TW202218112A - Transistor structure - Google Patents

Transistor structure Download PDF

Info

Publication number
TW202218112A
TW202218112A TW109135910A TW109135910A TW202218112A TW 202218112 A TW202218112 A TW 202218112A TW 109135910 A TW109135910 A TW 109135910A TW 109135910 A TW109135910 A TW 109135910A TW 202218112 A TW202218112 A TW 202218112A
Authority
TW
Taiwan
Prior art keywords
conductive region
transistor structure
region
conductive
spacer layer
Prior art date
Application number
TW109135910A
Other languages
Chinese (zh)
Other versions
TWI836152B (en
Inventor
盧超群
黃立平
Original Assignee
鈺創科技股份有限公司
新加坡商發明創新暨合作實驗室有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鈺創科技股份有限公司, 新加坡商發明創新暨合作實驗室有限公司 filed Critical 鈺創科技股份有限公司
Priority to TW109135910A priority Critical patent/TWI836152B/en
Priority claimed from TW109135910A external-priority patent/TWI836152B/en
Publication of TW202218112A publication Critical patent/TW202218112A/en
Application granted granted Critical
Publication of TWI836152B publication Critical patent/TWI836152B/en

Links

Images

Abstract

A transistor structure includes a gate, a spacer, a channel region, a first concave, and a first conductive region. The gate is above a silicon surface. The spacer is above the silicon surface and at least covers a sidewall of the gate. The channel region is under the silicon surface. The first conductive region is at least partially formed in the first concave, wherein a conductive region of a neighborhood transistor structure next to the transistor structure is at least partially formed in the first concave.

Description

電晶體結構transistor structure

本發明是有關於一種電晶體結構,尤指一種具有低漏電流的電晶體結構。The present invention relates to a transistor structure, especially a transistor structure with low leakage current.

在現有技術中,目前最常使用的一種電晶體是形成於一平面矽晶圓中的金氧半場效電晶體(metal-oxide-semiconductor field-effect transistor, (MOSFET)),其中該電晶體具有形成在一矽表面上的閘極,且該閘極與該矽表面被一介電質材料分開。另外,該電晶體的汲極與源極是形成於該矽表面下的基底中。而隨著該電晶體的尺寸日益微縮,該電晶體可以利用鰭式結構電晶體(例如鰭式場效應電晶體(FinFET)、三閘極電晶體(tri-gate FET)或雙柵(double-gate)電晶體等等)來實現以使該電晶體的尺寸可從22奈米繼續微縮至7奈米,或是繼續微縮至比7奈米更小的尺寸。然而,該鰭式結構電晶體的大多數技術是通過產生高開啟電流(ON current)來強調該電晶體的電流驅動能力以展現該電晶體的高性能,而不是強調該電晶體具有低漏電流的能力以展現該電晶體的低關閉電流(OFF current)。但對於深奈米矽技術而言,利用將該鰭式結構電晶體做為一低漏電流與低功耗的元件的重要性與日俱增,特別是當該鰭式結構電晶體是應用在記憶體電路(例如靜態隨機存取記憶體(static random access memories, SRAMs), 動態隨機存取記憶體(dynamic random access memories, DRAMs) ,可擕式積體電路(integrated circuit, IC)或可穿戴式積體電路等)中的開關元件時。In the prior art, one of the most commonly used transistors is a metal-oxide-semiconductor field-effect transistor (MOSFET) formed in a planar silicon wafer, wherein the transistor has A gate is formed on a silicon surface, and the gate and the silicon surface are separated by a dielectric material. In addition, the drain and source of the transistor are formed in the substrate under the silicon surface. As the size of the transistor shrinks, the transistor can utilize a fin structure transistor such as a fin field effect transistor (FinFET), a tri-gate FET, or a double-gate ) transistor, etc.) so that the size of the transistor can continue to shrink from 22 nm to 7 nm, or to a size smaller than 7 nm. However, most techniques of the fin structure transistor emphasize the current driving capability of the transistor to exhibit the high performance of the transistor by generating a high ON current, rather than emphasizing that the transistor has a low leakage current ability to exhibit the low OFF current of the transistor. But for deep nano-silicon technology, the importance of utilizing the fin-structured transistor as a low-leakage and low-power device is increasing, especially when the fin-structured transistor is used in memory circuits (eg static random access memories (SRAMs), dynamic random access memories (DRAMs), portable integrated circuits (ICs) or wearable integrated circuits when switching elements in circuits, etc.).

例如,最普遍用於動態隨機存取記憶體的記憶單元具有一存取電晶體(access transistor)和一儲存電容(storage capacitor)。而現有技術利用一平面電晶體或該鰭式結構電晶體作為該存取電晶體時,該存取電晶體在關閉狀態(OFF state)時會遭受高漏電流的問題(例如每一記憶單元超過1皮安培),其中因為該高漏電流的問題會使該動態隨機存取記憶體內所儲存的信號快速洩漏,導致該動態隨機存取記憶體需要非常短的刷新時間(refresh time)以恢復所儲存的信號(否則所儲存的信號便會遺失),所以該高漏電流的問題是無法被接受的。另外,在該存取電晶體的關閉狀態時會具有多種已知的漏電流來源,例如(a)閘極至通道的漏電流(Gate-to-Channel leakage)、(b)閘極誘導汲極的漏電流(Gate-Induced Drain Leakage, GIDL)、(c)汲極引入勢壘降低(Drain-induced barrier lowering, DIBL)的漏電流、(d)次閾值通道的漏電流(Sub-threshold channel leakage)、(e)由矽材料中p-n結引起的源/汲極側壁或區域的漏電流等。為了使每一元件的關閉電流滿足接近飛安培(femto-ampere)的水準,該每一元件內部分的電晶體尺寸的參數必須被放寬至無法接受的地步,而違背了電晶體的微縮理論,其中該電晶體的微縮理論為了要實現摩爾定律(Moore’s Law)的經濟所以要求縮小電晶體尺寸以減少記憶單元的尺寸。在一誇大的例子中,對10奈米的製程技術而言,閘極的長度需要大於100奈米以降低該關閉電流滿足每一記憶單元1飛安培的需求,然而這是很不實際的。因此,如何提供具有低漏電流的電晶體是該動態隨機存取記憶體的設計者的一項重要議題。For example, the memory cell most commonly used in dynamic random access memory has an access transistor and a storage capacitor. However, when the prior art uses a planar transistor or the fin-structured transistor as the access transistor, the access transistor suffers from high leakage current in the OFF state (eg each memory cell exceeds 1 pA), where the signal stored in the DRAM leaks rapidly due to the high leakage current problem, resulting in the DRAM requiring a very short refresh time to restore all stored signal (otherwise the stored signal would be lost), so the problem of high leakage current is unacceptable. In addition, there are various known sources of leakage current in the off state of the access transistor, such as (a) gate-to-channel leakage, (b) gate induced drain Gate-Induced Drain Leakage (GIDL), (c) Drain-induced barrier lowering (DIBL) leakage current, (d) Sub-threshold channel leakage (Sub-threshold channel leakage) ), (e) leakage currents in source/drain sidewalls or regions caused by p-n junctions in silicon materials, etc. In order for the off current of each element to meet a level close to femto-ampere, the parameters of the transistor size of the inner part of each element must be relaxed to an unacceptable level, which violates the scaling theory of transistors, In order to realize the economy of Moore's Law, the scaling theory of the transistor requires to reduce the size of the transistor to reduce the size of the memory cell. In an exaggerated example, for a 10nm process technology, the gate length needs to be greater than 100nm to reduce the off current to meet the requirement of 1 femtoamp per memory cell, however this is not practical. Therefore, how to provide transistors with low leakage current is an important issue for designers of the DRAM.

本發明的一實施例公開一種電晶體結構。該電晶體結構包含一閘極、一間隔層、一通道區、一第一凹槽 、以及一第一導電區。該閘極是位於一矽表面上方。該間隔層是位於該矽表面上方且至少覆蓋該閘極的一側壁。該通道區是位於該矽表面下方。該第一導電區至少部分地形成於該第一凹槽內,其中該電晶體結構旁的一相鄰電晶體結構的該導電區是至少部分地形成於該第一凹槽內。An embodiment of the present invention discloses a transistor structure. The transistor structure includes a gate electrode, a spacer layer, a channel region, a first groove, and a first conductive region. The gate is located above a silicon surface. The spacer layer is located above the silicon surface and covers at least one sidewall of the gate electrode. The channel region is below the silicon surface. The first conductive region is formed at least partially within the first recess, wherein the conductive region of an adjacent transistor structure next to the transistor structure is formed at least partially within the first recess.

在本發明的另一實施例中,該電晶體結構另包含一第二凹槽以及一第二導電區。該第二導電區至少部分地形成於該第二凹槽內。該第一導電區具有沿著一第一延伸方向的一第一摻雜濃度分佈,以及該第二導電區具有沿著一第二延伸方向的一第二摻雜濃度分佈,其中該第一延伸方向和該第二延伸方向平行於該矽表面的法線方向,以及該第一摻雜濃度分佈和該第二摻雜濃度分佈不對稱。In another embodiment of the present invention, the transistor structure further includes a second groove and a second conductive region. The second conductive region is formed at least partially within the second recess. The first conductive region has a first doping concentration profile along a first extension direction, and the second conductive region has a second doping concentration profile along a second extension direction, wherein the first extension The direction and the second extending direction are parallel to the normal direction of the silicon surface, and the first doping concentration distribution and the second doping concentration distribution are asymmetric.

在本發明的另一實施例中,該電晶體結構另包含一第一絕緣層,其中該第一絕緣層形成於該第一凹槽內且位於該第一導電區下方。該第一導電區包含一第一上方部分、一第二上方部分、和一下方部分,該第一上方部分和該第二上方部分接觸該間隔層,以及該下方部分接觸該通道區且位於該第一絕緣層之上層之上。另外,該電晶體結構另包含一第二絕緣層。該第二絕緣層覆蓋該第一導電區。另外,該電晶體結構另包含一接觸區。該接觸區至少部分地形成於該第一凹槽內,其中該第一導電區的該第二上方部分接觸該接觸區,以及該第二絕緣層將該第一導電區的該第一上方部分和該下方部分與該接觸區分開。In another embodiment of the present invention, the transistor structure further includes a first insulating layer, wherein the first insulating layer is formed in the first groove and located below the first conductive region. The first conductive region includes a first upper portion, a second upper portion, and a lower portion, the first upper portion and the second upper portion contact the spacer layer, and the lower portion contacts the channel region and is located in the on the upper layer of the first insulating layer. In addition, the transistor structure further includes a second insulating layer. The second insulating layer covers the first conductive region. In addition, the transistor structure further includes a contact region. The contact region is formed at least partially within the first recess, wherein the second upper portion of the first conductive region contacts the contact region, and the second insulating layer contacts the first upper portion of the first conductive region and the lower portion is distinguished from the contact.

