TW202226557A - Semiconductor storage device - Google Patents

Semiconductor storage device Download PDF

Info

Publication number
TW202226557A
TW202226557A TW110125614A TW110125614A TW202226557A TW 202226557 A TW202226557 A TW 202226557A TW 110125614 A TW110125614 A TW 110125614A TW 110125614 A TW110125614 A TW 110125614A TW 202226557 A TW202226557 A TW 202226557A
Authority
TW
Taiwan
Prior art keywords
region
layer
semiconductor
insulating layer
nitrogen concentration
Prior art date
Application number
TW110125614A
Other languages
Chinese (zh)
Other versions
TWI812974B (en
Inventor
黒田寿文
嶋田裕介
永嶋賢史
Original Assignee
日商鎧俠股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020149398A external-priority patent/JP2022043897A/en
Application filed by 日商鎧俠股份有限公司 filed Critical 日商鎧俠股份有限公司
Publication of TW202226557A publication Critical patent/TW202226557A/en
Application granted granted Critical
Publication of TWI812974B publication Critical patent/TWI812974B/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/10Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the top-view layout
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/20Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B41/23Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B41/27Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • H10B41/35Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region with a cell select transistor, e.g. NAND
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/10EEPROM devices comprising charge-trapping gate insulators characterised by the top-view layout
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B43/23EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B43/27EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
    • H10B43/35EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region with cell select transistors, e.g. NAND

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

A semiconductor storage device includes: a conductive layer and a second conductive layer that are arranged in a first direction; a plurality of first semiconductor layers facing the first conductive layer between the first conductive layer and the second conductive layer, the plurality of first semiconductor layers being arranged in a second direction that intersects the first direction; a first charge storage layer that is provided between the plurality of first semiconductor layers and the first conductive layer in the first direction, and extends in the second direction over a plurality of regions between the plurality of first semiconductor layers and the first conductive layer; and a first insulating layer provided between the plurality of first semiconductor layers and the first charge storage layer in the first direction. The first insulating layer includes a first region that faces one end of each of the first semiconductor layers in the second direction, in the first direction, a second region that faces the other end of each of the first semiconductor layers in the second direction, in the first direction, and a third region provided between the first region and the second region in the second direction. A nitrogen concentration in the first region and the second region is lower than a nitrogen concentration in the third region.

Description

半導體記憶裝置semiconductor memory device

以下所記載之實施形態,係有關於半導體記憶裝置。    [關連申請案]The embodiments described below relate to semiconductor memory devices. [connected application]

本申請案,係享受以日本專利申請2020-149398號(申請日:2020年9月4日)以及美國專利申請17/190865 (申請日:2021年3月3日)作為基礎申請之優先權。本申請案,係藉由參照此基礎申請案,而包含基礎申請案之所有的內容。This application enjoys the priority of Japanese Patent Application No. 2020-149398 (filing date: September 4, 2020) and U.S. Patent Application No. 17/190865 (filing date: March 3, 2021) as basic applications. This application includes all the contents of the basic application by referring to the basic application.

周知有下述一般之半導體記憶裝置,其係具備有基板、和在與基板之表面相交叉之方向上而被作了層積的複數之導電層、和於此些之複數之導電層之層積方向上延伸並與此些之複數之導電層相對向之半導體層、以及被設置於導電層及半導體層之間之閘極絕緣膜。閘極絕緣膜,例如,係具備有氮化矽膜(SiN)或浮動閘極等之能夠記憶資料之記憶體部。The following general semiconductor memory device is known, which includes a substrate, a plurality of conductive layers laminated in a direction intersecting the surface of the substrate, and layers of the plurality of conductive layers. A semiconductor layer extending in the product direction and facing the plurality of conductive layers, and a gate insulating film provided between the conductive layer and the semiconductor layer. The gate insulating film includes, for example, a memory portion capable of storing data, such as a silicon nitride film (SiN) or a floating gate.

本發明所欲解決之課題,係在於提供一種能夠合適地動作之半導體記憶裝置。The problem to be solved by the present invention is to provide a semiconductor memory device that can operate appropriately.

其中一個實施形態之半導體記憶裝置,係具備有:第1導電層以及第2導電層,係於第1方向上而並排;和複數之第1半導體層,係在第1導電層以及第2導電層之間而與第1導電層相對向,並在與第1方向相交叉之第2方向上被並排地作設置;和第1電荷積蓄層,係在第1方向上而被設置於複數之第1半導體層以及第1導電層之間,並涵蓋複數之第1半導體層與第1導電層之間之複數之區域地而於第2方向上延伸;和第1絕緣層,係在第1方向上而被設置於複數之第1半導體層以及第1電荷積蓄層之間。第1絕緣層,係具備有:第1區域,係於第1方向上,與第1半導體層之在第2方向上的其中一端部相對向;和第2區域,係於第1方向上,與第1半導體層之在第2方向上的另外一端部相對向;和第3區域,係於第2方向上,被設置在第1區域以及第2區域之間。在第1區域以及第2區域中之氮的濃度,係較在第3區域中之氮的濃度而更低。A semiconductor memory device of one embodiment includes: a first conductive layer and a second conductive layer arranged in a first direction; and a plurality of first semiconductor layers formed on the first conductive layer and the second conductive layer The layers are opposite to the first conductive layer, and are arranged side by side in the second direction intersecting with the first direction; and the first charge accumulation layer is arranged in the first direction and is arranged in a plurality of Between the first semiconductor layer and the first conductive layer, and covering a plurality of regions between the plurality of first semiconductor layers and the first conductive layer, and extending in the second direction; and the first insulating layer, which is in the first It is provided between the plurality of first semiconductor layers and the first charge storage layers in the direction. The first insulating layer is provided with: a first region in the first direction, facing one end of the first semiconductor layer in the second direction; and a second region in the first direction, Opposing the other end portion of the first semiconductor layer in the second direction; and a third region in the second direction and provided between the first region and the second region. The nitrogen concentration in the first region and the second region is lower than the nitrogen concentration in the third region.

接著,參照圖面,對實施形態之半導體記憶裝置作詳細說明。另外,此些之實施形態,係僅為其中一例,而並非為對於本發明之範圍作限定者。Next, the semiconductor memory device of the embodiment will be described in detail with reference to the drawings. In addition, these embodiments are merely examples, and are not intended to limit the scope of the present invention.

又,各圖面,係為示意性者,而會有將一部分之構成等作省略的情況。又,針對在各實施形態中而為共通的部分,係附加相同之元件符號,並會有省略其說明的情況。In addition, each drawing is a schematic, and a part of the structure etc. may be abbreviate|omitted. In addition, the same reference numerals are attached to the parts that are common to the respective embodiments, and the description thereof may be omitted.

又,在本說明書中,係將相對於基板之表面而為平行的特定之方向稱作X方向,並將相對於基板之表面而為平行並且與X方向相垂直之方向稱作Y方向,並且將相對於基板之表面而為垂直之方向稱作Z方向。Also, in this specification, a specific direction that is parallel to the surface of the substrate is referred to as the X direction, and a direction that is parallel to the surface of the substrate and perpendicular to the X direction is referred to as the Y direction, and The direction perpendicular to the surface of the substrate is referred to as the Z direction.

又,在本說明書中,係會有將沿著特定之面的方向稱作第1方向,並將與此沿著特定之面之第1方向相交叉的方向稱作第2方向,並且將與此特定之面相交叉之方向稱作第3方向的情形。此些之第1方向、第2方向以及第3方向,係可與X方向、Y方向以及Z方向之任一者相互對應,亦可並未相互對應。In addition, in this specification, the direction along the specific surface is referred to as the first direction, the direction intersecting the first direction along the specific surface is referred to as the second direction, and the The direction in which this specific plane intersects is referred to as the case of the third direction. These 1st direction, 2nd direction, and 3rd direction may mutually correspond to any one of X direction, Y direction, and Z direction, and may not mutually correspond.

又,在本說明書中,「上」或「下」等之表現,係設為以基板作為基準。例如,若是將沿著上述第1方向而從基板遠離之方向稱作上,則係將沿著第1方向而接近基板之方向稱作下。又,當針對某一構成而提到下面或下端的情況時,係指此構成之基板側之面或端部,當提到上面或上端的情況時,係指此構成之與基板相反側之面或端部。又,係將與第2方向或第3方向相交叉之面稱作側面等。In addition, in this specification, expressions such as "up" or "down" are based on the substrate. For example, if the direction away from the board along the above-mentioned first direction is called upward, the direction approaching the board along the first direction is called downward. In addition, when referring to the lower end or the lower end of a certain structure, it refers to the surface or end of the substrate side of the structure, and when referring to the upper surface or the upper end, it refers to the surface or end of the structure on the opposite side of the substrate. face or end. In addition, the surface intersecting the second direction or the third direction is referred to as a side surface or the like.

又,在本說明書中,當針對構成、構件等,而提到特定方向之「寬幅」或「厚度」的情況時,係會有代表在藉由SEM(Scanning electron microscopy)或TEM (Transmission electron microscopy)等所觀察到的剖面等處之寬幅或厚度的情形。In addition, in this specification, when referring to the "width" or "thickness" of a specific direction with respect to a composition, a component, etc., it will be represented by SEM (Scanning electron microscopy) or TEM (Transmission electron microscopy) The width or thickness of the section, etc. observed by microscopy) etc.

[第1實施形態]  [構成]    第1圖,係為第1實施形態之半導體記憶裝置的示意性之等價電路圖。[First Embodiment] [Configuration] Fig. 1 is a schematic equivalent circuit diagram of the semiconductor memory device of the first embodiment.

本實施形態之半導體記憶裝置,係具備有記憶體胞陣列MCA、和對於記憶體胞陣列MCA作控制之周邊電路PC。The semiconductor memory device of the present embodiment includes a memory cell array MCA and a peripheral circuit PC that controls the memory cell array MCA.

記憶體胞陣列MCA,係具備有複數之記憶體單元MU。此些之複數之記憶體單元MU,係分別具備有電性上相互獨立之2個的記憶體串MSa、MSb。此些之記憶體串MSa、MSb之其中一端,係分別被與汲極側選擇電晶體STD作連接,並經由此些而被與共通之位元線BL作連接。記憶體串MSa、MSb之另外一端,係被與共通之源極側選擇電晶體STS作連接,並經由此些而被與共通之源極線SL作連接。The memory cell array MCA includes a plurality of memory cells MU. These plural memory units MU respectively have two memory strings MSa and MSb which are electrically independent from each other. One ends of these memory strings MSa, MSb are respectively connected to the drain side selection transistor STD, and are connected to the common bit line BL via these. The other ends of the memory strings MSa and MSb are connected to the common source side selection transistor STS, and are connected to the common source line SL via these.

記憶體串MSa、MSb,係分別具備有被串聯地作了連接的複數之記憶體胞MC。記憶體胞MC,係身為具備有半導體層和閘極絕緣膜以及閘極電極之場效型之電晶體。半導體層,係作為通道區域而起作用。閘極絕緣膜,係具備有能夠記憶資料之電荷積蓄層。記憶體胞MC之臨限值電壓,係因應於電荷積蓄層中之電荷量而改變。閘極電極,係為字元線WL之一部分。The memory strings MSa and MSb each include a plurality of memory cells MC connected in series. The memory cell MC is a field-effect transistor having a semiconductor layer, a gate insulating film, and a gate electrode. The semiconductor layer functions as a channel region. The gate insulating film is provided with a charge storage layer capable of storing data. The threshold voltage of the memory cell MC changes according to the amount of charge in the charge storage layer. The gate electrode is a part of the word line WL.

