TW202219246A - Semiconductor nanomaterial with high stability - Google Patents

Semiconductor nanomaterial with high stability Download PDF

Info

Publication number
TW202219246A
TW202219246A TW109138972A TW109138972A TW202219246A TW 202219246 A TW202219246 A TW 202219246A TW 109138972 A TW109138972 A TW 109138972A TW 109138972 A TW109138972 A TW 109138972A TW 202219246 A TW202219246 A TW 202219246A
Authority
TW
Taiwan
Prior art keywords
shell
quantum dot
core
quantum
quantum dots
Prior art date
Application number
TW109138972A
Other languages
Chinese (zh)
Other versions
TWI811582B (en
Inventor
曾煥偉
曾昱睿
周君瑋
廖佳君
蔡佳怡
黃亭瑜
Original Assignee
優美特創新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 優美特創新材料股份有限公司 filed Critical 優美特創新材料股份有限公司
Priority to TW109138972A priority Critical patent/TWI811582B/en
Priority to JP2021175325A priority patent/JP7281522B2/en
Publication of TW202219246A publication Critical patent/TW202219246A/en
Application granted granted Critical
Publication of TWI811582B publication Critical patent/TWI811582B/en

Links

Images

Landscapes

  • Luminescent Compositions (AREA)
  • Optical Filters (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

Quantum dot is a semiconductor nanomaterial. The quantum dot includes a core constituted of InP, a first shell constituted of ZnSe, a second shell constituted of ZnS, and a gradient alloy intermediate layer. The core is wrapped by the first shell. The first shell is wrapped by the second shell, and the first and second shells have different materials. The gradient alloy intermediate layer is between the core and the first shell. The gradient layer includes an alloy constituted of In, P, Zn and Se. A content of the In and P gradually decreases from the core to the first shell. A content of the Zn and Se gradually increases from the core to the first shell. A particle size of the quantum dot is equal to or more than 11 nm. The quantum dot is capable of emitting light upon excitation with a photoluminescence quantum yield equal to or more than 50%.

Description

高穩定性半導體奈米材料Highly stable semiconductor nanomaterials

本發明是有關於一種半導體奈米材料,且特別是有關於一種高穩定性的半導體奈米材料。The present invention relates to a semiconductor nanomaterial, and in particular to a high stability semiconductor nanomaterial.

半導體奈米粒子,也被稱為量子點(quantum dots,QDs),是一種具有奈米尺寸(通常小於100奈米)與晶體結構的半導體材料,且其可包括數百至數千個原子。由於量子點非常小,所以其比表面積大,且具有量子侷限效應(quantum confinement effects)。因此,基於量子點的尺寸,量子點具有獨特的物理化學特性,不同於與其相對應的半導體塊材的固有特性。Semiconductor nanoparticles, also known as quantum dots (QDs), are semiconductor materials with nanometer size (usually less than 100 nanometers) and crystalline structure, and can include hundreds to thousands of atoms. Since quantum dots are very small, they have a large specific surface area and have quantum confinement effects. Thus, based on their size, quantum dots have unique physicochemical properties that differ from the intrinsic properties of their corresponding bulk semiconductor materials.

由於量子點的發光半高寬較窄、顏色較純,且光電特性可以藉由調整其核的尺寸來控制,所以量子點仍然是應用於例如顯示裝置的積極研究的對象。然而,當量子點應用在顯示裝置中時,還需要增加穩定性、量子產率、使用壽命以及其他相關性質。Quantum dots are still the subject of active research for applications such as display devices due to their narrow luminescence half-widths, pure colors, and optoelectronic properties that can be controlled by adjusting the size of their cores. However, when quantum dots are used in display devices, there is also a need to increase stability, quantum yield, lifetime, and other related properties.

目前,量子點應用上的最大挑戰是長期穩定性。強光、高溫、濕氣、揮發性物質以及氧化劑等外部因素會導致量子點的發光強度產生不可逆的衰減。增加量子點尺寸(主要是殼的厚度)可以增加穩定性,但是這需要在量子點合成之後再進行額外的多道反應步驟以形成額外的外殼,或者是需要延長量子點的合成反應時間。這二者往往導致更高的成本與更低的量子產率(quantum yield)。Currently, the biggest challenge for quantum dot applications is long-term stability. External factors such as strong light, high temperature, moisture, volatile substances and oxidants can cause irreversible attenuation of the luminous intensity of quantum dots. Increasing the quantum dot size (mainly the thickness of the shell) can increase the stability, but this requires additional multi-step reaction steps to form additional shells after the quantum dot synthesis, or a prolonged reaction time for the quantum dot synthesis. Both of these tend to lead to higher costs and lower quantum yields.

本發明提供一種具有兩層外殼包覆核的量子點,以提供更好的保護性並提高量子點的穩定性,進而有效地避免或降低外部因素對量子點的影響。The invention provides a quantum dot with two layers of shells covering the core, so as to provide better protection and improve the stability of the quantum dot, thereby effectively avoiding or reducing the influence of external factors on the quantum dot.

