分可由其他硬體模組1980執行。在某些具體實例中,記憶體1920可另外包括安全記憶體,其可包括額外的安全控制以防止對安全資訊之複製或其他未授權存取。In some embodiments, memory 1920 may store a plurality of application modules 1922-1924, which may include any number of applications. Examples of applications may include gaming applications, conferencing applications, video playback applications, or other suitable applications. Such applications may include depth-sensing functionality or eye-tracking functionality. Application modules 1922-1924 may include specific instructions to be executed by processor 1910. In some embodiments, certain applications or portions of application modules 1922-1924 may be executed by other hardware modules 1980. In some embodiments, memory 1920 may additionally include secure memory, which may include additional security controls to prevent copying or other unauthorized access to secure information.

在一些具體實例中,記憶體1920可包括載入於其中之作業系統1925。作業系統1925可操作以起始執行由應用程式模組1922至1924提供之指令及/或管理其他硬體模組1980,以及與可包括一或多個無線收發器之無線通信子系統1930介接。作業系統1925可適用於跨越電子系統1900之組件執行其他操作,包括執行緒處理、資源管理、資料儲存控制及其他類似功能性。In some embodiments, memory 1920 may include an operating system 1925 loaded therein. Operating system 1925 is operable to initiate execution of instructions provided by application modules 1922-1924 and/or to manage other hardware modules 1980, and to interface with wireless communication subsystem 1930, which may include one or more wireless transceivers . Operating system 1925 may be adapted to perform other operations across components of electronic system 1900, including threading, resource management, data storage control, and other similar functionality.

無線通信子系統1930可包括例如紅外線通信裝置、無線通信裝置及/或晶片組(諸如,Bluetooth®裝置、IEEE 802.11裝置、Wi-Fi裝置、WiMax裝置、蜂巢式通信設施等)及/或類似通信介面。電子系統1900可包括用於無線通信之一或多個天線1934,作為無線通信子系統1930之部分或作為耦接至該系統之任何部分的分別的組件。取決於期望功能性,無線通信子系統1930可包括分別的收發器以與基地收發器台以及其他無線裝置及存取點通信,其可包括與諸如無線廣域網路(wireless wide-area network;WWAN)、無線區域網路(wireless local area network;WLAN)或無線個人區域網路(wireless personal area network;WPAN)之不同資料網路及/或網路類型通信。WWAN可為例如WiMax(IEEE 802.16)網路。WLAN可為例如IEEE 802.11x網路。WPAN可為例如藍芽網路、IEEE 802.15x或一些其他類型的網路。本文中所描述之技術亦可用於WWAN、WLAN及/或WPAN之任何組合。無線通信子系統1930可准許與網路、其他電腦系統及/或本文中所描述之任何其他裝置交換資料。無線通信子系統1930可包括用於使用天線1934及無線鏈路1932傳輸或接收資料之部件,該資料為諸如HMD裝置之識別符、位置資料、地理圖、熱圖、相片或視訊。無線通信子系統1930、處理器1910及記憶體1920可一起包含用於執行本文中所揭示之一些功能的部件中之一或多者的至少一部分。Wireless communication subsystem 1930 may include, for example, infrared communication devices, wireless communication devices and/or chipsets (such as Bluetooth® devices, IEEE 802.11 devices, Wi-Fi devices, WiMax devices, cellular communication facilities, etc.) and/or similar communications interface. Electronic system 1900 may include one or more antennas 1934 for wireless communication, either as part of wireless communication subsystem 1930 or as a separate component coupled to any part of the system. Depending on the desired functionality, the wireless communication subsystem 1930 may include separate transceivers to communicate with base transceiver stations and other wireless devices and access points, which may include communication with, for example, a wireless wide-area network (WWAN) , wireless local area network (WLAN) or wireless personal area network (WPAN) communication over different data networks and/or network types. The WWAN may be, for example, a WiMax (IEEE 802.16) network. The WLAN may be, for example, an IEEE 802.11x network. The WPAN may be, for example, a Bluetooth network, IEEE 802.15x, or some other type of network. The techniques described herein may also be used for any combination of WWAN, WLAN, and/or WPAN. Wireless communication subsystem 1930 may permit the exchange of data with networks, other computer systems, and/or any other devices described herein. Wireless communication subsystem 1930 may include components for transmitting or receiving data, such as HMD device identifiers, location data, geographic maps, heat maps, photos, or video, using antenna 1934 and wireless link 1932. Wireless communication subsystem 1930, processor 1910, and memory 1920 may together include at least a portion of one or more of the components for performing some of the functions disclosed herein.

電子系統1900之具體實例亦可包括一或多個感測器1990。感測器1990可包括例如影像感測器、加速度計、壓力感測器、溫度感測器、近接感測器、磁力計、陀螺儀、慣性感測器(例如,組合加速度計與陀螺儀之模組)、周圍光感測器,或可操作以提供感測輸出及/或接收感測輸入之任何其他類似模組,諸如深度感測器或位置感測器。舉例而言,在一些實施方案中,感測器1990可包括一或多個慣性量測單元(IMU)及/或一或多個位置感測器。IMU可基於自位置感測器中之一或多者接收到的量測信號來產生校準資料,該校準資料指示相對於HMD裝置之初始位置的HMD裝置之估計位置。位置感測器可回應於HMD裝置之運動而產生一或多個量測信號。位置感測器之實例可包括但不限於一或多個加速度計、一或多個陀螺儀、一或多個磁力計、偵測運動之另一合適類型的感測器、用於IMU之誤差校正的一種類型之感測器,或其任何組合。該等位置感測器可位於IMU外部、IMU內部,或在外部與在內部之任何組合。至少一些感測器可使用結構化之光圖案以用於感測。Embodiments of electronic system 1900 may also include one or more sensors 1990. Sensors 1990 may include, for example, image sensors, accelerometers, pressure sensors, temperature sensors, proximity sensors, magnetometers, gyroscopes, inertial sensors (eg, a combination of accelerometers and gyroscopes). module), ambient light sensor, or any other similar module operable to provide sensing output and/or receive sensing input, such as a depth sensor or a position sensor. For example, in some implementations, sensors 1990 may include one or more inertial measurement units (IMUs) and/or one or more position sensors. The IMU may generate calibration data indicative of the estimated position of the HMD device relative to the initial position of the HMD device based on measurement signals received from one or more of the position sensors. The position sensor may generate one or more measurement signals in response to movement of the HMD device. Examples of position sensors may include, but are not limited to, one or more accelerometers, one or more gyroscopes, one or more magnetometers, another suitable type of sensor that detects motion, errors for IMUs A type of sensor that is calibrated, or any combination thereof. The position sensors may be located external to the IMU, internal to the IMU, or any combination of external and internal. At least some sensors may use structured light patterns for sensing.

電子系統1900可包括顯示模組1960。顯示模組1960可為近眼顯示器,且可以圖形方式將諸如影像、視訊及各種指令之資訊自電子系統1900呈現給使用者。此資訊可源自一或多個應用程式模組1922至1924、虛擬實境引擎1926、一或多個其他硬體模組1980、其組合,或用於為使用者解析圖形內容(例如,藉由作業系統1925)之任何其他合適部件。顯示模組1960可使用LCD技術、LED技術(包括例如OLED、ILED、μ-LED、AMOLED、TOLED等)、發光聚合物顯示器(LPD)技術,或某一其他顯示器技術。Electronic system 1900 may include display module 1960 . The display module 1960 can be a near-eye display and can graphically present information such as images, videos, and various commands from the electronic system 1900 to the user. This information may originate from one or more application modules 1922-1924, virtual reality engine 1926, one or more other hardware modules 1980, combinations thereof, or used to parse graphical content for the user (eg, by means of by any other suitable component of the operating system 1925). Display module 1960 may use LCD technology, LED technology (including, for example, OLED, ILED, μ-LED, AMOLED, TOLED, etc.), light emitting polymer display (LPD) technology, or some other display technology.