選擇電晶體(STD、STS),係身為具備有半導體層和閘極絕緣膜以及閘極電極之場效型之電晶體。半導體層,係作為通道區域而起作用。汲極側選擇電晶體STD之閘極電極,係身為汲極側選擇閘極線SGD之一部分。源極側選擇電晶體STS之閘極電極,係身為源極側選擇閘極線SGS之一部分。Selective transistors (STD, STS) are field-effect transistors having a semiconductor layer, a gate insulating film and a gate electrode. The semiconductor layer functions as a channel region. The gate electrode of the drain side selection transistor STD is a part of the drain side selection gate line SGD. The gate electrode of the source side selection transistor STS is a part of the source side selection gate line SGS.

周邊電路PC,例如,係產生在讀出動作、寫入動作、刪除動作中所需要的電壓,並施加於位元線BL、源極線SL、字元線WL以及選擇閘極線(SGD、SGS)處。周邊電路PC,例如,係包含有行解碼器、感測放大器模組、電壓產生電路、序列器以及各種暫存器等之電路。周邊電路PC,例如,係由被設置在半導體基板上之複數之電晶體以及配線所構成。Peripheral circuit PC, for example, generates voltages required for read operation, write operation, and delete operation, and applies it to bit line BL, source line SL, word line WL, and select gate lines (SGD, SGS). The peripheral circuit PC, for example, is a circuit including a row decoder, a sense amplifier module, a voltage generating circuit, a sequencer, and various registers. The peripheral circuit PC is composed of, for example, a plurality of transistors and wirings provided on a semiconductor substrate.

接著,參照第2圖以及第3圖,針對本實施形態之半導體記憶裝置之示意性之構成例作說明。第2圖,係為該半導體記憶裝置之示意性的立體圖。第3圖(a),係為對應於第2圖之以A-A’線所示之部分的剖面之示意性之平面圖。第3圖(b),係為對應於第3圖(a)之以B-B’線所示之部分的剖面之示意性之剖面圖。在第2圖以及第3圖中,係將一部分之構成省略。Next, a schematic configuration example of the semiconductor memory device of the present embodiment will be described with reference to FIG. 2 and FIG. 3 . FIG. 2 is a schematic perspective view of the semiconductor memory device. Fig. 3(a) is a schematic plan view corresponding to the cross section of the portion shown by the line A-A' in Fig. 2. Fig. 3(b) is a schematic cross-sectional view corresponding to the cross-section of the portion indicated by the line B-B' in Fig. 3(a). In Figs. 2 and 3, a part of the configuration is omitted.

例如如同第2圖中所示一般,本實施形態之半導體記憶裝置,係具備有基板110、和被設置在基板110之上方處的記憶體胞陣列MCA。For example, as shown in FIG. 2 , the semiconductor memory device of the present embodiment includes a substrate 110 and a memory cell array MCA provided above the substrate 110 .

基板110,例如係為單晶矽(Si)等之半導體基板。基板110,例如,係具備有「在半導體基板之上面具有n型之雜質層,並進而在此n型之雜質層中具有p型之雜質層」的雙重井構造。另外,在基板110之表面處,例如,係亦可被設置有構成周邊電路PC之電晶體或配線等。The substrate 110 is, for example, a semiconductor substrate such as single crystal silicon (Si). The substrate 110 has, for example, a double well structure having an n-type impurity layer on the upper surface of the semiconductor substrate, and a p-type impurity layer in the n-type impurity layer. In addition, on the surface of the substrate 110, for example, transistors, wirings, and the like that constitute the peripheral circuit PC may be provided.

記憶體胞陣列MCA,係具備有在Y方向上被作了配設的複數之層積體構造LS。層積體構造LS,係具備有在Z方向上被作了層積的複數之導電層120。在此些之層積體構造LS之間,係被設置有記憶體溝渠構造MT。層積體構造LS以及記憶體溝渠構造MT,係在Y方向上被交互作配設。記憶體溝渠構造MT,例如係如同在第3圖(a)中所示一般,具備有被配設在X方向上之複數之記憶體單元構造MUS以及記憶體單元間構造IMUS。記憶體單元構造MUS,係具備有半導體層130、閘極絕緣層140之一部分以及絕緣層150之一部分。記憶體單元間構造IMUS,係具備有閘極絕緣層140之一部分以及絕緣層150之一部分。又,例如如同第2圖中所示一般,半導體層130之下端,係被與配線層160作連接。The memory cell array MCA includes a plurality of laminate structures LS arranged in the Y direction. The laminated body structure LS includes a plurality of conductive layers 120 laminated in the Z direction. Between these laminated body structures LS, a memory trench structure MT is provided. The laminated body structure LS and the memory trench structure MT are alternately arranged in the Y direction. The memory trench structure MT includes, for example, as shown in FIG. 3( a ), a plurality of memory cell structures MUS and inter-memory cell structures IMUS arranged in the X direction. The memory cell structure MUS includes a semiconductor layer 130 , a part of the gate insulating layer 140 , and a part of the insulating layer 150 . The inter-memory structure IMUS includes a part of the gate insulating layer 140 and a part of the insulating layer 150 . Also, for example, as shown in FIG. 2 , the lower end of the semiconductor layer 130 is connected to the wiring layer 160 .

導電層120,係身為在X方向上而延伸之略板狀之導電層,並例如身為氮化鈦(TiN)與鎢(W)之層積膜或被植入有雜質之多晶矽(p-Si)等之導電層。此些之導電層120,係分別作為字元線WL以及記憶體胞MC(第1圖)之閘極電極而起作用。The conductive layer 120 is a slightly plate-shaped conductive layer extending in the X direction, and is, for example, a laminated film of titanium nitride (TiN) and tungsten (W) or a polysilicon (p) implanted with impurities. -Si) and other conductive layers. These conductive layers 120 function as gate electrodes for word lines WL and memory cells MC (FIG. 1), respectively.

在複數之導電層120之下方,係被設置有例如包含與導電層120相同之材料的導電層121(第2圖)。導電層121,係作為源極側選擇閘極線SGS以及源極側選擇電晶體STS(第1圖)之閘極電極而起作用。Below the plurality of conductive layers 120, for example, a conductive layer 121 (FIG. 2) made of the same material as the conductive layer 120 is provided. The conductive layer 121 functions as the gate electrode of the source side selection gate line SGS and the source side selection transistor STS (FIG. 1).

在複數之導電層120之間、最下層之導電層120以及導電層121之間、導電層121以及配線層160之間,係被設置有氧化矽(SiO 2)等之絕緣層122。 An insulating layer 122 such as silicon oxide (SiO 2 ) is provided between the plurality of conductive layers 120 , between the lowermost conductive layer 120 and the conductive layer 121 , and between the conductive layer 121 and the wiring layer 160 .

另外,在以下之說明中,係會有將在Y方向上而並排之2個的層積體構造LS之中之其中一者稱作層積體構造LSa並將另外一者稱作層積體構造LSb的情況。又,係會有將被包含於層積體構造LSa中之導電層120稱作第1導電層120a,並將被包含於層積體構造LSb中之導電層120稱作第2導電層120b的情況。In addition, in the following description, one of the two layered body structures LS arranged side by side in the Y direction is referred to as a layered body structure LSa and the other is referred to as a layered body Construct the case for LSb. In addition, the conductive layer 120 included in the laminate structure LSa is referred to as a first conductive layer 120a, and the conductive layer 120 included in the laminate structure LSb is referred to as a second conductive layer 120b. Happening.

半導體層130,例如係如同第3圖(a)中所示一般,與在X方向上而並排之複數之記憶體單元構造MUS相對應地而在X方向上並排。半導體層130,例如,係身為無摻雜(non dope)之多晶矽(Si)等之半導體層。半導體層130,例如係如同第2圖中所示一般,具備有被設置在層積體構造LSa以及絕緣層150之間之第1半導體層130a、和被設置在層積體構造LSb以及絕緣層150之間之第2半導體層130b、和被設置在第1半導體體層130a以及第2半導體層130b之下端處之第3半導體層130c、和被設置在第1半導體層130a以及第2半導體層130b之上端處之第4半導體層130d。The semiconductor layer 130 is arranged in the X direction corresponding to the plurality of memory cell structures MUS arranged in the X direction, as shown in FIG. 3( a ), for example. The semiconductor layer 130 is, for example, a semiconductor layer such as non-dope polysilicon (Si). The semiconductor layer 130, for example, as shown in FIG. 2, includes a first semiconductor layer 130a provided between the laminate structure LSa and the insulating layer 150, and a first semiconductor layer 130a provided between the laminate structure LSb and the insulating layer The second semiconductor layer 130b between 150, the third semiconductor layer 130c provided at the lower ends of the first semiconductor bulk layer 130a and the second semiconductor layer 130b, and the first semiconductor layer 130a and the second semiconductor layer 130b The fourth semiconductor layer 130d at the upper end.

第1半導體層130a,係在X方向上複數並排地被作設置,並分別於Z方向上延伸而與複數之第1導電層120a相對向。第1半導體層130a,係作為在記憶體串MSa (第1圖)中所包含之複數之記憶體胞MC之通道區域而起作用。The first semiconductor layers 130a are arranged in parallel in the X direction, and extend in the Z direction to face the plurality of first conductive layers 120a, respectively. The first semiconductor layer 130a functions as a channel region of a plurality of memory cells MC included in the memory string MSa (FIG. 1).

第2半導體層130b,係在X方向上複數並排地被作設置,並分別於Z方向上延伸而與複數之第2導電層120b相對向。第2半導體層130b,係作為在記憶體串MSb (第1圖)中所包含之複數之記憶體胞MC之通道區域而起作用。The second semiconductor layers 130b are arranged in parallel in the X direction, and extend in the Z direction to face the plurality of second conductive layers 120b, respectively. The second semiconductor layer 130b functions as a channel region of a plurality of memory cells MC included in the memory string MSb (FIG. 1).

第4半導體層130d,例如係如同第2圖中所示一般,被與第1半導體層130a以及第2半導體層130b作連接。第4半導體層130d,係被與鎢(W)等之位元線接點BLC、銅(Cu)等之位元線BL作連接。The fourth semiconductor layer 130d is connected to the first semiconductor layer 130a and the second semiconductor layer 130b, for example, as shown in FIG. 2 . The fourth semiconductor layer 130d is connected to bit line contacts BLC such as tungsten (W) and bit line BL such as copper (Cu).

又,例如如同在第2圖中所例示一般,在半導體層130之下方處,係被設置有半導體層133。半導體層133,係被與第3半導體層130c作連接。半導體層133,係被設置於在Y方向上而相鄰之2個的導電層121之間,並與此些之2個的導電層121相對向。半導體層133,係身為多晶矽(p-Si)等之半導體層,並作為源極側選擇電晶體STS (第1圖)之通道區域而起作用。在半導體層133以及導電層121之間,係被設置有氧化矽(SiO 2)等之絕緣層135。 Also, for example, as illustrated in FIG. 2 , a semiconductor layer 133 is provided below the semiconductor layer 130 . The semiconductor layer 133 is connected to the third semiconductor layer 130c. The semiconductor layer 133 is provided between the two conductive layers 121 adjacent to each other in the Y direction, and faces the two conductive layers 121 . The semiconductor layer 133 is a semiconductor layer such as polysilicon (p-Si), and functions as a channel region of the source side selection transistor STS (FIG. 1). An insulating layer 135 such as silicon oxide (SiO 2 ) is provided between the semiconductor layer 133 and the conductive layer 121 .

