TW202219276A - Microfluidic chips with plasmonic sensors - Google Patents

Microfluidic chips with plasmonic sensors Download PDF

Info

Publication number
TW202219276A
TW202219276A TW110121239A TW110121239A TW202219276A TW 202219276 A TW202219276 A TW 202219276A TW 110121239 A TW110121239 A TW 110121239A TW 110121239 A TW110121239 A TW 110121239A TW 202219276 A TW202219276 A TW 202219276A
Authority
TW
Taiwan
Prior art keywords
chamber
antibiotic
channel
filter
bacteria
Prior art date
Application number
TW110121239A
Other languages
Chinese (zh)
Inventor
福斯托 達普佐
拉古維爾 N 森古普塔
艾伯特 劉
維克特 斯寇林寇夫
Original Assignee
美商惠普發展公司有限責任合夥企業
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商惠普發展公司有限責任合夥企業 filed Critical 美商惠普發展公司有限責任合夥企業
Publication of TW202219276A publication Critical patent/TW202219276A/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/18Testing for antimicrobial activity of a material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/16Microfluidic devices; Capillary tubes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/36Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/648Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Immunology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Genetics & Genomics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

In example implementations, a microfluidic chip is provided. The microfluidic chip includes a first channel, a second channel, and a plasmonic sensor. The first channel includes a first antibiotic chamber and a first filter chamber. The first antibiotic chamber includes a first media and a first antibiotic that is rehydrated by a bacterial suspension and the first filter chamber is to filter bacteria from first metabolites released from the bacteria in response to incubation with a buffer solution. The second channel includes a second antibiotic chamber and a second filter chamber. The second antibiotic chamber includes a second media and a second antibiotic that is rehydrated by the bacterial suspension and the second filter chamber is to filter the bacteria from second metabolites released from the bacteria in response to incubation with the buffer solution. The first channel and the second channel pass over the plasmonic sensor. The plasmonic sensor is to measure an amount of the first metabolites and the second metabolites.

Description

具電漿子感測器之微流體晶片Microfluidic chip with plasmonic sensor

本發明係有關於具電漿子感測器之微流體晶片。The present invention relates to microfluidic chips with plasmonic sensors.

抗生素易感性測試(AST)可用於分析抗生素對細菌之特定菌株之有效性。AST可用於向患者投與的抗生素及劑量之適當且有效處方。AST可藉由量測具抗生素之溶液中之細菌的量來分析抗生素之有效性。舉例而言,細菌可與容許細菌生長之營養物培養基混合。營養物培養基可用水取代,其導致細菌響應於不存在營養物而經歷代謝改變。為在此環境中持續,細菌細胞可開始一系列異化反應且此等過程之副產物可為所釋放之嘌呤代謝物。可分析嘌呤代謝物之存在來測定細菌之特定菌株。Antibiotic susceptibility testing (AST) can be used to analyze the effectiveness of antibiotics against specific strains of bacteria. AST can be used for appropriate and effective prescription of antibiotics and doses to be administered to patients. AST can analyze the effectiveness of antibiotics by measuring the amount of bacteria in a solution with antibiotics. For example, the bacteria can be mixed with a nutrient medium that allows the bacteria to grow. Nutrient media can be replaced with water, which causes the bacteria to undergo metabolic changes in response to the absence of nutrients. To persist in this environment, bacterial cells can initiate a series of dissimilatory reactions and by-products of these processes can be released purine metabolites. Specific strains of bacteria can be assayed for the presence of purine metabolites.

在一些範例中,細菌可與混合有抗生素之營養物培養基一起培育,且隨後轉移至水中。響應於抗生素而嘌呤代謝物在量上的變化,可被分析來測定抗生素之有效性。In some examples, bacteria can be grown with a nutrient medium mixed with antibiotics and then transferred to water. Changes in the amount of purine metabolites in response to antibiotics can be analyzed to determine the effectiveness of antibiotics.

一些AST方法具有可為數小時的一周轉時間。舉例而言,周轉時間可為12-24小時。這些方法學亦可包含在AST之前的細菌培養及分離步驟,其可能有18-24小時之額外處理時間。Some AST methods have turnaround times that can be hours. For example, the turnaround time may be 12-24 hours. These methodologies may also include bacterial culture and isolation steps prior to AST, which may have additional processing time of 18-24 hours.

於本發明的一個態樣中揭示一種微流體晶片,其包含:一第一通道,其包含一第一抗生素腔室及一第一過濾腔室,其中該第一抗生素腔室包括一第一培養基與一第一抗生素,其由一細菌懸浮液再水合,且該第一過濾腔室係用以過濾分開細菌與該細菌響應於和一緩衝溶液一起培育所釋放的第一代謝物;一第二通道,其包含一第二抗生素腔室及一第二過濾腔室,其中該第二抗生素腔室包含一第二培養基與一第二抗生素,其由該細菌懸浮液再水合,且該第二過濾腔室係用以過濾分開細菌與該細菌響應於和該緩衝溶液一起培育所釋放的第二代謝物;以及一電漿子感測器,其中該第一通道及該第二通道通過該電漿子感測器上方,其中該電漿子感測器係用以量測該第一代謝物及該第二代謝物之量。In one aspect of the present invention, a microfluidic chip is disclosed, comprising: a first channel comprising a first antibiotic chamber and a first filtration chamber, wherein the first antibiotic chamber comprises a first culture medium with a first antibiotic, which is rehydrated by a bacterial suspension, and the first filter chamber is used to filter separate bacteria from a first metabolite released by the bacteria in response to incubation with a buffer solution; a second channel comprising a second antibiotic chamber and a second filter chamber, wherein the second antibiotic chamber comprises a second culture medium and a second antibiotic, which is rehydrated by the bacterial suspension, and the second filter a chamber for filtering separating bacteria from a second metabolite released by the bacteria in response to incubation with the buffer solution; and a plasmonic sensor, wherein the first channel and the second channel pass through the plasmon Above the sub-sensor, wherein the plasmonic sensor is used to measure the amount of the first metabolite and the second metabolite.

本文所述之範例提供一種具電漿子感測器之微流體晶片,用以執行本揭露內容之抗生素易感性測試(AST)。如上所指出,AST可用於分析抗生素針對細菌之一特定菌株之有效性。然而,當前方法學可具有數小時之一周轉時間(例如,12-24小時)。The examples described herein provide a microfluidic chip with a plasmonic sensor for performing the antibiotic susceptibility test (AST) of the present disclosure. As noted above, AST can be used to analyze the effectiveness of antibiotics against a particular strain of bacteria. However, current methodologies may have a turnaround time of several hours (eg, 12-24 hours).

然而,歸因於這些漫長的周轉時間,大多數患者在有一感染懷疑時被開立一廣效性抗生素處方。這些廣效性處方有時因為抗生素抗藥性細菌菌株的擴散而完全無效。在這些情況下,按數小時計,病患條件可能快速退降且危命性併發症的機會可能增加。However, due to these long turnaround times, most patients are prescribed a broad-spectrum antibiotic when an infection is suspected. These broad-spectrum prescriptions are sometimes completely ineffective because of the spread of antibiotic-resistant bacterial strains. In these cases, the patient's condition may rapidly regress and the chance of life-threatening complications may increase over the hours.

本揭露內容提供一種具電漿子感測器之微流體晶片,其可減少AST之周轉時間到若干分鐘至數小時(例如,低於2小時)。本揭露內容之微流體晶片係相對低成本、具高準確度,其可放大用於大規模散布。此外,具電漿子感測器之微流體晶片可在一單個微流體晶片內針對一細菌菌株分析抗生素之多種不同濃度或類型。因此,本揭露內容可減少AST之周轉時間,其可容許對一感染病患開立具適當劑量之一特定抗生素處方。The present disclosure provides a microfluidic chip with a plasmonic sensor that can reduce the turnaround time of AST to minutes to hours (eg, less than 2 hours). The microfluidic chips of the present disclosure are relatively low-cost, highly accurate, and can be scaled up for large-scale distribution. In addition, microfluidic chips with plasmonic sensors can analyze multiple different concentrations or types of antibiotics against a bacterial strain within a single microfluidic chip. Thus, the present disclosure may reduce the turnaround time of AST, which may allow an infected patient to be prescribed an appropriate dose of a particular antibiotic.

圖1例示具本揭露內容之電漿子感測器100(在本文中亦稱為晶片100)之一範例微流體晶片的一區塊圖。在一範例中,晶片100可包括一入口102、通道104 1及通道104 2,及一電漿子感測器120。雖然圖1中例示兩個通道104 1及104 2,但應注意可部署任何數目的通道104。可如何部署或製造晶片100之實例係於下文中參照圖2-6進一步詳細論述。雖然圖1中例示單個入口102,但應注意,亦可為通道104部署數個分開入口102。 1 illustrates a block diagram of an example microfluidic chip of a plasmonic sensor 100 (also referred to herein as a chip 100) of the present disclosure. In one example, the wafer 100 may include an inlet 102 , channels 104 1 and 104 2 , and a plasmonic sensor 120 . Although two channels 104 1 and 104 2 are illustrated in FIG. 1 , it should be noted that any number of channels 104 may be deployed. Examples of how wafer 100 may be deployed or fabricated are discussed in further detail below with reference to FIGS. 2-6 . Although a single inlet 102 is illustrated in FIG. 1 , it should be noted that several separate inlets 102 may also be deployed for the channel 104 .

