TW202218343A - Multiplying digital-to-analog converter with pre-sampling and associated pipelined analog-to-digital converter - Google Patents

Multiplying digital-to-analog converter with pre-sampling and associated pipelined analog-to-digital converter Download PDF

Info

Publication number
TW202218343A
TW202218343A TW110133010A TW110133010A TW202218343A TW 202218343 A TW202218343 A TW 202218343A TW 110133010 A TW110133010 A TW 110133010A TW 110133010 A TW110133010 A TW 110133010A TW 202218343 A TW202218343 A TW 202218343A
Authority
TW
Taiwan
Prior art keywords
sampling capacitor
switch
sampling
node
during
Prior art date
Application number
TW110133010A
Other languages
Chinese (zh)
Other versions
TWI782692B (en
Inventor
謝頌恩
Original Assignee
聯發科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/076,785 external-priority patent/US11159174B2/en
Application filed by 聯發科技股份有限公司 filed Critical 聯發科技股份有限公司
Publication of TW202218343A publication Critical patent/TW202218343A/en
Application granted granted Critical
Publication of TWI782692B publication Critical patent/TWI782692B/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/124Sampling or signal conditioning arrangements specially adapted for A/D converters
    • H03M1/1245Details of sampling arrangements or methods
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • H03M1/46Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter
    • H03M1/466Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter using switched capacitors
    • H03M1/468Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter using switched capacitors in which the input S/H circuit is merged with the feedback DAC array

Abstract

A multiplying digital-to-analog converter includes an operational amplifier, a sampling capacitor circuit, a pre-sampling capacitor circuit, and a switch circuit. During a sampling cycle, the switch circuit connects a pre-defined voltage and reference voltages to the pre-sampling capacitor circuit, disconnects the pre-sampling capacitor circuit from an input port of the operational amplifier and the sampling capacitor circuit, disconnects an output port of the operational amplifier from the sampling capacitor circuit, and connects a voltage input to the sampling capacitor circuit. During a conversion cycle, the switch circuit connects the pre-sampling capacitor circuit to the sampling capacitor circuit, disconnects the pre-defined voltage and the reference voltages from the pre-sampling capacitor circuit, connects the pre-sampling capacitor circuit to the input port of the operational amplifier, connects the output port of the operational amplifier to the sampling capacitor circuit, and disconnects the voltage input from the sampling capacitor circuit.

Description

具有預採樣的乘法數位類比轉換器以及相關的流水線類比數位轉換器Multiplying digital-to-analog converters with pre-sampling and associated pipelined analog-to-digital converters

本發明涉及類比信號和數位信號之間的轉換,更具體地,涉及具有預採樣的乘法數位類比轉換器(multiplying digital-to-analog converter,MDAC)和相關的流水線的(pipelined)類比數位轉換器(analog-to-digital converter,ADC)。The present invention relates to conversion between analog and digital signals, and more particularly, to a multiplying digital-to-analog converter (MDAC) with pre-sampling and an associated pipelined analog-to-digital converter (analog-to-digital converter, ADC).

類比數位轉換器(ADC)被用於各種電子系統中。此類系統需要具有成本效益的 ADC,這些ADC可以在很寬的頻率範圍和信號幅度內有效地將類比輸入信號轉換為數位輸出信號,同時將雜訊和失真降至最低。Analog-to-digital converters (ADCs) are used in various electronic systems. Such systems require cost-effective ADCs that can efficiently convert analog input signals to digital output signals over a wide frequency range and signal amplitude while minimizing noise and distortion.

ADC通常通過以預定採樣間隔對類比信號進行採樣並經由量化器生成二進位(binary)數字序列來將類比信號轉換為數位信號,其中二進位數字序列是採樣的類比信號的數位表示信號。一些常用類型的 ADC 包括快閃記憶體ADC、流水線ADC、逐次逼近寄存器 (successive approximation register,SAR) ADC等。在這些不同類型中,流水線ADC在需要較高解析度的應用中特別受歡迎。典型的流水線ADC使用開關電容器電路來增加或減少電荷,並使用運算放大器等有源電路來實現乘法,它們非常容易受到組件不匹配(如電容器不匹配)和電路缺陷(如有限的放大器增益)的影響。此外,典型的流水線ADC可能採用高增益和高速運算放大器,其具有高功耗且需要後臺校準(background calibration)。因此,需要一種無需後臺校準的創新型低功耗流水線ADC。The ADC typically converts the analog signal to a digital signal by sampling the analog signal at predetermined sampling intervals and generating a binary digital sequence via a quantizer, where the binary digital sequence is a digital representation of the sampled analog signal. Some common types of ADCs include flash memory ADCs, pipeline ADCs, successive approximation register (SAR) ADCs, and more. Of these different types, pipelined ADCs are particularly popular in applications that require higher resolution. Typical pipelined ADCs use switched capacitor circuits to increase or decrease charge and active circuits such as op amps for multiplication, they are very susceptible to component mismatch (such as capacitor mismatch) and circuit defects (such as limited amplifier gain) Influence. Additionally, a typical pipelined ADC may employ high gain and high speed op amps, which have high power consumption and require background calibration. Therefore, there is a need for an innovative low-power pipelined ADC that does not require background calibration.

本發明的目的之一是提供一種具有預採樣的乘法數位類比轉換器(MDAC)和相關聯的流水線類比數位轉換器(ADC)。It is an object of the present invention to provide a multiplying digital-to-analog converter (MDAC) with pre-sampling and an associated pipelined analog-to-digital converter (ADC).

根據本發明的第一方面,公開了示例性乘法數位類比轉換器(MDAC)。示例性MDAC包括運算放大器、採樣電容器電路、預採樣電容器電路和開關電路。其中,運算放大器具有輸入埠和輸出埠;所述開關電路用於控制所述運算放大器、所述採樣電容器電路和所述預採樣電容器電路之間的互連;其中,在所述MDAC的採樣週期期間,所述開關電路設置為將預定義電壓連接到所述預採樣電容器電路,將多個參考電壓連接到所述預採樣電容器電路,斷開所述預採樣電容器電路與所述運算放大器的輸入埠的連接,斷開所述預採樣電容器電路和所述採樣電容器電路的連接,斷開所述運算放大器的輸出埠與所述採樣電容器電路的連接,將所述MDAC的電壓輸入連接到所述採樣電容器電路;以及其中,在所述MDAC的轉換週期期間,所述開關電路用於將所述預採樣電容器電路連接到所述採樣電容器電路,其中所述預採樣電容器電路與所述採樣電容器電路之間的連接配置取決於所述電壓輸入的量化結果,進一步將所述預定義電壓與所述預採樣電容器電路斷開,將所述多個參考電壓與所述預採樣電容器電路斷開,將所述預採樣電容器電路連接至所述運算放大器的輸入端,將所述運算放大器的輸出端連接到所述採樣電容器電路,以及將所述電壓輸入與所述採樣電容器電路斷開。According to a first aspect of the present invention, an exemplary multiplying digital-to-analog converter (MDAC) is disclosed. An exemplary MDAC includes an operational amplifier, a sampling capacitor circuit, a pre-sampling capacitor circuit, and a switching circuit. Wherein, the operational amplifier has an input port and an output port; the switch circuit is used to control the interconnection between the operational amplifier, the sampling capacitor circuit and the pre-sampling capacitor circuit; wherein, in the sampling period of the MDAC During the period, the switch circuit is configured to connect a predefined voltage to the pre-sampling capacitor circuit, connect a plurality of reference voltages to the pre-sampling capacitor circuit, disconnect the pre-sampling capacitor circuit from the input of the operational amplifier port, disconnect the pre-sampling capacitor circuit and the sampling capacitor circuit, disconnect the output port of the operational amplifier from the sampling capacitor circuit, connect the voltage input of the MDAC to the a sampling capacitor circuit; and wherein, during a conversion cycle of the MDAC, the switch circuit is used to connect the pre-sampling capacitor circuit to the sampling capacitor circuit, wherein the pre-sampling capacitor circuit is connected to the sampling capacitor circuit The connection configuration between the voltage inputs depends on the quantization result of the voltage input, further disconnecting the predefined voltage from the pre-sampling capacitor circuit, disconnecting the plurality of reference voltages from the pre-sampling capacitor circuit, The pre-sampling capacitor circuit is connected to the input of the operational amplifier, the output of the operational amplifier is connected to the sampling capacitor circuit, and the voltage input is disconnected from the sampling capacitor circuit.

其中,將預定義電壓連接到預採樣電容器電路表示為將預定義電壓提供給預採樣電容器電路;將多個參考電壓連接到所述預採樣電容器電路表示將多個參考電壓提供給預採樣電容器電路;將所述MDAC的電壓輸入連接到所述採樣電容器電路表示將MDAC的電壓輸入提供給採樣電容器電路;將預定義電壓與預採樣電容器電路斷開表示不將預定義電壓提供給預採樣電容器電路;將多個參考電壓與預採樣電容器電路斷開表示不將多個參考電壓提供給預採樣電容器電路;將所述電壓輸入與所述採樣電容器電路斷開表示不將電壓輸入提供給採樣電容器電路。Wherein, connecting a predefined voltage to the pre-sampling capacitor circuit means providing a predefined voltage to the pre-sampling capacitor circuit; connecting a plurality of reference voltages to the pre-sampling capacitor circuit means providing a plurality of reference voltages to the pre-sampling capacitor circuit ; connecting the voltage input of the MDAC to the sampling capacitor circuit means supplying the voltage input of the MDAC to the sampling capacitor circuit; disconnecting the predefined voltage from the pre-sampling capacitor circuit means not supplying the predefined voltage to the pre-sampling capacitor circuit ; Disconnecting the plurality of reference voltages from the pre-sampling capacitor circuit means not supplying the plurality of reference voltages to the pre-sampling capacitor circuit; Disconnecting the voltage input from the sampling capacitor circuit means not supplying the voltage input to the sampling capacitor circuit .

根據本發明的第二方面,公開了示例性流水線類比數位轉換器 (ADC)。示例性流水線ADC包括多個級和組合電路。這些級被安排成分別產生多個數位輸出。組合電路被佈置為組合所述多個數位輸出。所述多個級中的至少一個包括量化電路和乘法數位類比轉換器(MDAC)。量化電路被佈置為產生所述多個級中的所述至少一個的電壓輸入的量化結果,其中所述多個級中的所述至少一個的數位輸出取決於電壓輸入的量化結果。MDAC包括運算放大器、採樣電容電路、預採樣電容電路和開關電路。其中運算放大器具有輸入埠和輸出埠。開關電路用於控制運算放大器、採樣電容電路和預採樣電容電路之間的互連。其中,在所述MDAC的採樣週期期間,所述開關電路設置為將預定義電壓連接到所述預採樣電容器電路,將多個參考電壓連接到所述預採樣電容器電路,斷開所述預採樣電容器電路與所述運算放大器的輸入埠的連接,斷開所述預採樣電容器電路和所述採樣電容器電路的連接,斷開所述運算放大器的輸出埠與所述採樣電容器電路的連接,將所述MDAC的電壓輸入連接到所述採樣電容器電路;以及其中,在所述MDAC的轉換週期期間,所述開關電路用於將所述預採樣電容器電路連接到所述採樣電容器電路,其中所述預採樣電容器電路與所述採樣電容器電路之間的連接配置取決於所述電壓輸入的量化結果,進一步將所述預定義電壓與所述預採樣電容器電路斷開,將所述多個參考電壓與所述預採樣電容器電路斷開,將所述預採樣電容器電路連接至所述運算放大器的輸入端,將所述運算放大器的輸出端連接到所述採樣電容器電路,以及將所述電壓輸入與所述採樣電容器電路斷開。According to a second aspect of the present invention, an exemplary pipelined analog-to-digital converter (ADC) is disclosed. An exemplary pipelined ADC includes multiple stages and combinational circuits. The stages are arranged to produce a plurality of digital outputs, respectively. A combining circuit is arranged to combine the plurality of digital outputs. At least one of the plurality of stages includes a quantization circuit and a multiplying digital-to-analog converter (MDAC). A quantization circuit is arranged to generate a quantized result of the voltage input of the at least one of the plurality of stages, wherein the digital output of the at least one of the plurality of stages is dependent on the quantized result of the voltage input. The MDAC includes an operational amplifier, a sampling capacitor circuit, a pre-sampling capacitor circuit and a switch circuit. The operational amplifier has an input port and an output port. The switch circuit is used to control the interconnection between the operational amplifier, the sampling capacitor circuit and the pre-sampling capacitor circuit. wherein, during a sampling period of the MDAC, the switching circuit is configured to connect a predefined voltage to the pre-sampling capacitor circuit, connect a plurality of reference voltages to the pre-sampling capacitor circuit, and disconnect the pre-sampling The capacitor circuit is connected to the input port of the operational amplifier, the connection between the pre-sampling capacitor circuit and the sampling capacitor circuit is disconnected, the connection between the output port of the operational amplifier and the sampling capacitor circuit is disconnected, and the a voltage input of the MDAC is connected to the sampling capacitor circuit; and wherein, during a conversion period of the MDAC, the switching circuit is used to connect the pre-sampling capacitor circuit to the sampling capacitor circuit, wherein the pre-sampling capacitor circuit is The connection configuration between the sampling capacitor circuit and the sampling capacitor circuit depends on the quantization result of the voltage input, further disconnecting the predefined voltage from the pre-sampling capacitor circuit, and connecting the plurality of reference voltages with all the reference voltages. the pre-sampling capacitor circuit is disconnected, the pre-sampling capacitor circuit is connected to the input of the operational amplifier, the output of the operational amplifier is connected to the sampling capacitor circuit, and the voltage input is connected to the The sampling capacitor circuit is disconnected.

根據本發明的第三方面,提供一種MDAC,包括:運算放大器;採樣電容器電路;以及預採樣電容器電路;其中,在所述MDAC的採樣週期期間,所述預採樣電容器電路採樣並保持多個預採樣參考電壓,所述採樣電容器電路採樣所述MDAC的電壓輸入;其中,在所述MDAC的轉換週期期間,所述預採樣電容器電路耦接所述採樣電容器電路,所述運算放大器根據所述電壓輸入和所述多個預採樣參考電壓之一設置所述運算放大器的輸出埠的電壓輸出;所述預採樣電容器電路和採樣電容器電路之間的連接配置取決於所述電壓輸入的量化結果,所述電壓輸出是從基於所述電壓輸入和所述多個預採樣參考電壓之一的電壓組合獲得的。According to a third aspect of the present invention, there is provided an MDAC comprising: an operational amplifier; a sampling capacitor circuit; and a pre-sampling capacitor circuit; wherein, during a sampling period of the MDAC, the pre-sampling capacitor circuit samples and holds a plurality of pre-sampling capacitor circuits sampling a reference voltage, the sampling capacitor circuit sampling the voltage input of the MDAC; wherein, during a conversion period of the MDAC, the pre-sampling capacitor circuit is coupled to the sampling capacitor circuit, the operational amplifier according to the voltage The input and one of the plurality of pre-sampling reference voltages set the voltage output of the output port of the operational amplifier; the connection configuration between the pre-sampling capacitor circuit and the sampling capacitor circuit depends on the quantization result of the voltage input, so The voltage output is obtained from a combination of voltages based on the voltage input and one of the plurality of pre-sampled reference voltages.

根據本發明的第四方面,提供一種流水線類比數位轉換器ADC,包括多個級,以流水線方式連接,並被佈置為分別產生多個數位輸出;以及組合電路,用於組合所述多個數位輸出;其中所述多個級中的至少一個包括:量化電路和上述MDAC。According to a fourth aspect of the present invention, there is provided a pipelined analog-to-digital converter ADC comprising a plurality of stages connected in a pipelined manner and arranged to respectively generate a plurality of digital outputs; and a combining circuit for combining the plurality of digital outputs output; wherein at least one of the plurality of stages includes: a quantization circuit and the above-mentioned MDAC.

本發明實施例提供的乘法數位類比轉換器MDAC以及流水線ADC,能夠減少運算放大器消耗的功率。The multiplying digital-to-analog converter MDAC and the pipeline ADC provided by the embodiments of the present invention can reduce the power consumed by the operational amplifier.

在閱讀了在各個附圖和附圖中示出的優選實施例的以下詳細描述之後,本發明的這些和其他目的對於所屬領域具有通常知識者來說無疑將變得顯而易見。These and other objects of the present invention will no doubt become apparent to those of ordinary skill in the art after reading the various drawings and the following detailed description of the preferred embodiments shown in the accompanying drawings.

在以下描述和請求項使用了指示特定組件的某些術語。所屬領域具有通常知識者將理解,電子設備製造商可能會用不同的名稱來指代組件。本申請不打算區分名稱不同但功能相同的組件。在以下描述和請求項中,術語“包括”和“包含”以開放式方式使用,因此應解釋為“包括但不限於……”。此外,術語“耦接”旨在表示間接或直接電連接。因此,如果一個設備耦接到另一設備,則該連接可以是通過直接電連接,或通過經由其他設備和連接的間接電連接。Certain terms are used in the following descriptions and claims to refer to specific components. Those of ordinary skill in the art will understand that electronic equipment manufacturers may refer to components by different names. This application does not intend to distinguish between components that have different names but have the same function. In the following description and claims, the terms "including" and "comprising" are used in an open-ended fashion and should therefore be interpreted as "including but not limited to...". Furthermore, the term "coupled" is intended to mean an indirect or direct electrical connection. Thus, if one device is coupled to another device, the connection may be through a direct electrical connection, or through an indirect electrical connection via the other device and connection.

第1圖是示出根據本發明實施例的具有預採樣的乘法數位類比轉換器(multiplying digital-to-analog converter,MDAC)的框圖。MDAC100包括運算放大器102、開關電路104和包括預採樣電容器電路106和採樣電容器電路108的多個電容電路。運算放大器102具有輸入埠112和輸出埠114。例如,輸入埠112可以包括同相(non-inverting)輸入節點(+)和反相輸入節點(-),輸出埠114可以包括同相輸出節點(+)和反相輸出節點(-)。由於MDAC100是開關電容器電路,開關電路104被佈置為控制運算放大器102、採樣電容器電路108和預採樣電容器電路106之間的互連。FIG. 1 is a block diagram illustrating a multiplying digital-to-analog converter (MDAC) with pre-sampling in accordance with an embodiment of the present invention. The MDAC 100 includes an operational amplifier 102 , a switching circuit 104 , and a plurality of capacitive circuits including a pre-sampling capacitor circuit 106 and a sampling capacitor circuit 108 . The operational amplifier 102 has an input port 112 and an output port 114 . For example, input port 112 may include a non-inverting input node (+) and an inverting input node (-), and output port 114 may include a non-inverting output node (+) and an inverting output node (-). Since MDAC 100 is a switched capacitor circuit, switching circuit 104 is arranged to control the interconnection between operational amplifier 102 , sampling capacitor circuit 108 and pre-sampling capacitor circuit 106 .