閘極絕緣層140,係具備有第1閘極絕緣層140a、和第2閘極絕緣層140b。The gate insulating layer 140 includes a first gate insulating layer 140a and a second gate insulating layer 140b.

第1閘極絕緣層140a,係在第1半導體層130a與在Z方向上而並排之複數之第1導電層120a之間,而被設置於層積體構造LS之Y方向之其中一側之側面處,並於Z方向上延伸。又,第1閘極絕緣層140a,係涵蓋複數之第1半導體層130a與第1導電層120a之間之複數之區域地,而於X方向上延伸。第1閘極絕緣層140a,例如,係如同第3圖(a)中所示一般,具備有第1絕緣層141a和第1電荷積蓄層142a以及第1阻隔絕緣層143a。The first gate insulating layer 140a is provided between the first semiconductor layer 130a and the plurality of first conductive layers 120a arranged in the Z direction, and is provided on one side of the Y direction of the laminate structure LS at the side and extending in the Z direction. In addition, the first gate insulating layer 140a covers a plurality of regions between the plurality of first semiconductor layers 130a and the first conductive layer 120a, and extends in the X direction. The first gate insulating layer 140a includes, for example, a first insulating layer 141a, a first charge storage layer 142a, and a first blocking insulating layer 143a as shown in FIG. 3(a), for example.

第2閘極絕緣層140b,係在第2半導體層130b與在Z方向上而並排之複數之第2導電層120b之間,而被設置於層積體構造LS之Y方向之另外一側之側面處,並於Z方向上延伸。又,第2閘極絕緣層140b,係涵蓋複數之第2半導體層130b與第2導電層120b之間之複數之區域地,而於X方向上延伸。第2閘極絕緣層140b,例如,係如同第3圖(a)中所示一般,包含有第2絕緣層141b和第2電荷積蓄層142b以及第2阻隔絕緣層143b。The second gate insulating layer 140b is provided between the second semiconductor layer 130b and the plurality of second conductive layers 120b arranged in the Z direction, and is provided on the other side in the Y direction of the laminate structure LS at the side and extending in the Z direction. In addition, the second gate insulating layer 140b covers a plurality of regions between the plurality of second semiconductor layers 130b and the second conductive layers 120b, and extends in the X direction. The second gate insulating layer 140b, for example, as shown in FIG. 3(a), includes a second insulating layer 141b, a second charge storage layer 142b, and a second blocking insulating layer 143b.

第1絕緣層141a以及第2絕緣層141b,例如係包含氧氮化矽(SiON)等之絕緣層。第1電荷積蓄層142a以及第2電荷積蓄層142b,例如係包含氮化矽(SiN)等之絕緣層。第1阻隔絕緣層143a以及第2阻隔絕緣層143b,例如係包含氧化矽(SiO 2)等之絕緣層。 The first insulating layer 141a and the second insulating layer 141b are insulating layers made of, for example, silicon oxynitride (SiON). The first charge storage layer 142a and the second charge storage layer 142b are insulating layers made of, for example, silicon nitride (SiN). The first blocking insulating layer 143a and the second blocking insulating layer 143b are, for example, insulating layers including silicon oxide (SiO 2 ).

在此,針對第1絕緣層141a以及第2絕緣層141b,使用第4圖來作詳細說明。第4圖,係為對應於第3圖(a)之記憶體單元構造MUS及其近旁的部分之示意性之擴大圖。Here, the first insulating layer 141a and the second insulating layer 141b will be described in detail using FIG. 4 . FIG. 4 is a schematic enlarged view of the memory cell structure MUS and its vicinity corresponding to FIG. 3(a) .

第1絕緣層141a,係具備有與在X方向上而並排之複數之記憶體單元構造MUS相對應地而被作設置之複數之高氮濃度區域、和與在X方向上而並排之複數之記憶體單元間構造IMUS相對應地而被作設置之複數之低氮濃度區域。例如,在第4圖中,作為與在X方向上而相鄰之2個的記憶體單元間構造IMUS相對應之2個的低氮濃度區域,係例示有第1區域141a_1和第2區域141a_2。又,作為被設置於此些之間之高氮濃度區域,係例示有第3區域141a_3。各高氮濃度區域之在X方向上的寬幅X 141a_3,係較第1半導體層130a之在X方向上的寬幅X 130a而更小。又,各低氮濃度區域之在X方向上之端部,係與在X方向上而相鄰之2個的第1半導體層130a之於Y方向上之側面相對向。例如,在第4圖所例示之記憶體單元構造MUS中,第1區域141a_1之於X方向上之端部,係與第1半導體層130a之於X方向上的其中一端部之在Y方向上的側面相接。又,第2區域141a_2之於X方向上之位置,係與第1半導體層130a之於X方向上的另外一端部之在Y方向上的側面相接。在低氮濃度區域(例如,第1區域141a_1以及第2區域141a_2)中的氮之濃度,係較在高氮濃度區域(例如,第3區域141a_3)中的氮之濃度而更低。 The first insulating layer 141a includes a plurality of high nitrogen concentration regions arranged corresponding to a plurality of memory cell structures MUS arranged in the X direction, and a plurality of high nitrogen concentration regions arranged in the X direction A plurality of low nitrogen concentration regions are arranged correspondingly to the structure IMUS between the memory cells. For example, in FIG. 4, as two low nitrogen concentration regions corresponding to two adjacent memory cell structure IMUS in the X direction, a first region 141a_1 and a second region 141a_2 are exemplified . In addition, the third region 141a_3 is exemplified as the high nitrogen concentration region provided between these. The width X 141a_3 of each high nitrogen concentration region in the X direction is smaller than the width X 130a of the first semiconductor layer 130a in the X direction. In addition, the end in the X direction of each low nitrogen concentration region faces the side surface in the Y direction of the two adjacent first semiconductor layers 130a in the X direction. For example, in the memory cell structure MUS illustrated in FIG. 4, the end of the first region 141a_1 in the X direction is in the Y direction with one of the ends of the first semiconductor layer 130a in the X direction. sides meet. In addition, the position of the second region 141a_2 in the X direction is in contact with the side surface in the Y direction of the other end of the first semiconductor layer 130a in the X direction. The nitrogen concentration in the low nitrogen concentration region (eg, the first region 141a_1 and the second region 141a_2 ) is lower than the nitrogen concentration in the high nitrogen concentration region (eg, the third region 141a_3 ).

低氮濃度區域(例如,第1區域141a_1以及第2區域141a_2),係亦可包含有相較於高氮濃度區域(例如,第3區域141a_3)而氮含量為更低的氧氮化矽(SiON)。又,低氮濃度區域(例如,第1區域141a_1以及第2區域141a_2),係亦可包含有氧化矽(SiO 2)。 The low nitrogen concentration regions (eg, the first region 141a_1 and the second region 141a_2 ) may also include silicon oxynitride ( SiON). In addition, the low nitrogen concentration regions (for example, the first region 141a_1 and the second region 141a_2) may contain silicon oxide (SiO 2 ).

第2絕緣層141b,係具備有與在X方向上而並排之複數之記憶體單元構造MUS相對應地而被作設置之複數之高氮濃度區域、和與在X方向上而並排之複數之記憶體單元間構造IMUS相對應地而被作設置之複數之低氮濃度區域。例如,在第4圖中,作為與在X方向上而相鄰之2個的記憶體單元間構造IMUS相對應之2個的低氮濃度區域,係例示有第4區域141b_4和第5區域141b_5。又,作為被設置於此些之間之高氮濃度區域,係例示有第6區域141b_6。各高氮濃度區域之在X方向上的寬幅X 141b_6,係較第2半導體層130b之在X方向上的寬幅X 130b而更小。又,各低氮濃度區域之在X方向上之端部,係與在X方向上而相鄰之2個的第2半導體層130b之於Y方向上之側面相對向。例如,在第4圖所例示之記憶體單元構造MUS中,第4區域141b_4之於X方向上之端部,係與第2半導體層130b之於X方向上的其中一端部之在Y方向上的側面相接。又,第5區域141b_5之於X方向上之位置,係與第2半導體層130b之於X方向上的另外一端部之在Y方向上的側面相接。在低氮濃度區域(例如,第4區域141b_4以及第5區域141b_5)中的氮之濃度,係較在高氮濃度區域(例如,第6區域141b_6)中的氮之濃度而更低。 The second insulating layer 141b includes a plurality of high nitrogen concentration regions arranged corresponding to a plurality of memory cell structures MUS arranged in the X direction, and a plurality of high nitrogen concentration regions arranged in the X direction A plurality of low nitrogen concentration regions are arranged correspondingly to the structure IMUS between the memory cells. For example, in FIG. 4, as two low nitrogen concentration regions corresponding to two adjacent memory cell structure IMUS in the X direction, a fourth region 141b_4 and a fifth region 141b_5 are exemplified . In addition, the sixth region 141b_6 is exemplified as the high nitrogen concentration region provided between these regions. The width X 141b_6 of each high nitrogen concentration region in the X direction is smaller than the width X 130b of the second semiconductor layer 130b in the X direction. In addition, the end in the X direction of each low nitrogen concentration region faces the side surface in the Y direction of the two adjacent second semiconductor layers 130b in the X direction. For example, in the memory cell structure MUS illustrated in FIG. 4, the end of the fourth region 141b_4 in the X direction is in the Y direction with one of the ends of the second semiconductor layer 130b in the X direction. sides meet. In addition, the position of the fifth region 141b_5 in the X direction is in contact with the side surface in the Y direction of the other end of the second semiconductor layer 130b in the X direction. The nitrogen concentration in the low nitrogen concentration region (eg, the fourth region 141b_4 and the fifth region 141b_5 ) is lower than the nitrogen concentration in the high nitrogen concentration region (eg, the sixth region 141b_6 ).

低氮濃度區域(例如,第4區域141b_4以及第5區域141b_5),係亦可包含有相較於高氮濃度區域(例如,第6區域141b_6)而氮含量為更低的氧氮化矽(SiON)。又,低氮濃度區域(例如,第4區域141b_4以及第5區域141b_5),係亦可包含有氧化矽(SiO 2)。 The low nitrogen concentration regions (eg, the fourth region 141b_4 and the fifth region 141b_5 ) may also include silicon oxynitride ( SiON). In addition, the low nitrogen concentration regions (eg, the fourth region 141b_4 and the fifth region 141b_5 ) may contain silicon oxide (SiO 2 ).

另外,高氮濃度區域以及低氮濃度區域之位置、範圍還有在此些之區域之中的氮濃度,係可藉由利用EDS(能量色散X射線譜,Energy Dispersive X-ray Spectroscopy)法等並對於其之組成進行分析,來測定之。In addition, the position and range of the high nitrogen concentration region and the low nitrogen concentration region, and the nitrogen concentration in these regions can be determined by using EDS (Energy Dispersive X-ray Spectroscopy) method or the like. And analyze its composition to determine it.