在一範例中,通道104 1可包括第一抗生素腔室106 1及第一過濾腔室110 1。雖然顯示為分開的腔室,但在一些實行態樣中,第一抗生素腔室106 1與第一過濾腔室110 1可組合為一單個腔室。第一抗生素腔室106 1可包括一第一抗生素或一第一劑量之抗生素,以及培養基108 1(下文中亦一起簡單稱作培養基108 1)。培養基108 1可為抗生素與培養基之凍乾混合物。在一範例中,培養基108 1可包括幫助細菌生長的營養物,如下文進一步詳細論述。培養基108 1之範例可以包括盧里亞-貝塔尼(LB)湯液、胰酶大豆湯液、營養物湯液,及類似者。 In one example, the channel 104 1 may include a first antibiotic chamber 106 1 and a first filtration chamber 110 1 . Although shown as separate chambers, in some implementations, the first antibiotic chamber 1061 and the first filtration chamber 1101 may be combined into a single chamber. The first antibiotic chamber 106 1 may include a first antibiotic or a first dose of antibiotic, and a culture medium 108 1 (hereinafter also simply referred to as culture medium 108 1 ). Medium 108 1 may be a lyophilized mixture of antibiotic and medium. In one example, the culture medium 1081 may include nutrients that aid bacterial growth, as discussed in further detail below. Examples of medium 1081 may include Luria - Bettany (LB) broth, tryptic soy broth, nutrient broth, and the like.

在一範例中,培養基108 1可在製造晶片100時分配至第一抗生素腔室106 1中。培養基108 1可在晶片100製造期間製備且經由一冷凍乾燥方法或一噴墨印刷方法分配。 In one example, the culture medium 108 1 may be dispensed into the first antibiotic chamber 106 1 when the wafer 100 is fabricated. The medium 1081 may be prepared during wafer 100 fabrication and dispensed via a freeze drying method or an ink jet printing method.

第一過濾腔室110 1可包括一過濾器112 1。過濾器112 1可用於濾出由在第一過濾腔室110 1中之細菌114產生的代謝物116。代謝物116可濾出第一過濾腔室110 1、通過一第一出口122 1且在電漿子感測器120上方。 The first filter chamber 110 1 may include a filter 112 1 . Filter 1121 may be used to filter out metabolites 116 produced by bacteria 114 in first filtration chamber 1101 . Metabolites 116 can be filtered out of the first filter chamber 110 1 , through a first outlet 122 1 and above the plasmonic sensor 120 .

在一範例中,通道104 2可包括一第二抗生素腔室106 2及一第二過濾腔室110 2。雖然顯示為分開的腔室,但在一些實行態樣中,第二抗生素腔室106 2與第二過濾腔室110 2可組合為一單個腔室。第二抗生素腔室106 2可包括一第二抗生素或一第二劑量之抗生素,以及培養基108 2(下文中亦一起簡單稱作培養基108 2)。相似於培養基108 1,培養基108 2可為抗生素與培養基之凍乾混合物。在一範例中,培養基108 2可包括幫助細菌生長的營養物,如下文進一步詳細論述。培養基1082之範例可以包括盧里亞-貝塔尼(LB)湯液、胰酶大豆湯液、營養物湯液,及類似者。 In one example, the channel 104 2 may include a second antibiotic chamber 106 2 and a second filter chamber 110 2 . Although shown as separate chambers, in some implementations, the second antibiotic chamber 1062 and the second filtration chamber 1102 may be combined into a single chamber. The second antibiotic chamber 1062 may include a second antibiotic or a second dose of antibiotic, and culture medium 1082 (hereinafter also simply referred to as culture medium 1082 ). Similar to medium 108 1 , medium 108 2 may be a lyophilized mixture of antibiotic and medium. In one example, the culture medium 1082 may include nutrients that aid bacterial growth, as discussed in further detail below. Examples of medium 1082 may include Luria-Bettany (LB) broth, tryptic soy broth, nutrient broth, and the like.

在一範例中,培養基108 2可在製造晶片100時分配至第二抗生素腔室106 2中。培養基108 2可在晶片100製造期間製備且經由一冷凍乾燥方法或一噴墨印刷方法分配。 In one example, the culture medium 108 2 may be dispensed into the second antibiotic chamber 106 2 when the wafer 100 is fabricated. The medium 1082 may be prepared during wafer 100 fabrication and dispensed via a freeze drying method or an ink jet printing method.

第二過濾腔室110 2可包括一過濾器112 2。過濾器112 2可用於濾出由在第二過濾腔室110 2中之細菌114產生之代謝物116。代謝物116可自第二過濾腔室110 2濾出、通過第二出口122 2且在電漿子感測器120上方。 The second filter chamber 110 2 may include a filter 112 2 . Filter 1122 may be used to filter out metabolites 116 produced by bacteria 114 in second filtration chamber 1102 . Metabolites 116 may be filtered out of the second filtration chamber 110 2 , through the second outlet 122 2 and above the plasmonic sensor 120 .

在一範例中,細菌懸浮液可經由入口102引至晶片100中。細菌懸浮液可以控制成流動至該第一抗生素腔室106 1及該第二抗生素腔室106 2中。細菌懸浮液可分別再水合培養基108 1及108 2。在一培育期間(例如,若干分鐘)之後,第一抗生素腔室106 1及第二抗生素腔室106 2中之混合物可移動至第一過濾腔室110 1及第二過濾腔室110 2中。 In one example, a bacterial suspension may be introduced into wafer 100 via inlet 102 . The bacterial suspension can be controlled to flow into the first antibiotic chamber 106 1 and the second antibiotic chamber 106 2 . The bacterial suspension can be rehydrated with media 108 1 and 108 2 , respectively. After an incubation period (eg, several minutes), the mixture in the first antibiotic chamber 106 1 and the second antibiotic chamber 106 2 can move into the first filtration chamber 110 1 and the second filtration chamber 110 2 .

在一範例中,一緩衝溶液可經由入口102(或如上文所指出之一分開的入口)引至晶片100中。緩衝溶液可為水或另一流體,用以潤洗細菌懸浮液中之細菌且移除培養基與抗生素108 1及108 2,以及由微生物體在第一過濾腔室110 1及第二過濾腔室110 2中釋放之代謝物。 In one example, a buffer solution may be introduced into wafer 100 via inlet 102 (or a separate inlet as indicated above). The buffer solution, which can be water or another fluid, is used to rinse the bacteria in the bacterial suspension and remove the culture medium and antibiotics 108i and 1082 , and by microorganisms in the first filtration chamber 1101 and the second filtration chamber Metabolites released in 110 2 .

在培養基108 1及108 2經移除之下,第一過濾腔室110 1及第二過濾腔室110 2中留著的細菌114可被容許培育來誘發一逆境反應。細菌114可由於逆境反應而釋放逆境誘發的代謝物116。代謝物116可流動分別通過過濾器112 1及112 2,且朝向電漿子感測器120。 With the media 1081 and 1082 removed, the bacteria 114 remaining in the first filtration chamber 1101 and the second filtration chamber 1102 can be allowed to grow to induce a stress response. Bacteria 114 may release stress-induced metabolites 116 in response to stress. Metabolite 116 may flow through filters 112 1 and 112 2 , respectively, and toward plasmonic sensor 120 .

在一範例中,過濾器112 1及112 2可為多孔過濾膜。在另一範例中,過濾器112 1及112 2可包括許代謝物116穿過、同時阻容擋住細菌114的物理結構。舉例而言,該等結構可包括直立柱形物。在一範例中,可在該等柱形物之間裝載具有減小直徑之不同尺寸微珠以實現一所欲孔隙率。 In one example, the filters 112 1 and 112 2 may be porous filter membranes. In another example, the filters 112 1 and 112 2 may include physical structures that allow the metabolites 116 to pass through while retaining the bacteria 114 . For example, the structures may include upstanding posts. In one example, microbeads of different sizes with reduced diameters can be loaded between the pillars to achieve a desired porosity.

電漿子感測器120可與一光學感測器一起使用以量測出口通道122 1及122 2中的代謝物116的量。在一範例中,電漿子感測器120可為一表面增強拉曼光譜法(SERS)感測器、一表面增強紅外線吸收(SEIRA)感測器、一表面增強螢光(SEF)感測器、表面增強發光(SEL)及類似物。光源可發射光到出口通道122 1及122 2上以誘發偵測。光線或光束可由電漿子感測器120散射且藉由光學偵測器或感測器讀取。散射光線可藉由光學偵測器轉換成一影像或圖,其可對應於出口122 1及122 2中的代謝物116之量。 Plasmonic sensor 120 can be used with an optical sensor to measure the amount of metabolite 116 in outlet channels 1221 and 1222. In one example, the plasmonic sensor 120 may be a surface-enhanced Raman spectroscopy (SERS) sensor, a surface-enhanced infrared absorption (SEIRA) sensor, a surface-enhanced fluorescence (SEF) sensor devices, surface-enhanced luminescence (SEL), and the like. The light sources may emit light onto exit channels 1221 and 1222 to induce detection. The light or beam can be scattered by the plasmonic sensor 120 and read by an optical detector or sensor. The scattered light can be converted by an optical detector into an image or map, which can correspond to the amount of metabolite 116 in outlets 1221 and 1222 .

不同的測量可判定第一抗生素腔室106 1及第二抗生素腔室106 2中哪一個抗生素或抗生素劑量係對抗細菌114更為有效。因此,可基於使用晶片100進行之分析來開立一適當抗生素及一適當抗生素劑量處方。 Different measurements can determine which antibiotic or antibiotic dose is more effective against bacteria 114 in the first antibiotic chamber 1061 and the second antibiotic chamber 1062. Thus, an appropriate antibiotic and an appropriate antibiotic dosage can be prescribed based on the analysis performed using the chip 100 .

在一範例中,晶片100亦可包括一溫度控制器(未示出)。溫度控制器可用於控制抗生素腔室106 1及106 2及/或過濾腔室110 1及110 2之溫度。溫度控制器可幫助模擬細菌114之天然生長環境,或者加速源自細菌114之逆境誘發反應之代謝物116的生產。 In one example, the wafer 100 may also include a temperature controller (not shown). A temperature controller may be used to control the temperature of the antibiotic chambers 106 1 and 106 2 and/or the filtration chambers 110 1 and 110 2 . The temperature controller can help simulate the natural growth environment of the bacteria 114 or accelerate the production of metabolites 116 derived from the stress-induced response of the bacteria 114 .