由MDAC 100執行的DAC減增益功能(DAC-subtract-gain function)的操作可以被劃分為採樣週期和採樣週期之後的轉換週期。在MDAC 100的採樣週期期間,開關電路104設置為將預定義電壓Vpd連接到預採樣電容器電路106,連接多個參考電壓(例如,Vrefn、Vcm和Vrefp,其中Vrefp >Vcm >Vrefn且Vcm=Vrefp+Vrefn=0V)到預採樣電容器電路106,將預採樣電容器電路106與運算放大器102的輸入埠112斷開連接,將預採樣電容器電路106與採樣電容器電路108斷開連接,將運算放大器102的輸出埠114與採樣電容器電路108斷開連接,並將MDAC 100的電壓輸入V_IN連接到採樣電容器電路108。例如,電壓輸入V_IN可以是差分輸入,該差分輸入包括正信號Vip和負信號Vin(即,V_IN=Vip-Vin)。The operation of the DAC-subtract-gain function performed by the MDAC 100 may be divided into a sampling period and a conversion period following the sampling period. During a sampling period of the MDAC 100, the switch circuit 104 is set to connect the predefined voltage Vpd to the pre-sampling capacitor circuit 106, connecting a plurality of reference voltages (eg, Vrefn, Vcm, and Vrefp, where Vrefp > Vcm > Vrefn and Vcm=Vrefp +Vrefn=0V) to the pre-sampling capacitor circuit 106, disconnect the pre-sampling capacitor circuit 106 from the input port 112 of the operational amplifier 102, disconnect the pre-sampling capacitor circuit 106 from the sampling capacitor circuit 108, connect the The output port 114 is disconnected from the sampling capacitor circuit 108 and connects the voltage input V_IN of the MDAC 100 to the sampling capacitor circuit 108 . For example, the voltage input V_IN may be a differential input that includes a positive signal Vip and a negative signal Vin (ie, V_IN=Vip-Vin).

在MDAC 100的轉換週期期間,開關電路104用於將預採樣電容器電路106連接到採樣電容器電路108,其中預採樣電容器電路106和採樣電容器電路108之間的連接配置取決於電壓輸入V_IN的量化(quantization)結果,而開關電路104還用於將預定義電壓Vpd與預採樣電容器電路106斷開連接,將參考電壓(例如,Vrefn、Vcm、和Vrefp)與預採樣電容器電路106斷開連接,將預採樣電容器電路106連接到運算放大器102的輸入埠112,將運算放大器102的輸出埠114連接到採樣電容器電路108,將採樣電容電路108與電壓輸入V_IN斷開連接。使用預採樣電容器電路106可以放寬(relaxation)運算放大器的功率需求以及放寬參考緩衝器的功率需求。During the conversion cycle of the MDAC 100, the switching circuit 104 is used to connect the pre-sampling capacitor circuit 106 to the sampling capacitor circuit 108, wherein the connection configuration between the pre-sampling capacitor circuit 106 and the sampling capacitor circuit 108 depends on the quantization of the voltage input V_IN ( quantization) results, while the switch circuit 104 is also used to disconnect the predefined voltage Vpd from the pre-sampling capacitor circuit 106, disconnect the reference voltages (eg, Vrefn, Vcm, and Vrefp) from the pre-sampling capacitor circuit 106, connect the The pre-sampling capacitor circuit 106 is connected to the input port 112 of the operational amplifier 102, the output port 114 of the operational amplifier 102 is connected to the sampling capacitor circuit 108, and the sampling capacitor circuit 108 is disconnected from the voltage input V_IN. Using the pre-sampling capacitor circuit 106 can relax the power requirements of the operational amplifier as well as the power requirements of the reference buffer.

第2圖是根據本發明實施例的具有預採樣的MDAC的電路圖。第1圖所示的MDAC 100可以由第2圖所示的MDAC 200實現。MDAC 200包括運算放大器OPAMP、多個預採樣電容器Cps1、Cps0、Cps-1、C'ps1、C'ps0、C'ps-1,多個採樣電容器Csam、C'sam , 以及多個開關 SW1, SW2, SW3, SW4, SW5, SW6, SW7, SW8, SW9, SW10, SW11, SW'1, SW'2, SW'3, SW'4, SW'5, SW'6、SW'7、SW'8、SW'9、SW'10、SW'11。第1圖所示的運算放大器102可以使用第2圖中所示的運算放大器OPAMP來實現,其中運算放大器OPAMP是差分放大器,其輸入埠包括同相輸入節點(+)和反相輸入節點(-),輸出埠包括反相輸出節點(-)和同相輸出節點(+)。第1圖所示的預採樣電容器電路106可以使用第2圖所示的預採樣電容器Cps1、Cps0、Cps-1、C'ps1、C'ps0、C'ps-1來實現。第1圖所示的採樣電容器電路108可以使用第2圖所示的採樣電容器Csam、C'sam來實現。第1圖所示的開關電路104可以使用第2圖中所示的開關SW1-SW11、SW'1-SW'11來實現。FIG. 2 is a circuit diagram of an MDAC with pre-sampling in accordance with an embodiment of the present invention. The MDAC 100 shown in FIG. 1 can be implemented by the MDAC 200 shown in FIG. 2 . The MDAC 200 includes an operational amplifier OPAMP, a plurality of pre-sampling capacitors Cps1, Cps0, Cps-1, C'ps1, C'ps0, C'ps-1, a plurality of sampling capacitors Csam, C'sam, and a plurality of switches SW1, SW2, SW3, SW4, SW5, SW6, SW7, SW8, SW9, SW10, SW11, SW'1, SW'2, SW'3, SW'4, SW'5, SW'6, SW'7, SW' 8. SW'9, SW'10, SW'11. The operational amplifier 102 shown in Figure 1 can be implemented using the operational amplifier OPAMP shown in Figure 2, where the operational amplifier OPAMP is a differential amplifier whose input ports include a non-inverting input node (+) and an inverting input node (-) , the output port includes an inverting output node (-) and a non-inverting output node (+). The pre-sampling capacitor circuit 106 shown in FIG. 1 can be implemented using the pre-sampling capacitors Cps1 , Cps0 , Cps−1 , C′ps1 , C′ps0 , and C′ps−1 shown in FIG. 2 . The sampling capacitor circuit 108 shown in FIG. 1 can be realized using the sampling capacitors Csam and C'sam shown in FIG. 2 . The switch circuit 104 shown in FIG. 1 can be realized using switches SW1 to SW11 and SW′ 1 to SW′ 11 shown in FIG. 2 .

預採樣電容器Cpsl、Cps0、Cps-1、C'psl、C'ps0、C'ps-1用於對Vref、0V和-Vref進行預採樣,其中Vrefp-Vrefn=Vref,Vrefn-Vrefp=-Vref,Vcm=0V。採樣電容器 Csam 和 C'sam用於對電壓輸入(Vip-Vin)進行採樣,該電壓輸入(Vip-Vin)是包括正信號Vip 和負信號Vin的差分輸入。所提出的具有預採樣的MDAC設計的原理是結合電容器保持(held)的電壓差來實現參考電壓相減和輸入電壓放大。第3圖是示出根據本發明實施例的具有預採樣的所提出的MDAC設計的原理的示意圖。假設電容器C1的頂板和底板之間保持一個電壓差△V1,電容器C2的頂板和底板之間保持另一個電壓差△V2。當電容C1和C2串聯時,跨串聯的電容器C1和C2的電壓等於△V1+△V2。對於MDAC200,電壓輸出V_OUT作為MDAC輸出,並且由△V1=2*(Vip-Vin)和△V2=Dout*Vref決定,即V_OUT = 2*(Vip-Vin) + Dout*Vref。電壓2*(Vip-Vin) 是通過採樣電容器獲得的。電壓Dout*Vref是通過預採樣電容器的選擇實現的。第4圖是示出第2圖中所示的MDAC 200的轉換曲線(transfer curve)的示意圖。如果(Vip-Vin) > Vref/4,則 Dout=-1 且V_OUT=2*(Vip-Vin)+Vref。如果-Vref/4 ≦ (Vip-Vin) ≦ Vref/4,則 Dout=0且 V_OUT=2*(Vip-Vin)。當(Vip-Vin) < -Vref/4 時,Dout=+1 且 V_OUT=2*(Vip-Vin)-Vref。所提出的具有預採樣的MDAC 200的進一步細節描述如下。Pre-sampling capacitors Cpsl, Cps0, Cps-1, C'psl, C'ps0, C'ps-1 are used to pre-sample Vref, 0V and -Vref, where Vrefp-Vrefn=Vref, Vrefn-Vrefp=-Vref , Vcm=0V. The sampling capacitors Csam and C'sam are used to sample a voltage input (Vip-Vin), which is a differential input including a positive signal Vip and a negative signal Vin. The principle of the proposed MDAC design with pre-sampling is to combine the voltage difference held by the capacitor to achieve reference voltage subtraction and input voltage amplification. Figure 3 is a schematic diagram illustrating the principle of the proposed MDAC design with pre-sampling according to an embodiment of the present invention. Assume that a voltage difference ΔV1 is maintained between the top and bottom plates of capacitor C1, and another voltage difference ΔV2 is maintained between the top and bottom plates of capacitor C2. When capacitors C1 and C2 are in series, the voltage across the series-connected capacitors C1 and C2 is equal to ΔV1 + ΔV2. For MDAC200, the voltage output V_OUT is the MDAC output, and is determined by △V1=2*(Vip-Vin) and △V2=Dout*Vref, that is, V_OUT = 2*(Vip-Vin) + Dout*Vref. The voltage 2*(Vip-Vin) is obtained through the sampling capacitor. The voltage Dout*Vref is achieved by the selection of the pre-sampling capacitor. FIG. 4 is a schematic diagram showing a transfer curve of the MDAC 200 shown in FIG. 2 . If (Vip-Vin) > Vref/4, then Dout=-1 and V_OUT=2*(Vip-Vin)+Vref. If -Vref/4 ≦ (Vip-Vin) ≦ Vref/4, then Dout=0 and V_OUT=2*(Vip-Vin). When (Vip-Vin) < -Vref/4, Dout=+1 and V_OUT=2*(Vip-Vin)-Vref. Further details of the proposed MDAC 200 with pre-sampling are described below.

如上所述,由MDAC 200執行的DAC減增益功能(DAC-subtract-gain function)的操作被劃分為採樣週期和採樣週期之後的轉換週期。例如,採樣週期由第一時鐘使能(enable),轉換週期由第二時鐘使能,其中第一時鐘和第二時鐘為非重疊時鐘,開關的通斷狀態可以由第一時鐘和第二時鐘控制。開關SW1的一個節點耦接到預定義電壓(例如,運算放大器OPAMP的偏置電壓Vbias),而另一節點耦接到預採樣電容器Cps1、Cps0、Cps-1中的每一個的一個極板。在本實施例中,Vpd=Vbias。開關SW'1的一個節點耦接到預定義電壓(例如,運算放大器OPAMP的偏置電壓Vbias)和另一個節點耦接到預採樣電容器C'ps1、C'ps0、C'ps-1中每個的一個極板。開關SW5的一個節點耦接到運算放大器OPAMP的同相輸入節點(+),而另一節點耦接到預採樣電容器Cps1、Cps0、Cps-1中每個的一個極板上。開關SW'5 的一個節點耦接到運算放大器OPAMP的反相輸入節點(-),另一個節點耦接到預採樣電容器 C'ps1、C'ps0、C'ps-1中每一個的一個極板上。開關SW9的一個節點耦接到運算放大器OPAMP的反相輸出節點(-),而另一節點耦接到採樣電容器Csam的一個極板。開關 SW'9 的一個節點耦接到運算放大器 OPAMP 的同相輸出節點 (+),另一節點耦接到採樣電容器C'sam的一個極板。As described above, the operation of the DAC-subtract-gain function performed by the MDAC 200 is divided into a sampling period and a conversion period following the sampling period. For example, the sampling period is enabled by the first clock, and the conversion period is enabled by the second clock, wherein the first clock and the second clock are non-overlapping clocks, and the on-off state of the switch can be enabled by the first clock and the second clock. control. One node of the switch SW1 is coupled to a predefined voltage (eg, the bias voltage Vbias of the operational amplifier OPAMP), and the other node is coupled to one plate of each of the pre-sampling capacitors Cps1, Cps0, Cps-1. In this embodiment, Vpd=Vbias. One node of the switch SW'1 is coupled to a predefined voltage (eg, the bias voltage Vbias of the operational amplifier OPAMP) and the other node is coupled to each of the pre-sampling capacitors C'ps1, C'ps0, C'ps-1. one plate of each. One node of the switch SW5 is coupled to the non-inverting input node (+) of the operational amplifier OPAMP, and the other node is coupled to one plate of each of the pre-sampling capacitors Cps1, Cps0, Cps-1. One node of the switch SW'5 is coupled to the inverting input node (-) of the operational amplifier OPAMP, and the other node is coupled to one pole of each of the pre-sampling capacitors C'ps1, C'ps0, C'ps-1 board. One node of the switch SW9 is coupled to the inverting output node (-) of the operational amplifier OPAMP, and the other node is coupled to one plate of the sampling capacitor Csam. One node of the switch SW'9 is coupled to the non-inverting output node (+) of the operational amplifier OPAMP, and the other node is coupled to one plate of the sampling capacitor C'sam.

開關SW2的一個節點耦接到參考電壓Vrefp,並且另一個節點耦接到預採樣電容器Cpsl的另一極板。開關SW'2 的一個節點耦接到參考電壓Vrefn,另一個節點耦接到預採樣電容器 C'ps1的另一極板。開關SW3的一個節點耦接參考電壓Vcm,另一節點耦接預採樣電容器Cps0的另一極板。開關SW'3的一個節點耦接到參考電壓Vcm,另一個節點耦接到預採樣電容器C'ps0的另一極板。開關SW4的一個節點耦接參考電壓Vrefn,另一節點耦接預採樣電容器Cps-1的另一極板。開關SW'4的一個節點耦接到參考電壓Vrefp,另一個節點耦接到預採樣電容器 C'ps-1 的另一極板。當根據電壓輸入的量化結果選擇一對預採樣電容器Cps1和C'ps1用於提供預採樣參考電壓Vref時,沒有選擇預採樣電容器對Cps0和C'ps0以及預採樣電容器對Cps-1和C'ps-1。One node of the switch SW2 is coupled to the reference voltage Vrefp, and the other node is coupled to the other plate of the pre-sampling capacitor Cps1. One node of the switch SW'2 is coupled to the reference voltage Vrefn, and the other node is coupled to the other plate of the pre-sampling capacitor C'ps1. One node of the switch SW3 is coupled to the reference voltage Vcm, and the other node is coupled to the other plate of the pre-sampling capacitor Cps0. One node of the switch SW'3 is coupled to the reference voltage Vcm, and the other node is coupled to the other plate of the pre-sampling capacitor C'ps0. One node of the switch SW4 is coupled to the reference voltage Vrefn, and the other node is coupled to the other plate of the pre-sampling capacitor Cps-1. One node of the switch SW'4 is coupled to the reference voltage Vrefp, and the other node is coupled to the other plate of the pre-sampling capacitor C'ps-1. When a pair of pre-sampling capacitors Cps1 and C'ps1 are selected for providing the pre-sampling reference voltage Vref according to the quantization result of the voltage input, the pair of pre-sampling capacitors Cps0 and C'ps0 and the pair of pre-sampling capacitors Cps-1 and C' are not selected ps-1.

開關SW6的一個節點耦接到預採樣電容器Cpsl的另一極板,開關SW6的另一個節點耦接到採樣電容器Csam的另一極板。開關SW7的一個節點耦接到預採樣電容器Cps0的另一極板而另一節點耦接到採樣電容器Csam的另一極板。開關SW8的一個節點耦接到預採樣電容器Cps-1的另一極板,開關SW8的另一節點耦接到採樣電容器Csam的另一極板。開關SW'6的一個節點耦接到預採樣電容器C'ps1的另一極板,另一個節點耦接到採樣電容器C'sam的另一極板。開關SW'7的一個節點耦接到預採樣電容器C'ps0的另一極板,另一個節點耦接到採樣電容器C'sam的另一極板。開關SW'8的一個節點耦接到預採樣電容器 C'ps-1的另一極板,另一個節點耦接到採樣電容器C'sam的另一極板。One node of the switch SW6 is coupled to the other plate of the pre-sampling capacitor Cps1, and the other node of the switch SW6 is coupled to the other plate of the sampling capacitor Csam. One node of switch SW7 is coupled to the other plate of the pre-sampling capacitor Cps0 and the other node is coupled to the other plate of the sampling capacitor Csam. One node of the switch SW8 is coupled to the other plate of the pre-sampling capacitor Cps-1, and the other node of the switch SW8 is coupled to the other plate of the sampling capacitor Csam. One node of switch SW'6 is coupled to the other plate of the pre-sampling capacitor C'ps1 and the other node is coupled to the other plate of the sampling capacitor C'sam. One node of switch SW'7 is coupled to the other plate of the pre-sampling capacitor C'ps0 and the other node is coupled to the other plate of the sampling capacitor C'sam. One node of switch SW'8 is coupled to the other plate of the pre-sampling capacitor C'ps-1 and the other node is coupled to the other plate of the sampling capacitor C'sam.

開關SW10具有耦接到採樣電容器Csam的另一極板的一個節點和耦接到差分電壓輸入的負信號Vin的另一個節點。開關SW11的一個節點耦接到採樣電容器Csam的一個極板,而另一節點耦接到差分電壓輸入的正信號Vip。開關 SW'10的一個節點耦接到採樣電容器C'sam的另一極板,另一個節點耦接到差分電壓輸入的正信號Vip。開關SW'11的一個節點耦接到採樣電容器C'sam的一個極板,另一節點耦接到差分電壓輸入的負信號Vin。The switch SW10 has one node coupled to the other plate of the sampling capacitor Csam and another node coupled to the negative signal Vin of the differential voltage input. One node of the switch SW11 is coupled to one plate of the sampling capacitor Csam, and the other node is coupled to the positive signal Vip of the differential voltage input. One node of the switch SW'10 is coupled to the other plate of the sampling capacitor C'sam, and the other node is coupled to the positive signal Vip of the differential voltage input. One node of the switch SW'11 is coupled to one plate of the sampling capacitor C'sam, and the other node is coupled to the negative signal Vin of the differential voltage input.

