TW202225762A - 光學成像鏡頭 - Google Patents

光學成像鏡頭 Download PDF

Info

Publication number
TW202225762A
TW202225762A TW110100030A TW110100030A TW202225762A TW 202225762 A TW202225762 A TW 202225762A TW 110100030 A TW110100030 A TW 110100030A TW 110100030 A TW110100030 A TW 110100030A TW 202225762 A TW202225762 A TW 202225762A
Authority
TW
Taiwan
Prior art keywords
lens
optical axis
optical imaging
optical
object side
Prior art date
Application number
TW110100030A
Other languages
English (en)
Other versions
TWI758048B (zh
Inventor
林茂宗
張嘉元
Original Assignee
大陸商玉晶光電(廈門)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商玉晶光電(廈門)有限公司 filed Critical 大陸商玉晶光電(廈門)有限公司
Application granted granted Critical
Publication of TWI758048B publication Critical patent/TWI758048B/zh
Publication of TW202225762A publication Critical patent/TW202225762A/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一種光學成像鏡頭,從物側至像側沿光軸依序包括第一透鏡、第二透鏡、第三透鏡、第四透鏡、第五透鏡、第六透鏡、第七透鏡、第八透鏡以及第九透鏡,且第一透鏡至第九透鏡各自包括朝向物側且使成像光線通過的物側面及朝向像側且使成像光線通過的像側面。第二透鏡具有負屈光率。第五透鏡具有負屈光率且第五透鏡的物側面的圓周區域為凹面。第六透鏡的物側面的光軸區域為凹面。第七透鏡具有負屈光率,其中光學成像鏡頭的透鏡只有上述九片透鏡,並且滿足條件式ImgH/Fno≧2.700毫米。

