TW202218171A - A silicon carbide semiconductor element comprising a semiconductor substrate, a trench MOSFET and a trench Schottky diode - Google Patents

A silicon carbide semiconductor element comprising a semiconductor substrate, a trench MOSFET and a trench Schottky diode Download PDF

Info

Publication number
TW202218171A
TW202218171A TW110109092A TW110109092A TW202218171A TW 202218171 A TW202218171 A TW 202218171A TW 110109092 A TW110109092 A TW 110109092A TW 110109092 A TW110109092 A TW 110109092A TW 202218171 A TW202218171 A TW 202218171A
Authority
TW
Taiwan
Prior art keywords
trench
silicon carbide
layer
carbide semiconductor
horizontal direction
Prior art date
Application number
TW110109092A
Other languages
Chinese (zh)
Other versions
TWI745251B (en
Inventor
洪建中
朱國廷
李傳英
Original Assignee
大陸商上海瀚薪科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商上海瀚薪科技有限公司 filed Critical 大陸商上海瀚薪科技有限公司
Priority to TW110109092A priority Critical patent/TWI745251B/en
Application granted granted Critical
Publication of TWI745251B publication Critical patent/TWI745251B/en
Publication of TW202218171A publication Critical patent/TW202218171A/en

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

A silicon carbide semiconductor element is disclosed. More particularly, the invention is referred to a monolithic integrated structure which integrating trench Schottky diodes and trench MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor), and comprises a semiconductor substrate, a trench MOSFET and a trench Schottky diode. The trench Schottky diodes has a trench vertically disposed and passing through along a first horizontal direction, a metal electrode filled in the trench, and a plurality of doped regions that is segmentally disposed and extended along a second direction and surrounds the trench. The first horizontal direction is substantially orthogonal to the second horizontal direction. The metal electrode forms a Schottky junction on a side wall and a bottom wall of the trench, and the current flowing out of the metal electrode is limited between the adjacent doped regions.

Description

一種碳化矽半導體元件A silicon carbide semiconductor device

本發明是有關於一種半導體元件,且特別關於一種碳化矽半導體元件。The present invention relates to a semiconductor device, and particularly to a silicon carbide semiconductor device.

半導體功率元件在特性上,通常要求高的崩潰電壓 (Breakdown voltage),且具備盡量小的導通電阻、低反向漏電流以及較快的開關速度,以減少操作時的導通損耗(Conduction loss)及切換損耗(Switching loss)。由於碳化矽(Silicon carbide,簡稱SiC)具有寬能隙(Bandgap Eg=3.26eV)、高臨界崩潰電場強度(2.2MV/cm)及高熱導係數(4.9W/cm-K)等特性,被認為是功率開關元件的極佳材料。而在相同崩潰電壓條件下,以碳化矽為基材製成之功率元件的耐壓層(低摻雜濃度之漂移層(Drift layer))厚度僅為矽(Si)功率元件厚度的十分之一,且理論上的導通電阻可達矽的數百分之一。In terms of characteristics, semiconductor power devices usually require high breakdown voltage (Breakdown voltage), and have as small as possible on-resistance, low reverse leakage current and fast switching speed to reduce conduction loss during operation (Conduction loss) and Switching loss (Switching loss). Because of its wide energy gap (Bandgap Eg=3.26eV), high critical collapse electric field strength (2.2MV/cm) and high thermal conductivity (4.9W/cm-K), silicon carbide (SiC) is considered to be It is an excellent material for power switching components. Under the same breakdown voltage condition, the thickness of the withstand voltage layer (Drift layer with low doping concentration) of the power device made of silicon carbide is only one tenth of the thickness of the silicon (Si) power device. One, and the theoretical on-resistance can reach several hundredths of that of silicon.

然而碳化矽因其寬能隙,使碳化矽金屬氧化物半導體場效電晶體(SiC MOSFET)之本體二極體(Body diode)導通之臨界電壓約為3V,造成切換時逆向電流回流時產生較大的功率損耗,且限制切換速度。除此之外,碳化矽在沉積漂移層時所產生的磊晶基面差排(Basal plane dislocation),在本體二極體導通時會因為載子的復合(Recombination)而擴張成堆積缺陷(Stacking fault),嚴重時會造成SiC MOSFET失效。因此半導體廠商在製作SiC MOSFET時,會多設計一顆並聯的蕭特基二極體(Schottky diode),以提高操作速度、降低功耗損失並避免堆積缺陷擴張所造成的可靠度問題。類似的先前技術可見於美國專利第US 9,209,293號、第US 9,246,016號、第US 10,418,476號、第US 2018/0358463號等。However, due to the wide energy gap of silicon carbide, the threshold voltage for the conduction of the body diode of the silicon carbide metal oxide semiconductor field effect transistor (SiC MOSFET) is about 3V, which causes the reverse current to flow back during switching. Large power loss and limiting switching speed. In addition, the epitaxial basal plane dislocation (Basal plane dislocation) generated by silicon carbide during deposition of the drift layer will expand into stacking defects due to carrier recombination when the body diode is turned on. fault), and in severe cases, the SiC MOSFET will fail. Therefore, when manufacturing SiC MOSFETs, semiconductor manufacturers will design an additional Schottky diode in parallel to improve operation speed, reduce power loss and avoid reliability problems caused by the expansion of accumulation defects. Similar prior art can be found in US Pat. Nos. 9,209,293, 9,246,016, 10,418,476, US 2018/0358463, and the like.

本發明有關一種半導體元件,且特別關於一種碳化矽半導體元件。The present invention relates to a semiconductor device, and particularly to a silicon carbide semiconductor device.