在一範例中,溫度控制器可為外部的。舉例而言,晶片100可保持在一溫度控制空間,諸如一培育箱中。在一範例中,溫度控制器可為該晶片之部分。舉例而言,溫度控制器可包括在晶片100之基體上的一電阻器及一溫度感測器(例如,熱阻器)。在一範例中,溫度控制器可為一薄膜電阻器。In one example, the temperature controller may be external. For example, wafer 100 may be held in a temperature-controlled space, such as an incubator. In one example, the temperature controller may be part of the wafer. For example, the temperature controller may include a resistor and a temperature sensor (eg, a thermistor) on the substrate of the chip 100 . In one example, the temperature controller may be a thin film resistor.

圖2例示具有一電漿子感測器200(在本文中亦稱為一晶片200)之微流體晶片之範例。在一範例中,晶片200可製造為具一經整合之電漿子感測器220的一多層晶片。圖2例示晶片200之俯視圖。2 illustrates an example of a microfluidic chip having a plasmonic sensor 200 (also referred to herein as a chip 200). In one example, the wafer 200 may be fabricated as a multi-layer wafer with an integrated plasmonic sensor 220 . FIG. 2 illustrates a top view of the wafer 200 .

在一範例中,晶片200可包括一入口201及一入口202。入口201可用於引介一細菌懸浮液。細菌懸浮液可包括待分析的一特定菌株細菌。入口202可用於引介一緩衝溶液。In one example, the wafer 200 may include an inlet 201 and an inlet 202 . The inlet 201 can be used to introduce a bacterial suspension. The bacterial suspension may include a specific strain of bacteria to be analyzed. Inlet 202 can be used to introduce a buffer solution.

晶片200可包括複數個通道204 1至204 n(下文亦個別地稱為通道204或合稱為通道204)。每一通道204可包括一各別抗生素腔室206及一對應的過濾腔室210。抗生素腔室206可包括一抗生素與一培養基208之凍乾混合物。培養基208可引入至抗生素腔室206中,類似於在晶片100中之培養基108 1及108 2,如上文所論述。 The wafer 200 may include a plurality of channels 204i - 204n (hereinafter also referred to individually as channels 204 or collectively as channels 204). Each channel 204 may include a respective antibiotic chamber 206 and a corresponding filter chamber 210 . Antibiotic chamber 206 may include a lyophilized mixture of an antibiotic and a culture medium 208. Culture medium 208 can be introduced into antibiotic chamber 206, similar to culture media 108i and 1082 in wafer 100, as discussed above.

過濾腔室210可包括一過濾器212。過濾器212可為一多孔膜或一物理結構(例如柱狀物)。過濾器212可容許代謝物216通過,同時阻擋住細菌214。代謝物216可流動通過電漿子感測器220上方之通道。Filtration chamber 210 may include a filter 212 . The filter 212 can be a porous membrane or a physical structure (eg, a pillar). The filter 212 may allow the passage of the metabolites 216 while blocking the bacteria 214. Metabolite 216 can flow through the channel above plasmonic sensor 220 .

在一範例中,過濾器212可包括一第二凍乾混合物213。凍乾混合物可包括促進劑以及一校準分子。在一範例中,校準分子可用作更量化之SERS量測之內部標準。In one example, the filter 212 may include a second lyophilized mixture 213 . The lyophilized mixture may include the accelerator as well as a calibration molecule. In one example, calibration molecules can be used as internal standards for more quantitative SERS measurements.

在一範例中,促進劑可加速細菌214的逆境反應。促進劑可包括能致使細菌214立即或在培育數分鐘內釋放嘌呤代謝物的磷酸鹽。此亦可幫助縮短在晶片200中執行AST之周轉時間。在一範例中,促進劑可包括二磷酸鹽、磷酸核糖轉移酶、核苷單磷酸,及類似物。In one example, the promoter can accelerate the stress response of the bacteria 214 . Promoters may include phosphates that cause the bacteria 214 to release purine metabolites immediately or within minutes of incubation. This can also help reduce the turnaround time for performing AST in the wafer 200 . In one example, promoters may include diphosphates, phosphoribosyltransferases, nucleoside monophosphates, and the like.

在一範例中,通道204中之每一者可包括抗生素腔室206及過濾腔室210。每一抗生素腔室206可包括不同的抗生素或不同劑量之相同抗生素。在一範例中,通道204中之一者可包括用於光學感測器224之原位校準之報導分子。每一通道204可行進跨越電漿子感測器220。In one example, each of the channels 204 may include an antibiotic chamber 206 and a filtration chamber 210 . Each antibiotic chamber 206 may contain a different antibiotic or different doses of the same antibiotic. In one example, one of the channels 204 may include reporter molecules for in-situ calibration of the optical sensor 224 . Each channel 204 can travel across the plasmonic sensor 220 .

在一範例中,晶片200亦可包括毛細斷隙218。毛細斷隙218可容許一氣體或空氣通過一通道(圖3中展示)以控制晶片200之通道204內的流體之流動。晶片200亦可包括出口222以容許流體經由位在晶片200之層之間的通孔230離開晶片200。In one example, the wafer 200 may also include capillary breaks 218 . Capillary gap 218 may allow a gas or air to pass through a channel (shown in FIG. 3 ) to control the flow of fluid within channel 204 of wafer 200 . The wafer 200 may also include an outlet 222 to allow fluid to exit the wafer 200 through vias 230 located between the layers of the wafer 200 .

在一範例中,晶片200亦可包括一溫度控制器(未示出)。溫度控制器可用於控制抗生素腔室206及/或過濾腔室210之溫度。溫度控制器可幫助模擬細菌214之天然生長環境,或者加速源自細菌214之逆境誘發反應之代謝物216的生產。In one example, the wafer 200 may also include a temperature controller (not shown). A temperature controller may be used to control the temperature of the antibiotic chamber 206 and/or the filtration chamber 210. The temperature controller can help simulate the natural growth environment of the bacteria 214 or accelerate the production of metabolites 216 derived from the stress-induced response of the bacteria 214 .

在一範例中,溫度控制器可為外部的。舉例而言,晶片200可保持在一溫度控制空間,諸如一培育箱中。在一範例中,溫度控制器可為該晶片之部分。舉例而言,溫度控制器可包括在晶片200之基體上的一電阻器及一溫度感測器(例如,熱阻器)。在一範例中,溫度控制器可為一薄膜電阻器。In one example, the temperature controller may be external. For example, wafer 200 may be held in a temperature-controlled space, such as an incubator. In one example, the temperature controller may be part of the wafer. For example, the temperature controller may include a resistor and a temperature sensor (eg, a thermistor) on the substrate of the chip 200 . In one example, the temperature controller may be a thin film resistor.

圖3展示晶片200之一範例截面側視圖。如圖3中可見,晶片200可包括一第一層250、一第二層252及一第三層254。第一層250可包括基體256,電漿子感測器220係製造於其上。基體256可為一半導體(例如,一矽基體)。其餘層可由一光可界定聚合物(例如,SU8)形成。通道204、抗生素腔室206、過濾腔室210、通孔230及出口222可經由界定及蝕刻出該光可界定聚合物之形貌體的光微影程序形成。FIG. 3 shows an example cross-sectional side view of wafer 200 . As can be seen in FIG. 3 , the wafer 200 may include a first layer 250 , a second layer 252 and a third layer 254 . The first layer 250 may include a substrate 256 on which the plasmonic sensor 220 is fabricated. The substrate 256 may be a semiconductor (eg, a silicon substrate). The remaining layers may be formed from a photodefinable polymer (eg, SU8). Channel 204, antibiotic chamber 206, filter chamber 210, through-hole 230, and outlet 222 may be formed by a photolithography process that defines and etches features of the photodefinable polymer.

在一範例中,第一層250之一部分可包括一光學透明層258。光學透明層258可於電漿子感測器220上方提供一窗,其容許光束到達電漿子感測器220上方之通道204。In one example, a portion of the first layer 250 may include an optically transparent layer 258 . The optically transparent layer 258 may provide a window above the plasmonic sensor 220 that allows the light beam to reach the channel 204 above the plasmonic sensor 220 .

在一範例中,過濾器212可安置於第二層252與第一層250之間。在一範例中,過濾器212可選擇性地部署於第一層250與第二層252之間通道204開放之處的位置。該另一方式,過濾器212可包括在包括過濾腔室210之第二層252的部分中。In one example, the filter 212 may be disposed between the second layer 252 and the first layer 250 . In one example, the filter 212 may be selectively deployed at a location between the first layer 250 and the second layer 252 where the channel 204 is open. This alternatively, the filter 212 may be included in the portion of the second layer 252 that includes the filter chamber 210 .

在一範例中,毛細斷隙218可形成為位於第二層252與第三層254之間的一膜層。流體可流動跨過在第三層254中之通道232且跨過該膜以生成一真空。流體可受控以在某些毛細斷隙218處的該膜之不同部分上方流動以控制通道204內的流體之流動。In one example, the capillary gap 218 may be formed as a film layer between the second layer 252 and the third layer 254 . Fluid can flow across the channels 232 in the third layer 254 and across the membrane to create a vacuum. Fluid can be controlled to flow over different portions of the membrane at certain capillary breaks 218 to control the flow of fluid within channel 204 .

在一範例中,該膜可包括一奈米多孔疏水性膜,其防止液體流動通過,但容許空氣或氣體流動通過。該膜可具有一平均直徑為約200至400奈米(nm)且可由聚四氟乙烯(PTFE)製造之孔洞。該膜之其他範例材料可包含聚(丙烯)、聚(乙烯)及類似物。In one example, the membrane may comprise a nanoporous hydrophobic membrane that prevents liquid flow therethrough but allows air or gas flow therethrough. The membrane may have pores with an average diameter of about 200 to 400 nanometers (nm) and may be fabricated from polytetrafluoroethylene (PTFE). Other example materials for the film may include poly(propylene), poly(ethylene), and the like.

