TW202220166A - Semiconductor device and manufacturing method of the same - Google Patents

Semiconductor device and manufacturing method of the same Download PDF

Info

Publication number
TW202220166A
TW202220166A TW109138932A TW109138932A TW202220166A TW 202220166 A TW202220166 A TW 202220166A TW 109138932 A TW109138932 A TW 109138932A TW 109138932 A TW109138932 A TW 109138932A TW 202220166 A TW202220166 A TW 202220166A
Authority
TW
Taiwan
Prior art keywords
oxide layer
gate oxide
substrate
voltage
layer
Prior art date
Application number
TW109138932A
Other languages
Chinese (zh)
Other versions
TWI737535B (en
Inventor
浦士杰
周志文
戴執中
Original Assignee
力晶積成電子製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 力晶積成電子製造股份有限公司 filed Critical 力晶積成電子製造股份有限公司
Priority to TW109138932A priority Critical patent/TWI737535B/en
Application granted granted Critical
Publication of TWI737535B publication Critical patent/TWI737535B/en
Publication of TW202220166A publication Critical patent/TW202220166A/en

Links

Images

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Element Separation (AREA)

Abstract

A semiconductor device and manufacturing method of the same are provided. The semiconductor device includes a substrate, a low-voltage device, a medium-voltage device and high-voltage devices. The low-voltage device includes a first gate oxide located in the substrate, the medium-voltage device includes a second gate oxide located in the substrate, and each of the high-voltage devices includes a third gate oxide located in the substrate. The top surface of the first gate oxide, the top surface of the second gate oxide, and the top surface of the third gate oxide are on the same planar level. The thickness of the first gate oxide is smaller than the thickness of the second gate oxide, and the thickness of the second gate oxide is smaller than the thickness of the third gate oxide.

Description

半導體裝置及其製造方法Semiconductor device and method of manufacturing the same

本發明是有關於一種半導體技術,且特別是有關於一種半導體裝置及其製造方法。The present invention relates to a semiconductor technology, and more particularly, to a semiconductor device and a method of manufacturing the same.

隨著科技的發展,對於元件尺寸的縮小及高效能的需求也日益提升。目前已發展出閘極後置(gate-last)製程,使用金屬閘極取代多晶矽閘極,以解決因閘極尺寸縮減導致的電性問題。With the development of science and technology, the demand for component size reduction and high performance is also increasing. At present, a gate-last process has been developed, which uses a metal gate to replace the polysilicon gate to solve the electrical problem caused by the reduction of the gate size.

然而,在高介電常數之介電層/金屬閘極 (High-K Metal Gate, HKMG)的閘極後置製程中,半導體裝置在整合具有不同操作電壓的元件時,由於不同元件的閘氧化層厚度不同,為了將閘極後置製程中虛設的多晶矽閘極替換成金屬閘極,在平坦化的過程中會犧牲部分元件的閘極高度,導致半導體裝置的穩定性不佳。因此,如何解決半導體裝置中不同電壓元件的閘氧化層高度不一致的問題是重要的課題。However, in the post-gate process of the high-k dielectric layer/metal gate (HKMG), when the semiconductor device integrates components with different operating voltages, due to the gate oxidation of the different components Due to different layer thicknesses, in order to replace the dummy polysilicon gate in the post-gate process with a metal gate, the gate height of some components will be sacrificed during the planarization process, resulting in poor stability of the semiconductor device. Therefore, how to solve the problem that the heights of gate oxide layers of different voltage elements in a semiconductor device are not uniform is an important issue.

本發明提供一種半導體裝置,可提升半導體裝置的穩定性。The present invention provides a semiconductor device, which can improve the stability of the semiconductor device.

本發明另提供一種半導體裝置的製造方法,可以簡化製程,使各電壓元件的閘氧化層的頂面在同一水平面,而提升半導體裝置的穩定性,並可提供較為彈性的閘極材料的選擇。The present invention also provides a manufacturing method of a semiconductor device, which can simplify the process, make the top surfaces of the gate oxide layers of each voltage element at the same level, improve the stability of the semiconductor device, and provide a more flexible selection of gate materials.

本發明的半導體裝置包括:一基底、一低壓元件、一中壓元件以及多個高壓元件。低壓元件,包括一第一閘氧化層位於所述基底內;中壓元件,包括一第二閘氧化層位於所述基底內;每個高壓元件包括一第三閘氧化層位於所述基底內,其中所述第一閘氧化層的頂面、所述第二閘氧化層的頂面以及所述第三閘氧化層的頂面在同一水平面,且所述第一閘氧化層的厚度小於所述第二閘氧化層的厚度,所述第二閘氧化層的厚度小於所述第三閘氧化層的厚度。The semiconductor device of the present invention includes: a substrate, a low voltage element, a medium voltage element and a plurality of high voltage elements. A low-voltage component includes a first gate oxide layer located in the substrate; a medium-voltage component includes a second gate oxide layer located in the substrate; each high-voltage component includes a third gate oxide layer located in the substrate, The top surface of the first gate oxide layer, the top surface of the second gate oxide layer and the top surface of the third gate oxide layer are at the same level, and the thickness of the first gate oxide layer is smaller than the thickness of the first gate oxide layer. The thickness of the second gate oxide layer, the thickness of the second gate oxide layer is smaller than the thickness of the third gate oxide layer.

在本發明的一實施例中,上述的低壓元件包括一金屬閘極,形成於所述第一閘氧化層上。In an embodiment of the present invention, the above-mentioned low-voltage device includes a metal gate formed on the first gate oxide layer.

在本發明的一實施例中,上述的中壓元件包括一金屬閘極或一多晶矽閘極,形成於所述第二閘氧化層上。In an embodiment of the present invention, the above-mentioned medium voltage device includes a metal gate or a polysilicon gate formed on the second gate oxide layer.

在本發明的一實施例中,上述的高壓元件包括一金屬閘極或一多晶矽閘極,形成於所述第二閘氧化層上。In an embodiment of the present invention, the above-mentioned high-voltage device includes a metal gate or a polysilicon gate formed on the second gate oxide layer.

在本發明的一實施例中,上述的多個高壓元件中的不同的第三閘氧化層分別具有不同的厚度。In an embodiment of the present invention, different third gate oxide layers in the above-mentioned plurality of high-voltage components have different thicknesses, respectively.

在本發明的一實施例中,上述的半導體裝置還可包括多個元件隔離結構,位在所述基底內,用以分隔所述低壓元件、所述中壓元件與所述多個高壓元件。In an embodiment of the present invention, the above-mentioned semiconductor device may further include a plurality of element isolation structures located in the substrate for separating the low voltage element, the medium voltage element and the plurality of high voltage elements.