本發明提供一種量子點包括:由InP所構成的核、由ZnSe所構成的第一殼、第二殼以及梯度合金漸進層。第一殼包覆核的表面。第二殼包覆第一殼的表面,且與第一殼具有不同的材料。梯度合金漸進層形成在核與第一殼之間。梯度合金漸進層包括由In、P、Zn以及Se所構成的合金。In與P的含量沿著核到第一殼的方向逐漸減少。Zn與Se的含量沿著核到第一殼的方向逐漸增加。量子點的粒徑大於或等於11奈米。量子點能夠在被激發時發光,並具有大於或等於50%的光致發光量子產率(quantum yield)。The invention provides a quantum dot comprising: a core composed of InP, a first shell composed of ZnSe, a second shell and a gradient alloy progressive layer. The first shell coats the surface of the core. The second shell covers the surface of the first shell and has a different material from the first shell. A graded alloy progressive layer is formed between the core and the first shell. The graded alloy progressive layer includes an alloy composed of In, P, Zn and Se. The content of In and P gradually decreases along the direction from the core to the first shell. The contents of Zn and Se increase gradually along the direction from the core to the first shell. The particle size of the quantum dots is greater than or equal to 11 nanometers. Quantum dots are capable of emitting light when excited and have a photoluminescence quantum yield greater than or equal to 50%.

在本發明的一實施例中,上述的第二殼是由ZnS所構成。In an embodiment of the present invention, the above-mentioned second shell is composed of ZnS.

在本發明的一實施例中,上述的量子點的粒徑為11奈米至15奈米。In an embodiment of the present invention, the particle size of the quantum dots is 11 nm to 15 nm.

在本發明的一實施例中,上述的量子點的粒徑大於等於15奈米。In an embodiment of the present invention, the particle size of the quantum dots is greater than or equal to 15 nanometers.

在本發明的一實施例中,上述的量子點能夠在被激發時發光,並具有60%至90%的光致發光量子產率。In an embodiment of the present invention, the above quantum dots can emit light when excited, and have a photoluminescence quantum yield of 60% to 90%.

在本發明的一實施例中,上述的量子點能夠在被激發時發光,並具有大於或等於90%的光致發光量子產率。In an embodiment of the present invention, the above quantum dots can emit light when excited, and have a photoluminescence quantum yield greater than or equal to 90%.

在本發明的一實施例中,上述的量子點在烘烤前與烘烤後的光致發光量子產率的下降幅度小於或等於5%。In an embodiment of the present invention, the reduction range of the photoluminescence quantum yield of the quantum dots before and after baking is less than or equal to 5%.

在本發明的一實施例中,上述的量子點的核能夠吸收固定波長範圍的光源,且發出至少一種不同波長範圍的光。In an embodiment of the present invention, the cores of the quantum dots can absorb light sources in a fixed wavelength range and emit at least one light in different wavelength ranges.

基於上述,本發明提供了具有兩層外殼包覆核的量子點,以使量子點具有直徑(或者粒徑)等於或大於11 nm。在此情況下,本發明的量子點可具有更好的保護性,以提高量子點的長期穩定性,進而有效地避免或降低外部因素(例如強光、高溫、濕氣、揮發性物質以及氧化劑等)對量子點的影響。於此同時,本發明的量子點還可保持光致發光量子產率為大於或等於50%。因此,本發明的量子點可適用於具有強光、高溫等的顯示裝置(例如發光二極體(LED)裝置或投影機色輪)。Based on the above, the present invention provides quantum dots with two outer shells covering the core, so that the quantum dots have a diameter (or particle size) equal to or greater than 11 nm. In this case, the quantum dots of the present invention can have better protection, so as to improve the long-term stability of the quantum dots, thereby effectively avoiding or reducing external factors (such as strong light, high temperature, moisture, volatile substances and oxidants) etc.) on quantum dots. At the same time, the quantum dots of the present invention can also maintain a photoluminescence quantum yield greater than or equal to 50%. Therefore, the quantum dots of the present invention may be suitable for display devices (eg, light emitting diode (LED) devices or projector color wheels) with strong light, high temperature, and the like.

在本說明書中,由「一數值至另一數值」表示的範圍,是一種避免在說明書中一一列舉該範圍中的所有數值的概要表示方式。因此,記載了某一特定數值範圍,等同於揭露了該數值範圍內的任意數值以及由該數值範圍內的任意數值界定出的較小數值範圍,就如同在說明書中明文寫出該任意數值和該較小數值範圍一樣。例如,記載「粒徑為11 nm至15 nm」的範圍,就等同於揭露了「粒徑為12 nm至13 nm」的範圍,無論說明書中是否列舉其他數值。In this specification, a range represented by "one numerical value to another numerical value" is a general expression that avoids enumerating all the numerical values in the range in the specification. Therefore, reciting a specific numerical range is equivalent to disclosing any numerical value within that numerical range and a smaller numerical range bounded by any numerical value within the numerical range, as if the arbitrary numerical value and the numerical value were expressly written in the specification. The smaller value range is the same. For example, describing the range of "the particle size is 11 nm to 15 nm" is equivalent to disclosing the range of "the particle size is 12 nm to 13 nm", regardless of whether other numerical values are listed in the specification.

圖1是本發明一實施例的量子點的示意圖。FIG. 1 is a schematic diagram of a quantum dot according to an embodiment of the present invention.