絕緣層150,係被設置在記憶體溝渠構造MT之於Y方向上的中央部處,並於X方向以及Z方向上延伸。例如,如同第3圖(b)中所示一般,絕緣層150之中之被包含於記憶體單元構造MUS之中的部分之於Y方向上之寬幅,係較絕緣層150之中之被包含於記憶體單元間構造IMUS之中的部分之於Y方向上之寬幅而更小。絕緣層150,例如,係身為氧化矽(SiO 2)等之絕緣層。 The insulating layer 150 is provided at the central portion of the memory trench structure MT in the Y direction, and extends in the X direction and the Z direction. For example, as shown in FIG. 3(b), the width in the Y direction of the portion of the insulating layer 150 included in the memory cell structure MUS is larger than that of the insulating layer 150. The portion included in the inter-cell structure IMUS is smaller in width in the Y direction. The insulating layer 150 is, for example, an insulating layer of silicon oxide (SiO 2 ).

配線層160(第2圖),係身為於X方向以及Y方向上而延伸之板狀之導電層。配線層160,例如係身為被植入有雜質之多晶矽(Si)等之導電層,並作為源極線SL(第1圖)而起作用。另外,源極線SL之構造係可適當作變更。例如,源極線SL,係亦可身為基板110之表面的一部分。又,源極線SL,係亦可包含有氮化鈦(TiN)以及鎢(W)等之金屬層。又,源極線SL,係亦可被與半導體層130之下端作連接,亦可被與半導體層130之Y方向之側面作連接。The wiring layer 160 (FIG. 2) is a plate-shaped conductive layer extending in the X direction and the Y direction. The wiring layer 160 is, for example, a conductive layer in which an impurity-implanted polysilicon (Si) or the like is implanted, and functions as a source line SL (FIG. 1). In addition, the structure of the source line SL can be appropriately changed. For example, the source line SL can also be a part of the surface of the substrate 110 . In addition, the source line SL may include a metal layer such as titanium nitride (TiN) and tungsten (W). In addition, the source line SL can also be connected to the lower end of the semiconductor layer 130, and can also be connected to the side surface of the semiconductor layer 130 in the Y direction.

[製造方法]    接著,參照第5圖~第19圖,針對本實施形態之半導體記憶裝置之製造方法作說明。第5圖~第19圖中之(a),係為用以對於該製造方法作說明之示意性的平面圖。第5圖~第19圖中之(b),係為用以針對該製造方法作說明之示意性的剖面圖,並展示有與在第5圖~第19圖中之(a)處的D-D’線相對應的剖面。[Manufacturing method] Next, the manufacturing method of the semiconductor memory device of the present embodiment will be described with reference to FIGS. 5 to 19 . Fig. 5 to Fig. 19 (a) are schematic plan views for explaining the manufacturing method. Fig. 5 to Fig. 19(b) are schematic cross-sectional views for explaining the manufacturing method, and D in Fig. 5 to Fig. 19 (a) is shown. -D' line corresponds to the profile.

另外,在以下之說明中,係會有將第1絕緣層141a以及第2絕緣層141b稱作絕緣層141的情況。又,係會有將第1電荷積蓄層142a以及第2電荷積蓄層142b稱作電荷積蓄層142的情況。又,係會有將第1阻隔絕緣層143a以及第2阻隔絕緣層143b稱作阻隔絕緣層143的情況。In addition, in the following description, the 1st insulating layer 141a and the 2nd insulating layer 141b may be called the insulating layer 141 in some cases. In addition, the first charge storage layer 142a and the second charge storage layer 142b may be referred to as the charge storage layer 142 in some cases. In addition, the 1st block insulating layer 143a and the 2nd block insulating layer 143b may be called the block insulating layer 143 in some cases.

在該製造方法中,如同第5圖中所示一般,係在未圖示之基板之上方處,形成配線層160。又,係在配線層160之上面,交互層積複數之絕緣層122以及犧牲層120A。又,係在最上層之犧牲層120A之上面,形成絕緣層152。犧牲層120A,例如係由氮化矽(SiN)等所成。絕緣層152,例如係為由氧化矽(SiO 2)等所成。配線層160、絕緣層122、犧牲層120A以及絕緣層152之成膜,例如,係藉由CVD(化學氣相沉積,Chemical Vapor Deposition)等來進行。 In this manufacturing method, as shown in FIG. 5, the wiring layer 160 is formed on the upper part of the substrate which is not shown. In addition, on the wiring layer 160, a plurality of insulating layers 122 and a sacrificial layer 120A are alternately laminated. In addition, an insulating layer 152 is formed on the uppermost sacrificial layer 120A. The sacrificial layer 120A is made of, for example, silicon nitride (SiN). The insulating layer 152 is made of, for example, silicon oxide (SiO 2 ). The wiring layer 160 , the insulating layer 122 , the sacrificial layer 120A, and the insulating layer 152 are formed by, for example, CVD (Chemical Vapor Deposition).

接著,如同第6圖中所示一般,在絕緣層122、犧牲層120A以及絕緣層152處,形成開口MTa。開口MTa,例如,係在第5圖中所示之構造的上面,形成於與開口MTa相對應之部分處具有開口的絕緣層,並以此作為遮罩而藉由進行RIE(反應離子蝕刻,Reactive Ion Etching: RIE)等,來形成之。Next, as shown in FIG. 6 , an opening MTa is formed in the insulating layer 122 , the sacrificial layer 120A, and the insulating layer 152 . The opening MTa, for example, is formed on the upper surface of the structure shown in FIG. 5, and an insulating layer having an opening is formed at a portion corresponding to the opening MTa, and this is used as a mask to perform RIE (reactive ion etching, Reactive Ion Etching: RIE), etc., to form it.

開口MTa,係於Z方向上延伸,而將絕緣層122、犠牲層120A以及絕緣層152在Y方向上作分斷,並使配線層160之上面露出。The opening MTa extends in the Z direction, and divides the insulating layer 122 , the sacrificial layer 120A and the insulating layer 152 in the Y direction, and exposes the upper surface of the wiring layer 160 .

接著,如同第7圖中所示一般,在開口MTa之底面處,形成半導體層133。半導體層133,例如係經由磊晶成長等來形成。Next, as shown in FIG. 7, a semiconductor layer 133 is formed on the bottom surface of the opening MTa. The semiconductor layer 133 is formed by, for example, epitaxial growth or the like.

接著,如同第8圖中所示一般,在絕緣層152之上面和開口MTa之底面以及側面處,成膜阻隔絕緣層143、電荷積蓄層142、絕緣層141以及非晶質矽膜130A。此工程,例如,係藉由CVD等之方法來進行。Next, as shown in FIG. 8, on the upper surface of the insulating layer 152 and the bottom and side surfaces of the opening MTa, the blocking insulating layer 143, the charge storage layer 142, the insulating layer 141 and the amorphous silicon film 130A are formed. This process is performed, for example, by a method such as CVD.

接著,如同第9圖中所示一般,將阻隔絕緣層143、電荷積蓄層142、絕緣層141以及非晶質矽膜130A之中之被設置在開口MTa之底面部處的部分去除,而使半導體層133露出。此工程,例如,係藉由RIE等來進行。Next, as shown in FIG. 9, a portion of the blocking insulating layer 143, the charge accumulating layer 142, the insulating layer 141, and the amorphous silicon film 130A provided at the bottom surface of the opening MTa is removed, so that the The semiconductor layer 133 is exposed. This process is performed by, for example, RIE or the like.

接著,如同第10圖中所示一般,在半導體層133之上面和非晶質矽膜130A之側面以及上面處,成膜非晶質矽膜。此工程,例如,係藉由CVD等之方法來進行。接著,進行熱處理等,來使非晶質矽膜130A之結晶構造改質,並形成多晶矽(Si)等之半導體層130B。Next, as shown in FIG. 10, an amorphous silicon film is formed on the upper surface of the semiconductor layer 133 and on the side and upper surfaces of the amorphous silicon film 130A. This process is performed, for example, by a method such as CVD. Next, a heat treatment or the like is performed to modify the crystal structure of the amorphous silicon film 130A, and to form a semiconductor layer 130B of polycrystalline silicon (Si) or the like.

接著,如同第11圖中所示一般,在開口MTa之內部形成碳膜200,之後,在碳膜200之上面,形成氧化膜等之硬遮罩HM,並在硬遮罩HM處形成開口AH。碳膜200之形成,例如,係藉由塗布型碳膜材料之旋轉塗布等來進行。硬遮罩HM之形成,例如,係藉由CVD等來進行。開口AH之形成,例如,係藉由光微影以及濕蝕刻等之方法來進行。Next, as shown in FIG. 11, a carbon film 200 is formed inside the opening MTa, and then a hard mask HM such as an oxide film is formed on the carbon film 200, and an opening AH is formed at the hard mask HM . The carbon film 200 is formed, for example, by spin coating or the like of a coating-type carbon film material. The formation of the hard mask HM is performed, for example, by CVD or the like. The openings AH are formed, for example, by methods such as photolithography and wet etching.

接著,如同第12圖中所示一般,將碳膜200中之被設置在與開口AH相對應之位置處之部分去除。此工程,例如,係藉由RIE等來進行。另外,在此工程中,半導體層130B之一部分、絕緣層141之一部分、電荷積蓄層142之一部分以及阻隔絕緣層143之一部分亦被去除,絕緣層152之一部分係露出。Next, as shown in FIG. 12, the portion of the carbon film 200 provided at the position corresponding to the opening AH is removed. This process is performed by, for example, RIE or the like. In addition, in this process, a part of the semiconductor layer 130B, a part of the insulating layer 141, a part of the charge storage layer 142 and a part of the blocking insulating layer 143 are also removed, and a part of the insulating layer 152 is exposed.

接著,如同第13圖中所示一般,將半導體層130B中之於開口AH處而露出的部分去除。此工程,例如,係藉由以RIE所致之等向性蝕刻等來進行。藉由此工程,半導體層130B之被設置在開口MTa內的部分,係於X方向上被作分斷,並形成在X方向上而並排的第1半導體層130a以及第2半導體層130b。Next, as shown in FIG. 13, the portion of the semiconductor layer 130B exposed at the opening AH is removed. This process is performed by, for example, isotropic etching by RIE or the like. Through this process, the portion of the semiconductor layer 130B provided in the opening MTa is divided in the X direction, and the first semiconductor layer 130a and the second semiconductor layer 130b are formed in the X direction.

接著,如同第14圖中所示一般,使絕緣層141中之於開口AH處而露出的露出部分以及並未於開口AH處而露出的一部分之非露出部分氧化。此工程,例如,係經由開口AH來導入氧化劑,並藉由氧化處理等來進行。另外,此氧化,係從絕緣層141中之於開口AH處而露出的露出部分起開始,並進而進行至並未於開口AH處而露出的非露出部分處。在此工程中而進行有氧化的區域,係成為低氮濃度區域(例如,參照第4圖所作了說明的第1區域141a_1、第2區域141a_2、第4區域141b_4以及第5區域141b_5)。又,在此工程中而並未進行有氧化的區域,係成為高氮濃度區域(例如,參照第4圖所作了說明的第3區域141a_3以及第6區域141b_6)。Next, as shown in FIG. 14, the exposed part of the insulating layer 141 exposed at the opening AH and the non-exposed part of the part not exposed at the opening AH are oxidized. This process is performed by, for example, introducing an oxidizing agent through the opening AH, and performing an oxidation treatment or the like. In addition, this oxidation starts from the exposed portion of the insulating layer 141 exposed at the opening AH, and proceeds to the non-exposed portion that is not exposed at the opening AH. A region where oxidation is performed in this process becomes a low nitrogen concentration region (for example, the first region 141a_1, the second region 141a_2, the fourth region 141b_4, and the fifth region 141b_5 described with reference to FIG. 4). Moreover, the area|region which did not perform oxidation in this process becomes a high nitrogen concentration area (for example, the 3rd area|region 141a_3 and the 6th area|region 141b_6 demonstrated with reference to FIG. 4).