電子系統1900亦可包括使用者輸入/輸出模組1970。使用者輸入/輸出模組1970可允許使用者將動作請求發送至電子系統1900。動作請求可為執行特定動作之請求。舉例而言,動作請求可為開始或結束應用程式或執行該應用程式內之特定動作。使用者輸入/輸出模組1970可包括一或多個輸入裝置。實例輸入裝置可包括觸控螢幕、觸控板、麥克風、按鈕、撥號盤、開關、鍵盤、滑鼠、遊戲控制器,或用於接收動作請求且將所接收動作請求傳達至電子系統1900之任何其他合適的裝置。在一些具體實例中,使用者輸入/輸出模組1970可根據自電子系統1900接收到之指令將觸覺反饋提供至使用者。舉例而言,可在接收到動作請求或已執行動作請求時提供觸覺反饋。The electronic system 1900 may also include a user input/output module 1970 . The user input/output module 1970 may allow the user to send action requests to the electronic system 1900 . An action request may be a request to perform a specific action. For example, an action request can be to start or end an application or to perform a specific action within the application. User input/output module 1970 may include one or more input devices. Example input devices may include touchscreens, trackpads, microphones, buttons, dials, switches, keyboards, mice, game controllers, or any other means for receiving motion requests and communicating the received motion requests to electronic system 1900 other suitable devices. In some embodiments, the user input/output module 1970 can provide haptic feedback to the user according to instructions received from the electronic system 1900 . For example, haptic feedback may be provided when an action request is received or performed.

電子系統1900可包括攝影機1950,該攝影機可用以拍攝使用者之相片或視訊,例如用於追蹤使用者之眼睛位置。攝影機1950亦可用以拍攝環境之相片或視訊,例如用於VR、AR或MR應用。攝影機1950可包括例如具有數百萬或數千萬個像素之互補金屬氧化物半導體(CMOS)影像感測器。在一些實施方案中,攝影機1950可包括可用以俘獲3D影像之兩個或多於兩個攝影機。The electronic system 1900 may include a camera 1950, which may be used to capture a photo or video of the user, eg, for tracking the position of the user's eyes. The camera 1950 can also be used to capture photos or videos of the environment, such as for VR, AR or MR applications. Camera 1950 may include, for example, a complementary metal oxide semiconductor (CMOS) image sensor having millions or tens of millions of pixels. In some implementations, camera 1950 may include two or more cameras that may be used to capture 3D imagery.

在一些具體實例中,電子系統1900可包括複數個其他硬體模組1980。其他硬體模組1980中之每一者可為電子系統1900內之實體模組。雖然其他硬體模組1980中之每一者可永久地經組態為結構,但其他硬體模組1980中之一些可臨時經組態以執行特定功能或臨時被啟動。其他硬體模組1980之實例可包括例如音訊輸出及/或輸入模組(例如,麥克風或揚聲器)、近場通信(near field communication;NFC)模組、可再充電電池、電池管理系統、有線/無線電池充電系統等。在一些具體實例中,可用軟體實施其他硬體模組1980之一或多個功能。In some embodiments, electronic system 1900 may include a plurality of other hardware modules 1980 . Each of the other hardware modules 1980 may be physical modules within the electronic system 1900 . While each of the other hardware modules 1980 may be permanently configured as a structure, some of the other hardware modules 1980 may be temporarily configured to perform specific functions or activated temporarily. Examples of other hardware modules 1980 may include, for example, audio output and/or input modules (eg, microphones or speakers), near field communication (NFC) modules, rechargeable batteries, battery management systems, wired /Wireless battery charging system, etc. In some embodiments, one or more functions of the other hardware modules 1980 may be implemented in software.

在一些具體實例中,電子系統1900之記憶體1920亦可儲存虛擬實境引擎1926。虛擬實境引擎1926可執行電子系統1900內之應用程式,且自各種感測器接收HMD裝置之位置資訊、加速度資訊、速度資訊、所預測的未來位置,或其任何組合。在一些具體實例中,由虛擬實境引擎1926接收之資訊可用於為顯示模組1960產生信號(例如,顯示指令)。舉例而言,若所接收之資訊指示使用者已向左看,則虛擬實境引擎1926可產生用於HMD裝置之內容,該內容反映使用者在虛擬環境中之移動。另外,虛擬實境引擎1926可回應於自使用者輸入/輸出模組1970接收到之動作請求而執行應用程式內之動作,且將反饋提供至使用者。所提供反饋可為視覺反饋、聽覺反饋或觸覺反饋。在一些實施方案中,處理器1910可包括可執行虛擬實境引擎1926之一或多個GPU。In some embodiments, the memory 1920 of the electronic system 1900 may also store the virtual reality engine 1926. The virtual reality engine 1926 executes applications within the electronic system 1900 and receives the HMD device's position information, acceleration information, velocity information, predicted future position, or any combination thereof from various sensors. In some embodiments, the information received by the virtual reality engine 1926 may be used to generate signals (eg, display commands) for the display module 1960. For example, if the received information indicates that the user has looked to the left, the virtual reality engine 1926 may generate content for the HMD device that reflects the user's movement in the virtual environment. Additionally, the virtual reality engine 1926 may perform in-application actions in response to action requests received from the user input/output module 1970 and provide feedback to the user. The feedback provided can be visual feedback, auditory feedback or haptic feedback. In some implementations, the processor 1910 may include one or more GPUs that can execute the virtual reality engine 1926.

在各種實施方案中,上述硬體及模組可實施於單個裝置或多個裝置上,該多個裝置可使用有線或無線連接彼此通信。舉例而言,在一些實施方案中,諸如GPU、虛擬實境引擎1926及應用程式(例如,追蹤應用程式)之一些組件或模組可實施於控制台上,該控制台與頭戴式顯示器裝置分離。在一些實施方案中,一個控制台可連接至或支援多於一個HMD。In various implementations, the above-described hardware and modules can be implemented on a single device or on multiple devices that can communicate with each other using wired or wireless connections. For example, in some implementations, some components or modules such as the GPU, virtual reality engine 1926, and applications (eg, tracking applications) may be implemented on a console that is connected to a head-mounted display device separation. In some embodiments, one console can connect to or support more than one HMD.

在替代組態中,不同組件及/或額外組件可包括於電子系統1900中。類似地,該等組件中之一或多者的功能性可按不同於上文所描述之方式的方式分佈在該等組件當中。舉例而言,在一些具體實例中,電子系統1900可經修改以包括其他系統環境,諸如AR系統環境及/或MR環境。In alternate configurations, different components and/or additional components may be included in electronic system 1900 . Similarly, the functionality of one or more of the components may be distributed among the components in ways other than those described above. For example, in some specific instances, electronic system 1900 may be modified to include other system environments, such as AR system environments and/or MR environments.

上文所論述之方法、系統及裝置為實例。在適當時,各種具體實例可省略、取代或添加各種程序或組件。舉例而言,在替代組態中,可按不同於所描述次序之次序來執行所描述之方法,及/或可添加、省略及/或組合各種階段。又,可在各種其他具體實例中組合關於某些具體實例所描述之特徵。可按類似方式組合具體實例之不同態樣及元件。又,技術在發展,且因此許多元件為實例,該等實例並不將本發明之範圍限於彼等特定實例。The methods, systems, and devices discussed above are examples. Various specific examples may omit, substitute or add various procedures or components as appropriate. For example, in alternate configurations, the methods described may be performed in an order different from that described, and/or various stages may be added, omitted, and/or combined. Also, features described with respect to certain specific examples may be combined in various other specific examples. Different aspects and elements of the specific examples may be combined in a similar manner. Also, technology evolves, and thus many elements are examples that do not limit the scope of the invention to those specific examples.

在描述中給出特定細節以提供對具體實例之透徹理解。然而,可在無此等特定細節之情況下實踐具體實例。舉例而言,已在無不必要細節的情況下展示熟知的電路、製程、系統、結構及技術,以便避免混淆具體實例。本說明書僅提供實例具體實例,且並不意欲限制本發明之範圍、適用性或組態。確切而言,具體實例之先前描述將為所屬技術領域中具有通常知識者提供用於能夠實施各種具體實例之描述。可在不脫離本發明之精神及範圍的情況下對元件之功能及配置作出各種改變。Specific details are given in the description to provide a thorough understanding of specific examples. However, specific examples may be practiced without these specific details. For example, well-known circuits, processes, systems, structures, and techniques have been shown without unnecessary detail in order to avoid obscuring specific examples. This specification provides example specifics only, and is not intended to limit the scope, applicability, or configuration of the invention. Rather, the preceding description of specific examples will provide those of ordinary skill in the art with an enabling description for implementing various specific examples. Various changes may be made in the function and arrangement of elements without departing from the spirit and scope of the invention.

