TW202224472A - Beam selection method based on neural network and management server - Google Patents

Beam selection method based on neural network and management server Download PDF

Info

Publication number
TW202224472A
TW202224472A TW109143790A TW109143790A TW202224472A TW 202224472 A TW202224472 A TW 202224472A TW 109143790 A TW109143790 A TW 109143790A TW 109143790 A TW109143790 A TW 109143790A TW 202224472 A TW202224472 A TW 202224472A
Authority
TW
Taiwan
Prior art keywords
neural network
matrix
type
recursive procedure
specific
Prior art date
Application number
TW109143790A
Other languages
Chinese (zh)
Other versions
TWI748794B (en
Inventor
陳昱安
方敬勻
蔡佳霖
湯凱傑
龍蒂涵
唐之璇
Original Assignee
中華電信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中華電信股份有限公司 filed Critical 中華電信股份有限公司
Priority to TW109143790A priority Critical patent/TWI748794B/en
Application granted granted Critical
Publication of TWI748794B publication Critical patent/TWI748794B/en
Publication of TW202224472A publication Critical patent/TW202224472A/en

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

The present invention provides a beam selection method based on a neural network and a management server. The method includes: obtaining a neural network that have experienced first and second training processes; determining a transmission beam of each base station and accordingly measuring a signal intensity distribution map of each base station in a specific field; obtaining a position distribution map of multiple user devices in the specific field; generating a first matrix based on the position distribution map and the signal intensity distribution map of each base station; inputting the first matrix to the neural network, wherein the neural network outputs a second matrix based on the first matrix; determining an optimum transmitting beam corresponding to each base station based on the second matrix; and controlling each base station to use the corresponding optimum transmitting beam to transmit signals.

Description

基於類神經網路的波束選擇方法及管理伺服器Neural-like network-based beam selection method and management server

本發明是有關於一種為基地台選擇波束的技術,且特別是有關於一種基於類神經網路的波束選擇方法及管理伺服器。The present invention relates to a beam selection technology for a base station, and more particularly, to a neural network-based beam selection method and a management server.

由於用戶對行動網路數據量需求日益漸增,行動通訊網路已朝向異質性網路(Heterogeneous Network,HetNet)發展。在此情況下,多層次及高密度的基地台佈建方式為各營運商發展趨勢,其目的在於提高每單位面積的頻譜效率。Due to the increasing demand for mobile network data by users, the mobile communication network has developed towards a Heterogeneous Network (HetNet). Under this circumstance, the multi-level and high-density base station deployment method is the development trend of various operators, and its purpose is to improve the spectral efficiency per unit area.

然而,在基地台的密集佈建環境下,基地台間干擾問題為營運商所需面對的重要議題之一。當基地台間干擾降低,系統的傳輸品質及頻譜效益會提升,進而提升整體用戶的傳輸感受。However, in the dense deployment environment of base stations, the problem of interference between base stations is one of the important issues that operators need to face. When the interference between base stations is reduced, the transmission quality and spectrum efficiency of the system will be improved, thereby improving the overall user's transmission experience.

在高密度基地台佈建還境下,小型化基地台(Small Cell)為營運商選擇方案之一,其特色為小功率、即插即用、佈建方便等,但也因此營運商對其管控較不易。另外,因小型化基地台功能較簡單,雖有即插即用功能,但若未能適當為小型化基地台選用發射波束,則其易對周圍其它基地台造成干擾。In the case of high-density base station deployment, small cell is one of the options for operators. It features low power, plug-and-play, and easy deployment. However, operators control it. less difficult. In addition, because the miniaturized base station has relatively simple functions, although it has a plug-and-play function, if the transmission beam is not properly selected for the miniaturized base station, it will easily cause interference to other surrounding base stations.

有鑑於此,本發明提供一種基於類神經網路的波束選擇方法及管理伺服器,其可用於解決上述技術問題。In view of this, the present invention provides a neural network-based beam selection method and a management server, which can be used to solve the above-mentioned technical problems.

本發明提供一種基於類神經網路的波束選擇方法,適於管理多個基地台的一管理伺服器,所述多個基地台部署於一特定場域中,且各基地台具有多個發射波束。所述方法包括:取得經歷一第一訓練過程及一第二訓練過程的一第一類神經網路;決定各基地台的一第一發射波束,並據以量測各基地台在特定場域的一特定訊號強度分布圖;取得多個用戶裝置在特定場域中的一特定位置分布圖;依據特定位置分布圖及各基地台的特定訊號強度分布圖產生一第一特定矩陣;將第一特定矩陣輸入至第一類神經網路,其中第一類神經網路依據第一特定矩陣輸出一第二特定矩陣,其中第二特定矩陣包括各基地台選用各發射波束的一機率;基於第二特定矩陣決定各基地台對應的一最佳發射波束;以及控制各基地台使用對應的最佳發射波束發射信號。The present invention provides a beam selection method based on a neural network, which is suitable for managing a management server of multiple base stations deployed in a specific field, and each base station has multiple transmit beams . The method includes: obtaining a first-type neural network that has undergone a first training process and a second training process; determining a first transmit beam of each base station, and measuring each base station in a specific field accordingly a specific signal strength distribution map of a plurality of user devices in a specific field; obtain a specific location distribution map of a plurality of user devices in a specific field; generate a first specific matrix according to the specific location distribution map and the specific signal intensity distribution map of each base station; The specific matrix is input to the first type of neural network, wherein the first type of neural network outputs a second specific matrix according to the first specific matrix, wherein the second specific matrix includes a probability that each base station selects each transmission beam; based on the second specific matrix The specific matrix determines an optimal transmission beam corresponding to each base station; and controls each base station to use the corresponding optimal transmission beam to transmit signals.

本發明提供一種管理伺服器,其管理部署於一特定場域中的多個基地台,且各基地台具有多個發射波束。所述管理伺服器包括儲存電路及處理器。儲存電路儲存多個模組。處理器耦接儲存電路,存取所述多個模組以執行下列步驟:取得經歷一第一訓練過程及一第二訓練過程的一第一類神經網路;決定各基地台的一第一發射波束,並據以量測各基地台在特定場域的一特定訊號強度分布圖;取得多個用戶裝置在特定場域中的一特定位置分布圖;依據特定位置分布圖及各基地台的特定訊號強度分布圖產生一第一特定矩陣;將第一特定矩陣輸入至第一類神經網路,其中第一類神經網路依據第一特定矩陣輸出一第二特定矩陣,其中第二特定矩陣包括各基地台選用各發射波束的一機率;基於第二特定矩陣決定各基地台對應的一最佳發射波束;以及控制各基地台使用對應的最佳發射波束發射信號。The present invention provides a management server, which manages multiple base stations deployed in a specific field, and each base station has multiple transmit beams. The management server includes a storage circuit and a processor. The storage circuit stores a plurality of modules. The processor is coupled to the storage circuit, and accesses the plurality of modules to perform the following steps: obtaining a first-type neural network undergoing a first training process and a second training process; determining a first type of neural network of each base station Transmit beams, and measure a specific signal strength distribution map of each base station in a specific field; obtain a specific location distribution map of multiple user devices in a specific field; according to the specific location distribution map and each base station The specific signal intensity distribution map generates a first specific matrix; the first specific matrix is input to the first type of neural network, wherein the first type of neural network outputs a second specific matrix according to the first specific matrix, wherein the second specific matrix It includes a probability that each base station selects each transmit beam; determines an optimal transmit beam corresponding to each base station based on the second specific matrix; and controls each base station to use the corresponding optimal transmit beam to transmit signals.

請參照圖1,其是依據本發明之一實施例繪示的通訊系統示意圖。在圖1中,通訊系統10可包括管理伺服器100及基地台111~11H,其中基地台111~11H例如是部署於一特定場域(其例如是長度為N,寬度為M的區域,但不限於此)中的小型化基地台,並可用於服務位罣特定場域中的多個用戶裝置。Please refer to FIG. 1 , which is a schematic diagram of a communication system according to an embodiment of the present invention. In FIG. 1 , the communication system 10 may include a management server 100 and base stations 111-11H, wherein the base stations 111-11H are, for example, deployed in a specific field (for example, an area with a length of N and a width of M, but not limited to this), and can be used to serve multiple user devices in a specific field.

在本發明的實施例中,基地台111~11H個別可具有多個可選的發射波束(其對應於不同的發射方向),而各基地台111~11H可選擇上述發射波束的其中一者發射信號。為便於說明,以下假設基地台111~11H個別具有3個發射波束(下稱發射波束1~發射波束3)可供選擇。亦即,各基地台111~11H可選擇所述3個發射波束的其中之一發射信號。In the embodiment of the present invention, each of the base stations 111 to 11H may have a plurality of selectable transmit beams (corresponding to different transmit directions), and each of the base stations 111 to 11H may select one of the transmit beams to transmit. Signal. For convenience of description, it is assumed below that the base stations 111 to 11H individually have three transmit beams (hereinafter referred to as transmit beam 1 to transmit beam 3 ) for selection. That is, each base station 111-11H can select one of the three transmit beams to transmit signals.

此外,如圖1所示,管理伺服器100可連接於基地台111~11H,並可用於管理基地台111~11H。在一些實施例中,管理伺服器110可接收各基地台111~11H回報的資訊,並據以為各基地台111~11H決定適合的發射波束。為便於說明,以下假設基地台111~11H的數量為4(即,H為4),但本發明可不限於此。In addition, as shown in FIG. 1 , the management server 100 can be connected to the base stations 111 - 11H, and can be used to manage the base stations 111 - 11H. In some embodiments, the management server 110 may receive the information reported by each of the base stations 111 - 11H, and determine a suitable transmit beam for each of the base stations 111 - 11H accordingly. For the convenience of description, it is assumed that the number of base stations 111 to 11H is 4 (ie, H is 4), but the present invention may not be limited thereto.

在圖1中,管理伺服器100包括儲存電路102及處理器104。儲存電路102例如是任意型式的固定式或可移動式隨機存取記憶體(Random Access Memory,RAM)、唯讀記憶體(Read-Only Memory,ROM)、快閃記憶體(Flash memory)、硬碟或其他類似裝置或這些裝置的組合,而可用以記錄多個程式碼或模組。處理器104耦接於儲存電路102,並可為圖像處理單元(graphical processing unit,GPU)及其他類似品。In FIG. 1 , the management server 100 includes a storage circuit 102 and a processor 104 . The storage circuit 102 is, for example, any type of fixed or removable random access memory (Random Access Memory, RAM), read-only memory (Read-Only Memory, ROM), flash memory (Flash memory), hard drive A disc or other similar device or a combination of these devices may be used to record multiple code or modules. The processor 104 is coupled to the storage circuit 102 and may be a graphic processing unit (graphical processing unit, GPU) or the like.

在本發明的實施例中,處理器104可存取儲存電路102中記錄的模組、程式碼來實現本發明提出的基於類神經網路的波束選擇方法,其細節詳述如下。In the embodiment of the present invention, the processor 104 can access the modules and program codes recorded in the storage circuit 102 to implement the neural network-like beam selection method proposed by the present invention, the details of which are described below.

請參照圖2,其是依據本發明之一實施例繪示的基於類神經網路的波束選擇方法流程圖。本實施例的方法可由圖1的管理伺服器100執行,以下即搭配圖1所示的元件說明圖2各步驟的細節。Please refer to FIG. 2 , which is a flowchart of a method for beam selection based on a neural network-like network according to an embodiment of the present invention. The method of this embodiment can be executed by the management server 100 in FIG. 1 , and the details of each step in FIG. 2 will be described below in conjunction with the components shown in FIG. 1 .

首先,在步驟S210中,處理器104可取得經歷第一訓練過程及第二訓練過程的第一類神經網路。在本發明的實施例中,第一類神經網路例如是一卷積神經網路,而其相關的第一訓練過程及第二訓練過程將在之後輔以圖4及圖5另行說明。First, in step S210, the processor 104 can obtain the first type of neural network that has undergone the first training process and the second training process. In the embodiment of the present invention, the first type of neural network is, for example, a convolutional neural network, and the related first training process and second training process will be described later with reference to FIG. 4 and FIG. 5 .