在本發明的另一實施例中,該相鄰電晶體結構的該導電區與該第一導電區電性隔離。另外,在本發明的另一實施例中,該通道區的至少一部分是位於該閘極和該間隔層下方,以及該通道區的長度不小於該閘極的長度與該間隔層的長度的總和。另外,在本發明的另一實施例中,一高應力的介電層形成於該第一導電區、該間隔層、和該閘極之上。In another embodiment of the present invention, the conductive region of the adjacent transistor structure is electrically isolated from the first conductive region. In addition, in another embodiment of the present invention, at least a part of the channel region is located under the gate electrode and the spacer layer, and the length of the channel region is not less than the sum of the length of the gate electrode and the length of the spacer layer . Additionally, in another embodiment of the present invention, a highly stressed dielectric layer is formed over the first conductive region, the spacer layer, and the gate.

本發明的另一實施例公開一種電晶體結構。該電晶體結構包含一閘極、一間隔層、一通道區、以及一第一導電區。該閘極是位於一矽表面上方。該間隔層覆蓋該閘極的一側壁。該通道區的至少一部分是位於該閘極和該間隔層下方。該第一導電區形成於該間隔層和一側面絕緣層之間,其中該第一導電區的一側壁的部分被該側面絕緣層覆蓋Another embodiment of the present invention discloses a transistor structure. The transistor structure includes a gate electrode, a spacer layer, a channel region, and a first conductive region. The gate is located above a silicon surface. The spacer layer covers a side wall of the gate electrode. At least a portion of the channel region is located under the gate and the spacer layer. The first conductive region is formed between the spacer layer and a side insulating layer, wherein a portion of a sidewall of the first conductive region is covered by the side insulating layer

在本發明的另一實施例中,該第一導電區是部分地形成於一第一凹槽內,以及該側面絕緣層部分地形成於該第一凹槽內。一底部絕緣層形成於該第一凹槽內,且該第一導電區是位於該底部絕緣層之上。該第一導電區包含一第一上方部分、一第二上方部分、和一下方部分,該第一上方部分和該第二上方部分接觸該間隔層,以及該下方部分接觸該通道區且位於該底部絕緣層之上。另外,該電晶體結構另包含一接觸區。該一接觸區是至少部分地形成於該第一凹槽內,其中該第一導電區的該第二上方部分接觸該接觸區,以及該側面絕緣層將該第一導電區的該第一上方部分和該下方部分與該接觸區分開。另外,在本發明的另一實施例中,該第一導電區包含矽,碳化矽,或鍺化矽。In another embodiment of the present invention, the first conductive region is partially formed in a first groove, and the side insulating layer is partially formed in the first groove. A bottom insulating layer is formed in the first groove, and the first conductive region is located on the bottom insulating layer. The first conductive region includes a first upper portion, a second upper portion, and a lower portion, the first upper portion and the second upper portion contact the spacer layer, and the lower portion contacts the channel region and is located in the over the bottom insulating layer. In addition, the transistor structure further includes a contact region. The contact region is formed at least partially within the first recess, wherein the second upper portion of the first conductive region contacts the contact region, and the side insulating layer the first upper portion of the first conductive region The portion and the lower portion are distinguished from the contact. Additionally, in another embodiment of the present invention, the first conductive region includes silicon, silicon carbide, or silicon germanium.

在本發明的另一實施例中,該電晶體結構另包含一第二導電區、另一側面絕緣層、以及另一接觸區。該第二導電區部分地形成於一第二凹槽內。該另一側面絕緣層是部分地形成於該第二凹槽內。該另一接觸區是部分地形成於該第二凹槽內,其中該第二導電區包含一第一上方部分、一第二上方部分、和一下方部分,該第二導電區的該下方部分接觸該通道區,該第二導電區的該第二上方部分接觸該另一接觸區,以及該另一側面絕緣層將該第二導電區的該第一上方部分和該下方部分與該另一接觸區分開。In another embodiment of the present invention, the transistor structure further includes a second conductive region, another side insulating layer, and another contact region. The second conductive region is partially formed in a second groove. The other side insulating layer is partially formed in the second groove. The other contact region is partially formed in the second recess, wherein the second conductive region includes a first upper portion, a second upper portion, and a lower portion, the lower portion of the second conductive region contacting the channel region, the second upper portion of the second conductive region contacts the other contact region, and the other side insulating layer contacts the first upper portion and the lower portion of the second conductive region with the other Contact distinction.

在本發明的另一實施例中,該電晶體結構另包含另一間隔層。該另一間隔層覆蓋該閘極的另一側壁,其中該通道區的長度不小於該閘極的長度、該間隔層的長度、與該另一間隔層的長度的總和。另外,該間隔層和該另一間隔層是再生成的間隔層。另外,在本發明的另一實施例中,該電晶體結構另包含位於該間隔層下方的一輕摻雜汲極區。In another embodiment of the present invention, the transistor structure further includes another spacer layer. The other spacer layer covers the other sidewall of the gate electrode, wherein the length of the channel region is not less than the sum of the length of the gate electrode, the length of the spacer layer, and the length of the other spacer layer. In addition, the spacer layer and the other spacer layer are regenerated spacer layers. Additionally, in another embodiment of the present invention, the transistor structure further includes a lightly doped drain region under the spacer layer.

本發明的另一實施例公開一種電晶體結構。該電晶體結構包含一閘極、一間隔層、一通道區、一第一導電區、以及一第二導電區。該閘極是位於一矽表面上方。該間隔層是位於該矽表面上方且覆蓋該閘極的一側壁。該通道區的至少一部分是位於該閘極和該間隔層的下方。該電晶體結構是一非對稱電晶體結構。Another embodiment of the present invention discloses a transistor structure. The transistor structure includes a gate electrode, a spacer layer, a channel region, a first conductive region, and a second conductive region. The gate is located above a silicon surface. The spacer layer is located above the silicon surface and covers a sidewall of the gate. At least a portion of the channel region is located below the gate electrode and the spacer layer. The transistor structure is an asymmetrical transistor structure.

在本發明的另一實施例中,該第一導電區沿著一第一延伸方向的一第一摻雜濃度分佈不同於該第二導電區沿著一第二延伸方向的一第二摻雜濃度分佈。該閘極和該第一導電區之間的結構不同於該閘極和該第二導電區之間的結構。一輕摻雜汲極區形成於該閘極和該第一導電區之間。在本發明的另一實施例中,該第一導電區包含在該矽表面下方的一第一下方部分,該第二導電區包含在該矽表面下方的一第二下方部分,以及該第一下方部分的厚度不同於該第二下方部分的厚度。相鄰於該第一導電區的該通道區的一端的寬度不同於相鄰於該第二導電區的該通道區的另一端的寬度。該第一導電區的材料不同於該第二導電區的材料。In another embodiment of the present invention, a first doping concentration distribution of the first conductive region along a first extension direction is different from a second doping concentration distribution of the second conductive region along a second extension direction concentration distribution. The structure between the gate electrode and the first conductive region is different from the structure between the gate electrode and the second conductive region. A lightly doped drain region is formed between the gate and the first conductive region. In another embodiment of the present invention, the first conductive region includes a first lower portion under the silicon surface, the second conductive region includes a second lower portion under the silicon surface, and the first lower portion The thickness of the lower portion is different from the thickness of the second lower portion. The width of one end of the channel region adjacent to the first conductive region is different from the width of the other end of the channel region adjacent to the second conductive region. The material of the first conductive region is different from the material of the second conductive region.

本發明的另一實施例公開一種電晶體結構。該電晶體結構包含一閘極、一間隔層、一通道區、一第一導電區、以及一第二導電區。該閘極是位於一矽表面上方。該間隔層是位於該矽表面上方且覆蓋該閘極的一側壁。該間隔層位於該矽表面上方且覆蓋該閘極的一側壁該通道區的至少一部分是位於該閘極和該間隔層的下方。該第一導電區電耦接於該通道區的一端以及該第二導電區電耦接於該通道區的另一端。該電晶體結構的開啟電流是取決於該第一導電區的參數,該通道區的參數,該電晶體結構的非對稱參數,以及存在覆蓋該第一導電區的側壁的第二絕緣層的至少其中之一。Another embodiment of the present invention discloses a transistor structure. The transistor structure includes a gate electrode, a spacer layer, a channel region, a first conductive region, and a second conductive region. The gate is located above a silicon surface. The spacer layer is located above the silicon surface and covers a sidewall of the gate. The spacer layer is located above the silicon surface and covers a sidewall of the gate and at least a portion of the channel region is located below the gate and the spacer layer. The first conductive region is electrically coupled to one end of the channel region and the second conductive region is electrically coupled to the other end of the channel region. The turn-on current of the transistor structure is dependent on the parameters of the first conductive region, the parameters of the channel region, the asymmetry parameters of the transistor structure, and the presence of at least the second insulating layer covering the sidewalls of the first conductive region. one of them.

在本發明的另一實施例中,該電晶體結構的關閉電流是取決於該第一導電區的參數,該通道區的參數,該電晶體結構的非對稱參數,以及存在於該第一導電區下方的第一絕緣層的至少其中之一。In another embodiment of the present invention, the off current of the transistor structure is dependent on parameters of the first conductive region, parameters of the channel region, asymmetry parameters of the transistor structure, and parameters present in the first conductive region at least one of the first insulating layers below the region.

本發明公開了一種電晶體結構。該電晶體結構包含一閘極、一間隔層、一通道區、一第一導電區、以及一第二導電區,其中該間隔層將該第一導電區以及該第二導電區與該閘極分開,與該閘極也被該間隔層分開。另外,該第一導電區形成於一第一凹槽的側壁之上,以及該第二導電區形成於一第二凹槽的側壁上,其中該第一導電區和該第二導電區中每一導電區的側壁的部分被一絕緣層覆蓋,以及另一額外的絕緣層可以選擇性地形成於該第一凹槽的底表面上,以及該第二凹槽的底表面也是如此。因此,相較於現有技術所提供的鰭式結構電晶體,本發明所提供的該電晶體結構可減少漏電流且可通過該電晶體的參數調整該電晶體的開啟/關閉電流。The invention discloses a transistor structure. The transistor structure includes a gate electrode, a spacer layer, a channel region, a first conductive region, and a second conductive region, wherein the spacer layer connects the first conductive region and the second conductive region with the gate electrode separated, and the gate is also separated by the spacer layer. In addition, the first conductive region is formed on a sidewall of a first groove, and the second conductive region is formed on a sidewall of a second groove, wherein each of the first conductive region and the second conductive region A portion of the sidewall of a conductive region is covered by an insulating layer, and another additional insulating layer may be selectively formed on the bottom surface of the first recess, as well as the bottom surface of the second recess. Therefore, compared with the fin structure transistor provided in the prior art, the transistor structure provided by the present invention can reduce the leakage current and can adjust the on/off current of the transistor through the parameters of the transistor.