本發明的半導體裝置的製造方法,包括:在一基底內形成多個元件隔離結構,以定義出一低壓元件區、一中壓元件區與多個高壓元件區。接著,在所述基底上形成一圖案化罩幕,具有一第一開口,第一開口暴露出所述多個高壓元件區中之一的所述基底的表面。以所述圖案化罩幕作為蝕刻罩幕,移除所述第一開口內的所述基底至一第一深度,並在所述第一開口內形成一塗佈層。重覆以下步驟a至c:a. 在所述圖案化罩幕中形成第n開口,第n開口暴露出所述多個高壓元件區中之第n個的所述基底的表面,n為大於1的正整數;b. 以所述圖案化罩幕作為蝕刻罩幕,移除所述第n開口內的所述基底至一第n深度;c. 在所述第n開口內形成所述塗佈層。在所述多個高壓元件區皆完成上述步驟後,移除所述塗佈層,並在所述基底上形成高壓元件閘氧化層填滿所述第一開口與所述第n開口,並以所述圖案化罩幕作為中止層,平坦化所述高壓元件閘氧化層。接著,在所述圖案化罩幕中形成一第(n+1)開口,第(n+1)開口暴露出所述中壓元件區的所述基底的表面,以所述圖案化罩幕作為蝕刻罩幕,移除所述第(n+1)開口內的所述基底至一第(n+1)深度,然後移除所述圖案化罩幕,並在所述第(n+1)開口內形成中壓元件閘氧化層。接著,在所述中壓元件閘氧化層表面形成保護層,並露出所述低壓元件區的所述基底的表面,再在所述低壓元件區的所述基底的表面形成低壓元件閘氧化層,使所述低壓元件閘氧化層的頂面、所述中壓元件閘氧化層的頂面以及所述高壓元件閘氧化層的頂面在同一水平面。The manufacturing method of the semiconductor device of the present invention includes: forming a plurality of element isolation structures in a substrate to define a low voltage element region, a medium voltage element region and a plurality of high voltage element regions. Next, a patterned mask having a first opening is formed on the substrate, and the first opening exposes a surface of the substrate in one of the high-voltage element regions. Using the patterned mask as an etching mask, the substrate in the first opening is removed to a first depth, and a coating layer is formed in the first opening. Repeat the following steps a to c: a. Form an nth opening in the patterned mask, and the nth opening exposes the surface of the substrate of the nth one of the plurality of high-voltage element regions, where n is greater than A positive integer of 1; b. Using the patterned mask as an etching mask, remove the substrate in the nth opening to an nth depth; c. Form the coating in the nth opening cloth layer. After the above steps are all completed in the plurality of high-voltage device regions, the coating layer is removed, and a high-voltage device gate oxide layer is formed on the substrate to fill the first opening and the nth opening, and use The patterned mask acts as a stop layer and planarizes the gate oxide layer of the high voltage device. Next, a (n+1)th opening is formed in the patterned mask, and the (n+1)th opening exposes the surface of the substrate in the medium voltage device region, and the patterned mask is used as the etching the mask, removing the substrate in the (n+1)th opening to a (n+1)th depth, then removing the patterned mask, and removing the substrate in the (n+1)th opening A gate oxide layer of the medium voltage element is formed in the opening. Next, a protective layer is formed on the surface of the gate oxide layer of the medium voltage element, and the surface of the substrate in the low voltage element region is exposed, and then a gate oxide layer of the low voltage element is formed on the surface of the substrate in the low voltage element region, The top surface of the gate oxide layer of the low voltage element, the top surface of the gate oxide layer of the medium voltage element and the top surface of the gate oxide layer of the high voltage element are at the same level.

在本發明的另一實施例中,形成上述圖案化罩幕的步驟包括:在所述基底的表面形成一墊氧化層,然後在所述墊氧化層上形成一罩幕層,接著圖案化所述罩幕層,以形成具有所述第一開口的所述圖案化罩幕。In another embodiment of the present invention, the step of forming the patterned mask includes: forming a pad oxide layer on the surface of the substrate, then forming a mask layer on the pad oxide layer, and then patterning the the mask layer to form the patterned mask with the first opening.

在本發明的另一實施例中,形成上述保護層之後還可包括利用濕式製程去除殘留的所述墊氧化層。In another embodiment of the present invention, after forming the protective layer, the remaining pad oxide layer may be removed by a wet process.

在本發明的一實施例中,上述第一深度不同於第n深度。In an embodiment of the present invention, the above-mentioned first depth is different from the nth depth.

在本發明的另一實施例中,移除上述圖案化罩幕之前還可包括在所述中壓元件區的所述基底的表面形成一犧牲氧化層,以改善所述基底的界面,且可利用濕式製程去除所述犧牲氧化層及其下方的部分所述基底。In another embodiment of the present invention, before removing the patterned mask, a sacrificial oxide layer may be formed on the surface of the substrate in the medium voltage device region to improve the interface of the substrate, and The sacrificial oxide layer and a portion of the substrate below it are removed by a wet process.

在本發明的另一實施例中,上述的保護層包括光阻層。In another embodiment of the present invention, the above-mentioned protective layer includes a photoresist layer.

在本發明的另一實施例中,形成上述高壓元件閘氧化層的方法包括:以熱氧化法在所述基底的表面形成一熱氧化層,接著在所述熱氧化層上形成一化學氣相沉積氧化層。In another embodiment of the present invention, the method for forming the gate oxide layer of the high voltage device includes: forming a thermal oxide layer on the surface of the substrate by a thermal oxidation method, and then forming a chemical vapor phase on the thermal oxide layer Deposit an oxide layer.

在本發明的另一實施例中,形成上述中壓元件閘氧化層的方法包括臨場蒸氣產生(ISSG)法或乾式氧化法。In another embodiment of the present invention, the method for forming the gate oxide layer of the medium voltage element includes an in situ vapor generation (ISSG) method or a dry oxidation method.

基於上述,本發明的半導體裝置及其製造方法可整合至少一低壓元件、一中壓元件及兩個以上的高壓元件於基底上,由於多個電壓元件的閘氧化層的頂面在同一水平面,因此高壓元件的閘極的高度不會受閘極後置製程影響,而可提升後續形成的半導體裝置的穩定性,並且可藉由調控閘氧化層的厚度,提供較為彈性的閘極材料的選擇。Based on the above, the semiconductor device and the manufacturing method thereof of the present invention can integrate at least one low-voltage element, one medium-voltage element and two or more high-voltage elements on the substrate. Since the top surfaces of the gate oxide layers of the plurality of voltage elements are at the same level, Therefore, the height of the gate of the high-voltage device will not be affected by the gate post-processing process, which can improve the stability of the semiconductor device formed subsequently, and can provide a more flexible selection of gate materials by adjusting the thickness of the gate oxide layer. .