Description

光學成像鏡頭
本發明是有關於一種光學元件,且特別是一種光學成像鏡頭。
近年來,光學成像鏡頭不斷演進。除了要求鏡頭輕薄短小,改善鏡頭的像差及色差等成像品質也越來越重要。然而,為了因應需求而增加光學透鏡的片數會使得距離成像面最遠的第一透鏡的物側面與成像面在光軸上的距離增大,不利於手機及數位相機的薄型化。
有鑑於此,提供一個輕薄短小且成像品質良好的光學成像鏡頭一直都是光學鏡頭設計的發展目標。除此之外,小的光圈值可增加通光量,大的像高則可適度增加像素尺寸(pixel size)而有利於夜拍,因此也漸漸成為市場趨勢。如何在追求鏡頭輕薄短小的前提下設計出具有大的像高且小的光圈值的光學成像鏡頭也是研發的重點。
本發明提供一種光學成像鏡頭,其鏡頭系統長度短、具備大像高、小光圈值且具備良好的成像品質。
根據本發明一實施例,提供一種光學成像鏡頭,從物側至像側沿光軸依序包括第一透鏡、第二透鏡、第三透鏡、第四透鏡、第五透鏡、第六透鏡、第七透鏡、第八透鏡以及第九透鏡,且第一透鏡至第九透鏡各自包括朝向物側且使成像光線通過的物側面及朝向像側且使成像光線通過的像側面。第二透鏡具有負屈光率。第五透鏡具有負屈光率且第五透鏡的物側面的圓周區域為凹面。第六透鏡的物側面的光軸區域為凹面。第七透鏡具有負屈光率,其中光學成像鏡頭的透鏡只有上述九片透鏡,並且滿足條件式ImgH/Fno≧2.700毫米,其中ImgH為光學成像鏡頭的像高,且Fno為光學成像鏡頭的光圈值。
根據本發明另一實施例,提供一種光學成像鏡頭,從物側至像側沿光軸依序包括第一透鏡、第二透鏡、第三透鏡、第四透鏡、第五透鏡、第六透鏡、第七透鏡、第八透鏡以及第九透鏡,且第一透鏡至第九透鏡各自包括朝向物側且使成像光線通過的物側面及朝向像側且使成像光線通過的像側面。第二透鏡具有負屈光率。第五透鏡的物側面的圓周區域為凹面。第六透鏡具有正屈光率且第六透鏡的物側面的圓周區域為凹面。第七透鏡的物側面的光軸區域為凸面,其中光學成像鏡頭的透鏡只有上述九片透鏡,並且滿足條件式ImgH/Fno≧2.700毫米,其中ImgH為光學成像鏡頭的像高,且Fno為光學成像鏡頭的光圈值。
根據本發明再一實施例,提供一種光學成像鏡頭,從物側至像側沿光軸依序包括第一透鏡、第二透鏡、第三透鏡、第四透鏡、第五透鏡、第六透鏡、第七透鏡、第八透鏡以及第九透鏡,且第一透鏡至第九透鏡各自包括朝向物側且使成像光線通過的物側面及朝向像側且使成像光線通過的像側面。第二透鏡具有負屈光率。第四透鏡的像側面的圓周區域為凹面。第七透鏡具有負屈光率。第九透鏡的像側面的光軸區域為凹面,其中光學成像鏡頭的透鏡只有上述九片透鏡,並且滿足條件式ImgH/Fno≧2.700毫米,其中ImgH為光學成像鏡頭的像高,且Fno為光學成像鏡頭的光圈值。
基於上述,本發明的實施例的光學成像鏡頭的有益效果在於:本發明的實施例的光學成像鏡頭藉由配置上述透鏡及其屈光率,設計上述透鏡的面形,以及使得光學成像鏡頭滿足上述的條件式,使得本發明的實施例的光學成像鏡頭系統長度短、具備大像高、小光圈值且具備良好的成像品質。
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
本說明書和申請專利範圍中使用的用語「光軸區域」、「圓周區域」、「凹面」和「凸面」應基於本說明書中列出的定義來解釋。
本說明書之光學系統包含至少一透鏡,接收入射光學系統之平行於光軸至相對光軸呈半視角(HFOV)角度內的成像光線。成像光線通過光學系統於成像面上成像。所言之「一透鏡具有正屈光率(或負屈光率)」,是指所述透鏡以高斯光學理論計算出來之近軸屈光率為正(或為負)。所言之「透鏡之物側面(或像側面)」定義為成像光線通過透鏡表面的特定範圍。成像光線包括至少兩類光線:主光線(chief ray)Lc及邊緣光線(marginal ray)Lm(如圖1所示)。透鏡之物側面(或像側面)可依不同位置區分為不同區域,包含光軸區域、圓周區域、或在部分實施例中的一個或多個中繼區域,該些區域的說明將於下方詳細闡述。
圖1為透鏡100的徑向剖視圖。定義透鏡100表面上的二參考點:中心點及轉換點。透鏡表面的中心點為該表面與光軸I的一交點。如圖1所例示,第一中心點CP1位於透鏡100的物側面110,第二中心點CP2位於透鏡100的像側面120。轉換點是位於透鏡表面上的一點,且該點的切線與光軸I垂直。定義透鏡表面之光學邊界OB為通過該透鏡表面徑向最外側的邊緣光線Lm與該透鏡表面相交的一點。所有的轉換點皆位於光軸I與透鏡表面之光學邊界OB之間。除此之外,透鏡100表面可能不具有轉換點或具有至少一轉換點,若單一透鏡表面有複數個轉換點,則該些轉換點由徑向向外的方向依序自第一轉換點開始命名。例如,第一轉換點TP1(最靠近光軸I)、第二轉換點TP2(如圖4所示)及第N轉換點(距離光軸I最遠)。
當透鏡表面具有至少一轉換點,定義從中心點至第一轉換點TP1的範圍為光軸區域,其中,該光軸區域包含中心點。定義距離光軸I最遠的轉換點(第N轉換點)徑向向外至光學邊界OB的區域為圓周區域。在部分實施例中,可另包含介於光軸區域與圓周區域之間的中繼區域,中繼區域的數量取決於轉換點的數量。當透鏡表面不具有轉換點,定義自光軸I起算至透鏡表面光學邊界OB之間距離的0~50%為光軸區域,自光軸I起算至透鏡表面光學邊界OB之間距離的50~100%為圓周區域。
當平行光軸I之光線通過一區域後,若光線朝光軸I偏折且與光軸I的交點位在透鏡像側A2,則該區域為凸面。當平行光軸I之光線通過一區域後,若光線的延伸線與光軸I的交點位在透鏡物側A1,則該區域為凹面。
除此之外,參見圖1,透鏡100還可包含一由光學邊界OB徑向向外延伸的組裝部130。組裝部130一般來說用以供該透鏡100組裝於光學系統之一相對應元件(圖未示)。成像光線並不會到達該組裝部130。組裝部130之結構與形狀僅為說明本發明之示例,不以此限制本發明的範圍。下列討論之透鏡的組裝部130可能會在圖式中被部分或全部省略。
參見圖2,定義中心點CP與第一轉換點TP1之間為光軸區域Z1。定義第一轉換點TP1與透鏡表面的光學邊界OB之間為圓周區域Z2。如圖2所示,平行光線211在通過光軸區域Z1後與光軸I在透鏡200的像側A2相交,即平行光線211通過光軸區域Z1的焦點位於透鏡200像側A2的R點。由於光線與光軸I相交於透鏡200像側A2,故光軸區域Z1為凸面。反之,平行光線212在通過圓周區域Z2後發散。如圖2所示,平行光線212通過圓周區域Z2後的延伸線EL與光軸I在透鏡200的物側A1相交,即平行光線212通過圓周區域Z2的焦點位於透鏡200物側A1的M點。由於光線的延伸線EL與光軸I相交於透鏡200物側A1,故圓周區域Z2為凹面。於圖2所示的透鏡200中,第一轉換點TP1是光軸區域與圓周區域的分界,即第一轉換點TP1為凸面轉凹面的分界點。
另一方面,光軸區域的面形凹凸判斷還可依該領域中通常知識者的判斷方式,即藉由近軸的曲率半徑(簡寫為R值)的正負號來判斷透鏡之光軸區域面形的凹凸。R值可常見被使用於光學設計軟體中,例如Zemax或CodeV。R值亦常見於光學設計軟體的透鏡資料表(lens data sheet)中。以物側面來說,當R值為正時,判定為物側面的光軸區域為凸面;當R值為負時,判定物側面的光軸區域為凹面。反之,以像側面來說,當R值為正時,判定像側面的光軸區域為凹面;當R值為負時,判定像側面的光軸區域為凸面。此方法判定的結果與前述藉由光線/光線延伸線與光軸的交點判定方式的結果一致,光線/光線延伸線與光軸交點的判定方式即為以一平行光軸之光線的焦點位於透鏡之物側或像側來判斷面形凹凸。本說明書所描述之「一區域為凸面(或凹面)」、「一區域為凸(或凹)」或「一凸面(或凹面)區域」可被替換使用。
圖3至圖5提供了在各個情況下判斷透鏡區域的面形及區域分界的範例,包含前述之光軸區域、圓周區域及中繼區域。
圖3為透鏡300的徑向剖視圖。參見圖3,透鏡300的像側面320在光學邊界OB內僅存在一個轉換點TP1。透鏡300的像側面320的光軸區域Z1及圓周區域Z2如圖3所示。此像側面320的R值為正(即R>0),因此,光軸區域Z1為凹面。
一般來說,以轉換點為界的各個區域面形會與相鄰的區域面形相反,因此,可用轉換點來界定面形的轉變,即自轉換點由凹面轉凸面或由凸面轉凹面。於圖3中,由於光軸區域Z1為凹面,面形於轉換點TP1轉變,故圓周區域Z2為凸面。
圖4為透鏡400的徑向剖視圖。參見圖4,透鏡400的物側面410存在一第一轉換點TP1及一第二轉換點TP2。定義光軸I與第一轉換點TP1之間為物側面410的光軸區域Z1。此物側面410的R值為正(即R>0),因此,光軸區域Z1為凸面。
定義第二轉換點TP2與透鏡400的物側面410的光學邊界OB之間為圓周區域Z2,該物側面410的該圓周區域Z2亦為凸面。除此之外,定義第一轉換點TP1與第二轉換點TP2之間為中繼區域Z3,該物側面410的該中繼區域Z3為凹面。再次參見圖4,物側面410由光軸I徑向向外依序包含光軸I與第一轉換點TP1之間的光軸區域Z1、位於第一轉換點TP1與第二轉換點TP2之間的中繼區域Z3,及第二轉換點TP2與透鏡400的物側面410的光學邊界OB之間的圓周區域Z2。由於光軸區域Z1為凸面,面形自第一轉換點TP1轉變為凹,故中繼區域Z3為凹面,又面形自第二轉換點TP2再轉變為凸,故圓周區域Z2為凸面。
圖5為透鏡500的徑向剖視圖。透鏡500的物側面510無轉換點。對於無轉換點的透鏡表面,例如透鏡500的物側面510,定義自光軸I起算至透鏡表面光學邊界OB之間距離的0~50%為光軸區域,自光軸I起算至透鏡表面光學邊界OB之間距離的50~100%為圓周區域。參見圖5所示之透鏡500,定義光軸I至自光軸I起算到透鏡500表面光學邊界OB之間距離的50%為物側面510的光軸區域Z1。此物側面510的R值為正(即R>0),因此,光軸區域Z1為凸面。由於透鏡500的物側面510無轉換點,因此物側面510的圓周區域Z2亦為凸面。透鏡500更可具有組裝部(圖未示)自圓周區域Z2徑向向外延伸。