在一範例中,光學感測器224及光源226可被使用來在晶片200上進行拉曼量測。在一範例中,光學感測器224可為一拉曼光譜儀或產生CCD影像的一電荷耦合裝置(CCD)偵測器。光源226可為一雷射光源。然而,光源226可具有一長度,其等於跨行電漿子感測器220之通道204的長度。因此,量測值可取自跨通道204之整體部分,該通道跨越電漿子感測器220走行。在一範例中,光源226可同時照射每一跨電漿子感測器220之通道204。在一範例中,可部署多個光源226,或可部署具有一光學光柵之一單光源226。In one example, optical sensor 224 and light source 226 may be used to perform Raman measurements on wafer 200 . In one example, the optical sensor 224 may be a Raman spectrometer or a charge coupled device (CCD) detector that produces a CCD image. The light source 226 can be a laser light source. However, the light source 226 may have a length equal to the length of the channel 204 of the plasmonic sensor 220 across the row. Therefore, measurements can be taken from an integral portion of the span channel 204 that runs across the plasmonic sensor 220 . In one example, the light source 226 may illuminate each channel 204 across the plasmonic sensor 220 simultaneously. In one example, multiple light sources 226 may be deployed, or a single light source 226 with an optical grating may be deployed.

在一範例中,光學感測器224可包括透鏡、過濾器、繞射光柵及其他裝置(未示出)以使由電漿子感測器220所散射之入射光聚焦到偵測器陣列上。在一範例中,光學感測器224可將入射光分進不同通道中,其等之每一者被送到光學感測器224內的不同感測器,提供由電漿子感測器220所散射之光的多光譜分析。光學感測器224可執行明域、暗域、螢光、高光譜及其他光學分析。In one example, optical sensor 224 may include lenses, filters, diffraction gratings, and other devices (not shown) to focus incident light scattered by plasmonic sensor 220 onto a detector array . In one example, optical sensor 224 may split incident light into different channels, each of which is sent to a different sensor within optical sensor 224, provided by plasmonic sensor 220. Multispectral analysis of scattered light. Optical sensor 224 may perform brightfield, darkfield, fluorescence, hyperspectral, and other optical analyses.

圖4例示以圖2及3中所例示之晶片200執行AST之一方法400的一範例作業流程圖。在區塊402,方法400經由入口201裝載一細菌懸浮液。該細菌懸浮液可包括待針對一有效抗生素或抗生素劑量檢查或分析的一特定細菌菌株。該細菌懸浮液可遞送至抗生素腔室206。舉例而言,一流體可流動穿過抗生素腔室206之毛細斷隙218以生成將該細菌懸浮液拉進抗生素腔室206中的真空。透過通孔230及出口222可移除過量的細菌懸浮液。FIG. 4 illustrates an example operational flow diagram of a method 400 of performing AST with the wafer 200 illustrated in FIGS. 2 and 3 . At block 402, method 400 loads a bacterial suspension via inlet 201. The bacterial suspension may include a specific bacterial strain to be examined or analyzed for an effective antibiotic or antibiotic dose. This bacterial suspension can be delivered to the antibiotic chamber 206 . For example, a fluid can flow through the capillary gap 218 of the antibiotic chamber 206 to create a vacuum that pulls the bacterial suspension into the antibiotic chamber 206 . Excess bacterial suspension can be removed through through hole 230 and outlet 222 .

在區塊404,空氣260可被迫使通過通道204以淨化裝載通道。空氣260可移除任何可能留在通道204中之殘留細菌懸浮液。At block 404, air 260 may be forced through channel 204 to purge the loading channel. Air 260 can remove any residual bacterial suspension that may remain in channel 204 .

在區塊406,細菌懸浮液可再水合培養基208且容許培育一預定時段(例如若干分鐘)。培養基208中之營養物可容許細菌生長且培養基208中之抗生素可殺死細菌。抗生素之有效性可基於所釋放且所量測之代謝物的量來量測,如下文進一步詳細論述。At block 406, the bacterial suspension may rehydrate the medium 208 and allow to incubate for a predetermined period of time (eg, several minutes). The nutrients in the medium 208 can allow the bacteria to grow and the antibiotics in the medium 208 can kill the bacteria. The effectiveness of an antibiotic can be measured based on the amount of metabolite released and measured, as discussed in further detail below.

在一範例中,通道204中之一者可包括一對照組。每一抗生素腔室206可包括一不同抗生素或不同劑量之抗生素。因此,晶片200可容許於一相對短的周轉時間內,同時分析對抗一特定細菌菌株之不同的抗生素或劑量。In one example, one of the channels 204 may include a control group. Each antibiotic chamber 206 may contain a different antibiotic or a different dose of antibiotic. Thus, the wafer 200 may allow simultaneous analysis of different antibiotics or doses against a particular bacterial strain with a relatively short turnaround time.

在區塊408,長出之細菌可被拉進過濾腔室210中。舉例而言,一流體可流動跨過濾腔室210之毛細斷隙218,以生成一真空,該真空將長出之細菌自抗生素腔室206拉進過濾腔室210中。過濾腔室210可包括一凍乾混合物213。如上文所述,凍乾混合物213可包括一校準分子及/或一促進劑。At block 408 , the outgrown bacteria may be drawn into the filter chamber 210 . For example, a fluid can flow across the capillary gap 218 of the filtration chamber 210 to create a vacuum that pulls outgrown bacteria from the antibiotic chamber 206 into the filtration chamber 210. Filtration chamber 210 may include a lyophilized mixture 213 . As described above, the lyophilized mixture 213 may include a calibration molecule and/or an accelerator.

在區塊410,一緩衝溶液可經由入口202引入。緩衝溶液可為水、一溶劑或任何其他液體,其可用於洗滌在過濾腔室210中混合有細菌214之殘留培養基。再又,過濾腔室210中之毛細斷隙218可用於拉進緩衝溶液。透過通孔230及出口222可移除過量的緩衝溶液。At block 410, a buffer solution may be introduced via inlet 202. The buffer solution can be water, a solvent, or any other liquid that can be used to wash the residual medium mixed with bacteria 214 in the filtration chamber 210. Again, the capillary gap 218 in the filter chamber 210 can be used to pull in the buffer solution. Excess buffer solution can be removed through through hole 230 and outlet 222 .

在區塊412,細菌214可容許在沒有營養物下培育在培養基中。培育可誘發致使細菌214釋放代謝物216之逆境反應。在一範例中,來自凍乾混合物213之促進劑可與過濾腔室210中之細菌214相互作用,以加速代謝物216之立即或於數分鐘內之釋放。At block 412, the bacteria 214 may be allowed to grow in the medium without nutrients. Incubation induces a stress response that causes bacteria 214 to release metabolite 216. In one example, the promoter from the lyophilized mixture 213 can interact with the bacteria 214 in the filtration chamber 210 to accelerate the release of the metabolite 216 immediately or within minutes.

在區塊414,代謝物216轉移通過過濾器212且進入電漿子感測器220上方的通道204中。舉例而言,流體可流動穿過跨通道204之端部的毛細斷隙218以將代謝物216拉動通過過濾器212並在電漿子感測器220上方。如上文所論述,過濾器212可為一多孔過濾膜或結構(例如柱形物),其容許代謝物216通過過濾器212,但防止細菌214通過過濾器212。At block 414 , metabolite 216 is transferred through filter 212 and into channel 204 above plasmonic sensor 220 . For example, fluid can flow through the capillary gap 218 across the end of the channel 204 to pull the metabolite 216 through the filter 212 and over the plasmonic sensor 220 . As discussed above, filter 212 may be a porous filter membrane or structure (eg, a column) that allows metabolites 216 to pass through filter 212, but prevents bacteria 214 from passing through filter 212.

在區塊416,空氣可遞送通過入口202以使通道204乾燥。通道可自任何殘留液體乾燥,且留著的細菌214可經由出口222移除。At block 416 , air may be delivered through the inlet 202 to dry the channel 204 . The channel can be dried from any residual liquid and the remaining bacteria 214 can be removed via the outlet 222.

在區塊418,可進行一拉曼量測。如上所述,一光源可將光束引導於電漿子感測器220上方。光可由電漿子感測器220散射且由圖2及3中所例示之光學感測器224偵測。At block 418, a Raman measurement may be performed. As described above, a light source may direct the light beam over the plasmonic sensor 220 . Light can be scattered by plasmonic sensor 220 and detected by optical sensor 224 illustrated in FIGS. 2 and 3 .

如上述,晶片200可容許分析不同抗生素及/或劑量。基於該量測,可選擇最有效抗生素或劑量以治療特定細菌菌株之感染。以晶片200分析之周轉時間可為若干分鐘至數小時。此外,製造晶片200之相對低成本可容許晶片200規模化於大量生產及製造。As described above, the wafer 200 may allow for analysis of different antibiotics and/or doses. Based on this measurement, the most effective antibiotic or dose can be selected to treat the infection with a particular bacterial strain. The turnaround time for analysis with wafer 200 may be minutes to hours. Furthermore, the relatively low cost of manufacturing wafer 200 may allow wafer 200 to be scaled up for high volume production and fabrication.

圖5例示具一電漿子感測器500(下文亦稱為一晶片500)之一微流體晶片的另一範例之區塊圖的一俯視圖。在一範例中,晶片500可於單層上沿平行通道504 1至504 n(下文亦個別地稱為一通道504或合稱為通道504)製造。舉例而言,通道504可通遍於一基體而設放於一單個水平平面上。 5 illustrates a top view of a block diagram of another example of a microfluidic chip with a plasmonic sensor 500 (hereinafter also referred to as a chip 500). In one example, wafer 500 may be fabricated on a single layer along parallel channels 504i - 504n (hereinafter also referred to individually as a channel 504 or collectively as channel 504). For example, the channel 504 can be placed on a single horizontal plane through a substrate.

