TW202221625A - Method for predicting power consumption of uav and uav using the same - Google Patents

Method for predicting power consumption of uav and uav using the same Download PDF

Info

Publication number
TW202221625A
TW202221625A TW109140566A TW109140566A TW202221625A TW 202221625 A TW202221625 A TW 202221625A TW 109140566 A TW109140566 A TW 109140566A TW 109140566 A TW109140566 A TW 109140566A TW 202221625 A TW202221625 A TW 202221625A
Authority
TW
Taiwan
Prior art keywords
power consumption
historical
data
climate data
drone
Prior art date
Application number
TW109140566A
Other languages
Chinese (zh)
Other versions
TWI824198B (en
Inventor
楊創發
Original Assignee
中華電信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中華電信股份有限公司 filed Critical 中華電信股份有限公司
Priority to TW109140566A priority Critical patent/TWI824198B/en
Publication of TW202221625A publication Critical patent/TW202221625A/en
Application granted granted Critical
Publication of TWI824198B publication Critical patent/TWI824198B/en

Links

Images

Abstract

A method for predicting power consumption of an unmanned aerial vehicle (UAV) and a UAV using the same. The method includes: obtaining historical climate data and current climate data according to at least one sensor and a transceiver; monitoring power consumption of the UAV to obtain historical power consumption corresponding to the historical climate data; training a machine learning (ML) model according to the historical climate data and the historical power consumption, and inputting the current climate data to the ML model to generate predicted power consumption; and outputting the predicted power consumption.

Description

預測無人機的耗電量的方法及使用所述方法的無人機Method for predicting power consumption of unmanned aerial vehicle and unmanned aerial vehicle using said method

本發明是有關於一種預測無人機的耗電量的方法及使用所述方法的無人機(unmanned aerial vehicle,UAV)。The present invention relates to a method for predicting the power consumption of an unmanned aerial vehicle and an unmanned aerial vehicle (UAV) using the method.

一般來說,無人機的電力會隨著使用時間而遞減。無人機的耗電量受到多種因素影響,包括無人機的硬體能力、飛行任務或酬載(payload)等。除此之外,無人機的耗電量也容易受到氣候影響。然而,現行技術並無法掌握氣候對無人機的耗電量的影響而精準地預測無人機的耗電量。因此,如何根據氣候的不同來預測無人機的耗電量,是本領域的重要議題。Generally speaking, the power of the drone will decrease with the usage time. The power consumption of a drone is affected by a variety of factors, including the hardware capabilities of the drone, the mission or payload, etc. In addition to this, the power consumption of drones is also vulnerable to climate impacts. However, the current technology cannot accurately predict the power consumption of the drone by grasping the influence of the climate on the power consumption of the drone. Therefore, how to predict the power consumption of UAVs according to different climates is an important topic in this field.

本發明提供一種預測無人機的耗電量的方法及使用所述方法的無人機,可根據氣候資料預測無人機的耗電量。The present invention provides a method for predicting the power consumption of an unmanned aerial vehicle and an unmanned aerial vehicle using the method, which can predict the power consumption of the unmanned aerial vehicle according to climate data.

本發明的一種無人機,包含處理器、儲存媒體、收發器以及至少一感測器。儲存媒體儲存多個模組。處理器耦接儲存媒體、至少一感測器以及收發器,並且存取和執行多個模組,其中多個模組包含資料收集模組、電量監視模組、耗電量預測模組以及輸出模組。資料收集模組根據至少一感測器以及收發器的至少其中之一取得歷史氣候資料以及當前氣候資料。電量監視模組監視無人機的耗電量以取得對應於歷史氣候資料的歷史耗電量。耗電量預測模組根據歷史氣候資料以及歷史耗電量訓練機器學習模型,並且將當前氣候資料輸入至機器學習模型以產生預測耗電量。輸出模組通過收發器輸出預測耗電量。An unmanned aerial vehicle of the present invention includes a processor, a storage medium, a transceiver and at least one sensor. The storage medium stores multiple modules. The processor is coupled to the storage medium, at least one sensor and the transceiver, and accesses and executes a plurality of modules, wherein the plurality of modules include a data collection module, a power monitoring module, a power consumption prediction module and an output module. The data collection module obtains historical climate data and current climate data according to at least one of the at least one sensor and the transceiver. The power monitoring module monitors the power consumption of the drone to obtain historical power consumption corresponding to historical climate data. The power consumption prediction module trains the machine learning model according to the historical climate data and the historical power consumption, and inputs the current climate data into the machine learning model to generate the predicted power consumption. The output module predicts the power consumption through the transceiver output.

在本發明的一實施例中,上述的當前氣候資料對應於第一時段,其中電量監視模組監視無人機的耗電量以取得對應於第二時段的先前耗電量,其中第二時段早於第一時段,其中耗電量預測模組將當前氣候資料以及先前耗電量輸入至機器學習模型以產生預測耗電量。In an embodiment of the present invention, the above-mentioned current climate data corresponds to a first period, wherein the power monitoring module monitors the power consumption of the drone to obtain the previous power consumption corresponding to the second period, wherein the second period is earlier In the first period, the power consumption prediction module inputs the current climate data and the previous power consumption into the machine learning model to generate the predicted power consumption.