接著,在步驟S220中,處理器104可決定各基地台111~114的第一發射波束,並據以量測各基地台111~114在特定場域的特定訊號強度分布圖。在一實施例中,處理器104可隨機為各基地台111~114在上述3個發射波束中選擇一者作為第一發射波束。例如,處理器104可為基地台111~114分別選擇發射波束1、2、3、1作為基地台111~114的第一發射波束,但可不限於此。Next, in step S220, the processor 104 may determine the first transmit beams of the base stations 111-114, and measure the specific signal intensity distribution diagram of the base stations 111-114 in the specific field accordingly. In one embodiment, the processor 104 may randomly select one of the three transmit beams as the first transmit beam for each base station 111 - 114 . For example, the processor 104 may select the transmit beams 1, 2, 3, and 1 for the base stations 111-114, respectively, as the first transmit beams of the base stations 111-114, but it is not limited thereto.

為便於理解本發明的概念,以下另輔以圖3作進一步說明。請參照圖3,其是依據本發明之一實施例繪示的應用情境圖。如圖3所示,在決定各基地台111~114的第一發射波束之後,處理器104可從相關行動網路的資料庫中萃取所需的資料以產生各基地台111~114在特定場域的特定訊號強度分布圖ST1~ST4。In order to facilitate the understanding of the concept of the present invention, the following further description is supplemented with FIG. 3 . Please refer to FIG. 3 , which is an application scenario diagram according to an embodiment of the present invention. As shown in FIG. 3 , after determining the first transmit beams of the base stations 111 - 114 , the processor 104 can extract the required data from the database of the relevant mobile network to generate the data in the specific field of the base stations 111 - 114 Domain-specific signal strength distribution maps ST1~ST4.

在圖3中,特定訊號強度分布圖ST1~ST4個別可表徵為一NxM的矩陣,而其中的每個矩陣元素可代表對應的基地台在特定場域中的對應位置的訊號強度,但可不限於此。In FIG. 3 , the specific signal strength distribution diagrams ST1 to ST4 can be represented as an N×M matrix, and each matrix element can represent the signal strength of the corresponding base station at the corresponding position in the specific field, but not limited to this.

之後,在步驟S230中,處理器104可取得用戶裝置在特定場域中的特定位置分布圖PD1。在一實施例中,處理器104例如可從各基地台111~114取得所服務的用戶裝置所回報的測量報告(measurement report,MR)來估計各用戶裝置在特定場域中的位置,進而建構特定位置分布圖PD1,但可不限於此。Afterwards, in step S230, the processor 104 may obtain the specific location distribution map PD1 of the user device in the specific field. In one embodiment, the processor 104 can obtain, for example, measurement reports (MRs) reported by the served user equipments from the base stations 111 - 114 to estimate the positions of the user equipments in the specific field, and then construct the The specific location distribution map PD1, but not limited to this.

在步驟S240中依據特定位置分布圖PD1及各基地台111~114的特定訊號強度分布圖ST1~ST4產生第一特定矩陣SM1。In step S240, a first specific matrix SM1 is generated according to the specific position distribution map PD1 and the specific signal intensity distribution maps ST1-ST4 of each base station 111-114.

在圖3中,對應於特定場域的特定位置分布圖PD1(其維度例如是NxM)例如可包括多個黑點及白點,其中黑點代表特定場域中未有任何用戶裝置的位置,而白點則代表某個用戶裝置在特定場域中的位置,但可不限於此。In FIG. 3 , the specific location distribution map PD1 corresponding to the specific field (the dimension of which is, for example, NxM) may include, for example, a plurality of black and white dots, wherein the black dots represent the positions where there is no user device in the specific field, The white dots represent the position of a certain user device in a specific field, but it is not limited to this.

在一實施例中,處理器104可將特定位置分布圖PD1以分別對應於RGB的三張圖(其個別的維度亦為NxM)表示,其中對應於R的圖例如是特定位置分布圖PD1的R成分圖,對應於G的圖例如是特定位置分布圖PD1的G成分圖,而對應於B的圖例如是特定位置分布圖PD1的B成分圖。In one embodiment, the processor 104 may represent the specific location distribution map PD1 as three maps corresponding to RGB (the respective dimensions of which are also NxM), wherein the map corresponding to R is, for example, the specific location distribution map PD1. The R component map, the map corresponding to G is, for example, the G component map of the specific position distribution map PD1, and the map corresponding to B is, for example, the B component map of the specific position distribution map PD1.

相似地,處理器104亦可將特定訊號強度分布圖ST1~ST4個別拆解為分別對應於RGB的三張圖。換言之,處理器104可將特定位置分布圖PD1、特定訊號強度分布圖ST1~ST4轉換為5組RGB圖(即,共15張圖)。Similarly, the processor 104 can also decompose the specific signal intensity distribution maps ST1 to ST4 into three maps corresponding to RGB respectively. In other words, the processor 104 can convert the specific position distribution map PD1 and the specific signal intensity distribution maps ST1 to ST4 into 5 sets of RGB images (ie, 15 images in total).

在一實施例中,處理器104可將上述5組RGB圖疊合為一15xNxM的三維矩陣,以作為第一特定矩陣SM1,但可不限於此。In one embodiment, the processor 104 may superimpose the above-mentioned five sets of RGB images into a 15×N×M three-dimensional matrix to serve as the first specific matrix SM1 , but it is not limited thereto.

之後,在步驟S250中,處理器104可將第一特定矩陣SM1輸入至第一類神經網路NN1。在一實施例中,第一類神經網路NN1可依據第一特定矩陣SM1輸出第二特定矩陣SM2,其中第二特定矩陣SM2可包括各基地台111~114選用各發射波束的機率。Afterwards, in step S250, the processor 104 may input the first specific matrix SM1 to the first type of neural network NN1. In one embodiment, the first type of neural network NN1 can output a second specific matrix SM2 according to the first specific matrix SM1, wherein the second specific matrix SM2 can include the probability that each base station 111-114 selects each transmission beam.

在一實施例中,由於基地台111~114的數量為4,且其個別具有3個發射波束,故第二特定矩陣SM2例如是一4x3的二維矩陣,其中第二特定矩陣SM2的第n列(

Figure 02_image001
)的3個元素分別可代表基地台111~114中的第n個基地台選用發射波束1、2、3的機率(其總和為1)。舉例而言,當n為1時,第二特定矩陣SM2的第1列的3個元素分別可代表基地台111選用發射波束1、2、3的機率(其總和為1),而當n為2時,第二特定矩陣SM2的第2列的3個元素分別可代表基地台112選用發射波束1、2、3的機率(其總和為1),但可不限於此。 In one embodiment, since the number of base stations 111 to 114 is 4, and each of them has 3 transmit beams, the second specific matrix SM2 is, for example, a 4×3 two-dimensional matrix, wherein the nth of the second specific matrix SM2 is List(
Figure 02_image001
The three elements of ) respectively represent the probability that the nth base station among the base stations 111 to 114 selects the transmit beams 1, 2, and 3 (the sum of which is 1). For example, when n is 1, the three elements in the first column of the second specific matrix SM2 can represent the probability that the base station 111 selects transmit beams 1, 2, and 3 respectively (the sum of which is 1), and when n is When 2 is 2, the three elements in the second column of the second specific matrix SM2 may respectively represent the probability that the base station 112 selects the transmit beams 1, 2, and 3 (the sum of which is 1), but is not limited thereto.

之後,在步驟S260中,處理器104可基於第二特定矩陣SM2決定各基地台111~114對應的最佳發射波束。在一實施例中,處理器104可對第二特定矩陣SM2取argmax運算子,以取得發射波束引數向量,並基於發射波束引數向量決定各基地台111~114對應的最佳發射波束。Afterwards, in step S260, the processor 104 may determine the optimal transmit beam corresponding to each base station 111-114 based on the second specific matrix SM2. In one embodiment, the processor 104 may take the argmax operator on the second specific matrix SM2 to obtain the transmit beam parameter vector, and determine the optimal transmit beam corresponding to each base station 111-114 based on the transmit beam parameter vector.

舉例而言,假設第二特定矩陣SM2的內容可表示為下表一。   發射波束1 發射波束2 發射波束3 基地台111 0.3 0.3 0.4 基地台112 0.4 0.5 0.1 基地台113 0.7 0.2 0.1 基地台114 0.8 0.1 0.1 表一 。在此情況下,在處理器104對第二特定矩陣SM2取argmax運算子之後,例如可得到

Figure 02_image003
的發射波束引數向量。 For example, it is assumed that the content of the second specific matrix SM2 can be represented as Table 1 below. transmit beam 1 transmit beam 2 transmit beam 3 Base station 111 0.3 0.3 0.4 Base station 112 0.4 0.5 0.1 Base station 113 0.7 0.2 0.1 Base station 114 0.8 0.1 0.1 Table I. In this case, after the processor 104 takes the argmax operator on the second specific matrix SM2, for example, it can be obtained
Figure 02_image003
The transmit beam argument vector.

由上述發射波束引數向量可看出,基地台111最適合選擇發射波束3,基地台112最適合選擇發射波束2,基地台113最適合選擇發射波束1,且基地台114最適合選擇發射波束1,但可不限於此。換言之,基地台111~114的最佳發射波束分別例如是發射波束3、2、1、1,但可不限於此。From the above transmit beam argument vector, it can be seen that base station 111 is most suitable for selecting transmit beam 3, base station 112 is most suitable for selecting transmit beam 2, base station 113 is most suitable for selecting transmit beam 1, and base station 114 is most suitable for selecting transmit beam 1, but not limited to this. In other words, the optimal transmit beams of the base stations 111 to 114 are, for example, transmit beams 3, 2, 1, and 1, respectively, but not limited thereto.

之後,在步驟S270中,處理器104可控制各基地台111~114使用對應的最佳發射波束發射信號。例如,處理器104可控制基地台111~114分別使用是發射波束3、2、1、1發射信號。Afterwards, in step S270, the processor 104 may control each base station 111-114 to transmit signals using the corresponding optimal transmit beam. For example, the processor 104 can control the base stations 111-114 to use the transmit beams 3, 2, 1, and 1 to transmit signals, respectively.

在本發明的一實施例中,透過適當地設計第一類神經網路NN1的第一訓練過程及第二訓練過程,可讓第一類神經網路NN1因應於第一特定矩陣SM1所輸出的第二特定矩陣SM2可表徵各基地台111~114應如何選擇發射波束方能降低彼此的干擾,從而提升特定場域內的傳輸品質及頻譜效益,進而改善特定場域中的用戶裝置的傳輸體驗。以下將針對第一訓練過程及第二訓練過程作進一步說明。In an embodiment of the present invention, by appropriately designing the first training process and the second training process of the first type of neural network NN1, the first type of neural network NN1 can be made to respond to the output of the first specific matrix SM1 The second specific matrix SM2 can represent how each base station 111 - 114 should select transmit beams so as to reduce mutual interference, thereby improving the transmission quality and spectrum efficiency in a specific field, and further improving the transmission experience of the user equipment in the specific field . The following will further describe the first training process and the second training process.

請參照圖4,其是依據本發明之一實施例繪示的第一訓練過程示意圖。本實施例的方法可由圖1的管理伺服器100執行,以下即搭配圖1所示的元件說明圖4各步驟的細節。Please refer to FIG. 4 , which is a schematic diagram of a first training process according to an embodiment of the present invention. The method of this embodiment can be executed by the management server 100 in FIG. 1 , and the details of each step in FIG. 4 will be described below in conjunction with the components shown in FIG. 1 .

在本發明的實施例中,第一訓練過程可包括數個遞迴程序,而圖4的內容係對應於第一訓練過程中的第i個遞迴程序,但可不限於此。In the embodiment of the present invention, the first training process may include several recursive procedures, and the content of FIG. 4 corresponds to the i-th recursive procedure in the first training process, but it is not limited thereto.