圖6為本發明之第一實施例之光學成像鏡頭的示意圖,而圖7A至圖7D為第一實施例之光學成像鏡頭的縱向球差與各項像差圖。請先參照圖6,本發明的第一實施例之光學成像鏡頭10從物側A1至像側A2沿光學成像鏡頭10的一光軸I依序包括一光圈0、一第一透鏡1、一第二透鏡2、一第三透鏡3、一第四透鏡4、一第五透鏡5、一第六透鏡6、一第七透鏡7、一第八透鏡8、一第九透鏡9、及一濾光片11。當由一待拍攝物所發出的光線進入光學成像鏡頭10,並依序經由光圈0、第一透鏡1、第二透鏡2、第三透鏡3、第四透鏡4、第五透鏡5、第六透鏡6、第七透鏡7、第八透鏡8、第九透鏡9及濾光片11之後,會在一成像面99 (image plane)形成一影像。濾光片11例如為紅外線截止濾光片(infrared cut-off filter),其可以讓具有適當波長的光線(例如紅外線或可見光)通過,而濾除想要濾除的紅外線波段。濾光片11設置於第九透鏡9與成像面99之間。補充說明的是,物側A1是朝向待拍攝物的一側,而像側A2是朝向成像面99的一側。
在本實施例中,光學成像鏡頭10的第一透鏡1、第二透鏡2、第三透鏡3、第四透鏡4、第五透鏡5、第六透鏡6、第七透鏡7、第八透鏡8、第九透鏡9及濾光片11都各自具有一朝向物側A1且使成像光線通過之物側面15、25、35、45、55、65、75、85、95、105及一朝向像側A2且使成像光線通過之像側面16、26、36、46、56、66、76、86、96、106。在本實施例中,光圈0設置於物側A1與第一透鏡1之間。
第一透鏡1具有正屈光率(refracting power)。第一透鏡1的物側面15的光軸區域151為凸面,且其圓周區域152為凸面。第一透鏡1的像側面16的光軸區域161為凹面,且其圓周區域162為凹面。在本實施例中,第一透鏡1的物側面15與像側面16皆為非球面(aspheric surface)。
第二透鏡2具有負屈光率。第二透鏡2的物側面25的光軸區域251為凸面,且其圓周區域252為凸面。第二透鏡2的像側面26的光軸區域261為凹面,且其圓周區域262為凹面。在本實施例中,第二透鏡2的物側面25與像側面26皆為非球面。
第三透鏡3具有負屈光率。第三透鏡3的物側面35的光軸區域351為凸面,且其圓周區域352為凹面。第三透鏡3的像側面36的光軸區域361為凹面,且其圓周區域362為凸面。在本實施例中,第三透鏡3的物側面35與像側面36皆為非球面。
第四透鏡4具有正屈光率。第四透鏡4的物側面45的光軸區域451為凸面,且其圓周區域452為凸面。第四透鏡4的像側面46的光軸區域461為凸面,且其圓周區域462為凹面。在本實施例中,第四透鏡4的物側面45與像側面46皆為非球面。
第五透鏡5具有負屈光率。第五透鏡5的物側面55的光軸區域551為凹面,且其圓周區域552為凹面。第五透鏡5的像側面56的光軸區域561為凸面,且其圓周區域562為凸面。在本實施例中,第五透鏡5的物側面55與像側面56皆為非球面。
第六透鏡6具有正屈光率。第六透鏡6的物側面65的光軸區域651為凹面,且其圓周區域652為凹面。第六透鏡6的像側面66的光軸區域661為凸面,且其圓周區域662為凸面。在本實施例中,第六透鏡6的物側面65與像側面66皆為非球面。
第七透鏡7具有負屈光率。第七透鏡7的物側面75的光軸區域751為凸面,且其圓周區域752為凹面。第七透鏡7的像側面76的光軸區域761為凹面,且其圓周區域762為凸面。在本實施例中,第七透鏡7的物側面75與像側面76皆為非球面。
第八透鏡8具有正屈光率。第八透鏡8的物側面85的光軸區域851為凸面,且其圓周區域852為凹面。第八透鏡8的像側面86的光軸區域861為凹面,且其圓周區域862為凸面。在本實施例中,第八透鏡8的物側面85與像側面86皆為非球面。
第九透鏡9具有負屈光率。第九透鏡9的物側面95的光軸區域951為凹面,且其圓周區域952為凹面。第九透鏡9的像側面96的光軸區域961為凹面,且其圓周區域962為凸面。在本實施例中,第九透鏡9的物側面95與像側面96皆為非球面。
第一實施例的其他詳細光學數據如圖8所示,且第一實施例的光學成像鏡頭10的有效焦距(Effective Focal Length, EFL)為6.466毫米(millimeter, mm),半視角(half field of view, HFOV)為32.912°,系統長度為8.394毫米,光圈值(F-number, Fno)為1.600,像高為4.320毫米,其中系統長度是指由第一透鏡1的物側面15到成像面99在光軸I上的距離。
此外,在本實施例中,第一透鏡1、第二透鏡2、第三透鏡3、第四透鏡4、第五透鏡5、第六透鏡6、第七透鏡7、第八透鏡8、第九透鏡9的物側面15、25、35、45、55、65、75、85、95及像側面16、26、36、46、56、66、76、86、96共計十八個面均是非球面(aspheric surface),而這些非球面是依下列公式定義:
Figure 02_image001
...(1) Y:非球面曲線上的點與光軸的距離; Z:非球面深度,即非球面上距離光軸為Y的點,與相切於非球面光軸上頂點之切面,兩者間的垂直距離; R:透鏡表面之曲率半徑; K:圓錐係數; a 2i:第2i階非球面係數。
第一透鏡1的物側面15到第九透鏡9的像側面96在公式(1)中的各項非球面係數如圖9所示。其中,圖9中欄位編號15表示其為第一透鏡1的物側面15的非球面係數,其它欄位依此類推。在本實施例中,第一透鏡1的物側面15到第九透鏡9的像側面96的第2階非球面係數a 2皆為零。另外,第一實施例之光學成像鏡頭10中各重要參數間的關係如圖46以及圖47所示,其中, EFL為光學成像鏡頭10的有效焦距(effective focal length, EFL); Fno為光學成像鏡頭10的光圈值; ImgH為光學成像鏡頭10的像高; T1為第一透鏡1在光軸I上的厚度,單位為毫米(mm); T2為第二透鏡2在光軸I上的厚度,單位為毫米(mm); T3為第三透鏡3在光軸I上的厚度,單位為毫米(mm); T4為第四透鏡4在光軸I上的厚度,單位為毫米(mm); T5為第五透鏡5在光軸I上的厚度,單位為毫米(mm); T6為第六透鏡6在光軸I上的厚度,單位為毫米(mm); T7為第七透鏡7在光軸I上的厚度,單位為毫米(mm); T8為第八透鏡8在光軸I上的厚度,單位為毫米(mm); T9為第九透鏡9在光軸I上的厚度,單位為毫米(mm); G12為第一透鏡1的像側面16至第二透鏡2的物側面25在光軸I上的距離,也就是第一透鏡1與第二透鏡2在光軸I上的空氣間隙,單位為毫米(mm); G23為第二透鏡2的像側面26至第三透鏡3的物側面35在光軸I上的距離,也就是第二透鏡2與第三透鏡3在光軸I上的空氣間隙,單位為毫米(mm); G34為第三透鏡3的像側面36至第四透鏡4的物側面45在光軸I上的距離,也就是第三透鏡3與第四透鏡4在光軸I上的空氣間隙,單位為毫米(mm); G45為第四透鏡4的像側面46至第五透鏡5的物側面55在光軸I上的距離,也就是第四透鏡4與第五透鏡5在光軸I上的空氣間隙,單位為毫米(mm); G56為第五透鏡5的像側面56至第六透鏡6的物側面65在光軸I上的距離,也就是第五透鏡5與第六透鏡6在光軸I上的空氣間隙,單位為毫米(mm); G67為第六透鏡6的像側面66至第七透鏡7的物側面75在光軸I上的距離,也就是第六透鏡6與第七透鏡7在光軸I上的空氣間隙,單位為毫米(mm); G78為第七透鏡7的像側面76至第八透鏡8的物側面85在光軸I上的距離,也就是第七透鏡7與第八透鏡8在光軸I上的空氣間隙,單位為毫米(mm); G89為第八透鏡8的像側面86至第九透鏡9的物側面95在光軸I上的距離,也就是第八透鏡8與第九透鏡9在光軸I上的空氣間隙,單位為毫米(mm); G9F為第九透鏡9與濾光片11在光軸I上的空氣間隙,單位為毫米(mm); TF為濾光片11在光軸I上的厚度,單位為毫米(mm); GFP為濾光片11與成像面99在光軸I上的空氣間隙,單位為毫米(mm); V1為第一透鏡1的阿貝數; V2為第二透鏡2的阿貝數; V3為第三透鏡3的阿貝數; V4為第四透鏡4的阿貝數; V5為第五透鏡5的阿貝數; V6為第六透鏡6的阿貝數; V7為第七透鏡7的阿貝數; V8為第八透鏡8的阿貝數; V9為第九透鏡9的阿貝數; ALT為第一透鏡1至第九透鏡9在光軸I上的九個透鏡厚度的總和,即T1、T2、T3、T4、T5、T6、T7、T8、T9之和,單位為毫米(mm); AAG為第一透鏡1至第九透鏡9在光軸I上的八個空氣間隙的總和,即G12、G23、G34、G45、G56、G67、G78、G89之和,單位為毫米(mm); TTL為第一透鏡1的物側面15到成像面99在光軸I上的距離,單位為毫米(mm); TL為第一透鏡1的物側面15到第九透鏡9的像側面96在光軸I上的距離,單位為毫米(mm); BFL為第九透鏡9的像側面96到成像面99在光軸I上的距離,單位為毫米(mm)。