在本發明的一實施例中,上述的資料收集模組通過收發器取得無人機的規格資料,其中耗電量預測模組根據規格資料、歷史氣候資料以及歷史耗電量訓練機器學習模型,其中耗電量預測模組將當前氣候資料以及規格資料輸入至機器學習模型以產生預測耗電量。In an embodiment of the present invention, the above-mentioned data collection module obtains the specification data of the UAV through the transceiver, wherein the power consumption prediction module trains the machine learning model according to the specification data, historical climate data and historical power consumption, wherein The power consumption prediction module inputs current climate data and specification data into the machine learning model to generate predicted power consumption.

在本發明的一實施例中,上述的資料收集模組通過收發器取得歷史飛行指令集以及當前飛行指令集,其中耗電量預測模組根據歷史飛行指令集、歷史氣候資料以及歷史耗電量訓練機器學習模型,其中耗電量預測模組將當前飛行指令集以及當前氣候資料輸入至機器學習模型以產生預測耗電量。In an embodiment of the present invention, the above-mentioned data collection module obtains the historical flight instruction set and the current flight instruction set through the transceiver, wherein the power consumption prediction module is based on the historical flight instruction set, historical climate data and historical power consumption The machine learning model is trained, wherein the power consumption prediction module inputs the current flight instruction set and the current climate data into the machine learning model to generate the predicted power consumption.

在本發明的一實施例中,上述的當前飛行指令集關聯於下列指令中的至少其中之一:飛行姿態、飛行速度以及海拔高度,其中飛行速度包含水平速度以及垂直速度。In an embodiment of the present invention, the above-mentioned current flight instruction set is associated with at least one of the following instructions: flight attitude, flight speed and altitude, wherein the flight speed includes horizontal speed and vertical speed.

在本發明的一實施例中,上述的至少一感測器包含溫度計以及濕度計,其中當前氣候資料包含溫度以及濕度。In an embodiment of the present invention, the above-mentioned at least one sensor includes a thermometer and a hygrometer, wherein the current climate data includes temperature and humidity.

在本發明的一實施例中,上述的至少一感測器包含氣壓計、風速計以及風向計,其中當前氣候資料包含氣壓、風速以及風向。In an embodiment of the present invention, the above-mentioned at least one sensor includes a barometer, an anemometer and an anemometer, wherein the current climate data includes air pressure, wind speed and wind direction.

在本發明的一實施例中,上述的多個模組更包含資料讀取與修正模組。資料讀取與修正模組移除歷史氣候資料、當前氣候資料以及歷史耗電量中的異常值以更新歷史氣候資料、當前氣候資料以及歷史耗電量。In an embodiment of the present invention, the above-mentioned modules further include a data reading and correction module. The data reading and correction module removes outliers in historical climate data, current climate data, and historical power consumption to update historical climate data, current climate data, and historical power consumption.

本發明的一種預測無人機的耗電量的方法,包含:根據至少一感測器以及收發器的至少其中之一取得歷史氣候資料以及當前氣候資料;監視無人機的耗電量以取得對應於歷史氣候資料的歷史耗電量;根據歷史氣候資料以及歷史耗電量訓練機器學習模型,並且將當前氣候資料輸入至機器學習模型以產生預測耗電量;以及輸出預測耗電量。A method for predicting the power consumption of an unmanned aerial vehicle of the present invention includes: obtaining historical climate data and current climate data according to at least one of at least one sensor and a transceiver; monitoring the power consumption of the unmanned aerial vehicle to obtain corresponding historical power consumption of historical climate data; train a machine learning model according to historical climate data and historical power consumption, and input current climate data to the machine learning model to generate predicted power consumption; and output predicted power consumption.

基於上述,本發明可根據歷史氣候資料和歷史耗電量訓練機器學習模型,並且根據機器學習模型產生無人機的預測耗電量。Based on the above, the present invention can train a machine learning model according to historical climate data and historical power consumption, and generate the predicted power consumption of the UAV according to the machine learning model.

為了使本發明之內容可以被更容易明瞭,以下特舉實施例作為本發明確實能夠據以實施的範例。另外,凡可能之處,在圖式及實施方式中使用相同標號的元件/構件/步驟,係代表相同或類似部件。In order to make the content of the present invention more comprehensible, the following specific embodiments are given as examples according to which the present invention can indeed be implemented. Additionally, where possible, elements/components/steps using the same reference numerals in the drawings and embodiments represent the same or similar parts.

圖1根據本發明的實施例繪示一種無人機100的示意圖。無人機100可包含處理器110、儲存媒體120、收發器130以及感測器140。FIG. 1 is a schematic diagram of an unmanned aerial vehicle 100 according to an embodiment of the present invention. The drone 100 may include a processor 110 , a storage medium 120 , a transceiver 130 , and a sensor 140 .