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more obvious and easy to understand, the following embodiments are given and described in detail with the accompanying drawings as follows.

下文列舉實施例並配合所附圖式來進行詳細地說明,但所提供的實施例並非用以限制本發明所涵蓋的範圍。此外,圖式僅以說明為目的,並未依照原尺寸作圖。為了方便理解,下述說明中相同的元件將以相同的符號標示來說明。The following examples are described in detail with the accompanying drawings, but the provided examples are not intended to limit the scope of the present invention. In addition, the drawings are for illustrative purposes only and are not drawn in full scale. In order to facilitate understanding, the same elements in the following description will be described with the same symbols.

此外,關於文中所使用「包含」、「包括」、「具有」等等用語,均為開放性的用語,也就是指「包括但不限於」。In addition, the terms such as "include", "include", "have", etc. used in the text are all open-ended terms, that is, "including but not limited to".

應當理解,儘管術語「第一」、「第二」、「第三」等在本文中可以用於描述各種元件、部件、區域、層及/或部分,但是這些元件、部件、區域、及/或部分不應受這些術語的限制。這些術語僅用於將一個元件、部件、區域、層或部分與另一個元件、部件、區域、層或部分區分開。因此,下面討論的「第一元件」、「部件」、「區域」、「層」、或「部分」可以被稱為第二元件、部件、區域、層或部分而不脫離本文的教導。It will be understood that, although the terms "first," "second," "third," etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, and/or or parts shall not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another element, component, region, layer or section. Thus, "a first element," "component," "region," "layer," or "section" discussed below could be termed a second element, component, region, layer or section without departing from the teachings herein.

另外,文中所提到的方向性用語,例如「上」、「下」等,僅是用以參考圖式的方向,並非用來限制本發明。In addition, the directional terms mentioned in the text, such as "up", "down", etc., are only used to refer to the direction of the drawings, and are not used to limit the present invention.

圖1為依照本發明一實施例的半導體裝置的剖面示意圖。FIG. 1 is a schematic cross-sectional view of a semiconductor device according to an embodiment of the present invention.

請參照圖1,半導體裝置10包括一基底100、一低壓元件110、一中壓元件120、及多個高壓元件130。所述基底100還包括多個元件隔離結構102,用以分隔所述低壓元件110、所述中壓元件120與所述多個高壓元件130。所述基底100的材料包括矽。所述低壓元件110包括一第一閘氧化層112位於所述基底100內及一閘極114位於所述第一閘氧化層112上;所述中壓元件120包括一第二閘氧化層122位於所述基底100內及ㄧ閘極124位於所述第二閘氧化層122上;每個所述高壓元件130包括一第三閘氧化層132位於所述基底100內及ㄧ閘極134位於所述第三閘氧化層132上。Referring to FIG. 1 , the semiconductor device 10 includes a substrate 100 , a low voltage element 110 , a medium voltage element 120 , and a plurality of high voltage elements 130 . The substrate 100 further includes a plurality of element isolation structures 102 for separating the low voltage element 110 , the medium voltage element 120 and the plurality of high voltage elements 130 . The material of the substrate 100 includes silicon. The low voltage device 110 includes a first gate oxide layer 112 located in the substrate 100 and a gate electrode 114 located on the first gate oxide layer 112; the medium voltage device 120 includes a second gate oxide layer 122 located on the The substrate 100 and the gate electrode 124 are located on the second gate oxide layer 122; each of the high-voltage elements 130 includes a third gate oxide layer 132 located in the substrate 100 and the gate electrode 134 is located on the second gate oxide layer 122. on the third gate oxide layer 132 .

在半導體裝置10中,所述低壓元件110的閘極114的材料包括金屬,所述中壓元件120的閘極124的材料可以是金屬或多晶矽,所述高壓元件130的閘極134的材料可以是金屬或多晶矽。In the semiconductor device 10 , the material of the gate electrode 114 of the low voltage element 110 includes metal, the material of the gate electrode 124 of the medium voltage element 120 may be metal or polysilicon, and the material of the gate electrode 134 of the high voltage element 130 may be be metal or polysilicon.

在半導體裝置10中,所述第一閘氧化層112的頂面、所述第二閘氧化層122的頂面以及所述第三閘氧化層132的頂面在同一水平面,且所述第一閘氧化層112的厚度t1小於所述第二閘氧化層122的厚度t2,所述第二閘氧化層122的厚度t2小於所述多個第三閘氧化層132的厚度t31、t32,其中所述多個高壓元件130中的不同的第三閘氧化層132可以具有不同的厚度,例如:圖1的所述多個高壓元件130包括第一高壓元件130a及第二高壓元件130b,所述第一高壓元件130a的第三閘氧化層132a的厚度t31與所述第二高壓元件130b的第三閘氧化層132b的厚度t32不同。In the semiconductor device 10, the top surface of the first gate oxide layer 112, the top surface of the second gate oxide layer 122, and the top surface of the third gate oxide layer 132 are at the same level, and the first gate oxide layer 132 is at the same level. The thickness t1 of the gate oxide layer 112 is smaller than the thickness t2 of the second gate oxide layer 122 , the thickness t2 of the second gate oxide layer 122 is smaller than the thicknesses t31 and t32 of the plurality of third gate oxide layers 132 , wherein the Different third gate oxide layers 132 in the plurality of high-voltage components 130 may have different thicknesses. For example, the plurality of high-voltage components 130 in FIG. 1 include a first high-voltage component 130a and a second high-voltage component 130b. The thickness t31 of the third gate oxide layer 132a of a high voltage element 130a is different from the thickness t32 of the third gate oxide layer 132b of the second high voltage element 130b.

圖2A至圖2P為依照本發明另一實施例的半導體裝置的剖面示意圖,其中使用與上一實施例相同的元件符號來代表相同或相似的構件,且所省略的部分技術說明,如各層或區域的位置、尺寸、材料等均可參照上一實施例的內容,因此於下文不再贅述。2A to 2P are schematic cross-sectional views of a semiconductor device according to another embodiment of the present invention, wherein the same reference numerals as in the previous embodiment are used to represent the same or similar components, and some technical descriptions are omitted, such as layers or The location, size, material, etc. of the regions can all be referred to the content of the previous embodiment, and thus will not be described in detail below.