首先,在步驟S411中,處理器104可決定第一類神經網路NN1的多個第一神經元權重。在一實施例中,當i為1時,處理器104可隨機產生上述第一神經元權重,但可不限於此。First, in step S411, the processor 104 may determine a plurality of first neuron weights of the first type of neural network NN1. In one embodiment, when i is 1, the processor 104 may randomly generate the above-mentioned first neuron weight, but it is not limited thereto.

在步驟S412中,處理器104可決定各基地台111~114的第二發射波束,並據以模擬各基地台111~114在特定場域的第一參考訊號強度分布圖。在一實施例中,當i為1時,處理器104可隨機為各基地台111~114在發射波束1、2、3中擇一作為對應的第二發射波束,其細節可參照先前實施例中的說明,於此不另贅述。之後,處理器104可藉由運行特定的模擬軟體來模擬各基地台111~114在特定場域的第一參考訊號強度分布圖。在本實施例中,各基地台111~114對應的第一參考訊號強度分布圖的形式可相似於圖3中的特定訊號強度分布圖ST1~ST4,但可不限於此。In step S412, the processor 104 can determine the second transmit beams of the base stations 111-114, and simulate the first reference signal intensity distribution map of the base stations 111-114 in a specific field accordingly. In one embodiment, when i is 1, the processor 104 may randomly select one of the transmit beams 1, 2, and 3 for each base station 111-114 as the corresponding second transmit beam. For details, please refer to the previous embodiment. The description in , will not be repeated here. Afterwards, the processor 104 can simulate the first reference signal intensity distribution diagram of each base station 111-114 in a specific field by running a specific simulation software. In this embodiment, the form of the first reference signal intensity distribution map corresponding to each base station 111 - 114 may be similar to the specific signal intensity distribution map ST1 - ST4 in FIG. 3 , but not limited thereto.

在步驟S413中,處理器104可取得多個參考用戶裝置在特定場域中的參考位置分布圖。在一些實施例中,處理器104可依據各參考用戶裝置提供的MR決定其個別在特定場域中的位置,並據以建構參考位置分布圖,但可不限於此。在一實施例中,參考位置分布圖的形式可相似於圖3中的特定位置分布圖PD1,但可不限於此。In step S413, the processor 104 may obtain a reference position distribution map of a plurality of reference user equipments in a specific field. In some embodiments, the processor 104 may determine the respective positions of the reference user equipments in the specific field according to the MRs provided by the reference user equipments, and construct the reference position distribution map accordingly, but it is not limited thereto. In one embodiment, the form of the reference location distribution map may be similar to the specific location distribution map PD1 in FIG. 3 , but it is not limited thereto.

在步驟S414中,處理器104可依據參考位置分布圖及各基地台111~114的第一參考訊號強度分布圖產生第一參考矩陣。在本實施例中,處理器104可採用相似於先前實施例中提及的方式將參考位置分布圖及各基地台111~114的第一參考訊號強度分布圖個別轉換為對應的RGB圖,並將其疊合為一15xNxM的三維矩陣,以作為第一參考矩陣,但可不限於此。In step S414, the processor 104 may generate a first reference matrix according to the reference position distribution map and the first reference signal intensity distribution map of each base station 111-114. In this embodiment, the processor 104 can convert the reference position distribution map and the first reference signal intensity distribution map of each base station 111 - 114 into corresponding RGB maps individually in a manner similar to that mentioned in the previous embodiment, and It is superimposed into a 15xNxM three-dimensional matrix as the first reference matrix, but it is not limited to this.

在步驟S415中,處理器104可將第一參考矩陣輸入至第一類神經網路,其中第一類神經網路可依據第一參考矩陣輸出第二參考矩陣,其中第二參考矩陣包括各基地台111~114選用各發射波束的機率。在本實施例中,第二參考矩陣的形式可相似於第二特定矩陣SM2的形式,故其細節於此不另贅述。In step S415, the processor 104 may input the first reference matrix to the first type of neural network, wherein the first type of neural network may output a second reference matrix according to the first reference matrix, wherein the second reference matrix includes each base Stations 111 to 114 select the probability of each transmit beam. In this embodiment, the form of the second reference matrix may be similar to the form of the second specific matrix SM2, so the details thereof will not be repeated here.

在步驟S416中,處理器104可對第二參考矩陣取argmax運算子,以取得第一參考向量,並基於第一參考向量決定各基地台111~114對應的第三發射波束。在本實施例中,第一參考向量的形式可相似於上述發射波束引數向量,而處理器104決定各基地台111~114對應的第三發射波束的方式相似於處理器104基於上述發射波束引數向量為各基地台111~114決定最佳發射波束的方式,故其細節於此不另贅述。In step S416, the processor 104 may take the argmax operator on the second reference matrix to obtain the first reference vector, and determine the third transmit beams corresponding to the base stations 111-114 based on the first reference vector. In this embodiment, the form of the first reference vector may be similar to the above-mentioned transmit beam argument vector, and the manner in which the processor 104 determines the third transmit beam corresponding to each base station 111-114 is similar to that of the processor 104 based on the above-mentioned transmit beam The argument vector is a way for each base station 111 to 114 to determine the optimal transmission beam, so the details thereof will not be repeated here.

在步驟S417中,處理器104可依據各基地台111~114對應的第三發射波束模擬各基地台111~114在特定場域的第二參考訊號強度分布圖。相似地,處理器104可藉由運行特定的模擬軟體來模擬各基地台111~114在特定場域的第二參考訊號強度分布圖。在本實施例中,各基地台111~114對應的第二參考訊號強度分布圖的形式可相似於圖3中的特定訊號強度分布圖ST1~ST4,但可不限於此。In step S417, the processor 104 can simulate the second reference signal intensity distribution diagram of each base station 111-114 in a specific field according to the third transmit beam corresponding to each base station 111-114. Similarly, the processor 104 can simulate the second reference signal intensity distribution map of each base station 111-114 in a specific field by running a specific simulation software. In this embodiment, the form of the second reference signal intensity distribution map corresponding to each base station 111 - 114 may be similar to the specific signal intensity distribution map ST1 - ST4 in FIG. 3 , but not limited thereto.

在步驟S418中,處理器104可依據參考位置分布圖及各基地台111~114的第二參考訊號強度分布圖產生第三參考矩陣,並取得所述多個參考用戶裝置的一第一平均通訊品質。在本實施例中,第三參考矩陣例如是一15xNxM的三維矩陣,而其產生方式相似於第一參考矩陣的產生方式,故於此不另贅述。另外,上述第一平均通訊品質例如是所述多個參考用戶裝置的平均傳輸速度或其他可用於代表通訊品質的數據,但可不限於此。In step S418, the processor 104 may generate a third reference matrix according to the reference position distribution map and the second reference signal intensity distribution map of each base station 111-114, and obtain a first average communication of the plurality of reference user equipments quality. In this embodiment, the third reference matrix is, for example, a 15×N×M three-dimensional matrix, and the generation method thereof is similar to that of the first reference matrix, so it will not be repeated here. In addition, the above-mentioned first average communication quality is, for example, the average transmission speed of the plurality of reference user devices or other data that can be used to represent the communication quality, but it is not limited thereto.

在步驟S419中,處理器104可決定第二類神經網路的多個第二神經元權重。在一實施例中,第二類神經網路的各項參數可大致相同於第一類神經網路,惟其中各神經元的權重不同於第一類神經網路,但可不限於此。在一些實施例中,當i為1時,處理器104可隨機產生上述第二神經元權重,但可不限於此。In step S419, the processor 104 may determine a plurality of second neuron weights of the second type of neural network. In one embodiment, the parameters of the second type of neural network may be substantially the same as the first type of neural network, but the weight of each neuron is different from that of the first type of neural network, but not limited thereto. In some embodiments, when i is 1, the processor 104 may randomly generate the above-mentioned second neuron weight, but it is not limited thereto.

在步驟S420中,處理器104可將第三參考矩陣輸入至第二類神經網路,其中第二類神經網路可依據第三參考矩陣輸出第四參考矩陣,且第四參考矩陣包括各基地台111~114選用各發射波束的機率。在本實施例中,第四參考矩陣的形式可相似於第二特定矩陣SM2的形式,故其細節於此不另贅述。In step S420, the processor 104 may input the third reference matrix to the second type of neural network, wherein the second type of neural network may output a fourth reference matrix according to the third reference matrix, and the fourth reference matrix includes each base Stations 111 to 114 select the probability of each transmit beam. In this embodiment, the form of the fourth reference matrix may be similar to the form of the second specific matrix SM2, so the details thereof will not be repeated here.

在步驟S421中,處理器104可基於第四參考矩陣決定所述多個基地台對於所述多個發射波束的第一選用機率向量,並基於第一選用機率向量、第一平均通訊品質及第一參考向量決定一第一均方誤差值。在一實施例中,處理器104可對第四參考矩陣取max運算子,以取得第一選用機率向量。In step S421, the processor 104 may determine the first selection probability vector of the plurality of base stations for the plurality of transmit beams based on the fourth reference matrix, and based on the first selection probability vector, the first average communication quality and the first selection probability vector A reference vector determines a first mean squared error value. In one embodiment, the processor 104 may perform a max operator on the fourth reference matrix to obtain the first selection probability vector.

舉例而言,假設第四參考矩陣的內容可表示為下表二。   發射波束1 發射波束2 發射波束3 基地台111 0.3 0.3 0.4 基地台112 0.4 0.5 0.1 基地台113 0.7 0.2 0.1 基地台114 0.8 0.1 0.1 表二 。在此情況下,在處理器104對第四參考矩陣取max運算子之後,例如可得到

Figure 02_image005
的第一選用機率向量(其維度為4x1),但可不限於此。 For example, it is assumed that the content of the fourth reference matrix can be represented as Table 2 below. transmit beam 1 transmit beam 2 transmit beam 3 Base station 111 0.3 0.3 0.4 Base station 112 0.4 0.5 0.1 Base station 113 0.7 0.2 0.1 Base station 114 0.8 0.1 0.1 Table II. In this case, after the processor 104 takes the max operator on the fourth reference matrix, for example, it can be obtained
Figure 02_image005
The first selection probability vector of (its dimension is 4x1), but not limited to this.

此外,在一實施例中,處理器104可取得第一選用機率向量及第一平均通訊品質的第一非線性組合值。舉例而言,假設第一平均通訊品質為Z,則處理器104可將第一平均通訊品質轉換為一4x1的向量,而此向量的每個元素皆為Z,進而將此向量與第一選用機率向量進行非線性組合,以產生上述第一非線性組合值。在不同的實施例中,處理器104可依設計者的需求而採用不同的方式將第一選用機率向量及第一平均通訊品質進行非線性組合。例如,若設計者較重視第一平均通訊品質,則可相應地為第一平均通訊品質設定較高的權重/係數,以加強第一平均通訊品質對於上述第一非線性組合值的影響,但可不限於此。In addition, in one embodiment, the processor 104 can obtain the first nonlinear combination value of the first selection probability vector and the first average communication quality. For example, assuming that the first average communication quality is Z, the processor 104 can convert the first average communication quality into a 4×1 vector, and each element of this vector is Z, and then combine this vector with the first selected The probability vectors are non-linearly combined to generate the first non-linear combination value described above. In different embodiments, the processor 104 may use different ways to non-linearly combine the first selection probability vector and the first average communication quality according to the designer's requirements. For example, if the designer attaches more importance to the first average communication quality, a higher weight/coefficient can be set for the first average communication quality accordingly, so as to enhance the influence of the first average communication quality on the above-mentioned first nonlinear combination value, but But not limited to this.

之後,處理器104可估計第一非線性組合值與第一參考向量的均方誤差值作為第一訓練過程的第i次遞迴程序的第一均方誤差值。Afterwards, the processor 104 may estimate the mean square error value of the first nonlinear combination value and the first reference vector as the first mean square error value of the ith recursive procedure of the first training process.