請參照圖1,量子點100包括由磷化銦(InP)所構成的核102、第一殼106、第二殼108以及梯度合金漸進層104。第一殼106包覆核102的表面。第二殼108包覆第一殼106的表面。在本實施例中,第一殼106完全包覆核102的表面,且第二殼108完全包覆第一殼106的表面。第一殼106與第二殼108可具有不同的材料。舉例來說,第一殼106是由硒化鋅(ZnSe)所構成,而第二殼108是由硫化鋅(ZnS)所構成。但本發明不以此為限,保護核102的其他材料亦可用以當作第一殼106與第二殼108的材料。為了提升量子點的穩定性,第二殼108 會選用對核102保護效果較好的材料(例如,硫化鋅),但保護效果較好的材料與核102之間的晶格不匹配度(lattice mismatch)較大,兩種材料之間不容易形成良好的鏈結(bonding)。因此,第一殼106選用保護效果次之,但與核102之間的晶格不匹配度較低的材料(例如,硒化鋅)。Referring to FIG. 1 , the quantum dot 100 includes a core 102 composed of indium phosphide (InP), a first shell 106 , a second shell 108 , and a gradient alloy progressive layer 104 . The first shell 106 coats the surface of the core 102 . The second shell 108 covers the surface of the first shell 106 . In this embodiment, the first shell 106 completely covers the surface of the core 102 , and the second shell 108 completely covers the surface of the first shell 106 . The first shell 106 and the second shell 108 may be of different materials. For example, the first shell 106 is composed of zinc selenide (ZnSe), and the second shell 108 is composed of zinc sulfide (ZnS). However, the present invention is not limited to this, and other materials for protecting the core 102 can also be used as materials for the first shell 106 and the second shell 108 . In order to improve the stability of the quantum dots, the second shell 108 will use a material with better protection effect on the core 102 (eg, zinc sulfide), but the lattice mismatch between the material with better protection effect and the core 102 (lattice mismatch) is larger, and it is not easy to form a good bond between the two materials. Therefore, the first shell 106 is selected from a material (eg, zinc selenide) that has a lower protection effect but has a lower lattice mismatch with the core 102 .

如圖1所示,梯度合金漸進層104可形成在核102與第一殼106之間。值得注意的是,梯度合金漸進層104可進一步降低核102與第一殼106之間的晶格不匹配度。也就是說,梯度合金漸進層104可優化核102與第一殼106之間的晶格排列,以促進第一殼106的生長,進而增加量子點100的粒徑100s。另一方面,梯度合金漸進層104還可減少缺陷並提高量子產率。因此,相較於沒有梯度合金漸進層的量子點,本發明實施例不僅可有效增加殼層106的厚度,提高量子點穩定性,還可維持量子點100的量子產率。在一實施例中,梯度合金漸進層104包括由In、P、Zn以及Se所構成的合金。In與P的含量沿著核102到第一殼106的方向(即核心往外的方向)逐漸減少,而Zn與Se的含量沿著核102到第一殼106的方向逐漸增加。As shown in FIG. 1 , a graded alloy progressive layer 104 may be formed between the core 102 and the first shell 106 . Notably, the graded alloy progressive layer 104 can further reduce the lattice mismatch between the core 102 and the first shell 106 . That is, the gradient alloy progressive layer 104 can optimize the lattice arrangement between the core 102 and the first shell 106 to promote the growth of the first shell 106 , thereby increasing the particle size 100s of the quantum dots 100 . On the other hand, the graded alloy progressive layer 104 can also reduce defects and improve quantum yield. Therefore, compared with the quantum dots without the gradient alloy progressive layer, the embodiment of the present invention can not only effectively increase the thickness of the shell layer 106 , improve the stability of the quantum dots, but also maintain the quantum yield of the quantum dots 100 . In one embodiment, the graded alloy progressive layer 104 includes an alloy composed of In, P, Zn, and Se. The contents of In and P gradually decrease along the direction from the core 102 to the first shell 106 (ie, the direction outward from the core), while the contents of Zn and Se gradually increase along the direction from the core 102 to the first shell 106 .

在一些實施例中,量子點100的粒徑100s大於或等於11奈米。在替代實施例中,量子點100的粒徑100s為11奈米至15奈米。在其他實施例中,量子點100的粒徑100s大於或等於15奈米,例如16奈米、17奈米、18奈米、19奈米、20奈米等。本文中,所謂的「粒徑」是指量子點的直徑(diameter)。當量子點並非球形或是類球形時,此直徑是指垂直於量子點的第一軸的橫截面的長度,而此第一軸並不一定是量子點的最長軸。舉例來說,在橫截面不是圓形的情況下,直徑為該橫截面的長軸和短軸的平均值。對於球形結構而言,通過球體的中心從一側向另一側測量直徑。In some embodiments, the particle size 100s of the quantum dots 100 is greater than or equal to 11 nanometers. In an alternative embodiment, the particle size 100s of the quantum dots 100 is 11 nm to 15 nm. In other embodiments, the particle size 100s of the quantum dots 100 is greater than or equal to 15 nanometers, such as 16 nanometers, 17 nanometers, 18 nanometers, 19 nanometers, 20 nanometers, and the like. Herein, the so-called "particle size" refers to the diameter of the quantum dot. When the quantum dot is not spherical or quasi-spherical, the diameter refers to the length of the cross section perpendicular to the first axis of the quantum dot, and the first axis is not necessarily the longest axis of the quantum dot. For example, where the cross-section is not circular, the diameter is the average of the major and minor axes of the cross-section. For spherical structures, the diameter is measured from side to side through the center of the sphere.