請參照圖2A,提供一基底100,在一基底100內形成多個元件隔離結構102,以定義出一低壓元件區110’、一中壓元件區120’與多個高壓元件區130’。所述多個高壓元件區130'可為兩個以上的高壓元件區,以本發明的實施例為例,多個高壓元件區130'包括第一高壓元件區130a’及第二高壓元件區130b’,但本發明不以此為限。接著,為了在基底100上形成圖案化罩幕層,可先在所述基底100的表面形成一墊氧化層104,並在所述墊氧化層104上形成一罩幕層106,所述罩幕層106的厚度例如為300Å,所述罩幕層106的材料包括氮化矽。2A, a substrate 100 is provided, and a plurality of device isolation structures 102 are formed in the substrate 100 to define a low voltage device region 110', a medium voltage device region 120' and a plurality of high voltage device regions 130'. The plurality of high-voltage element regions 130 ′ can be more than two high-voltage element regions. Taking the embodiment of the present invention as an example, the plurality of high-voltage element regions 130 ′ include a first high-voltage element region 130 a ′ and a second high-voltage element region 130 b ', but the present invention is not limited to this. Next, in order to form a patterned mask layer on the substrate 100, a pad oxide layer 104 may be formed on the surface of the substrate 100, and a mask layer 106 may be formed on the pad oxide layer 104. The mask layer The thickness of the layer 106 is, for example, 300 Å, and the material of the mask layer 106 includes silicon nitride.

然後,請參照圖2B,為了圖案化所述罩幕層106,可於基底100上形成一第一圖案化光阻層PR1。此處,所述第一圖案化光阻層PR1具有一第一光阻開口O1,暴露出所述第一高壓元件區130a’的罩幕層(如圖2A的106)的表面。接著,以第一圖案化光阻層PR1為蝕刻罩幕,圖案化所述罩幕層,以形成具有第一開口105a的圖案化罩幕層106p。之後,以圖案化罩幕層106p為蝕刻罩幕,去除露出的墊氧化層104,直到暴露出所述第一高壓元件區130a’的所述基底100的表面。Then, referring to FIG. 2B , in order to pattern the mask layer 106 , a first patterned photoresist layer PR1 may be formed on the substrate 100 . Here, the first patterned photoresist layer PR1 has a first photoresist opening O1 exposing the surface of the mask layer (106 in FIG. 2A ) of the first high voltage device region 130a'. Next, using the first patterned photoresist layer PR1 as an etching mask, the mask layer is patterned to form a patterned mask layer 106p having a first opening 105a. After that, using the patterned mask layer 106p as an etching mask, the exposed pad oxide layer 104 is removed until the surface of the substrate 100 of the first high voltage device region 130a' is exposed.

然後,請參照圖2C,以所述圖案化罩幕層106p作為蝕刻罩幕,移除所述第一開口105a內的所述基底100至一第一深度h1。Then, referring to FIG. 2C, using the patterned mask layer 106p as an etching mask, the substrate 100 in the first opening 105a is removed to a first depth h1.

接著請參照圖2D,移除圖2C中的第一圖案化光阻層PR1,再在所述第一開口105a內形成一塗佈層105。塗佈層105為一種有機物質,填滿所述第一開口105a,以使所述圖案化罩幕層106p的表面平整。2D, the first patterned photoresist layer PR1 in FIG. 2C is removed, and then a coating layer 105 is formed in the first opening 105a. The coating layer 105 is an organic substance and fills the first opening 105a to make the surface of the patterned mask layer 106p flat.

之後,請參照圖2E,為了繼續製作用於不同操作電壓的高壓元件的高壓元件閘氧化層,可先於基底100上形成一第二圖案化光阻層PR2於基底100上。此處,所述第二圖案化光阻層PR2具有一第二光阻開口O2,暴露出所述第二高壓元件區130b’的所述圖案化罩幕層106p的表面。接著,以所述第二圖案化光阻層PR2為蝕刻罩幕,蝕刻圖案化罩幕層106p,以於其中形成第二開口105b。之後,以圖案化罩幕層106p為蝕刻罩幕,去除露出的墊氧化層104,直到暴露出所述第二高壓元件區130b’的所述基底100的表面。Then, referring to FIG. 2E , in order to continue to fabricate the gate oxide layers of high voltage devices for high voltage devices with different operating voltages, a second patterned photoresist layer PR2 may be formed on the substrate 100 first. Here, the second patterned photoresist layer PR2 has a second photoresist opening O2 exposing the surface of the patterned mask layer 106p in the second high voltage device region 130b'. Next, using the second patterned photoresist layer PR2 as an etching mask, the patterned mask layer 106p is etched to form a second opening 105b therein. After that, using the patterned mask layer 106p as an etching mask, the exposed pad oxide layer 104 is removed until the surface of the substrate 100 of the second high voltage device region 130b' is exposed.

隨後,請參照圖2F,以所述圖案化罩幕106p作為蝕刻罩幕,移除所述第二開口105b內的所述基底100至一第二深度h2,其中第二深度h2與第一深度h1不同。Then, referring to FIG. 2F, using the patterned mask 106p as an etching mask, the substrate 100 in the second opening 105b is removed to a second depth h2, wherein the second depth h2 is the same as the first depth h1 is different.

接著,請參照圖2G,移除圖2F中的第一圖案化光阻層PR2,再在所述第二開口105b內形成另一塗佈層105。塗佈層105填滿所述第二開口105b,其中塗佈層105也是一種有機物質。Next, referring to FIG. 2G, the first patterned photoresist layer PR2 in FIG. 2F is removed, and another coating layer 105 is formed in the second opening 105b. The coating layer 105 fills the second opening 105b, wherein the coating layer 105 is also an organic substance.

本實施例的半導體裝置製造方法是以兩個高壓元件為例,若具有三個以上的高壓元件,可重覆上述圖2D至圖2G的步驟,直至每個高壓元件區皆具有填滿塗佈層105的開口。The method for manufacturing a semiconductor device in this embodiment takes two high-voltage components as an example. If there are more than three high-voltage components, the above steps in FIGS. 2D to 2G can be repeated until each high-voltage component area is filled with coating The opening of layer 105 .