本發明揭示一種碳化矽半導體元件,包括:一第一碳化矽半導體層,具有一第一導電類型;一第二碳化矽半導體層,具有該第一導電類型,該第二碳化矽半導體層設置於該第一碳化矽半導體層上;一第三碳化矽半導體層,具有一第二導電類型,設置於該第二碳化矽半導體層的一上表面上;一第一半導體區域,具有該第一導電類型,設置於該第三碳化矽半導體層之中;一第一溝槽,垂直地穿透該第一半導體區域以及該第三碳化矽半導體層而至該第二碳化矽半導體層,且沿一第一水平方向延伸;一第二溝槽,與該第一溝槽相隔,該第二溝槽垂直地穿透該第三碳化矽半導體層而至該第二碳化矽半導體層之中,且沿該第一水平方向延伸;一第二半導體區域,具有該第二導電類型,該第二半導體區域包括複數條沿一第二水平方向延伸的第一部分以及一沿該第一水平方向延伸設置於位在該第一溝槽下方的該第二碳化矽半導體層之中的第二部分;一閘極部,包括一設置於該第一溝槽之中的閘極絕緣層以及一埋入該第一溝槽之中且形成於該閘極絕緣層上的複晶閘極;以及一金屬電極,係與該第一半導體區域和該閘極部接觸,且埋入該第二溝槽之中而和該第二半導體區域及該第三碳化矽半導體層電性接觸,該金屬電極的一側壁以及一底壁在該第二溝槽之中與該第二碳化矽半導體層形成一蕭特基接面;其中,該第二半導體區域的該第一部分定義出一圍繞該第一溝槽而連接至該第二部分的拾取區以及一圍繞該第二溝槽而連接至該拾取區的片段區,以讓從該金屬電極流出的電流被限制在相鄰的該片段區之間。The present invention discloses a silicon carbide semiconductor device, comprising: a first silicon carbide semiconductor layer having a first conductivity type; a second silicon carbide semiconductor layer having the first conductivity type, the second silicon carbide semiconductor layer being disposed on on the first silicon carbide semiconductor layer; a third silicon carbide semiconductor layer with a second conductivity type disposed on an upper surface of the second silicon carbide semiconductor layer; a first semiconductor region with the first conductivity type, disposed in the third silicon carbide semiconductor layer; a first trench, vertically penetrating the first semiconductor region and the third silicon carbide semiconductor layer to the second silicon carbide semiconductor layer, and along a The first horizontal direction extends; a second trench is spaced apart from the first trench, the second trench vertically penetrates the third silicon carbide semiconductor layer into the second silicon carbide semiconductor layer, and extends along the the first horizontal direction extends; a second semiconductor region with the second conductivity type, the second semiconductor region includes a plurality of first portions extending along a second horizontal direction and a a second portion in the second silicon carbide semiconductor layer below the first trench; a gate portion including a gate insulating layer disposed in the first trench and a gate electrode buried in the first trench a compound gate electrode in the trench and formed on the gate insulating layer; and a metal electrode, in contact with the first semiconductor region and the gate portion, and buried in the second trench and The second semiconductor region and the third silicon carbide semiconductor layer are in electrical contact, and a side wall and a bottom wall of the metal electrode form a Schottky junction with the second silicon carbide semiconductor layer in the second trench ; wherein, the first portion of the second semiconductor region defines a pickup area surrounding the first trench and connected to the second portion and a segment area surrounding the second trench and connected to the pickup area, to Let the current flowing from the metal electrode be confined between adjacent segments.

本發明還提供一種整合間段包圍式溝槽蕭特基二極體及溝槽式金屬氧化物半導體場效電晶體的元件,包括:一半導體基底;一形成於該半導體基底上的溝槽式金屬氧化物半導體場效電晶體;以及一形成於該半導體基底上的溝槽式蕭特基二極體,該溝槽式蕭特基二極體具有一垂直地設置並且沿一第一水平方向穿過的溝槽、一填入該溝槽的金屬電極以及複數條間段地設置且沿一第二水平方向延伸而圍繞該溝槽的摻雜區,該第一水平方向係實質地正交於該第二水平方向,該金屬電極在該溝槽中的一側壁以及一底壁形成一蕭特基接面,從該金屬電極流出的電流被限制相鄰的該摻雜區之間。The present invention also provides an element for integrating the inter-section surrounding trench Schottky diode and the trench metal oxide semiconductor field effect transistor, comprising: a semiconductor substrate; a trench type formed on the semiconductor substrate a metal oxide semiconductor field effect transistor; and a trench Schottky diode formed on the semiconductor substrate, the trench Schottky diode having a vertically disposed and along a first horizontal direction The penetrating trench, a metal electrode filling the trench, and a plurality of interspaces are arranged in sections and extend along a second horizontal direction surrounding the doped region of the trench, the first horizontal direction being substantially orthogonal In the second horizontal direction, the metal electrode forms a Schottky junction on a side wall and a bottom wall of the trench, and the current flowing from the metal electrode is restricted between the adjacent doped regions.

在本文中,對各種實施例的描述中所使用的術語只是為了描述特定示例的目的,而並非旨在進行限制。The terminology used in the description of the various embodiments herein is for the purpose of describing particular examples only and is not intended to be limiting.