在採樣週期期間,開關SWl、SW2、SW3、SW4、SW10、SW11、SW'1、SW2'、SW'3、SW'4、SW'10、SW'11中的每一個被接通,並且開關SW5、SW6、SW7、SW8、SW9、SW'5、SW'6、SW'7、SW'8、SW'9中的每一個被斷開。第5圖是示出在採樣週期期間操作的MDAC 200的等效電路圖。在一段時間內,電壓差 (Vrefp-Vbias) 保持在預採樣電容器Cps1的兩個極板之間。在一段時間內,電壓差(Vcm-Vbias)保持在預採樣電容器Cps0的兩個極板之間。在一段時間內,電壓差(Vrefn-Vbias)保持在預採樣電容器Cps-1的兩個極板之間。在一段時間內,電壓差 (Vrefn-Vbias) 保持在預採樣電容器 C'ps1的兩個極板之間。在一段時間內,電壓差(Vcm-Vbias)保持在預採樣電容器C'ps0的兩個極板之間。在一段時間內,電壓差 (Vrefp-Vbias) 保持在預採樣電容器C'ps-1 的兩個極板之間。在一段時間內,電壓差(Vin-Vip) 保持在採樣電容器 Csam的兩個極板之間。電壓差 (Vip-Vin) 保持在採樣電容器 C'sam的兩個極板之間。During the sampling period, each of the switches SW1, SW2, SW3, SW4, SW10, SW11, SW'1, SW2', SW'3, SW'4, SW'10, SW'11 is turned on, and the switches Each of SW5, SW6, SW7, SW8, SW9, SW'5, SW'6, SW'7, SW'8, SW'9 is turned off. FIG. 5 is an equivalent circuit diagram showing MDAC 200 operating during a sampling period. For a period of time, the voltage difference (Vrefp-Vbias) remains between the two plates of the pre-sampling capacitor Cps1. During a period of time, the voltage difference (Vcm-Vbias) remains between the two plates of the pre-sampling capacitor Cps0. During a period of time, the voltage difference (Vrefn-Vbias) remains between the two plates of the pre-sampling capacitor Cps-1. For a period of time, the voltage difference (Vrefn-Vbias) remains between the two plates of the pre-sampling capacitor C'ps1. During a period of time, the voltage difference (Vcm-Vbias) remains between the two plates of the pre-sampling capacitor C'ps0. For a period of time, the voltage difference (Vrefp-Vbias) remains between the two plates of the pre-sampling capacitor C'ps-1. During a period of time, the voltage difference (Vin-Vip) is maintained between the two plates of the sampling capacitor Csam. The voltage difference (Vip-Vin) is maintained between the two plates of the sampling capacitor C'sam.

在轉換週期期間,開關SW1、SW2、SW3、SW4、SW10、SW11、SW'1、SW2'、SW'3、SW'4、SW'10、SW'11中的每一個被斷開,並且開關SW5、SW9、SW'5、SW'9中的每一個被接通。開關SW6、SW7、SW8、SW'6、SW'7、SW'8中的每一個,響應於電壓輸入(Vip-Vin)的量化結果而選擇性地接通。當根據電壓輸入(Vip-Vin)的量化結果選擇預採樣電容器對Cps1和C'ps1來提供預採樣參考電壓Vref(即Vrefp-Vrefn)時,預採樣電容器對Cps0和C'ps0以及預採樣電容器對Cps-1和C'ps-1未被選擇。當根據電壓輸入(Vip-Vin)的量化結果選擇預採樣電容器對Cps0和C'ps0提供預採樣參考電壓0V(即Vcm-Vcm)時,預採樣電容器對Cps1和C'ps1以及預採樣電容器對Cps-1和C'ps-1未被選擇。當根據電壓輸入(Vip-Vin)的量化結果選擇預採樣電容器對Cps-1和C'ps-1提供預採樣參考電壓-Vref(即Vrefn-Vrefp)時,預採樣電容器對Cps0和C'ps0以及預採樣電容器對Cps1和C'ps1未被選擇。During the switching period, each of the switches SW1, SW2, SW3, SW4, SW10, SW11, SW'1, SW2', SW'3, SW'4, SW'10, SW'11 is opened, and the switches Each of SW5, SW9, SW'5, SW'9 is turned on. Each of the switches SW6, SW7, SW8, SW'6, SW'7, SW'8 is selectively turned on in response to a quantized result of the voltage input (Vip-Vin). When the pre-sampling capacitor pair Cps1 and C'ps1 is selected to provide the pre-sampling reference voltage Vref (ie Vrefp-Vrefn) according to the quantization result of the voltage input (Vip-Vin), the pre-sampling capacitor pair Cps0 and C'ps0 and the pre-sampling capacitor No selection was made for Cps-1 and C'ps-1. When the pre-sampling capacitor pair Cps0 and C'ps0 is selected to provide the pre-sampling reference voltage 0V (ie Vcm-Vcm) according to the quantization result of the voltage input (Vip-Vin), the pre-sampling capacitor pair Cps1 and C'ps1 and the pre-sampling capacitor pair Cps-1 and C'ps-1 were not selected. When the pre-sampling capacitor pair Cps-1 and C'ps-1 is selected to provide the pre-sampling reference voltage -Vref (ie Vrefn-Vrefp) according to the quantization result of the voltage input (Vip-Vin), the pre-sampling capacitor pair Cps0 and C'ps0 And the pre-sampling capacitor pair Cps1 and C'ps1 is not selected.

例如,當(Vip-Vin)大於Vref/4時,電壓輸入(Vip-Vin)的量化結果可以產生2位元數位輸出“11”,決定電路(decision circuit)可以參考量化結果接通(switch on)開關SW8和SW '8,斷開(switch off)開關SW6、SW6 '、SW7和SW '7。第6圖為MDAC 200在轉換週期期間在(Vip-Vin)>Vref/4條件下的等效電路圖。如第6圖所示,預採樣電容器Cps-1和採樣電容器Csam串聯,預採樣電容器C 'ps-1和採樣電容器C 'sam串聯,其中預採樣電容器Cps-1的一個極板連接運算放大器OPAMP的虛地(浮地),預採樣電容器C 'ps-1的一個極板連接運算放大器OPAMP的虛地(浮地)。運算放大器OPAMP的反相輸出節點(-)和同相輸入節點(+)之間的電壓差等於(Vip-Vin)+(Vrefn-Vbias)。運算放大器OPAMP的同相輸出節點(+)和反相輸入節點(-)之間的電壓差等於(Vin-Vip)+(Vrefp-Vbias)。因此,電壓輸出V_OUT可以表示如下: For example, when (Vip-Vin) is greater than Vref/4, the quantization result of the voltage input (Vip-Vin) can generate a 2-bit digital output "11", and the decision circuit can refer to the quantization result to switch on (switch on) ) switches SW8 and SW'8, switch off switches SW6, SW6 ' , SW7 and SW'7 . FIG. 6 is an equivalent circuit diagram of the MDAC 200 under the condition (Vip-Vin)>Vref/4 during the conversion cycle. As shown in Figure 6, the pre-sampling capacitor Cps-1 and the sampling capacitor Csam are connected in series, the pre-sampling capacitor C'ps -1 and the sampling capacitor C'sam are connected in series, and one plate of the pre-sampling capacitor Cps-1 is connected to the operational amplifier OPAMP The virtual ground (floating ground) of the pre-sampling capacitor C ' ps-1 is connected to the virtual ground (floating ground) of the operational amplifier OPAMP. The voltage difference between the inverting output node (-) and the non-inverting input node (+) of the operational amplifier OPAMP is equal to (Vip-Vin)+(Vrefn-Vbias). The voltage difference between the non-inverting output node (+) and the inverting input node (-) of the operational amplifier OPAMP is equal to (Vin-Vip)+(Vrefp-Vbias). Therefore, the voltage output V_OUT can be represented as follows:

V_OUT= (Vip-Vin)+(Vrefn-Vbias)-[(Vin-Vip)+(Vrefp-Vbias)]V_OUT= (Vip-Vin)+(Vrefn-Vbias)-[(Vin-Vip)+(Vrefp-Vbias)]

=2*(Vip-Vin)+(Vrefn-Vrefp)=2*(Vip-Vin)+(Vrefn-Vrefp)

=2*(Vip-Vin)-Vref=2*(Vip-Vin)-Vref

又例如,當(Vip-Vin)不大於Vref/4且不小於-Vref/4時,電壓輸入(Vip-Vin)的量化結果可產生2位元數位輸出“01”,決定電路可以參考量化結果來接通開關SW7和SW'7,斷開開關SW6、SW6'、SW8和SW'8。第7圖是示出在轉換週期期間在-Vref/4≦(Vip-Vin)≦Vref/4的條件下操作的MDAC 200的等效電路圖。如第7圖所示,預採樣電容器Cps0與採樣電容器Csam串聯,預採樣電容器C'ps0與採樣電容器C'sam串聯,其中預採樣電容器Cps0的一個極板連接到運算放大器OPAMP的虛(virtual)地(浮(floating)地),預採樣電容器C'ps0的一個極板連接到運算放大器OPAMP的虛地(浮地)。運算放大器OPAMP的反相輸出節點(-)和同相輸入節點(+)之間的電壓差等於(Vip-Vin)+(Vcm-Vbias)。運算放大器OPAMP的同相輸出節點(+)和反相輸入節點(-)之間的電壓差等於(Vin-Vip)+(Vcm-Vbias)。因此,電壓輸出V_OUT可以表示如下:For another example, when (Vip-Vin) is not greater than Vref/4 and not less than -Vref/4, the quantization result of the voltage input (Vip-Vin) can generate a 2-bit digital output "01", and the decision circuit can refer to the quantization result to turn on the switches SW7 and SW'7, and turn off the switches SW6, SW6', SW8 and SW'8. FIG. 7 is an equivalent circuit diagram illustrating the MDAC 200 operating under the condition of -Vref/4≦(Vip-Vin)≦Vref/4 during the conversion period. As shown in Figure 7, the pre-sampling capacitor Cps0 is connected in series with the sampling capacitor Csam, the pre-sampling capacitor C'ps0 is connected in series with the sampling capacitor C'sam, and one plate of the pre-sampling capacitor Cps0 is connected to the virtual (virtual) of the operational amplifier OPAMP. Ground (floating), one plate of the pre-sampling capacitor C'ps0 is connected to the virtual ground (floating) of the operational amplifier OPAMP. The voltage difference between the inverting output node (-) and the non-inverting input node (+) of the operational amplifier OPAMP is equal to (Vip-Vin)+(Vcm-Vbias). The voltage difference between the non-inverting output node (+) and the inverting input node (-) of the operational amplifier OPAMP is equal to (Vin-Vip)+(Vcm-Vbias). Therefore, the voltage output V_OUT can be represented as follows:

V_OUT= (Vip-Vin)+(Vcm-Vbias)-[(Vin-Vip)+(Vcm-Vbias)]V_OUT= (Vip-Vin)+(Vcm-Vbias)-[(Vin-Vip)+(Vcm-Vbias)]

=2*(Vip-Vin)=2*(Vip-Vin)

又例如,當(Vip-Vin)小於-Vref/4時,電壓輸入(Vip-Vin)的量化結果可以產生2位元數位輸出“00”,決定電路可以參考量化結果來接通開關SW6和SW'6,斷開開關SW7、SW7'、SW8和SW'8。第8圖是示出在轉換週期期間在(Vip-Vin)<-Vref/4的條件下操作的MDAC 200的等效電路圖。如第8圖所示,預採樣電容器Cps1與採樣電容器Csam串聯,預採樣電容器C'ps1與採樣電容器C'sam串聯,其中預採樣電容器Cps1的一個極板連接運算放大器OPAMP的虛地(浮地),預採樣電容器C'ps1的一個極板連接運算放大器OPAMP的虛地(浮地)。運算放大器OPAMP的反相輸出節點(-)和同相輸入節點(+)之間的電壓差等於(Vip-Vin)+(Vrefp-Vbias)。運算放大器OPAMP的同相輸出節點(+)和反相輸入節點(-)之間的電壓差等於(Vin-Vip)+(Vrefn-Vbias)。因此,電壓輸出V_OUT可以表示如下:For another example, when (Vip-Vin) is less than -Vref/4, the quantization result of the voltage input (Vip-Vin) can generate a 2-bit digital output "00", and the decision circuit can refer to the quantization result to turn on the switches SW6 and SW '6, open switches SW7, SW7', SW8 and SW'8. FIG. 8 is an equivalent circuit diagram illustrating the MDAC 200 operating under the condition (Vip-Vin)<-Vref/4 during the conversion period. As shown in Figure 8, the pre-sampling capacitor Cps1 is connected in series with the sampling capacitor Csam, the pre-sampling capacitor C'ps1 is connected in series with the sampling capacitor C'sam, and one plate of the pre-sampling capacitor Cps1 is connected to the virtual ground (floating ground) of the operational amplifier OPAMP. ), one plate of the pre-sampling capacitor C'ps1 is connected to the virtual ground (floating ground) of the operational amplifier OPAMP. The voltage difference between the inverting output node (-) and the non-inverting input node (+) of the operational amplifier OPAMP is equal to (Vip-Vin)+(Vrefp-Vbias). The voltage difference between the non-inverting output node (+) and the inverting input node (-) of the operational amplifier OPAMP is equal to (Vin-Vip)+(Vrefn-Vbias). Therefore, the voltage output V_OUT can be represented as follows:

V_OUT= (Vip-Vin)+(Vrefp-Vbias)-[(Vin-Vip)+(Vrefn-Vbias)]V_OUT= (Vip-Vin)+(Vrefp-Vbias)-[(Vin-Vip)+(Vrefn-Vbias)]

=2*(Vip-Vin)+(Vrefp-Vrefn)=2*(Vip-Vin)+(Vrefp-Vrefn)

=2*(Vip-Vin)+Vref=2*(Vip-Vin)+Vref

由於在採樣週期期間接收Vbias的所選預採樣電容器的一個極板在轉換週期期間是浮接的(floated),所以在轉換週期期間運算放大器OPAMP不需要消耗功率來驅動任何容性負載,因此OPAMP具有寬鬆的功率需求。此外,從第6-8圖中可以看出,電壓輸出V_OUT是通過組合跨選定的預採樣電容器的電壓和跨採樣電容器的電壓而得出的。因此,運算放大器OPAMP具有等於1的回饋因數(β)。與β<1的運算放大器相比,運算放大器OPAMP可以具有更寬的頻寬或更低的功耗。此外,由於在轉換週期期間選定的預充電電容器 Cps1/Cps0/Cps-1/C'ps1/C'ps0/C'ps-1 和採樣電容器 Csam/C'sam 之間沒有電荷流動,選定的接收外部參考緩衝器提供的參考電壓 Vrefp/Vcm/Vrefn的預充電電容器Cps1/Cps0/Cps-1/C'ps1/C'ps0/C'ps-1的一個極板上沒有電壓變化。由於在轉換週期期間參考緩衝器沒有消耗額外的功率來維持參考電壓 Vrefp/Vcm/Vrefn,因此放寬了參考緩衝器的功率需求。Since one plate of the selected pre-sampling capacitor that receives Vbias during the sampling period is floated during the conversion period, the OPAMP does not need to consume power to drive any capacitive load during the conversion period, so the OPAMP Has relaxed power requirements. Furthermore, as can be seen in Figures 6-8, the voltage output V_OUT is derived by combining the voltage across the selected pre-sampling capacitor and the voltage across the sampling capacitor. Therefore, the operational amplifier OPAMP has a feedback factor (β) equal to one. Compared with the operational amplifier with β<1, the operational amplifier OPAMP can have wider bandwidth or lower power consumption. Additionally, since no charge flows between the selected precharge capacitors Cps1/Cps0/Cps-1/C'ps1/C'ps0/C'ps-1 and the sampling capacitors Csam/C'sam during the conversion cycle, the selected receiver There is no voltage change on one plate of the precharge capacitors Cps1/Cps0/Cps-1/C'ps1/C'ps0/C'ps-1 of the reference voltage Vrefp/Vcm/Vrefn provided by the external reference buffer. Since the reference buffer does not consume additional power to maintain the reference voltage Vrefp/Vcm/Vrefn during the conversion cycle, the power requirement of the reference buffer is relaxed.

如上所述,電壓輸出V_OUT是通過將所選預採樣電容器兩端的電壓(也稱為預採樣電容器的跨壓)與採樣電容器兩端的電壓(也稱為採樣電容器的跨壓)相組合而導出的,其中所選預充電電容器的一個極板接收外部參考緩衝器提供的參考電壓。輸出共模電壓不是由輸入共模電壓決定的。因此,所提出的具有預採樣的MDAC 200可以抑制輸入共模偏移。第9圖是根據本發明實施例的由所提出的具有預採樣的MDAC 200實現的共模抑制的示意圖。假設差分電壓輸入的正信號Vip有共模偏移(例如10mV),差分電壓輸入的負信號Vin也有共模偏移(例如10mV)。在採樣週期期間,固定共模電壓出現在預採樣電容器上。在轉換週期期間,預採樣電容器和採樣電容器串聯,跨串聯的預採樣電容器和採樣電容器的電壓等於預採樣電容器兩端的電壓和採樣電容器兩端的電壓之和。因此,輸出共模電壓由預採樣電容器提供的固定共模電壓決定,而與輸入共模偏移(例如10mV)無關。As mentioned above, the voltage output V_OUT is derived by combining the voltage across the selected pre-sampling capacitor (also called the cross-voltage of the pre-sampling capacitor) with the voltage across the sampling capacitor (also called the cross-voltage of the sampling capacitor) , where one plate of the selected precharge capacitor receives a reference voltage from an external reference buffer. The output common-mode voltage is not determined by the input common-mode voltage. Therefore, the proposed MDAC 200 with pre-sampling can reject the input common mode offset. FIG. 9 is a schematic diagram of common mode rejection achieved by the proposed MDAC 200 with pre-sampling according to an embodiment of the present invention. Assuming that the positive signal Vip of the differential voltage input has a common mode offset (eg 10mV), the negative signal Vin of the differential voltage input also has a common mode offset (eg 10mV). During the sampling period, a fixed common-mode voltage appears on the pre-sampling capacitor. During the conversion period, the pre-sampling capacitor and the sampling capacitor are connected in series, and the voltage across the series-connected pre-sampling and sampling capacitors is equal to the sum of the voltage across the pre-sampling capacitor and the voltage across the sampling capacitor. Therefore, the output common-mode voltage is determined by the fixed common-mode voltage provided by the pre-sampling capacitor, independent of the input common-mode offset (eg, 10mV).

傳統的差分放大器可以提供尾(tail)電流源作為解決與共模偏移相關問題的有效技術。然而,具有尾電流源的傳統差分放大器通常會犧牲速度來解決與共模偏移相關的問題。由於所提出的具有預採樣的MDAC 200抑制了輸入共模偏移,因此運算放大器OPAMP可以由沒有尾電流源的差分放大器來實現,如第10圖所示。例如,運算放大器OPAMP可以是沒有尾電流源的伸縮式(telescopic)差分放大器。由於運算放大器 OPAMP 不使用尾電流源,因此輸出電流不再受尾電流源的限制。以這種方式,運算放大器OPAMP可以操作在較高速度,以根據差分放大器輸入(例如由第10圖所示的伸縮式差分放大器接收的{OP in1, OP ip1}及{OP in0, OP ip0}),設定差分放大器輸出(第10圖所示出的伸縮式差分放大器所產生的OPout)。此外,由於所提出的具有預採樣的MDAC 200可以抑制輸入共模偏移,因此可以從運算放大器OPAMP中省略共模回饋電路。 Conventional differential amplifiers can provide tail current sources as an effective technique for solving problems associated with common-mode offset. However, conventional differential amplifiers with tail current sources often sacrifice speed to address issues related to common-mode offset. Since the proposed MDAC 200 with pre-sampling suppresses the input common-mode offset, the operational amplifier OPAMP can be implemented by a differential amplifier without a tail current source, as shown in Figure 10. For example, the operational amplifier OPAMP may be a telescopic differential amplifier without a tail current source. Since the operational amplifier OPAMP does not use a tail current source, the output current is no longer limited by the tail current source. In this way, the operational amplifier OPAMP can operate at a higher speed to respond according to the differential amplifier input (eg {OP in1 , OP ip1 } and {OP in0 , OP ip0 } received by the telescopic differential amplifier shown in FIG. 10 ]. ) to set the differential amplifier output (OPout from the telescopic differential amplifier shown in Figure 10). Furthermore, since the proposed MDAC 200 with pre-sampling can suppress the input common-mode offset, the common-mode feedback circuit can be omitted from the operational amplifier OPAMP.