然後,請參照圖2H,移除圖2G中的所有塗佈層105,以暴露出所有高壓元件區130’的基底100。接著,在基底100上形成高壓元件閘氧化層132’以填滿所述第一開口105a及第二開口105b。所述高壓元件閘氧化層132’的形成方法例如在基底100的表面形成一犧牲氧化層(未繪示),以改善所述基底100的界面,再利用濕式製程將所述犧牲氧化層移除。接著,透過如熱氧化法的方式在所述基底100的表面形成一熱氧化層,並在所述熱氧化層上形成一化學氣相沉積(CVD)氧化層,以得到具有高緻密度的所述高壓元件閘氧化層132’。Then, referring to FIG. 2H, all the coating layers 105 in FIG. 2G are removed to expose the substrate 100 of all the high voltage device regions 130'. Next, a high voltage device gate oxide layer 132' is formed on the substrate 100 to fill the first opening 105a and the second opening 105b. The method for forming the gate oxide layer 132' of the high voltage device is, for example, forming a sacrificial oxide layer (not shown) on the surface of the substrate 100 to improve the interface of the substrate 100, and then using a wet process to remove the sacrificial oxide layer. remove. Next, a thermal oxide layer is formed on the surface of the substrate 100 by means of a thermal oxidation method, and a chemical vapor deposition (CVD) oxide layer is formed on the thermal oxide layer, so as to obtain a high-density composite material. The gate oxide layer 132' of the high voltage element is described.

接著,請參照圖2I,以所述圖案化罩幕層106p作為中止層,平坦化所述高壓元件閘氧化層132’。由於以所述圖案化罩幕層106p作為中止層,因此可以較好的控制平坦化的製程。然後, 為了製作中壓元件的中壓元件閘氧化層,可先於基底100上形成一第三圖案化光阻層PR3。此處,所述第三圖案化光阻層PR3具有一第三光阻開口O3,暴露出所述中壓元件區120’的所述圖案化罩幕層106p的表面。然後,以所述第三圖案化光阻層PR3為蝕刻罩幕,蝕刻圖案化罩幕層106p,以於其中形成第三開口105c。之後,以圖案化罩幕層106p為蝕刻罩幕,去除露出的墊氧化層104,直到暴露出所述中壓元件區120’的所述基底100的表面。 Next, referring to FIG. 2I, using the patterned mask layer 106p as a stop layer, the gate oxide layer 132' of the high voltage device is planarized. Since the patterned mask layer 106p is used as the stop layer, the planarization process can be better controlled. Then, In order to manufacture the gate oxide layer of the medium voltage device, a third patterned photoresist layer PR3 may be formed on the substrate 100 first. Here, the third patterned photoresist layer PR3 has a third photoresist opening O3 exposing the surface of the patterned mask layer 106p in the medium voltage device region 120'. Then, using the third patterned photoresist layer PR3 as an etching mask, the patterned mask layer 106p is etched to form a third opening 105c therein. After that, using the patterned mask layer 106p as an etching mask, the exposed pad oxide layer 104 is removed until the surface of the substrate 100 in the medium voltage device region 120' is exposed.

然後,請參照圖2J,以所述圖案化罩幕106p作為蝕刻罩幕,移除所述第三開口105c內的所述基底100至一第三深度h3。Then, referring to FIG. 2J, using the patterned mask 106p as an etching mask, the substrate 100 in the third opening 105c is removed to a third depth h3.

接著,請參照圖2K,移除圖2J中的第三圖案化光阻層PR3,並且以改善基底100界面的觀點來看,可先在所述中壓元件區120’的所述基底100的表面形成一犧牲氧化層108,所述犧牲氧化層108的厚度例如為70Å。Next, referring to FIG. 2K , the third patterned photoresist layer PR3 in FIG. 2J is removed, and from the viewpoint of improving the interface of the substrate 100 , the substrate 100 in the medium voltage device region 120 ′ can be first A sacrificial oxide layer 108 is formed on the surface, and the thickness of the sacrificial oxide layer 108 is, for example, 70 Å.

接著,請參照圖2L,可利用濕式製程將所述犧牲氧化層108移除,濕式製程所移除的厚度約是犧牲氧化層108的厚度的1.3倍,例如91Å;也就是說,在所述犧牲氧化層108下方的部分所述基底100也會在濕式製程時被移除,且高壓元件閘氧化層132’的厚度也會因此減薄。接著,移除所述圖案化罩幕層106p。Next, referring to FIG. 2L, the sacrificial oxide layer 108 can be removed by a wet process, and the thickness removed by the wet process is about 1.3 times the thickness of the sacrificial oxide layer 108, for example, 91 Å; Part of the substrate 100 under the sacrificial oxide layer 108 is also removed during the wet process, and the thickness of the gate oxide layer 132' of the high voltage device is also reduced accordingly. Next, the patterned mask layer 106p is removed.

然後,請參照圖2M,在所述第三開口105c內形成中壓元件閘氧化層122’。所述中壓元件閘氧化層122’的形成方法例如臨場蒸氣產生(In-Situ Steam Generation, ISSG)法、乾式氧化法或其他方式,本發明不以此為限。Then, referring to FIG. 2M, a gate oxide layer 122' of a medium voltage device is formed in the third opening 105c. The method for forming the gate oxide layer 122' of the medium voltage device is, for example, an In-Situ Steam Generation (ISSG) method, a dry oxidation method or other methods, but the present invention is not limited thereto.

隨後,請參照圖2N,在所述中壓元件閘氧化層122’表面形成保護層PR4保護所述中壓元件閘氧化層122’,保護層PR4例如為光阻層。接著,可選擇性地利用濕式製程移除所述低壓元件區110’及所述高壓元件區130’表面過高之處,例如圖2M中殘留的所述墊氧化層104、部分元件隔離結構102及部分高壓元件閘氧化層132’,以露出所述低壓元件區110’的所述基底100的表面。Then, referring to FIG. 2N, a protective layer PR4 is formed on the surface of the gate oxide layer 122' of the medium voltage element to protect the gate oxide layer 122' of the medium voltage element, and the protective layer PR4 is, for example, a photoresist layer. Next, the surface of the low-voltage device region 110' and the high-voltage device region 130' can be selectively removed by a wet process, such as the remaining pad oxide layer 104 and part of the device isolation structure in FIG. 2M. 102 and part of the high voltage device gate oxide layer 132' to expose the surface of the substrate 100 in the low voltage device region 110'.