除非上下文另外明確地表明,或非刻意限定元件的數量,否則本文所用的單數形式「一」、 「一個」及「該」也包含複數形式。另一方面,術語「包括」和「包含」旨在被包括在內,意指可存在除列出的元件之外的附加元件;當一個元件被表述為「連接」或「耦接」到另一元件時,該元件可以直接或通過中間元件連接或耦接至該另一元件;當描述層、區域或基板的元件被稱為在另一元件「上」時,係指可直接在該另一元件上或彼此間可存在一中間元件,相對來說,當元件被稱作「直接在另一元件上」時,彼此間不存在該中間元件;另外,各實施例的描述的順序不應被解釋為暗示操作或步驟必須依賴於字面上的順序,另選實施方案可使用與本文描述的順序不同的順序來執行步驟、操作、方法等。As used herein, the singular forms "a," "an," and "the" include the plural forms as well, unless the context clearly dictates otherwise, or the number of elements is not intended to be limited. On the other hand, the terms "comprising" and "comprising" are intended to be inclusive, meaning that there may be additional elements other than the listed elements; when one element is described as "connected" or "coupled" to another When an element is referred to as being "on" another element, the element can be connected or coupled directly or through intervening elements to the other element; when an element describing a layer, region or substrate is referred to as being "on" another element, it can be directly on the other element An intervening element may be present on an element or between each other. In contrast, when an element is referred to as being "directly on" another element, the intervening element is not present; in addition, the order of description of the embodiments should not To be interpreted as implying that operations or steps must be literally ordered, alternative embodiments may perform steps, operations, methods, etc. using a different order than that described herein.

在本文中,各層和/或區域被表徵為具有如n型或p型的導電類型,其指的是層和/或區域中的多數載子種類,n型材料包括一平衡過量電子,而p型材料包括一平衡過量電洞。一些材料可用「+」或「-」(如n+、n-、p+、p-)標示以指示與另一層或區域相比具有相對較大(+)或較小(-)的多數載子濃度,該記號並不代表載子的具體濃度。在圖示中,各層和/或區域之厚度被放大以使圖示更加清楚。In this context, each layer and/or region is characterized as having a conductivity type such as n-type or p-type, which refers to the majority carrier species in the layer and/or region, n-type materials include an equilibrium excess of electrons, and p-type materials The type material includes a balanced excess of holes. Some materials may be labeled with "+" or "-" (eg, n+, n-, p+, p-) to indicate a relatively greater (+) or lesser (-) majority carrier concentration compared to another layer or region , the symbol does not represent the specific concentration of the carrier. In the drawings, the thicknesses of layers and/or regions are exaggerated for clarity.

本發明提供一種碳化矽半導體元件,具體上為一種整合間段包圍式溝槽蕭特基二極體及溝槽式金屬氧化物半導體場效電晶體的結構(A monolithically integrated trench MOSFET with segmentally surrounded Schottky diode),請參閱『圖1A』以及『圖1B』,為本發明一實施例的立體結構示意圖,基於方便理解的考量,『圖1A』係省略『圖1B』的部分元件,而『圖1B』則將部分元件以虛線呈現。該碳化矽半導體元件包括一第一碳化矽半導體層10、一第二碳化矽半導體層20、一第三碳化矽半導體層30、一第一半導體區域40、一第二半導體區域50、一閘極部60以及一金屬電極70。The present invention provides a silicon carbide semiconductor element, in particular a structure of a monolithically integrated trench MOSFET with segmentally surrounded Schottky diode and a trench metal oxide semiconductor field effect transistor. diode), please refer to "FIG. 1A" and "FIG. 1B", which are schematic diagrams of the three-dimensional structure of an embodiment of the present invention. For convenience of understanding, "FIG. 1A" omits some components of "FIG. 1B", and "FIG. 1B" 』 will display some components with dotted lines. The silicon carbide semiconductor device includes a first silicon carbide semiconductor layer 10 , a second silicon carbide semiconductor layer 20 , a third silicon carbide semiconductor layer 30 , a first semiconductor region 40 , a second semiconductor region 50 , and a gate electrode part 60 and a metal electrode 70 .

該第一碳化矽半導體層10具有一第一導電類型,在本實施例中,該第一導電類型為n型,而該第一碳化矽半導體層10為一n+碳化矽基板,該第一碳化矽半導體層10上方提供有一緩衝層11,該第一碳化矽半導體層10下方提供有一金屬汲極層12,該第二碳化矽半導體層20提供於該緩衝層11上,該第二碳化矽半導體層20包括一n−漂移層20a以及一n型電流擴散層20b,該第三碳化矽半導體層30提供於該n型電流擴散層20b上,該第三碳化矽半導體層30是一p型基極區域,設置於該第二碳化矽半導體層20的一上表面21上,該第一半導體區域40形成於該第三碳化矽半導體層30中,該第一半導體區域40是一n+源極區域。該n−漂移層20a具有一介於5E14至5E16之間的摻雜濃度,n型電流擴散層具有一介於1E16至5E18之間的摻雜濃度,該p型基極區域具有一介於1E17至5E19之間的摻雜濃度,該n+源極區域具有一介於1E18至5E20之間的摻雜濃度。於一實施例中,該緩衝層11、該第二碳化矽半導體層20、該第三碳化矽半導體層30係採用磊晶成長而為一磊晶層。The first silicon carbide semiconductor layer 10 has a first conductivity type, in this embodiment, the first conductivity type is n-type, and the first silicon carbide semiconductor layer 10 is an n+ silicon carbide substrate, the first carbide A buffer layer 11 is provided above the silicon semiconductor layer 10 , a metal drain layer 12 is provided below the first silicon carbide semiconductor layer 10 , the second silicon carbide semiconductor layer 20 is provided on the buffer layer 11 , and the second silicon carbide semiconductor layer 10 is provided on the buffer layer 11 . The layer 20 includes an n-drift layer 20a and an n-type current spreading layer 20b, the third silicon carbide semiconductor layer 30 is provided on the n-type current spreading layer 20b, and the third silicon carbide semiconductor layer 30 is a p-type base A pole region is disposed on an upper surface 21 of the second silicon carbide semiconductor layer 20, the first semiconductor region 40 is formed in the third silicon carbide semiconductor layer 30, and the first semiconductor region 40 is an n+ source region . The n− drift layer 20a has a doping concentration between 5E14 and 5E16, the n-type current diffusion layer has a doping concentration between 1E16 and 5E18, and the p-type base region has a doping concentration between 1E17 and 5E19. The n+ source region has a doping concentration between 1E18 and 5E20. In one embodiment, the buffer layer 11 , the second silicon carbide semiconductor layer 20 , and the third silicon carbide semiconductor layer 30 are epitaxially grown to form an epitaxial layer.