另一方面,量子點100的核102可用於吸收和放光。在一些實施例中,量子點100的核102能夠吸收固定波長範圍的光源的光並發射至少一個不同波長範圍的光。舉例來說,核102能夠吸收峰值波長小於400 nm的紫外(UV)光,並根據核102的粒徑而發射出不同顏色(例如,紅光、綠光或藍光)的可見光。再舉例來說,核102能夠吸收藍光,並根據核102的粒徑而發射出不同顏色(例如,紅光或綠光)的可見光。在一些實施例中,量子點100能夠在被激發時發光,並具有大於或等於50%的光致發光量子產率。在替代實施例中,量子點100可具有60%至90%的光致發光量子產率。在其他實施例中,量子點100可具有大於或等於90%的光致發光量子產率,例如91%、92%、93%、94%、95%、96%、97%、98%、99%的光致發光量子產率。On the other hand, the core 102 of the quantum dot 100 can be used to absorb and emit light. In some embodiments, the cores 102 of the quantum dots 100 are capable of absorbing light from a fixed wavelength range of light sources and emitting at least one different wavelength range of light. For example, the core 102 can absorb ultraviolet (UV) light with a peak wavelength less than 400 nm and emit visible light of different colors (eg, red, green, or blue) depending on the particle size of the core 102 . For another example, the core 102 can absorb blue light and emit visible light of different colors (eg, red light or green light) according to the particle size of the core 102 . In some embodiments, the quantum dots 100 are capable of emitting light when excited with a photoluminescence quantum yield greater than or equal to 50%. In alternative embodiments, the quantum dots 100 may have a photoluminescence quantum yield of 60% to 90%. In other embodiments, the quantum dots 100 may have a photoluminescence quantum yield greater than or equal to 90%, eg, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% % photoluminescence quantum yield.

值得注意的是,本發明的量子點100能夠在被激發時發光,且其具有等於或大於50%的光致發光量子產率,這意味著量子點100的核102具有良好的晶體品質且缺陷很少。換言之,本發明的量子點100能夠提升長期穩定性並保持高量子產率。因此,本發明的量子點100可適用於具有強光、高溫等的顯示裝置(例如發光二極體(LED)裝置或投影機色輪)。It is worth noting that the quantum dot 100 of the present invention can emit light when excited, and it has a photoluminescence quantum yield equal to or greater than 50%, which means that the core 102 of the quantum dot 100 has good crystal quality and defects rare. In other words, the quantum dots 100 of the present invention can improve long-term stability and maintain high quantum yield. Therefore, the quantum dots 100 of the present invention may be suitable for display devices (eg, light emitting diode (LED) devices or projector color wheels) with strong light, high temperature, and the like.

為了證明本發明的可實現性,以下列舉實驗例來對本發明之量子點做更進一步地說明。雖然描述了以下實驗,但是在不逾越本發明範疇的情況下,可適當改變所用材料、其量及比率、處理細節以及處理流程等等。因此,不應根據下文所述的實驗對本發明作出限制性的解釋。In order to prove the practicability of the present invention, the following experimental examples are given to further illustrate the quantum dots of the present invention. Although the following experiments are described, the materials used, their amounts and ratios, processing details, and processing flow, etc. may be appropriately changed without departing from the scope of the present invention. Therefore, the present invention should not be construed restrictively based on the experiments described below.

實驗例Experimental example 11

將0.575 mmol的乙酸銦(Indium acetate)、0.284 mmol的乙酸鋅(Zinc acetate)、2.29 mmol的棕櫚酸(Palmitic acid)以及125 mmol的1-十八烯(1-Octadecene)於真空環境140 oC加熱2小時,之後將反應系統轉為N 2環境並將反應系統降至室溫。 0.575 mmol of indium acetate, 0.284 mmol of zinc acetate (Zinc acetate), 2.29 mmol of palmitic acid (Palmitic acid) and 125 mmol of 1-octadecene (1-Octadecene) in a vacuum environment at 140 o C After heating for 2 hours, the reaction system was transferred to a N2 environment and the reaction system was brought to room temperature.

接著,於室溫下加入0.39 mmol的三(三甲矽烷基)膦(Tris(trimethylsilyl)phosphine)、0.39 mmol的三辛基膦(Trioctylphosphine)後升溫至270 oC並以此溫度維持2分鐘,以形成反應溶液。 Next, 0.39 mmol of tris(trimethylsilyl)phosphine and 0.39 mmol of trioctylphosphine were added at room temperature, and the temperature was raised to 270 ° C and maintained at this temperature for 2 minutes. A reaction solution is formed.