請參照第1A圖。第1A圖是本發明的一第一實施例所公開的一種電晶體結構100的示意圖。如第1A圖所示,電晶體結構100包含一閘極101、一間隔層103、一通道區105、一第一導電區107、以及一第二導電區109。另外,一淺溝槽絕緣(shallow trench isolation, STI)結構110形成於電晶體結構100旁,其中有關淺溝槽絕緣結構110的結構為本發明領域具有熟習技藝者所熟知,在此不再贅述。閘極101形成於一介電層111之上,其中介電層111形成於基底112的矽表面113之上。另外,一覆蓋結構115可以形成於閘極101之上。間隔層103形成於矽表面113之上且包含一第一部分1031和一第二部分1032,其中第一部分1031覆蓋閘極101的左側壁,以及第二部分1032覆蓋閘極101的右側壁。另外,在本發明的一實施例中,間隔層103具有三層結構,其中該三層結構分別為一薄氧化層、一氮化層、以及一氧化層。但本發明不受限於間隔層103具有該三層結構。也就是說,間隔層103可以是單層或多層的介電層,以及該多層的介電層可以包括氮化物、氧化物、氮氧化物、或其他介電質材料。通道區105形成於閘極101和間隔層103以下,以及通道區105對齊間隔層103。因為間隔層103的緣故,所以通道區105的長度大於閘極101的長度。但在本發明的另一實施例中,通道區105不完全位於閘極101和間隔層103下。也就是說,通道區105的至少一部分會位於閘極101和間隔層103下。另外,通道區105的長度可根據間隔層103的長度以及閘極101的長度調整。另外,可在通道區105中形成一摻雜。另外,在本發明的另一實施例中,可以在閘極101和第一導電區107之間與/或閘極101和第二導電區109之間形成輕摻雜區。Please refer to Figure 1A. FIG. 1A is a schematic diagram of a transistor structure 100 disclosed in a first embodiment of the present invention. As shown in FIG. 1A , the transistor structure 100 includes a gate electrode 101 , a spacer layer 103 , a channel region 105 , a first conductive region 107 , and a second conductive region 109 . In addition, a shallow trench isolation (STI) structure 110 is formed beside the transistor structure 100 , and the structure of the STI structure 110 is well known to those skilled in the art of the present invention and will not be repeated here. . The gate 101 is formed on a dielectric layer 111 , wherein the dielectric layer 111 is formed on the silicon surface 113 of the substrate 112 . In addition, a capping structure 115 may be formed on the gate electrode 101 . The spacer layer 103 is formed on the silicon surface 113 and includes a first portion 1031 and a second portion 1032 , wherein the first portion 1031 covers the left sidewall of the gate 101 and the second portion 1032 covers the right sidewall of the gate 101 . In addition, in an embodiment of the present invention, the spacer layer 103 has a three-layer structure, wherein the three-layer structure is a thin oxide layer, a nitride layer, and an oxide layer, respectively. However, the present invention is not limited to the spacer layer 103 having the three-layer structure. That is, the spacer layer 103 may be a single-layer or multi-layer dielectric layer, and the multi-layer dielectric layer may include nitride, oxide, oxynitride, or other dielectric materials. The channel region 105 is formed below the gate electrode 101 and the spacer layer 103 , and the channel region 105 is aligned with the spacer layer 103 . Because of the spacer layer 103 , the length of the channel region 105 is greater than the length of the gate electrode 101 . However, in another embodiment of the present invention, the channel region 105 is not completely located under the gate electrode 101 and the spacer layer 103 . That is, at least a part of the channel region 105 is located under the gate electrode 101 and the spacer layer 103 . In addition, the length of the channel region 105 can be adjusted according to the length of the spacer layer 103 and the length of the gate electrode 101 . Additionally, a dopant may be formed in the channel region 105 . In addition, in another embodiment of the present invention, lightly doped regions may be formed between the gate electrode 101 and the first conductive region 107 and/or between the gate electrode 101 and the second conductive region 109 .

第一導電區107形成且接觸一第一凹槽117的側壁,且第一導電區107包含一下方部分1071和一上方部分(包含一第一上方部分1072、和一第二上方部分1073),其中下方部分1071耦接通道區105,以及第一上方部分1072和第二上方部分1073耦接間隔層103的第一部分1031。另外,第二上方部分1073的頂部(top surface)可以高於或低於閘極101的頂部,以及如第1A圖所示,下方部分1071的厚度(例如下方部分1071的頂部至底部的距離,其中下方部分1071的頂部對齊矽表面113)大於通道區105的厚度(例如通道區105的頂部至底部的距離)。另外,在本發明的另一實施例中,第一導電區107的高度大於閘極101沿著矽表面113的長度,或大於閘極101沿著矽表面113的長度和間隔層103沿著矽表面113的長度的總和。另外,第一導電區107可以包含具有矽的材料例如矽(Si)、碳化矽(SiC)、或鍺化矽(SiGe)。The first conductive region 107 is formed and contacts the sidewall of a first recess 117, and the first conductive region 107 includes a lower portion 1071 and an upper portion (including a first upper portion 1072 and a second upper portion 1073), The lower portion 1071 is coupled to the channel region 105 , and the first upper portion 1072 and the second upper portion 1073 are coupled to the first portion 1031 of the spacer layer 103 . In addition, the top surface of the second upper portion 1073 may be higher or lower than the top of the gate electrode 101, and as shown in FIG. 1A, the thickness of the lower portion 1071 (eg, the distance from the top to the bottom of the lower portion 1071, The top of the lower portion 1071 aligned with the silicon surface 113) is greater than the thickness of the channel region 105 (eg, the distance from the top to the bottom of the channel region 105). In addition, in another embodiment of the present invention, the height of the first conductive region 107 is greater than the length of the gate electrode 101 along the silicon surface 113 , or greater than the length of the gate electrode 101 along the silicon surface 113 and the spacer layer 103 along the silicon surface 113 . The sum of the lengths of surfaces 113 . In addition, the first conductive region 107 may include a material having silicon such as silicon (Si), silicon carbide (SiC), or silicon germanium (SiGe).

一第一絕緣層119形成於第一凹槽117之內且覆蓋第一凹槽117的底表面,其中第一絕緣層119形成於下方部分1071之下。一第二絕緣層121形成於第一導電區107旁且覆蓋下方部分1071的側壁和第一上方部分1072的側壁。另外,第一絕緣層119的材料和/或第二絕緣層121的材料可以是氧化物、氮化物、或其他絕緣材料。在本發明的一實施例中,第一絕緣層119和/或第二絕緣層121可以通過熱氧化而形成。另外,在本發明的另一實施例中,第一絕緣層119和第二絕緣層121是通過原子層沉積法(Atomic-Layer-Deposition, ALD)或化學氣相沉積法(chemical vapor deposition, CVD)形成。A first insulating layer 119 is formed within the first groove 117 and covers the bottom surface of the first groove 117 , wherein the first insulating layer 119 is formed under the lower portion 1071 . A second insulating layer 121 is formed beside the first conductive region 107 and covers the sidewalls of the lower portion 1071 and the sidewalls of the first upper portion 1072 . In addition, the material of the first insulating layer 119 and/or the material of the second insulating layer 121 may be oxides, nitrides, or other insulating materials. In an embodiment of the present invention, the first insulating layer 119 and/or the second insulating layer 121 may be formed by thermal oxidation. In addition, in another embodiment of the present invention, the first insulating layer 119 and the second insulating layer 121 are formed by atomic layer deposition (Atomic-Layer-Deposition, ALD) or chemical vapor deposition (chemical vapor deposition, CVD) )form.

另外, 一導電區133也部分地形成於第一凹槽117內,其中導電區133是包含在電晶體結構100旁邊的一相鄰電晶體結構內,以及導電區133可通過第二絕緣層121或其他隔開方法和第一導電區107隔開或電性隔離。在本發明的另一實施例中,導電區133和第一導電區107形成並連接在一起,從而在第一凹槽117內形成“衣領(collar)”形狀的導電區,以及電晶體結構100旁邊的該相鄰電晶體結構可以是一偽結構(dummy structure)或其他電晶體。In addition, a conductive region 133 is also partially formed in the first recess 117 , wherein the conductive region 133 is included in an adjacent transistor structure next to the transistor structure 100 , and the conductive region 133 can pass through the second insulating layer 121 or other isolation methods to isolate or electrically isolate the first conductive region 107 . In another embodiment of the present invention, the conductive region 133 and the first conductive region 107 are formed and connected together to form a "collar" shaped conductive region within the first recess 117, as well as the transistor structure The adjacent transistor structure next to 100 may be a dummy structure or other transistor.

另外,第一導電區107通過第二上方部分1073耦接一接觸區123,其中接觸區123是用於電晶體結構100未來互連之用。由於第二絕緣層121的緣故,所以第二絕緣層121將第一導電區107的下方部分1071和第一上方部分1072與接觸區123分開。另外,接觸區123可以包含重摻雜的多晶矽或包含金屬的材料。在這種情況下,導電區133是與第一導電區107實體上地分開,以及導電區133是通過接觸區123電耦接第一導電區107。In addition, the first conductive region 107 is coupled to a contact region 123 through the second upper portion 1073 , wherein the contact region 123 is used for future interconnection of the transistor structure 100 . Due to the second insulating layer 121 , the second insulating layer 121 separates the lower portion 1071 and the first upper portion 1072 of the first conductive region 107 from the contact region 123 . Additionally, the contact region 123 may comprise heavily doped polysilicon or a metal-containing material. In this case, the conductive region 133 is physically separated from the first conductive region 107 , and the conductive region 133 is electrically coupled to the first conductive region 107 through the contact region 123 .

