TW202223758A - 水產養殖管理方法及系統 - Google Patents

水產養殖管理方法及系統 Download PDF

Info

Publication number
TW202223758A
TW202223758A TW109143035A TW109143035A TW202223758A TW 202223758 A TW202223758 A TW 202223758A TW 109143035 A TW109143035 A TW 109143035A TW 109143035 A TW109143035 A TW 109143035A TW 202223758 A TW202223758 A TW 202223758A
Authority
TW
Taiwan
Prior art keywords
image
breeding
target
feed
captured images
Prior art date
Application number
TW109143035A
Other languages
English (en)
Other versions
TWI746304B (zh
Inventor
黃有評
徐緯祥
侯宏昇
Original Assignee
國立臺北科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立臺北科技大學 filed Critical 國立臺北科技大學
Priority to TW109143035A priority Critical patent/TWI746304B/zh
Application granted granted Critical
Publication of TWI746304B publication Critical patent/TWI746304B/zh
Publication of TW202223758A publication Critical patent/TW202223758A/zh

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Abstract

本發明實施例提供一種水產養殖管理方法及系統。在此方法中,取得多張拍攝影像,且這些拍攝影像是針對滑水道中的拍攝區域。透過檢測模型辨識那些拍攝影像中的一個或更多個目標養殖生物,且檢測模型是基於機器學習演算法所訓練。依據辨識結果判斷那些目標養殖生物通過拍攝區域的計數線的數量。此計數線橫跨滑水道。此外,反應於那些拍攝影像中的當前影像中的目標養殖生物的質心位置碰觸或越過計數線的起始處,依據當前影像的相鄰訊框的多張拍攝影像中的質心位置與計數線之間的位置關係計數。藉此,可輕易地得出準確度高的總量。