再配合參閱圖7A至圖7D,圖7A說明第一實施例的縱向球差(Longitudinal Spherical Aberration),圖7B與圖7C的圖式則分別說明第一實施例當其波長為470 nm(nanometer)、555 nm及650 nm時在成像面99上有關弧矢(Sagittal)方向的場曲(Field Curvature)像差及子午(Tangential)方向的場曲像差,圖7D的圖式則說明第一實施例當其波長為470 nm、555 nm及650 nm時在成像面99上的畸變像差(Distortion Aberration)。在本第一實施例的縱向球差圖式圖7A中,由每一種代表波長的曲線的偏斜幅度可看出,不同高度的離軸光線的成像點偏差控制在±27微米(µm)的範圍內,故本第一實施例確實明顯改善相同波長的球差。此外,三種代表波長彼此間的距離也相當接近,代表不同波長光線的成像位置已相當集中,因而使色像差也獲得明顯改善。
在圖7B與圖7C的二個場曲像差圖式中,三種代表波長在整個視場範圍內的場曲像差落在±70微米內,說明本第一實施例的光學系統能有效消除像差。而圖7D的畸變像差圖式則顯示本第一實施例的畸變像差維持在±3%的範圍內,說明本第一實施例的畸變像差具備光學系統的成像品質要求,據此說明本第一實施例相較於現有光學成像鏡頭,在系統長度為8.394毫米、光圈值為1.600且像高為4.320毫米的條件下,仍能提供良好的成像品質。
圖10為本發明的第二實施例的光學成像鏡頭的示意圖,而圖11A至圖11D為第二實施例之光學成像鏡頭的縱向球差與各項像差圖。請先參照圖10,本發明光學成像鏡頭10的一第二實施例,其與第一實施例大致相似,而兩者的差異如下所述:各光學數據、非球面係數及這些透鏡1、2、3、4、5、6、7、8及9間的參數或多或少有些不同。此外,在第二實施例中,第三透鏡3的物側面35的圓周區域352為凸面,其像側面36的圓周區域362為凹面。第四透鏡4的像側面46的光軸區域461為凹面。第五透鏡5的物側面55的光軸區域551為凸面,其像側面56的光軸區域561為凹面。在此需注意的是,為了清楚地顯示圖面,圖10中省略與第一實施例相似的光軸區域與圓周區域的標號。
第二實施例的光學成像鏡頭10詳細的光學數據如圖12所示,且第二實施例的光學成像鏡頭10的整體有效焦距為6.302毫米,半視角(HFOV)為38.682°,光圈值(Fno)為1.600,系統長度為8.188毫米,像高則為5.800毫米。
如圖13所示,則為第二實施例的第一透鏡1的物側面15到第九透鏡9的像側面96在公式(1)中的各項非球面係數。在本實施例中,第一透鏡1的物側面15到第九透鏡9的像側面96的第2階非球面係數a 2皆為零。
另外,第二實施例之光學成像鏡頭10中各重要參數間的關係如圖46、圖47所示。
圖11A說明本第二實施例的縱向球差,不同高度的離軸光線的成像點偏差控制在±16微米的範圍內。在圖11B與圖11C的二個場曲像差圖式中,三種代表波長在整個視場範圍內的場曲像差落在±25微米內。而圖11D的畸變像差圖式則顯示本第二實施例的畸變像差維持在±16%的範圍內。據此說明本第二實施例的縱向球差、弧矢方向的場曲像差以及子午方向的場曲像差優於第一實施例,提供良好的成像品質。此外,第二實施例的系統長度小於第一實施例的系統長度,第二實施例的像高大於第一實施例的像高。
圖14為本發明的第三實施例的光學成像鏡頭的示意圖,而圖15A至圖15D為第三實施例之光學成像鏡頭的縱向球差與各項像差圖。請先參照圖14,本發明光學成像鏡頭10的一第三實施例,其與第一實施例大致相似,而兩者的差異如下所述:各光學數據、非球面係數及這些透鏡1、2、3、4、5、6、7、8及9間的參數或多或少有些不同。此外,在第三實施例中,第三透鏡3的物側面35的圓周區域352為凸面,其像側面36的圓周區域362為凹面。第四透鏡4的像側面46的光軸區域461為凹面。第八透鏡8的像側面86的光軸區域861為凸面。在此需注意的是,為了清楚地顯示圖面,圖14中省略部分與第一實施例相似的光軸區域與圓周區域的標號。
第三實施例的光學成像鏡頭10詳細的光學數據如圖16所示,且第三實施例的光學成像鏡頭10的有效焦距為6.783毫米,半視角(HFOV)為41.490°,光圈值(Fno)為1.600,系統長度為8.843毫米,像高則為6.700毫米。
如圖17所示,則為第三實施例的第一透鏡1的物側面15到第九透鏡9的像側面96在公式(1)中的各項非球面係數。在本實施例中,第一透鏡1的物側面15到第九透鏡9的像側面96的第2階非球面係數a 2皆為零。
另外,第三實施例之光學成像鏡頭10中各重要參數間的關係如圖46、圖47所示。
圖15A表示本第三實施例的縱向球差,不同高度的離軸光線的成像點偏差控制在±14微米的範圍內。在圖15B與圖15C的二個場曲像差圖式中,三種代表波長在整個視場範圍內的場曲像差落在±32微米內。而圖15D的畸變像差圖式則顯示本第三實施例的畸變像差維持在±12%的範圍內。據此說明本第三實施例的縱向球差、弧矢方向的場曲像差以及子午方向的場曲像差優於第一實施例,提供良好的成像品質。此外,第三實施例的像高大於第一實施例的像高。
圖18為本發明的第四實施例的光學成像鏡頭的示意圖,而圖19A至圖19D為第四實施例之光學成像鏡頭的縱向球差與各項像差圖。請先參照圖18,本發明光學成像鏡頭10的一第四實施例,其與第一實施例大致相似,而兩者的差異如下所述:各光學數據、非球面係數及這些透鏡1、2、3、4、5、6、7、8及9間的參數或多或少有些不同。此外,在第四實施例中,第三透鏡3的物側面35的圓周區域352為凸面,其像側面36的圓周區域362為凹面。第四透鏡4具有負屈光率,其像側面46的光軸區域461為凹面。第五透鏡5的物側面55的光軸區域551為凸面,其像側面56的光軸區域561為凹面。第六透鏡6的物側面65的圓周區域652為凸面。第八透鏡8的像側面86的光軸區域861為凸面。第九透鏡9的物側面95的圓周區域952為凸面。在此需注意的是,為了清楚地顯示圖面,圖18中省略部分與第一實施例相似的光軸區域與圓周區域的標號。
第四實施例的光學成像鏡頭10詳細的光學數據如圖20所示,且第四實施例的光學成像鏡頭10的有效焦距為7.001毫米,半視角(HFOV)為40.252°,光圈值(Fno)為1.600,系統長度為8.945毫米,像高則為6.700毫米。
如圖21所示,則為第四實施例的第一透鏡1的物側面15到第九透鏡9的像側面96在公式(1)中的各項非球面係數。在本實施例中,第一透鏡1的物側面15到第九透鏡9的像側面96的第2階非球面係數a 2皆為零。
另外,第四實施例之光學成像鏡頭10中各重要參數間的關係如圖46、圖47所示。
圖19A說明本第四實施例的縱向球差,不同高度的離軸光線的成像點偏差控制在±30微米的範圍內。在圖19B與圖19C的二個場曲像差圖式中,三種代表波長在整個視場範圍內的場曲像差落在±25微米內。而圖19D的畸變像差圖式則顯示本第四實施例的畸變像差維持在±15%的範圍內。據此說明本第四實施例的弧矢方向的場曲像差以及子午方向的場曲像差優於第一實施例,提供良好的成像品質。此外,第四實施例的像高大於第一實施例的像高。
圖22為本發明的第五實施例的光學成像鏡頭的示意圖,而圖23A至圖23D為第五實施例之光學成像鏡頭的縱向球差與各項像差圖。請先參照圖22,本發明光學成像鏡頭10的一第五實施例,其與第一實施例大致相似,而兩者的差異如下所述:各光學數據、非球面係數及這些透鏡1、2、3、4、5、6、7、8及9間的其他參數或多或少有些不同。此外,在第五實施例中,第三透鏡3的物側面35的圓周區域352為凸面,其像側面36的圓周區域362為凹面。第四透鏡4的像側面46的光軸區域461為凹面。第八透鏡8的像側面86的光軸區域861為凸面。在此需注意的是,為了清楚地顯示圖面,圖22中省略部分與第一實施例相似的光軸區域與圓周區域的標號。
第五實施例的光學成像鏡頭10詳細的光學數據如圖24所示,且第五實施例的光學成像鏡頭10的有效焦距為6.865毫米,半視角(HFOV)為40.676°,光圈值(Fno)為1.600,系統長度為8.819毫米,像高則為6.700毫米。
如圖25所示,則為第五實施例的第一透鏡1的物側面15到第九透鏡9的像側面96在公式(1)中的各項非球面係數。在本實施例中,第一透鏡1的物側面15到第九透鏡9的像側面96的第2階非球面係數a 2皆為零。
另外,第五實施例之光學成像鏡頭10中各重要參數間的關係如圖46、圖47所示。
圖23A表示本第五實施例的縱向球差,不同高度的離軸光線的成像點偏差控制在±14微米的範圍內。在圖23B與圖23C的二個場曲像差圖式中,三種代表波長在整個視場範圍內的場曲像差落在±30微米內。而圖23D的畸變像差圖式則顯示本第五實施例的畸變像差維持在±14%的範圍內。據此說明本第五實施例的縱向球差、弧矢方向的場曲像差以及子午方向的場曲像差優於第一實施例,提供良好的成像品質。此外,第五實施例的像高大於第一實施例的像高。
圖26為本發明的第六實施例的光學成像鏡頭的示意圖,而圖27A至圖27D為第六實施例之光學成像鏡頭的縱向球差與各項像差圖。請先參照圖26,本發明光學成像鏡頭10的一第六實施例,其與第一實施例大致相似,而兩者的差異如下所述:各光學數據、非球面係數及這些透鏡1、2、3、4、5、6、7、8及9間的參數或多或少有些不同。此外,在第六實施例中,第三透鏡3的物側面35的圓周區域352為凸面,其像側面36的圓周區域362為凹面。第四透鏡4的物側面45的光軸區域451為凹面。第六透鏡6的物側面65的圓周區域652為凸面。第八透鏡8的像側面86的光軸區域861為凸面。在此需注意的是,為了清楚地顯示圖面,圖26中省略與第一實施例相似的光軸區域與圓周區域的標號。
第六實施例的光學成像鏡頭10詳細的光學數據如圖28所示,且第六實施例的光學成像鏡頭10的有效焦距為7.046毫米,半視角(HFOV)為39.672°,光圈值(Fno)為1.600,系統長度為8.906毫米,像高則為6.700毫米。