第一導電區107有沿著第一導電區107的一第一延伸方向的一第一摻雜濃度分佈,其中該第一延伸方向是由下方部分1071向上延伸至第二上方部分1073。也就是說,該第一延伸方向平行於(或實質上平行於)矽表面113的法線方向。特別的是,該第一摻雜濃度分佈包含下方部分1071的摻雜濃度、第一上方部分1072的摻雜濃度、和第二上方部分1073的摻雜濃度。在本發明的一實施例中,第一上方部分1072的摻雜濃度和/或第二上方部分1073的摻雜濃度高於下方部分1071的摻雜濃度。然而,本發明不受限於第一上方部分1072的摻雜濃度和/或第二上方部分1073的摻雜濃度高於下方部分1071的摻雜濃度,也就是說,該第一摻雜濃度分佈可以是其他摻雜濃度分佈,例如輕摻雜、正常摻雜、和重摻雜的任何順序的組合。The first conductive region 107 has a first doping concentration distribution along a first extending direction of the first conductive region 107 , wherein the first extending direction extends upward from the lower portion 1071 to the second upper portion 1073 . That is, the first extending direction is parallel to (or substantially parallel to) the normal direction of the silicon surface 113 . Specifically, the first doping concentration profile includes the doping concentration of the lower portion 1071 , the doping concentration of the first upper portion 1072 , and the doping concentration of the second upper portion 1073 . In an embodiment of the present invention, the doping concentration of the first upper portion 1072 and/or the doping concentration of the second upper portion 1073 is higher than the doping concentration of the lower portion 1071 . However, the present invention is not limited to the doping concentration of the first upper portion 1072 and/or the doping concentration of the second upper portion 1073 being higher than the doping concentration of the lower portion 1071, that is, the first doping concentration profile Other doping concentration profiles are possible, such as any order combination of light doping, normal doping, and heavy doping.

另外,可以通過調整第一導電區107的第一摻雜濃度分佈以控制第一導電區107的阻值。也就是說,例如當電晶體結構100的開啟電流由第一導電區107流至通道區105時,該開啟電流的值也取決於第一導電區107的第一摻雜濃度分佈。另外,可以通過控制第一導電區107的阻值減少或改變第一導電區107的電壓降。另外,如第1A圖所示,通道區105的長度大於閘極101的長度,以及第一絕緣層119也減少了第一導電區107和基底112之間的接觸區。基於上述理由,電晶體結構100的漏電流可以被降低。另外,在本發明的另一實施例中,可另外通過第一導電區107的高度、寬度、或長度控制第一導電區107的阻值第一導電區107。另外,在本發明的另一實施例中,當電晶體結構100的漏電流非電晶體結構100的操作目的關鍵因素時,第一絕緣層119可以被省略。In addition, the resistance value of the first conductive region 107 can be controlled by adjusting the first doping concentration distribution of the first conductive region 107 . That is, for example, when the turn-on current of the transistor structure 100 flows from the first conductive region 107 to the channel region 105 , the value of the turn-on current also depends on the first doping concentration distribution of the first conductive region 107 . In addition, the voltage drop of the first conductive region 107 can be reduced or changed by controlling the resistance value of the first conductive region 107 . In addition, as shown in FIG. 1A , the length of the channel region 105 is greater than the length of the gate electrode 101 , and the first insulating layer 119 also reduces the contact area between the first conductive region 107 and the substrate 112 . For the above reasons, the leakage current of the transistor structure 100 can be reduced. In addition, in another embodiment of the present invention, the resistance value of the first conductive region 107 can be controlled by the height, width, or length of the first conductive region 107 . In addition, in another embodiment of the present invention, the first insulating layer 119 may be omitted when the leakage current of the transistor structure 100 is not critical to the operation of the transistor structure 100 .

與第一導電區107類似,電晶體結構100的第二導電區109形成且接觸一第二凹槽125的側壁,且第二導電區109包含一下方部分1091和一上方部分(包含一第一上方部分1092、和一第二上方部分1093),其中第二導電區109有沿著第二導電區109的一第二延伸方的一第二摻雜濃度分佈,且該第二延伸方向是由下方部分1091向上延伸至第二上方部分1093。另外,第一導電區107的第一摻雜濃度分佈和第二導電區109的第二摻雜濃度分佈是對稱的。然而,在本發明的另一實施例中,該第一摻雜濃度分佈和該第二摻雜濃度可被刻意地製造成非對稱的。Similar to the first conductive region 107, the second conductive region 109 of the transistor structure 100 is formed and contacts the sidewall of a second recess 125, and the second conductive region 109 includes a lower portion 1091 and an upper portion (including a first upper portion 1092, and a second upper portion 1093), wherein the second conductive region 109 has a second doping concentration distribution along a second extension of the second conductive region 109, and the second extension direction is defined by The lower portion 1091 extends upward to the second upper portion 1093 . In addition, the first doping concentration distribution of the first conductive region 107 and the second doping concentration distribution of the second conductive region 109 are symmetrical. However, in another embodiment of the present invention, the first doping concentration profile and the second doping concentration can be made intentionally asymmetric.

另外,一第一絕緣層127形成於第二導電區109下,一第二絕緣層129形成於第二導電區109旁,以及第二導電區109耦接一接觸區131。第二導電區109、第一絕緣層127、第二絕緣層129、以及接觸區131的結構與特徵可以參照上述有關第一導電區107、第一絕緣層119、第二絕緣層121、以及接觸區123的結構與特徵的說明,在此不再贅述。In addition, a first insulating layer 127 is formed under the second conductive region 109 , a second insulating layer 129 is formed beside the second conductive region 109 , and the second conductive region 109 is coupled to a contact region 131 . For the structures and features of the second conductive region 109 , the first insulating layer 127 , the second insulating layer 129 , and the contact region 131 , please refer to the above-mentioned related to the first conductive region 107 , the first insulating layer 119 , the second insulating layer 121 , and the contact region 131 The description of the structure and features of the region 123 will not be repeated here.

請參照第1B圖。第1B圖的實施例類似於第1A圖的實施例,但第1B圖的實施例和第1A圖的實施例之間的差別在於該相鄰電晶體結構的導電區133是通過第二絕緣層121和一隔離材料1231與第一導電區107實體上的隔離和電性隔離。另外,第一導電區107的頂部和導電區133的頂部可對齊間隔層103的頂部,所以第一導電區107(或導電區133)可以獨立地電耦合到其他導線。同樣地,另一相鄰電晶體結構的另一導電區也是通過第二絕緣層129和另一隔離材料1311與第二導電區109實體上的隔離和電性隔離,所以第二導電區109也可以獨立地電耦合到另一導線。Please refer to Figure 1B. The embodiment of FIG. 1B is similar to the embodiment of FIG. 1A, but the difference between the embodiment of FIG. 1B and the embodiment of FIG. 1A is that the conductive region 133 of the adjacent transistor structure is through the second insulating layer 121 and an isolation material 1231 are physically and electrically isolated from the first conductive region 107 . In addition, the tops of the first conductive regions 107 and 133 can be aligned with the tops of the spacer layers 103, so the first conductive regions 107 (or the conductive regions 133) can be independently electrically coupled to other wires. Similarly, another conductive region of another adjacent transistor structure is physically and electrically isolated from the second conductive region 109 by the second insulating layer 129 and another isolation material 1311 , so the second conductive region 109 is also Can be independently electrically coupled to another conductor.

請參照第2-11圖。第2圖是本發明的一第二實施例所公開的一種電晶體結構100的製造方法的流程圖。第2圖的製造方法將利用第3-11圖說明,其中第3-11圖也繪示出了電晶體結構100旁的該相鄰電晶體結構(或相鄰偽結構),但為了簡化第3-11圖,其結構並未標示於第3-11圖。該製造方法的詳細步驟如下:Please refer to Figure 2-11. FIG. 2 is a flowchart of a method for manufacturing a transistor structure 100 disclosed in a second embodiment of the present invention. The manufacturing method of FIG. 2 will be described using FIG. 3-11, wherein FIG. 3-11 also depicts the adjacent transistor structure (or the adjacent dummy structure) next to the transistor structure 100, but in order to simplify the first Fig. 3-11, the structure of which is not shown in Fig. 3-11. The detailed steps of the manufacturing method are as follows:

步驟200:        開始;Step 200: start;

步驟201:  在矽表面113上形成一第一介電層301、一多晶矽層303、一第一氧化層305、以及一第一氮化層307;Step 201: forming a first dielectric layer 301, a polysilicon layer 303, a first oxide layer 305, and a first nitride layer 307 on the silicon surface 113;

步驟202:  通過蝕刻一閘極樣式外的區域以形成介電層111、閘極101、以及覆蓋結構115;Step 202: forming a dielectric layer 111, a gate 101, and a capping structure 115 by etching a region outside the gate pattern;

步驟204:  在介電層111、閘極101、以及覆蓋結構115旁形成間隔層103;Step 204: forming a spacer layer 103 beside the dielectric layer 111, the gate electrode 101, and the capping structure 115;

步驟206:  利用間隔層103作為各向異性蝕刻技術(anisotropic etching technique)的光罩以形成第一凹槽117和第二凹槽125;Step 206: Using the spacer layer 103 as a mask for anisotropic etching technique to form the first groove 117 and the second groove 125;

步驟208:  分別於第一凹槽117和第二凹槽125內形成第一絕緣層119、127;Step 208: Form the first insulating layers 119 and 127 in the first groove 117 and the second groove 125, respectively;

步驟210:  回蝕刻第一絕緣層119、127;Step 210: Etch back the first insulating layers 119, 127;

步驟212:  分別在第一絕緣層119、127上形成第一導電區107和第二導電區109;Step 212: forming a first conductive region 107 and a second conductive region 109 on the first insulating layers 119 and 127, respectively;

步驟214:  形成並回蝕刻第二絕緣層121、129;Step 214: forming and etching back the second insulating layers 121 and 129;

步驟216:  通過填充第一凹槽117和第二凹槽125以分別形成接觸區123、131;Step 216: Form the contact regions 123 and 131 by filling the first groove 117 and the second groove 125, respectively;

步驟218:        結束。Step 218: End.