該碳化矽半導體元件包括複數個溝槽T,該溝槽T是利用蝕刻製程形成,該溝槽T包括一第一溝槽T1以及一第二溝槽T2,該第一溝槽T1以及該第二溝槽T2相隔地設置且沿一第一水平方向延伸穿過,本實施例中,該第一水平方向為圖中的Y軸,且該第一溝槽T1垂直地穿透該第一半導體區域40以及該第三碳化矽半導體層30而至該第二碳化矽半導體層20,且該第二溝槽T1垂直地穿透該第三碳化矽半導體層30而至該第二碳化矽半導體層20。根據應用或製造方法的選擇,該第一溝槽T1和該第二溝槽T2的深度以及寬度可能相同或相異,舉例來說,該第一溝槽T1具有一介於1 um至2.5 um之間的深度以及一介於0.5 um至1.5 um之間的寬度,該第二溝槽T2具有一介於1 um至2.5 um之間的深度以及一介於0.5 um至2 um之間的寬度。此外,本實施例中,該第一半導體區域40是以離子佈植(Ion implantation)形成於該第三碳化矽半導體層30的部分上表面,如『圖1A』及『圖1B』所示。The silicon carbide semiconductor device includes a plurality of trenches T. The trenches T are formed by an etching process. The trenches T include a first trench T1 and a second trench T2. The first trench T1 and the first trench T1 The two trenches T2 are spaced apart and extend through a first horizontal direction. In this embodiment, the first horizontal direction is the Y axis in the figure, and the first trench T1 penetrates the first semiconductor vertically. Region 40 and the third silicon carbide semiconductor layer 30 to the second silicon carbide semiconductor layer 20, and the second trench T1 vertically penetrates the third silicon carbide semiconductor layer 30 to the second silicon carbide semiconductor layer 20. The depth and width of the first trench T1 and the second trench T2 may be the same or different depending on the application or the choice of the manufacturing method. For example, the first trench T1 has a thickness between 1 μm and 2.5 μm The second trench T2 has a depth between 1 um and 2.5 um and a width between 0.5 um and 2 um. In addition, in this embodiment, the first semiconductor region 40 is formed on a part of the upper surface of the third silicon carbide semiconductor layer 30 by ion implantation, as shown in "FIG. 1A" and "FIG. 1B".

進一步參閱『圖2』、『圖3』,分別為『圖1B』的前視示意圖、『圖1A』的俯視示意圖;以及『圖5』、『圖6A』、『圖7』,分別為『圖1A』沿A-A、B-B、C-C的立體剖面示意圖。該第二半導體區域50包括一第一部分51以及一第二部分52,該第一部分51為一間隔設置的條狀佈植區域(segmental implant region),間段地(segmentally)佈植且形成於該第三碳化矽半導體層30以及該第二碳化矽半導體層20之中,該第一部分51沿一第二水平方向延伸,本實施例中,該第二水平方向為圖中的X軸。進一步地,每一個該第二半導體區域50的該第一部分51分別定義出複數個拾取區(pickup regions)51a以及複數個片段區(slice regions)51b。其中,圍繞該第一溝槽T1的該第一部分51為該拾取區51a,圍繞該第二溝槽T2的該第一部分51為該片段區51b,該第二半導體區域50具有一從該第三碳化矽半導體層30的一上表面31(參『圖1A』)至該第二碳化矽半導體層20之中的佈植深度(從某些方面來看,該上表面31可對應至該第一半導體區域40的頂面),該佈植深度介於0.8 um至3.0 um之間。Further referring to "Fig. 2" and "Fig. 3", respectively, are the schematic front view of "Fig. 1B" and the schematic plan view of "Fig. 1A"; and "Fig. 5", "Fig. 6A", and "Fig. 7", respectively " Figure 1A" is a schematic three-dimensional cross-sectional view along A-A, B-B, and C-C. The second semiconductor region 50 includes a first portion 51 and a second portion 52. The first portion 51 is a segmental implant region arranged at intervals, implanted segmentally and formed in the In the third silicon carbide semiconductor layer 30 and the second silicon carbide semiconductor layer 20 , the first portion 51 extends along a second horizontal direction. In this embodiment, the second horizontal direction is the X axis in the figure. Further, the first portion 51 of each of the second semiconductor regions 50 respectively defines a plurality of pickup regions 51a and a plurality of slice regions 51b. The first portion 51 surrounding the first trench T1 is the pickup area 51a, the first portion 51 surrounding the second trench T2 is the segment area 51b, and the second semiconductor region 50 has a An upper surface 31 of the silicon carbide semiconductor layer 30 (see "FIG. 1A") to the implantation depth of the second silicon carbide semiconductor layer 20 (in some respects, the upper surface 31 may correspond to the first the top surface of the semiconductor region 40), the implantation depth is between 0.8 um and 3.0 um.