如圖29所示,則為第六實施例的第一透鏡1的物側面15到第九透鏡9的像側面96在公式(1)中的各項非球面係數。在本實施例中,第一透鏡1的物側面15到第九透鏡9的像側面96的第2階非球面係數a 2皆為零。
另外,第六實施例之光學成像鏡頭10中各重要參數間的關係如圖46、圖47所示。
圖27A表示本第六實施例的縱向球差,不同高度的離軸光線的成像點偏差控制在±18微米的範圍內。在圖27B與圖27C的二個場曲像差圖式中,三種代表波長在整個視場範圍內的焦距變化量落在±25微米內。而圖27D的畸變像差圖式則顯示本第六實施例的畸變像差維持在±15%的範圍內。據此說明本第六實施例的縱向球差、弧矢方向的場曲像差以及子午方向的場曲像差優於第一實施例,提供良好的成像品質。此外,第六實施例的像高大於第一實施例的像高。
圖30為本發明的第七實施例的光學成像鏡頭的示意圖,而圖31A至圖31D為第七實施例之光學成像鏡頭的縱向球差與各項像差圖。請先參照圖30,本發明光學成像鏡頭10的一第七實施例,其與第一實施例大致相似,而兩者的差異如下所述:各光學數據、非球面係數及這些透鏡1、2、3、4、5、6、7、8及9間的參數或多或少有些不同。此外,在第七實施例中,第三透鏡3的物側面35的圓周區域352為凸面,其像側面36的圓周區域362為凹面。第四透鏡4的像側面46的光軸區域461為凹面。第五透鏡5的物側面55的光軸區域551為凸面,其像側面56的光軸區域561為凹面。第八透鏡8的像側面86的光軸區域861為凸面。第九透鏡9的物側面95的圓周區域952為凸面。在此需注意的是,為了清楚地顯示圖面,圖30中省略與第一實施例相似的光軸區域與圓周區域的標號。
第七實施例的光學成像鏡頭10詳細的光學數據如圖32所示,且第七實施例的光學成像鏡頭10的有效焦距為6.367毫米,半視角(HFOV)為38.193°,光圈值(Fno)為1.600,系統長度為8.278毫米,像高則為6.700毫米。
如圖33所示,則為第七實施例的第一透鏡1的物側面15到第九透鏡9的像側面96在公式(1)中的各項非球面係數。在本實施例中,第一透鏡1的物側面15到第九透鏡9的像側面96的第2階非球面係數a 2皆為零。
另外,第七實施例之光學成像鏡頭10中各重要參數間的關係如圖46、圖47所示。
圖31A表示本第七實施例的縱向球差,不同高度的離軸光線的成像點偏差控制在±16微米的範圍內。在圖31B與圖31C的二個場曲像差圖式中,三種代表波長在整個視場範圍內的焦距變化量落在±14微米內。而圖31D的畸變像差圖式則顯示本第七實施例的畸變像差維持在±16%的範圍內。據此說明本第七實施例的縱向球差、弧矢方向的場曲像差以及子午方向的場曲像差優於第一實施例,提供良好的成像品質。此外,第七實施例的系統長度小於第一實施例的系統長度。第七實施例的像高大於第一實施例的像高。
圖34為本發明的第八實施例的光學成像鏡頭的示意圖,而圖35A至圖35D為第八實施例之光學成像鏡頭的縱向球差與各項像差圖。請先參照圖34,本發明光學成像鏡頭10的一第八實施例,其與第一實施例大致相似,而兩者的差異如下所述:各光學數據、非球面係數及這些透鏡1、2、3、4、5、6、7、8及9間的參數或多或少有些不同。此外,在第八實施例中,第三透鏡3的物側面35的圓周區域352為凸面,其像側面36的圓周區域362為凹面。第五透鏡5的像側面56的光軸區域561為凹面。第八透鏡8的像側面86的光軸區域861為凸面。在此需注意的是,為了清楚地顯示圖面,圖34中省略與第一實施例相似的光軸區域與圓周區域的標號。
第八實施例的光學成像鏡頭10詳細的光學數據如圖36所示,且第八實施例的光學成像鏡頭10的有效焦距為6.491毫米,半視角(HFOV)為38.123°,光圈值(Fno)為1.600,系統長度為8.193毫米,像高則為5.800毫米。
如圖37所示,則為第八實施例的第一透鏡1的物側面15到第九透鏡9的像側面96在公式(1)中的各項非球面係數。在本實施例中,第一透鏡1的物側面15到第九透鏡9的像側面96的第2階非球面係數a 2皆為零。
另外,第八實施例之光學成像鏡頭10中各重要參數間的關係如圖46、圖47所示。
圖35A表示本第八實施例的縱向球差,不同高度的離軸光線的成像點偏差控制在±15微米的範圍內。在圖35B與圖35C的二個場曲像差圖式中,三種代表波長在整個視場範圍內的焦距變化量落在±25微米內。而圖35D的畸變像差圖式則顯示本第八實施例的畸變像差維持在±15%的範圍內。據此說明本第八實施例的縱向球差、弧矢方向的場曲像差以及子午方向的場曲像差優於第一實施例,提供良好的成像品質。此外,第八實施例的系統長度小於第一實施例的系統長度。第八實施例的像高大於第一實施例的像高。
圖38為本發明的第九實施例的光學成像鏡頭的示意圖,而圖39A至圖39D為第九實施例之光學成像鏡頭的縱向球差與各項像差圖。請先參照圖38,本發明光學成像鏡頭10的一第九實施例,其與第一實施例大致相似,而兩者的差異如下所述:各光學數據、非球面係數及這些透鏡1、2、3、4、5、6、7、8及9間的參數或多或少有些不同。此外,在第九實施例中,第三透鏡3的物側面35的圓周區域352為凸面,其像側面36的圓周區域362為凹面。第五透鏡5的像側面56的光軸區域561為凹面。第八透鏡8的像側面86的光軸區域861為凸面。在此需注意的是,為了清楚地顯示圖面,圖38中省略與第一實施例相似的光軸區域與圓周區域的標號。
第九實施例的光學成像鏡頭10詳細的光學數據如圖40所示,且第九實施例的光學成像鏡頭10的有效焦距為6.482毫米,半視角(HFOV)為38.974°,光圈值(Fno)為1.600,系統長度為8.360毫米,像高則為5.800毫米。
如圖41所示,則為第九實施例的第一透鏡1的物側面15到第九透鏡9的像側面96在公式(1)中的各項非球面係數。在本實施例中,第一透鏡1的物側面15到第九透鏡9的像側面96的第2階非球面係數a 2皆為零。
另外,第九實施例之光學成像鏡頭10中各重要參數間的關係如圖46、圖47所示。
圖39A表示本第九實施例的縱向球差,不同高度的離軸光線的成像點偏差控制在±14微米的範圍內。在圖39B與圖39C的二個場曲像差圖式中,三種代表波長在整個視場範圍內的焦距變化量落在±20微米內。而圖39D的畸變像差圖式則顯示本第九實施例的畸變像差維持在±12%的範圍內。據此說明本第九實施例的縱向球差、弧矢方向的場曲像差以及子午方向的場曲像差優於第一實施例,提供良好的成像品質。此外,第九實施例的系統長度小於第一實施例的系統長度。第九實施例的像高大於第一實施例的像高。
圖42為本發明的第十實施例的光學成像鏡頭的示意圖,而圖43A至圖43D為第十實施例之光學成像鏡頭的縱向球差與各項像差圖。請先參照圖42,本發明光學成像鏡頭10的一第十實施例,其與第一實施例大致相似,而兩者的差異如下所述:各光學數據、非球面係數及這些透鏡1、2、3、4、5、6、7、8及9間的參數或多或少有些不同。此外,在第十實施例中,第三透鏡3的物側面35的圓周區域352為凸面,其像側面36的圓周區域362為凹面。第四透鏡4的像側面46的光軸區域461為凹面。第五透鏡5的像側面56的光軸區域561為凹面。第八透鏡8的像側面86的光軸區域861為凸面。在此需注意的是,為了清楚地顯示圖面,圖42中省略與第一實施例相似的光軸區域與圓周區域的標號。
第十實施例的光學成像鏡頭10詳細的光學數據如圖44所示,且第十實施例的光學成像鏡頭10的有效焦距為6.448毫米,半視角(HFOV)為38.487°,光圈值(Fno)為1.600,系統長度為8.214毫米,像高則為5.800毫米。
如圖45所示,則為第十實施例的第一透鏡1的物側面15到第九透鏡9的像側面96在公式(1)中的各項非球面係數。在本實施例中,第一透鏡1的物側面15到第九透鏡9的像側面96的第2階非球面係數a 2皆為零。
另外,第十實施例之光學成像鏡頭10中各重要參數間的關係如圖46、圖47所示。
圖43A表示本第十實施例的縱向球差,不同高度的離軸光線的成像點偏差控制在±14微米的範圍內。在圖43B與圖43C的二個場曲像差圖式中,三種代表波長在整個視場範圍內的焦距變化量落在±20微米內。而圖43D的畸變像差圖式則顯示本第十實施例的畸變像差維持在±14%的範圍內。據此說明本第十實施例的縱向球差、弧矢方向的場曲像差以及子午方向的場曲像差優於第一實施例,提供良好的成像品質。此外,第十實施例的系統長度小於第一實施例的系統長度。第十實施例的像高大於第一實施例的像高。
再配合參閱圖46至圖47,其為上述第一實施例至第十實施例的各項光學參數的表格圖。
根據本發明一實施例,光學成像鏡頭10滿足條件式ImgH/Fno≧2.700毫米並且搭配以下組合之一有利於在設計大像高及小光圈的光學成像鏡頭10的同時達到修正光學系統球差、像差及降低畸變的目的:(a)第二透鏡2具有負屈光率、第五透鏡5具有負屈光率、第五透鏡5的物側面55的圓周區域552為凹面、第六透鏡6的物側面65的光軸區域651為凹面及第七透鏡7具有負屈光率(b) 第二透鏡2具有負屈光率、第五透鏡5的物側面55的圓周區域552為凹面、第六透鏡6具有正屈光率、第六透鏡6的物側面65的圓周區域652為凹面及第七透鏡7的物側面75的光軸區域751為凸面(c) 第二透鏡2具有負屈光率、第四透鏡4的像側面46的圓周區域462為凹面、第七透鏡7具有負屈光率及第九透鏡9的像側面96的光軸區域961為凹面。
根據本發明一些實施例,當光學成像鏡頭10滿足V2+V4+V5+V6≦200.000、V5+V6+V8≧120.000、|V7-V9|≧30.000或V3+V5+V7≦105.000,除了可以改善色差以外,因不同材料有不同的折射率,彼此搭配可以使光線順利轉折收斂,以至於獲得較佳的成像品質,較佳的範圍為140.000≦V2+V4+V5+V6≦200.000、120.000≦V5+V6+V8≦170.000、30.000≦|V7-V9|≦40.000或55.000≦V3+V5+V7≦105.000。