處理器110例如是中央處理單元(central processing unit,CPU),或是其他可程式化之一般用途或特殊用途的微控制單元(micro control unit,MCU)、微處理器(microprocessor)、數位信號處理器(digital signal processor,DSP)、可程式化控制器、特殊應用積體電路(application specific integrated circuit,ASIC)、圖形處理器(graphics processing unit,GPU)、影像訊號處理器(image signal processor,ISP)、影像處理單元(image processing unit,IPU)、算數邏輯單元(arithmetic logic unit,ALU)、複雜可程式邏輯裝置(complex programmable logic device,CPLD)、現場可程式化邏輯閘陣列(field programmable gate array,FPGA)或其他類似元件或上述元件的組合。處理器110可耦接至儲存媒體120以及收發器130,並且存取和執行儲存於儲存媒體120中的多個模組和各種應用程式。The processor 110 is, for example, a central processing unit (CPU), or other programmable general-purpose or special-purpose micro control unit (micro control unit, MCU), microprocessor (microprocessor), digital signal processing digital signal processor (DSP), programmable controller, application specific integrated circuit (ASIC), graphics processor (graphics processing unit, GPU), image signal processor (image signal processor, ISP) ), image processing unit (IPU), arithmetic logic unit (ALU), complex programmable logic device (CPLD), field programmable gate array (field programmable gate array) , FPGA) or other similar elements or a combination of the above. The processor 110 may be coupled to the storage medium 120 and the transceiver 130 , and access and execute a plurality of modules and various application programs stored in the storage medium 120 .

儲存媒體120例如是任何型態的固定式或可移動式的隨機存取記憶體(random access memory,RAM)、唯讀記憶體(read-only memory,ROM)、快閃記憶體(flash memory)、硬碟(hard disk drive,HDD)、固態硬碟(solid state drive,SSD)或類似元件或上述元件的組合,而用於儲存可由處理器110執行的多個模組或各種應用程式。在本實施例中,儲存媒體120可儲存包括資料收集模組121、電量監視模組122、資料讀取與修正模組123、耗電量預測模組124以及輸出模組125等多個模組,其功能將於後續說明。儲存媒體120可包含諸如關聯式資料庫(relational database,RDB)、非關聯式資料庫、分散式資料庫、搜尋引擎資料庫、目錄服務(lightweight directory access protocol,LDAP)、檔案(file)或是記憶體等儲存體。The storage medium 120 is, for example, any type of fixed or removable random access memory (random access memory, RAM), read-only memory (ROM), and flash memory (flash memory). , a hard disk drive (HDD), a solid state drive (SSD), or similar components or a combination of the above components for storing a plurality of modules or various application programs executable by the processor 110 . In this embodiment, the storage medium 120 can store a plurality of modules including a data collection module 121 , a power monitoring module 122 , a data reading and correction module 123 , a power consumption prediction module 124 and an output module 125 . , its function will be explained later. The storage medium 120 may include, for example, a relational database (RDB), a non-relational database, a distributed database, a search engine database, a directory service (lightweight directory access protocol, LDAP), a file, or storage such as memory.

收發器130以無線或有線的方式傳送及接收訊號。收發器130還可以執行例如低噪聲放大、阻抗匹配、混頻、向上或向下頻率轉換、濾波、放大以及類似的操作。The transceiver 130 transmits and receives signals in a wireless or wired manner. Transceiver 130 may also perform operations such as low noise amplification, impedance matching, frequency mixing, up or down frequency conversion, filtering, amplification, and the like.

感測器140可包含一或多個與氣候資料的量測相關的感測器。在一實施例中,感測器140可包含溫度計141、氣壓計142、風速計143、風向計144或濕度計145,但本發明不限於此。資料收集模組121可通過收發器130或感測器140取得歷史氣候資料以及當前氣候資料。歷史氣候資料或當前氣候資料可關聯於溫度、氣壓、風速、風向或濕度,但本發明不限於此。舉例來說,感測器140可通過感測器140進行測量以取得溫度、氣壓、風速、風向或濕度等資訊。舉另一例來說,感測器140可通過收發器130以從氣象局的網站取得溫度、氣壓、風速、風向或濕度等資訊。舉又一例來說,感測器140可通過收發器130以從終端裝置接收由使用者輸入的溫度、氣壓、風速、風向或濕度等資訊。歷史氣候資料對應的時段早於當前氣候資料對應的時段。Sensors 140 may include one or more sensors associated with measurements of climate data. In one embodiment, the sensor 140 may include a thermometer 141 , a barometer 142 , an anemometer 143 , an anemometer 144 or a hygrometer 145 , but the invention is not limited thereto. The data collection module 121 can obtain historical climate data and current climate data through the transceiver 130 or the sensor 140 . Historical climate data or current climate data may be associated with temperature, air pressure, wind speed, wind direction or humidity, but the invention is not limited thereto. For example, the sensor 140 can measure through the sensor 140 to obtain information such as temperature, air pressure, wind speed, wind direction or humidity. For another example, the sensor 140 can obtain information such as temperature, air pressure, wind speed, wind direction or humidity from the website of the Weather Bureau through the transceiver 130 . For another example, the sensor 140 can receive information such as temperature, air pressure, wind speed, wind direction or humidity input by the user from the terminal device through the transceiver 130 . The time period corresponding to the historical climate data is earlier than the time period corresponding to the current climate data.