接著,如同第15圖中所示一般,在將硬遮罩HM及碳膜200去除,並在開口MTa內部形成絕緣層150,而將開口部作填埋。硬遮罩HM之去除,例如,係藉由濕蝕刻等來進行。碳膜200之去除,例如,係藉由灰化等來進行。絕緣層150之形成,例如,係藉由CVD等來進行。Next, as shown in FIG. 15, the hard mask HM and the carbon film 200 are removed, the insulating layer 150 is formed inside the opening MTa, and the opening is filled. The removal of the hard mask HM is performed, for example, by wet etching or the like. The removal of the carbon film 200 is performed, for example, by ashing or the like. The insulating layer 150 is formed, for example, by CVD or the like.

接著,如同第16圖中所示一般,從第15圖中所示之構造之上面起,而將絕緣層150、第1半導體層130a以及第2半導體層130b、絕緣層141、電荷積蓄層142以及阻隔絕緣層143之一部分去除,之後,於構造之上面形成絕緣層153。此去除工程,例如,係藉由RIE等來進行。絕緣層153之形成,例如,係藉由CVD等來進行。Next, as shown in FIG. 16, from the upper surface of the structure shown in FIG. 15, the insulating layer 150, the first semiconductor layer 130a and the second semiconductor layer 130b, the insulating layer 141, and the charge storage layer 142 are and a portion of the blocking insulating layer 143 is removed, after which the insulating layer 153 is formed on the structure. This removal process is performed, for example, by RIE or the like. The insulating layer 153 is formed, for example, by CVD or the like.

接著,如同第17圖中所示一般,經由未圖示之開口,而將複數之犧牲層120A去除。此工程,例如,係藉由濕蝕刻等來進行。Next, as shown in FIG. 17, the plurality of sacrificial layers 120A are removed through openings not shown. This process is performed, for example, by wet etching or the like.

接著,如同第18圖中所示一般,經由未圖示之開口,而在半導體層133之側面處形成絕緣層135。此工程,例如,係藉由氧化處理等來進行。Next, as shown in FIG. 18, an insulating layer 135 is formed on the side surface of the semiconductor layer 133 through an opening not shown. This process is performed, for example, by oxidation treatment or the like.

接著,如同第19圖中所示一般,經由未圖示之開口,而於在Z方向上並排之絕緣層122之間,形成導電層120以及導電層121。此工程,例如,係藉由CVD以及濕蝕刻等來進行。Next, as shown in FIG. 19 , a conductive layer 120 and a conductive layer 121 are formed between the insulating layers 122 arranged in the Z direction through openings not shown. This process is performed by, for example, CVD and wet etching.

之後,將第1半導體層130a以及第2半導體層130b之上端去除,並在進行了去除的部分處形成第4半導體層130d,之後,形成鎢(W)等之位元線接點BLC、銅(Cu)等之位元線BL。藉由此,參照第2圖所作了說明一般之構成係被形成。After that, the upper ends of the first semiconductor layer 130a and the second semiconductor layer 130b are removed, and a fourth semiconductor layer 130d is formed on the removed portion. After that, bit line contacts BLC such as tungsten (W) and copper are formed. (Cu) etc. bit line BL. Thereby, the general configuration described with reference to FIG. 2 is formed.

[效果]    於第20圖中,對於比較例之半導體記憶裝置的構成作展示。比較例之半導體記憶裝置,係替代記憶體溝渠構造MT,而具備有記憶體溝渠構造MT’。記憶體溝渠構造MT’,係具備有被配設在X方向上之複數之記憶體單元構造MUS’以及記憶體單元間構造IMUS’。記憶體單元構造MUS’,係替代第1半導體層130a、第2半導體層130b、閘極絕緣層140之一部分以及絕緣層150之一部分,而具備有第1半導體層130a’、第2半導體層130b’、閘極絕緣層140’以及絕緣層150’。記憶體單元間構造IMUS’,係替代閘極絕緣層140之一部分以及絕緣層150之一部分,而具備有絕緣層151’。[Effect] In Fig. 20, the structure of the semiconductor memory device of the comparative example is shown. The semiconductor memory device of the comparative example has a memory trench structure MT' instead of the memory trench structure MT. The memory trench structure MT' includes a plurality of memory cell structures MUS' and an inter-memory cell structure IMUS' arranged in the X direction. The memory cell structure MUS' includes a first semiconductor layer 130a' and a second semiconductor layer 130b instead of the first semiconductor layer 130a, the second semiconductor layer 130b, a part of the gate insulating layer 140, and a part of the insulating layer 150 ', the gate insulating layer 140' and the insulating layer 150'. The inter-memory structure IMUS' is provided with an insulating layer 151' instead of a part of the gate insulating layer 140 and a part of the insulating layer 150.

閘極絕緣層140’,係具備有第1閘極絕緣層140a’和第2閘極絕緣層140b’。The gate insulating layer 140' includes a first gate insulating layer 140a' and a second gate insulating layer 140b'.

在此,第1實施形態之第1閘極絕緣層140a,係涵蓋複數之第1半導體層130a與第1導電層120a之間之複數之區域地,而於X方向上延伸。另一方面,比較例之第1閘極絕緣層140a’,係個別被設置於複數之第1半導體層130a’與第1導電層120a之間之複數之區域中,並隔著記憶體單元間構造IMUS’而相互分離。Here, the first gate insulating layer 140a of the first embodiment covers a plurality of regions between the plurality of first semiconductor layers 130a and the first conductive layer 120a, and extends in the X direction. On the other hand, the first gate insulating layers 140a' of the comparative example are individually disposed in plural regions between the plural first semiconductor layers 130a' and the first conductive layers 120a, and are separated by the memory cells. Construct IMUS' separate from each other.

又,第1實施形態之第2閘極絕緣層140b,係涵蓋複數之第2半導體層130b與第2導電層120b之間之複數之區域地,而於X方向上延伸。另一方面,比較例之第2閘極絕緣層140b’,係個別被設置於複數之第2半導體層130b’與第2導電層120b之間之複數之區域中,並隔著記憶體單元間構造IMUS’而相互分離。In addition, the second gate insulating layer 140b of the first embodiment covers a plurality of regions between the plurality of second semiconductor layers 130b and the second conductive layers 120b, and extends in the X direction. On the other hand, the second gate insulating layers 140b' of the comparative example are individually disposed in plural regions between the plural second semiconductor layers 130b' and the second conductive layers 120b, and are separated between the memory cells. Construct IMUS' separate from each other.

又,第1閘極絕緣層140a’以及第2閘極絕緣層140b’,係分別替代第1絕緣層141a以及第2絕緣層141b,而具備有第1絕緣層141a’以及第2絕緣層141b’。第1絕緣層141a’之在X方向上的寬幅X 141a’,係與第1半導體層130a’之在X方向上的寬幅X 130a’為同等程度。第2絕緣層141b’之在X方向上的寬幅X 141b’,係與第2半導體層130b’之在X方向上的寬幅X 130b’為同等程度。 In addition, the first gate insulating layer 140a' and the second gate insulating layer 140b' are provided with the first insulating layer 141a' and the second insulating layer 141b instead of the first insulating layer 141a and the second insulating layer 141b, respectively. '. The width X 141a' of the first insulating layer 141a' in the X direction is approximately the same as the width X 130a' of the first semiconductor layer 130a' in the X direction. The width X 141b' of the second insulating layer 141b' in the X direction is approximately the same as the width X 130b' of the second semiconductor layer 130b' in the X direction.

絕緣層150’,係個別被設置於在X方向上而並排之複數之記憶體單元構造MUS’處,並隔著記憶體單元間構造IMUS’而相互分離。The insulating layers 150' are individually provided at the plurality of memory cell structures MUS' that are arranged in the X direction, and are separated from each other by the inter-memory cell structure IMUS'.

絕緣層151’,係個別被設置於在X方向上而並排之複數之記憶體單元間構造IMUS’處,並隔著記憶體單元構造MUS’而相互分離。又,絕緣層151’之在Y方向上的寬幅Y 151’,係較記憶體單元構造MUS’之在Y方向上的寬幅Y MUS’而更大。 The insulating layers 151' are individually disposed at the plurality of memory cell structures IMUS' that are juxtaposed in the X direction, and are separated from each other by the memory cell structures MUS'. In addition, the width Y 151 ′ of the insulating layer 151 ′ in the Y direction is larger than the width Y MUS′ of the memory cell structure MUS′ in the Y direction.

在製造比較例之半導體記憶裝置時,例如,係在參照第10圖而作了說明之工程之後,於開口MTa內形成絕緣層150’。又,係於此構造之上面,形成被形成有開口AH之硬遮罩HM(第11圖)。又,係藉由使用有此硬遮罩HM之RIE等之手段,來在與開口AH相對應之部分處形成貫通孔,並將開口MTa內之半導體層130B、絕緣層141、電荷積蓄層142、阻隔絕緣層143以及絕緣層150’在X方向上作分斷。又,係在上述貫通孔內形成絕緣層151’。In manufacturing the semiconductor memory device of the comparative example, for example, after the process described with reference to FIG. 10, an insulating layer 150' is formed in the opening MTa. Furthermore, on the upper surface of this structure, a hard mask HM having openings AH formed thereon is formed (FIG. 11). Furthermore, through-holes are formed at the portions corresponding to the openings AH by means of RIE or the like using the hard mask HM, and the semiconductor layer 130B, the insulating layer 141 , and the charge storage layer 142 in the openings MTa are formed. , the blocking insulating layer 143 and the insulating layer 150' are divided in the X direction. In addition, an insulating layer 151' is formed in the through hole.

若依據此種構造,則係能夠在記憶體溝渠構造MT內形成電性相互獨立之2個的記憶體串MS,而能夠提供記憶容量為大之半導體記憶裝置。According to such a structure, two electrically independent memory strings MS can be formed in the memory trench structure MT, and a semiconductor memory device having a large memory capacity can be provided.

然而,在此種構造之製造時,於進行開口AH之圖案化時,係會有產生Y方向之對位偏移的情形。如同第20圖中所示一般,在產生有Y方向之對位偏移的情況時,例如,相對於第1半導體層130a’之在X方向上的寬幅X 130a’,第2半導體層130b’之在X方向上的寬幅X 130b’係變短,形成於記憶體溝渠構造MT之兩側面處之2個的記憶體串MS之特性係會相異,並成為導致記憶體特性有所參差的重要因素。 However, in the manufacture of such a structure, when the openings AH are patterned, there may be cases where the alignment shift in the Y direction occurs. As shown in FIG. 20, when there is a misalignment in the Y direction, for example, the second semiconductor layer 130b has a width X 130a' in the X direction relative to the first semiconductor layer 130a'. 'The width X 130b' in the X direction is shortened, and the characteristics of the two memory strings MS formed on the two sides of the memory trench structure MT will be different, which will lead to different memory characteristics. important factor of variance.

又,若是對於此種開口AH之相對於記憶體溝渠構造MT的Y方向之對位偏移之餘裕(margin)作考慮,則係並無法將相鄰接之記憶體溝渠構造MT的分離距離設計為短。故而,在比較例一般之構造中,記憶體構造之微細化、高積體化係為困難。Furthermore, if the margin of the alignment offset of the opening AH relative to the Y direction of the memory trench structure MT is considered, the separation distance of the adjacent memory trench structures MT cannot be designed. for short. Therefore, in the general structure of the comparative example, the miniaturization and high integration of the memory structure are difficult.