為了達成縮短光學成像鏡頭10的系統長度的目的,可適當地調整第一透鏡1至第九透鏡9間的空氣間隙或是第一透鏡1至第九透鏡9各自的厚度。此外,為了同時考量製作的難易程度並確保成像品質,若滿足以下條件式之數值限定,能有較佳的配置。 ALT/(T1+G78)≦4.300,較佳的範圍為2.400≦ALT/(T1+G78)≦4.300; (T4+T5+T8)/T3≧4.700,較佳的範圍為4.700≦(T4+T5+T8)/T3≦11.500; EFL/(AAG+T2)≧1.500,較佳的範圍為1.500≦EFL/(AAG+T2)≦2.500; (T6+G67+T7)/G78≦4.200,較佳的範圍為2.200≦(T6+G67+T7)/G78≦4.200; (G89+T9)/(G67+G78)≧2.000,較佳的範圍為2.000≦(G89+T9)/(G67+G78)≦3.500; (T1+G23+G34)/T2≧4.200,較佳的範圍為4.200≦(T1+G23+G34)/T2≦8.600; TTL/(T1+T2+T3)≦6.400,較佳的範圍為5.000≦TTL/(T1+T2+T3)≦6.400; T8/(T3+G34)≧1.000,較佳的範圍為1.000≦T8/(T3+G34)≦3.600; BFL/(T7+G78)≦2.000,較佳的範圍為0.600≦BFL/(T7+G78)≦2.000; AAG/(G45+G56)≦6.200,較佳的範圍為3.500≦AAG/(G45+G56)≦6.200; (G12+G56+G78)/T9≦2.300,較佳的範圍為0.600≦(G12+G56+G78)/T9≦2.300; TL/ImgH≦2.000,較佳的範圍為1.000≦TL/ImgH≦2.000; (T3+T4)/T7≦2.300,較佳的範圍為1.000≦(T3+T4)/T7≦2.300; AAG/(G23+G34+G45)≧2.900,較佳的範圍為2.900≦AAG/(G23+G34+G45)≦4.600; (T1+T2+T3)/T9≧2.000,較佳的範圍為2.000≦(T1+T2+T3)/T9≦6.100。
有鑑於光學系統設計的不可預測性,在本發明的架構之下,符合上述條件式能較佳地使本發明實施例的光學成像鏡頭系統長度縮短、加大像高、縮小光圈值並具備良好的成像品質。
前述所列之示例性限定關係式,亦可任意選擇性地合併不等數量施用於本發明之實施態樣中,並不限於此。在實施本發明時,除了前述關係式之外,亦可針對單一透鏡或廣泛性地針對多個透鏡額外設計出其他更多的透鏡的凹凸曲面排列等細部結構,以加強對系統性能及/或解析度的控制。須注意的是,此些細節需在無衝突之情況之下,選擇性地合併施用於本發明之其他實施例當中。
本發明各實施例揭露之內容包含但不限於焦距、透鏡厚度、阿貝數等光學參數,舉例而言,本發明於各實施例揭露一光學參數A及一光學參數B,其中該些光學參數所涵蓋的範圍、光學參數互相之比較關係及多個實施例涵蓋的條件式範圍的具體解釋如下: (1)光學參數所涵蓋的範圍,例如:α 2≦A≦α 1或β 2≦B≦β 1,α 1為光學參數A在多個實施例中的最大值,α 2為光學參數A在多個實施例中的最小值,β 1為光學參數B在多個實施例中的最大值,β 2為光學參數B在多個實施例中的最小值。 (2)光學參數互相之比較關係,例如:A大於B或A小於B。 (3)多個實施例涵蓋的條件式範圍,具體來說,由同一實施例的複數個光學參數經過可能的運算所獲得之組合關係或比例關係,該些關係定義為E。E可為例如:A+B或A-B或A/B或A*B或(A*B) 1/2,而E又滿足條件式E≦γ 1或E≧γ 2或γ 2≦E≦γ 1,γ 1及γ 2為同一實施例的光學參數A與光學參數B經過運算所得到的值,且γ 1為本發明多個實施例中的最大值,γ 2為本發明多個實施例中的最小值。 上述光學參數所涵蓋的範圍、光學參數互相之比較關係及該些條件式的最大值、最小值及最大值最小值以內的數值範圍皆為本發明可據以實施之特徵,且皆屬於本發明所揭露的範圍。上述僅為舉例說明,不應以此為限。
本發明之實施例皆可實施,且可於同一實施例中擷取部分特徵組合,該特徵組合相較於先前技術而言亦能達成無法預期之本案功效,該特徵組合包括但不限於面形、屈光率及條件式等特徵之搭配。本發明實施方式之揭露為闡明本發明原則之具體實施例,應不拘限本發明於所揭示的實施例。進一步言之,實施例及其附圖僅為本發明示範之用,並不受其限囿。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。
100、200、300、400、500:透鏡 15、25、35、45、55、65、75、85、95、105、110、410、510:物側面 16、26、36、46、56、66、76、86、96、106、120、320:像側面 130:組裝部 211、212:平行光線 10:光學成像鏡頭 0:光圈 1:第一透鏡 2:第二透鏡 3:第三透鏡 4:第四透鏡 5:第五透鏡 6:第六透鏡 7:第七透鏡 8:第八透鏡 9:第九透鏡 11:濾光片 99:成像面 Z1、151、161、251、261、351、361、451、461、551、561、651、661、751、761、851、861、951、961:光軸區域 Z2、152、162、252、262、352、362、452、462、552、562、652、662、752、762、852、862、952、962:圓周區域 A1:物側 A2:像側 CP:中心點 CP1:第一中心點 CP2:第二中心點 EL:延伸線 I:光軸 Lm:邊緣光線 Lc:主光線 OB:光學邊界 M、R:相交點 TP1:第一轉換點 TP2:第二轉換點 Z3:中繼區域
圖1是一示意圖,說明一透鏡的面形結構。 圖2是一示意圖,說明一透鏡的面形凹凸結構及光線焦點。 圖3是一示意圖,說明一範例一的透鏡的面形結構。 圖4是一示意圖,說明一範例二的透鏡的面形結構。 圖5是一示意圖,說明一範例三的透鏡的面形結構。 圖6為本發明之第一實施例之光學成像鏡頭的示意圖。 圖7A至圖7D為第一實施例之光學成像鏡頭的縱向球差與各項像差圖。 圖8示出本發明之第一實施例之光學成像鏡頭的詳細光學數據。 圖9示出本發明之第一實施例之光學成像鏡頭的非球面參數。 圖10為本發明的第二實施例的光學成像鏡頭的示意圖。 圖11A至圖11D為第二實施例之光學成像鏡頭的縱向球差與各項像差圖。 圖12示出本發明之第二實施例之光學成像鏡頭的詳細光學數據。 圖13示出本發明之第二實施例之光學成像鏡頭的非球面參數。 圖14為本發明的第三實施例的光學成像鏡頭的示意圖。 圖15A至圖15D為第三實施例之光學成像鏡頭的縱向球差與各項像差圖。 圖16示出本發明之第三實施例之光學成像鏡頭的詳細光學數據。 圖17示出本發明之第三實施例之光學成像鏡頭的非球面參數。 圖18為本發明的第四實施例的光學成像鏡頭的示意圖。 圖19A至圖19D為第四實施例之光學成像鏡頭的縱向球差與各項像差圖。 圖20示出本發明之第四實施例之光學成像鏡頭的詳細光學數據。 圖21示出本發明之第四實施例之光學成像鏡頭的非球面參數。 圖22為本發明的第五實施例的光學成像鏡頭的示意圖。 圖23A至圖23D為第五實施例之光學成像鏡頭的縱向球差與各項像差圖。 圖24示出本發明之第五實施例之光學成像鏡頭的詳細光學數據。 圖25示出本發明之第五實施例之光學成像鏡頭的非球面參數。 圖26為本發明的第六實施例的光學成像鏡頭的示意圖。 圖27A至圖27D為第六實施例之光學成像鏡頭的縱向球差與各項像差圖。 圖28示出本發明之第六實施例之光學成像鏡頭的詳細光學數據。 圖29示出本發明之第六實施例之光學成像鏡頭的非球面參數。 圖30為本發明的第七實施例的光學成像鏡頭的示意圖。 圖31A至圖31D為第七實施例之光學成像鏡頭的縱向球差與各項像差圖。 圖32示出本發明之第七實施例之光學成像鏡頭的詳細光學數據。 圖33示出本發明之第七實施例之光學成像鏡頭的非球面參數。 圖34為本發明的第八實施例的光學成像鏡頭的示意圖。 圖35A至圖35D為第八實施例之光學成像鏡頭的縱向球差與各項像差圖。 圖36示出本發明之第八實施例之光學成像鏡頭的詳細光學數據。 圖37示出本發明之第八實施例之光學成像鏡頭的非球面參數。 圖38為本發明的第九實施例的光學成像鏡頭的示意圖。 圖39A至圖39D為第九實施例之光學成像鏡頭的縱向球差與各項像差圖。 圖40示出本發明之第九實施例之光學成像鏡頭的詳細光學數據。 圖41示出本發明之第九實施例之光學成像鏡頭的非球面參數。 圖42為本發明的第十實施例的光學成像鏡頭的示意圖。 圖43A至圖43D為第十實施例之光學成像鏡頭的縱向球差與各項像差圖。 圖44示出本發明之第十實施例之光學成像鏡頭的詳細光學數據。 圖45示出本發明之第十實施例之光學成像鏡頭的非球面參數。 圖46與圖47示出本發明之第一至第十實施例之光學成像鏡頭的各重要參數及其關係式的數值。
15、25、35、45、55、65、75、85、95、105:物側面
16、26、36、46、56、66、76、86、96、106:像側面
10:光學成像鏡頭
0:光圈
1:第一透鏡
2:第二透鏡
3:第三透鏡
4:第四透鏡
5:第五透鏡
6:第六透鏡
7:第七透鏡
8:第八透鏡
9:第九透鏡
11:濾光片
99:成像面
352、362:圓周區域
561、861:光軸區域
A1:物側
A2:像側
I:光軸