與沒有預採樣的傳統MDAC相比,所提出的具有預採樣的MDAC 200通過預採樣電容器選擇來選擇-Vref、0V和Vref中一個,通過僅僅在採樣電容器處對電壓輸入進行採樣來實現2X電壓放大,與使用較小的採樣電容器具有相同的 kT/C雜訊性能,使用β=1的運算放大器,較低的有限(finite)增益誤差和較低的功耗,並且可以使用沒有尾電流源的運算放大器,並放寬用於提供參考電壓Vrefp、Vcm 和 Vrefn的參考緩衝器的功率需求。此外,由於電壓輸出V_OUT是通過將選定的預採樣電容器兩端的電壓與採樣電容器兩端的電壓相組合而獲得的,因此所提出的具有預採樣的MDAC200不需要後臺校準。Compared to the conventional MDAC without pre-sampling, the proposed MDAC 200 with pre-sampling selects one of -Vref, 0V and Vref by pre-sampling capacitor selection to achieve 2X voltage by sampling the voltage input only at the sampling capacitor Amplification, same kT/C noise performance as using smaller sampling capacitor, using op amp with β=1, lower finite gain error and lower power dissipation, and can use no tail current source and relaxes the power requirements of the reference buffers used to provide the reference voltages Vrefp, Vcm and Vrefn. Furthermore, since the voltage output V_OUT is obtained by combining the voltage across the selected pre-sampling capacitor with the voltage across the sampling capacitor, the proposed MDAC 200 with pre-sampling does not require background calibration.

與多級運算放大器相比,單級運算放大器具有更低的功耗和更小的輸出擺幅。當運算放大器OPAMP由單級運算放大器實現時,具有預採樣的MDAC 200可受益於運算放大器OPAMP的低功耗。如上所述,所提出的具有預採樣的MDAC 200可以抑制輸入共模偏移,並且運算放大器OPAMP可以由沒有尾電流源的差分放大器來實現。所提出的具有預採樣的MDAC200 所採用的運算放大器OPAMP可以是沒有尾電流源的單級差分放大器。由於去除了影響輸出擺幅的尾電流源,沒有尾電流源的單級差分放大器可以提供所提出的具有預採樣的MDAC 200所需的輸出擺幅。Compared with multi-stage op amps, single-stage op amps have lower power consumption and smaller output swing. When the operational amplifier OPAMP is implemented by a single stage operational amplifier, the MDAC 200 with pre-sampling can benefit from the low power consumption of the operational amplifier OPAMP. As mentioned above, the proposed MDAC 200 with pre-sampling can reject the input common-mode offset, and the operational amplifier OPAMP can be implemented by a differential amplifier without a tail current source. The operational amplifier OPAMP employed by the proposed MDAC 200 with pre-sampling may be a single stage differential amplifier without a tail current source. A single stage differential amplifier without a tail current source can provide the output swing required by the proposed MDAC 200 with pre-sampling due to the removal of the tail current source that affects the output swing.

在本發明的一些實施例中,相關電平移位(correlated-level-shifting,CLS)輔助運算放大器可用於具有預採樣的MDAC中以解決單級運算放大器遇到的輸出擺幅問題。應該注意的是,在具有預採樣的MDAC中使用具有/不具有尾電流的CLS輔助運算放大器是可選的。實際上,使用所提出的預採樣技術的任何MDAC設計都落入本發明的範圍內。In some embodiments of the invention, correlated-level-shifting (CLS) auxiliary op amps may be used in MDACs with pre-sampling to address the output swing problems encountered with single-stage op amps. It should be noted that the use of a CLS auxiliary op amp with/without tail current in an MDAC with pre-sampling is optional. Virtually any MDAC design using the proposed pre-sampling technique falls within the scope of the present invention.

第11圖是根據本發明實施例的具有預採樣和CLS輔助運算放大器的MDAC的電路圖。第1圖所示的MDAC 100可以由第11圖所示的MDAC 1100實現。在本實施例中,運算放大器OPAMP可以採用具有尾電流源的單級差分放大器或不具有尾電流源的單級差分放大器來實現。MDAC200和1100之間的主要區別在於MDAC1100還包括多個CLS電容器C CLS、C ' CLS和多個開關SW12、SW'12、SW13。CLS電容器C CLS的一個極板耦接到採樣電容器Csam的一個極板。CLS 電容器 C' CLS的一個極板耦接到採樣電容器 C'sam 的一個極板。開關SW13是重置開關(reset switch),該開關SW13的一個節點耦接到CLS電容器C CLS的另一極板而另一節點耦接到CLS電容器C ' CLS的另一極板。開關SW12的一個節點耦接到運算放大器OPAMP的反相輸出節點(-),而另一節點耦接到開關SW13的一個節點。開關 SW '12的一個節點耦接到運算放大器OPAMP的同相輸出節點(+),另一個節點耦接到開關SW13的另一個節點。 11 is a circuit diagram of an MDAC with pre-sampling and CLS auxiliary op amps according to an embodiment of the present invention. The MDAC 100 shown in FIG. 1 can be implemented by the MDAC 1100 shown in FIG. 11 . In this embodiment, the operational amplifier OPAMP can be implemented by a single-stage differential amplifier with a tail current source or a single-stage differential amplifier without a tail current source. The main difference between MDAC200 and 1100 is that MDAC1100 also includes multiple CLS capacitors C CLS , C ' CLS and multiple switches SW12 , SW'12 , SW13 . One plate of CLS capacitor C CLS is coupled to one plate of sampling capacitor Csam. CLS Capacitor C' One plate of CLS is coupled to one plate of sampling capacitor C'sam. The switch SW13 is a reset switch, one node of which is coupled to the other plate of the CLS capacitor C CLS and the other node is coupled to the other plate of the CLS capacitor C CLS . One node of the switch SW12 is coupled to the inverting output node (-) of the operational amplifier OPAMP, and the other node is coupled to one node of the switch SW13. One node of the switch SW'12 is coupled to the non-inverting output node (+) of the operational amplifier OPAMP, and the other node is coupled to the other node of the switch SW13.

在採樣週期期間,開關SW1、SW2、SW3、SW4、SW10、SW11、SW'1、SW2'、SW'3、SW'4、SW'10、SW'11中的每一個被接通,並且開關SW5、SW6、SW7、SW8、SW9、SW12、SW13、SW'5、SW'6、SW'7、SW'8、SW'9、SW'12中的每一個被斷開。在轉換週期期間,開關 SW1、SW2、SW3、SW4、SW10、SW11、SW'1、SW2'、SW'3、SW'4、SW'10、SW'11 中的每一個被斷開,並且開關SW5、SW'5、SW9、SW'9中每一個被接通。關於開關SW6、SW7、SW8、SW'6、SW'7 和 SW'8中的每一個,其響應於電壓輸入 (Vip-Vin) 的量化結果而被選擇性地接通。由於MDAC 200和1100在採樣週期和轉換週期期間對上述開關的控制是相同的,為簡潔起見,在此不再贅述。During the sampling period, each of the switches SW1, SW2, SW3, SW4, SW10, SW11, SW'1, SW2', SW'3, SW'4, SW'10, SW'11 is turned on, and the switches Each of SW5, SW6, SW7, SW8, SW9, SW12, SW13, SW'5, SW'6, SW'7, SW'8, SW'9, SW'12 is turned off. During the switching cycle, each of the switches SW1, SW2, SW3, SW4, SW10, SW11, SW'1, SW2', SW'3, SW'4, SW'10, SW'11 is opened, and the switches Each of SW5, SW'5, SW9, SW'9 is turned on. Regarding each of the switches SW6, SW7, SW8, SW'6, SW'7 and SW'8, it is selectively turned on in response to the quantization result of the voltage input (Vip-Vin). Since the MDACs 200 and 1100 control the above switches during the sampling period and the conversion period are the same, for the sake of brevity, the details are not repeated here.

與具有直接充當MDAC輸出(即,V_OUT)的放大器輸出的MDAC 200相比,MDAC 1100不使用放大器輸出OP_OUT作為MDAC輸出(即,V_OUT)。具體地,轉換週期分為第一階段Amp1和第一階段Amp1之後的第二階段Amp2。 此外,第二階段Amp2包括發生重置(reset,RST)操作以快速重置放大器輸出OP_OUT的開始時段。第12圖是示出由MDAC1100執行的DAC減增益功能的操作的示意圖,包括採樣週期、轉換週期的第一階段Amp1和轉換週期的第二階段Amp2,其中第二階段Amp2包括重置(RST)操作。In contrast to MDAC 200, which has an amplifier output that acts directly as the MDAC output (ie, V_OUT), MDAC 1100 does not use the amplifier output OP_OUT as the MDAC output (ie, V_OUT). Specifically, the conversion cycle is divided into a first stage Amp1 and a second stage Amp2 following the first stage Amp1. In addition, the second stage Amp2 includes a start period in which a reset (RST) operation occurs to quickly reset the amplifier output OP_OUT. FIG. 12 is a schematic diagram illustrating the operation of the DAC gain reduction function performed by the MDAC 1100, including a sampling period, a first stage Amp1 of a conversion period, and a second stage Amp2 of the conversion period, where the second stage Amp2 includes a reset (RST) operate.

參考第11圖並結合第13圖,第13圖是示出在MDAC 1100的轉換週期期間放大器輸出OP_OUT的電壓電平和MDAC輸出的電壓電平(即,V_OUT)的示意圖。在轉換週期的第一階段Amp1期間,開關SW9和開關SW '9中的每一個被接通,並且開關SW12、SW '12、SW13中的每一個被斷開。第14圖是示出在轉換週期的第一階段Amp1期間操作的MDAC 1100的等效電路圖。由於MDAC輸出端通過開關SW9和SW '9耦接到放大器輸出端,放大器輸出端OP_OUT的電壓電平與MDAC輸出端的電壓電平(即V_OUT)基本相同,如第13圖所示。 Referring to FIG. 11 in conjunction with FIG. 13 , FIG. 13 is a schematic diagram illustrating the voltage level of the amplifier output OP_OUT and the voltage level of the MDAC output (ie, V_OUT) during a conversion cycle of the MDAC 1100 . During the first phase Amp1 of the switching cycle, each of switch SW9 and switch SW'9 is turned on, and each of switches SW12, SW'12 , SW13 is turned off. FIG. 14 is an equivalent circuit diagram showing the MDAC 1100 operating during the first phase Ampl of the conversion cycle. Since the MDAC output terminal is coupled to the amplifier output terminal through switches SW9 and SW'9 , the voltage level of the amplifier output terminal OP_OUT is substantially the same as the voltage level of the MDAC output terminal (ie, V_OUT), as shown in FIG. 13 .

在轉換週期的第二階段Amp2的開始時段,開關SW9和SW '9中的每一個被斷開,並且開關SW12、SW '12、SW13中的每一個被接通。第15圖是示出在轉換週期的第二階段Amp2的開始時段操作的MDAC 1100的等效電路圖。如第13圖所示,MDAC輸出的電壓電平(即V_OUT)由CLS電容器C ' CLS和C ' CLS維持,而放大器輸出OP_OUT的電壓電平被重置為共模電壓(例如,0V)。 During the start period of the second phase Amp2 of the conversion cycle, each of the switches SW9 and SW'9 is turned off, and each of the switches SW12, SW'12 , SW13 is turned on. FIG. 15 is an equivalent circuit diagram showing the MDAC 1100 operating during the start period of the second phase Amp2 of the conversion cycle. As shown in Figure 13, the voltage level of the MDAC output (ie, V_OUT ) is maintained by the CLS capacitors C'CLS and C'CLS , while the voltage level of the amplifier output OP_OUT is reset to a common-mode voltage (eg, 0V).

在轉換週期的第二階段Amp2的剩餘時段內,開關SW9、SW '9、SW13中的每一個被斷開,並且開關SW12、SW '12中的每一個被接通。第16圖是示出在轉換週期的第二階段Amp2的剩餘時段期間操作的MDAC 1100的等效電路圖。如第13圖所示,運算放大器OPAMP不斷調整放大器輸出OP_OUT,使得MDAC輸出的電壓電平(即V_OUT)被放大器輸出OP_OUT的電壓電平通過電容耦合(capacitive coupling)進一步調整。從第13圖可以看出,運算放大器OPAMP的放大操作分為兩個階段Amp1和Amp2。在運算放大器輸出OP_OUT重置後,操作在第二階段Amp2下的運算放大器OPAMP所需的輸出擺幅減小。以這種方式,通過使用具有較小輸出擺幅的CLS輔助單級放大器,可以成功獲得具有較大擺幅的MDAC輸出(即 V_OUT)。此外,借助CLS電容器和兩階段(two-step)放大,運算放大器OPAMP(即CLS輔助單級放大器)的有限(finite)增益誤差可以大大降低。 During the remainder of the second phase Amp2 of the switching cycle, each of the switches SW9, SW'9 , SW13 is turned off, and each of the switches SW12, SW'12 is turned on. FIG. 16 is an equivalent circuit diagram illustrating the MDAC 1100 operating during the remainder of the second phase Amp2 of the conversion cycle. As shown in FIG. 13 , the operational amplifier OPAMP continuously adjusts the amplifier output OP_OUT, so that the voltage level of the MDAC output (ie V_OUT) is further adjusted by the voltage level of the amplifier output OP_OUT through capacitive coupling. As can be seen from Figure 13, the amplification operation of the operational amplifier OPAMP is divided into two stages Amp1 and Amp2. After the operational amplifier output OP_OUT is reset, the output swing required to operate the operational amplifier OPAMP in the second stage Amp2 is reduced. In this way, an MDAC output with a larger swing (ie, V_OUT) can be successfully obtained by using a CLS auxiliary single-stage amplifier with a smaller output swing. Furthermore, with the help of CLS capacitors and two-step amplification, the finite gain error of the operational amplifier OPAMP (ie, CLS auxiliary single-stage amplifier) can be greatly reduced.

提出的具有預採樣的MDAC (或提出的具有預採樣的MDAC和CLS輔助運算放大器) 可以由類比數位轉換器 (ADC) 使用,例如流水線ADC或使用流水線 ADC的時間交織ADC(time-interleaved ADC)。第17圖是根據本發明實施例的流水線ADC的示意圖。流水線ADC 1700包括多個級1702_1-1702_N和組合電路1704。級1702_1-1702_N以流水線(pipeline)方式連接,並被佈置為產生多個數位輸出D_1-D_N。組合電路1704用於組合數位輸出D_1-D_N以產生最終數位輸出。級1702_N是終端ADC(terminal ADC)。例如,終端ADC可以由SAR ADC實現。在該實施例中,級1702_1-1702_(N-1)中的每一級可採用所提議的具有預採樣的MDAC(或所提出的具有預採樣的MDAC和CLS輔助運算放大器)。以級1702_1為例,它包括量化電路(quantization circuit,QTZ)1712、決定電路1714和MDAC 1716。量化電路1712產生級1702_1的電壓輸入的量化結果,其中級1702_1的數位輸出D_1取決於級1702_1的電壓輸入的量化結果。MDAC 1716可由MDAC 200/1100實現。決定電路1714被配置為選擇在轉換週期期間將串聯連接到一個採樣電容器Csam的預採樣電容器Cps1、Cps0、Cps-1中的一個,並進一步選擇在轉換週期期間將串聯連接到另一個採樣電容器C 'sam的預採樣電容器C 'ps1、C 'ps0、C 'ps-1中的一個。例如,決定電路1714參考電壓輸入(例如,數位輸出D_1)的量化結果來確定將與2*(Vip-Vin)組合的Dout*Vref,其中如果(Vip- Vin) < -Vref/4,則Dout=+1;如果 -Vref/4 ≦ (Vip-Vin) ≦ Vref/4,則 Dout=0,如果 (Vip-Vin) > Vref/4,則 Dout=-1。 The proposed MDAC with pre-sampling (or the proposed MDAC with pre-sampling and CLS auxiliary op amp) can be used by analog-to-digital converters (ADCs) such as pipelined ADCs or time-interleaved ADCs using pipelined ADCs . FIG. 17 is a schematic diagram of a pipelined ADC according to an embodiment of the present invention. The pipelined ADC 1700 includes a plurality of stages 1702_1 - 1702_N and a combining circuit 1704 . Stages 1702_1-1702_N are pipelined and arranged to produce a plurality of digital outputs D_1-D_N. Combining circuit 1704 is used to combine the digital outputs D_1-D_N to produce the final digital output. Stage 1702_N is a terminal ADC. For example, the end ADC can be implemented by a SAR ADC. In this embodiment, each of stages 1702_1-1702_(N-1) may employ the proposed MDAC with pre-sampling (or the proposed MDAC with pre-sampling and a CLS auxiliary op amp). Taking stage 1702_1 as an example, it includes a quantization circuit (QTZ) 1712 , a decision circuit 1714 and an MDAC 1716 . The quantization circuit 1712 produces a quantized result of the voltage input of stage 1702_1, wherein the digital output D_1 of the stage 1702_1 depends on the quantized result of the voltage input of the stage 1702_1. MDAC 1716 may be implemented by MDAC 200/1100. The decision circuit 1714 is configured to select one of the pre-sampling capacitors Cps1 , Cps0 , Cps-1 to be connected in series to one sampling capacitor Csam during the conversion period, and further to select one of the pre-sampling capacitors C to be connected in series to the other sampling capacitor C during the conversion period One of ' sam's pre-sampling capacitors C'ps1 , C'ps0 , C'ps -1. For example, decision circuit 1714 refers to the quantization result of the voltage input (eg, digital output D_1) to determine Dout*Vref to be combined with 2*(Vip-Vin), where if (Vip-Vin) < -Vref/4, then Dout =+1; if -Vref/4 ≦ (Vip-Vin) ≦ Vref/4, then Dout=0, if (Vip-Vin) > Vref/4, then Dout=-1.