又,將一些具體實例描述為製程,該等製程被描繪為流程圖或方塊圖。儘管每一者可將操作描述為依序製程,但操作中之許多者可並行地或同時執行。此外,可重新配置操作之次序。製程可具有未包括於圖中之額外步驟。此外,可藉由硬體、軟體、韌體、中間軟體、微碼、硬體描述語言或其任何組合來實施該等方法之具體實例。當以軟體、韌體、中間軟體或微碼來實施時,用以執行相關聯任務之程式碼或碼段可儲存於諸如儲存媒體之電腦可讀媒體中。處理器可執行相關聯任務。Also, some specific examples are described as processes, which are depicted as flow diagrams or block diagrams. Although each may describe the operations as a sequential process, many of the operations may be performed in parallel or concurrently. Furthermore, the sequence of operations can be reconfigured. The process may have additional steps not included in the figures. Furthermore, embodiments of the methods may be implemented by hardware, software, firmware, intermediate software, microcode, hardware description languages, or any combination thereof. When implemented in software, firmware, intermediate software, or microcode, the code or code segments to perform the associated tasks may be stored in a computer-readable medium, such as a storage medium. A processor may perform associated tasks.

所屬技術領域中具有通常知識者將顯而易見,可根據特定要求作出實質變化。舉例而言,亦可使用自訂或專用硬體,及/或可用硬體、軟體(包括攜帶型軟體,諸如小程式等)或其兩者來實施特定元件。另外,可使用至其他計算裝置(諸如,網路輸入/輸出裝置)之連接。It will be apparent to those of ordinary skill in the art that substantial changes may be made to particular requirements. For example, custom or dedicated hardware may also be used, and/or particular elements may be implemented in hardware, software (including portable software such as applets, etc.), or both. Additionally, connections to other computing devices, such as network input/output devices, may be used.

參看附圖,可包括記憶體之組件可包括非暫時性機器可讀媒體。術語「機器可讀媒體」及「電腦可讀媒體」可指參與提供使機器以特定方式操作之資料的任何儲存媒體。在上文所提供之具體實例中,可能在將指令/程式碼提供至處理單元及/或其他裝置以供執行時涉及各種機器可讀媒體。另外或替代地,機器可讀媒體可用以儲存及/或攜載此等指令/程式碼。在許多實施方案中,電腦可讀媒體為實體及/或有形儲存媒體。此媒體可呈許多形式,包括但不限於非揮發性媒體、揮發性媒體及傳輸媒體。電腦可讀媒體之常見形式包括例如磁性及/或光學媒體,諸如緊密光碟(compact disk;CD)或數位化通用光碟(digital versatile disk;DVD);打孔卡;紙帶;具有孔圖案之任何其他實體媒體;RAM;可程式化唯讀記憶體(programmable read-only memory;PROM);可抹除可程式化唯讀記憶體(erasable programmable read-only memory;EPROM);FLASH-EPROM;任何其他記憶體晶片或卡匣;如下文中所描述之載波;或可供電腦讀取指令及/或程式碼之任何其他媒體。電腦程式產品可包括程式碼及/或機器可執行指令,該等程式碼及/或機器可執行指令可表示程序、函式、子程式、程式、常式、應用程式(App)、次常式、模組、套裝軟體、類別,或指令、資料結構或程式陳述式之任何組合。Referring to the figures, components that may include memory may include non-transitory machine-readable media. The terms "machine-readable medium" and "computer-readable medium" may refer to any storage medium that participates in providing data that causes a machine to operate in a particular manner. In the specific examples provided above, various machine-readable media may be involved in providing instructions/code to processing units and/or other devices for execution. Additionally or alternatively, machine-readable media may be used to store and/or carry such instructions/code. In many implementations, the computer-readable medium is a physical and/or tangible storage medium. This medium can take many forms, including but not limited to non-volatile media, volatile media, and transmission media. Common forms of computer-readable media include, for example, magnetic and/or optical media, such as compact disk (CD) or digital versatile disk (DVD); punched cards; paper tape; any Other physical media; RAM; programmable read-only memory (PROM); erasable programmable read-only memory (EPROM); FLASH-EPROM; any other A memory chip or cartridge; a carrier wave as described below; or any other medium from which a computer can read instructions and/or code. A computer program product may include code and/or machine-executable instructions, which code and/or machine-executable instructions may represent programs, functions, subroutines, programs, routines, applications (Apps), subroutines , modules, packages, classes, or any combination of commands, data structures, or program statements.

所屬技術領域中具有通常知識者將瞭解,可使用多種不同技術及技藝中的任一者來表示用以傳達本文中所描述之訊息的資訊及信號。舉例而言,可藉由電壓、電流、電磁波、磁場或磁粒子、光場或光粒子或其任何組合來表示貫穿以上描述可能提及的資料、指令、命令、資訊、信號、位元、符號及碼片。Those of ordinary skill in the art would understand that the information and signals used to convey the messages described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols that may be referred to throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or light particles, or any combination thereof and chips.

如本文中所使用,術語「及」以及「或」可包括多種含義,該等含義亦預期至少部分地取決於使用此等術語之上下文。典型地,「或」若用以關聯一清單(諸如,A、B或C),則意欲意謂A、B及C(此處以包括性意義使用),以及A、B或C(此處以排他性意義使用)。此外,如本文中所使用,術語「一或多個」可用於以單數形式描述任何特徵、結構或特性,或可用以描述特徵、結構或特性之某一組合。然而,應注意,此僅為說明性實例且所主張之主題不限於此實例。此外,術語「中之至少一者」若用以關聯一清單(諸如,A、B或C),則可解譯為意謂A、B及/或C之任何組合,諸如A、AB、AC、BC、AA、ABC、AAB、AABBCCC等。As used herein, the terms "and" and "or" can include a variety of meanings that are also intended to depend, at least in part, on the context in which these terms are used. Typically, "or", when used in relation to a list (such as A, B, or C), is intended to mean A, B, and C (used here in an inclusive sense), and A, B, or C (used here in an exclusive sense) meaning use). Also, as used herein, the term "one or more" may be used to describe any feature, structure or characteristic in the singular or may be used to describe some combination of features, structures or characteristics. It should be noted, however, that this is merely an illustrative example and the claimed subject matter is not limited to this example. Furthermore, the term "at least one of" when used in relation to a list (such as A, B, or C) can be interpreted to mean any combination of A, B, and/or C, such as A, AB, AC , BC, AA, ABC, AAB, AABBCCC, etc.

另外,雖然已使用硬體與軟體之特定組合描述了某些具體實例,但應認識到,硬體與軟體之其他組合亦為可能的。可能僅以硬體或僅以軟體或使用其組合來實施某些具體實例。在一個實例中,可藉由電腦程式產品來實施軟體,該電腦程式產品含有電腦程式碼或指令,該等電腦程式碼或指令可由一或多個處理器執行以用於執行本發明中所描述之步驟、操作或製程中之任一者或全部,其中電腦程式可儲存於非暫時性電腦可讀媒體上。本文中所描述之各種製程可以任何組合實施於同一處理器或不同處理器上。Additionally, while some specific examples have been described using specific combinations of hardware and software, it should be recognized that other combinations of hardware and software are possible. Certain specific examples may be implemented in hardware only, or only in software, or using a combination thereof. In one example, software may be implemented by a computer program product containing computer code or instructions executable by one or more processors for carrying out the descriptions in this disclosure Any or all of the steps, operations or processes, wherein the computer program can be stored on a non-transitory computer-readable medium. The various processes described herein can be implemented on the same processor or on different processors in any combination.