在『圖1A』至『圖3』的實施例中,該拾取區51a的一寬度511a以及一深度512a相同於該片段區51b的一寬度511b以及一深度512b,在一實施例中,該寬度511a以及該寬度511b介於0.5 um至1.5 um之間,該深度512a以及該深度512b介於0.8 um至2.5 um之間;然而,在其他實施例中,該拾取區51a的該寬度511a可相異於該片段區51b的該寬度511b,例如『圖4』,該寬度511b大於該該寬度511a,藉此進一步限制漏電。然而,根據不同的應用,該寬度511a亦可小於該寬度511b,且該拾取區51a的該深度512a可大於或小於該深度512b,此外,該拾取區51a的摻雜濃度可相等、大於或小於該片段區51b,該摻雜濃度介於1E18至5E20之間。此外,該拾取區51a彼此間具有一間隔D1,該間隔D1介於0.5 um至3 um之間,該片段區51b彼此間具有一間隔D2,該間隔D2介於0.5 um至3 um之間。In the embodiments of "FIG. 1A" to "FIG. 3", a width 511a and a depth 512a of the pickup area 51a are the same as a width 511b and a depth 512b of the segment area 51b. In one embodiment, the width 511a and the width 511b are between 0.5 um and 1.5 um, and the depth 512a and the depth 512b are between 0.8 um and 2.5 um; however, in other embodiments, the width 511a of the pick-up area 51a may be different. Different from the width 511b of the segment region 51b, such as "FIG. 4", the width 511b is larger than the width 511a, thereby further limiting leakage. However, according to different applications, the width 511a can also be smaller than the width 511b, and the depth 512a of the pickup region 51a can be larger or smaller than the depth 512b, in addition, the doping concentration of the pickup region 51a can be equal, larger or smaller than In the segment region 51b, the doping concentration is between 1E18 and 5E20. In addition, the pickup regions 51a have a distance D1 between each other, the distance D1 is between 0.5 um and 3 um, and the segment regions 51b have a distance D2 between each other, and the distance D2 is between 0.5 um and 3 um.

該第二部分52形成在該第二碳化矽半導體層20位於該第一溝槽T1下方的區域,且沿該第一水平方向延伸,該第二部分52具有一從該上表面31至一最低處的深度521,該深度521介於1.3至3 um之間,該第二部分52係做為一p+屏蔽區(p+ shield),該第二部分52具有一介於1E18至5E20之間的摻雜濃度,可以理解的是,該第二部分52的該深度521大於該拾取區51a的該深度512a以及/或該片段區51b的該深度512b。參閱『圖1B』以及『圖2』,該第三碳化矽半導體層30以及該第一半導體區域40的表面上形成有一金屬矽化物層(metal silicide)80,且該金屬矽化物層80上以及該第二溝槽T2的內壁面形成有一金屬層81,在本實施例中,該金屬矽化物層80為鎳矽化物(nickel silicide,NiSi),該金屬層81為一合金,例如Ti/TiN,而該金屬電極70為AuCu。該閘極部60包括一閘極絕緣層61以及一複晶閘極62 (Poly gate),該閘極絕緣層61形成於該第一半導體區域40的部分表面上,且沿著該第一溝槽T1的側壁縱向地延伸而覆蓋於該第三碳化矽半導體層30以及該第二碳化矽半導體層20的部分表面,該複晶閘極62則形成於該閘極絕緣層61上,該金屬電極70覆蓋於該閘極絕緣層61以及該金屬層81的上表面,且填入該第二溝槽T2,該金屬層81的一側壁以及一底壁在該第二溝槽T2之中與該第二碳化矽半導體層20形成一蕭特基接面(Schottky junction), 該金屬電極70覆蓋在金屬層81之上。The second portion 52 is formed in the region of the second silicon carbide semiconductor layer 20 below the first trench T1 and extends along the first horizontal direction, the second portion 52 has a lowermost portion from the upper surface 31 The depth 521 at , the depth 521 is between 1.3 and 3 um, the second part 52 is used as a p+ shield region (p+ shield), the second part 52 has a doping between 1E18 and 5E20 It is understood that the depth 521 of the second portion 52 is greater than the depth 512a of the pickup area 51a and/or the depth 512b of the segment area 51b. Referring to "FIG. 1B" and "FIG. 2", a metal silicide layer 80 is formed on the surface of the third silicon carbide semiconductor layer 30 and the first semiconductor region 40, and the metal silicide layer 80 and A metal layer 81 is formed on the inner wall of the second trench T2. In this embodiment, the metal silicide layer 80 is nickel silicide (NiSi), and the metal layer 81 is an alloy such as Ti/TiN , and the metal electrode 70 is AuCu. The gate portion 60 includes a gate insulating layer 61 and a poly gate 62 . The gate insulating layer 61 is formed on a part of the surface of the first semiconductor region 40 along the first trench. The sidewall of the trench T1 extends longitudinally and covers part of the surface of the third silicon carbide semiconductor layer 30 and the second silicon carbide semiconductor layer 20 , the complex gate 62 is formed on the gate insulating layer 61 , and the metal The electrode 70 covers the gate insulating layer 61 and the upper surface of the metal layer 81, and fills the second trench T2. A sidewall and a bottom wall of the metal layer 81 are in the second trench T2 with each other. The second silicon carbide semiconductor layer 20 forms a Schottky junction, and the metal electrode 70 covers the metal layer 81 .