首先,利用本發明領域具有熟習技藝者所熟知的製程步驟,可在基底112內先形成淺溝槽絕緣結構110(如第1A圖所示),其中淺溝槽絕緣結構110的頂部低於矽表面113約25至30奈米,以及淺溝槽絕緣結構110的底表面可以深入基底112約300至1000奈米。另外,如第3圖所示,在步驟201中,於矽表面113上形成第一介電層301,其中第一介電層301可以是熱生長氧化物、氧化物和複合絕緣材料、或其他高介電常數(high-k)的材料。接著,在第一介電層301上沈積多晶矽層303(包含摻雜多晶矽、多晶矽加矽化物材料、金屬、或其他閘極材料),以及依序在多晶矽層303上沈積第氧化層305和第一氮化層307。First, using process steps well known to those skilled in the art of the present invention, a shallow trench isolation structure 110 (as shown in FIG. 1A ) can be formed in the substrate 112 first, wherein the top of the shallow trench isolation structure 110 is lower than the silicon The surface 113 is about 25 to 30 nanometers, and the bottom surface of the shallow trench insulating structure 110 can be about 300 to 1000 nanometers deep into the substrate 112 . In addition, as shown in FIG. 3, in step 201, a first dielectric layer 301 is formed on the silicon surface 113, wherein the first dielectric layer 301 may be a thermally grown oxide, an oxide and a composite insulating material, or other High dielectric constant (high-k) material. Next, a polysilicon layer 303 (including doped polysilicon, polysilicon plus silicide material, metal, or other gate materials) is deposited on the first dielectric layer 301 , and an oxide layer 305 and a second gate material are sequentially deposited on the polysilicon layer 303 A nitride layer 307 .

在步驟202中,如第4圖所示,通過光罩蝕刻法步驟(lithography masking step)定義對應介電層111、閘極101、以及覆蓋結構115的該閘極樣式,以及利用該各向異性蝕刻技術蝕刻該閘極樣式外的區域,其中介電層111包含第一介電層301、閘極101包含多晶矽層303、以及覆蓋結構115包含第一氧化層305和第一氮化層307。In step 202, as shown in FIG. 4, the gate pattern corresponding to the dielectric layer 111, the gate 101, and the capping structure 115 is defined by a lithography masking step, and the anisotropy is utilized The etching technique etches the region outside the gate pattern, wherein the dielectric layer 111 includes a first dielectric layer 301 , the gate 101 includes a polysilicon layer 303 , and the capping structure 115 includes a first oxide layer 305 and a first nitride layer 307 .

在步驟204中,依序形成一薄氧化層401、第二氮化層403、以及第二氧化層405,其中薄氧化層401耦接介電層111、閘極101、以及覆蓋結構115,第二氮化層403耦接薄氧化層401,以及第二氧化層405耦接第二氮化層403。接著,如第5圖所示,利用該各向異性蝕刻技術形成間隔層103(包含第一部分1031和第二部分1032)。另外,間隔層103不受限於三層的結構,也就是說,間隔層103可以包含兩層結構或是其他多層結構。In step 204, a thin oxide layer 401, a second nitride layer 403, and a second oxide layer 405 are sequentially formed, wherein the thin oxide layer 401 is coupled to the dielectric layer 111, the gate electrode 101, and the capping structure 115. The dinitride layer 403 is coupled to the thin oxide layer 401 , and the second oxide layer 405 is coupled to the second nitride layer 403 . Next, as shown in FIG. 5 , the spacer layer 103 (including the first portion 1031 and the second portion 1032 ) is formed using the anisotropic etching technique. In addition, the spacer layer 103 is not limited to a three-layer structure, that is, the spacer layer 103 may include a two-layer structure or other multi-layer structures.

在步驟206中,如第6A圖所示,通過蝕刻技術(例如該各向異性蝕刻技術)利用間隔層103作為光罩以形成第一凹槽117和第二凹槽125,以及第一凹槽117和第二凹槽125的側壁對齊間隔層103,其中第一凹槽117和第二凹槽125中每一凹槽的深度可以是10奈米,或是介於10奈米至30奈米之間。另外,在本發明的另一實施例中,可再蝕刻第二氧化層405以及第二氮化層403的一部分以暴露矽表面113的一部分501(如第6B圖所示),其中部分501是位於第一凹槽117和第二凹槽125的側壁的頂部,導致第一凹槽117和第二凹槽125的側壁不對齊間隔層103。在該製造方法的後續步驟中,第7-9、10A、10B、11、12A圖是基於第6A圖的結構而說明,以及第12B圖是基於第6B圖的結構說明。In step 206, as shown in FIG. 6A, the spacer layer 103 is used as a mask to form the first groove 117, the second groove 125, and the first groove by an etching technique (eg, the anisotropic etching technique) 117 and the sidewalls of the second groove 125 are aligned with the spacer layer 103, wherein the depth of each groove in the first groove 117 and the second groove 125 may be 10 nm, or between 10 nm and 30 nm between. Additionally, in another embodiment of the present invention, a portion of the second oxide layer 405 and the second nitride layer 403 may be re-etched to expose a portion 501 of the silicon surface 113 (as shown in FIG. 6B ), wherein the portion 501 is Being on top of the sidewalls of the first groove 117 and the second groove 125 causes the sidewalls of the first groove 117 and the second groove 125 to be misaligned with the spacer layer 103 . In subsequent steps of the manufacturing method, Figs. 7-9, 10A, 10B, 11, 12A are described based on the structure of Fig. 6A, and Fig. 12B is described based on the structure of Fig. 6B.

在步驟208中,如第7圖所示,第一絕緣層119形成於第一凹槽117中且覆蓋第一凹槽117的側壁與底部。同樣地,第一絕緣層127形成於第二凹槽125中且覆蓋第二凹槽125的側壁與底部。另外,第一絕緣層119、127可以是熱生長氧化物、沈積氧化物、沈積複合絕緣材料、或其他高介電常數的材料。In step 208 , as shown in FIG. 7 , a first insulating layer 119 is formed in the first groove 117 and covers the sidewalls and the bottom of the first groove 117 . Likewise, the first insulating layer 127 is formed in the second groove 125 and covers the sidewalls and the bottom of the second groove 125 . Additionally, the first insulating layers 119, 127 may be thermally grown oxides, deposited oxides, deposited composite insulating materials, or other high dielectric constant materials.

在步驟210中,如第8圖所示,回蝕刻第一絕緣層119、127的部分以使第一絕緣層119、127的頂部低於矽表面113,所以通道區105的側壁被暴露。In step 210, as shown in FIG. 8, portions of the first insulating layers 119, 127 are etched back so that the tops of the first insulating layers 119, 127 are lower than the silicon surface 113, so that the sidewalls of the channel region 105 are exposed.

在步驟212中,如第9圖所示,第一導電區107形成並接觸第一凹槽117的側壁,以及設置於第一絕緣層119之上。同樣地,第二導電區109形成並接觸第二凹槽125的側壁,以及設置於第一絕緣層127之上。在本發明的一實施例中,第一導電區107和第二導電區109是通過一沈積方法(例如該原子層沉積法或該化學氣相沉積法)形成。然而,在本發明的另一實施例中,第一導電區107和第二導電區109是通過一選擇性外延增長方法(selective-epitaxy-growth, SEG)增長而成。特別的是,該選擇性外延增長方法可以將通道區105的左側壁作為一矽生長種子(silicon-growth seeding)以在第一凹槽117的側壁上的部分增長一單晶(single-crystalline)矽層做為第一導電區107的下方部分1071,接著以下方部分1071為基礎,繼續利用該選擇性外延增長方法增長其剩餘的第一導電區107(例如第一上方部分1072 和第二上方部分1073)。在利用該選擇性外延增長方法的期間,第一導電區107的第一摻雜濃度分佈可被控制。同樣地,該選擇性外延增長方法可以將通道區105的右側壁作為該矽生長種子,以在第二凹槽125的側壁上的部分增長該單晶矽層做為第二導電區109。In step 212 , as shown in FIG. 9 , the first conductive region 107 is formed and contacts the sidewall of the first groove 117 and is disposed on the first insulating layer 119 . Likewise, the second conductive region 109 is formed and contacts the sidewall of the second groove 125 and is disposed on the first insulating layer 127 . In an embodiment of the present invention, the first conductive region 107 and the second conductive region 109 are formed by a deposition method (eg, the atomic layer deposition method or the chemical vapor deposition method). However, in another embodiment of the present invention, the first conductive region 107 and the second conductive region 109 are grown by a selective-epitaxy-growth (SEG) method. In particular, the selective epitaxial growth method can use the left side wall of the channel region 105 as a silicon-growth seeding to grow a single-crystalline on the part of the side wall of the first groove 117 The silicon layer is used as the lower portion 1071 of the first conductive region 107, and then based on the lower portion 1071, the remaining first conductive region 107 (eg, the first upper portion 1072 and the second upper portion 107) are further grown by the selective epitaxial growth method. section 1073). During the use of the selective epitaxial growth method, the first doping concentration profile of the first conductive region 107 can be controlled. Likewise, the selective epitaxial growth method can use the right sidewall of the channel region 105 as the silicon growth seed, and grow the single-crystal silicon layer on the sidewall of the second groove 125 as the second conductive region 109 .

另外,下方部分1071、第一上方部分1072、和第二上方部分1073中的每一部分可以通過不同的機制(例如使用不同的摻雜濃度或使用其他非矽的材料如鍺或碳原子的混合物等)沈積(或增長)而成,以使第一導電區107具有該第一摻雜濃度分佈。同樣地,下方部分1091、第一上方部分1092、和第二上方部分1093中的每一部分也可以通過該不同的機制沈積(或增長)而成,以使第二導電區109具有該第二摻雜濃度分佈。另外,在本發明的另一實施例中,可以利用鐳射退火(laser-annealing)技術(或是快速熱退火技術(rapid thermal annealing)或其他退火技術)來處理第一導電區107和第二導電區109以增加第一導電區107和第二導電區109的品質與穩定性。另外,如何設計第一導電區107的形狀和第二導電區109的形狀取決於第一導電區107和第二導電區109所期望的阻值與電壓/電場分佈影響,其中第一導電區107的形狀/阻值或第二導電區109的形狀/阻值可以有效地控制電晶體結構100的開啟/關閉電流。In addition, each of the lower portion 1071, the first upper portion 1072, and the second upper portion 1073 may be processed by different mechanisms (eg, using different doping concentrations or using other non-silicon materials such as mixtures of germanium or carbon atoms, etc. ) deposited (or grown) so that the first conductive region 107 has the first doping concentration profile. Likewise, each of the lower portion 1091, the first upper portion 1092, and the second upper portion 1093 can also be deposited (or grown) by the different mechanism, so that the second conductive region 109 has the second dopant Impurity concentration distribution. In addition, in another embodiment of the present invention, a laser-annealing technique (or a rapid thermal annealing technique or other annealing techniques) can be used to process the first conductive region 107 and the second conductive region region 109 to increase the quality and stability of the first conductive region 107 and the second conductive region 109 . In addition, how to design the shape of the first conductive region 107 and the shape of the second conductive region 109 depends on the expected resistance value of the first conductive region 107 and the second conductive region 109 and the influence of the voltage/electric field distribution, wherein the first conductive region 107 The shape/resistance of the transistor structure 109 or the shape/resistance of the second conductive region 109 can effectively control the on/off current of the transistor structure 100 .