在一範例中,晶片500可包括一入口501、複數個通道504 1至504 n,及一出口530。雖然圖5中例示一單一入口501,但應注意,可部署多個入口501。 In one example, the wafer 500 may include an inlet 501 , a plurality of channels 504 1 - 504 n , and an outlet 530 . Although a single portal 501 is illustrated in FIG. 5, it should be noted that multiple portals 501 may be deployed.

每一通道504可包括一各別抗生素腔室506 1至506 n,及一各別過濾腔室510 1至510 n。每一抗生素腔室506 1至506 n可包括一各別抗生素與培養基508 1至508 n。每一過濾腔室510 1至510 n可包括一各別過濾器512 1至512 n。過濾器512可為多孔過濾膜或結構(例如柱形物),如上文所述。 Each channel 504 may include a respective antibiotic chamber 506i - 506n , and a respective filtration chamber 5101-510n . Each antibiotic chamber 506i - 506n may include a respective antibiotic and medium 508i - 508n . Each filter chamber 510 1 - 510 n may include a respective filter 512 1 - 512 n . Filter 512 may be a porous filter membrane or structure (eg, a column), as described above.

每一過濾腔室510 1至510 n可以分支成二個分開的出口通道518及522。出口通道518可包括電漿子感測器520。舉例而言,過濾腔室510 1可包括出口通道518 1及522 1。出口通道518 1可包括電漿子感測器520 1。過濾腔室510 2可包括出口通道518 2及522 2。出口通道518 2可包括電漿子感測器520 2。過濾腔室510 n可包括出口通道518 n及522 n。出口通道518 n可包括電漿子感測器520 nEach filter chamber 510 1 to 510 n may branch into two separate outlet channels 518 and 522 . The outlet channel 518 may include a plasmonic sensor 520 . For example, filtration chamber 510 1 may include outlet channels 518 1 and 522 1 . Outlet channel 518 1 may include plasmonic sensor 520 1 . Filtration chamber 510 2 may include outlet passages 518 2 and 522 2 . Outlet channel 518 2 may include plasmonic sensor 520 2 . Filtration chamber 510n may include outlet channels 518n and 522n . The outlet channel 518n may include a plasmonic sensor 520n .

在一範例中,晶片500可包括閥504 1至504 n、閥509 1至509 n、閥514 1至514 n,及閥516 1至516 n。閥504、514、509及516可為機械式或機電式操作之微流體閥。閥504、514、509及516可用於控制液體或流體通過晶片500及通過各別通道502之流動。 In one example, wafer 500 may include valves 504i - 504n , valves 509i - 509n , valves 514i - 514n, and valves 516i - 516n . Valves 504, 514, 509, and 516 may be mechanically or electromechanically operated microfluidic valves. Valves 504 , 514 , 509 and 516 may be used to control the flow of liquids or fluids through wafer 500 and through respective channels 502 .

在一範例中,晶片500可與一光源及一光學感測器(未示出)一起使用,相似於上述光源226及光學來源224。光源224可發射光至每一電漿子感測器520 1至520 n上,且可藉由光學感測器偵測及測量反應。 In one example, wafer 500 may be used with a light source and an optical sensor (not shown), similar to light source 226 and optical source 224 described above. The light source 224 can emit light onto each of the plasmonic sensors 520i - 520n , and the response can be detected and measured by the optical sensor.

圖6例示在本揭露內容之晶片500中執行AST之一方法600的一範例作業流程圖。在區塊602,細菌懸浮液可經由入口501裝載。該細菌懸浮液可包括待針對一有效抗生素或抗生素劑量檢查或分析的一特定細菌菌株。FIG. 6 illustrates an example operational flow diagram of a method 600 of performing AST in a wafer 500 of the present disclosure. At block 602 , the bacterial suspension can be loaded via inlet 501 . The bacterial suspension may include a specific bacterial strain to be examined or analyzed for an effective antibiotic or antibiotic dose.

在一範例中,閥504可被打開,同時閥509仍維持閉合。該細菌懸浮液可遞送至抗生素腔室506。抗生素腔室506可包括一抗生素與一培養基508之混合物。每一抗生素腔室506 1至506 n可包括不同抗生素或不同劑量之相同抗生素。在一範例中,抗生素腔室506 1至506 n中之一者可包括一對照組。 In one example, valve 504 may be opened while valve 509 remains closed. The bacterial suspension can be delivered to the antibiotic chamber 506 . Antibiotic chamber 506 may include a mixture of an antibiotic and a culture medium 508 . Each antibiotic chamber 506i - 506n may contain different antibiotics or different doses of the same antibiotic. In one example, one of the antibiotic chambers 506i - 506n may include a control group.

在區塊604,閥504可被閉合。包括細菌532之細菌懸浮液可以再水合培養基508。培養基508可包括能容許細菌532生長之營養物。抗生素可能殺死細菌532。抗生素或特定劑量抗生素的有效性可基於所釋放之代謝物的量來判定,其可關連於仍維持之細菌的量,如下文進一步詳細論述。可容許細菌532培育一預定的時間量(例如,若干分鐘至數小時)。At block 604, valve 504 may be closed. The bacterial suspension including bacteria 532 can rehydrate medium 508. Medium 508 may include nutrients that allow bacteria 532 to grow. Antibiotics may kill bacteria532. The effectiveness of an antibiotic or a particular dose of antibiotic can be judged based on the amount of metabolite released, which can be related to the amount of bacteria remaining, as discussed in further detail below. The bacteria 532 may be allowed to incubate for a predetermined amount of time (eg, minutes to hours).

在區塊606,閥504、509及514可被打開,且閥516可被閉合。緩衝溶液可經由入口501遞送。緩衝溶液可將細菌532及培養基508推進過濾腔室510中。緩衝溶液可潤洗細菌532,以移除培養基508,使通過閥514、通過出口通道522、經由出口530離開。At block 606, valves 504, 509, and 514 may be opened, and valve 516 may be closed. Buffer solutions can be delivered via inlet 501 . The buffer solution can propel bacteria 532 and culture medium 508 into filtration chamber 510 . The buffer solution can rinse the bacteria 532 to remove the culture medium 508 to exit through the valve 514 , through the outlet channel 522 , and through the outlet 530 .

在區塊608,閥514及516可被閉合以容許細菌532培育於過濾腔室510中歷經一預定義的時間量(例如若干分鐘)。在培養基508中無營養物的情況下,細菌532可經歷一逆境反應。逆境反應可致使細菌532釋放代謝物534。在一範例中,可對細菌532添加促進劑以加速代謝物534之釋放。At block 608, valves 514 and 516 may be closed to allow bacteria 532 to grow in filtration chamber 510 for a predefined amount of time (eg, several minutes). In the absence of nutrients in medium 508, bacteria 532 can undergo a stress response. Stress reactions can cause bacteria 532 to release metabolites 534. In one example, accelerants may be added to bacteria 532 to accelerate the release of metabolites 534.

在區塊610,閥516可被打開以容許代謝物534流動通過通道518。在通道518中代謝物可流動於各別的電漿子感測器520上方。在一範例中,閥516可被閉合且閥514可被打開,以沖洗留著的細菌532,使通過閥514且經由通道520離開。At block 610 , valve 516 may be opened to allow metabolite 534 to flow through channel 518 . Metabolites can flow over respective plasmonic sensors 520 in channels 518 . In one example, valve 516 can be closed and valve 514 can be opened to flush remaining bacteria 532 through valve 514 and out through channel 520 .

在一範例中,閥514可被閉合且閥516可被打開,以乾燥出口通道520。舉例而言,空氣可吹拂通過晶片500以乾燥出口通道520。In one example, valve 514 may be closed and valve 516 may be opened to dry outlet channel 520 . For example, air may be blown through wafer 500 to dry outlet channel 520 .

在區塊612,一雷射光(例如雷射光源226)可發射光束或光線在電漿子感測器520 1至520 n上方。由電漿子感測器520散射之光可由一光學感測器讀取。光學感測器可基於散射光信號來量測代謝物536之量。代謝物536之量可關連於細菌之量,其接著可用於量測在一特定抗生素腔室506內之抗生素或劑量的有效性。可選擇或開立最有效抗生素或抗生素劑量處方以治療由細菌532所致感染。 At block 612, a laser (eg, laser light source 226) may emit beams or rays over plasmonic sensors 520i - 520n . Light scattered by the plasmonic sensor 520 can be read by an optical sensor. Optical sensors can measure the amount of metabolite 536 based on the scattered light signal. The amount of metabolite 536 can be correlated to the amount of bacteria, which can then be used to measure the effectiveness of antibiotics or doses within a particular antibiotic chamber 506 . The most effective antibiotic or antibiotic dose can be selected or prescribed to treat infections caused by bacteria 532.

如上述,晶片500可容許分析不同抗生素及/或劑量。基於該量測,可選擇最有效抗生素或劑量以治療特定細菌菌株之感染。以晶片500分析之周轉時間可為若干分鐘至數小時。此外,製造晶片500之相對低成本可容許晶片500規模化於大量生產及製造。As described above, the wafer 500 may allow analysis of different antibiotics and/or doses. Based on this measurement, the most effective antibiotic or dose can be selected to treat the infection with a particular bacterial strain. The turnaround time for analysis with wafer 500 can range from minutes to hours. Furthermore, the relatively low cost of manufacturing the wafer 500 may allow the wafer 500 to be scaled up for mass production and fabrication.