接著,在步驟S422中,處理器104可以第一參考矩陣、第三參考矩陣及第一平均通訊品質作為所述第i次遞迴程序的訓練資料。Next, in step S422, the processor 104 may use the first reference matrix, the third reference matrix and the first average communication quality as training data for the ith recursive procedure.

在一實施例中,反應於判定i大於1,則所述第i次遞迴程序中的第一類神經網路可經處理器104設定為相同於第(i-1)次遞迴程序中的第一類神經網路,且所述第i次遞迴程序中的第二類神經網路可經處理器104設定相同於第(i-1)次遞迴程序中的第二類神經網路。簡言之,處理器104係沿用前一次遞迴程序中的第一類神經網路NN1及第二類神經網路作為當次遞迴程序中的第一類神經網路NN1及第二類神經網路,但可不限於此。In one embodiment, in response to determining that i is greater than 1, the first type of neural network in the i-th recursive procedure can be set by the processor 104 to be the same as in the (i-1)-th recursive procedure and the second type of neural network in the ith recursive procedure can be set by the processor 104 to be the same as the second type of neural network in the (i-1)th recursive procedure road. In short, the processor 104 uses the first-type neural network NN1 and the second-type neural network in the previous recursive procedure as the first-type neural network NN1 and the second-type neural network in the current recursive procedure. Internet, but not limited to this.

在一實施例中,反應於判定i大於1,則所述第i次遞迴程序中的第一參考訊號強度分布圖可經處理器104設定為相同於第(i-1)次遞迴程序中的第二參考訊號強度分布圖。簡言之,處理器104係沿用前一次遞迴程序中的第二參考訊號強度分布圖作為當次遞迴程序中的第一參考訊號強度分布圖,但可不限於此。In one embodiment, in response to determining that i is greater than 1, the first reference signal intensity distribution map in the i-th recursive procedure can be set by the processor 104 to be the same as the (i-1)-th recursive procedure The second reference signal strength profile in . In short, the processor 104 uses the second reference signal intensity distribution map in the previous recursive process as the first reference signal intensity distribution map in the current recursive process, but it is not limited thereto.

在一實施例中,反應於判定i到達一預設同步數量(例如6000),處理器104還可將第二類神經網路設定為相同於第一類神經網路NN1。具體而言,由於第一/第二類神經網路的參數調整易有震盪情形發生(例如,第一類神經網路的權重/參數更新較快,而第二類神經網路的權重/參數更新則較為緩慢),而透過上述技術手段可適時地讓第二類神經網路跟進第一類神經網路的學習進度,但可不限於此。In one embodiment, in response to determining that i reaches a predetermined synchronization number (eg, 6000), the processor 104 may further set the second type of neural network to be the same as the first type of neural network NN1. Specifically, since the parameter adjustment of the first/second type of neural network is prone to oscillations (for example, the weights/parameters of the first type of neural network are updated quickly, while the weights/parameters of the second type of neural network The update is relatively slow), and through the above technical means, the second type of neural network can follow the learning progress of the first type of neural network in a timely manner, but it is not limited to this.

在一實施例中,反應於判定i到達第一預設數量(例如100),則在取得所述第i次遞迴程序的訓練資料之後,處理器104還可決定所述第i次遞迴程序的第一均方誤差值至第(i-Y+1)次遞迴程序的第一均方誤差值個別的第一特定機率,並據以決定所述第i次遞迴程序的訓練資料至第(i-Y+1)次遞迴程序的訓練資料個別的第一參考權重,其中Y為第一預設數量(例如100)。In one embodiment, in response to determining that i reaches a first preset number (for example, 100), the processor 104 may further determine the i-th recursion after acquiring the training data of the i-th recursion procedure From the first mean square error value of the procedure to the first specific probability of the first mean square error value of the (i-Y+1)th recursive procedure, and determine the training data of the i-th recursive procedure accordingly Individual first reference weights of training data up to the (i-Y+1)th recursive procedure, where Y is a first predetermined number (eg, 100).

在一實施例中,所述第i次遞迴程序的第一特定機率可表徵為

Figure 02_image007
,其中
Figure 02_image009
為所述第i次遞迴程序的第一均方誤差值,
Figure 02_image011
為第一訓練過程中的第k次遞迴程序的第一均方誤差值。由上可知,所述第i次遞迴程序的第一特定機率可正相關於所述第i次遞迴程序的第一均方誤差值。 In one embodiment, the first specific probability of the i-th recursive procedure can be characterized as
Figure 02_image007
,in
Figure 02_image009
is the first mean square error value of the i-th recursive procedure,
Figure 02_image011
is the first mean square error value of the k-th recursive procedure in the first training process. It can be seen from the above that the first specific probability of the ith recursive procedure may be positively related to the first mean square error value of the ith recursive procedure.

另外,所述第i次遞迴程序的第一參考權重可表徵為

Figure 02_image013
,其中BS為訓練資料容量,而
Figure 02_image015
為所述第i次遞迴程序的第一特定機率。在一實施例中,所述訓練資料容量例如是管理伺服器100可容納的訓練資料總數。舉例而言,假設訓練資料容量為10000,則在處理器104收集到第10001筆訓練資料時,處理器104可相應地拋棄第1筆訓練資料,但可不限於此。 In addition, the first reference weight of the i-th recursive procedure can be characterized as
Figure 02_image013
, where BS is the training data capacity, and
Figure 02_image015
is the first specific probability of the i-th recursive procedure. In one embodiment, the training data capacity is, for example, the total number of training data that the management server 100 can accommodate. For example, assuming that the capacity of training data is 10000, when the processor 104 collects the 10001st piece of training data, the processor 104 can correspondingly discard the first piece of training data, but it is not limited to this.

之後,處理器104可基於所述第i次遞迴程序的訓練資料至第(i-Y+1)次遞迴程序的訓練資料個別的第一參考權重選用所述第i次遞迴程序的訓練資料至第(i-Y+1)次遞迴程序的訓練資料中的一部分訓練第一類神經網路NN1及第二類神經網路,以更新所述多個第一神經元權重及所述多個第二神經元權重。在一實施例中,所述第i次遞迴程序的訓練資料被選用於訓練第一類神經網路及第二類神經網路的機率正相關於所述第i次遞迴程序的第一參考權重。Afterwards, the processor 104 may select the first reference weight of the i-th recursive procedure based on the training data of the i-th recursive procedure to the respective first reference weights of the training data of the (i-Y+1)-th recursive procedure Part of the training data to the training data of the (i-Y+1)th recursive procedure trains the first type neural network NN1 and the second type neural network to update the plurality of first neuron weights and all the plurality of second neuron weights. In one embodiment, the probability that the training data of the ith recursive procedure is selected for training the first type of neural network and the second type of neural network is positively related to the first Reference weight.

由上可知,在第一訓練過程中,處理器104在每收集到第一預設數量(例如100)筆訓練資料之後,方會基於這些訓練資料中的一部分訓練第一類神經網路NN1及第二類神經網路,而這些訓練資料個別被選用於訓練第一類神經網路NN1及第二類神經網路的機率則為其對應的第一參考權重。As can be seen from the above, in the first training process, the processor 104 will only train the first type of neural network NN1 and The second type of neural network, and the probability that the training data are individually selected for training the first type of neural network NN1 and the second type of neural network is the corresponding first reference weight.

在本發明的實施例中,處理器104可持續執行第一訓練過程中的遞迴程序,直至所取得的第一平均通訊品質滿足指定的服務條件(例如到達一定的傳輸速度等),方能判定已完成第一訓練過程,但可不限於此。In the embodiment of the present invention, the processor 104 can continuously execute the recursive procedure in the first training process until the obtained first average communication quality satisfies a specified service condition (for example, a certain transmission speed is reached). It is determined that the first training process has been completed, but may not be limited thereto.

在一實施例中,在完成第一訓練過程之後,處理器104可接續執行第一類神經網路的第二訓練過程,其細節詳述如下。In one embodiment, after completing the first training process, the processor 104 may continue to perform the second training process of the first type of neural network, the details of which are described below.

請參照圖5,其是依據本發明之一實施例繪示的第二訓練過程示意圖。本實施例的方法可由圖1的管理伺服器100執行,以下即搭配圖1所示的元件說明圖5各步驟的細節。Please refer to FIG. 5 , which is a schematic diagram of a second training process according to an embodiment of the present invention. The method of this embodiment can be executed by the management server 100 in FIG. 1 , and the details of each step in FIG. 5 will be described below in conjunction with the components shown in FIG. 1 .

在本發明的實施例中,第二訓練過程可包括數個遞迴程序,而圖5的內容係對應於第二訓練過程中的第j個遞迴程序,但可不限於此。In an embodiment of the present invention, the second training process may include several recursive procedures, and the content of FIG. 5 corresponds to the j-th recursive procedure in the second training process, but it is not limited thereto.

在步驟S511中,處理器104可取得經歷第一訓練過程的第一類神經網路NN1。在一實施例中,由於第一類神經網路NN1已經歷第一訓練過程,故可降低第一類神經網路NN1在第二訓練過程初期的不穩定性。In step S511, the processor 104 may obtain the first type of neural network NN1 that has undergone the first training process. In one embodiment, since the first type of neural network NN1 has undergone the first training process, the instability of the first type of neural network NN1 in the early stage of the second training process can be reduced.

在步驟S512中,處理器104可決定各基地台111~114的第四發射波束,並據以實際量測各基地台111~114在特定場域的第一實際訊號強度分布圖。在一實施例中,當j為1時,處理器104可隨機為各基地台111~114在發射波束1、2、3中擇一作為對應的第四發射波束,其細節可參照先前實施例中的說明,於此不另贅述。之後,有別於圖4中以模擬的方式產生各基地台111~114在特定場域的第一參考訊號強度分布圖,本實施例中各基地台111~114的第一實際訊號強度分布圖係經實際測量而得,而各基地台111~114對應的第一實際訊號強度分布圖的形式可相似於圖3中的特定訊號強度分布圖ST1~ST4,但可不限於此。In step S512, the processor 104 may determine the fourth transmit beam of each base station 111-114, and measure the first actual signal intensity distribution map of each base station 111-114 in a specific field accordingly. In one embodiment, when j is 1, the processor 104 may randomly select one of the transmit beams 1, 2, and 3 for each base station 111-114 as the corresponding fourth transmit beam. For details, please refer to the previous embodiment. The description in , will not be repeated here. Then, different from generating the first reference signal intensity distribution map of each base station 111-114 in a specific field in a simulated manner in FIG. 4, the first actual signal intensity distribution map of each base station 111-114 in this embodiment It is obtained through actual measurement, and the form of the first actual signal intensity distribution map corresponding to each base station 111 - 114 may be similar to the specific signal intensity distribution maps ST1 - ST4 in FIG. 3 , but not limited thereto.

在步驟S513中,處理器104可取得所述多個參考用戶裝置在特定場域中的位置分布圖。在一實施例中,處理器104例如可從各基地台111~114取得所服務的用戶裝置所回報的MR來估計各用戶裝置在特定場域中的位置,進而建構上述位置分布圖,但可不限於此。在一實施例中,上述位置分布圖的形式可相似於圖3中的特定位置分布圖PD1,但可不限於此。In step S513, the processor 104 may obtain a location distribution map of the plurality of reference user equipments in a specific field. In one embodiment, the processor 104 can obtain, for example, the MRs reported by the served user equipments from the base stations 111-114 to estimate the location of each user equipment in a specific field, and then construct the above-mentioned location distribution map, but it may not limited to this. In one embodiment, the form of the above-mentioned location distribution map may be similar to the specific location distribution map PD1 in FIG. 3 , but it is not limited thereto.