另外,在本發明的另一實施例中,第一導電區107和第二導電區109可以包含具有矽的材料(例如矽、碳化矽、或鍺化矽)以產生應力以改善通道區105的遷移率。另外,如第10A圖所示,當第一導電區107和第二導電區109包含碳化矽時,間隔層103可被移除以改善該應力。但在本發明的另一實施例中,如第10B圖所示,可以在間隔層103、覆蓋結構115、及/或第一導電區107和第二導電區109上形成一第二介電層1003(例如氮化矽)。In addition, in another embodiment of the present invention, the first conductive region 107 and the second conductive region 109 may include a material with silicon (eg, silicon, silicon carbide, or silicon germanium) to generate stress to improve the channel region 105 mobility. Additionally, as shown in FIG. 10A, when the first conductive region 107 and the second conductive region 109 include silicon carbide, the spacer layer 103 may be removed to improve the stress. However, in another embodiment of the present invention, as shown in FIG. 10B , a second dielectric layer may be formed on the spacer layer 103 , the capping structure 115 , and/or the first conductive region 107 and the second conductive region 109 1003 (eg silicon nitride).

在步驟214中,如第11圖所示,形成第二絕緣層121、129並進行回蝕刻以使第二絕緣層121覆蓋第一導電區107的下方部分1071與第一上方部分1072,以及使第二絕緣層129覆蓋第二導電區109的下方部分1091與第一上方部分1092。另外,第二絕緣層121、129可以是熱生長氧化物、氧化物和複合絕緣材料、或其他高介電常數的材料。如第11圖所示,第一導電區107的第二上方部分1073並未被第二絕緣層121覆蓋,以及第二導電區109的第二上方部分1093並未被第二絕緣層129覆蓋。In step 214, as shown in FIG. 11, the second insulating layers 121 and 129 are formed and etched back so that the second insulating layer 121 covers the lower portion 1071 and the first upper portion 1072 of the first conductive region 107, and the second insulating layer 121 is The second insulating layer 129 covers the lower portion 1091 and the first upper portion 1092 of the second conductive region 109 . In addition, the second insulating layers 121, 129 may be thermally grown oxides, oxides and composite insulating materials, or other high dielectric constant materials. As shown in FIG. 11 , the second upper portion 1073 of the first conductive region 107 is not covered by the second insulating layer 121 , and the second upper portion 1093 of the second conductive region 109 is not covered by the second insulating layer 129 .

在步驟216中,通過填充n+多晶矽材料、p+多晶矽材料、金屬、或其他導電材料於第一凹槽117和第二凹槽125中以分別形成接觸區123、131,其中在本發明的一實施例中,接觸區123、131的頂部對齊覆蓋結構115的頂部。因此,第12A圖示出了電晶體結構100的最終結構。然而,在本發明的另一實施例中,接觸區123、131的頂部可以高於覆蓋結構115的頂部。另外,第12B圖則為對應第6B圖的實施例中電晶體結構100的最終結構。如第12B圖所示,因為間隔層103被回蝕刻以暴露矽表面113的部分501,所以矽表面113的部分501也可以被用作該矽生長種子,以在矽表面113的部分501上方垂直地增長第一導電區107與第二導電區109。In step 216, by filling n+ polysilicon material, p+ polysilicon material, metal, or other conductive materials in the first groove 117 and the second groove 125 to form contact regions 123, 131, respectively, in an implementation of the present invention For example, the tops of the contact regions 123 , 131 are aligned with the tops of the capping structures 115 . Thus, FIG. 12A shows the final structure of the transistor structure 100 . However, in another embodiment of the present invention, the tops of the contact regions 123 , 131 may be higher than the tops of the capping structures 115 . In addition, FIG. 12B shows the final structure of the transistor structure 100 in the embodiment corresponding to FIG. 6B. As shown in FIG. 12B, because the spacer layer 103 is etched back to expose the portion 501 of the silicon surface 113, the portion 501 of the silicon surface 113 can also be used as the silicon growth seed to vertically above the portion 501 of the silicon surface 113 The first conductive region 107 and the second conductive region 109 are grown on the ground.

在本發明的另一實施例中,第一絕緣層119、127的形成非必要,也就是說,步驟208可以被省略。另外,如第13圖所示,在本發明的另一實施例中,第一導電區107中位於矽表面113以下的部分可以完整地形成於第一凹槽117內,以及第二導電區109中位於矽表面113以下的部分可以完整地形成於第二凹槽125內。也就是說,第二絕緣層121、129可以被省略。另外,第一導電區107的第一摻雜濃度分佈和第二導電區109的第二摻雜濃度分佈可被上述所提到的方式控制。In another embodiment of the present invention, the formation of the first insulating layers 119 and 127 is unnecessary, that is, the step 208 may be omitted. In addition, as shown in FIG. 13, in another embodiment of the present invention, the part of the first conductive region 107 below the silicon surface 113 can be completely formed in the first groove 117 and the second conductive region 109 The portion below the silicon surface 113 may be completely formed in the second groove 125 . That is, the second insulating layers 121, 129 may be omitted. In addition, the first doping concentration profile of the first conductive region 107 and the second doping concentration profile of the second conductive region 109 may be controlled in the above-mentioned manner.

另外,如第14圖所示,在本發明的另一實施例中,間隔層103的第二氧化層405可被移除以露出一間隙1303,以及一第三氧化層或絕緣層1304(如第15圖所示)可在間隙1303中形成或再生成以增加第一導電區107與間隔層103之間的介面品質以及第二導電區109與間隔層103之間的介面品質。另外,第14、15圖所示的間隔層的再生成不受限於第13圖所示的實施例的結構,以及該再生成也可以用於第12A或12B圖所示的實施例。另外,在本發明的另一實施例中,用於進行先閘極(gate-first)製程的多晶矽層303(對應閘極101)可以替換為用於進行後閘極(gate-last)製程且具有適當功函數(從4.0電子伏特至5.2電子伏特)的其他材料或p+摻雜的多晶矽。In addition, as shown in FIG. 14, in another embodiment of the present invention, the second oxide layer 405 of the spacer layer 103 may be removed to expose a gap 1303, and a third oxide layer or insulating layer 1304 (eg, 15 ) can be formed or regenerated in the gap 1303 to increase the interface quality between the first conductive region 107 and the spacer layer 103 and the interface quality between the second conductive region 109 and the spacer layer 103 . In addition, the regeneration of the spacer layer shown in Figs. 14 and 15 is not limited to the structure of the embodiment shown in Fig. 13, and the regeneration can also be used for the embodiment shown in Fig. 12A or 12B. In addition, in another embodiment of the present invention, the polysilicon layer 303 (corresponding to the gate 101 ) used for the gate-first process can be replaced with a gate-last process and Other materials or p+ doped polysilicon with appropriate work function (from 4.0 eV to 5.2 eV).

另外,在本發明的另一實施例中,第一導電區107的第一摻雜濃度分佈與第二導電區109的第二摻雜濃度分佈可以刻意地製造成非對稱以增加電晶體結構100的開啟電流。例如,請參照第16圖,其中第16圖顯示出四種實施例的電晶體結構1600、1601、1602、1603,以及電晶體結構1600、1601、1602、1603分別對應一參考實施例、一實施例1、一實施例2以及一實施例3。另外,電晶體結構1600、1601、1602、1603中的每一電晶體結構包含一閘極結構G、電晶體結構1600包含一源極S0和一汲極D0、電晶體結構1601包含一源極S1和一汲極D1、電晶體結構1602包含一源極S2和一汲極D2、以及電晶體結構1603包含一源極S3和一汲極D3,其中源極S0-S3分別是電晶體結構1600、1601、1602、1603的第一導電區,以及汲極D0-D3分別是電晶體結構1600、1601、1602、1603的第二導電區。為了簡化圖示,第16圖僅繪示出了電晶體結構1600、1601、1602、1603的閘極結構G、源極S0-S3、和汲極D0-D3。另外,源極S0-S3和汲極D0-D3分別以不同的標記繪示以代表不同的摻雜濃度,其中設計該不同的摻雜濃度是取決於該開啟電流和/或該關閉電流的需求(或應用)之間的權衡。特別的是,如該參考實施例與實施例1-3所示,源極S0的摻雜濃度分佈與汲極D0的摻雜濃度分佈相同,以及源極S3的摻雜濃度分佈與汲極D3的摻雜濃度分佈相同。然而,源極S0(汲極D0)的摻雜濃度分佈與源極S3(汲極D3)的摻雜濃度分佈不同。例如,源極S0的摻雜濃度分佈由下而上地包括輕摻雜、正常摻雜、以及重摻雜;而源極S3的摻雜濃度分佈僅包括重摻雜。另一方面,源極S1的摻雜濃度分佈(例如,由下而上地包括輕摻雜、正常摻雜、以及重摻雜)與汲極D1的摻雜濃度分佈(例如,由下而上地僅包括重摻雜)不同,以及源極S2的摻雜濃度分佈(例如,由下而上地僅包括重摻雜)與汲極D2的摻雜濃度分佈(例如,由下而上地包括輕摻雜、正常摻雜、以及重摻雜)不同。實施例1、2的開啟電流會高於該參考實施例的開啟電流。一般而言,相較於該參考實施例,具有非對稱摻雜濃度分佈的實施例(也就是實施例1、2)會具有較高的開啟電流。另外,雖然在部分情況下該非對稱的摻雜濃度分佈可能導致該關閉電流稍微地增加,但可以選擇所需的非對稱摻雜濃度分佈以產生所需的開啟電流和可接受的對應關閉電流。In addition, in another embodiment of the present invention, the first doping concentration distribution of the first conductive region 107 and the second doping concentration distribution of the second conductive region 109 can be deliberately made asymmetric to increase the transistor structure 100 the turn-on current. For example, please refer to FIG. 16, wherein FIG. 16 shows transistor structures 1600, 1601, 1602, and 1603 of four embodiments, and transistor structures 1600, 1601, 1602, and 1603 correspond to a reference embodiment and an implementation, respectively. Example 1, an Example 2, and an Example 3. In addition, each of the transistor structures 1600, 1601, 1602, 1603 includes a gate structure G, the transistor structure 1600 includes a source S0 and a drain D0, and the transistor structure 1601 includes a source S1 and a drain electrode D1, the transistor structure 1602 includes a source electrode S2 and a drain electrode D2, and the transistor structure 1603 includes a source electrode S3 and a drain electrode D3, wherein the source electrodes S0-S3 are the transistor structure 1600, The first conductive regions of 1601, 1602, and 1603, and the drain electrodes D0-D3 are the second conductive regions of transistor structures 1600, 1601, 1602, and 1603, respectively. In order to simplify the illustration, FIG. 16 only shows the gate structures G, the source electrodes S0-S3, and the drain electrodes D0-D3 of the transistor structures 1600, 1601, 1602, and 1603. In addition, the source electrodes S0-S3 and the drain electrodes D0-D3 are drawn with different labels to represent different doping concentrations, wherein the design of the different doping concentrations depends on the requirements of the on-current and/or the off-current (or applications). In particular, as shown in this reference embodiment and Embodiment 1-3, the doping concentration distribution of the source S0 is the same as the doping concentration distribution of the drain D0, and the doping concentration distribution of the source S3 is the same as that of the drain D3 The doping concentration distribution is the same. However, the doping concentration distribution of the source electrode S0 (drain electrode D0 ) is different from the doping concentration distribution of the source electrode S3 (drain electrode D3 ). For example, the doping concentration distribution of the source electrode S0 includes light doping, normal doping, and heavy doping from bottom to top; while the doping concentration distribution of the source electrode S3 only includes heavy doping. On the other hand, the doping concentration distribution of the source S1 (eg, from bottom to top includes light doping, normal doping, and heavy doping) and the doping concentration distribution of the drain D1 (eg, bottom-to-top) ground only includes heavy doping), and the doping concentration profile of source S2 (e.g., includes only heavy doping from bottom to top) and the doping concentration distribution of drain D2 (e.g., includes bottom-up lightly doped, normally doped, and heavily doped) are different. The turn-on currents of Examples 1 and 2 are higher than that of the reference example. In general, the embodiments with asymmetric doping concentration profiles (ie, Examples 1 and 2) have higher turn-on currents than the reference example. Additionally, the desired asymmetric doping concentration profile can be selected to produce a desired on-current and an acceptable corresponding off-current, although in some cases the asymmetric doping concentration profile may result in a slight increase in the off current.