Description

水產養殖管理方法及系統
本發明是有關於一種養殖生物的管理技術,且特別是有關於一種水產養殖管理方法及系統。
根據聯合國糧食及農業組織預測,未來10年由於人口增加,每年將增加約1.2%漁產消費,到2030年,包括魚類及相關製品的需求將增加3,000萬噸,全球需求將達到2億噸。不過,全球捕撈漁業產量長期穩定在9,000萬噸,而且近三分之一的海洋魚類被過度捕撈,在全球海洋資源枯竭下,水產養殖漁業是未來最有潛力與經濟價值的產業之一,吸引世界各國爭相投入。
值得注意的是,水產養殖業者經常遇到的問題之一是估算魚、蝦苗的數量。現有魚、蝦苗是以人工計數,不但費時、費力又不精確的問題。魚蝦苗數量正確與否關係到後續養殖投餌量與水電成本之管控。尤其是,養殖業者購買之魚蝦苗數量一次可能高達幾十萬尾,因此如何準確計算出貨數量,養殖業者如何抽驗進貨量是否正確,是亟待解決的問題。
有鑑於此,本發明實施例提供一種水產養殖管理方法及系統,可自動辨識養殖生物並進行計數,並可準確計算出數量。
本發明實施例的水產養殖管理方法包括(但不僅限於)下列步驟:取得多張拍攝影像,且這些拍攝影像是針對滑水道中的拍攝區域。透過檢測模型辨識那些拍攝影像中的一個或更多個目標養殖生物,且檢測模型是基於機器學習演算法所訓練。依據辨識結果判斷那些目標養殖生物通過拍攝區域的計數線的數量。此計數線橫跨滑水道。此外,反應於那些拍攝影像中的當前影像中的目標養殖生物的質心位置碰觸或越過計數線的起始處,依據當前影像的相鄰訊框(frame)的多張拍攝影像中的質心位置與計數線之間的位置關係計數。計數線設有寬度範圍,且寬度範圍介於起始處及終止處之間。
本發明實施例的水產養殖管理系統包括(但不僅限於)影像擷取裝置及運算裝置。影像擷取裝置對一滑水道的拍攝區域拍攝以取得多張拍攝影像。運算裝置經配置用以透過檢測模型辨識那些拍攝影像中的一個或更多個目標養殖生物,並依據辨識結果判斷那些目標養殖生物通過拍攝區域的計數線的數量。此檢測模型是基於機器學習演算法所訓練。計數線橫跨滑水道。此外,反應於那些拍攝影像中的當前影像中的目標養殖生物的質心位置碰觸或越過計數線的起始處,運算裝置更經配置用以依據當前影像的相鄰訊框的多張拍攝影像中的質心位置與計數線之間的位置關係計數。計數線設有寬度範圍,且寬度範圍介於起始處及終止處之間。
基於上述,依據本發明實施例的水產養殖管理方法及系統,以機器學習演算法為基礎來對養殖生物(例如,魚、蝦苗)進行即時辨識,並透過簡便的方式對辨識到的生產生物進行計數。藉此,可解決現有人工計數所造成費時、費力又不精確的問題。
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
圖1是依據本發明一實施例的水產養殖管理系統1的示意圖。請參照圖1,水產養殖管理系統1包括(但不僅限於)一台或更多台影像擷取裝置10及運算裝置40。
影像擷取裝置10可以是單色相機、彩色相機、深度相機、錄影機或其它能夠擷取影像的影像感測裝置。
在一實施例中,影像擷取裝置10是針對滑水道20中的拍攝區域CA1進行拍攝,以取得多張拍攝影像。圖下方所示為拍攝區域CA1的放大圖。值得注意的是,拍攝區域CA1設有假想或真實的計數線CL,且計數線CL橫跨滑水道20。對滑水道20倒下水後,水產類的養殖生物T(例如,魚、蝦苗、或更加年長的魚、蝦等)可滑水道20上流動。
在一些實施例中,為了增加辨識度,拍攝區域CA1下可設有光源30(例如,LED燈或一般燈泡)。
圖2A是依據本發明一實施例的滑水道20的立體圖,且圖2B是依據本發明一實施例的滑水道20的透視圖。請參照圖2A及圖2B,滑水道20包括部件21~23。