Claims (20)

  1. 一種光學成像鏡頭,從一物側至一像側沿一光軸依序包括一第一透鏡、一第二透鏡、一第三透鏡、一第四透鏡、一第五透鏡、一第六透鏡、一第七透鏡、一第八透鏡以及一第九透鏡,且該第一透鏡至該第九透鏡各自包括朝向該物側且使成像光線通過的一物側面及朝向該像側且使成像光線通過的一像側面; 該第二透鏡具有負屈光率; 該第五透鏡具有負屈光率且該第五透鏡的該物側面的一圓周區域為凹面; 該第六透鏡的該物側面的一光軸區域為凹面; 該第七透鏡具有負屈光率; 其中該光學成像鏡頭的透鏡只有上述九片透鏡,並且滿足條件式ImgH/Fno≧2.700毫米,其中ImgH為該光學成像鏡頭的像高,且Fno為該光學成像鏡頭的光圈值。
  2. 一種光學成像鏡頭,從一物側至一像側沿一光軸依序包括一第一透鏡、一第二透鏡、一第三透鏡、一第四透鏡、一第五透鏡、一第六透鏡、一第七透鏡、一第八透鏡以及一第九透鏡,且該第一透鏡至該第九透鏡各自包括朝向該物側且使成像光線通過的一物側面及朝向該像側且使成像光線通過的一像側面; 該第二透鏡具有負屈光率; 該第五透鏡的該物側面的一圓周區域為凹面; 該第六透鏡具有正屈光率且該第六透鏡的該物側面的一圓周區域為凹面; 該第七透鏡的該物側面的一光軸區域為凸面, 其中該光學成像鏡頭的透鏡只有上述九片透鏡,並且滿足條件式ImgH/Fno≧2.700毫米,其中ImgH為該光學成像鏡頭的像高,且Fno為該光學成像鏡頭的光圈值。
  3. 一種光學成像鏡頭,從一物側至一像側沿一光軸依序包括一第一透鏡、一第二透鏡、一第三透鏡、一第四透鏡、一第五透鏡、一第六透鏡、一第七透鏡、一第八透鏡以及一第九透鏡,且該第一透鏡至該第九透鏡各自包括朝向該物側且使成像光線通過的一物側面及朝向該像側且使成像光線通過的一像側面; 該第二透鏡具有負屈光率; 該第四透鏡的該像側面的一圓周區域為凹面; 該第七透鏡具有負屈光率; 該第九透鏡的該像側面的一光軸區域為凹面, 其中該光學成像鏡頭的透鏡只有上述九片透鏡,並且滿足條件式ImgH/Fno≧2.700毫米,其中ImgH為該光學成像鏡頭的像高,且Fno為該光學成像鏡頭的光圈值。
  4. 如請求項1至3中任一項所述的光學成像鏡頭,其中該光學成像鏡頭更滿足:ALT/(T1+G78)≦4.300,其中ALT為該第一透鏡至該第九透鏡在該光軸上的九個透鏡厚度的總和,T1為該第一透鏡在該光軸上的厚度,以及G78為該第七透鏡與該第八透鏡在該光軸上的空氣間隙。
  5. 如請求項1至3中任一項所述的光學成像鏡頭,其中該光學成像鏡頭更滿足:V2+V4+V5+V6≦200.000,其中V2、V4、V5及V6分別為該第二透鏡、該第四透鏡、該第五透鏡及該第六透鏡的阿貝數。
  6. 如請求項1至3中任一項所述的光學成像鏡頭,其中該光學成像鏡頭更滿足:(T4+T5+T8)/T3≧4.700,其中T4、T5、T8及T3分別為該第四透鏡、該第五透鏡、該第八透鏡及該第三透鏡在該光軸上的厚度。
  7. 如請求項1至3中任一項所述的光學成像鏡頭,其中該光學成像鏡頭更滿足:EFL/(AAG+T2)≧1.500,其中EFL為該光學成像鏡頭的有效焦距,AAG為該第一透鏡至該第九透鏡在該光軸上的八個空氣間隙的總和,以及T2為該第二透鏡在該光軸上的厚度。
  8. 如請求項1至3中任一項所述的光學成像鏡頭,其中該光學成像鏡頭更滿足:V5+V6+V8≧120.000,其中V5、V6及V8分別為該第五透鏡、該第六透鏡及該第八透鏡的阿貝數。
  9. 如請求項1至3中任一項所述的光學成像鏡頭,其中該光學成像鏡頭更滿足:(T6+G67+T7)/G78≦4.200,其中T6及T7分別為該第六透鏡及該第七透鏡在該光軸上的厚度,G67為該第六透鏡與該第七透鏡在該光軸上的空氣間隙,以及G78為該第七透鏡與該第八透鏡在該光軸上的空氣間隙。
  10. 如請求項1至3中任一項所述的光學成像鏡頭,其中該光學成像鏡頭更滿足:(G89+T9)/(G67+G78)≧2.000,其中T9為該第九透鏡在該光軸上的厚度,G89為該第八透鏡與該第九透鏡在該光軸上的空氣間隙,G67為該第六透鏡與該第七透鏡在該光軸上的空氣間隙,以及G78為該第七透鏡與該第八透鏡在該光軸上的空氣間隙。
  11. 如請求項1至3中任一項所述的光學成像鏡頭,其中該光學成像鏡頭更滿足:(T1+G23+G34)/T2≧4.200,其中T1及T2分別為該第一透鏡及該第二透鏡在該光軸上的厚度,G23為該第二透鏡與該第三透鏡在該光軸上的空氣間隙,以及G34為該第三透鏡與該第四透鏡在該光軸上的空氣間隙。
  12. 如請求項1至3中任一項所述的光學成像鏡頭,其中該光學成像鏡頭更滿足:TTL/(T1+T2+T3)≦6.400,其中TTL為該第一透鏡的該物側面到一成像面在該光軸上的距離,以及T1、T2及T3分別為該第一透鏡、該第二透鏡及該第三透鏡在該光軸上的厚度。
  13. 如請求項1至3中任一項所述的光學成像鏡頭,其中該光學成像鏡頭更滿足:T8/(T3+G34)≧1.000,其中T8及T3分別為該第八透鏡及該第三透鏡在該光軸上的厚度,以及G34為該第三透鏡與該第四透鏡在該光軸上的空氣間隙。
  14. 如請求項1至3中任一項所述的光學成像鏡頭,其中該光學成像鏡頭更滿足:BFL/(T7+G78)≦2.000,其中BFL為該第九透鏡的該像側面到一成像面在該光軸上的距離,T7為該第七透鏡在該光軸上的厚度,以及G78為該第七透鏡與該第八透鏡在該光軸上的空氣間隙。
  15. 如請求項1至3中任一項所述的光學成像鏡頭,其中該光學成像鏡頭更滿足:AAG/(G45+G56)≦6.200,其中AAG為該第一透鏡至該第九透鏡在該光軸上的八個空氣間隙的總和,G45為該第四透鏡與該第五透鏡在該光軸上的空氣間隙,以及G56為該第五透鏡與該第六透鏡在該光軸上的空氣間隙。
  16. 如請求項1至3中任一項所述的光學成像鏡頭,其中該光學成像鏡頭更滿足:(G12+G56+G78)/T9≦2.300,其中G12為該第一透鏡與該第二透鏡在該光軸上的空氣間隙,G56為該第五透鏡與該第六透鏡在該光軸上的空氣間隙,G78為該第七透鏡與該第八透鏡在該光軸上的空氣間隙,以及T9為該第九透鏡在該光軸上的厚度。
  17. 如請求項1至3中任一項所述的光學成像鏡頭,其中該光學成像鏡頭更滿足:TL/ImgH≦2.000,其中TL為該第一透鏡的該物側面到該第九透鏡的該像側面在該光軸上的距離。
  18. 如請求項1至3中任一項所述的光學成像鏡頭,其中該光學成像鏡頭更滿足:|V7-V9|≧30.000,其中V7及V9分別為該第七透鏡及該第九透鏡的阿貝數。
  19. 如請求項1至3中任一項所述的光學成像鏡頭,其中該光學成像鏡頭更滿足:(T3+T4)/T7≦2.300,其中T3、T4及T7分別為該第三透鏡、該第四透鏡及該第七透鏡在該光軸上的厚度。
  20. 如請求項1至3中任一項所述的光學成像鏡頭,其中該光學成像鏡頭更滿足:AAG/(G23+G34+G45)≧2.900,其中AAG為該第一透鏡至該第九透鏡在該光軸上的八個空氣間隙的總和,G23為該第二透鏡與該第三透鏡在該光軸上的空氣間隙,G34為該第三透鏡與該第四透鏡在該光軸上的空氣間隙,G45為該第四透鏡與該第五透鏡在該光軸上的空氣間隙。
TW110100030A 2020-12-18 2021-01-04 光學成像鏡頭 TWI758048B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011509246.3A CN112415722B (zh) 2020-12-18 2020-12-18 光学成像镜头
CN202011509246.3 2020-12-18