電量監視模組122可監視無人機100的耗電量以取得對應於歷史氣候資料的歷史耗電量。在取得歷史氣候資料和歷史耗電量後,耗電量預測模組124可根據歷史氣候資料和歷史耗電量訓練機器學習模型。The power monitoring module 122 can monitor the power consumption of the drone 100 to obtain historical power consumption corresponding to historical climate data. After obtaining historical climate data and historical power consumption, the power consumption prediction module 124 can train a machine learning model according to the historical climate data and historical power consumption.

在一實施例中,資料收集模組121可通過收發器130取得無人機100的規格資料。耗電量預測模組124可根據規格資料、歷史氣候資料和歷史耗電量訓練機器學習模型。In one embodiment, the data collection module 121 can obtain the specification data of the UAV 100 through the transceiver 130 . The power consumption prediction module 124 can train the machine learning model according to the specification data, historical climate data and historical power consumption.

在一實施例中,資料收集模組121可通過收發器130取得對應於歷史氣候資料的歷史飛行指令集。耗電量預測模組124可根據歷史飛行指令集、歷史氣候資料和歷史耗電量訓練機器學習模型。歷史飛行指令集可關聯於飛行姿態、飛行速度或海拔高度等飛行指令,其中飛行速度可包含水平速度或垂直速度。In one embodiment, the data collection module 121 can obtain the historical flight instruction set corresponding to the historical climate data through the transceiver 130 . The power consumption prediction module 124 can train the machine learning model according to the historical flight instruction set, historical climate data and historical power consumption. The historical flight instruction set may be associated with flight instructions such as flight attitude, flight speed or altitude, wherein the flight speed may include horizontal speed or vertical speed.

在一實施例中,在耗電量預測模組124根據歷史氣候資料、歷史耗電量、規格資料或歷史飛行指令集訓練機器學習模型之前,資料讀取與修正模組123可先移除歷史氣候資料、歷史耗電量、規格資料或歷史飛行指令集中的異常值,以使耗電量預測模組124訓練出的機器學習模型更加地準確。In one embodiment, before the power consumption prediction module 124 trains the machine learning model according to historical climate data, historical power consumption, specification data or historical flight instruction sets, the data reading and correction module 123 may first remove the historical data Climate data, historical power consumption, specification data or abnormal values in the historical flight instruction set, so that the machine learning model trained by the power consumption prediction module 124 is more accurate.

為了移除一資料集中的資料點,在一實施例中,資料讀取與修正模組123可基於資料點大於上限或小於下限而判斷該資料點為異常值,並且自資料集移除該資料點(或更新該資料點)。在一實施例中,資料讀取與修正模組123可透過常態分布法移除資料集中的異常值(或更新該資料點)。具體來說,資料讀取與修正模組123可建立資料集的常態分布曲線。由於約有99.7%的數值分布在距離資料集的平均值3個標準差內的範圍中,故資料讀取與修正模組123可移除或修正資料集中超過3個標準差的資料點。修正後的資料集(即:修正後的歷史氣候資料、歷史耗電量、規格資料或歷史飛行指令集)可用以訓練機器學習模型。In order to remove a data point from a data set, in one embodiment, the data reading and correction module 123 may determine that the data point is an outlier based on whether the data point is larger than the upper limit or smaller than the lower limit, and remove the data from the data set point (or update the data point). In one embodiment, the data reading and correction module 123 can remove outliers (or update the data points) in the data set through the normal distribution method. Specifically, the data reading and correction module 123 can establish the normal distribution curve of the data set. Since about 99.7% of the values are distributed within 3 standard deviations from the mean of the data set, the data reading and correction module 123 can remove or correct data points in the data set that are more than 3 standard deviations away. Corrected datasets (ie: corrected historical climate data, historical power consumption, specification data, or historical flight instruction sets) can be used to train machine learning models.