在步驟S514中,處理器104可依據位置分布圖及各基地台111~114的第一實際訊號強度分布圖產生第一矩陣。在本實施例中,處理器104可採用相似於先前實施例中提及的方式將上述位置分布圖及各基地台111~114的第一實際訊號強度分布圖個別轉換為對應的RGB圖,並將其疊合為一15xNxM的三維矩陣,以作為第一矩陣,但可不限於此。In step S514, the processor 104 may generate a first matrix according to the location distribution map and the first actual signal intensity distribution map of each base station 111-114. In this embodiment, the processor 104 can individually convert the above-mentioned location distribution map and the first actual signal intensity distribution map of each base station 111-114 into corresponding RGB images in a manner similar to that mentioned in the previous embodiment, and It is superimposed into a 15xNxM three-dimensional matrix as the first matrix, but it is not limited to this.

在步驟S515中,處理器104可將第一矩陣輸入至第一類神經網路NN1,其中第一類神經網路NN1可依據第一矩陣輸出第二矩陣,而第二矩陣包括各基地台111~114選用各發射波束的一機率。在本實施例中,第二矩陣的形式可相似於第二特定矩陣SM2的形式,故其細節於此不另贅述。In step S515, the processor 104 may input the first matrix to the first type of neural network NN1, wherein the first type of neural network NN1 may output a second matrix according to the first matrix, and the second matrix includes each base station 111 ~114 selects a probability for each transmit beam. In this embodiment, the form of the second matrix may be similar to the form of the second specific matrix SM2, so the details thereof will not be repeated here.

在步驟S516中,處理器104可對第二矩陣取argmax運算子,以取得第一向量,並基於第一向量決定各基地台111~114對應的第五發射波束。在本實施例中,第一向量的形式可相似於上述發射波束引數向量,而處理器104決定各基地台111~114對應的第五發射波束的方式相似於處理器104基於上述發射波束引數向量為各基地台111~114決定最佳發射波束的方式,故其細節於此不另贅述。In step S516, the processor 104 may take the argmax operator on the second matrix to obtain the first vector, and determine the fifth transmit beam corresponding to each base station 111-114 based on the first vector. In this embodiment, the form of the first vector may be similar to the above-mentioned transmit beam parameter vector, and the manner in which the processor 104 determines the fifth transmit beam corresponding to each base station 111-114 is similar to the manner in which the processor 104 determines the fifth transmit beam corresponding to the above-mentioned transmit beam The number vector is a way for each base station 111 to 114 to determine the optimal transmission beam, so the details thereof will not be repeated here.

在步驟S517中,處理器104可依據各基地台111~114對應的第五發射波束實際量測各基地台111~114在特定場域的第二實際訊號強度分布圖。相似地,處理器104可實際測量各基地台111~114在特定場域的第二實際訊號強度分布圖。在本實施例中,各基地台111~114對應的第二實際訊號強度分布圖的形式可相似於圖3中的特定訊號強度分布圖ST1~ST4,但可不限於此。In step S517, the processor 104 may actually measure the second actual signal intensity distribution diagram of each base station 111-114 in a specific field according to the fifth transmit beam corresponding to each base station 111-114. Similarly, the processor 104 can actually measure the second actual signal strength distribution diagram of each base station 111-114 in a specific field. In this embodiment, the form of the second actual signal intensity distribution map corresponding to each base station 111 - 114 may be similar to the specific signal intensity distribution map ST1 - ST4 in FIG. 3 , but not limited thereto.

在步驟S518中,處理器104可依據位置分布圖及各基地台111~114的第二實際訊號強度分布圖產生第三矩陣,並取得所述多個參考用戶裝置的第二平均通訊品質。在本實施例中,第三矩陣例如是一15xNxM的三維矩陣,而其產生方式相似於第一矩陣的產生方式,故於此不另贅述。另外,上述第二平均通訊品質例如是所述多個參考用戶裝置的平均傳輸速度或其他可用於代表通訊品質的數據,但可不限於此。In step S518, the processor 104 may generate a third matrix according to the location distribution map and the second actual signal strength distribution map of each base station 111-114, and obtain the second average communication quality of the plurality of reference user equipments. In this embodiment, the third matrix is, for example, a three-dimensional matrix of 15×N×M, and the generation method thereof is similar to that of the first matrix, so it will not be repeated here. In addition, the above-mentioned second average communication quality is, for example, the average transmission speed of the plurality of reference user devices or other data that can be used to represent the communication quality, but it is not limited thereto.

在步驟S519中,處理器104可取得經歷第一訓練過程的第二類神經網路。在步驟S520中,處理器104可將第三矩陣輸入至第二類神經網路,其中第二類神經網路可依據第三矩陣輸出第四矩陣,而第四矩陣包括各基地台111~114選用各發射波束的機率。在本實施例中,第四矩陣的形式可相似於第二特定矩陣SM2的形式,故其細節於此不另贅述。In step S519, the processor 104 may obtain the second type of neural network that has undergone the first training process. In step S520, the processor 104 may input the third matrix to the second type of neural network, wherein the second type of neural network may output a fourth matrix according to the third matrix, and the fourth matrix includes each of the base stations 111-114 The probability of selecting each transmit beam. In this embodiment, the form of the fourth matrix may be similar to the form of the second specific matrix SM2, so the details thereof will not be repeated here.

在步驟S521中,處理器104可基於第四矩陣決定所述多個基地台對於所述多個發射波束的第二選用機率向量,並基於第二選用機率向量、第二平均通訊品質及第一向量決定第二均方誤差值。在一實施例中,處理器104可對第四矩陣取max運算子,以取得第二選用機率向量。In step S521, the processor 104 may determine the second selection probability vector of the plurality of base stations for the plurality of transmit beams based on the fourth matrix, and based on the second selection probability vector, the second average communication quality and the first The vector determines the second mean squared error value. In one embodiment, the processor 104 may perform a max operator on the fourth matrix to obtain the second selection probability vector.

此外,在一實施例中,處理器104可取得第二選用機率向量及第二平均通訊品質的第二非線性組合值。舉例而言,假設第一平均通訊品質為Z’,則處理器104可將第二平均通訊品質轉換為一4x1的向量,而此向量的每個元素皆為Z’,進而將此向量與第二選用機率向量進行非線性組合,以產生上述第二非線性組合值。在不同的實施例中,處理器104可依設計者的需求而採用不同的方式將第二選用機率向量及第二平均通訊品質進行非線性組合。例如,若設計者較重視第二平均通訊品質,則可相應地為第二平均通訊品質設定較高的權重/係數,以加強第二平均通訊品質對於上述第二非線性組合值的影響,但可不限於此。In addition, in one embodiment, the processor 104 can obtain the second nonlinear combination value of the second selection probability vector and the second average communication quality. For example, assuming that the first average communication quality is Z', the processor 104 can convert the second average communication quality into a 4x1 vector, and each element of the vector is Z', and then combine this vector with the first The second selects the probability vector to perform nonlinear combination to generate the above-mentioned second nonlinear combination value. In different embodiments, the processor 104 may use different ways to non-linearly combine the second selection probability vector and the second average communication quality according to the designer's needs. For example, if the designer pays more attention to the second average communication quality, a higher weight/coefficient can be set for the second average communication quality accordingly to enhance the influence of the second average communication quality on the second non-linear combination value, but But not limited to this.

之後,處理器104可估計第二非線性組合值與第一向量的均方誤差值作為第二訓練過程的第j次遞迴程序的第二均方誤差值。Afterwards, the processor 104 may estimate the mean square error value of the second nonlinear combination value and the first vector as the second mean square error value of the j-th recursive procedure of the second training process.

在步驟S522中,處理器104可基於第二矩陣決定多個熵值。在一實施例中,第二矩陣可包括分別對應於基地台111~114的多個機率向量,且所述多個熵值中的第a個熵值可表徵為

Figure 02_image017
,其中
Figure 02_image019
為所述多個機率向量中對應於第a個基地台的第a個機率向量。 In step S522, the processor 104 may determine a plurality of entropy values based on the second matrix. In one embodiment, the second matrix may include a plurality of probability vectors corresponding to the base stations 111 to 114 respectively, and the a-th entropy value among the plurality of entropy values may be represented as
Figure 02_image017
,in
Figure 02_image019
is the a-th probability vector corresponding to the a-th base station among the plurality of probability vectors.

舉例而言,假設第二矩陣的內容可表示為下表三。   發射波束1 發射波束2 發射波束3 基地台111 0.3 0.3 0.4 基地台112 0.4 0.5 0.1 基地台113 0.7 0.2 0.1 基地台114 0.8 0.1 0.1 表三 For example, it is assumed that the content of the second matrix can be represented as Table 3 below. transmit beam 1 transmit beam 2 transmit beam 3 Base station 111 0.3 0.3 0.4 Base station 112 0.4 0.5 0.1 Base station 113 0.7 0.2 0.1 Base station 114 0.8 0.1 0.1 Table 3

在表三中,對應於基地台111的機率向量例如是

Figure 02_image021
,對應於基地台112的機率向量例如是
Figure 02_image023
,對應於基地台113的機率向量例如是
Figure 02_image025
,對應於基地台114的機率向量例如是
Figure 02_image027
。在此情況下,基地台111的熵值可表徵為
Figure 02_image029
,基地台112的熵值可表徵為
Figure 02_image031
,基地台113的熵值可表徵為
Figure 02_image033
,基地台114的熵值可表徵為
Figure 02_image035
,但可不限於此。 In Table 3, the probability vector corresponding to the base station 111 is, for example,
Figure 02_image021
, the probability vector corresponding to the base station 112 is, for example,
Figure 02_image023
, the probability vector corresponding to the base station 113 is, for example,
Figure 02_image025
, the probability vector corresponding to base station 114 is, for example,
Figure 02_image027
. In this case, the entropy value of the base station 111 can be characterized as
Figure 02_image029
, the entropy value of the base station 112 can be characterized as
Figure 02_image031
, the entropy value of the base station 113 can be characterized as
Figure 02_image033
, the entropy value of the base station 114 can be characterized as
Figure 02_image035
, but not limited to this.

在步驟S523中,處理器104可估計第二均方誤差值與所述多個熵值的組合值。例如,處理器104可將第二均方誤差值與所述多個熵值加總作為第二訓練過程的第j次遞迴程序的組合值,但可不限於此。In step S523, the processor 104 may estimate a combined value of the second mean square error value and the plurality of entropy values. For example, the processor 104 may add the second mean square error value and the plurality of entropy values as a combined value of the j-th recursive procedure of the second training process, but it is not limited thereto.

接著,在步驟S524中,處理器104可以第一矩陣、第三矩陣及第二平均通訊品質作為所述第j次遞迴程序的訓練資料。Next, in step S524, the processor 104 can use the first matrix, the third matrix and the second average communication quality as training data for the j-th recursive procedure.

在一實施例中,所述第j次遞迴程序中的第一類神經網路NN1可經處理器104設定為相同於第(j-1)次遞迴程序中的第一類神經網路NN1,且所述第j次遞迴程序中的第二類神經網路可經處理器104設定為相同於第(j-1)次遞迴程序中的第二類神經網路。簡言之,處理器104係沿用前一次遞迴程序中的第一類神經網路NN1及第二類神經網路作為當次遞迴程序中的第一類神經網路NN1及第二類神經網路,但可不限於此。In one embodiment, the first type of neural network NN1 in the j-th recursive procedure can be set by the processor 104 to be the same as the first type of neural network in the (j-1)-th iteration procedure NN1, and the second type of neural network in the j-th recursive procedure can be set by the processor 104 to be the same as the second-type neural network in the (j-1)-th iteration procedure. In short, the processor 104 uses the first-type neural network NN1 and the second-type neural network in the previous recursive procedure as the first-type neural network NN1 and the second-type neural network in the current recursive procedure. Internet, but not limited to this.

在一實施例中,反應於判定j到達一預設同步數量(例如6000),處理器104還可將第二類神經網路設定為相同於第一類神經網路NN1,以使第二類神經網路跟進第一類神經網路的學習進度,但可不限於此。In one embodiment, in response to determining that j reaches a preset synchronization number (eg, 6000), the processor 104 may further set the second type of neural network to be the same as the first type of neural network NN1, so that the second type of neural network The neural network follows the learning progress of the first type of neural network, but is not limited to this.