在一範例中,晶片500亦可包括一溫度控制器(未示出)。溫度控制器可用於控制抗生素腔室506及/或過濾腔室510之溫度。溫度控制器可幫助模擬細菌532之天然生長環境,或者加速源自細菌532之逆境誘發反應之代謝物534的生產。In one example, the wafer 500 may also include a temperature controller (not shown). A temperature controller may be used to control the temperature of the antibiotic chamber 506 and/or the filtration chamber 510. The temperature controller can help simulate the natural growth environment of the bacteria 532 or accelerate the production of metabolites 534 derived from the stress-induced response of the bacteria 532 .

在一範例中,溫度控制器可為外部的。舉例而言,晶片500可保持在一溫度控制空間,諸如一培育箱中。在一範例中,溫度控制器可為該晶片之部分。舉例而言,溫度控制器可包括在晶片500之基體上的一電阻器及一溫度感測器(例如,熱阻器)。在一範例中,溫度控制器可為一薄膜電阻器。In one example, the temperature controller may be external. For example, wafer 500 may be held in a temperature-controlled space, such as an incubator. In one example, the temperature controller may be part of the wafer. For example, the temperature controller may include a resistor and a temperature sensor (eg, a thermistor) on the substrate of the chip 500 . In one example, the temperature controller may be a thin film resistor.

圖7例示微流體通道702、704及706可如何被安排路徑於電漿子感測器720上方之範例的一俯視圖。通道702、704及706可為圖1-6中所例示及上文所論述之晶片100、200或500之部分。電漿子感測器720可相似於圖1-6中所例示及上文所論述之電漿子感測器120、220及520。FIG. 7 illustrates a top view of an example of how microfluidic channels 702 , 704 and 706 may be routed over plasmonic sensor 720 . Channels 702, 704, and 706 may be part of wafers 100, 200, or 500 illustrated in Figures 1-6 and discussed above. The plasmonic sensor 720 may be similar to the plasmonic sensors 120, 220, and 520 illustrated in Figures 1-6 and discussed above.

在一範例中,通道702、704及706可被安排路徑於電漿子感測器720上方若干次。此可由光學感測器提供一平均讀數且提供更準確的量測。在一範例中,通道702、704及706中行經電漿子感測器720上方之每一部分可為一直線運行。在一範例中,通道702、704及706可被以一蜿蜒形式安排路徑於電漿子感測器720上方,以實現多次通過電漿子感測器720上方。In one example, channels 702, 704, and 706 may be routed over plasmonic sensor 720 several times. This can provide an average reading from the optical sensor and provide a more accurate measurement. In one example, each portion of channels 702, 704, and 706 that travel over plasmonic sensor 720 may run in a straight line. In one example, channels 702 , 704 and 706 may be routed over plasmonic sensor 720 in a serpentine fashion to achieve multiple passes over plasmonic sensor 720 .

如圖7中可見,曲線或彎曲可發生在電漿子感測器720之作用區域外。該直線運行可發生在電漿子感測器720上方。該直線運行可容許發射呈一條線之光的一光源被用來量測位於電漿子感測器720上方之通道702、704及706之整體部分。As can be seen in FIG. 7, curves or bends can occur outside the active area of plasmonic sensor 720. This linear motion can occur above the plasmonic sensor 720 . This linear operation may allow a light source emitting light in a line to be used to measure the entire portion of channels 702 , 704 and 706 above plasmonic sensor 720 .

若干條光線可被發射來同時測量在電漿子感測器720上方之每一通道702、704及706的每一部分。舉例而言,在圖7中,有九條線跨越在電漿子感測器720上方。光源可發射九條分開的光線(例如,使用光學光柵或不同光源)來同時量測覆蓋電漿子感測器720之通道702、704及706的全部部分。Several lines of light can be emitted to measure each portion of each channel 702 , 704 and 706 above the plasmonic sensor 720 simultaneously. For example, in FIG. 7 , there are nine lines spanning over plasmonic sensor 720 . The light source may emit nine separate rays (eg, using optical gratings or different light sources) to measure all of the portions of channels 702, 704, and 706 covering plasmonic sensor 720 simultaneously.

應注意,圖7中所例示之蜿蜒圖案為一範例圖案。其他圖案可部署來達成相同結果。此外,雖然圖7中例示三個通道,但可部署任何數目的通道。It should be noted that the meandering pattern illustrated in FIG. 7 is an example pattern. Other patterns can be deployed to achieve the same result. Furthermore, although three channels are illustrated in Figure 7, any number of channels may be deployed.

圖8例示用具本揭露內容之電漿子感測器之微流體晶片執行AST之方法的一方法800之流程圖。在一範例中,方法800可藉由圖1中所例示之微流體晶片100、圖2及3中所例示之微流體晶片200或圖5中所例示之微流體晶片500、以及上文論述者來進行。8 illustrates a flow diagram of a method 800 of a method of performing AST with a microfluidic wafer incorporating the plasmonic sensor of the present disclosure. In one example, method 800 may be performed by microfluidic wafer 100 illustrated in Figure 1, microfluidic wafer 200 illustrated in Figures 2 and 3, or microfluidic wafer 500 illustrated in Figure 5, and discussed above to proceed.

在區塊802,方法800開始。在區塊804,方法800以一細菌懸浮液於一第一抗生素腔室中再水合一第一培養基與一第一抗生素,以形成一第一混合物供歷經一培育期間。第一培養基與第一抗生素可為經預混合至第一抗生素腔室中之凍乾混合物。細菌懸浮液可包括待分析的一特定菌株細菌(例如,用以治療由患者中之細菌菌株所致感染)。第一培養基可包括營養物,其容許細菌在第一抗生素腔室內生長,同時被第一抗生素殺死。At block 802, method 800 begins. At block 804, method 800 rehydrates a first culture medium and a first antibiotic with a bacterial suspension in a first antibiotic chamber to form a first mixture for an incubation period. The first medium and the first antibiotic may be a lyophilized mixture premixed into the first antibiotic chamber. The bacterial suspension can include a specific strain of bacteria to be analyzed (eg, to treat an infection caused by a bacterial strain in a patient). The first medium may include nutrients that allow bacteria to grow within the first antibiotic chamber while being killed by the first antibiotic.

在區塊806,方法800以該細菌懸浮液於一第二抗生素腔室中再水合一第二培養基與一第二抗生素,以形成一第二混合物供歷經該培育期間。第二培養基與第二抗生素可為經預混合至第二抗生素腔室中之凍乾混合物。細菌懸浮液可包括待分析的一特定菌株細菌(例如,用以治療由患者中之細菌菌株所致感染)。第二培養基可包括營養物,其容許細菌在第二抗生素腔室內生長,同時被第二抗生素殺死。在一範例中,第一抗生素及第二抗生素可為不同抗生素,或可包括不同劑量之相同抗生素。At block 806, method 800 rehydrates a second culture medium and a second antibiotic with the bacterial suspension in a second antibiotic chamber to form a second mixture for the incubation period. The second medium and second antibiotic may be a lyophilized mixture premixed into the second antibiotic chamber. The bacterial suspension can include a specific strain of bacteria to be analyzed (eg, to treat an infection caused by a bacterial strain in a patient). The second medium may include nutrients that allow bacteria to grow within the second antibiotic chamber while being killed by the second antibiotic. In one example, the first antibiotic and the second antibiotic may be different antibiotics, or may include different doses of the same antibiotic.

在區塊808,該方法800拘限第一混合物於第一過濾腔室中且第二混合物於第二過濾腔室中。在容許細菌懸浮液於第一抗生素腔室及第二抗生素腔室中生長之後,混合物可移動至第一及第二過濾腔室中。At block 808, the method 800 confines the first mixture in the first filter chamber and the second mixture in the second filter chamber. After allowing the bacterial suspension to grow in the first and second antibiotic chambers, the mixture can be moved to the first and second filtration chambers.

在區塊810,該方法800用一緩衝溶液洗滌第一混合物及第二混合物來誘發細菌的逆境反應,以釋放一第一代謝物於第一過濾腔室中及一第二代謝物於第二過濾腔室中。在無培養基之情況下,存留在第一過濾腔室及第二過濾腔室中之細菌可經歷一逆境反應。逆境反應可致使細菌釋放代謝物。At block 810, the method 800 induces a bacterial stress response by washing the first and second mixtures with a buffer solution to release a first metabolite in the first filtration chamber and a second metabolite in the second in the filter chamber. In the absence of culture medium, bacteria residing in the first and second filtration chambers can undergo a stress reaction. Stress reactions can cause bacteria to release metabolites.

在一範例中,促進劑可被添加至該細菌中。促進劑可增加細菌釋放代謝物之速率。可量測代謝物以判定存留在第一混合物及第二混合物中之細菌的量。細菌的存留量可判定該第一抗生素及該第二抗生素的有效性。In one example, promoters can be added to the bacteria. Accelerators increase the rate at which bacteria release metabolites. Metabolites can be measured to determine the amount of bacteria remaining in the first and second mixtures. The remaining amount of bacteria can determine the effectiveness of the first antibiotic and the second antibiotic.

在區塊812,方法800將第一代謝物及第二代謝物轉移至電漿子感測器上方以進行一拉曼量測。舉例而言,第一過濾腔室及第二過濾腔室可包括容許代謝物通過、同時阻擋住細菌之過濾器。代謝物可流動通過通道且跨越電漿子感測器上方。通道可在進行拉曼量測之前被乾燥。拉曼量測可判定在每一通道中之代謝物的量。如上所述,代謝物之量測可用於判定第一抗生素及第二抗生素之有效性。At block 812, the method 800 transfers the first metabolite and the second metabolite over the plasmonic sensor for a Raman measurement. For example, the first filter chamber and the second filter chamber may include filters that allow the passage of metabolites while retaining bacteria. Metabolites can flow through the channel and span over the plasmonic sensor. Channels can be dried prior to Raman measurements. Raman measurements can determine the amount of metabolites in each channel. As described above, the measurement of metabolites can be used to determine the effectiveness of the first antibiotic and the second antibiotic.