機器學習模型例如是類神經網路模型。類神經網路模型可包含輸入層(input layer)、隱藏層(hidden layer)和輸出層(output layer)。耗電量預測模組124可將修正後的資料集分割為訓練(train)資料集、驗證(validation)資料集和測試(test)資料集。輸入層可接收訓練資料集、驗證資料集或測試資料集。輸出層可輸出類神經網路模型的訓練結果或計算結果。隱藏層位於輸入層和輸出層之間。輸入層、隱藏層和輸出層可分別包含一或多個節點,其中所述一或多個節點可依據使用者的需求而變動。輸入層中的一或多個節點可分別與隱藏層中的一或多個節點連接,並且隱藏層中的一或多個節點可分別與輸出層中的一或多個節點連接。在耗電量預測模組124進行類神經網路模型的訓練時,耗電量預測模組124可先使用訓練資料集訓練類神經網路模型。接著,耗電量預測模組124可利用驗證資料集評估類神經網路模型的訓練狀況,判斷類神經網路模型是否過度學習(overfitting),從而根據判斷結果調整類神經網路模型的參數以產生最佳的類神經網路模型。在類神經網路模型經過充分的驗證後,耗電量預測模組124可利用測試資料集評估最終的類神經網路模型的效能。The machine learning model is, for example, a neural network-like model. A neural network-like model can include an input layer, a hidden layer, and an output layer. The power consumption prediction module 124 can divide the revised data set into a training data set, a validation data set and a test data set. The input layer can receive training datasets, validation datasets, or test datasets. The output layer can output the training results or calculation results of the neural network-like model. The hidden layer is located between the input layer and the output layer. The input layer, the hidden layer and the output layer can respectively include one or more nodes, wherein the one or more nodes can be changed according to the user's needs. One or more nodes in the input layer can be respectively connected to one or more nodes in the hidden layer, and one or more nodes in the hidden layer can be respectively connected to one or more nodes in the output layer. When the power consumption prediction module 124 performs the training of the neural network-like model, the power consumption prediction module 124 may first use the training data set to train the neural network-like model. Next, the power consumption prediction module 124 can use the verification data set to evaluate the training status of the neural network model, determine whether the neural network model is overfitting, and adjust the parameters of the neural network model according to the judgment result to Generate the best neural network-like model. After the neural network-like model is fully verified, the power consumption prediction module 124 can use the test data set to evaluate the performance of the final neural network-like model.

假設測試資料集

Figure 02_image001
如公式(1)所示,並且類神經網路模型的輸出值
Figure 02_image003
如公式(2)所示,其中n為正整數。耗電量預測模組124可根據如公式(3)所示的平均絕對誤差法(mean absolute error,MAE)、如公式(4)所示的平均絕對百分比誤差法(mean absolute percentage error,MAPE)或如公式(5)所示的均方根誤差法(root mean square error,RMSE)來計算類神經網路模型的損失函數f。損失函數f的值越小,代表類神經網路模型的效能越好。若損失函數f的值過大,則耗電量預測模組124可調整類神經網路模型中各個層(即:輸入層、隱藏層和輸出層)之中的節點的數量,並重新訓練類神經網路模型。
Figure 02_image005
…(1)
Figure 02_image007
…(2)
Figure 02_image009
…(3)
Figure 02_image011
…(4)
Figure 02_image013
…(5) Hypothesis test dataset
Figure 02_image001
As shown in formula (1), and the output value of the neural network-like model
Figure 02_image003
As shown in formula (2), where n is a positive integer. The power consumption prediction module 124 can be based on the mean absolute error (MAE) method shown in formula (3) and the mean absolute percentage error (MAPE) method shown in formula (4). Or the root mean square error (RMSE) as shown in formula (5) to calculate the loss function f of the neural network-like model. The smaller the value of the loss function f, the better the performance of the neural network-like model. If the value of the loss function f is too large, the power consumption prediction module 124 can adjust the number of nodes in each layer (ie, the input layer, the hidden layer, and the output layer) in the neural network-like model, and retrain the neural network-like model. network model.
Figure 02_image005
…(1)
Figure 02_image007
…(2)
Figure 02_image009
…(3)
Figure 02_image011
…(4)
Figure 02_image013
…(5)

在耗電量預測模組124產生機器學習模型後,耗電量預測模組124可將當前氣候資料輸入至機器學習模型以產生預測耗電量。輸出模組125可通過收發器130輸出預測耗電量。例如,輸出模組125可通過收發器130傳送預測耗電量給用以操控無人機100的終端裝置。終端裝置可通過輸出裝置(例如:顯示器)輸出預測耗電量以供無人機100的操作者或管理者參考。在一實施例中,在將當前氣候資料輸入至機器學習模型之前,資料讀取與修正模組123可移除或更新當前氣候資料中的異常值。After the power consumption prediction module 124 generates the machine learning model, the power consumption prediction module 124 can input the current climate data into the machine learning model to generate the predicted power consumption. The output module 125 can output the predicted power consumption through the transceiver 130 . For example, the output module 125 can transmit the predicted power consumption to the terminal device for controlling the drone 100 through the transceiver 130 . The terminal device may output the predicted power consumption through an output device (eg, a display) for reference by the operator or manager of the drone 100 . In one embodiment, before inputting the current climate data into the machine learning model, the data reading and correction module 123 may remove or update outliers in the current climate data.