在一實施例中,反應於判定j到達一第二預設數量,(例如100)則在取得所述第j次遞迴程序的訓練資料之後,處理器104還可決定所述第j次遞迴程序的組合值至第(j-X+1)次遞迴程序的第二均方誤差值的組合值個別的第二特定機率,並據以決定所述第j次遞迴程序的訓練資料至第(j-X+1)次遞迴程序的訓練資料個別的一第二參考權重,其中X為第二預設數量。In one embodiment, in response to determining that j reaches a second predetermined number (for example, 100), after obtaining the training data of the j-th iteration procedure, the processor 104 may further determine the j-th iteration procedure. Return the combined value of the procedure to the second specific probability of the combined value of the second mean square error value of the (j-X+1)th iteration procedure, and determine the training data of the jth iteration procedure accordingly A second reference weight to the training data of the (j-X+1)th iteration, where X is a second predetermined number.

在一實施例中,所述第j次遞迴程序的第二特定機率可表徵為

Figure 02_image037
,其中
Figure 02_image039
為所述第j次遞迴程序的組合值,
Figure 02_image041
為第二訓練過程中的第k’次遞迴程序的組合值。由上可知,所述第j次遞迴程序的第二特定機率可正相關於所述第j次遞迴程序的組合值。 In one embodiment, the second specific probability of the j-th recursive procedure can be characterized as
Figure 02_image037
,in
Figure 02_image039
is the combined value of the j-th recursive procedure,
Figure 02_image041
Combined values for the k'th recursive procedure in the second training process. It can be seen from the above that the second specific probability of the j-th recursive procedure may be positively related to the combined value of the j-th recursive procedure.

另外,所述第j次遞迴程序的第二參考權重可表徵為

Figure 02_image043
,其中BS為訓練資料容量,
Figure 02_image045
為所述第j次遞迴程序的第二特定機率。 In addition, the second reference weight of the j-th recursive procedure can be characterized as
Figure 02_image043
, where BS is the training data capacity,
Figure 02_image045
is the second specific probability of the j-th recursive procedure.

之後,處理器104可基於所述第j次遞迴程序的訓練資料至第(j-X+1)次遞迴程序的訓練資料個別的第二參考權重選用所述第j次遞迴程序的訓練資料至第(j-X+1)次遞迴程序的訓練資料中的一部分訓練第一類神經網路NN1及第二類神經網路,以更新所述多個第一神經元權重及所述多個第二神經元權重。在一實施例中,所述第j次遞迴程序的訓練資料被選用於訓練第一類神經網路NN1及第二類神經網路的機率正相關於所述第j次遞迴程序的第二參考權重。Afterwards, the processor 104 may select the jth recursive procedure based on the individual second reference weights from the training data of the j-th recursive procedure to the training data of the (j-X+1)-th recursive procedure A part of the training data to the training data of the (j-X+1)th recursive procedure trains the first-type neural network NN1 and the second-type neural network to update the plurality of first neuron weights and all the plurality of second neuron weights. In one embodiment, the probability that the training data of the jth recursive procedure is selected for training the first type of neural network NN1 and the second type of neural network is positively related to the probability of the jth iteration procedure. Two reference weights.

由上可知,在第二訓練過程中,處理器104在每收集到第二預設數量(例如100)筆訓練資料之後,方會基於這些訓練資料中的一部分訓練第一類神經網路NN1及第二類神經網路,而這些訓練資料個別被選用於訓練第一類神經網路NN1及第二類神經網路的機率則為其對應的第二參考權重。It can be seen from the above that in the second training process, the processor 104 will only train the first type of neural network NN1 and The second type of neural network, and the probability that the training data are individually selected for training the first type of neural network NN1 and the second type of neural network is its corresponding second reference weight.

在本發明的實施例中,處理器104可持續執行第二訓練過程中的遞迴程序,直至所取得的第二平均通訊品質滿足指定的服務條件(例如到達一定的傳輸速度等),方能判定已完成第二訓練過程,但可不限於此。In the embodiment of the present invention, the processor 104 can continue to execute the recursive procedure in the second training process until the acquired second average communication quality meets the specified service conditions (for example, reaches a certain transmission speed, etc.). It is determined that the second training process has been completed, but may not be limited thereto.

在完成第二訓練過程之後,處理器104即可以Docker將第一類神經網路NN1的相關神經網路參數進行包裝,並可用於執行步驟S210~S270,以為各基地台111~114決定最佳發射波束。After the second training process is completed, the processor 104 can package the relevant neural network parameters of the first type of neural network NN1 with Docker, and can be used to execute steps S210-S270 to determine the optimum for each base station 111-114 transmit beam.

綜上所述,本發明旨在利用深度強化學習優勢降低因基地台數目上升而造成波束選擇空間指數上升影響之方法。處理器可提取資料庫資料並繪製各式訊號強度分布圖,此可作為往後深度強化學習運算模組之處理依據。基於此深度強化學習運算模組,可訓練一回授式深層類神經網路以作為輸出最佳波束選擇之模型。此外,本發明亦加重取樣機制與權重回補機制能加速第一/第二類神經網路的學習速度及提升學習能力,且透過此方式更能充分利用過往的訓練資料以提高訓練資料利用率。由於無線通訊環境中資料的蒐集常有遺漏或重複的特徵,故此能力尤其重要。To sum up, the present invention aims to use the advantages of deep reinforcement learning to reduce the influence of the increase in the beam selection space index caused by the increase in the number of base stations. The processor can extract the database data and draw various signal intensity distribution maps, which can be used as the processing basis for the deep reinforcement learning computing module in the future. Based on this deep reinforcement learning operation module, a feedback deep neural network can be trained as a model for outputting optimal beam selection. In addition, the present invention also has a re-sampling mechanism and a weight complementing mechanism, which can accelerate the learning speed of the first/second type of neural network and improve the learning ability, and through this method, the past training data can be fully utilized to improve the utilization rate of the training data. . This capability is particularly important because the collection of data in wireless communication environments is often characterized by omission or duplication.

另外,本發明能減少決定各基地的最佳發射波束的時間,並還可即時進行參數修正或架構調整,達到線上學習目的與優點。In addition, the present invention can reduce the time for determining the optimal transmission beam of each base, and can also perform parameter correction or structure adjustment in real time, so as to achieve the purpose and advantages of online learning.

本發明為多基地台聯合優化方法解決基地台間干擾議題,由於行動網路參數環環相扣,相較於各基地台各自優化,基地台間聯合優化才能得到最佳解。The present invention is a multi-base station joint optimization method to solve the problem of inter-base station interference. Since the parameters of the mobile network are interlinked, compared to the individual optimization of each base station, the joint optimization between the base stations can obtain the best solution.

本發明尚考慮無線通訊領域偶有特殊事件,針對稀少事件有必要做額外加重取樣處理,否則第一/第二類神經網路不見得學得起來,亦或是增加學習時間,故本發明有額外機率估測機制與權重調整功能。The present invention also considers that there are occasional special events in the field of wireless communication, and it is necessary to perform additional re-sampling processing for rare events, otherwise the first/second type neural network may not be learned, or the learning time may be increased, so the present invention has Additional probability estimation mechanism and weight adjustment function.

本發明提出之方法能利用過往歷史的資料,有別於某些智能方法直接針對目標函數進行梯度操作使得參數調整機制只能接受當下新鮮資料,這類方法在無線通訊環境中並不適合,因無線通訊環境資料蒐集常有遺漏或重複,本發明的方法不受此限,不管是當下新鮮資料或是過往歷史資料均能拿來利用,顯著增加資料利用效率。The method proposed in the present invention can utilize the historical data, which is different from some intelligent methods that directly perform gradient operation on the objective function, so that the parameter adjustment mechanism can only accept the current fresh data. This kind of method is not suitable in the wireless communication environment, because wireless There are often omissions or repetitions in the collection of communication environment data, and the method of the present invention is not limited to this. Whether it is current fresh data or past historical data, it can be used, which significantly increases data utilization efficiency.

本發明能輸出高度向量化的已訓練神經網路參數,搭配裝置於基地台內部的GPU能加速訊號處理的運作,且此已訓練神經網路參數能在實際環境中得一次運算結果於毫秒等級以符合即時服務訴求。The present invention can output highly vectorized trained neural network parameters, which can accelerate the operation of signal processing with the GPU installed in the base station, and the trained neural network parameters can obtain an operation result at the millisecond level in an actual environment to meet immediate service requirements.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed above by the embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, The protection scope of the present invention shall be determined by the scope of the appended patent application.

10:通訊系統 100:管理伺服器 111~11H:基地台 102:儲存電路 104:處理器 PD1:特定位置分布圖 ST1~ST4:特定訊號強度分布圖 SM1:第一特定矩陣 SM2:第二特定矩陣 NN1:第一類神經網路 S210~S270, S411~S422, S511~S523:步驟 10: Communication system 100: Manage Servers 111~11H: base station 102: Storage circuit 104: Processor PD1: Location-specific distribution map ST1~ST4: Distribution map of specific signal strength SM1: First specific matrix SM2: Second specific matrix NN1: Neural Networks of the First Kind S210~S270, S411~S422, S511~S523: Steps

圖1是依據本發明之一實施例繪示的通訊系統示意圖。 圖2是依據本發明之一實施例繪示的基於類神經網路的波束選擇方法流程圖。 圖3是依據本發明之一實施例繪示的應用情境圖。 圖4是依據本發明之一實施例繪示的第一訓練過程示意圖。 圖5是依據本發明之一實施例繪示的第二訓練過程示意圖。 FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present invention. FIG. 2 is a flowchart of a method for beam selection based on a neural network according to an embodiment of the present invention. FIG. 3 is an application scenario diagram according to an embodiment of the present invention. FIG. 4 is a schematic diagram of a first training process according to an embodiment of the present invention. FIG. 5 is a schematic diagram of a second training process according to an embodiment of the present invention.

S210~S270:步驟 S210~S270: Steps

Claims (26)