因此,在第1實施形態之半導體記憶裝置之製造時,係於參照第13圖而作了說明之工程中,並不將閘極絕緣層140在X方向上作分斷,而僅將半導體層130選擇性地分斷。在此種構造中,由於係並不需要對於相對於記憶體溝渠構造MT的Y方向之對位偏移之餘裕作考慮,因此,係能夠將在Y方向上而相鄰接之記憶體溝渠構造MT的分離距離設計為小,而能夠達成記憶體胞尺寸的微細化。Therefore, in the process of manufacturing the semiconductor memory device of the first embodiment, in the process described with reference to FIG. 13, the gate insulating layer 140 is not divided in the X direction, but only the semiconductor layer is divided 130 is selectively disconnected. In such a structure, it is not necessary to take into account the margin of the alignment shift in the Y direction with respect to the memory trench structure MT, so that the memory trench structures adjacent in the Y direction can be arranged The separation distance of the MT is designed to be small, so that the miniaturization of the memory cell size can be achieved.

又,在如同本實施形態一般之使第1半導體層130a以及第2半導體層130b朝向X方向而作了分斷之構造的情況中,若是對於第1導電層120a以及第2導電層120b施加閘極電壓,則高強度的電場會集中於第1半導體層130a以及第2半導體層130b之X方向兩端部處,而會有導致此些之兩端部成為所謂的寄生電晶體的情況。亦即是,係會有「對應於X方向兩端部之寄生電晶體之臨限值電壓」成為較「對應於其以外之部分的電晶體之臨限值電壓」而更低的情況。於此種情況,「對應於X方向兩端部之寄生電晶體」係會以較「對應於其以外之部分的電晶體」而更低的電壓來成為ON,起因於此,係會有導致「相對於記憶體胞MC之閘極電壓施加的ON特性成為2階段化」的問題。Also, in the case of a structure in which the first semiconductor layer 130a and the second semiconductor layer 130b are divided toward the X direction as in the present embodiment, if a gate is applied to the first conductive layer 120a and the second conductive layer 120b If the polar voltage is high, a high-intensity electric field will be concentrated at both ends of the first semiconductor layer 130a and the second semiconductor layer 130b in the X direction, and these ends may become so-called parasitic transistors. That is, the "threshold voltage of the parasitic transistor corresponding to both ends in the X direction" may be lower than the "threshold voltage of the transistor corresponding to other parts". In this case, the "parasitic transistor corresponding to both ends in the X direction" will be turned on at a lower voltage than the "transistor corresponding to the other part". "The ON characteristic with respect to the gate voltage application of the memory cell MC becomes two-stage".

因此,在本實施形態中,如同在第4圖中所示一般,係將在第1絕緣層141a以及第2絕緣層141b之與「第1半導體層130a以及第2半導體層130b之在X方向上的兩端部」之間的對向部分(包含第1區域141a_1、第2區域141a_2、第4區域141b_4以及第5區域141b_5之高氮濃度區域)中的氮濃度,形成為較在第1絕緣層141a以及第2絕緣層141b之與「第1半導體層130a以及第2半導體層130b之其他之部分」之間的對向部分(包含第3區域141a_3以及第6區域141b_6之低氮濃度區域)而更低。Therefore, in the present embodiment, as shown in FIG. 4, the position between the first insulating layer 141a and the second insulating layer 141b and the “first semiconductor layer 130a and the second semiconductor layer 130b in the X direction” The nitrogen concentration in the opposing portion (including the high nitrogen concentration region including the first region 141a_1, the second region 141a_2, the fourth region 141b_4, and the fifth region 141b_5) is formed to be higher than that of the first The opposing portion between the insulating layer 141a and the second insulating layer 141b and “the other parts of the first semiconductor layer 130a and the second semiconductor layer 130b” (including the low nitrogen concentration regions of the third region 141a_3 and the sixth region 141b_6 ) and lower.

低氮濃度區域之電子植入效率,係較高氮濃度區域之電子植入效率而更小。故而,若依據第1實施形態之半導體記憶裝置,則係能夠避免高強度之電場集中於第1半導體層130a以及第2半導體層130b之在X方向上之兩端部處的情形,而能夠對於寄生電晶體之動作作抑制。藉由此,來抑制記憶體胞MC之相對於電壓的2階段特性化,而能夠提供一種合適地動作之半導體記憶裝置。The electron implantation efficiency in the low nitrogen concentration region is smaller than the electron implantation efficiency in the higher nitrogen concentration region. Therefore, according to the semiconductor memory device of the first embodiment, it is possible to avoid a situation where a high-intensity electric field is concentrated at both ends of the first semiconductor layer 130a and the second semiconductor layer 130b in the X direction, and can Parasitic transistor action is suppressed. In this way, the two-step characterization of the memory cell MC with respect to the voltage is suppressed, and a semiconductor memory device that operates appropriately can be provided.

[第1實施形態之變形例]    在第21圖中,對於第1實施形態的構成之變形例作展示。第21圖,係為對於本變形例之半導體記憶裝置的一部分之構成作例示之示意性的平面圖。[Modification of the first embodiment] Fig. 21 shows a modification of the configuration of the first embodiment. FIG. 21 is a schematic plan view illustrating the configuration of a part of the semiconductor memory device of this modification.

本變形例之記憶體單元構造MUS以及記憶體單元間構造IMUS,基本上係與第1實施形態相同地而被構成。但是,本變形例之半導體記憶裝置,係替代第1電荷積蓄層142a以及第2電荷積蓄層142b,而具備有第1電荷積蓄層142a”以及第2電荷積蓄層142b”。The memory cell structure MUS and the inter-memory cell structure IMUS of the present modification are basically constructed in the same manner as in the first embodiment. However, the semiconductor memory device of this modification is provided with the first charge storage layer 142a" and the second charge storage layer 142b" instead of the first charge storage layer 142a and the second charge storage layer 142b.

第1電荷積蓄層142a”,係具備有與在X方向上而並排之複數之記憶體單元構造MUS相對應地而被作設置之複數之高氮濃度區域、和與在X方向上而並排之複數之記憶體單元間構造IMUS相對應地而被作設置之複數之低氮濃度區域。例如,在第21圖中,作為與在X方向上而相鄰之2個的記憶體單元間構造IMUS相對應之2個的低氮濃度區域,係例示有第7區域142a”_7和第8區域142a”_8。又,作為被設置於此些之間之高氮濃度區域,係例示有第9區域142a”_9。各高氮濃度區域之在X方向上的寬幅X 142a”_9,係較第1半導體層130a之在X方向上的寬幅X 130a而更小。又,各低氮濃度區域之在X方向上之端部,係與在X方向上而相鄰之2個的第1半導體層130a之於Y方向上之側面相對向。例如,在第21圖所例示之記憶體單元構造MUS中,第7區域142a”_7之於X方向上之端部,係與第1半導體層130a之於X方向上的其中一端部之在Y方向上的側面相對向。又,第8區域142a”_8之於X方向上之位置,係與第1半導體層130a之於X方向上的另外一端部之在Y方向上的側面相對向。在低氮濃度區域(例如,第7區域142a”_7以及第8區域142a”_8)中的氮之濃度,係較在高氮濃度區域(例如,第9區域142a”_9)中的氮之濃度而更低。 The first charge storage layer 142a" is provided with a plurality of high nitrogen concentration regions arranged corresponding to a plurality of memory cell structures MUS arranged in the X direction, and a plurality of high nitrogen concentration regions arranged in the X direction. Plural number of low nitrogen concentration regions are arranged in correspondence with the structure IMUS between the plurality of memory cells. For example, in FIG. 21, as the structure IMUS between two memory cells adjacent to the X direction The corresponding two low nitrogen concentration regions are exemplified by the seventh region 142a"_7 and the eighth region 142a"_8. The ninth region is exemplified as the high nitrogen concentration region provided between these regions. 142a"_9. The width X 142a"_9 of each high nitrogen concentration region in the X direction is smaller than the width X 130a of the first semiconductor layer 130a in the X direction. Furthermore, the width X 130a of each low nitrogen concentration region is smaller in the X direction The upper end faces the side surfaces in the Y direction of the two adjacent first semiconductor layers 130a in the X direction. For example, in the memory cell structure MUS illustrated in FIG. The end of the region 142a"_7 in the X direction is opposed to the side surface in the Y direction of one end of the first semiconductor layer 130a in the X direction. In addition, the position of the eighth region 142a"-8 in the X direction is opposite to the side surface in the Y direction of the other end of the first semiconductor layer 130a in the X direction. In the low nitrogen concentration region (for example, The nitrogen concentration in the seventh region 142a"_7 and the eighth region 142a"_8) is lower than that in the high nitrogen concentration region (eg, the ninth region 142a"_9).

低氮濃度區域(例如,第7區域142a”_7以及第8區域142a”_8),係亦可包含有相較於高氮濃度區域(例如,第9區域142a”_9)而氮含量為更低的氧氮化矽(SiON)。又,低氮濃度區域(例如,第7區域142a”_7以及第8區域142a”_8),係亦可包含有氧化矽(SiO 2)。 The low nitrogen concentration region (eg, the seventh region 142a"-7 and the eighth region 142a"-8) may also include a lower nitrogen content than the high nitrogen concentration region (eg, the ninth region 142a"-9) Silicon oxynitride (SiON). Also, the low nitrogen concentration regions (eg, the seventh region 142a"_7 and the eighth region 142a"_8) may also include silicon oxide (SiO 2 ).

第2電荷積蓄層142b”,係具備有與在X方向上而並排之複數之記憶體單元構造MUS相對應地而被作設置之複數之高氮濃度區域、和與在X方向上而並排之複數之記憶體單元間構造IMUS相對應地而被作設置之複數之低氮濃度區域。例如,在第21圖中,作為與在X方向上而相鄰之2個的記憶體單元間構造IMUS相對應之2個的低氮濃度區域,係例示有第10區域142b”_10和第11區域142b”_11。又,作為被設置於此些之間之高氮濃度區域,係例示有第12區域142b”_12。各高氮濃度區域之在X方向上的寬幅X 142b”_12,係較第2半導體層130b之在X方向上的寬幅X 130b而更小。又,各低氮濃度區域之在X方向上之端部,係與在X方向上而相鄰之2個的第2半導體層130b之於Y方向上之側面相對向。例如,在第21圖所例示之記憶體單元構造MUS中,第10區域142b”_10之於X方向上之端部,係與第2半導體層130b之於X方向上的其中一端部之在Y方向上的側面相對向。又,第11區域142b”_11之於X方向上之位置,係與第2半導體層130b之於X方向上的另外一端部之在Y方向上的側面相對向。在低氮濃度區域(例如,第10區域142b”_10以及第11區域142b”_11)中的氮之濃度,係較在高氮濃度區域(例如,第12區域142b”_12)中的氮之濃度而更低。 The second charge storage layer 142b" is provided with a plurality of high nitrogen concentration regions arranged in correspondence with a plurality of memory cell structures MUS arranged in the X direction, and a plurality of high nitrogen concentration regions arranged in the X direction. Plural number of low nitrogen concentration regions are arranged in correspondence with the structure IMUS between the plurality of memory cells. For example, in FIG. 21, as the structure IMUS between two memory cells adjacent to the X direction The corresponding two low nitrogen concentration regions are exemplified by the tenth region 142b"_10 and the eleventh region 142b"_11. The twelfth region is exemplified as the high nitrogen concentration region provided between these regions. 142b"_12. The width X 142b"_12 of each high nitrogen concentration region in the X direction is smaller than the width X 130b of the second semiconductor layer 130b in the X direction. Moreover, the width X 130b of each low nitrogen concentration region is smaller in the X direction The upper end faces the side surfaces in the Y direction of the two adjacent second semiconductor layers 130b in the X direction. For example, in the memory cell structure MUS illustrated in FIG. The end of the 10 region 142b"_10 in the X direction is opposed to the side surface in the Y direction of one end of the second semiconductor layer 130b in the X direction. In addition, the position of the 11th region 142b''-11 in the X direction is opposite to the side surface in the Y direction of the other end of the second semiconductor layer 130b in the X direction. In the low nitrogen concentration region (for example, The nitrogen concentration in the 10th region 142b"_10 and the 11th region 142b"_11) is lower than that in the high nitrogen concentration region (eg, the 12th region 142b"_12).