在一實施例中,部件21包括用於放置養殖生物T的容器池及緩衝斜坡。為了保護檢測目標(例如,養殖生物T)在計數過程盡量不受到傷害,因此提供緩衝斜坡。此外,緩衝斜坡還可以降低水流速度,並使後續辨識結果更穩定。而關於辨識的詳細內容待後續實施例詳述。
在一實施例中,部件22用於供影像擷取裝置10放置。部件22可設有圓孔以供影像擷取裝置10的鏡頭穿過又能卡住機身。此外,部件22的最上層可以是活動式掀蓋,以方便使用者可隨時對影像擷取裝置10進行保養與調整。
在一實施例中,部件23是滑水道20的主體,其底部是承載水流和養殖生物T的通道。水及養殖生物T可順著斜坡通道流入養殖池(圖未示)中。此外,通道底部可以是燈光層(即,設置光源30),並透過打光來增加對養殖生物T的辨識度。
須說明的是,滑水道20可能還有其他結構設計,並視應用者之需求而可自行變化,本發明實施例不加以限制。
運算裝置40可以是桌上型電腦、筆記型電腦、智慧型手機、平板電腦或其他具有運算功能的裝置。
在一實施例中,運算裝置40可與影像擷取裝置10直接通訊。例如,透過Wi-Fi、藍芽、實體網路線、USB線或其他通訊介面相互傳輸資料。在另一實施例中,運算裝置40與影像擷取裝置10可整合成獨立裝置。例如,智慧型手機、或平板電腦。在一些實施例中,拍攝影像可儲存在記憶卡或其他儲存裝置中並可供運算裝置40存取。
下文中,將搭配水產養殖管理系統1中的各項裝置、元件及模組說明本發明實施例所述之方法。本方法的各個流程可依照實施情形而隨之調整,且並不僅限於此。
圖3是依據本發明一實施例的水產養殖管理方法的流程圖。請參照圖3,運算裝置40透過影像擷取裝置10取得多張拍攝影像之後,運算裝置40透過檢測模型分別辨識那些拍攝影像中一個或更多個目標養殖生物(步驟S310)。具體而言,目標養殖生物是指特定種類的養殖生物T被作為檢測目標。例如,蝦苗作為目標養殖生物。另值得注意的是,檢測模型是基於多個機器學習演算法中的一者所訓練。這些機器學習演算法例如是與物件或目標偵測相關的區域卷積神經網絡(Region Convolutional Neural Network,R-CNN)、快速(fast)R-CNN、或YOLO(You only look once)。
以YOLO為例,其可將物件位置偵測與物件辨識一次完成,並利用單一卷積神經網路結構即可從輸入影像直接預測定界框(bounding box)和所屬類別的機率。
在訓練階段中,檢測模型將已標記特定類型或單一類型的養殖生物T的影像作為訓練樣本。機器學習演算法可分析訓練樣本以自中獲得規律,從而透過規律對未知資料預測。而檢測模型即是經學習後所建構出的機器學習模型,並據以對待評估資料(本實施例是拍攝影像)推論。
須說明的是,在其他實施例中,諸如遞迴神經網路(Recurrent Neural Network,RNN)、多層感知器 (Multi-Layer Perceptron,MLP)、支持向量機(Support Vector Machine,SVM)或其他機器學習演算法也可能被運算裝置40運用。
運算裝置40可依據步驟S310的辨識結果判斷目標養殖生物通過拍攝區域CA1的計數線CL的數量(步驟S330)。具體而言,辨識結果相關於拍攝影像中的物體是否為目標養殖生物、以及物體的位置。因此,運算裝置40可決定目標養殖生物與計數線CL的位置關係。例如,尚未觸碰、正觸碰、或遠離。此外,滑水道20的設計,可讓那些養殖生物T僅通過一次。因此,目標養殖生物通過計數線CL的數量即可用於評估所欲計算養殖生物T的總量。