然後,將上述的反應溶液的溫度降至150 oC後加入溶於4.05 mmol三辛基膦的硒(Selenium,2.4 mmol)以及溶於88 mmol的1-十八烯的硬脂酸鋅(Zinc stearate,25.27 mmol),之後再升溫至320 oC,並維持30分鐘。 Then, the temperature of the above reaction solution was lowered to 150 o C and then selenium (Selenium, 2.4 mmol) dissolved in 4.05 mmol trioctylphosphine and zinc stearate (Zinc stearate (Zinc) dissolved in 88 mmol of 1-octadecene were added. stearate, 25.27 mmol), then warmed to 320 o C and held for 30 minutes.

在溫度為320 oC的情況下,再加入溶於4.05 mmol的三辛基膦的硒(2.4 mmol)、溶於88 mmol的1-十八烯的硬脂酸鋅(25.27 mmol),並維持30分鐘。 Additional selenium (2.4 mmol) in 4.05 mmol of trioctylphosphine and 88 mmol of zinc stearate (25.27 mmol) in 1-octadecene were added at 320 o C and maintained 30 minutes.

接著,在溫度為320 oC的情況下,加入溶於16.2mmol的三辛基膦的硫(Sulfur,16 mmol),並維持10分鐘。 Next, sulfur dissolved in 16.2 mmol of trioctylphosphine (Sulfur, 16 mmol) was added at a temperature of 320 ° C and maintained for 10 minutes.

在溫度為320 oC的情況下,加入溶於22 mmol的1-十八烯的硬脂酸鋅(6.32 mmol),並維持10分鐘。 Zinc stearate (6.32 mmol) dissolved in 22 mmol of 1-octadecene was added at 320 ° C and maintained for 10 minutes.

在溫度為320 oC的情況下,加入溶於16.166 mmol的三辛基膦的硫(16 mmol),並維持10分鐘。 Sulfur (16 mmol) dissolved in 16.166 mmol of trioctylphosphine was added at 320 ° C and maintained for 10 min.

在溫度為320 oC的情況下,加入溶於19.33 mmol的1-十八烯的硬脂酸鋅(5.55 mmol),並維持10分鐘。 Zinc stearate (5.55 mmol) dissolved in 19.33 mmol of 1-octadecene was added at 320 ° C and maintained for 10 minutes.

在溫度為320 oC的情況下,加入溶於96.96 mmol的三辛基膦的硫(96 mmol),並維持10分鐘。 Sulfur (96 mmol) dissolved in 96.96 mmol of trioctylphosphine was added at 320 ° C and maintained for 10 min.

在溫度為320 oC的情況下,加入溶於116 mmol的1-十八烯的硬脂酸鋅(33.32 mmol),並維持30分鐘 Add zinc stearate (33.32 mmol) dissolved in 116 mmol of 1-octadecene at 320 o C and hold for 30 min

將上述的反應溶液降溫至200 oC後加入20.75 mmol的1-十二烷硫醇(1-Dodecanethiol),並維持25分鐘。 The above reaction solution was cooled to 200 o C, 20.75 mmol of 1-dodecanethiol (1-Dodecanethiol) was added and maintained for 25 minutes.

降溫將反應中止後,將乙醇加入反應溶液中使產物析出,離心收集沉澱後回溶於甲苯。After cooling down to stop the reaction, ethanol was added to the reaction solution to precipitate the product, and the precipitate was collected by centrifugation and then dissolved in toluene.

比較例Comparative example 11

將0.575 mmol的乙酸銦(Indium acetate)、0.359 mmol的乙酸鋅(Zinc acetate)、1.725 mmol的棕櫚酸(Palmitic acid)以及30 mmol的1-十八烯(1-Octadecene)於真空環境120 oC加熱2小時,之後將反應系統轉為N 2環境並將溫度維持在280 oC。 0.575 mmol of indium acetate, 0.359 mmol of zinc acetate (Zinc acetate), 1.725 mmol of palmitic acid (Palmitic acid) and 30 mmol of 1-octadecene (1-Octadecene) in a vacuum environment at 120 o C After heating for 2 hours, the reaction system was transferred to a N2 environment and the temperature was maintained at 280 ° C.

接著,於280 oC下加入0.43 mmol的三(三甲矽烷基)膦(Tris(trimethylsilyl)phosphine)、0.43 mmol的三辛基膦(Trioctylphosphine)並以此溫度維持2分鐘,以形成反應溶液。 Next, 0.43 mmol of tris(trimethylsilyl)phosphine and 0.43 mmol of trioctylphosphine were added at 280 ° C and maintained at this temperature for 2 minutes to form a reaction solution.

然後,將上述的反應溶液的溫度降至180 oC後加入溶於4.05 mmol三辛基膦的硒(Selenium,0.115 mmol)、溶於30 mmol的1-十八烯的乙酸鋅(Zinc acetate,5.175 mmol)以及10.35 mmol的油酸(oleic acid),並將反應溫度提高至280 oC。 Then, the temperature of the above-mentioned reaction solution was lowered to 180 o C and then selenium (Selenium, 0.115 mmol) dissolved in 4.05 mmol trioctylphosphine and zinc acetate (Zinc acetate, 0.115 mmol) dissolved in 30 mmol 1-octadecene were added. 5.175 mmol) and 10.35 mmol of oleic acid, and raise the reaction temperature to 280 o C.