Publications (2)

Publication Number Publication Date
TWI758048B TWI758048B (zh) 2022-03-11
TW202225762A true TW202225762A (zh) 2022-07-01

Family

ID=74782595

Family Applications (2)

Application Number Title Priority Date Filing Date
TW111103045A TW202240230A (zh) 2020-12-18 2021-01-04 光學成像鏡頭
TW110100030A TWI758048B (zh) 2020-12-18 2021-01-04 光學成像鏡頭

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW111103045A TW202240230A (zh) 2020-12-18 2021-01-04 光學成像鏡頭

Country Status (3)

Country Link
US (1) US20220196979A1 (zh)
CN (1) CN112415722B (zh)
TW (2) TW202240230A (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114355570A (zh) * 2022-01-12 2022-04-15 玉晶光电(厦门)有限公司 光学成像镜头
CN114355565A (zh) * 2022-01-12 2022-04-15 玉晶光电(厦门)有限公司 光学成像镜头
CN114355568A (zh) * 2022-01-12 2022-04-15 玉晶光电(厦门)有限公司 光学成像镜头
CN114355567A (zh) * 2022-01-12 2022-04-15 玉晶光电(厦门)有限公司 光学成像镜头

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6858466B2 (ja) * 2018-12-29 2021-04-14 カンタツ株式会社 撮像レンズ
CN111812811B (zh) * 2020-09-03 2020-11-27 常州市瑞泰光电有限公司 摄像光学镜头
CN111812815B (zh) * 2020-09-08 2020-11-27 常州市瑞泰光电有限公司 摄像光学镜头
CN111812814B (zh) * 2020-09-08 2020-11-27 常州市瑞泰光电有限公司 摄像光学镜头

Also Published As

Publication number Publication date
TW202240230A (zh) 2022-10-16
CN112415722B (zh) 2023-01-31
CN112415722A (zh) 2021-02-26
US20220196979A1 (en) 2022-06-23
TWI758048B (zh) 2022-03-11

Similar Documents

Publication Publication Date Title
TWI670538B (zh) 光學成像鏡頭
TWI758048B (zh) 光學成像鏡頭
TWI748807B (zh) 光學成像鏡頭
TWI809342B (zh) 光學成像鏡頭
TWI758049B (zh) 光學成像鏡頭
TWI755282B (zh) 光學成像鏡頭
TWI734593B (zh) 光學成像鏡頭
TWI718070B (zh) 光學成像鏡頭
TWI757027B (zh) 光學成像鏡頭
TWI750961B (zh) 光學成像鏡頭
TWI766483B (zh) 光學成像鏡頭
TWI744996B (zh) 光學成像鏡頭
TWI785624B (zh) 光學成像鏡頭
TW202202893A (zh) 光學成像鏡頭
TW202134727A (zh) 光學成像鏡頭
TWI832147B (zh) 光學成像鏡頭
TWI835057B (zh) 光學成像鏡頭
TWI792884B (zh) 光學成像鏡頭
TWI776773B (zh) 光學成像鏡頭
TWI804178B (zh) 光學成像鏡頭
TWI806331B (zh) 光學成像鏡頭
TWI832576B (zh) 光學成像鏡頭
TWI835059B (zh) 光學成像鏡頭
TWI766813B (zh) 光學成像鏡頭
TW202326206A (zh) 光學成像鏡頭