值得注意的是,本發明實施例提供的檢測環境是動態的水流系統。因此,養殖生物T可能隨水流而移動速度很快。若未對計數方法提出更加嚴謹的條件,則恐有重複計數的情況,進而影響總量評估的準確度。
在一實施例中,水產養殖管理系統1提供穩定的水流速度。例如,水流速度相關於特定排水量、滑水道20的傾斜角度、緩衝力道等因素。而運算裝置40可發出指令或使用者手動,並依據滑水道20上的水流速度設定影像擷取裝置10拍攝那些拍攝影像的訊框速率(frame rate),使物體(例如,養殖生物T或其他活體,但也可能是非生命體)在相鄰訊框的拍攝影像中的移動距離大致相等。即,養殖生物T在滑水道20幾乎是呈等速率運動,但不以此為限。
在一實施例中,計數線CL可設有寬度範圍(假設計數線CL的形狀為長方形,且其長邊橫跨滑水道20)。養殖生物T會先觸碰計數線CL的起始處,再從計數線CL的終止處離開。即,寬度範圍是起始處與終止處的間距。運算裝置40可依據不同相鄰訊框的拍攝影像中計數線CL的寬度範圍與目標養殖生物之間的位置關係來排除重複計數情況。
圖4是依據本發明一實施例的計數條件的流程圖。請參照圖4,運算裝置40可判斷那些拍攝影像中的當前影像中的目標養殖生物的質心位置是否碰觸或越過計數線CL的起始處(步驟S410)。舉例而言,圖5是依據本發明一實施例說明計數條件的示意圖。請參照圖5,假設在圖1的拍攝區域CA1中,計數線CL設有寬度範圍R,且寬度範圍R介於起始處CLI及終止處CLE之間。假設水流方向WD是向圖中右側。位置P2是養殖生物T在當前影像中的質心位置。此時,養殖生物T的質心位置正好觸碰到計數線CL的起始處CLI,即可符合第一條件。
反應於當前影像中的目標養殖生物碰觸或越過計數線CL的起始處CLI,運算裝置40可進一步依據當前影像的相鄰訊框的多張拍攝影像中的質心位置與計數線CL之間的位置關係計數。具體而言,運算裝置40可判斷當前影像的下一訊框的拍攝影像的質心位置是否越過計數線CL的終止處CLE(步驟S430),以得出第一判斷結果。若第一判斷結果是質心位置在下一訊框越過終止處CLE(例如,圖5所示位置P3),則符合第二條件。而若第一判斷結果是質心位置尚未越過終止處CLE,則不符合第二條件。
此外,運算裝置40可判斷當前影像的上一訊框的拍攝影像的質心位置是否觸碰或越過計數線CL的起始處(步驟S450),以得出第二判斷結果。若第二判斷結果是質心位置在上一訊框尚未觸碰或越過起始處CLI(例如,圖5所示位置P1),則符合第三條件。而若第二判斷結果是質心位置已越過起始處CLI,則不符合第三條件。
接著,運算裝置40可依據第一判斷結果及第二判斷結果確定對目標養殖生物的數量加一。也就是說,要同時符合前述三個條件,針對此目標養殖生物的計數值才會加一。若任一條件未符合,則針對此目標養殖生物的計數值不會加一。由於物體在各訊框的拍攝影像之間的移動距離會超出起始處CLI與終止處CLE之間的間距(即,計數線CL的寬度範圍R),因此無論質心位置在當前影像是在何處符合第一條件,質心位置在下一訊框一定會越過終止處CLE,且不會有重複計數的誤差狀況。
須說明的是,不限於質心位置,在其他實施例中,重心、尾端或頭端等位置都可能作為目標養殖生物的位置代表。
藉由本發明實施例的影像辨識及通過計數手段,可基於計數後的最終數量決定放入養殖池中的養殖生物T的總量。
除了將養殖生物T放入養殖池前須先了解總量,養殖生物T在養殖池養殖的過程中也需要了解總量。