接著,在溫度為280 oC的情況下,加入溶於0.029 mmol的三辛基膦的硫(Sulfur,0.029 mmol)後將溫度提高至300 oC,並維持30分鐘。 Next, at a temperature of 280 ° C, sulfur dissolved in 0.029 mmol of trioctylphosphine (Sulfur, 0.029 mmol) was added and the temperature was increased to 300 ° C and maintained for 30 minutes.

在溫度為300 oC的情況下,加入溶於0.115 mmol的三辛基膦的硫(Sulfur,0.115 mmol),並維持30分鐘。 Sulfur in 0.115 mmol of trioctylphosphine (Sulfur, 0.115 mmol) was added at 300 ° C and maintained for 30 min.

在溫度為300 oC的情況下,加入溶於0.23 mmol的三辛基膦的硫(Sulfur,0.23 mmol),並維持30分鐘。 Sulfur dissolved in 0.23 mmol of trioctylphosphine (Sulfur, 0.23 mmol) was added at a temperature of 300 ° C and maintained for 30 min.

在溫度為300 oC的情況下,加入溶於2.30 mmol的三辛基膦的硫(Sulfur,2.30 mmol),並維持30分鐘。 Sulfur in 2.30 mmol of trioctylphosphine (Sulfur, 2.30 mmol) was added at 300 ° C and maintained for 30 min.

降溫將反應中止後,將乙醇加入反應溶液中使產物析出,離心收集沉澱後回溶於甲苯。After cooling down to stop the reaction, ethanol was added to the reaction solution to precipitate the product, and the precipitate was collected by centrifugation and then dissolved in toluene.

粒徑比較Particle Size Comparison

圖2與圖3分別是實驗例1與比較例1的量子點的TEM圖像。由圖2與圖3可知,實驗例1的InP量子點的粒徑約為11奈米,而比較例1的InP量子點的粒徑約為6奈米。顯然地,實驗例1的InP量子點的粒徑大於比較例1的InP量子點的粒徑。另外,如圖2所示,實驗例1的InP量子點並非球形,而是具有稜角的多邊形。2 and 3 are TEM images of the quantum dots of Experimental Example 1 and Comparative Example 1, respectively. It can be seen from FIG. 2 and FIG. 3 that the particle size of the InP quantum dots of Experimental Example 1 is about 11 nm, while the particle size of the InP quantum dots of Comparative Example 1 is about 6 nm. Obviously, the particle diameter of the InP quantum dots of Experimental Example 1 is larger than that of the InP quantum dots of Comparative Example 1. In addition, as shown in FIG. 2 , the InP quantum dots of Experimental Example 1 were not spherical but polygonal with corners.

高溫儲存high temperature storage

將實驗例1和比較例1的InP量子點(1 wt%)分別溶入正己烷後,以60 oC溫度烘烤4小時。接著,比對實驗例1和比較例1烘烤前後的量子產率(QY)。如下表1所示,實驗例1之烘烤前的量子產率為83%,烘烤後的量子產率下降至79%,亦即下降幅度為約4%。在一實施例中,本發明之量子點在烘烤前與烘烤後的光致發光量子產率的下降幅度小於或等於5%。在替代實施例中,本發明之量子點在烘烤前與烘烤後的光致發光量子產率的下降幅度可介於0%至6%之間。反觀,比較例1之烘烤前後的量子產率由81%下降至58%,亦即下降幅度高達23%。此結果說明,相較於比較例1的InP量子點的較薄的殼層,實驗例1的InP量子點具有較厚的殼層,其可提供更好的保護性,進而提高穩定性。 The InP quantum dots (1 wt %) of Experimental Example 1 and Comparative Example 1 were dissolved in n-hexane, respectively, and then baked at a temperature of 60 ° C for 4 hours. Next, the quantum yields (QY) of Experimental Example 1 and Comparative Example 1 before and after baking were compared. As shown in Table 1 below, the quantum yield of Experimental Example 1 before baking was 83%, and the quantum yield after baking was reduced to 79%, that is, the reduction range was about 4%. In one embodiment, the reduction range of the photoluminescence quantum yield of the quantum dots of the present invention before and after baking is less than or equal to 5%. In an alternative embodiment, the reduction in photoluminescence quantum yield of the quantum dots of the present invention before and after baking may be between 0% and 6%. In contrast, the quantum yield of Comparative Example 1 before and after baking decreased from 81% to 58%, that is, the decrease was as high as 23%. This result shows that, compared with the thinner shell layer of the InP quantum dot of Comparative Example 1, the InP quantum dot of Experimental Example 1 has a thicker shell layer, which can provide better protection and improve stability.