一種基於類神經網路的波束選擇方法,適於管理多個基地台的一管理伺服器,該些基地台部署於一特定場域中,且各該基地台具有多個發射波束,所述方法包括: 取得經歷一第一訓練過程及一第二訓練過程的一第一類神經網路; 決定各該基地台的一第一發射波束,並據以量測各該基地台在該特定場域的一特定訊號強度分布圖; 取得多個用戶裝置在該特定場域中的一特定位置分布圖; 依據該特定位置分布圖及各該基地台的該特定訊號強度分布圖產生一第一特定矩陣; 將該第一特定矩陣輸入至該第一類神經網路,其中該第一類神經網路依據該第一特定矩陣輸出一第二特定矩陣,其中該第二特定矩陣包括各該基地台選用各該發射波束的一機率; 基於該第二特定矩陣決定各該基地台對應的一最佳發射波束;以及 控制各該基地台使用對應的該最佳發射波束發射信號。 A method for beam selection based on a neural network, suitable for managing a management server of a plurality of base stations, the base stations are deployed in a specific field, and each of the base stations has a plurality of transmission beams, the method include: obtaining a first-type neural network undergoing a first training process and a second training process; determining a first transmit beam of each of the base stations, and measuring a specific signal intensity distribution map of each of the base stations in the specific field; obtaining a distribution map of a specific location of a plurality of user devices in the specific field; generating a first specific matrix according to the specific location distribution map and the specific signal strength distribution map of each base station; The first specific matrix is input to the first type of neural network, wherein the first type of neural network outputs a second specific matrix according to the first specific matrix, wherein the second specific matrix includes a probability of the transmit beam; determining an optimal transmit beam corresponding to each of the base stations based on the second specific matrix; and Control each of the base stations to transmit signals using the corresponding optimal transmit beam. 如請求項1所述的方法,其中該第一類神經網路的該第一訓練過程中的第i次遞迴程序包括: 決定該第一類神經網路的多個第一神經元權重; 決定各該基地台的一第二發射波束,並據以模擬各該基地台在該特定場域的一第一參考訊號強度分布圖; 取得多個參考用戶裝置在該特定場域中的一參考位置分布圖; 依據該參考位置分布圖及各該基地台的該第一參考訊號強度分布圖產生一第一參考矩陣; 將該第一參考矩陣輸入至該第一類神經網路,其中該第一類神經網路依據該第一參考矩陣輸出一第二參考矩陣,其中該第二參考矩陣包括各該基地台選用各該發射波束的一機率; 對該第二參考矩陣取一argmax運算子,以取得一第一參考向量,並基於該第一參考向量決定各該基地台對應的一第三發射波束。 The method of claim 1, wherein the ith recursive procedure in the first training process of the first type of neural network comprises: determining a plurality of first neuron weights of the first type of neural network; determining a second transmit beam of each of the base stations, and simulating a first reference signal intensity distribution map of each of the base stations in the specific field accordingly; obtaining a reference position distribution map of a plurality of reference user equipments in the specific field; generating a first reference matrix according to the reference position distribution map and the first reference signal intensity distribution map of each base station; The first reference matrix is input to the first type of neural network, wherein the first type of neural network outputs a second reference matrix according to the first reference matrix, wherein the second reference matrix includes a probability of the transmit beam; An argmax operator is taken on the second reference matrix to obtain a first reference vector, and a third transmit beam corresponding to each base station is determined based on the first reference vector. 如請求項2所述的方法,其中該第一類神經網路的該第一訓練過程中的所述第i次遞迴程序更包括: 依據各該基地台對應的該第三發射波束模擬各該基地台在該特定場域的一第二參考訊號強度分布圖; 依據該參考位置分布圖及各該基地台的該第二參考訊號強度分布圖產生一第三參考矩陣,並取得該些參考用戶裝置的一第一平均通訊品質; 決定一第二類神經網路的多個第二神經元權重; 將該第三參考矩陣輸入至該第二類神經網路,其中該第二類神經網路依據該第三參考矩陣輸出一第四參考矩陣,其中該第四參考矩陣包括各該基地台選用各該發射波束的一機率; 基於該第四參考矩陣決定該些基地台對於該些發射波束的一第一選用機率向量,並基於該第一選用機率向量、該第一平均通訊品質及該第一參考向量決定一第一均方誤差值; 以該第一參考矩陣、該第三參考矩陣及該第一平均通訊品質作為所述第i次遞迴程序的訓練資料。 The method of claim 2, wherein the ith recursive procedure in the first training process of the first type of neural network further comprises: simulating a second reference signal intensity distribution diagram of each of the base stations in the specific field according to the third transmit beams corresponding to each of the base stations; generating a third reference matrix according to the reference position distribution map and the second reference signal strength distribution map of each base station, and obtaining a first average communication quality of the reference user equipments; determining a plurality of second neuron weights of a second type of neural network; The third reference matrix is input to the second type of neural network, wherein the second type of neural network outputs a fourth reference matrix according to the third reference matrix, wherein the fourth reference matrix includes a probability of the transmit beam; A first selection probability vector of the base stations for the transmit beams is determined based on the fourth reference matrix, and a first average selection probability vector is determined based on the first selection probability vector, the first average communication quality and the first reference vector square error value; The first reference matrix, the third reference matrix and the first average communication quality are used as training data for the ith recursive procedure. 如請求項2所述的方法,其中反應於判定i到達一第一預設數量,則在取得所述第i次遞迴程序的訓練資料之後,所述方法更包括: 決定所述第i次遞迴程序的該第一均方誤差值至第(i-Y+1)次遞迴程序的該第一均方誤差值個別的一第一特定機率,並據以決定所述第i次遞迴程序的訓練資料至第(i-Y+1)次遞迴程序的訓練資料個別的一第一參考權重,其中Y為該第一預設數量; 基於所述第i次遞迴程序的訓練資料至第(i-Y+1)次遞迴程序的訓練資料個別的該第一參考權重選用所述第i次遞迴程序的訓練資料至第(i-Y+1)次遞迴程序的訓練資料中的一部分訓練該第一類神經網路及該第二類神經網路,以更新該些第一神經元權重及該些第二神經元權重。 The method according to claim 2, wherein in response to determining that i reaches a first preset number, after obtaining the training data of the i-th recursive procedure, the method further comprises: Determining a first specific probability from the first mean square error value of the i-th recursive procedure to the first mean-square error value of the (i-Y+1)-th recursive procedure, and determining accordingly a first reference weight from the training data of the i-th recursive procedure to the training data of the (i-Y+1)-th recursive procedure, wherein Y is the first predetermined number; Based on the training data of the i-th recursive procedure to the training data of the (i-Y+1)-th recursive procedure, the first reference weights individually select the training data of the i-th recursive procedure to the (i-Y+1)-th recursive procedure Part of the training data of i-Y+1) recursive procedure trains the first type neural network and the second type neural network to update the first neuron weights and the second neuron weights . 如請求項4所述的方法,其中所述第i次遞迴程序的該第一特定機率表徵為
Figure 03_image047
,其中
Figure 03_image049
為所述第i次遞迴程序的該第一均方誤差值,
Figure 03_image051
為該第一訓練過程中的第k次遞迴程序的該第一均方誤差值。
The method of claim 4, wherein the first specific probability of the ith recursive procedure is characterized by
Figure 03_image047
,in
Figure 03_image049
is the first mean square error value of the i-th recursive procedure,
Figure 03_image051
is the first mean square error value of the k-th recursive procedure in the first training process.
如請求項4所述的方法,其中所述第i次遞迴程序的該第一參考權重表徵為
Figure 03_image053
,其中BS為一訓練資料容量,
Figure 03_image055
為所述第i次遞迴程序的該第一特定機率。
The method of claim 4, wherein the first reference weight of the ith recursive procedure is characterized by
Figure 03_image053
, where BS is a training data capacity,
Figure 03_image055
is the first specific probability of the i-th recursive procedure.
如請求項4所述的方法,其中所述第i次遞迴程序的訓練資料被選用於訓練該第一類神經網路及該第二類神經網路的機率正相關於所述第i次遞迴程序的該第一參考權重。The method of claim 4, wherein the probability that the training data of the i-th recursive procedure is selected for training the first type of neural network and the second type of neural network is positively related to the i-th iteration This first reference weight for the recursive procedure. 如請求項3所述的方法,其中反應於判定i為1,則該些第一神經元權重及該些第二神經元權重為隨機產生。The method of claim 3, wherein in response to determining that i is 1, the weights of the first neurons and the weights of the second neurons are randomly generated. 如請求項3所述的方法,其中反應於判定i大於1,則所述第i次遞迴程序中的該第一類神經網路相同於第(i-1)次遞迴程序中的該第一類神經網路,且所述第i次遞迴程序中的該第二類神經網路相同於第(i-1)次遞迴程序中的該第二類神經網路。The method of claim 3, wherein in response to determining that i is greater than 1, the first type of neural network in the ith recursive procedure is the same as the neural network in the (i-1)th recursive procedure The first type of neural network, and the second type of neural network in the ith recursive procedure is the same as the second type of neural network in the (i-1)th recursive procedure. 如請求項3所述的方法,其中反應於判定i大於1,則所述第i次遞迴程序中的該第一參考訊號強度分布圖相同於第(i-1)次遞迴程序中的該第二參考訊號強度分布圖。The method of claim 3, wherein in response to determining that i is greater than 1, the first reference signal intensity distribution in the i-th recursive procedure is the same as the (i-1)-th recursive procedure The second reference signal intensity distribution map. 如請求項3所述的方法,其中反應於判定i到達一預設同步數量,所述方法更包括將該第二類神經網路設定為相同於該第一類神經網路。The method of claim 3, wherein in response to determining that i reaches a predetermined synchronization number, the method further comprises setting the second type of neural network to be the same as the first type of neural network. 如請求項3所述的方法,其中基於該第四參考矩陣決定該些基地台對於該些發射波束的該第一選用機率向量的步驟包括對該第四參考矩陣取一max運算子,以取得該第一選用機率向量。The method of claim 3, wherein the step of determining the first selection probability vectors of the base stations for the transmit beams based on the fourth reference matrix comprises taking a max operator on the fourth reference matrix to obtain The first selection probability vector. 如請求項3所述的方法,其中基於該第一選用機率向量、該第一平均通訊品質及該第一參考向量決定該第一均方誤差值的步驟包括: 取得該第一選用機率向量及該第一平均通訊品質的一第一非線性組合值; 估計該第一非線性組合值與該第一參考向量的一均方誤差值作為該第一均方誤差值。 The method of claim 3, wherein the step of determining the first mean square error value based on the first selection probability vector, the first average communication quality and the first reference vector comprises: obtaining a first nonlinear combination value of the first selection probability vector and the first average communication quality; A mean square error value between the first nonlinear combination value and the first reference vector is estimated as the first mean square error value. 如請求項1所述的方法,其中該第一類神經網路的該第二訓練過程的第j次遞迴程序包括: (a2)取得經歷該第一訓練過程的該第一類神經網路; (b2)決定各該基地台的一第四發射波束,並據以實際量測各該基地台在該特定場域的一第一實際訊號強度分布圖; (c2)取得該些參考用戶裝置在該特定場域中的一位置分布圖; (d2)依據該位置分布圖及各該基地台的該第一實際訊號強度分布圖產生一第一矩陣; (e2)將該第一矩陣輸入至該第一類神經網路,其中該第一類神經網路依據該第一矩陣輸出一第二矩陣,其中該第二矩陣包括各該基地台選用各該發射波束的一機率; (f2)對該第二矩陣取一argmax運算子,以取得一第一向量,並基於該第一向量決定各該基地台對應的一第五發射波束。 The method of claim 1, wherein the j-th recursive procedure of the second training process of the first type of neural network comprises: (a2) obtaining the first type of neural network that has undergone the first training process; (b2) determining a fourth transmission beam of each of the base stations, and actually measuring a first actual signal strength distribution map of each of the base stations in the specific field according to it; (c2) obtaining a location distribution map of the reference user equipments in the specific field; (d2) generating a first matrix according to the location distribution map and the first actual signal strength distribution map of each of the base stations; (e2) Inputting the first matrix to the first type of neural network, wherein the first type of neural network outputs a second matrix according to the first matrix, wherein the second matrix includes that each base station selects each of the a probability of transmitting the beam; (f2) taking an argmax operator from the second matrix to obtain a first vector, and determining a fifth transmit beam corresponding to each base station based on the first vector. 如請求項14所述的方法,其中該第一類神經網路的該第二訓練過程中的所述第j次遞迴程序更包括: 依據各該基地台對應的該第五發射波束實際量測各該基地台在該特定場域的一第二實際訊號強度分布圖; 依據該位置分布圖及各該基地台的該第二實際訊號強度分布圖產生一第三矩陣,並取得該些參考用戶裝置的一第二平均通訊品質; 取得經歷該第一訓練過程的該第二類神經網路; 將該第三矩陣輸入至該第二類神經網路,其中該第二類神經網路依據該第三矩陣輸出一第四矩陣,其中該第四矩陣包括各該基地台選用各該發射波束的機率; 基於該第四矩陣決定該些基地台對於該些發射波束的一第二選用機率向量,並基於該第二選用機率向量、該第二平均通訊品質及該第一向量決定一第二均方誤差值; 基於該第二矩陣決定多個熵值; 估計該第二均方誤差值與該些熵值的一組合值; 以該第一矩陣、該第三矩陣及該第二平均通訊品質作為所述第j次遞迴程序的訓練資料。 The method of claim 14, wherein the j-th recursive procedure in the second training process of the first type of neural network further comprises: actually measuring a second actual signal strength distribution map of each of the base stations in the specific field according to the fifth transmission beam corresponding to each of the base stations; generating a third matrix according to the location distribution map and the second actual signal strength distribution map of each base station, and obtaining a second average communication quality of the reference user equipments; obtaining the second type of neural network undergoing the first training process; The third matrix is input to the second type of neural network, wherein the second type of neural network outputs a fourth matrix according to the third matrix, wherein the fourth matrix includes the transmission beam selected by each base station. probability; A second selection probability vector of the base stations for the transmit beams is determined based on the fourth matrix, and a second mean square error is determined based on the second selection probability vector, the second average communication quality and the first vector value; determining a plurality of entropy values based on the second matrix; estimating a combined value of the second mean squared error value and the entropy values; The first matrix, the third matrix and the second average communication quality are used as training data for the j-th recursive procedure. 如請求項15所述的方法,其中反應於判定j到達一第二預設數量,則在取得所述第j次遞迴程序的訓練資料之後,所述方法更包括: 決定所述第j次遞迴程序的該組合值至第(j-X+1)次遞迴程序的該第二均方誤差值的該組合值個別的一第二特定機率,並據以決定所述第j次遞迴程序的訓練資料至第(j-X+1)次遞迴程序的訓練資料個別的一第二參考權重,其中X為該第二預設數量; 基於所述第j次遞迴程序的訓練資料至第(j-X+1)次遞迴程序的訓練資料個別的該第二參考權重選用所述第j次遞迴程序的訓練資料至第(j-X+1)次遞迴程序的訓練資料中的一部分訓練該第一類神經網路及該第二類神經網路,以更新該些第一神經元權重及該些第二神經元權重。 The method according to claim 15, wherein in response to determining that j reaches a second preset number, after obtaining the training data of the j-th recursive procedure, the method further comprises: Determining a second specific probability of the combined value of the combined value of the j-th recursive procedure to the second mean square error value of the (j-X+1)-th recursive procedure, respectively, and determining accordingly A second reference weight from the training data of the j-th recursive procedure to the training data of the (j-X+1)-th recursive procedure, wherein X is the second predetermined number; Based on the training data of the j-th recursive procedure to the training data of the (j-X+1)-th recursive procedure, the individual second reference weights select the training data of the j-th recursive procedure to the (j-X+1)-th recursive procedure A part of the training data of j-X+1) recursive procedure trains the first type neural network and the second type neural network to update the first neuron weights and the second neuron weights . 如請求項16所述的方法,其中所述第j次遞迴程序的該第二特定機率表徵為
Figure 03_image057
,其中
Figure 03_image059
為所述第j次遞迴程序的該組合值,
Figure 03_image061
為該第二訓練過程中的第k’次遞迴程序的該組合值。
The method of claim 16, wherein the second specific probability of the j-th recursive procedure is characterized by
Figure 03_image057
,in
Figure 03_image059
is the combined value for the j-th recursive procedure,
Figure 03_image061
This combined value for the k'th recursion procedure in the second training process.
如請求項16所述的方法,其中所述第j次遞迴程序的該第二參考權重表徵為
Figure 03_image063
,其中BS為一訓練資料容量,
Figure 03_image065
為所述第j次遞迴程序的該第二特定機率。
The method of claim 16, wherein the second reference weight of the j-th recursive procedure is characterized by
Figure 03_image063
, where BS is a training data capacity,
Figure 03_image065
is the second specific probability of the j-th recursive procedure.
如請求項16所述的方法,其中所述第j次遞迴程序的訓練資料被選用於訓練該第一類神經網路及該第二類神經網路的機率正相關於所述第j次遞迴程序的該第二參考權重。The method of claim 16, wherein the probability that the training data of the jth recursive procedure is selected for training the first type of neural network and the second type of neural network is positively related to the jth iteration This second reference weight for the recursive procedure. 如請求項15所述的方法,其中所述第j次遞迴程序中的該第一類神經網路相同於第(j-1)次遞迴程序中的該第一類神經網路,且所述第j次遞迴程序中的該第二類神經網路相同於第(j-1)次遞迴程序中的該第二類神經網路。The method of claim 15, wherein the first type of neural network in the jth iteration is the same as the first type of neural network in the (j-1)th iteration, and The second-type neural network in the j-th recursive procedure is the same as the second-type neural network in the (j-1)-th recursive procedure. 如請求項15所述的方法,其中反應於判定j到達一預設同步數量,所述方法更包括將該第二類神經網路設定為相同於該第一類神經網路。The method of claim 15, wherein in response to determining that j reaches a predetermined synchronization number, the method further comprises setting the second type of neural network to be the same as the first type of neural network. 如請求項15所述的方法,其中基於該第四矩陣決定該些基地台對於該些發射波束的該第二選用機率向量的步驟包括對該第四矩陣取一max運算子,以取得該第二選用機率向量。The method of claim 15, wherein the step of determining the second selection probability vectors of the base stations for the transmit beams based on the fourth matrix comprises taking a max operator on the fourth matrix to obtain the first Second, select probability vectors. 如請求項15所述的方法,其中基於該第二選用機率向量、該第二平均通訊品質及該第一向量決定該第二均方誤差值的步驟包括: 取得該第二選用機率向量及該第二平均通訊品質的一第二非線性組合值; 估計該第二非線性組合值與該第一向量的一均方誤差值作為該第二均方誤差值。 The method of claim 15, wherein the step of determining the second mean square error value based on the second selection probability vector, the second average communication quality and the first vector comprises: obtaining a second nonlinear combination value of the second selection probability vector and the second average communication quality; A mean square error value between the second nonlinear combination value and the first vector is estimated as the second mean square error value. 如請求項15所述的方法,其中該第二矩陣包括分別對應於該些基地台的多個機率向量,且該些熵值中的第a個熵值表徵為
Figure 03_image067
,其中
Figure 03_image069
為該些機率向量中對應於第a個基地台的第a個機率向量。
The method of claim 15, wherein the second matrix includes a plurality of probability vectors respectively corresponding to the base stations, and the a-th entropy value among the entropy values is represented as
Figure 03_image067
,in
Figure 03_image069
is the a-th probability vector corresponding to the a-th base station among the probability vectors.
如請求項1所述的方法,其中基於該第二特定矩陣決定各該基地台對應的該最佳發射波束的步驟包括: 對該第二特定矩陣取一argmax運算子,以取得一發射波束引數向量,並基於該發射波束引數向量決定各該基地台對應的該最佳發射波束。 The method of claim 1, wherein the step of determining the optimal transmit beam corresponding to each of the base stations based on the second specific matrix comprises: An argmax operator is taken on the second specific matrix to obtain a transmit beam argument vector, and the optimal transmit beam corresponding to each base station is determined based on the transmit beam argument vector. 一種管理伺服器,其管理部署於一特定場域中的多個基地台,且各該基地台具有多個發射波束,所述管理伺服器包括: 一儲存電路,儲存多個模組;以及 一處理器,耦接該儲存電路,存取該些模組以執行下列步驟: 取得經歷一第一訓練過程及一第二訓練過程的一第一類神經網路; 決定各該基地台的一第一發射波束,並據以量測各該基地台在該特定場域的一特定訊號強度分布圖; 取得多個用戶裝置在該特定場域中的一特定位置分布圖; 依據該特定位置分布圖及各該基地台的該特定訊號強度分布圖產生一第一特定矩陣; 將該第一特定矩陣輸入至該第一類神經網路,其中該第一類神經網路依據該第一特定矩陣輸出一第二特定矩陣,其中該第二特定矩陣包括各該基地台選用各該發射波束的一機率; 基於該第二特定矩陣決定各該基地台對應的一最佳發射波束;以及 控制各該基地台使用對應的該最佳發射波束發射信號。 A management server, which manages a plurality of base stations deployed in a specific field, and each of the base stations has a plurality of transmission beams, the management server includes: a storage circuit storing a plurality of modules; and A processor, coupled to the storage circuit, accesses the modules to perform the following steps: obtaining a first-type neural network undergoing a first training process and a second training process; determining a first transmit beam of each of the base stations, and measuring a specific signal intensity distribution map of each of the base stations in the specific field; obtaining a distribution map of a specific location of a plurality of user devices in the specific field; generating a first specific matrix according to the specific location distribution map and the specific signal strength distribution map of each base station; The first specific matrix is input to the first type of neural network, wherein the first type of neural network outputs a second specific matrix according to the first specific matrix, wherein the second specific matrix includes a probability of the transmit beam; determining an optimal transmit beam corresponding to each of the base stations based on the second specific matrix; and Control each of the base stations to transmit signals using the corresponding optimal transmit beam.
TW109143790A 2020-12-11 2020-12-11 Beam selection method based on neural network and management server TWI748794B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109143790A TWI748794B (en) 2020-12-11 2020-12-11 Beam selection method based on neural network and management server