參閱『圖6B』以及『圖6C』,在本發明中,可定義在該第二碳化矽半導體層20的該上表面21之下的該第二溝槽T2的內壁面具有一第一面積A1(包括部分的該片段區51b的表面),而該蕭特基接面為一第二面積A2(不包括部分的該片段區51b的表面),該第二面積A2小於該第一面積A1。回到『圖3』,可見該碳化矽半導體元件的一第一區域R1對應一金屬氧化物半導體場效電晶體(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET),一第二區域R2對應一接面位障蕭基二極體(Junction Barrier Schottky diode,JBS)。此外,該第一半導體區域40形成於該第三碳化矽半導體層30的位置是根據MOSFET的設置而決定。Referring to "FIG. 6B" and "FIG. 6C", in the present invention, a first area A1 may be defined on the inner wall surface of the second trench T2 below the upper surface 21 of the second silicon carbide semiconductor layer 20 (including part of the surface of the segment area 51b), and the Schottky junction is a second area A2 (excluding part of the surface of the segment area 51b), the second area A2 is smaller than the first area A1. Returning to FIG. 3 , it can be seen that a first region R1 of the silicon carbide semiconductor element corresponds to a Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET), and a second region R2 corresponds to a Junction Barrier Schottky diode (JBS). In addition, the position where the first semiconductor region 40 is formed on the third silicon carbide semiconductor layer 30 is determined according to the setting of the MOSFET.

在習知技術中,JBS的漏電發生在上述的該第一面積A1,然而,根據本發明提出的整合間段包圍式溝槽蕭特基二極體及溝槽式金屬氧化物半導體場效電晶體的元件(A monolithically integrated trench MOSFET with segmentally surrounded Schottky diode),JBS的漏電將被侷限在僅發生在上述的該第二面積A2。故在一樣的尺寸條件下,本發明的元件的漏電可以獲得改善,可以有比較低的反向二極體導通電壓(Vsd);另一方面,本發明的碳化矽半導體元件可以增加單元密度,即降低單元間距(cell pitch)。In the prior art, the leakage current of JBS occurs in the above-mentioned first area A1. However, according to the present invention, the integrated inter-segment-surrounded trench Schottky diode and trench metal-oxide-semiconductor field effect current For crystal elements (A monolithically integrated trench MOSFET with segmentally surrounded Schottky diode), the leakage of JBS will be limited to occur only in the second area A2 mentioned above. Therefore, under the same size condition, the leakage current of the device of the present invention can be improved, and the reverse diode conduction voltage (Vsd) can be relatively low; on the other hand, the silicon carbide semiconductor device of the present invention can increase the cell density, That is, the cell pitch is reduced.

『圖8A』至『圖8H』為本發明一實施例的製造流程示意圖,參閱『圖8A』,先提供一半導體基底90,該半導體基底90之中形成有一漂移層90a、一電流散佈層90b以及一基層90c,該漂移層90a以及該電流散佈層90b具有一第一導電類型,該基層90c具有一第二導電類型,本實施例中,該第一導電類型以及該第二導電類型分別為n型和p型,而該漂移層90a、該電流散佈層90b以及該基層90c是利用磊晶成長的方式得到。接著參閱『圖8B』,在該半導體基底90上佈植複數條間段地(segmentally)設置且沿一第二水平方向延伸的第一摻雜區91,該第一摻雜區91具有一至少穿過該基層90c的深度911,且該第一摻雜區91彼此相隔一間距912,該深度911以及該間距912的參數可以參閱前述實施例。該第一摻雜區91可預先地定義出包括複數個拾取區91a以及複數個片段區91b,該拾取區91a對應MOSFET的區域,而該片段區91b對應JBS的區域。參閱『圖8C』,在該基層90c的部分上表面區域,即對應MOSFET的區域,形成一源區90d,該源區90d具有該第一導電類型。"FIG. 8A" to "FIG. 8H" are schematic diagrams of a manufacturing process according to an embodiment of the present invention. Referring to "FIG. 8A", a semiconductor substrate 90 is provided first, and a drift layer 90a and a current spreading layer 90b are formed in the semiconductor substrate 90 and a base layer 90c, the drift layer 90a and the current spreading layer 90b have a first conductivity type, the base layer 90c has a second conductivity type, in this embodiment, the first conductivity type and the second conductivity type are respectively n-type and p-type, and the drift layer 90a, the current spreading layer 90b and the base layer 90c are obtained by epitaxial growth. Next, referring to FIG. 8B , a plurality of first doped regions 91 arranged segmentally and extending along a second horizontal direction are implanted on the semiconductor substrate 90 . The first doped regions 91 have at least one doped region 91 . Through the depth 911 of the base layer 90c, and the first doped regions 91 are separated from each other by a distance 912, the parameters of the depth 911 and the distance 912 can refer to the foregoing embodiments. The first doped region 91 can be pre-defined to include a plurality of pick-up regions 91a and a plurality of segment regions 91b, the pick-up regions 91a correspond to the MOSFET region, and the segment region 91b corresponds to the JBS region. Referring to "FIG. 8C", a source region 90d is formed on a part of the upper surface region of the base layer 90c, that is, the region corresponding to the MOSFET, and the source region 90d has the first conductivity type.