表1   實驗例1 (平均 ± 兩倍標準差) 比較例1 (平均 ± 兩倍標準差) 烘烤前 QY = 83 ± 2.3% QY = 81 ± 3.1% 烘烤後 QY = 79 ± 4.2% QY = 58 ± 5.3% 下降幅度 4% 23% Table 1 Experimental example 1 (mean ± double standard deviation) Comparative Example 1 (mean ± double standard deviation) before baking QY = 83 ± 2.3% QY = 81 ± 3.1% after baking QY = 79 ± 4.2% QY = 58 ± 5.3% degree of declining 4% twenty three%

此外,本發明的量子點的形成方法是將含有In的前驅物、含有P的前驅物、含有Zn的前驅物以及含有Se的前驅物混合在一起,並在高溫(約270 oC至320 oC)下進行反應,以形成具有梯度合金的量子點。相較於先形成InP核後,再形成包覆InP核的殼層的形成方法(即,此方法不會形成梯度合金),本發明的量子點可在InP核與ZnSe殼之間具有梯度合金漸進層,以優化InP核與ZnSe殼之間的晶格排列。也就是說,本發明的梯度合金漸進層不僅可有效地增加殼層的厚度,還可維持量子點的量子產率。另外,本發明的量子點的形成方法是在高溫下進行,因此,可有效縮短反應時間並減少對InP核的傷害,進而提升InP核的品質並可保持高量子產率。 In addition, the method for forming the quantum dots of the present invention is to mix the In-containing precursor, the P-containing precursor, the Zn-containing precursor, and the Se-containing precursor together, and heat it at a high temperature (about 270 ° C to 320 ° C). C) to carry out the reaction to form quantum dots with gradient alloys. Compared with the formation method of forming the InP core first and then forming the shell layer covering the InP core (that is, this method does not form a gradient alloy), the quantum dots of the present invention can have a gradient alloy between the InP core and the ZnSe shell Progressive layers to optimize the lattice arrangement between the InP core and the ZnSe shell. That is to say, the gradient alloy progressive layer of the present invention can not only effectively increase the thickness of the shell layer, but also maintain the quantum yield of the quantum dots. In addition, the method for forming the quantum dots of the present invention is carried out at high temperature, therefore, the reaction time can be effectively shortened and the damage to the InP core can be reduced, thereby improving the quality of the InP core and maintaining a high quantum yield.

綜上所述,本發明提供了具有兩層外殼包覆核的量子點,以使量子點具有直徑(或者粒徑)等於或大於11 nm。在此情況下,本發明的量子點可具有更好的保護性,以提高量子點的長期穩定性,進而有效地避免或降低外部因素(例如強光、高溫、濕氣、揮發性物質以及氧化劑等)對量子點的影響。於此同時,本發明的量子點還可保持光致發光量子產率為大於或等於50%。因此,本發明的量子點可適用於具有強光、高溫等的顯示裝置(例如發光二極體(LED)裝置或投影機色輪)。To sum up, the present invention provides quantum dots with two shells covering the core, so that the quantum dots have a diameter (or particle size) equal to or greater than 11 nm. In this case, the quantum dots of the present invention can have better protection, so as to improve the long-term stability of the quantum dots, thereby effectively avoiding or reducing external factors (such as strong light, high temperature, moisture, volatile substances and oxidants) etc.) on quantum dots. At the same time, the quantum dots of the present invention can also maintain a photoluminescence quantum yield greater than or equal to 50%. Therefore, the quantum dots of the present invention may be suitable for display devices (eg, light emitting diode (LED) devices or projector color wheels) with strong light, high temperature, and the like.

100:量子點 100s:粒徑 102:核 104:梯度合金漸進層 106:第一殼 108:第二殼 100: Quantum Dots 100s: particle size 102: Nuclear 104: Gradient alloy progressive layer 106: First Shell 108: Second Shell

圖1是本發明一實施例的量子點的示意圖。 圖2是實驗例1的量子點的穿透式電子顯微鏡(transmission electron microscope,TEM)圖像。 圖3是比較例1的量子點的TEM圖像。 FIG. 1 is a schematic diagram of a quantum dot according to an embodiment of the present invention. FIG. 2 is a transmission electron microscope (TEM) image of the quantum dot of Experimental Example 1. FIG. FIG. 3 is a TEM image of the quantum dots of Comparative Example 1. FIG.

100:量子點 100: Quantum Dots

100s:粒徑 100s: particle size

102:核 102: Nuclear

104:梯度合金漸進層 104: Gradient alloy progressive layer

106:第一殼 106: First Shell

108:第二殼 108: Second Shell

Claims (8)