關於流水線ADC 1700,具有由MDAC 200/1100實現的MDAC的一級具有1.5位元/級(1.5-bit/stage)結構。然而,這僅用於說明目的,並不意味著對本發明的限制。通過對 MDAC 200/1100 進行適當的修改,具有修改過的MDAC的一個級可能具有2.5 位元/級結構或3.5位元/級結構。第18圖是示出根據本發明實施例的具有預採樣的另一MDAC的電路圖。關於流水線ADC 1700,具有由MDAC 1800實現的MDAC的一級具有2.5位元/級結構。MDAC 200 和 1800之間的主要區別在於MDAC 1800包括四個採樣電容器Csam1、Csam2、C 'sam1、C 'sam2 以及額外的開關SW14和 SW '14。開關SW10、SW11、SW14、SW'10、SW '11、SW '14 中的每一個在採樣週期期間接通,在轉換週期期間斷開。由於相關領域的技術人員在閱讀以上針對MDAC 200的段落之後可以容易地理解MDAC 1800所採用的預採樣技術的細節和益處,為了簡潔,這裡省略進一步的描述。 Regarding the pipelined ADC 1700, the stage with the MDAC implemented by the MDAC 200/1100 has a 1.5-bit/stage structure. However, this is for illustrative purposes only, and is not meant to limit the present invention. With appropriate modifications to the MDAC 200/1100, a stage with a modified MDAC may have a 2.5 bits/stage structure or a 3.5 bits/stage structure. FIG. 18 is a circuit diagram illustrating another MDAC with pre-sampling according to an embodiment of the present invention. Regarding the pipelined ADC 1700, a stage with an MDAC implemented by the MDAC 1800 has a 2.5 bit/stage structure. The main difference between MDAC 200 and 1800 is that MDAC 1800 includes four sampling capacitors Csam1, Csam2, C'sam1 , C'sam2 and additional switches SW14 and SW'14 . Each of the switches SW10, SW11, SW14, SW'10, SW'11 , SW'14 is turned on during the sampling period and turned off during the conversion period. Since the details and benefits of the pre-sampling technique employed by MDAC 1800 can be readily understood by those skilled in the relevant art after reading the paragraphs above for MDAC 200, further description is omitted here for brevity.

在第2、11和18圖所示的上述實施例中,預定義電壓V pd由運算放大器OPAMP的偏置電壓V bias設置。然而,這些僅用於說明目的,並不意味著對本發明的限制。或者,可以修改第2、11和18圖中所示出的實施例以具有由諸如共模電壓(例如,0V)的不同電壓設置的預定義電壓V pd。第19圖是根據本發明實施例的利用共模電壓作為預定義電壓的具有預採樣的MDAC的電路圖。MDAC 200與1900的主要區別在於開關SW1的一個節點被佈置接收參考電壓V CM,而開關SW '1的一個節點被佈置接收參考電壓V CM,其中參考電壓V CM為共模電壓(例如,0V)。 In the above-described embodiments shown in Figures 2, 11 and 18, the predefined voltage V pd is set by the bias voltage V bias of the operational amplifier OPAMP. However, these are for illustrative purposes only, and are not meant to limit the present invention. Alternatively, the embodiments shown in Figures 2, 11 and 18 may be modified to have a predefined voltage Vpd set by a different voltage such as a common mode voltage (eg, 0V). 19 is a circuit diagram of an MDAC with pre-sampling using a common-mode voltage as a predefined voltage, according to an embodiment of the present invention. The main difference between MDAC 200 and 1900 is that one node of switch SW1 is arranged to receive a reference voltage V CM while one node of switch SW 1 is arranged to receive a reference voltage V CM , where the reference voltage V CM is a common mode voltage (eg, 0V ).

在第2圖、第11圖和第18圖所示的上述實施例中,開關SW1、SW '1、SW5、SW '5的佈置在採樣週期期間控制預採樣電容器Cps1、Cps0、Cps-1、C 'ps1、C 'ps0、 C 'ps-1中每一個的一個極板被連接到預定義電壓(例如,V pd=V bias),並且與運算放大器OPAMP的輸入埠斷開連接,在轉換週期期間控制預採樣電容器Cps1、Cps0、Cps-1、C 'ps1、C 'ps0、C 'ps-1中每一個的一個極板與預定義電壓(例如,V pd=V bias)斷開連接,並連接到運算放大器OPAMP的輸入埠。然而,這些僅用於說明目的,並不意味著對本發明的限制。或者,第2、11和18圖中所示出的實施例可以修改為具有不同的開關佈置,其可以實現相同的目的,即被佈置為在採樣週期期間使預採樣電容器 Cps1、Cps0、Cps-1、C 'ps1、C 'ps0、C 'ps-1中每一個的一個極板連接到預定義電壓(例如,V pd=V bias或V pd=V cm)並與運算放大器OPAMP的輸入埠斷開連接,並在轉換週期期間使預採樣電容器Cps1、Cps0、Cps-1、C 'ps1、C 'ps0、C 'ps-1 的一個極板與預定義電壓(例如,V pd=V bias或V pd=V cm)斷開並連接到運算放大器OPAMP的輸入埠。 In the above-described embodiments shown in Figures 2, 11 and 18, the arrangement of switches SW1, SW'1 , SW5, SW'5 controls the pre-sampling capacitors Cps1, Cps0, Cps-1, One plate of each of C'ps1 , C'ps0 , C'ps -1 is connected to a predefined voltage (eg, Vpd = Vbias ) and disconnected from the input port of the operational amplifier OPAMP, during conversion One plate of each of the pre-sampling capacitors Cps1, Cps0 , Cps-1, C'ps1 , C'ps0 , C'ps -1 is controlled to be disconnected from a predefined voltage (eg, Vpd =Vbias) during the cycle , and connect to the input port of the operational amplifier OPAMP. However, these are for illustrative purposes only, and are not meant to limit the present invention. Alternatively, the embodiments shown in Figures 2, 11 and 18 can be modified to have a different switch arrangement, which can achieve the same purpose of being arranged to make the pre-sampling capacitors Cps1, Cps0, Cps- during the sampling period 1. One plate of each of C'ps1 , C'ps0 , C'ps - 1 is connected to a predefined voltage (eg, Vpd = Vbias or Vpd= Vcm ) and is connected to the input port of the operational amplifier OPAMP Disconnect and connect one plate of the pre-sampling capacitors Cps1, Cps0 , Cps-1, C'ps1 , C'ps0 , C'ps -1 to a predefined voltage (eg, Vpd =Vbias) during the conversion cycle or V pd =V cm ) is disconnected and connected to the input port of the operational amplifier OPAMP.

第20圖是根據本發明實施例的利用不同開關佈置的具有預採樣的MDAC的電路圖。MDAC 200和2000之間的主要區別在於,開關SW1被包括多個開關的的開關組SG1代替,開關SW '1被包括多個開關的開關組SG '1代替,開關SW5被包括多個開關的開關組SG5代替,開關SW '5被包括多個開關的開關組SG '5代替。 20 is a circuit diagram of an MDAC with pre-sampling utilizing different switch arrangements, according to an embodiment of the present invention. The main difference between MDACs 200 and 2000 is that switch SW1 is replaced by switch group SG1 comprising a plurality of switches, switch SW'1 is replaced by switch group SG'1 comprising a plurality of switches, and switch SW5 is replaced by a switch group SG'1 comprising a plurality of switches The switch group SG5 is replaced, and the switch SW'5 is replaced by a switch group SG'5 comprising a plurality of switches.

開關組SGl具有一開關、另一開關和又一開關,該一開關具有耦接到預定義電壓V pd(例如,V pd=V bias或V pd=V cm)的第一節點和耦接到預採樣電容器Cpsl的一個極板的第二節點,該另一開關具有耦接到預定義電壓Vpd(例如,Vpd=Vbias或Vpd=Vcm)的第一節點和耦接到預採樣電容器Cps0的一個極板的第二節點,該又一開關具有耦接到預定義電壓Vpd(例如,Vpd=Vbias或Vpd=Vcm)的第一節點和耦接到預採樣電容器Cps-1的一個極板的第二節點。 Switch group SG1 has a switch, another switch, and yet another switch, the one switch having a first node coupled to a predefined voltage Vpd (eg, Vpd = Vbias or Vpd = Vcm ) and a node coupled to The second node of one plate of the pre-sampling capacitor Cpsl, the other switch having a first node coupled to a predefined voltage Vpd (eg, Vpd=Vbias or Vpd=Vcm) and one coupled to the pre-sampling capacitor Cps0 The second node of the plate, the further switch has a first node coupled to a predefined voltage Vpd (eg, Vpd=Vbias or Vpd=Vcm) and a second node of one of the plates coupled to the pre-sampling capacitor Cps-1 two nodes.

開關組SG'1具有一開關、另一開關和又一開關,該一開關具有耦接到預定義電壓Vpd (例如,Vpd=Vbias或Vpd=Vcm)的第一節點以及耦接到預採樣電容器C 'ps1的一個極板的第二節點,該另一開關具有耦接到預定義電壓Vpd(例如,Vpd=Vbias或Vpd=Vcm)的第一節點和耦接到預採樣電容器C'ps0的一個極板的第二節點,該又一開關具有耦接到預定義電壓Vpd(例如,Vpd=Vbias或Vpd=Vcm)的第一節點和耦接到預採樣電容器C 'ps-1的一個極板的第二節點。 Switch group SG'1 has one switch, another switch, and yet another switch, the one switch having a first node coupled to a predefined voltage Vpd (eg, Vpd=Vbias or Vpd=Vcm) and coupled to a pre-sampling capacitor A second node of one plate of C'ps1 , the other switch having a first node coupled to a predefined voltage Vpd (eg, Vpd=Vbias or Vpd=Vcm) and a pre-sampling capacitor C'ps0 A second node of one plate, the further switch has a first node coupled to a predefined voltage Vpd (eg, Vpd=Vbias or Vpd=Vcm) and a pole coupled to a pre-sampling capacitor C'ps -1 The second node of the board.

開關組SG5具有一開關、另一開關和又一開關,該一開關具有耦接到運算放大器OPAMP的同相輸入節點的第一節點和耦接到預採樣電容器Cpsl的一個極板的第二節點,該另一開關具有耦接到運算放大器OPAMP的同相輸入節點的第一節點和耦接到預採樣電容器Cps0的一個極板的第二節點,該又一開關具有耦接到運算放大器OPAMP的同相輸入節點的第一節點和耦接到預採樣電容器Cps-1的一個極板的第二節點。switch bank SG5 has a switch, another switch and yet another switch, the one switch having a first node coupled to the non-inverting input node of the operational amplifier OPAMP and a second node coupled to one plate of the pre-sampling capacitor Cps1, The other switch has a first node coupled to the non-inverting input node of the operational amplifier OPAMP and a second node coupled to one plate of the pre-sampling capacitor Cps0, the further switch has a non-inverting input coupled to the operational amplifier OPAMP A first node of the nodes and a second node coupled to one plate of the pre-sampling capacitor Cps-1.

開關組SG'5具有一開關、另一開關和又一開關,該一開關具有耦接到運算放大器OPAMP的反相輸入節點的第一節點和耦接到預採樣電容器C 'psl的一個極板的第二節點,另一開關具有耦接到運算放大器OPAMP的反相輸入節點的第一節點和耦接到預採樣電容器C 'ps0 的一個極板的第二節點,該又一開關具有耦接到運算放大器OPAMP 的反相輸入節點的第一節點和耦接到預採樣電容器C 'ps-1的一個極板上的第二節點。 Switch bank SG'5 has a switch, another switch, and yet another switch, the one switch having a first node coupled to the inverting input node of the operational amplifier OPAMP and one plate coupled to the pre-sampling capacitor C'ps1 The second node of the other switch has a first node coupled to the inverting input node of the operational amplifier OPAMP and a second node coupled to one plate of the pre-sampling capacitor C ' ps0 , the further switch has a second node coupled to A first node to the inverting input node of the operational amplifier OPAMP and a second node coupled to one plate of the pre-sampling capacitor C'ps -1.

在MDAC 2000的採樣週期期間,開關組SGl和SG '1中包含的所有開關都被接通,並且開關組SG5和SG '5中包含的所有開關都被斷開。在MDAC 2000 的轉換週期期間,開關組SG1和SG '1中包含的所有開關都斷開,而開關組SG5 和 SG '5中包含的所有開關都接通。 During the sampling period of MDAC 2000, all switches contained in switch groups SG1 and SG'1 are turned on, and all switches contained in switch groups SG5 and SG'5 are turned off. During a conversion cycle of MDAC 2000, all switches contained in switch groups SG1 and SG'1 are turned off, while all switches contained in switch groups SG5 and SG'5 are turned on.

雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何所屬領域具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,因此本發明的保護範圍當以所附請求項為準。Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the art can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, The protection scope of the present invention shall be subject to the appended claims.

100:MDAC 102:運算放大器 112:輸入埠 114:輸出埠 104:開關電路 106:預採樣電容器電路 108:採樣電容器電路 200, 1100:MDAC 1700:流水線ADC 1702_1-1702_N:級 1712:量化電路 1714:決定電路 1716:MDAC 1704:組合電路 1800, 1900, 2000:MDAC 100: MDAC 102: Operational Amplifier 112: input port 114: output port 104: switch circuit 106: Pre-sampling capacitor circuit 108: Sampling capacitor circuit 200, 1100: MDAC 1700: Pipeline ADC 1702_1-1702_N: level 1712: Quantization Circuits 1714: Decision Circuit 1716: MDAC 1704: Combinational Circuits 1800, 1900, 2000: MDAC

第1圖是示出根據本發明實施例的具有預採樣的乘法數位類比轉換器(MDAC)的框圖。 第2圖是根據本發明實施例的具有預採樣的MDAC的電路圖。 第3圖是示出根據本發明實施例的具有預採樣的所提出的MDAC設計的原理的示意圖。 第4圖為示出第2圖中所示MDAC的傳輸曲線圖。 第5圖是示出第2圖中所示的在採樣週期期間運行的MDAC的等效電路圖。 第6圖是示出第2圖中所示的在轉換週期期間在 (Vip-Vin) > Vref/4的條件下運行的MDAC的等效電路圖。 第7圖是示出第2圖所示的在轉換週期期間在-Vref/4≦ (Vip-Vin)≦Vref/4的條件下運行的MDAC的等效電路圖,其中,≦表示小於或者等於。 第8圖是示出第2圖所示的在轉換週期期間在 (Vip-Vin) <-Vref/4  的條件下運行的MDAC的等效電路圖。 第9圖是示出根據本發明實施例的通過具有預採樣的所提出的MDAC實現的共模抑制的示意圖。 第10圖是示出根據本發明實施例的沒有尾(tail)電流源的差分放大器的示意圖。 第11圖是根據本發明實施例的具有預採樣和CLS輔助運算放大器(CLS-assisted operational amplifier)的MDAC的電路圖。 第12圖是示出由第11圖中所示的MDAC執行的DAC減增益功能(DAC-subtract-gain function)的操作的示意圖,其中,該MDAC包括採樣週期、轉換週期的第一階段和轉換週期的第二階段,其中第二階段包括重置(reset,RST)操作。 第13圖是示出在第11圖所示的MDAC的轉換週期期間放大器輸出的電壓電平和MDAC輸出的電壓電平的示意圖。 第14圖是示出在第11圖中所示的操作在轉換週期的第一階段的MDAC的等效電路圖。 第15圖是示出在第11圖中所示的操作在轉換週期的第二階段的開始時段的MDAC的等效電路圖。 第16圖是示出第11圖所示的操作在轉換週期的第二階段的剩餘時段的MDAC的等效電路圖。 第17圖是示出根據本發明實施例的流水線ADC的示意圖。 第18圖是示出根據本發明實施例的具有預採樣的另一MDAC的電路圖。 第19圖是根據本發明實施例的利用共模電壓作為預定義電壓的具有預採樣的MDAC的電路圖。 第20圖是根據本發明實施例的利用不同開關佈置的具有預採樣的MDAC的電路圖。 Figure 1 is a block diagram illustrating a multiplying digital-to-analog converter (MDAC) with pre-sampling in accordance with an embodiment of the present invention. FIG. 2 is a circuit diagram of an MDAC with pre-sampling in accordance with an embodiment of the present invention. Figure 3 is a schematic diagram illustrating the principle of the proposed MDAC design with pre-sampling according to an embodiment of the present invention. FIG. 4 is a graph showing the transfer curve of the MDAC shown in FIG. 2 . FIG. 5 is an equivalent circuit diagram showing the MDAC shown in FIG. 2 operating during the sampling period. FIG. 6 is an equivalent circuit diagram showing the MDAC shown in FIG. 2 operating under the condition of (Vip-Vin) > Vref/4 during the conversion cycle shown in FIG. 2 . FIG. 7 is an equivalent circuit diagram showing the MDAC operating under the condition of -Vref/4≦(Vip-Vin)≦Vref/4 during the conversion period shown in FIG. 2 , where ≦ denotes less than or equal to. Figure 8 is an equivalent circuit diagram showing the MDAC shown in Figure 2 operating under the condition (Vip-Vin) <-Vref/4 during the conversion cycle shown in Figure 2. Figure 9 is a schematic diagram illustrating common mode rejection achieved by the proposed MDAC with pre-sampling according to an embodiment of the present invention. FIG. 10 is a schematic diagram illustrating a differential amplifier without a tail current source according to an embodiment of the present invention. FIG. 11 is a circuit diagram of an MDAC with pre-sampling and a CLS-assisted operational amplifier according to an embodiment of the present invention. FIG. 12 is a schematic diagram showing the operation of the DAC-subtract-gain function performed by the MDAC shown in FIG. 11, where the MDAC includes a sampling period, a first stage of a conversion period, and a conversion The second phase of the cycle, where the second phase includes a reset (RST) operation. FIG. 13 is a schematic diagram showing the voltage level of the amplifier output and the voltage level of the MDAC output during the conversion period of the MDAC shown in FIG. 11 . FIG. 14 is an equivalent circuit diagram showing the MDAC shown in FIG. 11 operating in the first stage of the conversion cycle. FIG. 15 is an equivalent circuit diagram showing the MDAC shown in FIG. 11 operating during the start period of the second phase of the conversion cycle. FIG. 16 is an equivalent circuit diagram illustrating the MDAC shown in FIG. 11 operating during the remainder of the second phase of the conversion cycle. FIG. 17 is a schematic diagram illustrating a pipelined ADC according to an embodiment of the present invention. FIG. 18 is a circuit diagram illustrating another MDAC with pre-sampling according to an embodiment of the present invention. 19 is a circuit diagram of an MDAC with pre-sampling using a common-mode voltage as a predefined voltage, according to an embodiment of the present invention. 20 is a circuit diagram of an MDAC with pre-sampling utilizing different switch arrangements, according to an embodiment of the present invention.