在裝置、系統、組件或模組描述為經組態以執行某些操作或功能之情況下,可實現此組態,例如藉由設計電子電路以執行操作,藉由程式化可程式化電子電路(諸如,微處理器)以執行操作(諸如,藉由執行電腦指令或程式碼),或經程式化以執行儲存於非暫時性記憶體媒體上之程式碼或指令的處理器或核心,或其任何組合。製程可使用多種技術來通信,包括但不限於用於製程間通信之習知技術,且不同對製程可使用不同技術,或同一對製程可在不同時間使用不同技術。Where a device, system, component or module is described as being configured to perform certain operations or functions, this configuration can be achieved, for example, by designing electronic circuits to perform the operations, by programming programmable electronic circuits (such as a microprocessor) to perform operations (such as by executing computer instructions or code), or a processor or core programmed to execute code or instructions stored on a non-transitory memory medium, or any combination thereof. Processes may communicate using a variety of techniques, including but not limited to conventional techniques for inter-process communication, and different pairs of processes may use different techniques, or the same pair of processes may use different techniques at different times.

因此,應在說明性意義上而非限定性意義上看待說明書及圖式。然而,將顯而易見,可在不脫離如申請專利範圍中所闡述的更廣泛精神及範圍之情況下對本發明進行添加、減去、刪除以及其他修改及改變。因此,儘管已描述特定具體實例,但此等具體實例並不意欲為限制性的。各種修改及等效物在以下申請專利範圍之範圍內。Accordingly, the specification and drawings should be regarded in an illustrative rather than a restrictive sense. It will be apparent, however, that additions, subtractions, deletions and other modifications and changes may be made to the present invention without departing from the broader spirit and scope as set forth in the scope of the claims. Therefore, although specific specific examples have been described, these specific examples are not intended to be limiting. Various modifications and equivalents are within the scope of the following claims.

自前述內容將看出,本發明為非常適於達成上文所闡述之所有目的及目標連同明顯且為系統及方法所固有之其他優點的發明。應理解,某些特徵以及子組合具有效用,且可在不參考其他特徵及子組合的情況下使用。此情形由申請專利範圍之範圍涵蓋且在申請專利範圍之範圍內。From the foregoing, it will be seen that the present invention is an invention well suited to achieve all of the objects and objectives set forth above, along with other advantages which are evident and inherent in the system and method. It should be understood that certain features and subcombinations have utility and can be used without reference to other features and subcombinations. This situation is covered by and within the scope of the scope of the patent application.

本文中具體描述本發明之主題以滿足法定要求。然而,描述自身並不意欲限制本發明的範圍。確切而言,本發明人已預料所主張主題亦可以其他方式具體實現,以包括類似於本文件中所描述之步驟或步驟組合的不同步驟或步驟組合,以及其他目前或未來技術。此外,儘管術語「步驟」及/或「區塊」在本文中可用以意味所使用方法之不同要素,但該等術語不應解譯為意指本文中所揭示之各種步驟當中或之間的任何特定次序,除非在明確描述個別步驟之次序時及除了在明確描述個別步驟之次序時之外。The subject matter of the invention is described in detail herein to satisfy statutory requirements. However, the description itself is not intended to limit the scope of the invention. Rather, the inventors have contemplated that the claimed subject matter may also be embodied in other ways, to include different steps or combinations of steps similar to those described in this document, as well as other present or future technologies. Furthermore, although the terms "step" and/or "block" may be used herein to mean different elements of the methods used, these terms should not be interpreted to mean any of or between the various steps disclosed herein Any specific order except when the order of individual steps is explicitly described and except when the order of individual steps is explicitly described.