在一實施例中,無人機100的預測耗電量可與無人機100的規格資料有關。耗電量預測模組124可將規格資料和當前氣候資料輸入至機器學習模型以產生預測耗電量。In one embodiment, the predicted power consumption of the drone 100 may be related to the specification data of the drone 100 . The power consumption prediction module 124 may input specification data and current climate data into the machine learning model to generate predicted power consumption.

在一實施例中,無人機100的預測耗電量可與飛行指令集相關。耗電量預測模組124可將當前飛行指令集和當前氣候資料輸入至機器學習模型以產生預測耗電量。在一實施例中,在將前飛行指令集輸入至機器學習模型之前,資料讀取與修正模組123可移除或更新當前飛行指令集中的異常值。In one embodiment, the predicted power consumption of the drone 100 may be related to the flight instruction set. The power consumption prediction module 124 can input the current flight instruction set and the current climate data into the machine learning model to generate the predicted power consumption. In one embodiment, before inputting the previous flight instruction set into the machine learning model, the data reading and correction module 123 may remove or update outliers in the current flight instruction set.

在一實施例中,無人機100的預測耗電量可與先前耗電量有關。具體來說,假設當前氣候資料對應於第一時段,則電量監視模組122可監視無人機100的耗電量以取得對應於第二時段的先前耗電量,其中第二時段早於第一時段。耗電量預測模組124可將先前耗電量以及當前氣候資料輸入至機器學習模型以產生預測耗電量。在一實施例中,在將先前耗電量輸入至機器學習模型之前,資料讀取與修正模組123可移除或更新將先前耗電量中的異常值。In one embodiment, the predicted power consumption of the drone 100 may be related to the previous power consumption. Specifically, assuming that the current climate data corresponds to the first period, the power monitoring module 122 can monitor the power consumption of the drone 100 to obtain the previous power consumption corresponding to the second period, wherein the second period is earlier than the first period time period. The power consumption prediction module 124 can input the previous power consumption and the current climate data into the machine learning model to generate the predicted power consumption. In one embodiment, before inputting the previous power consumption into the machine learning model, the data reading and correction module 123 may remove or update the abnormal value in the previous power consumption.

圖2根據本發明的實施例繪示一種預測無人機的耗電量的方法的流程圖,其中所述方法可由如圖1所示的無人機100實施。在步驟S201中,根據至少一感測器以及收發器的至少其中之一取得歷史氣候資料以及當前氣候資料。在步驟S202中,監視無人機的耗電量以取得對應於歷史氣候資料的歷史耗電量。在步驟S203中,根據歷史氣候資料以及歷史耗電量訓練機器學習模型,並且將當前氣候資料輸入至機器學習模型以產生預測耗電量。在步驟S204中,輸出預測耗電量。FIG. 2 is a flowchart of a method for predicting power consumption of an unmanned aerial vehicle according to an embodiment of the present invention, wherein the method can be implemented by the unmanned aerial vehicle 100 shown in FIG. 1 . In step S201, historical climate data and current climate data are obtained according to at least one of the at least one sensor and the transceiver. In step S202, the power consumption of the drone is monitored to obtain the historical power consumption corresponding to the historical climate data. In step S203, the machine learning model is trained according to the historical climate data and the historical power consumption, and the current climate data is input into the machine learning model to generate the predicted power consumption. In step S204, the predicted power consumption is output.

綜上所述,本發明不只利用無人機各種飛行狀態資料及用歷史耗電量資料,還整合當前天候資料。本發明可透過將當前氣候資料導入預測模型進行耗電量預測,因此能提供無人機的控制者評估執行各種繁雜飛行任務所需耗電量之較佳預測參考,提早為影響無人機執行飛行任務最甚的天氣因素預做處置,進而有效減少飛行事故的產生。To sum up, the present invention not only utilizes various flight status data and historical power consumption data of the UAV, but also integrates current weather data. The present invention can predict the power consumption by importing the current climate data into the prediction model, so it can provide a better prediction reference for the controller of the UAV to evaluate the power consumption required to perform various complicated flight tasks, and can influence the UAV to perform flight tasks in advance. The worst weather factors are dealt with in advance, thereby effectively reducing the occurrence of flight accidents.

100:無人機 110:處理器 120:儲存媒體 121:資料收集模組 122:電量監視模組 123:資料讀取與修正模組 124:耗電量預測模組 125:輸出模組 130:收發器 140:感測器 141:溫度計 142:氣壓計 143:風速計 144:風向計 145:濕度計 S201、S202、S203、S204:步驟 100: Drone 110: Processor 120: Storage Media 121: Data Collection Module 122: Power monitoring module 123: Data reading and correction module 124: Power consumption prediction module 125: Output module 130: Transceiver 140: Sensor 141: Thermometer 142: Barometer 143: Anemometer 144: Anemometer 145: Hygrometer S201, S202, S203, S204: steps

圖1根據本發明的實施例繪示一種無人機的示意圖。 圖2根據本發明的實施例繪示一種預測無人機的耗電量的方法的流程圖。 FIG. 1 is a schematic diagram of an unmanned aerial vehicle according to an embodiment of the present invention. FIG. 2 is a flowchart illustrating a method for predicting power consumption of an unmanned aerial vehicle according to an embodiment of the present invention.