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109143790A TWI748794B (en) 2020-12-11 2020-12-11 Beam selection method based on neural network and management server

Publications (2)

Publication Number Publication Date
TWI748794B TWI748794B (en) 2021-12-01
TW202224472A true TW202224472A (en) 2022-06-16

Family

ID=80680982

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109143790A TWI748794B (en) 2020-12-11 2020-12-11 Beam selection method based on neural network and management server

Country Status (1)

Country Link
TW (1) TWI748794B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI828324B (en) * 2022-09-22 2024-01-01 中華電信股份有限公司 Parameters adjustment system and method in wireless communication based on online reinforcement learning

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI323576B (en) * 2002-05-13 2010-04-11 Interdigital Tech Corp Resource allocation to users in slotted code division multiple access systems using beams
TWI700649B (en) * 2019-12-12 2020-08-01 中華電信股份有限公司 Deep reinforcement learning based beam selection method in wireless communication networks

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI828324B (en) * 2022-09-22 2024-01-01 中華電信股份有限公司 Parameters adjustment system and method in wireless communication based on online reinforcement learning

Also Published As

Publication number Publication date
TWI748794B (en) 2021-12-01

Similar Documents

Publication Publication Date Title
CN110770761B (en) Deep learning system and method and wireless network optimization using deep learning
CN111369042B (en) Wireless service flow prediction method based on weighted federal learning
US10375585B2 (en) System and method for deep learning and wireless network optimization using deep learning
CN110786046B (en) Optimizing cellular networks using deep learning
CN110521234A (en) The method and system of network self-organization is carried out using deep learning
CN109936865B (en) Mobile sink path planning method based on deep reinforcement learning algorithm
WO2021036414A1 (en) Co-channel interference prediction method for satellite-to-ground downlink under low earth orbit satellite constellation
Goudos et al. Application of an ensemble method to UAV power modeling for cellular communications
US20200265295A1 (en) Data processing apparatus, data processing method, and storage medium
US11570063B2 (en) Quality of experience optimization system and method
TWI700649B (en) Deep reinforcement learning based beam selection method in wireless communication networks
Alsuhli et al. Mobility load management in cellular networks: A deep reinforcement learning approach
JP2016163353A (en) Planning method and planning device of radio network
TWI748794B (en) Beam selection method based on neural network and management server
KR102211847B1 (en) System and method for path loss exponent prediction
CN106257849B (en) Frequency spectrum sensing method based on multi-target quantum firefly search mechanisms
CN107273976A (en) A kind of optimization method of neutral net, device, computer and storage medium
Hu et al. Network slicing via transfer learning aided distributed deep reinforcement learning
Peng et al. Hmm-lstm for proactive traffic prediction in 6g wireless networks
CN115333961B (en) Wireless communication network management and control method based on deep reinforcement learning and related equipment
WO2023082554A1 (en) Adaptive network switching method and system, and storage medium
CN115943391A (en) Apparatus, method and computer program for accelerating beam mesh optimization with transfer learning
Alhussan et al. 5G Resource Allocation Using Feature Selection and Greylag Goose Optimization Algorithm.
Li et al. Topology-Aware-based Traffic Prediction Mechanism for Elastic Cognitive Optical Networks
TWI769911B (en) System and method of adaptive-learning based joint beam selection and power control