然後,請參照圖2O,在所述低壓元件區110’的所述基底100的表面形成一層薄的低壓元件閘氧化層112’,再將圖2N中的保護層PR4移除,其中所述低壓元件閘氧化層112’的頂面112t、所述中壓元件閘氧化層122’的頂面122t以及所述高壓元件閘氧化層132’的頂面132t基本上在同一水平面,且所述低壓元件閘氧化層112’的厚度t1小於所述中壓元件閘氧化層122’的厚度t2,所述中壓元件閘氧化層122’的厚度t2小於所述高壓元件閘氧化層132’的厚度t31、t32。Then, referring to FIG. 2O, a thin low-voltage device gate oxide layer 112' is formed on the surface of the substrate 100 in the low-voltage device region 110', and then the protective layer PR4 in FIG. 2N is removed, wherein the low-voltage device The top surface 112t of the gate oxide layer 112' of the device, the top surface 122t of the gate oxide layer 122' of the medium voltage device and the top surface 132t of the gate oxide layer 132' of the high voltage device are substantially at the same level, and the low voltage device The thickness t1 of the gate oxide layer 112' is smaller than the thickness t2 of the gate oxide layer 122' of the medium voltage element, and the thickness t2 of the gate oxide layer 122' of the medium voltage element is smaller than the thickness t31 of the gate oxide layer 132' of the high voltage element, t32.

接著,請參照圖2P,分別在低壓元件閘氧化層112’、中壓元件閘氧化層122’以及高壓元件閘氧化層132’上形成閘極114、124、134a、134b,以於基底100上形成低壓元件110、中壓元件120以及高壓元件130。閘極的形成方法例如傳統的多晶矽閘極製程或者閘極後置製程。多晶矽閘極製程例如先形成一多晶矽層,再利用微影蝕刻技術,在操作電壓較低的區域(如低壓元件區110’)內形成閘極。閘極後置製程則可先形成一多晶矽層,同樣利用微影蝕刻技術,在預定形成金屬閘極的部位(如高壓元件區130’以及/或是中壓元件區120’內)先形成犧牲閘極,然後在源極與汲極(未繪示)高溫摻雜活化後,再於犧牲閘極上覆蓋絕緣層,並平坦化這層絕緣層直到露出犧牲閘極的頂面,之後將露出的犧牲閘極移除,並替換為金屬閘極。然而,本發明不以此為限。本發明的所述低壓元件110的閘極114可以是金屬閘極,所述中壓元件120的閘極124可以是金屬閘極或多晶矽閘極,所述高壓元件130的閘極134a、134b可以各自獨立為金屬閘極或多晶矽閘極,且前述閘極材料可依閘氧化層的厚度選擇合適材料。Next, referring to FIG. 2P , gate electrodes 114 , 124 , 134 a and 134 b are respectively formed on the gate oxide layer 112 ′ of the low voltage device, the gate oxide layer 122 ′ of the medium voltage device and the gate oxide layer 132 ′ of the high voltage device, so as to be on the substrate 100 A low voltage element 110, a medium voltage element 120, and a high voltage element 130 are formed. The gate formation method is, for example, a traditional polysilicon gate process or a gate post process. In the polysilicon gate process, for example, a polysilicon layer is first formed, and then a gate is formed in a region with a lower operating voltage (eg, the low-voltage device region 110') using a lithography etching technique. In the post-gate process, a polysilicon layer can be formed first, and a lithography etching technique is also used to form sacrificial sacrificial electrodes at the locations where the metal gates are to be formed (eg, in the high-voltage device region 130' and/or the medium-voltage device region 120'). The gate is then activated by high temperature doping of the source and drain (not shown), and then an insulating layer is covered on the sacrificial gate, and the insulating layer is planarized until the top surface of the sacrificial gate is exposed, and then the exposed The sacrificial gate is removed and replaced with a metal gate. However, the present invention is not limited thereto. The gate 114 of the low voltage element 110 of the present invention may be a metal gate, the gate 124 of the medium voltage element 120 may be a metal gate or a polysilicon gate, and the gates 134a and 134b of the high voltage element 130 may be Each is independently a metal gate electrode or a polysilicon gate electrode, and the aforementioned gate electrode material can be selected according to the thickness of the gate oxide layer.

綜上所述,本發明的半導體裝置及其製造方法可整合至少一低壓元件、一中壓元件及兩個以上的高壓元件於基底上,由於多個電壓元件的閘氧化層的頂面在同一水平面,因此高壓元件的閘極的高度不會受閘極後置製程影響,而可提升後續形成的半導體裝置的穩定性,並且可藉由調控閘氧化層的厚度,提供較為彈性的閘極材料的選擇。To sum up, the semiconductor device and the manufacturing method thereof of the present invention can integrate at least one low voltage element, one medium voltage element and two or more high voltage elements on the substrate, since the top surfaces of the gate oxide layers of the plurality of voltage elements are on the same Therefore, the height of the gate of the high-voltage device is not affected by the post-gate process, which can improve the stability of the subsequent semiconductor device, and can provide a more flexible gate material by adjusting the thickness of the gate oxide layer. s Choice.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed above by the embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, The protection scope of the present invention shall be determined by the scope of the appended patent application.

10:半導體裝置 100:基底 102:元件隔離結構 104:墊氧化層 105:塗佈層 105a、105b、105c、O1、O2、O3:開口 106:罩幕層 106p:圖案化罩幕層 108:犧牲氧化層 110:低壓元件 110’:低壓元件區 112:第一閘氧化層 112’:低壓元件閘氧化層 112t、122t、132t:頂面 114、124、134、134a、134b:閘極 120:中壓元件 120’:中壓元件區 122:第二閘氧化層 122’:中壓元件閘氧化層 130:高壓元件 130’:高壓元件區 130a’:第一高壓元件區 130b’:第二高壓元件區 130a:第一高壓元件 130b:第二高壓元件 132、132a、132b:第三閘氧化層 132’:高壓元件閘氧化層 h1:第一深度 h2:第二深度 h3:第三深度 PR1:第一圖案化光阻層 PR2:第二圖案化光阻層 PR3:第三圖案化光阻層 PR4:保護層 t1、t2、t31、t32:厚度 10: Semiconductor device 100: base 102: Component isolation structure 104: Pad oxide layer 105: coating layer 105a, 105b, 105c, O1, O2, O3: opening 106: Curtain layer 106p: Patterned Overlay 108: Sacrificial oxide layer 110: Low Voltage Components 110': low voltage component area 112: first gate oxide layer 112': gate oxide layer of low voltage components 112t, 122t, 132t: top surface 114, 124, 134, 134a, 134b: gate 120: Medium voltage components 120': medium voltage component area 122: The second gate oxide layer 122': gate oxide layer of medium voltage components 130: High Voltage Components 130': High voltage component area 130a': The first high-voltage component area 130b': The second high voltage element area 130a: first high voltage element 130b: Second high voltage element 132, 132a, 132b: the third gate oxide layer 132': gate oxide layer of high voltage components h1: first depth h2: second depth h3: the third depth PR1: first patterned photoresist layer PR2: Second patterned photoresist layer PR3: Third patterned photoresist layer PR4: Protective Layer t1, t2, t31, t32: Thickness

圖1是依照本發明一實施例的半導體裝置的剖面示意圖。 圖2A至圖2P是依照本發明另一實施例的半導體裝置的製造流程剖面示意圖。 FIG. 1 is a schematic cross-sectional view of a semiconductor device according to an embodiment of the present invention. 2A to 2P are schematic cross-sectional views illustrating a manufacturing process of a semiconductor device according to another embodiment of the present invention.