參閱『圖8D』,在該半導體基底90上以蝕刻方式形成一第一溝槽T1,該第一溝槽T1沿著該第二水平方向相隔地設置且沿一第一水平方向穿過,該第一水平方向實質地正交於該第二水平方向,該第一溝槽T1垂直地穿透至該電流散佈層90b。接下來參閱『圖8E』,在該第一溝槽T1下方的該電流散佈層90b佈植一第二摻雜區92,該第二摻雜區92和該第一摻雜區91具有相同的導電類型。然後在該第一溝槽T1內形成一閘極部,參閱『圖8F』,先在該第一溝槽T1的底壁、側壁以及該源區90d鄰近該第一溝槽T1的上表面形成一第一閘極絕緣層61a,接著在該第一溝槽T1中形成一複晶閘極62在該第一閘極絕緣層61a上,參閱『圖8G』。參閱『圖8H』,在該半導體基底90上形成一第二溝槽T2,該第二溝槽T2和該第一溝槽T1沿著該第二水平方向相隔地設置且沿該第一水平方向穿過,該第二溝槽T2垂直地穿透至該電流散佈層90b。之後再形成該金屬矽化物層80、該金屬層81以及該金屬電極70等元件,可參閱上述的『圖1A』以及『圖1B』。Referring to "FIG. 8D", a first trench T1 is formed on the semiconductor substrate 90 by etching, the first trench T1 is spaced apart along the second horizontal direction and passes through a first horizontal direction, the The first horizontal direction is substantially orthogonal to the second horizontal direction, and the first trench T1 penetrates vertically to the current spreading layer 90b. Next, referring to "FIG. 8E", a second doped region 92 is implanted on the current spreading layer 90b under the first trench T1, and the second doped region 92 and the first doped region 91 have the same Conductivity type. Then, a gate portion is formed in the first trench T1. Referring to FIG. 8F , a gate portion is first formed on the bottom wall, sidewall and the source region 90d of the first trench T1 adjacent to the upper surface of the first trench T1. A first gate insulating layer 61a, and then a complex gate 62 is formed on the first gate insulating layer 61a in the first trench T1, see FIG. 8G. Referring to "FIG. 8H", a second trench T2 is formed on the semiconductor substrate 90, the second trench T2 and the first trench T1 are spaced apart along the second horizontal direction and along the first horizontal direction Passing through, the second trench T2 penetrates vertically to the current spreading layer 90b. After that, elements such as the metal silicide layer 80 , the metal layer 81 , and the metal electrode 70 are formed. Please refer to the above-mentioned “ FIG. 1A ” and “ FIG. 1B ”.

根據以上的製造方法,該第一摻雜區91即該第二半導體區域50的該第一部分51,該第二摻雜區92即該第二半導體區域50的該第二部分52。本實施例中,該金屬氧化物半導體場效電晶體以及該接面位障蕭基二極體的該第一摻雜區91係可以透過同一光罩進行離子佈植,可以提升製程和元件配置的精確度。According to the above manufacturing method, the first doped region 91 is the first portion 51 of the second semiconductor region 50 , and the second doped region 92 is the second portion 52 of the second semiconductor region 50 . In this embodiment, the MOS transistor and the first doping region 91 of the junction barrier Schottky diode can be ion implanted through the same mask, which can improve the process and device configuration accuracy.

10:第一碳化矽半導體層 11:緩衝層 12:金屬汲極層 20:第二碳化矽半導體層 20a:n−漂移層 20b:n型電流擴散層 21:上表面 30:第三碳化矽半導體層 31:上表面 40:第一半導體區域 50:第二半導體區域 51:第一部分 51a:拾取區 511a:寬度 512a:深度 51b:片段區 511b:寬度 512b:深度 52:第二部分 521:深度 60:閘極部 61:閘極絕緣層 61a:第一閘極絕緣層 62:複晶閘極 70:金屬電極 80:金屬矽化物層 81:金屬層 90:半導體基底 90a:漂移層 90b:電流散佈層 90c:基層 90d:源區 91:第一摻雜區 91a:拾取區 91b:片段區 911:深度 912:間距 92:第二摻雜區 A1:第一面積 A2:第二面積 D1:間隔 D2:間隔 R1:第一區域 R2:第二區域 T:溝槽 T1:第一溝槽 T2:第二溝槽 10: The first silicon carbide semiconductor layer 11: Buffer layer 12: Metal drain layer 20: The second silicon carbide semiconductor layer 20a:n−drift layer 20b: n-type current spreading layer 21: Upper surface 30: The third silicon carbide semiconductor layer 31: Upper surface 40: The first semiconductor region 50: Second semiconductor region 51: Part One 51a: Pickup area 511a: width 512a: Depth 51b: fragment area 511b: width 512b: Depth 52: Part Two 521: Depth 60: Gate part 61: gate insulating layer 61a: first gate insulating layer 62: Complex thyristor gate 70: Metal electrode 80: Metal silicide layer 81: Metal layer 90: Semiconductor substrate 90a: Drift layer 90b: Current spreading layer 90c: base layer 90d: source area 91: first doped region 91a: Pickup area 91b: Fragment area 911: Depth 912: Spacing 92: the second doped region A1: The first area A2: Second area D1: Interval D2: Interval R1: The first area R2: The second area T: groove T1: First trench T2: Second trench

『圖1A』至『圖1B』,為本發明一實施例的立體結構示意圖。 『圖2』,為『圖1B』的前視示意圖。 『圖3』,為『圖1A』的俯視示意圖。 『圖4』,為本發明另一實施例的俯視示意圖。 『圖5』,為『圖1A』沿A-A的立體剖面示意圖。 『圖6A』至『圖6C』,,為『圖1A』沿B-B的立體剖面示意圖。 『圖7』,為『圖1A』沿C-C的立體剖面示意圖。 『圖8A』至『圖8H』,為本發明一實施例的製造流程示意圖。 "FIG. 1A" to "FIG. 1B" are three-dimensional schematic diagrams of an embodiment of the present invention. "FIG. 2" is a schematic front view of "FIG. 1B". "FIG. 3" is a schematic top view of "FIG. 1A". "FIG. 4" is a schematic top view of another embodiment of the present invention. "FIG. 5" is a schematic three-dimensional cross-sectional view along A-A of "FIG. 1A". "FIG. 6A" to "FIG. 6C" are schematic perspective cross-sectional views of "FIG. 1A" along B-B. "FIG. 7" is a schematic three-dimensional cross-sectional view along C-C of "FIG. 1A". "FIG. 8A" to "FIG. 8H" are schematic diagrams of a manufacturing process according to an embodiment of the present invention.