200:MDAC 200: MDAC

Claims (26)

一種乘法數位類比轉換器MDAC,包括: 運算放大器,具有輸入埠和輸出埠; 採樣電容器電路; 預採樣電容器電路;以及 開關電路,用於控制所述運算放大器、所述採樣電容器電路和所述預採樣電容器電路之間的互連; 其中,在所述MDAC的採樣週期期間,所述開關電路設置為將預定義電壓連接到所述預採樣電容器電路,將多個參考電壓連接到所述預採樣電容器電路,斷開所述預採樣電容器與所述運算放大器的輸入埠的連接,斷開所述預採樣電容器電路和所述採樣電容器電路的連接,斷開所述運算放大器的輸出埠與所述採樣電容器電路的連接,將所述MDAC的電壓輸入連接到所述採樣電容器電路;以及 其中,在所述MDAC的轉換週期期間,所述開關電路設置為將所述預採樣電容器電路連接到所述採樣電容器電路,其中所述預採樣電容器電路與所述採樣電容器電路之間的連接配置取決於所述電壓輸入的量化結果,進一步將所述預定義電壓與所述預採樣電容器電路斷開,將所述多個參考電壓與所述預採樣電容器電路斷開,將所述預採樣電容器電路連接至所述運算放大器的輸入端,將所述運算放大器的輸出端連接到所述採樣電容器電路,以及將所述電壓輸入與所述採樣電容器電路斷開。 A multiplying digital-to-analog converter MDAC, comprising: Operational amplifier, with input port and output port; sampling capacitor circuit; a pre-sampling capacitor circuit; and a switch circuit for controlling interconnection between the operational amplifier, the sampling capacitor circuit and the pre-sampling capacitor circuit; wherein, during a sampling period of the MDAC, the switching circuit is configured to connect a predefined voltage to the pre-sampling capacitor circuit, connect a plurality of reference voltages to the pre-sampling capacitor circuit, and disconnect the pre-sampling The capacitor is connected to the input port of the operational amplifier, the connection between the pre-sampling capacitor circuit and the sampling capacitor circuit is disconnected, the connection between the output port of the operational amplifier and the sampling capacitor circuit is disconnected, and the The voltage input of the MDAC is connected to the sampling capacitor circuit; and wherein the switching circuit is configured to connect the pre-sampling capacitor circuit to the sampling capacitor circuit during a conversion period of the MDAC, wherein the connection between the pre-sampling capacitor circuit and the sampling capacitor circuit is configured further disconnecting the predefined voltage from the pre-sampling capacitor circuit, disconnecting the plurality of reference voltages from the pre-sampling capacitor circuit, disconnecting the pre-sampling capacitor circuit depending on the quantization result of the voltage input A circuit is connected to the input of the operational amplifier, the output of the operational amplifier is connected to the sampling capacitor circuit, and the voltage input is disconnected from the sampling capacitor circuit. 如請求項1之所述的MDAC,其中,所述預採樣電容器電路包括第一預採樣電容器、第二預採樣電容器、第三預採樣電容器、第四預採樣電容器、第五預採樣電容器和第六預採樣電容器;以及所述開關電路包括: 第一開關,具有耦接到所述預定義電壓的第一節點,和耦接到所述第一預採樣電容器、所述第二預採樣電容器和所述第三預採樣電容器中的每一個的一個極板的第二節點,其中在所述採樣週期期間所述第一開關接通以及在所述轉換週期期間所述第一開關斷開;以及 第二開關,具有耦接到所述預定義電壓的第一節點,和耦接到所述第四預採樣電容器、所述第五預採樣電容器和所述第六預採樣電容器中每一個的一個極板的第二節點,其中在所述採樣週期期間所述第二開關接通,在所述轉換週期期間所述第二開關斷開。 The MDAC of claim 1, wherein the pre-sampling capacitor circuit includes a first pre-sampling capacitor, a second pre-sampling capacitor, a third pre-sampling capacitor, a fourth pre-sampling capacitor, a fifth pre-sampling capacitor, and a six pre-sampling capacitors; and the switching circuit includes: a first switch having a first node coupled to the predefined voltage, and a first switch coupled to each of the first pre-sampling capacitor, the second pre-sampling capacitor, and the third pre-sampling capacitor a second node of a plate, wherein the first switch is on during the sampling period and the first switch is off during the conversion period; and A second switch having a first node coupled to the predefined voltage and coupled to one of each of the fourth pre-sampling capacitor, the fifth pre-sampling capacitor, and the sixth pre-sampling capacitor a second node of the plate, wherein the second switch is on during the sampling period and the second switch is off during the conversion period. 如請求項1所述的MDAC,其中,所述預採樣電容器電路包括第一預採樣電容器、第二預採樣電容器、第三預採樣電容器、第四預採樣電容器、第五預採樣電容器和第六預採樣電容器;所述開關電路包括: 第一開關組,具有一開關、另一開關以及又一開關;所述一開關具有耦接到所述預定義電壓的第一節點,以及耦接到所述第一預採樣電容器的一個極板的第二節點,所述另一開關具有耦接到所述預定義電壓的第一節點以及耦接到所述第二預採樣電容器的一個極板的第二節點,所述又一開關具有耦接到所述預定義電壓的第一節點和耦接到所述第三預採樣電容器的一個極板的第二節點;以及 第二開關組,具有一開關、另一開關以及又一開關;所述一開關具有耦接到所述預定義電壓的第一節點,以及耦接到所述第四預採樣電容器的一個極板的第二節點,所述另一開關具有耦接到所述預定義電壓的第一節點以及耦接到所述第五預採樣電容器的一個極板的第二節點,所述又一開關具有耦接到所述預定義電壓的第一節點和耦接到所述第六預採樣電容器的一個極板的第二節點; 其中,所述第一開關組和所述第二開關組中包含的所有開關在所述採樣週期期間接通並且在所述轉換週期期間斷開。 The MDAC of claim 1, wherein the pre-sampling capacitor circuit includes a first pre-sampling capacitor, a second pre-sampling capacitor, a third pre-sampling capacitor, a fourth pre-sampling capacitor, a fifth pre-sampling capacitor, and a sixth pre-sampling capacitor A pre-sampling capacitor; the switch circuit includes: a first switch bank having one switch, another switch, and yet another switch; the one switch having a first node coupled to the predefined voltage, and a plate coupled to the first pre-sampling capacitor a second node of , the further switch has a first node coupled to the predefined voltage and a second node coupled to one plate of the second pre-sampling capacitor, the further switch has a coupled a first node coupled to the predefined voltage and a second node coupled to one plate of the third pre-sampling capacitor; and A second switch bank having one switch, another switch, and yet another switch; the one switch having a first node coupled to the predefined voltage, and a plate coupled to the fourth pre-sampling capacitor a second node of , the further switch has a first node coupled to the predefined voltage and a second node coupled to one plate of the fifth pre-sampling capacitor, the further switch has a coupled a first node coupled to the predefined voltage and a second node coupled to one plate of the sixth pre-sampling capacitor; Wherein, all switches included in the first switch group and the second switch group are turned on during the sampling period and turned off during the conversion period. 如請求項1所述的MDAC,其中,所述運算放大器的輸入埠包括同相輸入節點和反相輸入節點;所述預採樣電容器電路包括第一預採樣電容器、第二預採樣電容器、第三預採樣電容器、第四預採樣電容器、第五預採樣電容器和第六預採樣電容器;所述開關電路包括: 第一開關,具有耦接到所述運算放大器的同相輸入節點的第一節點和耦接到所述第一預採樣電容器、所述第二預採樣電容器和所述第三預採樣電容器中的每一個的一個極板的第二節點;其中,所述第一開關在所述採樣週期期間斷開,在所述轉換週期期間接通; 第二開關,具有耦接到所述運算放大器的反相輸入節點的第一節點和耦接到所述第四預採樣電容器、所述第五預採樣電容器和所述第六預採樣電容器中的每一個的一個極板的第二節點,其中,所述第二開關在所述採樣週期期間斷開並且在所述轉換週期期間接通。 The MDAC of claim 1, wherein the input port of the operational amplifier includes a non-inverting input node and an inverting input node; the pre-sampling capacitor circuit includes a first pre-sampling capacitor, a second pre-sampling capacitor, a third pre-sampling capacitor a sampling capacitor, a fourth pre-sampling capacitor, a fifth pre-sampling capacitor and a sixth pre-sampling capacitor; the switch circuit includes: a first switch having a first node coupled to a non-inverting input node of the operational amplifier and coupled to each of the first pre-sampling capacitor, the second pre-sampling capacitor, and the third pre-sampling capacitor a second node of one plate; wherein the first switch is turned off during the sampling period and turned on during the conversion period; A second switch having a first node coupled to an inverting input node of the operational amplifier and coupled to one of the fourth pre-sampling capacitor, the fifth pre-sampling capacitor, and the sixth pre-sampling capacitor A second node of one plate of each, wherein the second switch is turned off during the sampling period and turned on during the conversion period. 如請求項1所述的MDAC,其中,所述運算放大器的輸入埠包括同相輸入節點和反相輸入節點;所述預採樣電容器電路包括第一預採樣電容器、第二預採樣電容器、第三預採樣電容器、第四預採樣電容器、第五預採樣電容器和第六預採樣電容器;以及所述開關電路包括: 第一開關組,具有一開關,另一開關和又一開關;所述一開關具有耦接到所述運算放大器的同相輸入節點的第一節點和耦接到所述第一預採樣電容器的一個極板的第二節點,所述另一開關具有耦接到所述運算放大器的同相輸入節點的第一節點和耦接到所述第二預採樣電容器的一個極板的第二節點,所述又一開關具有耦接到所述運算放大器的同相輸入節點的第一節點和耦接到所述第三預採樣電容器的一個極板的第二節點;以及 第二開關組,具有一開關,另一開關和又一開關;所述一開關具有耦接到所述運算放大器的反相輸入節點的第一節點和耦接到所述第四預採樣電容器的一個極板的第二節點,所述另一開關具有耦接到所述運算放大器的反相輸入節點的第一節點和耦接到所述第五預採樣電容器的一個極板的第二節點,以及所述又一開關具有耦接到所述運算放大器的反相輸入節點的第一節點和耦接到所述第六預採樣電容器的一個極板的第二節點; 其中,所述第一開關組和所述第二開關組中包含的所有開關在所述採樣週期期間斷開,並且在所述轉換週期期間接通。 The MDAC of claim 1, wherein the input port of the operational amplifier includes a non-inverting input node and an inverting input node; the pre-sampling capacitor circuit includes a first pre-sampling capacitor, a second pre-sampling capacitor, a third pre-sampling capacitor a sampling capacitor, a fourth pre-sampling capacitor, a fifth pre-sampling capacitor, and a sixth pre-sampling capacitor; and the switching circuit includes: a first switch bank having one switch, another switch and yet another switch; the one switch having a first node coupled to a non-inverting input node of the operational amplifier and one coupled to the first pre-sampling capacitor a second node of the plate, the other switch having a first node coupled to a non-inverting input node of the operational amplifier and a second node of one plate coupled to the second pre-sampling capacitor, the yet another switch has a first node coupled to a non-inverting input node of the operational amplifier and a second node coupled to one plate of the third pre-sampling capacitor; and A second switch bank having one switch, another switch and yet another switch; the one switch having a first node coupled to an inverting input node of the operational amplifier and a second switch coupled to the fourth pre-sampling capacitor a second node of one plate, the other switch having a first node coupled to the inverting input node of the operational amplifier and a second node of the one plate coupled to the fifth pre-sampling capacitor, and the further switch has a first node coupled to an inverting input node of the operational amplifier and a second node coupled to one plate of the sixth pre-sampling capacitor; Wherein, all switches included in the first switch group and the second switch group are turned off during the sampling period and turned on during the conversion period. 如請求項1所述的MDAC,其中,所述多個參考電壓包括第一參考電壓、第二參考電壓和第三參考電壓;所述預採樣電容器電路包括第一預採樣電容器、第二預採樣電容器、第三預採樣電容器、第四預採樣電容器、第五預採樣電容器和第六預採樣電容器,其中所述第一預採樣電容器的第一極板、所述第二預採樣電容器的第一極板和所述第三預採樣電容器的第一極板彼此耦接,並且所述第四預採樣電容器的第一極板、所述第五預採樣電容器的第一極板和所述第六預採樣電容器的第一極板彼此耦接;以及所述開關電路包括: 第一開關,具有耦接到所述第一參考電壓的第一節點和耦接到所述第一預採樣電容器的第二極板的第二節點,其中所述第一開關在所述採樣週期期間接通並且在所述轉換週期期間斷開; 第二開關,具有耦接到所述第二參考電壓的第一節點和耦接到所述第二預採樣電容器的第二極板的第二節點,其中所述第二開關在所述採樣週期期間接通並且在所述轉換週期期間斷開; 第三開關,具有耦接到所述第三參考電壓的第一節點和耦接到所述第三預採樣電容器的第二極板的第二節點,其中所述第三開關在所述採樣週期期間接通並且在所述轉換週期期間斷開; 第四開關,具有耦接到所述第三參考電壓的第一節點和耦接到所述第四預採樣電容器的第二極板的第二節點,其中所述第四開關在所述採樣週期期間接通並且在所述轉換週期期間斷開; 第五開關,具有耦接到所述第二參考電壓的第一節點和耦接到所述第五預採樣電容器的第二極板的第二節點,其中所述第五開關在所述採樣週期期間接通並且在所述轉換週期期間斷開;以及 第六開關,具有耦接到所述第一參考電壓的第一節點和耦接到所述第六預採樣電容器的第二極板的第二節點,其中所述第六開關在所述採樣週期期間接通並且在所述轉換週期期間斷開。 The MDAC of claim 1, wherein the plurality of reference voltages comprise a first reference voltage, a second reference voltage and a third reference voltage; the pre-sampling capacitor circuit comprises a first pre-sampling capacitor, a second pre-sampling capacitors, a third pre-sampling capacitor, a fourth pre-sampling capacitor, a fifth pre-sampling capacitor, and a sixth pre-sampling capacitor, wherein the first plate of the first pre-sampling capacitor, the first plate of the second pre-sampling capacitor The plate and the first plate of the third pre-sampling capacitor are coupled to each other, and the first plate of the fourth pre-sampling capacitor, the first plate of the fifth pre-sampling capacitor, and the sixth The first plates of the pre-sampling capacitors are coupled to each other; and the switch circuit includes: a first switch having a first node coupled to the first reference voltage and a second node coupled to a second plate of the first pre-sampling capacitor, wherein the first switch is in the sampling period turned on during the conversion period and turned off during the conversion cycle; a second switch having a first node coupled to the second reference voltage and a second node coupled to a second plate of the second pre-sampling capacitor, wherein the second switch is in the sampling period turned on during the conversion period and turned off during the conversion cycle; a third switch having a first node coupled to the third reference voltage and a second node coupled to a second plate of the third pre-sampling capacitor, wherein the third switch is in the sampling period turned on during the conversion period and turned off during the conversion cycle; a fourth switch having a first node coupled to the third reference voltage and a second node coupled to a second plate of the fourth pre-sampling capacitor, wherein the fourth switch is in the sampling period turned on during the conversion period and turned off during the conversion cycle; a fifth switch having a first node coupled to the second reference voltage and a second node coupled to a second plate of the fifth pre-sampling capacitor, wherein the fifth switch is in the sampling period turned on during the conversion period and turned off during the conversion period; and a sixth switch having a first node coupled to the first reference voltage and a second node coupled to a second plate of the sixth pre-sampling capacitor, wherein the sixth switch is in the sampling period on during the transition period and off during the transition period. 如請求項1所述的MDAC,其中,所述採樣電容器電路包括第一採樣電容器和第二採樣電容器;所述預採樣電容器電路包括第一預採樣電容器、第二預採樣電容器、第三預採樣電容器、第四預採樣電容器、第五預採樣電容器和第六預採樣電容器,其中所述第一預採樣電容器、所述第二預採樣電容器和所述第三預採樣電容器的第一極板彼此耦接,並且所述第四預採樣電容器、所述第五預採樣電容器和所述第六預採樣電容器的第一極板彼此耦接;以及所述開關電路包括: 第一開關,具有耦接到所述第一預採樣電容器的第二極板的第一節點和耦接到所述第一採樣電容器的一個極板的第二節點,其中所述第一開關在所述採樣週期期間斷開,並且在所述轉換週期期間響應於所述電壓輸入的量化結果被選擇性地接通; 第二開關,具有耦接到所述第二預採樣電容器的第二極板的第一節點和耦接到所述第一採樣電容器的所述一個極板的第二節點,其中所述第二開關在所述採樣週期期間斷開,並且在所述轉換週期期間響應於所述電壓輸入的所述量化結果被選擇性的接通; 第三開關,具有耦接到所述第三預採樣電容器的第二極板的第一節點和耦接到所述第一採樣電容器的所述一個極板的第二節點,其中所述第三開關在所述採樣週期期間斷開,並且在所述轉換週期期間響應於所述電壓輸入的所述量化結果被選擇性的接通; 第四開關,具有耦接到所述第四預採樣電容器的第二極板的第一節點和耦接到所述第二採樣電容器的一個極板的第二節點,其中所述第四開關在所述採樣週期期間斷開,並且在所述轉換週期期間響應於所述電壓輸入的所述量化結果被選擇性的接通; 第五開關,具有耦接到所述第五預採樣電容器的第二極板的第一節點和耦接到所述第二採樣電容器的所述一個極板的第二節點,其中所述第五開關在所述採樣週期期間斷開,並且在所述轉換週期期間響應於所述電壓輸入的所述量化結果被選擇性的接通; 第六開關,具有耦接到所述第六預採樣電容器的第二極板的第一節點和耦接到所述第二採樣電容器的所述一個極板的第二節點,其中所述第六開關在所述採樣週期期間斷開,並且在所述轉換週期期間響應於所述電壓輸入的所述量化結果被選擇性的接通。 The MDAC of claim 1, wherein the sampling capacitor circuit includes a first sampling capacitor and a second sampling capacitor; the pre-sampling capacitor circuit includes a first pre-sampling capacitor, a second pre-sampling capacitor, a third pre-sampling capacitor capacitors, a fourth pre-sampling capacitor, a fifth pre-sampling capacitor, and a sixth pre-sampling capacitor, wherein the first plates of the first pre-sampling capacitor, the second pre-sampling capacitor, and the third pre-sampling capacitor are each other coupled, and the first plates of the fourth pre-sampling capacitor, the fifth pre-sampling capacitor, and the sixth pre-sampling capacitor are coupled to each other; and the switch circuit includes: a first switch having a first node coupled to a second plate of the first pre-sampling capacitor and a second node coupled to one plate of the first sampling capacitor, wherein the first switch is at turned off during the sampling period and selectively turned on during the conversion period in response to a quantized result of the voltage input; A second switch having a first node coupled to a second plate of the second pre-sampling capacitor and a second node coupled to the one plate of the first sampling capacitor, wherein the second a switch is turned off during the sampling period and selectively turned on during the conversion period in response to the quantized result of the voltage input; A third switch having a first node coupled to a second plate of the third pre-sampling capacitor and a second node coupled to the one plate of the first sampling capacitor, wherein the third a switch is turned off during the sampling period and selectively turned on during the conversion period in response to the quantized result of the voltage input; a fourth switch having a first node coupled to a second plate of the fourth pre-sampling capacitor and a second node coupled to one plate of the second sampling capacitor, wherein the fourth switch is at turned off during the sampling period and selectively turned on during the conversion period in response to the quantized result of the voltage input; a fifth switch having a first node coupled to a second plate of the fifth pre-sampling capacitor and a second node coupled to the one plate of the second sampling capacitor, wherein the fifth a switch is turned off during the sampling period and selectively turned on during the conversion period in response to the quantized result of the voltage input; a sixth switch having a first node coupled to a second plate of the sixth pre-sampling capacitor and a second node coupled to the one plate of the second sampling capacitor, wherein the sixth A switch is turned off during the sampling period and selectively turned on during the conversion period in response to the quantized result of the voltage input. 如請求項1所述的MDAC,其中,所述運算放大器的輸出埠包括同相輸出節點和反相輸出節點;所述採樣電容器電路包括第一採樣電容器和第二採樣電容器;以及所述開關電路包括: 第一開關,具有耦接到所述運算放大器的反相輸出節點的第一節點和耦接到所述第一採樣電容器的一個極板的第二節點,其中所述第一開關在所述採樣週期期間斷開並且在所述轉換週期期間接通;以及 第二開關,具有耦接到所述運算放大器的同相輸出節點的第一節點和耦接到所述第二採樣電容器的一個極板的第二節點,其中所述第二開關在所述採樣週期期間斷開並且在所述轉換週期期間接通。 The MDAC of claim 1, wherein the output port of the operational amplifier includes a non-inverting output node and an inverting output node; the sampling capacitor circuit includes a first sampling capacitor and a second sampling capacitor; and the switching circuit includes : a first switch having a first node coupled to an inverting output node of the operational amplifier and a second node coupled to a plate of the first sampling capacitor, wherein the first switch is in the sampling off during the period and on during the conversion period; and a second switch having a first node coupled to a non-inverting output node of the operational amplifier and a second node coupled to a plate of the second sampling capacitor, wherein the second switch is in the sampling period off during the transition period and on during the transition period. 如請求項1所述的MDAC,其中,所述電壓輸入是包括正信號和負信號的差分輸入;所述採樣電容器電路包括第一採樣電容器和第二採樣電容器,所述開關電路包括: 第一開關,具有耦接到所述負信號的第一節點和耦接到所述第一採樣電容器的第一極板的第二節點,其中所述第一開關在所述採樣週期期間接通並且在所述轉換週期期間斷開; 第二開關,具有耦接到所述正信號的第一節點和耦接到所述第一採樣電容器的第二極板的第二節點,其中所述第二開關在所述採樣週期期間接通並且在所述轉換週期期間斷開; 第三開關,具有耦接到所述正信號的第一節點和耦接到所述第二採樣電容器的第一極板的第二節點,其中所述第三開關在所述採樣週期期間接通並且在所述轉換週期期間斷開;以及 第四開關,具有耦接到所述負信號的第一節點和耦接到所述第二採樣電容器的第二極板的第二節點,其中所述第四開關在所述採樣週期期間接通並且在所述轉換週期期間斷開。 The MDAC of claim 1, wherein the voltage input is a differential input including a positive signal and a negative signal; the sampling capacitor circuit includes a first sampling capacitor and a second sampling capacitor, and the switch circuit includes: a first switch having a first node coupled to the negative signal and a second node coupled to a first plate of the first sampling capacitor, wherein the first switch is turned on during the sampling period and is disconnected during the transition period; a second switch having a first node coupled to the positive signal and a second node coupled to a second plate of the first sampling capacitor, wherein the second switch is turned on during the sampling period and is disconnected during the transition period; a third switch having a first node coupled to the positive signal and a second node coupled to a first plate of the second sampling capacitor, wherein the third switch is turned on during the sampling period and is turned off during the transition period; and a fourth switch having a first node coupled to the negative signal and a second node coupled to a second plate of the second sampling capacitor, wherein the fourth switch is turned on during the sampling period and is turned off during the conversion period. 如請求項1所述的MDAC,其中,所述運算放大器為沒有尾電流源的單級差分放大器。The MDAC of claim 1, wherein the operational amplifier is a single-stage differential amplifier without a tail current source. 如請求項1所述的MDAC,進一步包括: 第一相關電平移位(CLS)電容器;以及 第二CLS電容器; 其中,所述運算放大器的輸出埠包括同相輸出節點和反相輸出節點;所述採樣電容器電路包括第一採樣電容器和第二採樣電容器;所述第一採樣電容的一個極板耦接至所述第一CLS電容器的第一極板;所述第二採樣電容器的一個極板耦接至所述第二CLS電容器的第一極板;以及所述開關電路包括: 第一開關,具有耦接到所述第一採樣電容器的所述一個極板的第一節點和耦接到所述運算放大器的反相輸出節點的第二節點,其中所述第一開關在所述轉換週期的第一階段期間接通,以及在所述轉換週期的第二階段期間斷開; 第二開關,具有耦接到所述第二採樣電容器的所述一個極板的第一節點和耦接到所述運算放大器的同相輸出節點的第二節點,其中所述第二開關在所述轉換週期的第一階段期間接通,並在所述轉換週期的第二階段期間斷開; 第三開關,具有耦接到所述第一CLS電容器的第二極板的第一節點和耦接到所述第二CLS電容器的第二極板的第二節點,其中所述第三開關在所述第二階段的開始時段接通,並且在所述轉換週期的第二階段的剩餘時段斷開; 第四開關,具有耦接到所述運算放大器的反相輸出節點的第一節點和耦接到所述第三開關的第一節點的第二節點,其中所述第四開關在所述轉換週期的第一階段期間斷開,並且在所述轉換週期的第二階段期間接通;以及 第五開關,具有耦接到所述運算放大器的同相輸出節點的第一節點和耦接到所述第三開關的第二節點的第二節點,其中所述第五開關在所述轉換週期的第一階段期間斷開,以及在所述轉換週期的第二階段期間接通。 The MDAC of claim 1, further comprising: a first correlation level shift (CLS) capacitor; and the second CLS capacitor; Wherein, the output port of the operational amplifier includes a non-inverting output node and an inverting output node; the sampling capacitor circuit includes a first sampling capacitor and a second sampling capacitor; one plate of the first sampling capacitor is coupled to the The first plate of the first CLS capacitor; one plate of the second sampling capacitor is coupled to the first plate of the second CLS capacitor; and the switch circuit includes: A first switch having a first node coupled to the one plate of the first sampling capacitor and a second node coupled to an inverting output node of the operational amplifier, wherein the first switch is at the being turned on during the first phase of the conversion cycle and turned off during the second phase of the conversion cycle; a second switch having a first node coupled to the one plate of the second sampling capacitor and a second node coupled to a non-inverting output node of the operational amplifier, wherein the second switch is at the being turned on during the first phase of the conversion cycle and turned off during the second phase of the conversion cycle; A third switch having a first node coupled to a second plate of the first CLS capacitor and a second node coupled to a second plate of the second CLS capacitor, wherein the third switch is at being on for a start period of the second phase and off for the remainder of the second phase of the conversion cycle; a fourth switch having a first node coupled to an inverting output node of the operational amplifier and a second node coupled to the first node of the third switch, wherein the fourth switch is in the transition period is turned off during the first phase of the conversion cycle and turned on during the second phase of the conversion cycle; and a fifth switch having a first node coupled to a non-inverting output node of the operational amplifier and a second node coupled to a second node of the third switch, wherein the fifth switch is at the end of the transition cycle Off during the first phase and on during the second phase of the switching cycle. 如請求項11所述的MDAC,其中,在所述轉換週期的第二階段期間,所述第一採樣電容器的所述一個極板和所述第二採樣電容器的所述一個極板之間的電壓差充當MDAC輸出。The MDAC of claim 11, wherein during the second phase of the conversion cycle, the electrical connection between the one plate of the first sampling capacitor and the one plate of the second sampling capacitor is The voltage difference acts as the MDAC output. 如請求項1所述的MDAC,其中,所述預定義電壓為所述運算放大器的偏置電壓,或者,所述預定義電壓為所述多個參考電壓中的一個。The MDAC of claim 1, wherein the predefined voltage is a bias voltage of the operational amplifier, or the predefined voltage is one of the plurality of reference voltages. 一種乘法數位類比轉換器MDAC,包括: 運算放大器; 採樣電容器電路;以及 預採樣電容器電路; 其中,在所述MDAC的採樣週期期間,所述預採樣電容器電路採樣並保持多個預採樣參考電壓,所述採樣電容器電路採樣所述MDAC的電壓輸入; 其中,在所述MDAC的轉換週期期間,所述預採樣電容器電路耦接所述採樣電容器電路,所述運算放大器根據所述電壓輸入和所述多個預採樣參考電壓之一設置所述運算放大器的輸出埠的電壓輸出;所述預採樣電容器電路和採樣電容器電路之間的連接配置取決於所述電壓輸入的量化結果,所述電壓輸出是從基於所述電壓輸入和所述多個預採樣參考電壓之一的電壓組合獲得的。 