一種量子點,包括: 核,由InP所構成; 第一殼,由ZnSe所構成,且包覆所述核的表面; 第二殼,包覆所述第一殼的表面,且與所述第一殼具有不同的材料;以及 梯度合金漸進層,形成在所述核與所述第一殼之間,所述梯度合金漸進層包括由In、P、Zn以及Se所構成的合金,其中所述In與所述P的含量沿著所述核到所述第一殼的方向逐漸減少,所述Zn與所述Se的含量沿著所述核到所述第一殼的所述方向逐漸增加, 其中所述量子點的粒徑大於或等於11奈米,且所述量子點能夠在被激發時發光,並具有大於或等於50%的光致發光量子產率。 A quantum dot comprising: The core is composed of InP; a first shell, consisting of ZnSe, and covering the surface of the core; a second shell covering the surface of the first shell and having a different material from the first shell; and A graded alloy progressive layer is formed between the core and the first shell, the graded alloy progressive layer includes an alloy composed of In, P, Zn and Se, wherein the contents of In and P are along the same The content of Zn and Se gradually increases along the direction from the core to the first shell, and the content of the Zn and Se gradually increases along the direction from the core to the first shell, The particle size of the quantum dots is greater than or equal to 11 nanometers, and the quantum dots can emit light when excited, and have a photoluminescence quantum yield greater than or equal to 50%. 如請求項1所述的量子點,其中所述第二殼是由ZnS所構成。The quantum dot of claim 1, wherein the second shell is composed of ZnS. 如請求項1所述的量子點,其中所述量子點的粒徑為11奈米至15奈米。The quantum dot according to claim 1, wherein the quantum dot has a particle size of 11 nm to 15 nm. 如請求項1所述的量子點,其中所述量子點的粒徑大於等於15奈米。The quantum dot according to claim 1, wherein the particle size of the quantum dot is greater than or equal to 15 nanometers. 如請求項1所述的量子點,其中所述量子點能夠在被激發時發光,並具有60%至90%的光致發光量子產率。The quantum dot of claim 1, wherein the quantum dot is capable of emitting light when excited and has a photoluminescence quantum yield of 60% to 90%. 如請求項1所述的量子點,其中所述量子點能夠在被激發時發光,並具有大於或等於90%的光致發光量子產率。The quantum dot of claim 1, wherein the quantum dot is capable of emitting light when excited and has a photoluminescence quantum yield greater than or equal to 90%. 如請求項1所述的量子點,其中所述量子點在烘烤前與烘烤後的光致發光量子產率的下降幅度小於或等於5%。The quantum dot according to claim 1, wherein the reduction range of the quantum yield of photoluminescence of the quantum dot before and after baking is less than or equal to 5%. 如請求項1所述的量子點,其中所述量子點的所述核能夠吸收固定波長範圍的光源,且發出至少一種不同波長範圍的光。The quantum dot of claim 1, wherein the core of the quantum dot is capable of absorbing a light source of a fixed wavelength range and emitting light of at least one different wavelength range.
TW109138972A 2020-11-09 2020-11-09 Semiconductor nanomaterial with high stability TWI811582B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW109138972A TWI811582B (en) 2020-11-09 2020-11-09 Semiconductor nanomaterial with high stability
JP2021175325A JP7281522B2 (en) 2020-11-09 2021-10-27 Semiconductor nanomaterials with high stability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109138972A TWI811582B (en) 2020-11-09 2020-11-09 Semiconductor nanomaterial with high stability

Publications (2)

Publication Number Publication Date
TW202219246A true TW202219246A (en) 2022-05-16
TWI811582B TWI811582B (en) 2023-08-11

Family

ID=81606769

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109138972A TWI811582B (en) 2020-11-09 2020-11-09 Semiconductor nanomaterial with high stability

Country Status (2)

Country Link
JP (1) JP7281522B2 (en)
TW (1) TWI811582B (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1666562B1 (en) * 2004-11-11 2018-03-07 Samsung Electronics Co., Ltd. Interfused nanocrystals and method of preparing the same
US9343301B2 (en) * 2013-03-14 2016-05-17 Nanoco Technologies Ltd. Quantum dots made using phosphine
JP6514231B2 (en) * 2014-01-06 2019-05-15 ナノコ テクノロジーズ リミテッド Cadmium-free quantum dot nanoparticles
WO2018123821A1 (en) * 2016-12-28 2018-07-05 Dic株式会社 Dispersion, and inkjet ink composition, light conversion layer, and liquid crystal display element using dispersion
US10096743B1 (en) * 2017-05-26 2018-10-09 Unique Materials Co., Ltd. Gigantic quantum dots

Also Published As

Publication number Publication date
JP7281522B2 (en) 2023-05-25
JP2022076459A (en) 2022-05-19
TWI811582B (en) 2023-08-11

Similar Documents

Publication Publication Date Title
US10985296B2 (en) Quantum dot based color conversion layer in display devices
US11824146B2 (en) Quantum dot encapsulation techniques
US10312406B2 (en) Method of forming gigantic quantum dots
EP3419927B1 (en) Low cadmium content nanostructure compositions and uses thereof
JP2024051110A (en) Lighting device and qd-led device
KR20160084619A (en) Quantum dot composite and optoelectronics including the same
JP2011252117A (en) Semiconductor microparticle phosphor and wavelength conversion member using it, light-emitting device, and image display
JP2021501438A (en) Stable InP Quantum Dots with Thick Shell Coating and Their Manufacturing Methods
JP2024037888A (en) display device
US20140339497A1 (en) Stabilized nanocrystals
JP2022529108A (en) Method for improving quantum yield of indium phosphide quantum dots
EP4087905A1 (en) Blue-emitting nanocrystals with cubic shape and group iv metal fluoride passivation
TWI811582B (en) Semiconductor nanomaterial with high stability
CN114540030B (en) High stability semiconductor nanomaterial
US11466205B2 (en) Semiconductor nanomaterial with high stability
KR101888427B1 (en) Quantum dot for display device and method for fabricating the same
KR102185115B1 (en) Quantum rod and manufacturing the same, display device comprising the same
US20220411691A1 (en) Rohs compliant mixed quantum dot films