10:第一碳化矽半導體層 10: The first silicon carbide semiconductor layer

11:緩衝層 11: Buffer layer

12:金屬汲極層 12: Metal drain layer

20:第二碳化矽半導體層 20: The second silicon carbide semiconductor layer

20a:n-漂移層 20a:n-drift layer

20b:n型電流擴散層 20b: n-type current spreading layer

21:上表面 21: Upper surface

30:第三碳化矽半導體層 30: The third silicon carbide semiconductor layer

40:第一半導體區域 40: The first semiconductor region

51a:拾取區 51a: Pickup area

51b:片段區 51b: fragment area

52:第二部分 52: Part Two

A2:第二面積 A2: Second area

T1:第一溝槽 T1: First trench

T2:第二溝槽 T2: Second trench

Claims (3)

一種碳化矽半導體元件,包括: 一半導體基底; 一形成於該半導體基底上的溝槽式金屬氧化物半導體場效電晶體;以及 一形成於該半導體基底上的溝槽式蕭特基二極體,該溝槽式蕭特基二極體具有一垂直地設置並且沿一第一水平方向穿過的溝槽、一填入該溝槽的金屬電極以及複數條間段地設置且沿一第二水平方向延伸而圍繞該溝槽的摻雜區,該第一水平方向係實質地正交於該第二水平方向,該金屬電極在該溝槽中的一側壁以及一底壁形成一蕭特基接面,從該金屬電極流出的電流被限制在相鄰的該摻雜區之間。 A silicon carbide semiconductor element, comprising: a semiconductor substrate; a trench metal oxide semiconductor field effect transistor formed on the semiconductor substrate; and a trenched Schottky diode formed on the semiconductor substrate, the trenched Schottky diode has a trench disposed vertically and passing through a first horizontal direction, a trench filled in the The metal electrodes of the trenches and a plurality of interspaces are arranged in sections and extend along a second horizontal direction to surround the doped regions of the trenches, the first horizontal direction being substantially orthogonal to the second horizontal direction, the metal electrodes A side wall and a bottom wall in the trench form a Schottky junction, and the current flowing from the metal electrode is confined between the adjacent doped regions. 如請求項1所述的元件,其中該摻雜區之間的間距介於0.5 um至3 um之間。The element of claim 1, wherein the spacing between the doped regions is between 0.5 um and 3 um. 如請求項1所述的元件,該摻雜區具有一介於0.5 um至1.5 um之間的寬度。The device of claim 1, wherein the doped region has a width between 0.5 um and 1.5 um.
TW110109092A 2020-10-22 2020-10-22 A silicon carbide semiconductor element TWI745251B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110109092A TWI745251B (en) 2020-10-22 2020-10-22 A silicon carbide semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110109092A TWI745251B (en) 2020-10-22 2020-10-22 A silicon carbide semiconductor element

Publications (2)

Publication Number Publication Date
TWI745251B TWI745251B (en) 2021-11-01
TW202218171A true TW202218171A (en) 2022-05-01

Family

ID=79907422

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110109092A TWI745251B (en) 2020-10-22 2020-10-22 A silicon carbide semiconductor element

Country Status (1)

Country Link
TW (1) TWI745251B (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7436022B2 (en) * 2005-02-11 2008-10-14 Alpha & Omega Semiconductors, Ltd. Enhancing Schottky breakdown voltage (BV) without affecting an integrated MOSFET-Schottky device layout
US20120126317A1 (en) * 2010-11-18 2012-05-24 Alpha And Omega Semiconductor Incorporated Accufet with integrated clamping circuit
US20150084063A1 (en) * 2013-09-20 2015-03-26 Cree, Inc. Semiconductor device with a current spreading layer
JP6478884B2 (en) * 2015-09-11 2019-03-06 株式会社東芝 Semiconductor device
US10861965B2 (en) * 2018-07-12 2020-12-08 Renesas Electronics America Inc. Power MOSFET with an integrated pseudo-Schottky diode in source contact trench

Also Published As

Publication number Publication date
TWI745251B (en) 2021-11-01

Similar Documents

Publication Publication Date Title
US10991801B2 (en) Semiconductor device with improved current flow distribution
JP6400778B2 (en) Insulated gate type silicon carbide semiconductor device and method of manufacturing the same
US9041173B2 (en) Semiconductor device
JP6780777B2 (en) Semiconductor device
JP7059555B2 (en) Semiconductor device
JP4892172B2 (en) Semiconductor device and manufacturing method thereof
JP2006269720A (en) Semiconductor device and its fabrication process
JP2013012590A (en) Silicon carbide semiconductor device
JP2012059841A (en) Semiconductor device
JP7057555B2 (en) Semiconductor device
JP7006280B2 (en) Semiconductor device
KR20170030122A (en) Power Semiconductor Device
JP7029711B2 (en) Semiconductor device
JP2020043243A (en) Semiconductor device
JP7211516B2 (en) semiconductor equipment
WO2017094339A1 (en) Silicon carbide semiconductor device
WO2022239285A1 (en) Semiconductor device
TWI729952B (en) A silicon carbide semiconductor element
JP2019096794A (en) Semiconductor device
JPWO2019220940A1 (en) Semiconductor device
JP6293380B1 (en) Semiconductor device
US11984499B2 (en) Silicon carbide semiconductor device
TWI745251B (en) A silicon carbide semiconductor element
JP2023530711A (en) Power device with hybrid gate structure
TWI801783B (en) Silicon carbide semiconductor components