100:人工實境系統環境 110:控制台 112:應用程式商店 114:耳機追蹤模組 116:人工實境引擎 118:眼睛追蹤模組 120:近眼顯示器 122:顯示電子裝置 124:顯示光學件 126:定位器 128:位置感測器 130:眼睛追蹤單元 132:慣性量測單元(IMU) 140:輸入/輸出介面 150:外部成像裝置 200:HMD裝置 220:主體 223:底側 225:前側 227:左側 230:頭部綁帶 300:近眼顯示器 305:框架 310:顯示器 330:照明器 340:高解析度攝影機 350a:感測器 350b:感測器 350c:感測器 350d:感測器 350e:感測器 400:光學透視擴增實境系統 410:投影機 412:光源/影像源 414:投影機光學件 415:組合器 420:基板 430:輸入耦合器 440:輸出耦合器 450:光 460:所提取光 490:眼睛 495:眼眶 500:近眼顯示器裝置 510:光源 512:紅光發射器 514:綠光發射器 516:藍光發射器 520:投影光學件 530:波導顯示器 532:耦合器 540:光源 542:紅光發射器 544:綠光發射器 546:藍光發射器 550:近眼顯示器(NED)裝置 560:自由形式光學元件 570:掃描鏡面 580:波導顯示器 582:耦合器 590:使用者之眼睛 600:近眼顯示器系統 610:影像源總成 620:控制器 630:影像處理器 640:顯示面板 642:光源 644:驅動器電路 650:投影機 700:LED 705:LED 710:基板 715:基板 720:半導體層 725:半導體層 730:作用層 732:台面側壁 735:作用層 740:半導體層 745:半導體層 750:重摻雜半導體層 760:導電層 765:電接點 770:鈍化層 775:介電層 780:接觸層 785:電接點 790:接觸層 795:金屬層 801:LED陣列 802:第一晶圓 803:晶圓 804:基板 805:載體基板 806:第一半導體層 807:LED 808:作用層 809:基底層 810:第二半導體層 811:驅動器電路 812:接合層 813:接合層 815:經圖案化層 905:離子或快速原子束 910:基板 915:離子或快速原子束 920:被動或主動電路 922:電互連件 925:壓縮壓力 930:接觸墊 935:熱 940:介電區 950:晶圓 960:介電材料層 970:微LED/LED陣列 980:p接點 982:n接點 1000:LED陣列 1010:基板 1020:積體電路 1022:互連件 1030:接觸墊 1040:介電層 1050:n型層 1060:介電層 1070:微LED 1072:n接點 1074:p接點 1082:球面微透鏡 1084:光柵 1086:微透鏡 1088:抗反射層 1102:類朗伯發光裝置/光源/第一LED 1104:半導體基板/晶體生長基板 1106:光/箭頭 1108:類朗伯角分佈 1110:光源 1112:發光裝置陣列 1114:波導陣列 1120:第二半導體晶粒 1122:第一介電層 1124:第二介電層 1126:發光表面(LES) 1130:透明基板層 1140:第一波導 1142:第一波導表面 1144:第二波導表面 1146:波導主體/棱錐形結晶主體 1148:側壁 1150:半導體材料層/結晶材料層 1152:光學反射層 1154:轉移晶圓 1160:角分佈 1200:半導體製程 1202:步驟 1204:步驟 1206:步驟 1208:步驟 1210:步驟 1212:步驟 1214:步驟 1216:步驟 1218:步驟 1220:方法 1222:區塊 1224:區塊 1226:區塊 1228:區塊 1230:區塊 1232:區塊 1234:區塊 1236:區塊 1238:區塊 1302:透視圖 1304:俯視圖/半導體基板/晶體生長基板 1306:橫截面圖 1314:高填充因子波導陣列 1322:第一介電層 1324:第二介電層 1330:透明基板層 1340:第一高填充因子波導 1342:第一波導表面 1344:第二波導表面 1346:波導主體 1348:波導側壁 1350:結晶材料層 1352:反射層/金屬化層 1354:轉移晶圓 1356:溝槽 1358:發光結構 1400:半導體製程 1402:步驟 1403:步驟 1404:步驟 1406:步驟 1408:步驟 1410:步驟 1412:步驟 1414:步驟 1416:步驟 1420:方法 1422:區塊 1423:區塊/步驟 1424:區塊 1426:區塊 1428:區塊 1430:區塊/步驟 1432:區塊 1434:區塊 1436:區塊 1504:半導體基板 1514:結晶帶隔板波導陣列 1522:第一介電層 1524:第二介電層 1540:第一波導 1542:第一波導表面 1544:第二波導表面 1546:波導主體 1548:側壁 1550:半導體材料層/結晶材料層 1552:光學反射層/金屬化層 1560:介電透鏡結構 1562:第一透鏡表面 1564:第二透鏡表面 1582:第一隔板結構 1584:第二隔板結構 1600:半導體製程 1602:步驟 1604:步驟 1606:步驟 1608:步驟 1610:步驟 1620:方法 1622:區塊 1624:區塊 1626:區塊 1628:區塊 1630:區塊 1700:軟壓花工具 1702:參考點 1704:半導體基板/晶體生長基板 1706:彈性(或「軟」)材料層 1714:結晶結構陣列 1750:結晶材料層 1754:轉移晶圓 1760:半導體製程 1762:步驟 1764:步驟 1766:步驟 1768:步驟 1780:製程/方法 1782:區塊 1784:區塊 1786:區塊 1788:區塊 1790:區塊 1792:區塊 1800:硬壓花工具 1802:參考點 1804:半導體基板/晶體生長基板 1806:光阻材料層 1808:第一「硬」材料層/第一硬金屬層 1810:第二金屬層 1814:結晶結構陣列 1850:結晶材料層 1854:第一轉移晶圓 1856:第二轉移晶圓 1858:第三轉移晶圓 1860:半導體製程 1862:步驟 1864:步驟 1866:步驟 1868:步驟 1870:步驟 1872:步驟 1874:步驟 1876:步驟 1880:製程/方法 1882:區塊 1884:區塊 1886:區塊 1888:區塊 1890:區塊 1892:區塊 1894:步驟/區塊 1896:區塊 1900:電子系統 1910:處理器 1920:記憶體 1922:應用程式模組 1924:應用程式模組 1925:作業系統 1926:虛擬實境引擎 1930:無線通信子系統 1932:無線鏈路 1934:天線 1940:匯流排 1950:攝影機 1960:顯示模組 1970:使用者輸入/輸出模組 1980:硬體模組 1990:感測器 100: Artificial Reality System Environment 110: Console 112: App Store 114: Headphone Tracking Module 116: Artificial Reality Engine 118: Eye Tracking Module 120: Near-Eye Display 122: Display electronics 124: Display Optics 126: Locator 128: Position Sensor 130: Eye Tracking Unit 132: Inertial Measurement Unit (IMU) 140: Input/Output Interface 150: External Imaging Unit 200: HMD installation 220: Subject 223: Bottom Side 225: front side 227: Left 230: head strap 300: Near Eye Display 305: Frame 310: Display 330: Illuminator 340: High Resolution Camera 350a: Sensor 350b: Sensor 350c: Sensor 350d: Sensor 350e: Sensor 400: Optical Perspective Augmented Reality System 410: Projector 412: Light source/image source 414: Projector Optics 415: Combiner 420: Substrate 430: Input Coupler 440: Output coupler 450: Light 460: Extracted light 490: Eyes 495: eye socket 500: Near-Eye Display Device 510: Light source 512: red light emitter 514: Green light emitter 516: Blu-ray Emitter 520: Projection Optics 530: Waveguide Display 532: Coupler 540: light source 542: red light emitter 544: Green light emitter 546: Blu-ray Transmitter 550: Near Eye Display (NED) Devices 560: Freeform Optics 570: Scanning Mirror 580: Waveguide Display 582: Coupler 590: Eye of the User 600: Near-Eye Display System 610: Image source assembly 620: Controller 630: Image Processor 640: Display panel 642: light source 644: Driver circuit 650: Projector 700: LED 705: LED 710: Substrate 715: Substrate 720: Semiconductor layer 725: Semiconductor layer 730: Action Layer 732: Countertop Sidewall 735: Action Layer 740: Semiconductor layer 745: Semiconductor layer 750: heavily doped semiconductor layer 760: Conductive layer 765: electrical contacts 770: Passivation layer 775: Dielectric Layer 780: Contact Layer 785: electrical contacts 790: Contact Layer 795: Metal Layer 801: LED Array 802: First Wafer 803: Wafer 804: Substrate 805: Carrier substrate 806: first semiconductor layer 807: LED 808: Action Layer 809: Substrate 810: Second semiconductor layer 811: Driver circuit 812: Bonding Layer 813: Bonding Layer 815: Patterned Layer 905: Ion or fast atomic beam 910: Substrate 915: Ion or fast atomic beam 920: Passive or Active Circuits 922: Electrical Interconnects 925: Compression pressure 930: Contact pad 935: hot 940: Dielectric zone 950: Wafer 960: Dielectric Material Layer 970: Micro LED/LED Array 980:p contact 982: n contact 1000: LED array 1010: Substrate 1020: Integrated Circuits 1022: Interconnects 1030: Contact pad 1040: Dielectric Layer 1050: n-type layer 1060: Dielectric Layer 1070: Micro LED 1072: n contact 1074:p contact 1082: Spherical Microlens 1084: Raster 1086: Micro lens 1088: Anti-reflection layer 1102: Lambertian-like light-emitting device/light source/first LED 1104: Semiconductor Substrate/Crystal Growth Substrate 1106: Light/Arrow 1108: Lambert-like distribution 1110: Light source 1112: Light-emitting device array 1114: Waveguide Array 1120: Second semiconductor die 1122: first dielectric layer 1124: Second Dielectric Layer 1126: Luminous Surface (LES) 1130: Transparent substrate layer 1140: First Waveguide 1142: First waveguide surface 1144: Second waveguide surface 1146: Waveguide Body/Pyramid Crystalline Body 1148: Sidewall 1150: Semiconductor material layer/crystalline material layer 1152: Optical reflection layer 1154: Transfer Wafer 1160: Angular distribution 1200: Semiconductor Process 1202: Steps 1204: Steps 1206: Steps 1208: Steps 1210: Steps 1212: Steps 1214: Steps 1216: Steps 1218: Steps 1220: Method 1222: block 1224:block 1226:Block 1228:Block 1230:Block 1232: block 1234:block 1236: block 1238:Block 1302: Perspective 1304: Top View/Semiconductor Substrate/Crystal Growth Substrate 1306: Cross-sectional view 1314: High Fill Factor Waveguide Array 1322: First Dielectric Layer 1324: Second Dielectric Layer 1330: Transparent substrate layer 1340: First High Fill Factor Waveguide 1342: First waveguide surface 1344: Second Waveguide Surface 1346: Waveguide Body 1348: Waveguide Sidewall 1350: Crystalline Material Layer 1352: Reflector/Metalization 1354: Transfer Wafer 1356: Trench 1358: Luminous Structure 1400: Semiconductor Process 1402: Steps 1403: Steps 1404: Steps 1406: Steps 1408: Steps 1410: Steps 1412: Steps 1414: Steps 1416: Steps 1420: Method 1422: block 1423: block/step 1424:Block 1426:Block 1428:Block 1430: block/step 1432: block 1434:Block 1436:Block 1504: Semiconductor substrate 1514: Crystalline Ribbon Spacer Waveguide Array 1522: First Dielectric Layer 1524: Second Dielectric Layer 1540: First Waveguide 1542: First waveguide surface 1544: Second Waveguide Surface 1546: Waveguide Body 1548: Sidewall 1550: Semiconductor material layer/crystalline material layer 1552: Optical Reflective Layer / Metallized Layer 1560: Dielectric Lens Structure 1562: First lens surface 1564: Second Lens Surface 1582: First Baffle Structure 1584: Second Baffle Structure 1600: Semiconductor Process 1602: Steps 1604: Steps 1606: Steps 1608: Steps 1610: Steps 1620: Method 1622: Block 1624:Block 1626:Block 1628:Block 1630:Block 1700: Soft Embossing Tool 1702: Reference Point 1704: Semiconductor Substrates/Crystal Growth Substrates 1706: Elastic (or "soft") material layers 1714: Arrays of Crystalline Structures 1750: Crystalline Material Layer 1754: Transfer Wafer 1760: Semiconductor Process 1762: Steps 1764: Steps 1766: Steps 1768: Steps 1780: Processes/Methods 1782: Block 1784: Block 1786: Block 1788: Block 1790: Block 1792: Block 1800: Hard Embossing Tool 1802: Reference Point 1804: Semiconductor Substrates/Crystal Growth Substrates 1806: Photoresist layer 1808: First "hard" material layer/first hard metal layer 1810: Second Metal Layer 1814: Arrays of crystalline structures 1850: Crystalline Material Layer 1854: First transfer wafer 1856: Second Transfer Wafer 1858: Third Transfer Wafer 1860: Semiconductor Process 1862: Steps 1864: Steps 1866: Steps 1868: Steps 1870: Steps 1872: Steps 1874: Steps 1876: Steps 1880: Processes/Methods 1882: Block 1884: Blocks 1886: Blocks 1888: Blocks 1890: Blocks 1892: Blocks 1894: Steps/Blocks 1896: Blocks 1900: Electronic Systems 1910: Processor 1920: Memory 1922: Application modules 1924: Application modules 1925: Operating Systems 1926: Virtual Reality Engine 1930: Wireless Communication Subsystem 1932: Wireless Link 1934: Antenna 1940: Busbars 1950: Camera 1960: Display Module 1970: User Input/Output Module 1980: Hardware Mods 1990: Sensors

下文參看以下諸圖詳細地描述說明性具體實例。Illustrative specific examples are described in detail below with reference to the following figures.