一般來說,魚蝦養殖場最害怕的就是底土產生優養化現象,尤其是蝦類的養殖場。若產生優養化現象,會使得水中的氮、磷營養物質的附集,引起藻類以及其他浮游生物迅速的生長、繁殖,使得水中含氧量下降,進而產生硫化氫,而使得蝦子直接硫化氫中毒造成死亡。另一情況是水質汙染造成細菌性疾病擴散,導致整池的魚蝦都受到影響陸續死亡。值得注意的是,投餌量的多寡即是影響水質的主要因素之一。投餌過量會導致過剩的餌食腐敗沉澱並汙染水質,過少又會導致魚蝦成長不良。然而,人力也不可能24小時去監控餌食狀況。
在一些實施例中,前述對養殖生物T計數的數量、養殖數量及水質檢測資訊可進一步顯示在顯示器(例如,LCD、LED顯示器或OLED顯示器)上,以方便養殖戶監控。
基於前述問題,本發明實施例藉助於人工智慧機器學習的技術,提供一套能夠快速確認養殖生物活動力的功能。圖6是依據本發明一實施例的水產養殖管理系統1的示意圖。請參照圖6,不同於圖1的實施例,此影像擷取裝置10是針對飼料承載件SF(例如,漁網、塑膠盤等)中的拍攝區域CA2來拍攝。飼料承載件SF用於放置目標養殖生物(假設是養殖生物T-蝦)的飼料f(例如,魚餌、蝦餌等)。水產養殖管理系統1可提供升降或移動機構連接飼料承載件SF,使飼料承載件SF可進入養殖池P的水中或離開養殖池P的水面。如圖6所示為飼料承載件SF離開養殖池P的水面。圖7是依據本發明一實施例說明量測過程的示意圖。請參照圖7,圖中所示為飼料承載件SF進入養殖池P的水中。即,水面上不見飼料承載件SF。
在一實施例中,運算裝置40可觀測養殖生物T的健康程度,並依據影像擷取裝置10拍攝養殖生物T所得的深度透過模糊推論系統來對養殖生物T的活躍度並據以進行分級。其中,模糊推論機制是透過模糊化將原本二元資料(例如,0、1)轉變成二元區間之間的數值。例如,養殖生物T的深度是距離影像擷取裝置10較近,則活耀度為第一級;養殖生物T的深度是距離影像擷取裝置10最遠,則活耀度為第五級。
在另一實施例中,透過觀察飼料承載件SF所剩飼料f的面積,也可判斷養殖生物T的進食狀況,進而作為是否應持續投餌的判斷依據,更能結合自動化投餌來提供對應飼料量的補充。
具體而言,運算裝置40可透過影像擷取裝置10取得初始影像。此時,飼料承載件SF尚未進入養殖池P的水中(如圖5所示)。初始影像中將記錄飼料承載件SF所剩飼料f。接著,運算裝置40可透過影像擷取裝置10取得後續影像。值得注意的是,此後續影像的拍攝時機是飼料承載件SF移動至養殖池P的水中(如圖6所示)並等待預設時間(例如,1小時、30分鐘、或半天)且接著離開養殖池P的水面(又回到圖5所示情境)之後。即,飼料承載件SF降下又升起。
運算裝置40可透過另一檢測模型判斷初始影像與後續影像之間的飼料量差異,並依據飼料量差異決定養殖池P中那些目標養殖生物的養殖數量。相似地,此檢測模型也可基於機器學習演算法(例如,CNN、RNN或YOLO)所訓練。然而,與前述實施例不同之處在於,此檢測模型是用於推論飼料f在不同時間點下在飼料承載件SF的所占面積。運算裝置40可分別得出初始影像與後續影像對應面積之後,即可將兩面積之差作為飼料量差異。
此外,面積上的差異也相關於養殖生物T在養殖池P中的進食情況。舉例而言,圖8是一範例說明不同時間下飼料的殘留量。請參照圖8,假設一開始飼料量的面積占飼料承載件SF中拍攝區域CA2的76%。一小時後第一次拉起飼料承載件SF,此時所占面積為71%。再經一小時後第二次拉起飼料承載件SF,此時所占面積為53%。又經一小時後第二次拉起飼料承載件SF,此時所占面積為48%。
假設各養殖生物T的進食量大致相同,則運算裝置40可進一步推估目標養殖生物的養殖數量。例如,透過對照表或其他基於機器學習演算法的推論模型。
在一些實施例中,飼料承載件SF可在養殖池P的多個位置升降,並依據多個位置所估測的養殖數量決定養殖池P的整體的養殖數量。例如,對數筆養殖數量計算算術平均或加權平均。