S201、S202、S203、S204:步驟 S201, S202, S203, S204: steps

Claims (9)

一種無人機,包括: 收發器; 至少一感測器; 儲存媒體,儲存多個模組;以及 處理器,耦接所述儲存媒體、所述至少一感測器以及所述收發器,並且存取和執行所述多個模組,其中所述多個模組包括: 資料收集模組,根據所述至少一感測器以及所述收發器的至少其中之一取得歷史氣候資料以及當前氣候資料; 電量監視模組,監視所述無人機的耗電量以取得對應於所述歷史氣候資料的歷史耗電量; 耗電量預測模組,根據所述歷史氣候資料以及所述歷史耗電量訓練機器學習模型,並且將所述當前氣候資料輸入至所述機器學習模型以產生預測耗電量;以及 輸出模組,通過所述收發器輸出所述預測耗電量。 A drone comprising: transceiver; at least one sensor; storage media, storing multiple modules; and a processor, coupled to the storage medium, the at least one sensor and the transceiver, and accesses and executes the multiple modules, wherein the multiple modules include: a data collection module for obtaining historical climate data and current climate data according to at least one of the at least one sensor and the transceiver; a power monitoring module, which monitors the power consumption of the drone to obtain historical power consumption corresponding to the historical climate data; a power consumption prediction module, which trains a machine learning model according to the historical climate data and the historical power consumption, and inputs the current climate data into the machine learning model to generate predicted power consumption; and The output module outputs the predicted power consumption through the transceiver. 如請求項1所述的無人機,其中 所述當前氣候資料對應於第一時段,其中 所述電量監視模組監視所述無人機的所述耗電量以取得對應於第二時段的先前耗電量,其中所述第二時段早於所述第一時段,其中 所述耗電量預測模組將所述當前氣候資料以及所述先前耗電量輸入至所述機器學習模型以產生所述預測耗電量。 The drone of claim 1, wherein The current climate data corresponds to a first time period, where The power monitoring module monitors the power consumption of the drone to obtain previous power consumption corresponding to a second period, wherein the second period is earlier than the first period, wherein The power consumption prediction module inputs the current climate data and the previous power consumption into the machine learning model to generate the predicted power consumption. 如請求項1所述的無人機,其中 所述資料收集模組通過所述收發器取得所述無人機的規格資料,其中 所述耗電量預測模組根據所述規格資料、所述歷史氣候資料以及所述歷史耗電量訓練所述機器學習模型,其中 所述耗電量預測模組將所述當前氣候資料以及所述規格資料輸入至所述機器學習模型以產生所述預測耗電量。 The drone of claim 1, wherein The data collection module obtains the specification data of the UAV through the transceiver, wherein The power consumption prediction module trains the machine learning model according to the specification data, the historical climate data and the historical power consumption, wherein The power consumption prediction module inputs the current climate data and the specification data into the machine learning model to generate the predicted power consumption. 如請求項1所述的無人機,其中 所述資料收集模組通過所述收發器取得歷史飛行指令集以及當前飛行指令集,其中 所述耗電量預測模組根據所述歷史飛行指令集、所述歷史氣候資料以及所述歷史耗電量訓練所述機器學習模型,其中 所述耗電量預測模組將所述當前飛行指令集以及所述當前氣候資料輸入至所述機器學習模型以產生所述預測耗電量。 The drone of claim 1, wherein The data collection module obtains the historical flight instruction set and the current flight instruction set through the transceiver, wherein The power consumption prediction module trains the machine learning model according to the historical flight instruction set, the historical climate data and the historical power consumption, wherein The power consumption prediction module inputs the current flight instruction set and the current climate data into the machine learning model to generate the predicted power consumption. 如請求項4所述的無人機,其中所述當前飛行指令集關聯於下列指令中的至少其中之一: 飛行姿態、飛行速度以及海拔高度,其中所述飛行速度包括水平速度以及垂直速度。 The drone of claim 4, wherein the current flight instruction set is associated with at least one of the following instructions: Flight attitude, flight speed and altitude, wherein the flight speed includes horizontal speed and vertical speed. 如請求項1所述的無人機,其中所述至少一感測器包括溫度計以及濕度計,其中所述當前氣候資料包括溫度以及濕度。The drone of claim 1, wherein the at least one sensor includes a thermometer and a hygrometer, and wherein the current climate data includes temperature and humidity. 如請求項1所述的無人機,其中所述至少一感測器包括氣壓計、風速計以及風向計,其中所述當前氣候資料包括氣壓、風速以及風向。The drone of claim 1, wherein the at least one sensor includes a barometer, an anemometer, and an anemometer, and wherein the current climate data includes air pressure, wind speed, and wind direction. 如請求項1所述的無人機,其中所述多個模組更包括: 資料讀取與修正模組,移除所述歷史氣候資料、所述當前氣候資料以及所述歷史耗電量中的異常值以更新所述歷史氣候資料、所述當前氣候資料以及所述歷史耗電量。 The drone of claim 1, wherein the plurality of modules further comprise: A data reading and correction module to remove abnormal values in the historical climate data, the current climate data and the historical power consumption to update the historical climate data, the current climate data and the historical power consumption power. 一種預測無人機的耗電量的方法,包括: 根據至少一感測器以及收發器的至少其中之一取得歷史氣候資料以及當前氣候資料; 監視所述無人機的耗電量以取得對應於所述歷史氣候資料的歷史耗電量; 根據所述歷史氣候資料以及所述歷史耗電量訓練機器學習模型,並且將所述當前氣候資料輸入至所述機器學習模型以產生預測耗電量;以及 輸出所述預測耗電量。 A method of predicting the power consumption of a drone, comprising: Obtain historical climate data and current climate data according to at least one of the at least one sensor and the transceiver; monitoring the power consumption of the drone to obtain historical power consumption corresponding to the historical climate data; Train a machine learning model based on the historical climate data and the historical power consumption, and input the current climate data into the machine learning model to generate predicted power consumption; and The predicted power consumption is output.
TW109140566A 2020-11-19 2020-11-19 Method for predicting power consumption of uav and uav using the same TWI824198B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109140566A TWI824198B (en) 2020-11-19 2020-11-19 Method for predicting power consumption of uav and uav using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109140566A TWI824198B (en) 2020-11-19 2020-11-19 Method for predicting power consumption of uav and uav using the same