[圖1]為根據某些具體實例之包括近眼顯示器的人工實境系統環境之實例的簡化方塊圖。[FIG. 1] is a simplified block diagram of an example of an artificial reality system environment including a near-eye display, according to some specific examples.

[圖2]為呈用於實施本文中所揭示之一些實例的頭戴式顯示器(head-mounted display;HMD)裝置之形式的近眼顯示器之實例的透視圖。[ FIG. 2 ] is a perspective view of an example of a near-eye display in the form of a head-mounted display (HMD) device for implementing some examples disclosed herein.

[圖3]為呈用於實施本文中所揭示之一些實例的一副眼鏡之形式的近眼顯示器之實例的透視圖。[FIG. 3] is a perspective view of an example of a near-eye display in the form of a pair of glasses for implementing some of the examples disclosed herein.

[圖4]示出根據某些具體實例之包括波導顯示器的光學透視擴增實境系統之實例。[FIG. 4] shows an example of an optical see-through augmented reality system including a waveguide display according to some specific examples.

[圖5A]示出根據某些具體實例之包括波導顯示器的近眼顯示器裝置之實例。[FIG. 5A] shows an example of a near-eye display device including a waveguide display according to some specific examples.

[圖5B]示出根據某些具體實例之包括波導顯示器的近眼顯示器裝置之實例。[FIG. 5B] shows an example of a near-eye display device including a waveguide display according to some specific examples.

[圖6]示出根據某些具體實例之擴增實境系統中的影像源總成之實例。[FIG. 6] shows an example of an image source assembly in an augmented reality system according to some specific examples.

[圖7A]示出根據某些具體實例之具有垂直台面結構的發光二極體(LED)之實例。[ FIG. 7A ] shows an example of a light emitting diode (LED) having a vertical mesa structure according to some specific examples.

[圖7B]為根據某些具體實例之具有拋物線形台面結構的LED之實例的橫截面圖。[ FIG. 7B ] is a cross-sectional view of an example of an LED having a parabolic mesa structure according to some specific examples.

[圖8A]示出根據某些具體實例之用於LED陣列的晶粒至晶圓接合方法之實例。[FIG. 8A] shows an example of a die-to-wafer bonding method for an LED array according to some specific examples.

[圖8B]示出根據某些具體實例之用於LED陣列的晶圓間接合方法之實例。[FIG. 8B] shows an example of an inter-wafer bonding method for an LED array according to some specific examples.

[圖9A至圖9D]示出根據某些具體實例之用於LED陣列的混合接合方法之實例。[ FIGS. 9A to 9D ] show an example of a hybrid bonding method for an LED array according to some specific examples.

[圖10]示出根據某些具體實例之上面製造有二次光學組件的LED陣列之實例。[FIG. 10] shows an example of an LED array with a secondary optical component fabricated thereon according to some specific examples.

[圖11A]示出根據某些具體實例之由類朗伯發光裝置發射的光之實例角分佈。[FIG. 11A] shows an example angular distribution of light emitted by a Lambertian-like light-emitting device according to some specific examples.

[圖11B]示出根據一些具體實例之光源的橫截面圖,該光源包括波導陣列作為用於發光裝置陣列之光束準直二次光學組件。[FIG. 11B] shows a cross-sectional view of a light source including a waveguide array as a beam collimating secondary optical component for an array of light emitting devices, according to some specific examples.

[圖11C]示出根據某些具體實例之由類朗伯發光裝置發射的光之實例角分佈,該發光裝置使用波導作為二次光學組件。[FIG. 11C] shows an example angular distribution of light emitted by a Lambertian-like light emitting device using a waveguide as a secondary optical component, according to some specific examples.

[圖12A]示出根據某些具體實例之用於製造圖11B之波導陣列的半導體製程。[FIG. 12A] A semiconductor process for fabricating the waveguide array of FIG. 11B is shown according to some embodiments.

[圖12B]示出根據某些具體實例之用於製造圖11B之光源的方法。[FIG. 12B] A method for manufacturing the light source of FIG. 11B is shown according to some specific examples.

[圖13]示出高填充因子波導陣列之具體實例。[ FIG. 13 ] shows a specific example of a high fill factor waveguide array.

[圖14A]示出根據某些具體實例之用於製造圖13之高填充因子波導陣列的半導體製程。[FIG. 14A] A semiconductor process for fabricating the high fill factor waveguide array of FIG. 13 is shown according to some embodiments.

[圖14B]示出根據某些具體實例之用於製造圖13之高填充因子波導陣列的方法。[FIG. 14B] illustrates a method for fabricating the high fill factor waveguide array of FIG. 13 according to some specific examples.

[圖15]示出結晶帶隔板波導陣列之具體實例。[FIG. 15] A specific example of a crystalline strip spacer waveguide array is shown.

[圖16A]示出根據某些具體實例之用於製造圖15之帶隔板波導陣列的半導體製程。[FIG. 16A] A semiconductor process for fabricating the spacer waveguide array of FIG. 15 is shown according to some specific examples.

[圖16B]示出根據某些具體實例之用於製造圖15之帶隔板波導陣列的方法。[FIG. 16B] A method for fabricating the spacer waveguide array of FIG. 15 is shown according to some specific examples.

[圖17A]示出根據某些具體實例之用於製造軟壓花工具的半導體製程,該軟壓花工具用於在非結晶材料中壓花波導陣列。[FIG. 17A] illustrates a semiconductor process for fabricating a soft embossing tool for embossing waveguide arrays in amorphous materials, according to some embodiments.

[圖17B]示出根據某些具體實例之用於製造圖17A之軟壓印工具的方法。[FIG. 17B] A method for manufacturing the soft imprint tool of FIG. 17A is shown according to some specific examples.

[圖18A]示出根據某些具體實例之用於製造硬壓花工具1800的半導體製程,該硬壓花工具用於在非結晶材料中壓花波導陣列。[FIG. 18A] illustrates a semiconductor process for making a hard embossing tool 1800 for embossing waveguide arrays in amorphous materials, according to some embodiments.

[圖18B]示出根據某些具體實例之用於製造圖18A之硬壓印工具的方法。[FIG. 18B] shows a method for manufacturing the hard imprint tool of FIG. 18A, according to some specific examples.

[圖19]為根據某些具體實例之近眼顯示器之實例的電子系統之簡化方塊圖。[FIG. 19] is a simplified block diagram of an electronic system of an example of a near-eye display according to some embodiments.

該等圖僅出於說明之目的描繪本發明之具體實例。所屬技術領域中具有通常知識者將易於自以下描述認識到,在不脫離本發明之原理或所稱讚益處之情況下,可使用所示出之結構及方法的替代具體實例。The figures depict specific examples of the invention for purposes of illustration only. Those of ordinary skill in the art will readily appreciate from the following description that alternative embodiments of the structures and methods shown may be used without departing from the principles or acclaimed benefits of the invention.