低氮濃度區域(例如,第10區域142b”_10以及第11區域142b”_11),係亦可包含有相較於高氮濃度區域(例如,第12區域142b”_12)而氮含量為更低的氧氮化矽(SiON)。又,低氮濃度區域(例如,第10區域142b”_10以及第11區域142b”_11),係亦可包含有氧化矽(SiO 2)。 The low nitrogen concentration region (eg, the 10th region 142b"_10 and the 11th region 142b"_11) may also include a lower nitrogen content than the high nitrogen concentration region (eg, the 12th region 142b"_12) Silicon oxynitride (SiON). Also, the low nitrogen concentration regions (eg, the 10th region 142b"_10 and the 11th region 142b"_11) may also contain silicon oxide (SiO 2 ).

[其他實施形態]    以上,係針對第1實施形態之半導體記憶裝置而作了例示。然而,以上之構成,係僅為例示,而可對於具體性之構成等適當作調整。[Other Embodiments] Above, the semiconductor memory device according to the first embodiment has been exemplified. However, the above configuration is merely an example, and the specific configuration and the like can be appropriately adjusted.

例如,在第1實施形態及其變形例中,係針對「在第4圖以及第21圖中所示之低氮濃度區域(第1區域141a_1、第2區域141a_2、第4區域141b_4以及第5區域141b_5)」為在參照第14圖所作了說明之工程中,藉由經由開口AH所進行的氧化處理來形成之例,而作了展示。然而,實行用以形成低氮濃度區域之氧化處理的時序,係可適當作調整。例如,係亦可將參照第14圖所作了說明的工程省略,並在較第14圖中所示之工程而更之後的工程中,進行用以形成低氮濃度區域之氧化處理。For example, in the first embodiment and its modification examples, "the low nitrogen concentration regions (the first region 141a_1, the second region 141a_2, the fourth region 141b_4, and the fifth region 141b_4 and the fifth The region 141b_5)" is shown as an example formed by oxidation treatment through the opening AH in the process described with reference to FIG. 14 . However, the timing of performing the oxidation treatment for forming the low nitrogen concentration region can be appropriately adjusted. For example, the process described with reference to FIG. 14 may be omitted, and an oxidation treatment for forming a low nitrogen concentration region may be performed in a process subsequent to the process shown in FIG. 14 .

又,例如,在第1實施形態及其變形例中,係針對「於參照第14圖所作了說明之工程中,藉由經由開口AH所進行之氧化處理,來形成低氮濃度區域(第1區域141a_1、第2區域141a_2、第4區域141b_4以及第5區域141b_5)」之例,而作了展示。然而,係亦可將低氮濃度區域藉由氧化處理以外之方法來形成。例如,係亦可在實行參照第13圖所作了說明的工程之後,藉由經由開口AH所進行之濕蝕刻等之方法,來將絕緣層141之一部分去除。又,係亦可藉由CVD等之方法,來在對應於低氮濃度區域(第1區域141a_1、第2區域141a_2、第4區域141b_4以及第5區域141b_5)之位置處,埋入氮濃度為較在高氮濃度區域(第3區域141a_3以及第6區域141b_6)中的氮濃度而更低的材料。Also, for example, in the first embodiment and its modification, in the process described with reference to FIG. 14, the low nitrogen concentration region is formed by the oxidation treatment through the opening AH (the first The example of the area 141a_1, the second area 141a_2, the fourth area 141b_4, and the fifth area 141b_5)” is shown. However, the low nitrogen concentration region may be formed by a method other than the oxidation treatment. For example, after performing the process described with reference to FIG. 13, a part of the insulating layer 141 may be removed by a method such as wet etching through the opening AH. In addition, the buried nitrogen concentration at the positions corresponding to the low nitrogen concentration regions (the first region 141a_1, the second region 141a_2, the fourth region 141b_4, and the fifth region 141b_5) may be A material with a lower nitrogen concentration than the high nitrogen concentration regions (the third region 141a_3 and the sixth region 141b_6).

[其他]    雖然是針對本發明之數種實施形態作了說明,但是,該些實施形態,係僅作為例子所提示者,而並非為對於發明之範圍作限定者。此些之新穎的實施形態,係可藉由其他之各種形態來實施,在不脫離發明之要旨的範圍內,係可進行各種之省略、置換、變更。此些之實施形態或其變形,係亦被包含於發明之範圍或要旨中,並且亦被包含在申請專利範圍中所記載的發明及其均等範圍內。[Others] Although several embodiments of the present invention have been described, these embodiments are merely presented as examples, and are not intended to limit the scope of the invention. These novel embodiments can be implemented in other various forms, and various omissions, substitutions, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are also included in the scope and gist of the invention, and are also included in the inventions described in the claims and their equivalents.

110:基板 120:導電層 120a:第1導電層 120b:第2導電層 130:半導體層 130a:第1半導體層 130b:第2半導體層 141:絕緣層 141a:第1絕緣層 141b:第2絕緣層 142:電荷積蓄層 142a:第1電荷積蓄層 142b:第2電荷積蓄層 143:阻隔絕緣層 150:絕緣層 160:配線層110: substrate 120: conductive layer 120a: first conductive layer 120b: second conductive layer 130: semiconductor layer 130a: first semiconductor layer 130b: second semiconductor layer 141: insulating layer 141a: first insulating layer 141b: second insulating layer layer 142: charge storage layer 142a: first charge storage layer 142b: second charge storage layer 143: barrier insulating layer 150: insulating layer 160: wiring layer

[第1圖]係為第1實施形態之半導體記憶裝置的示意性之等價電路圖。    [第2圖]係為該半導體記憶裝置之示意性的立體圖。    [第3圖](a)係為對應於第2圖之以A-A’線所示之部分的剖面之示意性之平面圖,(b)係為對應於(a)之以B-B’線所示之部分的剖面之示意性之剖面圖。    [第4圖]係為對應於第3圖(a)之記憶體單元構造MUS及其近旁的部分之示意性之擴大圖。    [第5圖]係為對於該半導體記憶裝置的製造方法作展示之示意性的平面圖以及剖面圖。    [第6圖]係為對於該製造方法作展示之示意性的平面圖以及剖面圖。    [第7圖]係為對於該製造方法作展示之示意性的平面圖以及剖面圖。    [第8圖]係為對於該製造方法作展示之示意性的平面圖以及剖面圖。    [第9圖]係為對於該製造方法作展示之示意性的平面圖以及剖面圖。    [第10圖]係為對於該製造方法作展示之示意性的平面圖以及剖面圖。    [第11圖]係為對於該製造方法作展示之示意性的平面圖以及剖面圖。    [第12圖]係為對於該製造方法作展示之示意性的平面圖以及剖面圖。    [第13圖]係為對於該製造方法作展示之示意性的平面圖以及剖面圖。    [第14圖]係為對於該製造方法作展示之示意性的平面圖以及剖面圖。    [第15圖]係為對於該製造方法作展示之示意性的平面圖以及剖面圖。    [第16圖]係為對於該製造方法作展示之示意性的平面圖以及剖面圖。    [第17圖]係為對於該製造方法作展示之示意性的平面圖以及剖面圖。    [第18圖]係為對於該製造方法作展示之示意性的平面圖以及剖面圖。    [第19圖]係為對於該製造方法作展示之示意性的平面圖以及剖面圖。    [第20圖]係為對於比較例之半導體記憶裝置的一部分之構成作展示之示意性的平面圖。    [第21圖]係為對於變形例之半導體記憶裝置的一部分之構成作展示之示意性的平面圖。[FIG. 1] is a schematic equivalent circuit diagram of the semiconductor memory device of the first embodiment. [Fig. 2] is a schematic perspective view of the semiconductor memory device. [FIG. 3] (a) is a schematic plan view corresponding to the cross section of the part indicated by the AA' line in FIG. 2, and (b) is a BB' corresponding to (a) A schematic sectional view of the section of the portion shown by the line. [FIG. 4] is a schematic enlarged view of the memory cell structure MUS and its vicinity corresponding to FIG. 3(a). [Fig. 5] is a schematic plan view and a cross-sectional view showing the manufacturing method of the semiconductor memory device. [Fig. 6] is a schematic plan view and a cross-sectional view showing the manufacturing method. [Fig. 7] is a schematic plan view and a cross-sectional view showing the manufacturing method. [Fig. 8] is a schematic plan view and a cross-sectional view showing the manufacturing method. [Fig. 9] is a schematic plan view and a cross-sectional view showing the manufacturing method. [Fig. 10] is a schematic plan view and a cross-sectional view showing the manufacturing method. [Fig. 11] is a schematic plan view and a cross-sectional view showing the manufacturing method. [Fig. 12] is a schematic plan view and a cross-sectional view showing the manufacturing method. [Fig. 13] is a schematic plan view and a cross-sectional view showing the manufacturing method. [Fig. 14] is a schematic plan view and a cross-sectional view showing the manufacturing method. [Fig. 15] is a schematic plan view and a cross-sectional view showing the manufacturing method. [Fig. 16] is a schematic plan view and a cross-sectional view showing the manufacturing method. [Fig. 17] is a schematic plan view and a cross-sectional view showing the manufacturing method. [Fig. 18] is a schematic plan view and a cross-sectional view showing the manufacturing method. [Fig. 19] is a schematic plan view and a cross-sectional view showing the manufacturing method. [FIG. 20] is a schematic plan view showing the structure of a part of the semiconductor memory device of the comparative example. [FIG. 21] is a schematic plan view showing the structure of a part of a semiconductor memory device of a modification.