另一方面,在水產養殖業界,幾乎人人都聽過一句真理:「養魚先養水」。水是水產養殖產品賴以生存的環境,水質的好壞將直接影響魚蝦的存活率、產量以及品質。若水質能夠透過智慧型系統有效的監督及調控將能夠有效提高養殖戶的收益。保證水質的道理很簡單,首先要知道水質的情況,瞭解水質的各項參數,找出正快速變化、超標的有毒物質,進而推斷其產生原因。接著,藉由物理還原方式解決水質問題,進而降低有毒物質濃度,例如增加氧氣、調節水溫、汰換水體等。而非像過去在不清楚哪個環節出錯的狀況下,只能靠投放大量藥劑、抗生素,避免魚蝦群在惡劣的水質狀況下死亡。
為了能夠提供養殖戶更簡單、準確與安心的水質檢測系統,本發明實施例的水質養殖管理系統1可更包含水質檢測器(圖未示)。水質檢測器例如是溶氧量感測器、酸鹼值感測器、氧化還原電位差感測器、鹽度/電導度感測器、溫度感測器、硝酸鹽感測器、及/或污泥面監測儀,並據以取得養殖池的水質檢測資訊(例如,溶氧量、酸鹼值、氧化還原質、鹽度及/或汙泥沉澱程度)。運算裝置40可取得來自水質檢測器回傳的數據(包括水質檢測資訊),且將收集到之數據以曲線圖方式呈現,以便於管理及查看問題點。運算裝置40可進一步針對異常變化的數據,向養殖戶發出預警。此外,透過影像擷取裝置10觀測養殖生物T的活動力,可分辨出活動力低下、甚至死亡的養殖生物T。在水質檢測以及水下影像擷取裝置10雙重把關下,養殖戶將能夠盡早發現問題,避免錯過黃金時期導致整批水產品受損的情況發生。
另值得注意的是,水質也會影響養殖生物T的進食情況。例如,天氣較冷,則進食較慢;溶氧量較高,則養殖生物T可能死亡率較高,進而降低整體進食速度。而為了進一步提高基於飼料量差異所估測的養殖數量的準確度,在一實施例中,運算裝置40可依據水質檢測資訊修正養殖池中的養殖數量。例如,透過機器學習演算法訓練的另一水質風險評估模組,估測當前水質對應養殖數量減少的數量。水質風險評估模組的訓練樣本可以是不同水質下養殖生物T對應的死亡率或進食量。
綜上所述,在本發明實施例的水產養殖管理系統及方法中,透過即時辨識養殖生物的類型及位置,並據以統計其通過量,進而作為總量評估的準確依據。本發明實施例可辨識飼料量,進而基於不同時間的飼料量變化推估養殖數量。此外,本發明實施例可即時監控養殖池的水質並據以通報或警示,甚至進一步修正養殖數量的估測值。藉此,養殖業者或賣苗業者可輕易地抽驗進貨/出貨量是否正確,進而降低人力和時間成本。此外,提供養殖戶更簡單、準確與安心的水質檢測系統,並養殖戶將能夠盡早發現問題,且避免錯過黃金時期導致整批水產品受損的情況發生。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。
1:水產養殖管理系統 10:影像擷取裝置 20:滑水道 40:運算裝置 CA1、CA2:拍攝區域 CL:計數線 T:養殖生物 21~23:部件 30:光源 S310~S350、S410~S450:步驟 CLI:起始處 CLE:終止處 WD:水流方向 P1~P3:位置 SF:飼料承載件 P:養殖池 R:寬度範圍 f:飼料
圖1是依據本發明一實施例的水產養殖管理系統的示意圖。 圖2A是依據本發明一實施例的滑水道的立體圖。 圖2B是依據本發明一實施例的滑水道的透視圖。 圖3是依據本發明一實施例的水產養殖管理方法的流程圖。 圖4是依據本發明一實施例的計數條件的流程圖。 圖5是依據本發明一實施例說明計數條件的示意圖。 圖6是依據本發明一實施例的水產養殖管理系統的示意圖。 圖7是依據本發明一實施例說明量測過程的示意圖。 圖8是一範例說明不同時間下飼料的殘留量。
S310~S350:步驟