Publications (2)

Publication Number Publication Date
TW202221625A true TW202221625A (en) 2022-06-01
TWI824198B TWI824198B (en) 2023-12-01

Family

ID=83062483

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109140566A TWI824198B (en) 2020-11-19 2020-11-19 Method for predicting power consumption of uav and uav using the same

Country Status (1)

Country Link
TW (1) TWI824198B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113869747A (en) * 2021-09-29 2021-12-31 天津云圣智能科技有限责任公司 Full-automatic airport battery scheduling method and device and electronic equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7163099B2 (en) * 2018-08-10 2022-10-31 株式会社東芝 ENERGY MANAGEMENT DEVICE, MODEL MANAGEMENT METHOD AND COMPUTER PROGRAM
CN109582034B (en) * 2018-11-29 2021-08-06 沈阳无距科技有限公司 Multitask route planning method and device and electronic equipment
TWM594769U (en) * 2019-11-15 2020-05-01 建源光電科技有限公司 Unmanned aerial vehicle alpine logistics system
CN111506093A (en) * 2020-04-09 2020-08-07 陕西省地方电力(集团)有限公司延安供电分公司 Unmanned aerial vehicle-based power inspection system and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113869747A (en) * 2021-09-29 2021-12-31 天津云圣智能科技有限责任公司 Full-automatic airport battery scheduling method and device and electronic equipment

Also Published As

Publication number Publication date
TWI824198B (en) 2023-12-01

Similar Documents

Publication Publication Date Title
WO2022077587A1 (en) Data prediction method and apparatus, and terminal device
EP3940631A1 (en) Learning device, deduction device, data generation device, learning method, and learning program
CN109902832B (en) Training method of machine learning model, anomaly prediction method and related devices
JP6942790B2 (en) Information processing device and information processing method
US10466266B2 (en) Flight parameter prediction using neural networks
US20230131283A1 (en) Method for generating universal learned model
JP6853148B2 (en) Detection device, detection method and detection program
TWI444844B (en) Simulation parameter correction technique
EP3346428A1 (en) Sensor design support apparatus, sensor design support method and computer program
US11481634B2 (en) Systems and methods for training a neural network to control an aircraft
US11468330B2 (en) Artificial neural network growth
TWI824198B (en) Method for predicting power consumption of uav and uav using the same
CN107687872A (en) Bridge structure health state monitoring method and system based on dynamic model renewal
CN116608551A (en) Cold load prediction method and device, electronic equipment and storage medium
WO2021182000A1 (en) Parameter adjusting device, inference device, parameter adjusting method, and parameter adjusting program
US20220261685A1 (en) Machine Learning Training Device
CN108960406B (en) MEMS gyroscope random error prediction method based on BFO wavelet neural network
US20190275672A1 (en) Information processing apparatus and information processing method
Shi et al. Robust identification method for nonlinear model structures and its application to high-performance aircraft
CN114401893A (en) Unmanned aerial vehicle control assistance system and unmanned aerial vehicle control assistance method
CN113574418A (en) Weather prediction data creation program, weather prediction data creation method, and moving object
US11959812B2 (en) Automated programmable dehumidifier
US20230342639A1 (en) System and method for reduction of data transmission by data statistic validation
CN115337966B (en) High-low temperature low-pressure test box temperature control method and device based on heat sink technology
Vignesh et al. Deep Reinforcement Learning Based Weather Monitoring Systemusing Arduino for Smart Environment