10:半導體裝置 10: Semiconductor device

100:基底 100: base

102:元件隔離結構 102: Component isolation structure

110:低壓元件 110: Low Voltage Components

120:中壓元件 120: Medium voltage components

130:高壓元件 130: High Voltage Components

130a:第一高壓元件 130a: first high voltage element

130b:第二高壓元件 130b: Second high voltage element

112:第一閘氧化層 112: first gate oxide layer

122:第二閘氧化層 122: The second gate oxide layer

132、132a、132b:第三閘氧化層 132, 132a, 132b: the third gate oxide layer

114、124、134、134a、134b:閘極 114, 124, 134, 134a, 134b: gate

t1、t2、t31、t32:厚度 t1, t2, t31, t32: Thickness

Claims (14)

一種半導體裝置,包括: 一基底; 一低壓元件,包括一第一閘氧化層位於所述基底內; 一中壓元件,包括一第二閘氧化層位於所述基底內;以及 多個高壓元件,每個所述高壓元件包括一第三閘氧化層位於所述基底內, 其中所述第一閘氧化層的頂面、所述第二閘氧化層的頂面以及所述第三閘氧化層的頂面在同一水平面,且 所述第一閘氧化層的厚度小於所述第二閘氧化層的厚度,所述第二閘氧化層的厚度小於所述第三閘氧化層的厚度。 A semiconductor device, comprising: a base; a low-voltage device including a first gate oxide layer in the substrate; a medium voltage device including a second gate oxide layer in the substrate; and a plurality of high-voltage components, each of the high-voltage components includes a third gate oxide layer located in the substrate, wherein the top surface of the first gate oxide layer, the top surface of the second gate oxide layer and the top surface of the third gate oxide layer are at the same level, and The thickness of the first gate oxide layer is smaller than the thickness of the second gate oxide layer, and the thickness of the second gate oxide layer is smaller than the thickness of the third gate oxide layer. 如請求項1所述的半導體裝置,其中所述低壓元件包括一金屬閘極,形成於所述第一閘氧化層上。The semiconductor device of claim 1, wherein the low-voltage element includes a metal gate formed on the first gate oxide layer. 如請求項1所述的半導體裝置,其中所述中壓元件包括一金屬閘極或一多晶矽閘極,形成於所述第二閘氧化層上。The semiconductor device of claim 1, wherein the medium voltage element comprises a metal gate or a polysilicon gate formed on the second gate oxide layer. 如請求項1所述的半導體裝置,其中所述高壓元件包括一金屬閘極或一多晶矽閘極,形成於所述第二閘氧化層上。The semiconductor device of claim 1, wherein the high voltage element comprises a metal gate or a polysilicon gate formed on the second gate oxide layer. 如請求項1所述的半導體裝置,其中所述多個高壓元件中的不同的第三閘氧化層分別具有不同的厚度。The semiconductor device of claim 1, wherein different third gate oxide layers in the plurality of high-voltage elements have different thicknesses, respectively. 如請求項1所述的半導體裝置,更包括多個元件隔離結構,位在所述基底內,用以分隔所述低壓元件、所述中壓元件與所述多個高壓元件。The semiconductor device of claim 1, further comprising a plurality of element isolation structures located in the substrate for separating the low voltage element, the medium voltage element and the plurality of high voltage elements. 一種半導體裝置的製造方法,包括: 在一基底內形成多個元件隔離結構,以定義出一低壓元件區、一中壓元件區與多個高壓元件區; 在所述基底上形成一圖案化罩幕,具有一第一開口,暴露出所述多個高壓元件區中之一的所述基底的表面; 以所述圖案化罩幕作為蝕刻罩幕,移除所述第一開口內的所述基底至一第一深度; 在所述第一開口內形成一塗佈層; 重覆以下步驟a至c: a. 在所述圖案化罩幕中形成第n開口,暴露出所述多個高壓元件區中之第n個的所述基底的表面,n為大於1的正整數; b. 以所述圖案化罩幕作為蝕刻罩幕,移除所述第n開口內的所述基底至一第n深度; c. 在所述第n開口內形成所述塗佈層; 移除所述塗佈層; 在所述基底上形成高壓元件閘氧化層填滿所述第一開口與所述第n開口; 以所述圖案化罩幕作為中止層,平坦化所述高壓元件閘氧化層; 在所述圖案化罩幕中形成一第(n+1)開口,暴露出所述中壓元件區的所述基底的表面; 以所述圖案化罩幕作為蝕刻罩幕,移除所述第(n+1)開口內的所述基底至一第(n+1)深度; 移除所述圖案化罩幕; 在所述第(n+1)開口內形成中壓元件閘氧化層; 在所述中壓元件閘氧化層表面形成保護層,並露出所述低壓元件區的所述基底的表面;以及 在所述低壓元件區的所述基底的表面形成低壓元件閘氧化層,使所述低壓元件閘氧化層的頂面、所述中壓元件閘氧化層的頂面以及所述高壓元件閘氧化層的頂面在同一水平面。 A method of manufacturing a semiconductor device, comprising: forming a plurality of device isolation structures in a substrate to define a low voltage device region, a medium voltage device region and a plurality of high voltage device regions; forming a patterned mask on the substrate, having a first opening exposing the surface of the substrate in one of the plurality of high voltage element regions; using the patterned mask as an etching mask, removing the substrate in the first opening to a first depth; forming a coating layer in the first opening; Repeat steps a to c below: a. forming an nth opening in the patterned mask to expose the surface of the substrate of the nth one of the plurality of high-voltage element regions, where n is a positive integer greater than 1; b. using the patterned mask as an etching mask, removing the substrate in the nth opening to an nth depth; c. forming the coating layer in the nth opening; removing the coating layer; forming a gate oxide layer of a high voltage element on the substrate to fill the first opening and the nth opening; Using the patterned mask as a stop layer, planarizing the gate oxide layer of the high-voltage device; forming a (n+1)th opening in the patterned mask, exposing the surface of the substrate in the medium voltage element region; using the patterned mask as an etching mask, removing the substrate in the (n+1)th opening to a (n+1)th depth; removing the patterned mask; forming an intermediate voltage device gate oxide layer in the (n+1)th opening; A protective layer is formed on the surface of the gate oxide layer of the medium voltage element, and the surface of the substrate in the low voltage element region is exposed; and A low-voltage device gate oxide layer is formed on the surface of the substrate in the low-voltage device region, so that the top surface of the low-voltage device gate oxide layer, the top surface of the medium-voltage device gate oxide layer, and the high-voltage device gate oxide layer are formed. The top surface is at the same level. 如請求項7所述的半導體裝置的製造方法,其中形成所述圖案化罩幕的步驟包括: 在所述基底的表面形成一墊氧化層; 在所述墊氧化層上形成一罩幕層;以及 圖案化所述罩幕層,以形成具有所述第一開口的所述圖案化罩幕。 The method for manufacturing a semiconductor device according to claim 7, wherein the step of forming the patterned mask comprises: forming a pad oxide layer on the surface of the substrate; forming a mask layer on the pad oxide layer; and The mask layer is patterned to form the patterned mask having the first opening. 如請求項8所述的半導體裝置的製造方法,其中形成所述保護層之後更包括:利用濕式製程去除殘留的所述墊氧化層。The method for manufacturing a semiconductor device according to claim 8, wherein after forming the protective layer, the method further comprises: removing the remaining pad oxide layer by a wet process. 如請求項7所述的半導體裝置的製造方法,其中所述第一深度不同於所述第n深度。The method of manufacturing a semiconductor device according to claim 7, wherein the first depth is different from the nth depth. 如請求項7所述的半導體裝置的製造方法,其中移除所述圖案化罩幕之前更包括: 在所述中壓元件區的所述基底的表面形成一犧牲氧化層,以改善所述基底的界面;以及 利用濕式製程去除所述犧牲氧化層及其下方的部分所述基底。 The method for manufacturing a semiconductor device as claimed in claim 7, before removing the patterned mask, further comprising: A sacrificial oxide layer is formed on the surface of the substrate in the medium voltage device region to improve the interface of the substrate; and The sacrificial oxide layer and a portion of the substrate below it are removed by a wet process. 如請求項7所述的半導體裝置的製造方法,其中所述保護層包括光阻層。The method of manufacturing a semiconductor device according to claim 7, wherein the protective layer includes a photoresist layer. 如請求項7所述的半導體裝置的製造方法,其中形成所述高壓元件閘氧化層的方法包括: 以熱氧化法在所述基底的表面形成一熱氧化層;以及 在所述熱氧化層上形成一化學氣相沉積氧化層。 The method for manufacturing a semiconductor device according to claim 7, wherein the method for forming the gate oxide layer of the high voltage element comprises: forming a thermal oxide layer on the surface of the substrate by thermal oxidation; and A chemical vapor deposition oxide layer is formed on the thermal oxide layer. 如請求項7所述的半導體裝置的製造方法,其中形成所述中壓元件閘氧化層的方法包括臨場蒸氣產生(ISSG)法或乾式氧化法。The method of manufacturing a semiconductor device according to claim 7, wherein the method of forming the gate oxide layer of the medium voltage element includes an in situ vapor generation (ISSG) method or a dry oxidation method.
TW109138932A 2020-11-06 2020-11-06 Semiconductor device and manufacturing method of the same TWI737535B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109138932A TWI737535B (en) 2020-11-06 2020-11-06 Semiconductor device and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109138932A TWI737535B (en) 2020-11-06 2020-11-06 Semiconductor device and manufacturing method of the same