Claims (10)

  1. 一種水產養殖管理方法,包括: 取得多張拍攝影像,其中該些拍攝影像是針對一滑水道中的一拍攝區域; 透過一檢測模型辨識該些拍攝影像中的至少一目標養殖生物,其中該檢測模型是基於多個機器學習演算法中的一者所訓練;以及 依據辨識結果判斷該至少一目標養殖生物通過該拍攝區域的一計數線的數量,其中該計數線橫跨該滑水道,且 反應於該些拍攝影像中的一當前影像中的該至少一目標養殖生物的質心位置碰觸或越過該計數線的一起始處,依據該當前影像的相鄰訊框(frame)的多張該拍攝影像中的該質心位置與該計數線之間的位置關係計數,其中該計數線設有一寬度範圍,且該寬度範圍介於該起始處及一終止處之間。
  2. 如請求項1所述的水產養殖管理方法,其中依據辨識結果判斷該至少一目標養殖生物通過該拍攝區域的該計數線的數量的步驟包括: 判斷該當前影像的下一訊框的拍攝影像的該質心位置是否越過該計數線的該終止處,以得出一第一判斷結果; 判斷該當前影像的上一訊框的拍攝影像的該質心位置是否觸碰或越過該計數線的該起始處,以得出一第二判斷結果; 依據該第一判斷結果及該第二判斷結果確定該數量加一。
  3. 如請求項1所述的水產養殖管理方法,更包括: 依據該滑水道上的水流速度設定拍攝該些拍攝影像的訊框速率,其中一物體在相鄰訊框的拍攝影像中的移動距離大致相等。
  4. 如請求項1所述的水產養殖管理方法,更包括: 取得一初始影像,其中該初始影像是針對一飼料承載件中的一第二拍攝區域,且該飼料承載件用於放置該至少一目標養殖生物的飼料; 取得一後續影像,其中該後續影像是針對該第二拍攝區域,且該後續影像的拍攝時機是該飼料承載件移動至一養殖池的水中並等待預設時間且接著離開該養殖池的水面之後; 透過一第二檢測模型判斷該初始影像與該後續影像之間的飼料量差異,其中該第二檢測模型是基於多個機器學習演算法中的一者所訓練;以及 依據該飼料量差異決定該養殖池中該至少一目標養殖生物的養殖數量。
  5. 如請求項4所述的水產養殖管理方法,其中依據該飼料量差異決定該養殖池中該至少一目標養殖生物的數量的步驟包括: 取得該養殖池的一水質檢測資訊,其中該水質檢測資訊包括溶氧量、酸鹼值、氧化還原質、鹽度、及汙泥沉澱程度中的至少一者;以及 依據該水質檢測資訊修正該養殖池中的該養殖數量。
  6. 一種水產養殖管理系統,包括: 一影像擷取裝置,對一滑水道的一拍攝區域拍攝以取得多張拍攝影像;以及 一運算裝置,經配置用以: 透過一檢測模型辨識該些拍攝影像中的至少一目標養殖生物,其中該檢測模型是基於多個機器學習演算法中的一者所訓練; 依據辨識結果判斷該至少一目標養殖生物通過該拍攝區域的一計數線的數量,其中該計數線橫跨該滑水道;以及 反應於該些拍攝影像中的一當前影像中的該至少一目標養殖生物的質心位置碰觸或越過該計數線的一起始處,依據該當前影像的相鄰訊框的多張該拍攝影像中的該質心位置與該計數線之間的位置關係計數,其中該計數線設有一寬度範圍,且該寬度範圍介於該起始處及一終止處之間。
  7. 如請求項6所述的水產養殖管理系統,其中該運算裝置更經配置用以: 判斷該當前影像的下一訊框的拍攝影像的該質心位置是否越過該計數線的該終止處,以得出一第一判斷結果; 判斷該當前影像的上一訊框的拍攝影像的該質心位置是否觸碰或越過該計數線的該起始處,以得出一第二判斷結果; 依據該第一判斷結果及該第二判斷結果確定該數量加一。
  8. 如請求項6所述的水產養殖管理系統,其中該運算裝置更經配置用以: 依據該滑水道上的水流速度設定該影像擷取裝置拍攝該些拍攝影像的訊框速率,其中一物體在相鄰訊框的拍攝影像中的移動距離大致相等。
  9. 如請求項6所述的水產養殖管理系統,其中該運算裝置更經配置用以: 透過該影像擷取裝置取得一初始影像,其中該初始影像是針對一飼料承載件中的一第二拍攝區域,且該飼料承載件用於放置該至少一目標養殖生物的飼料; 透過該影像擷取裝置取得一後續影像,其中該後續影像是針對該第二拍攝區域,且該後續影像的拍攝時機是該飼料承載件移動至一養殖池的水中並等待預設時間且接著離開該養殖池的水面之後; 透過一第二檢測模型判斷該初始影像與該後續影像之間的飼料量差異,其中該第二檢測模型是基於多個機器學習演算法中的一者所訓練;以及 依據該飼料量差異決定該養殖池中該至少一目標養殖生物的養殖數量。
  10. 如請求項9所述的水產養殖管理系統,更包括: 多個水質檢測器,用以取得該養殖池的一水質檢測資訊,其中該水質檢測資訊包括溶氧量、酸鹼值、氧化還原質、鹽度、及汙泥沉澱程度中的至少一者,且該運算裝置更經配置用以: 依據該水質檢測資訊修正該養殖池中的該養殖數量。
TW109143035A 2020-12-07 2020-12-07 水產養殖管理方法及系統 TWI746304B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109143035A TWI746304B (zh) 2020-12-07 2020-12-07 水產養殖管理方法及系統