120:導電層 120: Conductive layer

120a:第1導電層 120a: first conductive layer

120b:第2導電層 120b: second conductive layer

130a:第1半導體層 130a: first semiconductor layer

130b:第2半導體層 130b: second semiconductor layer

140a:第1閘極絕緣層 140a: 1st gate insulating layer

140b:第2閘極絕緣層 140b: 2nd gate insulating layer

141a:第1絕緣層 141a: 1st insulating layer

141a_1:第1區域 141a_1: Region 1

141a_2:第2區域 141a_2: Region 2

141a_3:第3區域 141a_3: Region 3

141b:第2絕緣層 141b: 2nd insulating layer

141b_4:第4區域 141b_4: Region 4

141b_5:第5區域 141b_5: Region 5

141b_6:第6區域 141b_6: Region 6

142a:第1電荷積蓄層 142a: first charge accumulation layer

142b:第2電荷積蓄層 142b: second charge accumulation layer

143a:第1阻隔絕緣層 143a: 1st barrier insulating layer

143b:第2阻隔絕緣層 143b: 2nd barrier insulating layer

150:絕緣層 150: Insulation layer

LS:層積體構造 LS: Laminated Body Structure

LSa:層積體構造 LSa: Laminated Structure

LSb:層積體構造 LSb: Laminated Body Structure

MT:記憶體溝渠構造 MT: Memory Trench Structure

IMUS:記憶體單元間構造 IMUS: Inter-Cell Structure

MUS:記憶體單元構造 MUS: Memory Cell Structure

Claims (10)

一種半導體記憶裝置,係具備有:    第1導電層以及第2導電層,係於第1方向上而並排;和    複數之第1半導體層,係在前述第1導電層以及前述第2導電層之間而與前述第1導電層相對向,並在與前述第1方向相交叉之第2方向上被並排地作設置;和    第1電荷積蓄層,係在前述第1方向上而被設置於前述複數之第1半導體層以及前述第1導電層之間,並涵蓋前述複數之第1半導體層與前述第1導電層之間之複數之區域地而於前述第2方向上延伸;和    第1絕緣層,係在前述第1方向上而被設置於前述複數之第1半導體層以及前述第1電荷積蓄層之間,    前述第1絕緣層,係具備有:    第1區域,係於前述第1方向上,與前述第1半導體層之在前述第2方向上的其中一端部相對向;和    第2區域,係於前述第1方向上,與前述第1半導體層之在前述第2方向上的另外一端部相對向;和    第3區域,係於前述第2方向上,被設置在前述第1區域以及前述第2區域之間,    在前述第1區域以及前述第2區域中之氮的濃度,係較在前述第3區域中之氮的濃度而更低。A semiconductor memory device is provided with: a first conductive layer and a second conductive layer, which are arranged side by side in a first direction; and a plurality of first semiconductor layers, which are located between the first conductive layer and the second conductive layer Opposed to the first conductive layer from time to time, and arranged side by side in a second direction intersecting with the first direction; and a first charge storage layer, which is arranged in the first direction on the aforementioned Between the plurality of first semiconductor layers and the first conductive layer, and covering the plurality of regions between the plurality of first semiconductor layers and the first conductive layer, it extends in the second direction; and the first insulation The layer is arranged between the plurality of first semiconductor layers and the first charge storage layer in the first direction, and the first insulating layer includes: a first region, which is in the first direction on one end of the first semiconductor layer in the second direction opposite; and the second region, in the first direction, and the other end of the first semiconductor layer in the second direction one end is opposite; and the third area is in the second direction, is arranged between the first area and the second area, and the nitrogen concentration in the first area and the second area is lower than the nitrogen concentration in the aforementioned third region. 如請求項1所記載之半導體記憶裝置,其中,    係具備有基板,    前述第1導電層,係在與前述基板之表面相交叉並且與前述第1方向以及前述第2方向相交叉之第3方向上,被作複數並排設置。The semiconductor memory device according to claim 1, wherein a substrate is provided, and the first conductive layer is formed in a third direction intersecting the surface of the substrate and intersecting the first direction and the second direction , are set as plurals side by side. 如請求項2所記載之半導體記憶裝置,其中,    係具備有基板,    前述第1半導體層,係在與前述基板之表面相交叉並且與前述第1方向以及前述第2方向相交叉之第3方向上延伸,並在前述第1方向上而與複數之前述第1導電層相對向。The semiconductor memory device according to claim 2, wherein a substrate is provided, and the first semiconductor layer is formed in a third direction intersecting the surface of the substrate and intersecting the first direction and the second direction extending upward and facing the plurality of first conductive layers in the first direction. 如請求項3所記載之半導體記憶裝置,其中,    前述第1絕緣層,係包含氧氮化矽(SiON)。The semiconductor memory device according to claim 3, wherein the first insulating layer includes silicon oxynitride (SiON). 如請求項4所記載之半導體記憶裝置,其中,    前述第1電荷積蓄層,係包含氮化矽(SiN)。The semiconductor memory device according to claim 4, wherein the first charge accumulation layer includes silicon nitride (SiN). 如請求項1~5中之任一項所記載之半導體記憶裝置,其中,係具備有:    複數之第2半導體層,係在前述複數之第1半導體層以及前述第2導電層之間而與前述第2導電層相對向,並在前述第2方向上被並排地作設置;和    第2電荷積蓄層,係在前述第1方向上而被設置於前述複數之第2半導體層以及前述第2導電層之間,並涵蓋前述複數之第2半導體層與前述第2導電層之間之複數之區域地而於前述第2方向上延伸;和    第2絕緣層,係在前述第1方向上而被設置於前述複數之第2半導體層以及前述第2電荷積蓄層之間,    前述第2絕緣層,係具備有:    第4區域,係於前述第1方向上,與前述第2半導體層之在前述第2方向上的其中一端部相對向;和    第5區域,係於前述第1方向上,與前述第2半導體層之在前述第2方向上的另外一端部相對向;和    第6區域,係於前述第2方向上,被設置在前述第4區域以及前述第5區域之間,    在前述第4區域以及前述第5區域中之氮的濃度,係較在前述第6區域中之氮的濃度而更低。The semiconductor memory device according to any one of Claims 1 to 5, further comprising: a plurality of second semiconductor layers between the plurality of first semiconductor layers and the second conductive layer and The second conductive layers are opposite to each other and are arranged side by side in the second direction; and the second charge accumulation layer is arranged on the plurality of second semiconductor layers and the second semiconductor layers in the first direction. between the conductive layers and extending in the second direction so as to cover the plurality of regions between the second semiconductor layers and the second conductive layers; and the second insulating layer, extending in the first direction The second insulating layer is provided between the plurality of second semiconductor layers and the second charge storage layer, and the second insulating layer includes: a fourth region, which is located in the first direction and is located between the second semiconductor layer and the second semiconductor layer. One of the ends in the second direction is opposite; and the fifth region is in the first direction and is opposite to the other end of the second semiconductor layer in the second direction; and the sixth region, It is arranged between the fourth region and the fifth region in the second direction, and the concentration of nitrogen in the fourth region and the fifth region is higher than that of the nitrogen in the sixth region. concentration and lower. 如請求項6所記載之半導體記憶裝置,其中,    係具備有基板,    前述第2導電層,係在與前述基板之表面相交叉並且與前述第1方向以及前述第2方向相交叉之第3方向上,被作複數並排設置。The semiconductor memory device according to claim 6, wherein: a substrate is provided, and the second conductive layer is formed in a third direction intersecting the surface of the substrate and intersecting the first direction and the second direction , are set as plurals side by side. 如請求項7所記載之半導體記憶裝置,其中,    係具備有基板,    前述第2半導體層,係在與前述基板之表面相交叉並且與前述第1方向以及前述第2方向相交叉之第3方向上延伸,並在前述第1方向上而與複數之前述第2導電層相對向。The semiconductor memory device according to claim 7, wherein a substrate is provided, and the second semiconductor layer is formed in a third direction intersecting the surface of the substrate and intersecting the first direction and the second direction extending upward and facing the plurality of second conductive layers in the first direction. 如請求項8所記載之半導體記憶裝置,其中,    前述第2絕緣層,係包含氧氮化矽(SiON)。The semiconductor memory device according to claim 8, wherein the second insulating layer includes silicon oxynitride (SiON). 如請求項9所記載之半導體記憶裝置,其中,    前述第2電荷積蓄層,係包含氮化矽(SiN)。The semiconductor memory device according to claim 9, wherein the second charge accumulation layer includes silicon nitride (SiN).
TW110125614A 2020-09-04 2021-07-13 semiconductor memory device TWI812974B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-149398 2020-09-04
JP2020149398A JP2022043897A (en) 2020-09-04 2020-09-04 Semiconductor storage device
US17/190,865 2021-03-03
US17/190,865 US11839077B2 (en) 2020-09-04 2021-03-03 Semiconductor storage device

Publications (2)

Publication Number Publication Date
TW202226557A true TW202226557A (en) 2022-07-01
TWI812974B TWI812974B (en) 2023-08-21

Family

ID=80393515

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110125614A TWI812974B (en) 2020-09-04 2021-07-13 semiconductor memory device

Country Status (2)

Country Link
CN (1) CN114141778A (en)
TW (1) TWI812974B (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7816211B2 (en) * 2007-01-26 2010-10-19 Freescale Semiconductor, Inc. Method of making a semiconductor device having high voltage transistors, non-volatile memory transistors, and logic transistors
EP3534408A1 (en) * 2012-03-27 2019-09-04 Cypress Semiconductor Corporation Sonos stack with split nitride memory layer
KR102159845B1 (en) * 2012-07-01 2020-09-25 롱지튜드 플래쉬 메모리 솔루션즈 리미티드 Sonos ono stack scaling
WO2015170220A1 (en) * 2014-05-09 2015-11-12 Semiconductor Energy Laboratory Co., Ltd. Memory device and electronic device
US10587033B2 (en) * 2016-03-07 2020-03-10 Plum Laboratories Llc Data communications case
TWI653745B (en) * 2016-09-13 2019-03-11 日商東芝記憶體股份有限公司 Semiconductor device and method of manufacturing same
US10446681B2 (en) * 2017-07-10 2019-10-15 Micron Technology, Inc. NAND memory arrays, and devices comprising semiconductor channel material and nitrogen
JP2019041054A (en) * 2017-08-28 2019-03-14 東芝メモリ株式会社 Semiconductor device
JP2019102530A (en) * 2017-11-29 2019-06-24 東芝メモリ株式会社 Semiconductor device and method for manufacturing the same
JP2019102684A (en) * 2017-12-05 2019-06-24 東芝メモリ株式会社 Semiconductor device and manufacturing method of the same

Also Published As

Publication number Publication date
TWI812974B (en) 2023-08-21
CN114141778A (en) 2022-03-04

Similar Documents

Publication Publication Date Title
US11574926B2 (en) Non-volatile semiconductor storage device and method of manufacturing the same
US9041093B2 (en) Semiconductor memory device and manufacturing method thereof
KR100921287B1 (en) Nonvolatile semiconductor memory and manufacturing method thereof
KR100781429B1 (en) Semiconductor device and manufacturing method thereof
JP2009164485A (en) Nonvolatile semiconductor storage device
JP2010182751A (en) Nonvolatile semiconductor storage and method of manufacturing the same
US20080315280A1 (en) Semiconductor memory device having memory cell unit and manufacturing method thereof
JP2020047754A (en) Semiconductor storage device
US7709881B2 (en) Semiconductor integrated circuit device
US11101279B2 (en) Semiconductor memory device
TWI748595B (en) Semiconductor memory device
TWI740178B (en) Semiconductor device
US20060270186A1 (en) Semiconductor device having plural bird's beaks of different sizes and manufacturing method thereof
JP2012199313A (en) Nonvolatile semiconductor memory device
TW202226557A (en) Semiconductor storage device
CN114267679A (en) Semiconductor memory device with a plurality of memory cells
JP2006054243A (en) Semiconductor storage device and its manufacturing method
US11839077B2 (en) Semiconductor storage device
US8704374B2 (en) Semiconductor device and method for manufacturing the same
US7956424B2 (en) Mirror bit memory device applying a gate voltage alternately to gate
US20110186922A1 (en) Nonvolatile semiconductor memory device and method of manufacturing the same
US20230065666A1 (en) Semiconductor memory device
JP2006049772A (en) Semiconductor memory device and manufacturing method therefor
JP2008112898A (en) Nonvolatile semiconductor memory, and manufacturing method thereof