在區塊814,該方法800基於拉曼量測,就第一抗生素或第二抗生素產生一建議。舉例而言,光學感測器內的一處理器可比較在每一通道內的拉曼量測。具有最低細菌量的通道可判定最有效的抗生素或最有效的抗生素劑量。可以建議抗生素之最有效劑量。At block 814, the method 800 generates a recommendation for the first antibiotic or the second antibiotic based on the Raman measurements. For example, a processor within the optical sensor can compare the Raman measurements within each channel. The channel with the lowest bacterial load determines the most effective antibiotic or the most effective antibiotic dose. The most effective dose of antibiotics can be recommended.

雖然方法800係以二個通道來說明,但應注意,方法800可執行超過二個通道。此外,通道中之一者可包括一對照組(例如,無抗生素)。在區塊816,方法800結束。Although method 800 is illustrated with two passes, it should be noted that method 800 may be performed with more than two passes. Additionally, one of the channels can include a control group (eg, no antibiotics). At block 816, the method 800 ends.

將可瞭解到,上述及其他特徵及功能之變化例或其等之替代物可組合成其他不同系統或應用。各種其中當前尚未預見或預期的替代、修改、變化或改良可由熟習此項技術者於隨後做出,其等亦意圖為以下申請專利範圍所涵蓋。It will be appreciated that variations of the above and other features and functions, or alternatives thereof, may be combined into other different systems or applications. Various substitutions, modifications, changes or improvements of which are not presently foreseen or contemplated may subsequently be made by those skilled in the art, which are also intended to be covered by the scope of the following claims.

100,200,500:電漿子感測器;(微流體)晶片 102,201,202,501:入口 104(104 1,104 2),204(204 1至204 n),232,502(502 1至502 n):通道 106 1:(第一)抗生素腔室 106 2:(第二)抗生素腔室 108 1,108 2,208,508(508 1至508 n):培養基 110 1:(第一)過濾腔室 110 2:(第二)過濾腔室 112 1,112 2,212,512(512 1至512 n):過濾器 114,214,532:細菌 116,216,534,536:代謝物 120,220,520(520 1至520 n),720:電漿子感測器 122 1:(第一)出口;出口通道 122 2:(第二)出口;出口通道 206,506(506 1至506 n):抗生素腔室 210,510(510 1至510 n):過濾腔室 213:凍乾混合物;第二凍乾混合物 218:毛細斷隙 222:出口 224:光學感測器 226:光源 230:通孔 250:第一層 252:第二層 254:第三層 256:基體 258:光學透明層 260:空氣 400,600,800:方法 402,404,406,408,410,412,414,416,418,602,604,606,608,610,612,802,804,806,808,810,812,814,816:區塊 504(504 1至504 n),509(509 1至509 n),514(514 1至514 n),516(516 1至516 n):閥 518(518 1至518 n),522(522 1至522 n):(出口)通道 530:出口 702,704,706:(微流體)通道 100, 200, 500: plasmonic sensors; (microfluidic) wafers 102, 201, 202, 501: inlets 104 (104 1 , 104 2 ), 204 (204 1 to 204 n ), 232,502 (502 1 to 502 n ): channel 106 1 : (th a) antibiotic chamber 106 2 : (second) antibiotic chamber 108 1 , 108 2 , 208 , 508 (508 1 to 508 n ): medium 110 1 : (first) filter chamber 110 2 : (second) filter chamber Chamber 112 1 , 112 2 , 212, 512 (512 1 to 512 n ): filter 114, 214, 532: bacteria 116, 216, 534, 536: metabolites 120, 220, 520 (520 1 to 520 n ), 720: plasmonic sensor 122 1 : (first) outlet ; outlet channel 122 2 : (second) outlet; outlet channel 206, 506 (506 1 to 506 n ): antibiotic chamber 210, 510 (510 1 to 510 n ): filtration chamber 213: lyophilized mixture; second lyophilized mixture 218 :毛細斷隙222:出口224:光學感測器226:光源230:通孔250:第一層252:第二層254:第三層256:基體258:光學透明層260:空氣400,600,800:方法402,404,406,408,410,412,414,416,418,602,604,606,608,610,612,802,804,806,808,810,812,814,816 : block 504 (504 1 to 504 n ), 509 (509 1 to 509 n ), 514 (514 1 to 514 n ), 516 (516 1 to 516 n ): valve 518 (518 1 to 518 n ), 522 ( 5221 to 522n ): (outlet) channel 530: outlet 702, 704, 706: (microfluidic) channel

圖1例示具本揭露內容之電漿子感測器之一範例微流體晶片的一區塊圖;FIG. 1 illustrates a block diagram of an example microfluidic chip with plasmonic sensors of the present disclosure;

圖2例示具本揭露內容之電漿子感測器之微流體晶片的另一範例之區塊圖的一俯視圖;2 illustrates a top view of a block diagram of another example of a microfluidic chip with plasmonic sensors of the present disclosure;

圖3例示本揭露內容之圖2中所例示之具電漿子感測器的範例微流體晶片的一截面圖;3 illustrates a cross-sectional view of the example microfluidic wafer with plasmonic sensors illustrated in FIG. 2 of the present disclosure;

圖4例示用本揭露內容之圖2中所例示之電漿子感測器執行抗生素易感性測試(AST)之一範例作業流程圖;FIG. 4 illustrates an example operational flow diagram of performing an antibiotic susceptibility test (AST) using the plasmonic sensor illustrated in FIG. 2 of the present disclosure;

圖5例示具本揭露內容之電漿子感測器之微流體晶片的另一範例之區塊圖的一俯視圖;5 illustrates a top view of a block diagram of another example of a microfluidic chip with a plasmonic sensor of the present disclosure;

圖6例示用具本揭露內容之圖5中所例示之電漿子感測器之微流體晶片執行AST之一範例作業流程圖;FIG. 6 illustrates a flow chart of an example operation of performing AST on a microfluidic wafer utilizing the plasmonic sensor illustrated in FIG. 5 of the present disclosure;

圖7例示微流體通道可如何被安排路徑於本揭露內容之電漿子感測器上方之範例的一俯視圖;以及7 illustrates a top view of an example of how microfluidic channels may be routed over the plasmonic sensors of the present disclosure; and

圖8例示用具本揭露內容之電漿子感測器之微流體晶片執行AST之方法的一範例流程圖。8 illustrates an example flow diagram of a method of performing AST with a microfluidic wafer incorporating the plasmonic sensor of the present disclosure.

100:電漿子感測器;(微流體)晶片 100: plasmonic sensor; (microfluidic) chip

102:入口 102: Entrance

1041,1042:通道 104 1 , 104 2 : channel

1061:(第一)抗生素腔室 106 1 : (first) antibiotic chamber

1062:(第二)抗生素腔室 106 2 : (Second) Antibiotic Chamber

1081,1082:培養基 108 1 , 108 2 : Medium

1101:(第一)過濾腔室 110 1 : (first) filter chamber

1102:(第二)過濾腔室 110 2 : (Second) Filtration Chamber

1121,1122:過濾器 112 1 , 112 2 : filter

114:細菌 114: Bacteria

116:代謝物 116: Metabolites

120:電漿子感測器 120: Plasmonic Sensor

1221:(第一)出口;出口通道 122 1 : (first) exit; exit passage

1222:(第二)出口;出口通道 122 2 : (second) exit; exit passage

Claims (15)