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109143035A TWI746304B (zh) 2020-12-07 2020-12-07 水產養殖管理方法及系統

Publications (2)

Publication Number Publication Date
TWI746304B TWI746304B (zh) 2021-11-11
TW202223758A true TW202223758A (zh) 2022-06-16

Family

ID=79907675

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109143035A TWI746304B (zh) 2020-12-07 2020-12-07 水產養殖管理方法及系統

Country Status (1)

Country Link
TW (1) TWI746304B (zh)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102073905A (zh) * 2009-11-23 2011-05-25 财团法人资讯工业策进会 水产动物的计数系统及方法

Also Published As

Publication number Publication date
TWI746304B (zh) 2021-11-11

Similar Documents

Publication Publication Date Title
Zhou et al. Near infrared computer vision and neuro-fuzzy model-based feeding decision system for fish in aquaculture
Zion The use of computer vision technologies in aquaculture–a review
Yang et al. Computer vision models in intelligent aquaculture with emphasis on fish detection and behavior analysis: a review
Pinkiewicz et al. A computer vision system to analyse the swimming behaviour of farmed fish in commercial aquaculture facilities: a case study using cage-held Atlantic salmon
Gladju et al. Applications of data mining and machine learning framework in aquaculture and fisheries: A review
US20200113158A1 (en) Data collection system and method for feeding aquatic animals
CN110147771B (zh) 基于母猪关键部位与环境联合分区的母猪侧卧姿态实时检测系统
Liu et al. Measuring feeding activity of fish in RAS using computer vision
CN109472883A (zh) 巡塘方法和装置
CN111528143B (zh) 一种鱼群摄食行为量化方法、系统、装置和存储介质
US20050229864A1 (en) Method for monitoring and controlling in real-time the non-consumed food in fish farms
US11532153B2 (en) Splash detection for surface splash scoring
Du et al. Broodstock breeding behaviour recognition based on Resnet50-LSTM with CBAM attention mechanism
Feng et al. Fish feeding intensity quantification using machine vision and a lightweight 3D ResNet-GloRe network
CN115797844A (zh) 一种基于神经网络的鱼体鱼病检测方法及系统
Zhang et al. Intelligent fish feeding based on machine vision: A review
CN114898405A (zh) 基于边缘计算的便携式肉鸡异常监测系统
Liu et al. A multitask model for realtime fish detection and segmentation based on yolov5
TWI746304B (zh) 水產養殖管理方法及系統
Xu et al. Behavioral response of fish under ammonia nitrogen stress based on machine vision
CN117063868A (zh) 一种鱼池智能投喂方法
Clay et al. The effects of thin layers on the vertical distribution of larval Pacific herring, Clupea pallasi
Lai et al. Automatic measuring shrimp body length using CNN and an underwater imaging system
Cao et al. Learning-based low-illumination image enhancer for underwater live crab detection
EP4008179A1 (en) Method and system for determining biomass of aquatic animals