在附圖中,類似組件及/或特徵可具有相同參考符號。另外,可藉由在參考符號之後加上破折號及在類似組件之間進行區分之第二符號來區分同一類型之各種組件。若在說明書中僅使用第一參考符號,則描述適用於具有相同的第一參考符號而與第二參考符號無關之類似組件中的任一者。In the drawings, similar components and/or features may have the same reference signs. Additionally, various components of the same type may be distinguished by following the reference symbol with a dash and a second symbol to distinguish between similar components. If only the first reference sign is used in the description, the description applies to any of the similar components having the same first reference sign irrespective of the second reference sign.

400:光學透視擴增實境系統 400: Optical Perspective Augmented Reality System

410:投影機 410: Projector

412:光源/影像源 412: Light source/image source

414:投影機光學件 414: Projector Optics

415:組合器 415: Combiner

420:基板 420: Substrate

430:輸入耦合器 430: Input Coupler

440:輸出耦合器 440: Output coupler

450:光 450: Light

460:所提取光 460: Extracted light

490:眼睛 490: Eyes

495:眼眶 495: eye socket

Claims (20)

一種光源,其包含: 第一半導體晶粒,其包括具有發光表面(LES)之發光裝置(LED),該發光表面以第一光束發散度將光發射出該發光裝置;及 第二半導體晶粒,其接合至該第一半導體晶粒,該第二半導體晶粒包括波導,該波導包含: 第一波導表面,其經組態以接收由該發光裝置之該發光表面以該第一光束發散度發射的該光; 第二波導表面;及 波導主體,其包含透明結晶材料,該透明結晶材料將由該第一波導表面接收到之該光透射至該第二波導表面,其中該第二波導表面及該波導主體經組態使得該第二波導表面以小於該第一光束發散度之第二光束發散度將由該第一波導表面接收到之該光發射出該波導。 A light source comprising: a first semiconductor die including a light emitting device (LED) having a light emitting surface (LES) that emits light out of the light emitting device with a first beam divergence; and A second semiconductor die bonded to the first semiconductor die, the second semiconductor die including a waveguide including: a first waveguide surface configured to receive the light emitted by the light emitting surface of the light emitting device at the first beam divergence; the second waveguide surface; and A waveguide body comprising a transparent crystalline material that transmits the light received by the first waveguide surface to the second waveguide surface, wherein the second waveguide surface and the waveguide body are configured such that the second waveguide The surface emits the light received by the first waveguide surface out of the waveguide with a second beam divergence less than the first beam divergence. 如請求項1之光源,其中該波導主體具有錐形形狀,該錐形形狀具有與該透明結晶材料在半導體基板上之生長製程相關聯的錐角,使得該第一波導表面之第一表面積小於該第二波導表面之第二表面積。The light source of claim 1, wherein the waveguide body has a tapered shape having a taper angle associated with the growth process of the transparent crystalline material on the semiconductor substrate such that the first surface area of the first waveguide surface is less than the second surface area of the second waveguide surface. 如請求項1之光源,其中該波導主體具有台面形狀,該台面形狀至少部分地藉由經由蝕刻製程自該第二半導體晶粒移除該透明結晶材料之一部分而形成。The light source of claim 1, wherein the waveguide body has a mesa shape formed at least in part by removing a portion of the transparent crystalline material from the second semiconductor die through an etching process. 如請求項1之光源,其中該波導進一步包含: 反射層,其囊封該波導主體之一部分,且經組態以減小與該波導主體相關聯之透射損失並減小由該第一波導表面接收到之該光的該光束發散度。 The light source of claim 1, wherein the waveguide further comprises: A reflective layer encapsulating a portion of the waveguide body and configured to reduce transmission losses associated with the waveguide body and reduce the beam divergence of the light received by the first waveguide surface. 如請求項1之光源,其中該第二半導體晶粒進一步包括: 第一介電層,其囊封該波導主體之至少一部分。 The light source of claim 1, wherein the second semiconductor die further comprises: A first dielectric layer encapsulating at least a portion of the waveguide body. 如請求項5之光源,其中該第一介電層覆蓋該第一波導表面且該第二半導體晶粒進一步包括: 第二介電層,其覆蓋該第二波導表面;及 該透明結晶材料之一層,其插入於該第一介電層與該第二介電層之間。 The light source of claim 5, wherein the first dielectric layer covers the first waveguide surface and the second semiconductor die further comprises: a second dielectric layer covering the second waveguide surface; and A layer of the transparent crystalline material interposed between the first dielectric layer and the second dielectric layer. 如請求項1之光源,其中該第二半導體晶粒進一步包括: 不透明隔板結構,其圍繞該第二波導表面之周邊之至少一部分定位,且延伸超出該第二半導體晶粒之一平面以界定超出該第二半導體晶粒之該平面的柱狀體積,其中該隔板結構經組態以將由該第二波導表面發射且射出該第二半導體晶粒之該光的透射限制於延伸超出該第二半導體晶粒之該平面的該柱狀體積內。 The light source of claim 1, wherein the second semiconductor die further comprises: an opaque spacer structure positioned around at least a portion of the perimeter of the second waveguide surface and extending beyond a plane of the second semiconductor die to define a columnar volume beyond the plane of the second semiconductor die, wherein the The spacer structure is configured to confine transmission of the light emitted from the second waveguide surface and out of the second semiconductor die within the columnar volume extending beyond the plane of the second semiconductor die. 如請求項1之光源,其中該第二波導表面具有至少部分地藉由經由蝕刻製程自該第二半導體晶粒移除該透明結晶材料之一部分而形成的彎曲形狀,使得該第二波導表面之彎曲形狀經組態以減小由該第二波導表面發射且射出該第二半導體晶粒之該光的該光束發散度。The light source of claim 1, wherein the second waveguide surface has a curved shape formed at least in part by removing a portion of the transparent crystalline material from the second semiconductor die through an etching process such that the second waveguide surface has a curved shape. The curved shape is configured to reduce the beam divergence of the light emitted from the second waveguide surface and exiting the second semiconductor die. 如請求項1之光源,其中該第二波導表面之形狀為平坦形狀且該第二半導體晶粒進一步包括: 凸介電透鏡,其覆蓋該第二波導表面,該凸介電透鏡接收由該第二波導表面以該第二光束發散度發射之該光,其中該凸介電透鏡以小於該第二光束發散度之第三光束發散度發射由該凸介電透鏡接收到的該光。 The light source of claim 1, wherein the shape of the second waveguide surface is a flat shape and the second semiconductor die further comprises: a convex dielectric lens covering the second waveguide surface, the convex dielectric lens receiving the light emitted by the second waveguide surface with the second beam divergence, wherein the convex dielectric lens is less than the second beam divergence A third beam divergence of degrees emits the light received by the convex dielectric lens. 如請求項1之光源,其進一步包含: 透明玻璃基板,其接合至該第二半導體晶粒且覆蓋該第二波導表面,使得該第二半導體晶粒插入於該第一半導體晶粒與該玻璃基板之間。 The light source of claim 1, further comprising: A transparent glass substrate, which is bonded to the second semiconductor die and covers the surface of the second waveguide, so that the second semiconductor die is inserted between the first semiconductor die and the glass substrate. 如請求項1之光源,其中該透明結晶材料為生長於半導體基板上之氮化鎵(GaN)。The light source of claim 1, wherein the transparent crystalline material is gallium nitride (GaN) grown on a semiconductor substrate. 如請求項1之光源,其中: 該第一半導體晶粒包括發光裝置陣列,該發光裝置陣列包括該發光裝置;且 該第二半導體晶粒包括波導陣列,該波導陣列包括該波導,其中在該發光裝置陣列中之每一發光裝置與該波導陣列中之每一波導之間存在一對一對應,使得該發光裝置唯一地對應於該波導。 The light source of claim 1, wherein: The first semiconductor die includes an array of light emitting devices, the array of light emitting devices including the light emitting device; and The second semiconductor die includes an array of waveguides including the waveguide, wherein there is a one-to-one correspondence between each light-emitting device in the array of light-emitting devices and each waveguide in the array of waveguides such that the light-emitting device uniquely corresponds to this waveguide. 如請求項12之光源,其中該波導陣列形成於該透明結晶材料之連續層上,該波導陣列中之每一波導的波導主體自該透明結晶材料之該連續層突出,該波導陣列中之每一波導的近端表面包括透明結晶材料之該連續層之一部分,且該波導陣列中之每一波導的遠端表面自該透明結晶材料之該連續層位移。The light source of claim 12, wherein the waveguide array is formed on a continuous layer of the transparent crystalline material, the waveguide body of each waveguide in the waveguide array protrudes from the continuous layer of the transparent crystalline material, each waveguide in the waveguide array The proximal surface of a waveguide includes a portion of the continuous layer of transparent crystalline material, and the distal surface of each waveguide in the array of waveguides is displaced from the continuous layer of transparent crystalline material. 如請求項12之光源,其中該波導陣列形成於該透明結晶材料之不連續層上,該不連續層包括經由蝕刻製程形成之分別的介電層部分陣列,且該分別的介電層部分陣列中的每一介電層部分與該波導陣列中之每一波導之間存在一對一對應。The light source of claim 12, wherein the waveguide array is formed on a discontinuous layer of the transparent crystalline material, the discontinuous layer includes a separate partial array of dielectric layers formed through an etching process, and the separate partial arrays of dielectric layers There is a one-to-one correspondence between each dielectric layer portion in and each waveguide in the waveguide array. 如請求項1之光源,其中該光源包括於可穿戴式裝置中,該可穿戴式裝置為穿戴其的使用者產生虛擬實境環境或擴增實境環境中之至少一者。The light source of claim 1, wherein the light source is included in a wearable device that generates at least one of a virtual reality environment or an augmented reality environment for a user wearing the wearable device. 如請求項1之光源,其中該發光裝置與該波導之間的光學耦合效率為至少0.70。The light source of claim 1, wherein the optical coupling efficiency between the light emitting device and the waveguide is at least 0.70. 如請求項1之光源,其中該波導之光學表面修整中的每一缺陷之每一空間尺寸小於5奈米(nm)。The light source of claim 1, wherein each spatial dimension of each defect in the optical surfacing of the waveguide is less than 5 nanometers (nm). 如請求項1之光源,其中該發光裝置為微發光二極體且該發光裝置之該發光表面的空間尺寸小於10微米。The light source of claim 1, wherein the light-emitting device is a micro light-emitting diode and the spatial dimension of the light-emitting surface of the light-emitting device is less than 10 microns. 一種製造光源之方法,該方法包含: 製造第一半導體晶粒,該第一半導體晶粒包括具有發光表面(LES)之發光裝置(LED),該發光表面以第一光束發散度將光發射出該發光裝置; 製造包括波導之第二半導體晶粒,該波導具有第一波導表面、第二波導表面及包含透明結晶材料之波導主體;及 將該第二半導體晶粒接合至該第一半導體晶粒,使得該第一波導表面經組態以接收由該發光裝置之該發光表面以該第一光束發散度發射的該光,其中該波導主體經組態以將由該第一波導表面接收到之該光透射至該第二波導表面,且該第二波導表面經組態為以小於該第一光束發散度之第二光束發散度將由該第一波導表面接收到之該光發射出該波導。 A method of manufacturing a light source, the method comprising: fabricating a first semiconductor die, the first semiconductor die including a light emitting device (LED) having a light emitting surface (LES) that emits light out of the light emitting device with a first beam divergence; fabricating a second semiconductor die comprising a waveguide having a first waveguide surface, a second waveguide surface, and a waveguide body comprising a transparent crystalline material; and bonding the second semiconductor die to the first semiconductor die such that the first waveguide surface is configured to receive the light emitted at the first beam divergence by the light emitting surface of the light emitting device, wherein the waveguide The body is configured to transmit the light received by the first waveguide surface to the second waveguide surface, and the second waveguide surface is configured to transmit the light received by the first waveguide surface to the second waveguide surface with a second beam divergence less than the first beam divergence The light received by the first waveguide surface is emitted out of the waveguide. 一種裝置,其包含: 第一半導體晶粒,其包括具有發光表面(LES)之發光裝置(LED),該發光表面以第一光束發散度將光發射出該發光裝置;及 第二半導體晶粒,其接合至該第一半導體晶粒,該第二半導體晶粒包括波導,該波導包含: 第一波導表面,其經組態以接收由該發光裝置之該發光表面以該第一光束發散度發射的該光; 第二波導表面;及 波導主體,其包含將由該第一波導表面接收到之該光透射至該第二波導表面的透明結晶材料,其中該第二波導表面及該波導主體經組態使得該第二波導表面以小於該第一光束發散度之第二光束發散度將由該第一波導表面接收到之該光發射出該波導。 An apparatus comprising: a first semiconductor die including a light emitting device (LED) having a light emitting surface (LES) that emits light out of the light emitting device with a first beam divergence; and A second semiconductor die bonded to the first semiconductor die, the second semiconductor die including a waveguide including: a first waveguide surface configured to receive the light emitted by the light emitting surface of the light emitting device at the first beam divergence; the second waveguide surface; and A waveguide body comprising a transparent crystalline material that transmits the light received by the first waveguide surface to the second waveguide surface, wherein the second waveguide surface and the waveguide body are configured such that the second waveguide surface is smaller than the A second beam divergence of the first beam divergence will emit the light received by the first waveguide surface out of the waveguide.
TW110138153A 2020-12-21 2021-10-14 Beam-shaping secondary optical components for micro light emitting diodes TW202226609A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202063128582P 2020-12-21 2020-12-21
US63/128,582 2020-12-21
US17/154,762 US20220199871A1 (en) 2020-12-21 2021-01-21 Beam-shaping secondary optical components for micro light emitting diodes
US17/154,762 2021-01-21