一種微流體晶片,其包含: 一第一通道,其包含一第一抗生素腔室及一第一過濾腔室,其中該第一抗生素腔室包括一第一培養基與一第一抗生素,其由一細菌懸浮液再水合,且該第一過濾腔室係用以過濾分開細菌與該細菌響應於和一緩衝溶液一起培育所釋放的第一代謝物; 一第二通道,其包含一第二抗生素腔室及一第二過濾腔室,其中該第二抗生素腔室包含一第二培養基與一第二抗生素,其由該細菌懸浮液再水合,且該第二過濾腔室係用以過濾分開細菌與該細菌響應於和該緩衝溶液一起培育所釋放的第二代謝物;以及 一電漿子感測器,其中該第一通道及該第二通道通過該電漿子感測器上方,其中該電漿子感測器係用以量測該第一代謝物及該第二代謝物之量。 A microfluidic wafer comprising: a first channel including a first antibiotic chamber and a first filtration chamber, wherein the first antibiotic chamber includes a first culture medium and a first antibiotic rehydrated by a bacterial suspension, and the a first filtration chamber for filtration to separate bacteria from a first metabolite released by the bacteria in response to incubation with a buffer solution; a second channel comprising a second antibiotic chamber and a second filtration chamber, wherein the second antibiotic chamber comprises a second culture medium and a second antibiotic rehydrated from the bacterial suspension, and the a second filtration chamber for filtration to separate bacteria from a second metabolite released by the bacteria in response to incubation with the buffer solution; and a plasmonic sensor, wherein the first channel and the second channel pass over the plasmonic sensor, wherein the plasmonic sensor is used to measure the first metabolite and the second amount of metabolites. 如請求項1之微流體晶片,其進一步包含: 一第一入口,其用以提供該細菌懸浮液;以及 一第二入口,其用以提供該緩衝溶液。 The microfluidic chip of claim 1, further comprising: a first inlet for providing the bacterial suspension; and A second inlet for providing the buffer solution. 如請求項1之微流體晶片,其中該第一過濾腔室及該第二過濾腔室各包含一過濾器。The microfluidic wafer of claim 1, wherein the first filter chamber and the second filter chamber each comprise a filter. 如請求項1之微流體晶片,其進一步包含: 一多層流體晶片,其包含: 一第一層,其包括一通道以提供一流體,用以控制該第一通道及該第二通道中之該細菌懸浮液的流動; 一第二層,其包括該第一通道、該第一抗生素腔室、該第一過濾腔室、該第二通道、該第二抗生素腔室,及該第二過濾腔室; 一過濾器層,其耦接至該第一過濾腔室及該第二過濾腔室之一開口;以及 一第三層,其包括該電漿子感測器及在該電漿子感測器上方的一光學透明窗。 The microfluidic chip of claim 1, further comprising: A multilayer fluid wafer comprising: a first layer comprising a channel to provide a fluid for controlling the flow of the bacterial suspension in the first channel and the second channel; A second layer comprising the first channel, the first antibiotic chamber, the first filter chamber, the second channel, the second antibiotic chamber, and the second filter chamber; a filter layer coupled to an opening of the first filter chamber and the second filter chamber; and A third layer including the plasmonic sensor and an optically transparent window over the plasmonic sensor. 如請求項4之微流體晶片,其進一步包含: 位於該第一層與該第二層之間的一毛細斷隙膜層。 The microfluidic wafer of claim 4, further comprising: A capillary gap film layer between the first layer and the second layer. 如請求項1之微流體晶片,其中該第一通道及該第二通道係於一共同平面上平行排列。The microfluidic wafer of claim 1, wherein the first channel and the second channel are arranged in parallel on a common plane. 如請求項6之微流體晶片,其中該第一過濾腔室及該第二過濾腔室各包含與一第一出口通道耦接的一第一閥以及與一第二出口通道耦接的一第二閥,其包括該電漿子感測器。The microfluidic wafer of claim 6, wherein the first filter chamber and the second filter chamber each include a first valve coupled with a first outlet channel and a first valve coupled with a second outlet channel Two valves, which include the plasmonic sensor. 如請求項1之微流體晶片,其中該第一抗生素腔室與該第一過濾腔室包含一單個腔室。The microfluidic wafer of claim 1, wherein the first antibiotic chamber and the first filtration chamber comprise a single chamber. 如請求項1之微流體晶片,其中該第一通道及該第二通道係以一蜿蜒形狀布置以在該電漿子感測器之不同位置處穿過該電漿子感測器上方多次。The microfluidic wafer of claim 1, wherein the first channel and the second channel are arranged in a serpentine shape to pass through the plasmonic sensor at different locations above the plasmonic sensor Second-rate. 一種微流體晶片,其包含: 一入口,用以提供一細菌懸浮液及一緩衝溶液; 複數個通道,其中該等複數個通道中之每一者包括一各別培養基腔室及一各別過濾腔室,其中該等複數個通道包括在該各別培養基腔室中之一不同抗生素與一培養基,其中於該等培養基腔室中之該不同抗生素與該培養基係被該細菌懸浮液再水合; 一流動控制器,用以使該培養基、該不同抗生素及該細菌懸浮液的一混合物移動至該各別過濾腔室,其中該緩衝溶液係用以自該混合物移除該培養基,以致使細菌釋放代謝物;且 一電漿子感測器,用以量測在該等複數個通道中的代謝物之量,其中該等代謝物係經由各別過濾腔室中之一過濾器從該混合物濾出。 A microfluidic wafer comprising: an inlet for providing a bacterial suspension and a buffer solution; A plurality of channels, wherein each of the plurality of channels includes a respective medium chamber and a respective filtration chamber, wherein the plurality of channels include a different antibiotic and a respective medium chamber in the respective medium chamber. a medium in which the different antibiotics and the medium in the medium chambers are rehydrated by the bacterial suspension; a flow controller to move a mixture of the culture medium, the different antibiotics and the bacterial suspension to the respective filtration chambers, wherein the buffer solution is used to remove the culture medium from the mixture so that bacteria are released metabolites; and A plasmonic sensor to measure the amount of metabolites in the plurality of channels, wherein the metabolites are filtered from the mixture through a filter in the respective filter chamber. 如請求項10之微流體晶片,其中該等複數個通道中之一者包括一對照組樣品。The microfluidic chip of claim 10, wherein one of the plurality of channels includes a control sample. 如請求項10之微流體晶片,其中該電漿子感測器包含一表面增強拉曼光譜法(SERS)感測器。The microfluidic wafer of claim 10, wherein the plasmonic sensor comprises a surface enhanced Raman spectroscopy (SERS) sensor. 一種方法,其包含: 用一細菌懸浮液水合在一第一抗生素腔室中的一第一培養基與一第一抗生素,以形成一第一混合物供歷經一培育期間; 用該細菌懸浮液水合在一第二抗生素腔室中的一第二培養基與一第二抗生素,以形成一第二混合物供歷經該培育期間; 拘限該第一混合物於一第一過濾腔室中且該第二混合物於一第二過濾腔室中; 用一緩衝溶液洗滌該第一混合物及該第二混合物,以誘發細菌之一逆境反應,以釋放一第一代謝物於該第二過濾腔室中以及一第二代謝物於該第二過濾腔室中; 轉移該第一代謝物及該第二代謝物於一電漿子感測器上方以進行一拉曼量測;以及 基於該拉曼量測而產生對於該第一抗生素或該第二抗生素之一建議。 A method that includes: hydrating a first culture medium and a first antibiotic in a first antibiotic chamber with a bacterial suspension to form a first mixture for an incubation period; hydrating a second culture medium and a second antibiotic in a second antibiotic chamber with the bacterial suspension to form a second mixture for the incubation period; Confining the first mixture in a first filter chamber and the second mixture in a second filter chamber; Washing the first mixture and the second mixture with a buffer solution to induce an adverse reaction of bacteria to release a first metabolite in the second filter chamber and a second metabolite in the second filter chamber in the room; transferring the first metabolite and the second metabolite over a plasmonic sensor for a Raman measurement; and One of the recommendations for the first antibiotic or the second antibiotic is generated based on the Raman measurements. 如請求項13之方法,其進一步包含: 混合一促進劑與在該第一過濾腔室中之該第一混合物以及在該第二過濾腔室中之該第二混合物。 The method of claim 13, further comprising: Mixing an accelerator with the first mixture in the first filter chamber and the second mixture in the second filter chamber. 如請求項14之方法,其中該促進劑包含一磷酸核糖轉移酶或核苷單磷酸。The method of claim 14, wherein the promoter comprises a monophosphoribosyltransferase or a nucleoside monophosphate.
TW110121239A 2020-07-28 2021-06-10 Microfluidic chips with plasmonic sensors TW202219276A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/US2020/043828 WO2022025864A1 (en) 2020-07-28 2020-07-28 Microfluidic chips with plasmonic sensors
WOPCT/US20/43828 2020-07-28

Publications (1)

Publication Number Publication Date
TW202219276A true TW202219276A (en) 2022-05-16

Family

ID=80036004

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110121239A TW202219276A (en) 2020-07-28 2021-06-10 Microfluidic chips with plasmonic sensors

Country Status (2)

Country Link
TW (1) TW202219276A (en)
WO (1) WO2022025864A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008124706A2 (en) * 2007-04-06 2008-10-16 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Devices and methods for target molecule characterization
WO2011106057A2 (en) * 2009-12-04 2011-09-01 Trustees Of Boston University Nanostructure biosensors and systems and methods of use thereof
AU2017241591A1 (en) * 2016-03-28 2018-10-18 The Charles Stark Draper Laboratory, Inc. Bacteria identification and antibiotic susceptibility profiling device
US11648563B2 (en) * 2018-12-21 2023-05-16 Kryptos Biotechnologies, Inc. Method and system for heating and temperature measurement using patterned thin films

Also Published As

Publication number Publication date
WO2022025864A1 (en) 2022-02-03

Similar Documents

Publication Publication Date Title
JP5006494B2 (en) Device and method for measuring multiple analytes
CN105642378B (en) Multiple reaction chambers in testing cassete
Choi et al. A 96-well microplate incorporating a replica molded microfluidic network integrated with photonic crystal biosensors for high throughput kinetic biomolecular interaction analysis
CA2848559C (en) Method for inspecting susceptibility of bacteria or fungi to antimicrobial drug and system for use in the same
US9291503B2 (en) Flow type single-particle spectrometer
JP5926810B2 (en) Built-in optical sensor
US20120231533A1 (en) Device and method for the study of cell and tissue function
Kim et al. Recent developments of chip-based phenotypic antibiotic susceptibility testing
Huang et al. Bacteria encapsulation and rapid antibiotic susceptibility test using a microfluidic microwell device integrating surface-enhanced Raman scattering
US20190374948A1 (en) Antimicrobial susceptibility test kits
Hassan et al. Microfluidics as an emerging platform for tackling antimicrobial resistance (AMR): a review
Lin et al. An antibiotic concentration gradient microfluidic device integrating surface-enhanced Raman spectroscopy for multiplex antimicrobial susceptibility testing
Lionaki et al. High-throughput and longitudinal analysis of aging and senescent decline in Caenorhabditis elegans
TW202219276A (en) Microfluidic chips with plasmonic sensors
TWI513508B (en) Apparatus for microfluid detection
ATE492811T1 (en) SYSTEM FOR CELL-BASED SERIES EXAMINATION WITH HIGH PERFORMANCE
Schmieder et al. Automated universal chip platform for fluorescence based cellular assays
US20240050950A1 (en) Gradient-based microfluidic circuit, device, and method for performing an assay
CN113267460B (en) Urine biochemical detection system for disc type micro-fluidic chip
Klein et al. Microfluidic systems for antimicrobial susceptibility testing
US20070253460A1 (en) Inspection Chip Equipped with a Light Amplifier Element
CN111157728A (en) Optical waveguide microfluid detection system
Mohamed et al. UV-VIs Spectrophotometry Study of Escherichia Coli Bacteria and Microfluidic Channel Chip Fabrication For Optical Biosensing Application
US20230321649A1 (en) Linear microfluidic array device and casette for temperature gradient microfluidics
CN111229341B (en) Method for manufacturing grating waveguide multi-micro-channel chip