如前所述,因為第一導電區107及/或第二導電區109可包含矽,碳化矽,或鍺化矽,所以第一導電區107的材料可不同於第二導電區109的材料。因此,具有第一導電區107的材料不同於第二導電區109的材料的特徵的電晶體為一非對稱電晶體。As mentioned above, since the first conductive region 107 and/or the second conductive region 109 may comprise silicon, silicon carbide, or silicon germanium, the material of the first conductive region 107 may be different from the material of the second conductive region 109 . Therefore, a transistor having a characteristic that the material of the first conductive region 107 is different from that of the material of the second conductive region 109 is an asymmetrical transistor.

另外,在本發明的另一實施例中,如第17圖所示,在完成間隔層103之前,可通過一些擴散源(沒有離子注入(implantation)的危害)或植入物(implants,需隨後通過熱退火(thermal annealing)或鐳射退火(laser annealing)去除離子注入的危害)在矽表面113的下方以及第一導電區107(例如該汲極)和閘極101之間形成一輕摻雜汲極(Lightly-Doped-Drain, LDD)區135。如第17圖所示,輕摻雜汲極區135是形成在基底112的矽表面113的下方或是一鰭式結構的下方,以及位於閘極101之及/或間隔層103的下方。在此情況下,沒有輕摻雜汲極形成在閘極101和第二導電區109(例如該源極)之間。另外,在本發明的另一實施例中,是在閘極101和該源極之間形成一輕摻雜汲極區,而不是在閘極101和該汲極之間形成該輕摻雜汲極。因此,此時閘極101和該源極之間的結構不同於閘極101和該汲極之間的結構,也就是說包含閘極101和該源極之間的結構不同於閘極101和該汲極之間的結構的特徵的電晶體結構是一非對稱電晶體結構。In addition, in another embodiment of the present invention, as shown in FIG. 17, before the spacer layer 103 is completed, some diffusion sources (without the hazard of ion implantation) or implants (implants, which need to be followed by A lightly doped drain is formed under the silicon surface 113 and between the first conductive region 107 (eg, the drain) and the gate 101 by thermal annealing or laser annealing to remove ion implantation hazards. Lightly-Doped-Drain (LDD) region 135. As shown in FIG. 17 , the lightly doped drain region 135 is formed under the silicon surface 113 of the substrate 112 or under a fin structure, and under the gate 101 and/or the spacer layer 103 . In this case, no lightly doped drain is formed between the gate 101 and the second conductive region 109 (eg, the source). In addition, in another embodiment of the present invention, a lightly doped drain region is formed between the gate electrode 101 and the source electrode, instead of forming the lightly doped drain region between the gate electrode 101 and the drain electrode pole. Therefore, at this time, the structure between the gate electrode 101 and the source electrode is different from the structure between the gate electrode 101 and the drain electrode, that is to say, the structure between the gate electrode 101 and the source electrode is different from that between the gate electrode 101 and the drain electrode. The transistor structure characteristic of the structure between the drains is an asymmetrical transistor structure.

另外,第一導電區107的下方部分1071的厚度(也就是從矽表面113至下方部分1071的底部的距離)可不同於第二導電區109的下方部分1091的厚度,所以通道區105的一端的寬度可不同於通道區105的另一端的寬度,也就是說包含第一導電區107的下方部分1071的厚度不同於第二導電區109的下方部分1091的厚度以及通道區105的一端的寬度不同於通道區105的另一端的寬度的特徵的電晶體結構也是一非對稱電晶體結構。In addition, the thickness of the lower portion 1071 of the first conductive region 107 (ie, the distance from the silicon surface 113 to the bottom of the lower portion 1071 ) may be different from the thickness of the lower portion 1091 of the second conductive region 109 , so one end of the channel region 105 can be different from the width of the other end of the channel region 105 , that is to say, the thickness of the lower portion 1071 including the first conductive region 107 is different from the thickness of the lower portion 1091 of the second conductive region 109 and the width of one end of the channel region 105 A transistor structure characterized by a width other than the other end of the channel region 105 is also an asymmetrical transistor structure.

請再參考第1A圖。通道區105、第一導電區107和第二導電區109是利用自我對準技術(self-alignment technique)形成。因此,電晶體結構100將可更準確地控制、具有更小的形成因素(form-factor)、且佔據更少的晶圓平面面積。另外,因為電晶體結構100的製造方法的步驟可以避免使用離子注入技術(ion-implantation technique)形成第一導電區107(或第二導電區109)與基底112之間的p-n接面,所以該離子注入技術在該p-n接面中引起的損害可被減少。另外,該p-n接面的位置、第一導電區107的下方部分1071的厚度(或第二導電區109的下方部分1091的厚度)以及該第一摻雜濃度分佈和該第二摻雜濃度分佈都更好控制。Please refer to Figure 1A again. The channel region 105, the first conductive region 107 and the second conductive region 109 are formed using a self-alignment technique. Therefore, the transistor structure 100 will be more accurately controllable, have a smaller form-factor, and occupy less wafer plane area. In addition, because the steps of the fabrication method of the transistor structure 100 can avoid using an ion-implantation technique to form a p-n junction between the first conductive region 107 (or the second conductive region 109 ) and the substrate 112 , the Damage caused by ion implantation techniques in the p-n junction can be reduced. In addition, the position of the p-n junction, the thickness of the lower portion 1071 of the first conductive region 107 (or the thickness of the lower portion 1091 of the second conductive region 109 ), and the first doping concentration distribution and the second doping concentration distribution are better controlled.

另外,本發明所提供的電晶體結構,其開啟/關閉電流是取決於第一導電區107的參數(例如該第一摻雜濃度分佈,材料,第一導電區107的下方部分1071的厚度,以及第一導電區107的第二上方部分1073的厚度),第二導電區109的參數,通道區105的參數(例如通道區105的長度),該電晶體結構的非對稱參數(例如上述非對稱的結構),及/或存在該第一絕緣層/第二絕緣層等。因此,可通過上述參數的至少其中之一調整該電晶體結構的開啟/關閉電流。In addition, in the transistor structure provided by the present invention, the on/off current depends on the parameters of the first conductive region 107 (eg, the distribution of the first doping concentration, the material, the thickness of the lower portion 1071 of the first conductive region 107, and the thickness of the second upper portion 1073 of the first conductive region 107), the parameters of the second conductive region 109, the parameters of the channel region 105 (such as the length of the channel region 105), the asymmetric parameters of the transistor structure (such as the above symmetrical structure), and/or the presence of the first insulating layer/second insulating layer, etc. Therefore, the on/off current of the transistor structure can be adjusted by at least one of the above parameters.

綜上所述,本發明提供的該電晶體結構包含該閘極、該間隔層、該通道區、該第一導電區、以及該第二導電區,其中該第一導電區與該閘極被該間隔層分開,以及該第二導電區與該閘極也被該間隔層分開。另外,該第一導電區形成且接觸該第一凹槽的側壁,以及該第二導電區形成且接觸該第二凹槽的側壁,其中該第一導電區和該第二導電區中每一導電區的側壁的部分被一絕緣層覆蓋,以及另一絕緣層可形成於該第一凹槽的底表面,以及該第二凹槽的底表面也是如此。因此,相較於現有技術所提供的鰭式結構電晶體,本發明所提供的電晶體結構可減少漏電流且可通過該電晶體的參數調整該電晶體的開啟/關閉電流。 以上該僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 To sum up, the transistor structure provided by the present invention includes the gate electrode, the spacer layer, the channel region, the first conductive region, and the second conductive region, wherein the first conductive region and the gate electrode are separated by The spacer layer is separated, and the second conductive region and the gate are also separated by the spacer layer. In addition, the first conductive region is formed and contacts the sidewall of the first recess, and the second conductive region is formed and contacts the sidewall of the second recess, wherein each of the first conductive region and the second conductive region Portions of the sidewalls of the conductive region are covered by an insulating layer, and another insulating layer may be formed on the bottom surface of the first groove, as well as the bottom surface of the second groove. Therefore, compared with the fin structure transistor provided in the prior art, the transistor structure provided by the present invention can reduce leakage current and can adjust the on/off current of the transistor through the parameters of the transistor. The above are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the scope of the patent application of the present invention shall fall within the scope of the present invention.