Publications (1)

Publication Number Publication Date
TW202226609A true TW202226609A (en) 2022-07-01

Family

ID=78650111

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110138153A TW202226609A (en) 2020-12-21 2021-10-14 Beam-shaping secondary optical components for micro light emitting diodes

Country Status (3)

Country Link
KR (1) KR20230121899A (en)
TW (1) TW202226609A (en)
WO (1) WO2022139946A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090050905A1 (en) * 2007-08-20 2009-02-26 Abu-Ageel Nayef M Highly Efficient Light-Emitting Diode
KR101607306B1 (en) * 2009-08-21 2016-03-29 삼성전자주식회사 Light emitting diode integrated with lens, line printer head, and method of fabricating the light emitting diode
GB201420452D0 (en) * 2014-11-18 2014-12-31 Mled Ltd Integrated colour led micro-display
US11784288B2 (en) * 2018-10-26 2023-10-10 Google Llc Light-emitting diodes with integrated optical elements

Also Published As

Publication number Publication date
KR20230121899A (en) 2023-08-21
WO2022139946A1 (en) 2022-06-30

Similar Documents

Publication Publication Date Title
TW202134691A (en) Light extraction for micro-leds
US11728460B2 (en) LEDs arrays having a reduced pitch
US11942589B2 (en) Managing thermal resistance and planarity of a display package
US20210151649A1 (en) Bonding of light emitting diode arrays
TW202230714A (en) Enhanced light outcoupling of micro-leds using plasmonic scattering of metallic nanoparticles
US11668942B2 (en) Aligning a collimator assembly with LED arrays
TW202122870A (en) Left and right projectors for display device
TW202407421A (en) Guided light extraction in trenches
US20220199871A1 (en) Beam-shaping secondary optical components for micro light emitting diodes
WO2023097057A1 (en) Alignment-free micro-display architecture
WO2023076051A1 (en) Strain management of iii-p micro-led epitaxy towards higher efficiency and low bow
US11842989B2 (en) Integrating control circuits with light emissive circuits with dissimilar wafer sizes
TW202226609A (en) Beam-shaping secondary optical components for micro light emitting diodes
US20240055569A1 (en) Micro-led design for high light extraction efficiency
US20220173159A1 (en) Low resistance current spreading to n-contacts of micro-led array
CN116868355A (en) Beam shaping secondary optic for micro light emitting diode
WO2023091693A1 (en) Red light-emitting diode with phosphide epitaxial heterostructure grown on silicon
TW202401850A (en) Micro-led active region co-doping for surface losses suppression