A multiplying digital-to-analog converter MDAC, comprising: Operational Amplifier; a sampling capacitor circuit; and Pre-sampling capacitor circuit; wherein, during the sampling period of the MDAC, the pre-sampling capacitor circuit samples and holds a plurality of pre-sampling reference voltages, and the sampling capacitor circuit samples the voltage input of the MDAC; wherein the pre-sampling capacitor circuit is coupled to the sampling capacitor circuit during a conversion period of the MDAC, the operational amplifier sets the operational amplifier according to the voltage input and one of the plurality of pre-sampling reference voltages The voltage output of the output port of The voltage combination of one of the reference voltages is obtained. 如請求項14所述的MDAC,其中,所述運算放大器具有等於1的回饋因數,並且在所述預採樣電容器電路和所述採樣電容器電路之間沒有電荷流動。The MDAC of claim 14, wherein the operational amplifier has a feedback factor equal to one and no charge flows between the pre-sampling capacitor circuit and the sampling capacitor circuit. 如請求項14所述的MDAC,其中,在從參考緩衝器接收一個參考電壓的所述預採樣電容器電路的一個極板處沒有電壓變化。The MDAC of claim 14, wherein there is no voltage change at a plate of the pre-sampling capacitor circuit that receives a reference voltage from a reference buffer. 如請求項14所述的MDAC,進一步包括: 開關電路,用於控制所述運算放大器、所述採樣電容器電路和所述預採樣電容器電路之間的互連; 其中,在所述MDAC的採樣週期期間,所述開關電路設置為允許所述預採樣電容器電路採樣和保持所述多個預採樣參考電壓,以及允許所述採樣電容器電路採樣所述MDAC的所述電壓輸入; 其中,在所述MDAC的轉換週期期間,所述開關電路用於將所述預採樣電容器電路連接到所述採樣電容器電路,以及允許所述運算放大器根據所述電壓輸入和所述多個預採樣參考電壓之一設置所述運算放大器的輸出埠處的電壓輸出,以及所述預採樣電容器電路和所述採樣電容器電路之間的連接配置取決於所述電壓輸入的量化結果。 The MDAC of claim 14, further comprising: a switch circuit for controlling interconnection between the operational amplifier, the sampling capacitor circuit and the pre-sampling capacitor circuit; wherein, during a sampling period of the MDAC, the switching circuit is configured to allow the pre-sampling capacitor circuit to sample and hold the plurality of pre-sampled reference voltages, and to allow the sampling capacitor circuit to sample the MDAC's voltage input; wherein, during a conversion cycle of the MDAC, the switch circuit is used to connect the pre-sampling capacitor circuit to the sampling capacitor circuit and to allow the operational amplifier to respond to the voltage input and the plurality of pre-samples One of the reference voltages sets the voltage output at the output port of the operational amplifier, and the connection configuration between the pre-sampling capacitor circuit and the sampling capacitor circuit depends on the quantization result of the voltage input. 如請求項17所述的MDAC,其中,所述預採樣電容器電路包括第一預採樣電容器、第二預採樣電容器、第三預採樣電容器、第四預採樣電容器、第五預採樣電容器和第六預採樣電容器;以及所述開關電路包括: 第一開關,具有耦接到所述預定義電壓的第一節點,和耦接到所述第一預採樣電容器、所述第二預採樣電容器和所述第三預採樣電容器中的每一個的一個極板的第二節點,其中在所述採樣週期期間所述第一開關接通以及在所述轉換週期期間所述第一開關斷開;以及 第二開關,具有耦接到所述預定義電壓的第一節點,和耦接到所述第四預採樣電容器、所述第五預採樣電容器和所述第六預採樣電容器中每一個的一個極板的第二節點,其中在所述採樣週期期間所述第二開關接通,在所述轉換週期期間所述第二開關斷開; 或者,所述開關電路包括: 第一開關組,具有一開關、另一開關以及又一開關;所述一開關具有耦接到所述預定義電壓的第一節點,以及耦接到所述第一預採樣電容器的一個極板的第二節點,所述另一開關具有耦接到所述預定義電壓的第一節點以及耦接到所述第二預採樣電容器的一個極板的第二節點,所述又一開關具有耦接到所述預定義電壓的第一節點和耦接到所述第三預採樣電容器的一個極板的第二節點;以及 第二開關組,具有一開關、另一開關以及又一開關;所述一開關具有耦接到所述預定義電壓的第一節點,以及耦接到所述第四預採樣電容器的一個極板的第二節點,所述另一開關具有耦接到所述預定義電壓的第一節點以及耦接到所述第五預採樣電容器的一個極板的第二節點,所述又一開關具有耦接到所述預定義電壓的第一節點和耦接到所述第六預採樣電容器的一個極板的第二節點; 其中,所述第一開關組和所述第二開關組中包含的所有開關在所述採樣週期期間接通並且在所述轉換週期期間斷開。 The MDAC of claim 17, wherein the pre-sampling capacitor circuit includes a first pre-sampling capacitor, a second pre-sampling capacitor, a third pre-sampling capacitor, a fourth pre-sampling capacitor, a fifth pre-sampling capacitor, and a sixth pre-sampling capacitor a pre-sampling capacitor; and the switching circuit includes: a first switch having a first node coupled to the predefined voltage, and a first switch coupled to each of the first pre-sampling capacitor, the second pre-sampling capacitor, and the third pre-sampling capacitor a second node of a plate, wherein the first switch is on during the sampling period and the first switch is off during the conversion period; and A second switch having a first node coupled to the predefined voltage and coupled to one of each of the fourth pre-sampling capacitor, the fifth pre-sampling capacitor, and the sixth pre-sampling capacitor a second node of the plate, wherein the second switch is on during the sampling period and the second switch is off during the conversion period; Alternatively, the switch circuit includes: a first switch bank having one switch, another switch, and yet another switch; the one switch having a first node coupled to the predefined voltage, and a plate coupled to the first pre-sampling capacitor a second node of , the further switch has a first node coupled to the predefined voltage and a second node coupled to one plate of the second pre-sampling capacitor, the further switch has a coupled a first node coupled to the predefined voltage and a second node coupled to one plate of the third pre-sampling capacitor; and A second switch bank having one switch, another switch, and yet another switch; the one switch having a first node coupled to the predefined voltage, and a plate coupled to the fourth pre-sampling capacitor a second node of , the further switch has a first node coupled to the predefined voltage and a second node coupled to one plate of the fifth pre-sampling capacitor, the further switch has a coupled a first node coupled to the predefined voltage and a second node coupled to one plate of the sixth pre-sampling capacitor; Wherein, all switches included in the first switch group and the second switch group are turned on during the sampling period and turned off during the conversion period. 如請求項17所述的MDAC,其中,所述運算放大器的輸入埠包括同相輸入節點和反相輸入節點;所述預採樣電容器電路包括第一預採樣電容器、第二預採樣電容器、第三預採樣電容器、第四預採樣電容器、第五預採樣電容器和第六預採樣電容器;以及所述開關電路包括: 第一開關,具有耦接到所述運算放大器的同相輸入節點的第一節點和耦接到所述第一預採樣電容器、所述第二預採樣電容器和所述第三預採樣電容器中的每一個的一個極板的第二節點;其中,所述第一開關在所述採樣週期期間斷開,在所述轉換週期期間接通; 第二開關,具有耦接到所述運算放大器的反相輸入節點的第一節點和耦接到所述第四預採樣電容器、所述第五預採樣電容器和所述第六預採樣電容器中的每一個的一個極板的第二節點,其中,所述第二開關在所述採樣週期期間斷開並且在所述轉換週期期間接通; 或者,所述開關電路包括: 第一開關組,具有一開關,另一開關和又一開關;所述一開關具有耦接到所述運算放大器的同相輸入節點的第一節點和耦接到所述第一預採樣電容器的一個極板的第二節點,所述另一開關具有耦接到所述運算放大器的同相輸入節點的第一節點和耦接到所述第二預採樣電容器的一個極板的第二節點,所述又一開關具有耦接到所述運算放大器的同相輸入節點的第一節點和耦接到所述第三預採樣電容器的一個極板的第二節點;以及 第二開關組,具有一開關,另一開關和又一開關;所述一開關具有耦接到所述運算放大器的反相輸入節點的第一節點和耦接到所述第四預採樣電容器的一個極板的第二節點,所述另一開關具有耦接到所述運算放大器的反相輸入節點的第一節點和耦接到所述第五預採樣電容器的一個極板的第二節點,以及所述又一開關具有耦接到所述運算放大器的反相輸入節點的第一節點和耦接到所述第六預採樣電容器的一個極板的第二節點; 其中,所述第一開關組和所述第二開關組中包含的所有開關在所述採樣週期期間斷開,並且在所述轉換週期期間接通。 The MDAC of claim 17, wherein the input port of the operational amplifier includes a non-inverting input node and an inverting input node; the pre-sampling capacitor circuit includes a first pre-sampling capacitor, a second pre-sampling capacitor, a third pre-sampling capacitor a sampling capacitor, a fourth pre-sampling capacitor, a fifth pre-sampling capacitor, and a sixth pre-sampling capacitor; and the switching circuit includes: a first switch having a first node coupled to a non-inverting input node of the operational amplifier and coupled to each of the first pre-sampling capacitor, the second pre-sampling capacitor, and the third pre-sampling capacitor a second node of one plate; wherein the first switch is turned off during the sampling period and turned on during the conversion period; A second switch having a first node coupled to an inverting input node of the operational amplifier and coupled to one of the fourth pre-sampling capacitor, the fifth pre-sampling capacitor, and the sixth pre-sampling capacitor a second node of one plate of each, wherein the second switch is turned off during the sampling period and turned on during the conversion period; Alternatively, the switch circuit includes: a first switch bank having one switch, another switch and yet another switch; the one switch having a first node coupled to a non-inverting input node of the operational amplifier and one coupled to the first pre-sampling capacitor a second node of the plate, the other switch having a first node coupled to a non-inverting input node of the operational amplifier and a second node of one plate coupled to the second pre-sampling capacitor, the yet another switch has a first node coupled to a non-inverting input node of the operational amplifier and a second node coupled to one plate of the third pre-sampling capacitor; and A second switch bank having one switch, another switch and yet another switch; the one switch having a first node coupled to an inverting input node of the operational amplifier and a second switch coupled to the fourth pre-sampling capacitor a second node of one plate, the other switch having a first node coupled to the inverting input node of the operational amplifier and a second node of the one plate coupled to the fifth pre-sampling capacitor, and the further switch has a first node coupled to an inverting input node of the operational amplifier and a second node coupled to one plate of the sixth pre-sampling capacitor; Wherein, all switches included in the first switch group and the second switch group are turned off during the sampling period and turned on during the conversion period. 如請求項17所述的MDAC,其中,所述預採樣電容器電路包括第一預採樣電容器、第二預採樣電容器、第三預採樣電容器、第四預採樣電容器、第五預採樣電容器和第六預採樣電容器,其中所述第一預採樣電容器的第一極板、所述第二預採樣電容器的第一極板和所述第三預採樣電容器的第一極板彼此耦接,並且所述第四預採樣電容器的第一極板、所述第五預採樣電容器的第一極板和所述第六預採樣電容器的第一極板彼此耦接;以及所述開關電路包括: 第一開關,具有耦接到所述第一參考電壓的第一節點和耦接到所述第一預採樣電容器的第二極板的第二節點,其中所述第一開關在所述採樣週期期間接通並且在所述轉換週期期間斷開; 第二開關,具有耦接到所述第二參考電壓的第一節點和耦接到所述第二預採樣電容器的第二極板的第二節點,其中所述第二開關在所述採樣週期期間接通並且在所述轉換週期期間斷開; 第三開關,具有耦接到所述第三參考電壓的第一節點和耦接到所述第三預採樣電容器的第二極板的第二節點,其中所述第三開關在所述採樣週期期間接通並且在所述轉換週期期間斷開; 第四開關,具有耦接到所述第三參考電壓的第一節點和耦接到所述第四預採樣電容器的第二極板的第二節點,其中所述第四開關在所述採樣週期期間接通並且在所述轉換週期期間斷開; 第五開關,具有耦接到所述第二參考電壓的第一節點和耦接到所述第五預採樣電容器的第二極板的第二節點,其中所述第五開關在所述採樣週期期間接通並且在所述轉換週期期間斷開;以及 第六開關,具有耦接到所述第一參考電壓的第一節點和耦接到所述第六預採樣電容器的第二極板的第二節點,其中所述第六開關在所述採樣週期期間接通並且在所述轉換週期期間斷開。 The MDAC of claim 17, wherein the pre-sampling capacitor circuit includes a first pre-sampling capacitor, a second pre-sampling capacitor, a third pre-sampling capacitor, a fourth pre-sampling capacitor, a fifth pre-sampling capacitor, and a sixth pre-sampling capacitor a pre-sampling capacitor, wherein the first plate of the first pre-sampling capacitor, the first plate of the second pre-sampling capacitor, and the first plate of the third pre-sampling capacitor are coupled to each other, and the The first plate of the fourth pre-sampling capacitor, the first plate of the fifth pre-sampling capacitor, and the first plate of the sixth pre-sampling capacitor are coupled to each other; and the switch circuit includes: a first switch having a first node coupled to the first reference voltage and a second node coupled to a second plate of the first pre-sampling capacitor, wherein the first switch is in the sampling period turned on during the conversion period and turned off during the conversion cycle; a second switch having a first node coupled to the second reference voltage and a second node coupled to a second plate of the second pre-sampling capacitor, wherein the second switch is in the sampling period turned on during the conversion period and turned off during the conversion cycle; a third switch having a first node coupled to the third reference voltage and a second node coupled to a second plate of the third pre-sampling capacitor, wherein the third switch is in the sampling period turned on during the conversion period and turned off during the conversion cycle; a fourth switch having a first node coupled to the third reference voltage and a second node coupled to a second plate of the fourth pre-sampling capacitor, wherein the fourth switch is in the sampling period turned on during the conversion period and turned off during the conversion cycle; a fifth switch having a first node coupled to the second reference voltage and a second node coupled to a second plate of the fifth pre-sampling capacitor, wherein the fifth switch is in the sampling period turned on during the conversion period and turned off during the conversion period; and a sixth switch having a first node coupled to the first reference voltage and a second node coupled to a second plate of the sixth pre-sampling capacitor, wherein the sixth switch is in the sampling period on during the transition period and off during the transition period. 如請求項17所述的MDAC,其中,所述採樣電容器電路包括第一採樣電容器和第二採樣電容器;所述預採樣電容器電路包括第一預採樣電容器、第二預採樣電容器、第三預採樣電容器、第四預採樣電容器、第五預採樣電容器和第六預採樣電容器,其中所述第一預採樣電容器、所述第二預採樣電容器和所述第三預採樣電容器的第一極板彼此耦接,並且所述第四預採樣電容器、所述第五預採樣電容器和所述第六預採樣電容器的第一極板彼此耦接;以及所述開關電路包括: 第一開關,具有耦接到所述第一預採樣電容器的第二極板的第一節點和耦接到所述第一採樣電容器的一個極板的第二節點,其中所述第一開關在所述採樣週期期間斷開,並且在所述轉換週期期間響應於所述電壓輸入的量化結果被選擇性地接通; 第二開關,具有耦接到所述第二預採樣電容器的第二極板的第一節點和耦接到所述第一採樣電容器的所述一個極板的第二節點,其中所述第二開關在所述採樣週期期間斷開,並且在所述轉換週期期間響應於所述電壓輸入的所述量化結果被選擇性的接通; 第三開關,具有耦接到所述第三預採樣電容器的第二極板的第一節點和耦接到所述第一採樣電容器的所述一個極板的第二節點,其中所述第三開關在所述採樣週期期間斷開,並且在所述轉換週期期間響應於所述電壓輸入的所述量化結果被選擇性的接通; 第四開關,具有耦接到所述第四預採樣電容器的第二極板的第一節點和耦接到所述第二採樣電容器的一個極板的第二節點,其中所述第四開關在所述採樣週期期間斷開,並且在所述轉換週期期間響應於所述電壓輸入的所述量化結果被選擇性的接通; 第五開關,具有耦接到所述第五預採樣電容器的第二極板的第一節點和耦接到所述第二採樣電容器的所述一個極板的第二節點,其中所述第五開關在所述採樣週期期間斷開,並且在所述轉換週期期間響應於所述電壓輸入的所述量化結果被選擇性的接通; 第六開關,具有耦接到所述第六預採樣電容器的第二極板的第一節點和耦接到所述第二採樣電容器的所述一個極板的第二節點,其中所述第六開關在所述採樣週期期間斷開,並且在所述轉換週期期間響應於所述電壓輸入的所述量化結果被選擇性的接通。 The MDAC of claim 17, wherein the sampling capacitor circuit includes a first sampling capacitor and a second sampling capacitor; the pre-sampling capacitor circuit includes a first pre-sampling capacitor, a second pre-sampling capacitor, a third pre-sampling capacitor capacitors, a fourth pre-sampling capacitor, a fifth pre-sampling capacitor, and a sixth pre-sampling capacitor, wherein the first plates of the first pre-sampling capacitor, the second pre-sampling capacitor, and the third pre-sampling capacitor are each other coupled, and the first plates of the fourth pre-sampling capacitor, the fifth pre-sampling capacitor, and the sixth pre-sampling capacitor are coupled to each other; and the switch circuit includes: a first switch having a first node coupled to a second plate of the first pre-sampling capacitor and a second node coupled to one plate of the first sampling capacitor, wherein the first switch is at turned off during the sampling period and selectively turned on during the conversion period in response to a quantized result of the voltage input; A second switch having a first node coupled to a second plate of the second pre-sampling capacitor and a second node coupled to the one plate of the first sampling capacitor, wherein the second a switch is turned off during the sampling period and selectively turned on during the conversion period in response to the quantized result of the voltage input; A third switch having a first node coupled to a second plate of the third pre-sampling capacitor and a second node coupled to the one plate of the first sampling capacitor, wherein the third a switch is turned off during the sampling period and selectively turned on during the conversion period in response to the quantized result of the voltage input; a fourth switch having a first node coupled to a second plate of the fourth pre-sampling capacitor and a second node coupled to one plate of the second sampling capacitor, wherein the fourth switch is at turned off during the sampling period and selectively turned on during the conversion period in response to the quantized result of the voltage input; a fifth switch having a first node coupled to a second plate of the fifth pre-sampling capacitor and a second node coupled to the one plate of the second sampling capacitor, wherein the fifth a switch is turned off during the sampling period and selectively turned on during the conversion period in response to the quantized result of the voltage input; a sixth switch having a first node coupled to a second plate of the sixth pre-sampling capacitor and a second node coupled to the one plate of the second sampling capacitor, wherein the sixth A switch is turned off during the sampling period and selectively turned on during the conversion period in response to the quantized result of the voltage input. 如請求項17所述的MDAC,其中, 所述運算放大器的輸出埠包括同相輸出節點和反相輸出節點;所述採樣電容器電路包括第一採樣電容器和第二採樣電容器;以及所述開關電路包括: 第一開關,具有耦接到所述運算放大器的反相輸出節點的第一節點和耦接到所述第一採樣電容器的一個極板的第二節點,其中所述第一開關在所述採樣週期期間斷開並且在所述轉換週期期間接通;以及 第二開關,具有耦接到所述運算放大器的同相輸出節點的第一節點和耦接到所述第二採樣電容器的一個極板的第二節點,其中所述第二開關在所述採樣週期期間斷開並且在所述轉換週期期間接通。 The MDAC of claim 17, wherein, The output port of the operational amplifier includes a non-inverting output node and an inverting output node; the sampling capacitor circuit includes a first sampling capacitor and a second sampling capacitor; and the switching circuit includes: a first switch having a first node coupled to an inverting output node of the operational amplifier and a second node coupled to a plate of the first sampling capacitor, wherein the first switch is in the sampling off during the period and on during the conversion period; and a second switch having a first node coupled to a non-inverting output node of the operational amplifier and a second node coupled to a plate of the second sampling capacitor, wherein the second switch is in the sampling period off during the transition period and on during the transition period. 如請求項17所述的MDAC,其中, 所述電壓輸入是包括正信號和負信號的差分輸入;所述採樣電容器電路包括第一採樣電容器和第二採樣電容器,所述開關電路包括: 第一開關,具有耦接到所述負信號的第一節點和耦接到所述第一採樣電容器的第一極板的第二節點,其中所述第一開關在所述採樣週期期間接通並且在所述轉換週期期間斷開; 第二開關,具有耦接到所述正信號的第一節點和耦接到所述第一採樣電容器的第二極板的第二節點,其中所述第二開關在所述採樣週期期間接通並且在所述轉換週期期間斷開; 第三開關,具有耦接到所述正信號的第一節點和耦接到所述第二採樣電容器的第一極板的第二節點,其中所述第三開關在所述採樣週期期間接通並且在所述轉換週期期間斷開;以及 第四開關,具有耦接到所述負信號的第一節點和耦接到所述第二採樣電容器的第二極板的第二節點,其中所述第四開關在所述採樣週期期間接通並且在所述轉換週期期間斷開。 The MDAC of claim 17, wherein, The voltage input is a differential input including a positive signal and a negative signal; the sampling capacitor circuit includes a first sampling capacitor and a second sampling capacitor, and the switch circuit includes: a first switch having a first node coupled to the negative signal and a second node coupled to a first plate of the first sampling capacitor, wherein the first switch is turned on during the sampling period and is disconnected during the transition period; a second switch having a first node coupled to the positive signal and a second node coupled to a second plate of the first sampling capacitor, wherein the second switch is turned on during the sampling period and is disconnected during the transition period; a third switch having a first node coupled to the positive signal and a second node coupled to a first plate of the second sampling capacitor, wherein the third switch is turned on during the sampling period and is turned off during the transition period; and a fourth switch having a first node coupled to the negative signal and a second node coupled to a second plate of the second sampling capacitor, wherein the fourth switch is turned on during the sampling period and is turned off during the conversion period. 如請求項17所述的MDAC,進一步包括: 第一相關電平移位CLS電容器;以及 第二CLS電容器; 其中,所述運算放大器的輸出埠包括同相輸出節點和反相輸出節點;所述採樣電容器電路包括第一採樣電容器和第二採樣電容器;所述第一採樣電容的一個極板耦接至所述第一CLS電容器的第一極板;所述第二採樣電容器的一個極板耦接至所述第二CLS電容器的第一極板;以及所述開關電路包括: 第一開關,具有耦接到所述第一採樣電容器的所述一個極板的第一節點和耦接到所述運算放大器的反相輸出節點的第二節點,其中所述第一開關在所述轉換週期的第一階段期間接通,以及在所述轉換週期的第二階段期間斷開; 第二開關,具有耦接到所述第二採樣電容器的所述一個極板的第一節點和耦接到所述運算放大器的同相輸出節點的第二節點,其中所述第二開關在所述轉換週期的第一階段期間接通,並在所述轉換週期的第二階段期間斷開; 第三開關,具有耦接到所述第一CLS電容器的第二極板的第一節點和耦接到所述第二CLS電容器的第二極板的第二節點,其中所述第三開關在所述第二階段的開始時段接通,並且在所述轉換週期的第二階段的剩餘時段斷開; 第四開關,具有耦接到所述運算放大器的反相輸出節點的第一節點和耦接到所述第三開關的第一節點的第二節點,其中所述第四開關在所述轉換週期的第一階段期間斷開,並且在所述轉換週期的第二階段期間接通;以及 第五開關,具有耦接到所述運算放大器的同相輸出節點的第一節點和耦接到所述第三開關的第二節點的第二節點,其中所述第五開關在所述轉換週期的第一階段期間斷開,以及在所述轉換週期的第二階段期間接通。 The MDAC of claim 17, further comprising: a first associated level shift CLS capacitor; and the second CLS capacitor; Wherein, the output port of the operational amplifier includes a non-inverting output node and an inverting output node; the sampling capacitor circuit includes a first sampling capacitor and a second sampling capacitor; one plate of the first sampling capacitor is coupled to the The first plate of the first CLS capacitor; one plate of the second sampling capacitor is coupled to the first plate of the second CLS capacitor; and the switch circuit includes: A first switch having a first node coupled to the one plate of the first sampling capacitor and a second node coupled to an inverting output node of the operational amplifier, wherein the first switch is at the being turned on during the first phase of the conversion cycle and turned off during the second phase of the conversion cycle; a second switch having a first node coupled to the one plate of the second sampling capacitor and a second node coupled to a non-inverting output node of the operational amplifier, wherein the second switch is at the being turned on during the first phase of the conversion cycle and turned off during the second phase of the conversion cycle; A third switch having a first node coupled to a second plate of the first CLS capacitor and a second node coupled to a second plate of the second CLS capacitor, wherein the third switch is at being on for a start period of the second phase and off for the remainder of the second phase of the conversion cycle; a fourth switch having a first node coupled to an inverting output node of the operational amplifier and a second node coupled to the first node of the third switch, wherein the fourth switch is in the transition period is turned off during the first phase of the conversion cycle and turned on during the second phase of the conversion cycle; and a fifth switch having a first node coupled to a non-inverting output node of the operational amplifier and a second node coupled to a second node of the third switch, wherein the fifth switch is at the end of the transition cycle Off during the first phase and on during the second phase of the switching cycle. 如請求項24所述的MDAC,其中,在所述轉換週期的第二階段期間,所述第一採樣電容器的所述一個極板和所述第二採樣電容器的所述一個極板之間的電壓差充當MDAC輸出。The MDAC of claim 24, wherein during the second phase of the conversion cycle, the electrical connection between the one plate of the first sampling capacitor and the one plate of the second sampling capacitor is The voltage difference acts as the MDAC output. 一種流水線類比數位轉換器ADC,包括: 多個級,以流水線方式連接,並被佈置為分別產生多個數位輸出;以及 組合電路,用於組合所述多個數位輸出; 其中所述多個級中的至少一個包括:量化電路和請求項1-13任一項所述的乘法數位類比轉換器 MDAC或者請求項14-25任一項所述的MDAC; 其中所述量化電路,用於產生所述多個級中的至少一個的電壓輸入的量化結果,其中所述多個級中的至少一個的數位輸出取決於所述電壓輸入的量化結果。 A pipelined analog-to-digital converter ADC comprising: a plurality of stages, connected in a pipelined manner, and arranged to produce a plurality of digital outputs, respectively; and a combining circuit for combining the plurality of digital outputs; Wherein at least one of the plurality of stages includes: a quantization circuit and the multiplying digital-to-analog converter MDAC described in any one of claim items 1-13 or the MDAC described in any one of claim items 14-25; The quantization circuit is configured to generate a quantization result of the voltage input of at least one of the plurality of stages, wherein the digital output of at least one of the plurality of stages depends on the quantization result of the voltage input.
TW110133010A 2020-10-21 2021-09-06 Multiplying digital-to-analog converter with pre-sampling and associated pipelined analog-to-digital converter TWI782692B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/076,785 2020-10-21
US17/076,785 US11159174B2 (en) 2019-10-24 2020-10-21 Multiplying digital-to-analog converter with pre-sampling and associated pipelined analog-to-digital converter