Publications (2)

Publication Number Publication Date
TWI737535B TWI737535B (en) 2021-08-21
TW202220166A true TW202220166A (en) 2022-05-16

Family

ID=78283463

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109138932A TWI737535B (en) 2020-11-06 2020-11-06 Semiconductor device and manufacturing method of the same

Country Status (1)

Country Link
TW (1) TWI737535B (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3827418B2 (en) * 1996-08-23 2006-09-27 フリースケール セミコンダクター インコーポレイテッド Control gate driver circuit for non-volatile memory and memory using the same
US7482223B2 (en) * 2004-12-22 2009-01-27 Sandisk Corporation Multi-thickness dielectric for semiconductor memory
US20190103474A1 (en) * 2017-10-03 2019-04-04 Globalfoundries Singapore Pte. Ltd. Sidewall engineering for enhanced device performance in advanced devices

Also Published As

Publication number Publication date
TWI737535B (en) 2021-08-21

Similar Documents

Publication Publication Date Title
TWI524464B (en) Finfet device and method for manufacturing the same
CN104299912B (en) High conformal extension doping in advanced multi-gate device
CN104009070B (en) Metal gate and gate contact structure for FinFET
US8685859B2 (en) Self-aligned semiconductor trench structures
US11211255B2 (en) Semiconductor structure
TW201926436A (en) Method for manufacturing semiconductor devices and structures thereof
TW201331996A (en) Methods of patterning features in a structure using multiple sidewall image transfer technique
TW201005875A (en) Methods of providing electrical isolation and semiconductor structures including same
TW201216467A (en) FinFET and method of manufacturing the same
TW201521118A (en) Method for fabricating FinFETs and the structure thereof
TW201640678A (en) Semiconductor device and method for fabricating the same
KR100574999B1 (en) Method of forming pattern of semiconductor device
JP2008028357A (en) Semiconductor device and method for manufacturing the same
WO2015096467A1 (en) Manufacturing method for vertical channel gate-all-around mosfet by epitaxy processes
TW202020986A (en) Semiconductor device
CN108807161A (en) The forming method of semiconductor device
TW201539553A (en) Method of forming contact structure of gate structure
TWI737535B (en) Semiconductor device and manufacturing method of the same
CN109427808A (en) Semiconductor memory component and its manufacturing method
JP5579136B2 (en) Semiconductor device and manufacturing method thereof
TWI253123B (en) A method to form flash memory with very narrow polysilicon spacing
TWI797941B (en) Method of manufacturing semiconductor device
TW201830575A (en) Semiconductor device and method of fabricating the same
TW201314786A (en) Semiconductor process
CN109300972A (en) FINFET device and forming method thereof