Publications (2)

Publication Number Publication Date
TW202218343A true TW202218343A (en) 2022-05-01
TWI782692B TWI782692B (en) 2022-11-01

Family

ID=81194870

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110133010A TWI782692B (en) 2020-10-21 2021-09-06 Multiplying digital-to-analog converter with pre-sampling and associated pipelined analog-to-digital converter

Country Status (2)

Country Link
CN (1) CN114389614A (en)
TW (1) TWI782692B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6963300B1 (en) * 2004-02-04 2005-11-08 National Semiconductor Corporation Pipeline analog-to-digital converter
US8698658B1 (en) * 2012-10-24 2014-04-15 Lsi Corporation Apparatus, method and system for cancelling an input-referred offset in a pipeline ADC
US9160360B1 (en) * 2014-03-27 2015-10-13 Mediatek Inc. Multiplying digital-to-analog converter and pipeline analog-to-digital converter using the same
US10541704B2 (en) * 2018-04-03 2020-01-21 Mediatek Inc. Pipelined analog-to-digital converter

Also Published As

Publication number Publication date
CN114389614A (en) 2022-04-22
TWI782692B (en) 2022-11-01

Similar Documents

Publication Publication Date Title
JP6167100B2 (en) Zero power sampling SARADC circuit and method
EP2629429B1 (en) A/D converter and method for calibrating the same
US11159174B2 (en) Multiplying digital-to-analog converter with pre-sampling and associated pipelined analog-to-digital converter
US7911370B2 (en) Pipeline analog-to-digital converter with programmable gain function
CN112019217B (en) Pipelined successive approximation analog-to-digital converter and conversion method
US7683819B2 (en) Analog-to-digital converting circuit
US11438004B2 (en) Analog to digital converter with inverter based amplifier
JP2002074976A (en) Sample-and-hold amplifier circuit, pipeline type ad converter and pipeline type da converter both using the circuit
US20190305790A1 (en) Analog to digital converter with current steering stage
TWI778155B (en) Method and apparatus for enabling wide input common-mode range in sar adcs with no additional active circuitry
US8400343B1 (en) Pipeline analog to digital converter with split-path level shifting technique
CN113271102B (en) Pipelined analog-to-digital converter
RU2006134464A (en) HIGH-SPEED ANALOG-DIGITAL CONVERTER AND METHOD OF ITS CALIBRATION
US8451161B2 (en) Switched-capacitor pipeline stage
JP2004096636A (en) Analog/digital conversion circuit
EP3570436B1 (en) Mismatch and reference common-mode offset insensitive single-ended switched capacitor gain stage with reduced capacitor mismatch sensitivity
TWI782692B (en) Multiplying digital-to-analog converter with pre-sampling and associated pipelined analog-to-digital converter
US6606049B1 (en) Analog to digital converters based on transconveyance amplifiers
US10574255B2 (en) Multiplying digital-to-analog conversion circuit
TW201444297A (en) Successive-approximation-register analog-to-digital converter (SAR ADC) with programmable gain of amplitude of input signal and method therefor
JP2705585B2 (en) Series-parallel analog / digital converter
JP2019054512A (en) Analog-to-digital converter with noise elimination
EP1413057B1 (en) Switched capacitor pipeline ad-converter
CN115473533B (en) FLASH-SAR ADC conversion method and circuit
CN115412095A (en) Discrete-time offset correction circuit embedded in residual amplifier of pipelined analog-to-digital converter (ADC)