100、1600、1601、1602、1603:電晶體結構 101:閘極 103:間隔層 1031:第一部分 1032:第二部分 105:通道區 107:第一導電區 1071、1091:下方部分 1072、1092:第一上方部分 1073、1093:第二上方部分 109:第二導電區 110:淺溝槽絕緣結構 111:介電層 112:基底 113:矽表面 115:覆蓋結構 117:第一凹槽 119、127:第一絕緣層 121、129:第二絕緣層 123、131:接觸區 125:第二凹槽 133:導電區 135:輕摻雜汲極區 1231、1311:隔離材料 200-218:步驟 301:第一介電層 303:多晶矽層 305:第一氧化層 307:第一氮化層 401:薄氧化層 403:第二氮化層 405:第二氧化層 501:部分 1003:第二介電層 1303:間隙 1304:絕緣層 G:閘極結構 S0-S3:源極 D0-D3:汲極 100, 1600, 1601, 1602, 1603: Transistor Structure 101: Gate 103: Spacer Layer 1031: Part 1 1032: Part II 105: Passage area 107: The first conductive area 1071, 1091: The lower part 1072, 1092: First Upper Section 1073, 1093: Second upper part 109: Second conductive area 110: Shallow trench insulation structure 111: Dielectric layer 112: Base 113: Silicon Surface 115: Overlay Structure 117: First groove 119, 127: the first insulating layer 121, 129: the second insulating layer 123, 131: Contact area 125: Second groove 133: Conductive area 135: Lightly doped drain region 1231, 1311: isolation material 200-218: Steps 301: first dielectric layer 303: polysilicon layer 305: first oxide layer 307: first nitride layer 401: Thin oxide layer 403: the second nitride layer 405: Second oxide layer 501: Section 1003: Second Dielectric Layer 1303: Clearance 1304: Insulation layer G: Gate structure S0-S3: source D0-D3: drain

第1A圖是本發明的第一實施例所公開的一種電晶體結構的示意圖。 第1B圖是本發明的另一實施例所公開的一種電晶體結構的示意圖。 第2圖是本發明的第二實施例所公開的一種電晶體結構的製造方法的流程圖。 第3圖是說明在矽表面上形成第一介電層、多晶矽層、第一氧化層、以及第一氮化層的示意圖。 第4圖是說明形成介電層、閘極、以及覆蓋結構的示意圖。 第5圖是說明在介電層、閘極、以及覆蓋結構旁形成間隔層的示意圖。 第6A圖是說明利用間隔層作為各向異性蝕刻技術的光罩形成第一凹槽和第二凹槽的示意圖。 第6B圖是根據本發明另一實施例說明回蝕刻間隔層以暴露矽表面的部分的示意圖。 第7圖是說明在第一凹槽和第二凹槽內形成第一絕緣層的示意圖。 第8圖是說明回蝕刻第一絕緣層的示意圖。 第9圖是說明在第一絕緣層之上形成第一導電區和第二導電區的示意圖。 第10A圖是根據本發明另一實施例說明移除間隔層的示意圖。 第10B圖是根據本發明另一實施例說明在間隔層、覆蓋結構、第一導電區、以及第二導電區上形成第二介電層的示意圖。 第11圖是說明形成並回蝕刻第二絕緣層的示意圖。 第12A圖是說明電晶體結構的最終結構的示意圖。 第12B圖是根據第6B圖所示的實施例說明電晶體結構的最終結構的示意圖。 第13圖是根據本發明另一實施例說明第一導電區和第二導電區分別完整地形成在第一凹槽和第二凹槽中的示意圖。 第14圖是根據本發明另一實施例說明移除間隔層的第二氧化層的示意圖。 第15圖是根據本發明另一實施例說明再生成第三氧化層的示意圖。 第16圖是根據本發明另一實施例說明電晶體結構的四種實施例的示意圖。 第17圖是本發明的另一實施例所公開的一種電晶體結構的示意圖。 FIG. 1A is a schematic diagram of a transistor structure disclosed in the first embodiment of the present invention. FIG. 1B is a schematic diagram of a transistor structure disclosed in another embodiment of the present invention. FIG. 2 is a flowchart of a method for manufacturing a transistor structure disclosed in a second embodiment of the present invention. FIG. 3 is a schematic diagram illustrating the formation of a first dielectric layer, a polysilicon layer, a first oxide layer, and a first nitride layer on the silicon surface. FIG. 4 is a schematic diagram illustrating the formation of a dielectric layer, a gate electrode, and a capping structure. FIG. 5 is a schematic diagram illustrating the formation of a spacer layer next to the dielectric layer, gate electrode, and capping structure. FIG. 6A is a schematic diagram illustrating the formation of a first groove and a second groove using a spacer layer as a mask of an anisotropic etching technique. FIG. 6B is a schematic diagram illustrating a portion of the spacer layer etched back to expose the silicon surface according to another embodiment of the present invention. FIG. 7 is a schematic diagram illustrating the formation of the first insulating layer in the first groove and the second groove. FIG. 8 is a schematic diagram illustrating etching back the first insulating layer. FIG. 9 is a schematic diagram illustrating the formation of a first conductive region and a second conductive region over the first insulating layer. FIG. 10A is a schematic diagram illustrating the removal of the spacer layer according to another embodiment of the present invention. FIG. 10B is a schematic diagram illustrating forming a second dielectric layer on the spacer layer, the capping structure, the first conductive region, and the second conductive region according to another embodiment of the present invention. FIG. 11 is a schematic diagram illustrating forming and etching back a second insulating layer. FIG. 12A is a schematic diagram illustrating the final structure of the transistor structure. FIG. 12B is a schematic diagram illustrating the final structure of the transistor structure according to the embodiment shown in FIG. 6B. FIG. 13 is a schematic diagram illustrating that the first conductive region and the second conductive region are completely formed in the first groove and the second groove, respectively, according to another embodiment of the present invention. FIG. 14 is a schematic diagram illustrating the removal of the second oxide layer of the spacer layer according to another embodiment of the present invention. FIG. 15 is a schematic diagram illustrating regeneration of a third oxide layer according to another embodiment of the present invention. FIG. 16 is a schematic diagram illustrating four embodiments of transistor structures according to another embodiment of the present invention. FIG. 17 is a schematic diagram of a transistor structure disclosed in another embodiment of the present invention.

100:電晶體結構 100: Transistor Structure

101:閘極 101: Gate

103:間隔層 103: Spacer Layer

1031:第一部分 1031: Part 1

1032:第二部分 1032: Part II

105:通道區 105: Passage area

107:第一導電區 107: The first conductive area

1071、1091:下方部分 1071, 1091: The lower part

1072、1092:第一上方部分 1072, 1092: First Upper Section

1073、1093:第二上方部分 1073, 1093: Second upper part

109:第二導電區 109: Second conductive area

110:淺溝槽絕緣結構 110: Shallow trench insulation structure

111:介電層 111: Dielectric layer

112:基底 112: Base

113:矽表面 113: Silicon Surface

115:覆蓋結構 115: Overlay Structure

117:第一凹槽 117: First groove

119、127:第一絕緣層 119, 127: the first insulating layer

121、129:第二絕緣層 121, 129: the second insulating layer

123、131:接觸區 123, 131: Contact area

125:第二凹槽 125: Second groove

133:導電區 133: Conductive area

Claims (29)

一種電晶體結構,包含: 一閘極,位於一矽表面上方; 一間隔層,位於該矽表面上方,其中該間隔層至少覆蓋該閘極的一側壁; 一通道區,位於該矽表面下方; 一第一凹槽;以及 一第一導電區,至少部分地形成於該第一凹槽內; 其中位於該電晶體結構旁的一相鄰電晶體結構的一導電區是至少部分地形成於該第一凹槽內。 A transistor structure comprising: a gate located above a silicon surface; a spacer layer located above the silicon surface, wherein the spacer layer covers at least one sidewall of the gate electrode; a channel region below the silicon surface; a first groove; and a first conductive area, at least partially formed in the first groove; A conductive region of an adjacent transistor structure next to the transistor structure is formed at least partially within the first recess. 如請求項1所述的電晶體結構,另包含: 一第二凹槽;以及 一第二導電區,至少部分地形成於該第二凹槽內。 The transistor structure as claimed in claim 1, further comprising: a second groove; and A second conductive area is formed at least partially in the second groove. 如請求項2所述的電晶體結構,其中該第一導電區具有沿著一第一延伸方向的一第一摻雜濃度分佈,以及該第二導電區具有沿著一第二延伸方向的一第二摻雜濃度分佈,其中該第一延伸方向和該第二延伸方向平行於該矽表面的法線方向,以及該第一摻雜濃度分佈和該第二摻雜濃度分佈不對稱。The transistor structure of claim 2, wherein the first conductive region has a first doping concentration distribution along a first extending direction, and the second conductive region has a distribution along a second extending direction The second doping concentration distribution, wherein the first extending direction and the second extending direction are parallel to the normal direction of the silicon surface, and the first doping concentration distribution and the second doping concentration distribution are asymmetric. 如請求項1所述的電晶體結構,另包含: 一第一絕緣層,形成於該第一凹槽內且位於該第一導電區下方。 The transistor structure as claimed in claim 1, further comprising: A first insulating layer is formed in the first groove and below the first conductive area. 如請求項4所述的電晶體結構,其中該第一導電區包含一第一上方部分、一第二上方部分、和一下方部分,該第一上方部分和該第二上方部分接觸該間隔層,以及該下方部分接觸該通道區且位於該第一絕緣層之上。The transistor structure of claim 4, wherein the first conductive region comprises a first upper portion, a second upper portion, and a lower portion, the first upper portion and the second upper portion contacting the spacer layer , and the lower portion contacts the channel region and is located above the first insulating layer. 如請求項5所述的電晶體結構,另包含: 一第二絕緣層,覆蓋該第一導電區。 The transistor structure of claim 5, further comprising: A second insulating layer covers the first conductive area. 如請求項6所述的電晶體結構,另包含: 一接觸區,至少部分地形成於該第一凹槽內,其中該第一導電區的該第二上方部分接觸該接觸區,以及該第二絕緣層將該第一導電區的該第一上方部分和該下方部分與該接觸區分開。 The transistor structure of claim 6, further comprising: a contact area formed at least partially within the first recess, wherein the second upper portion of the first conductive area contacts the contact area, and the second insulating layer the first upper portion of the first conductive area The portion and the lower portion are distinguished from the contact. 如請求項1所述的電晶體結構,其中該相鄰電晶體結構的該導電區與該第一導電區電性隔離。The transistor structure of claim 1, wherein the conductive region of the adjacent transistor structure is electrically isolated from the first conductive region. 如請求項1所述的電晶體結構,其中該通道區的至少一部分是位於該閘極和該間隔層下方,以及該通道區的長度不小於該閘極的長度與該間隔層的長度的總和。The transistor structure of claim 1, wherein at least a portion of the channel region is located below the gate electrode and the spacer layer, and the length of the channel region is not less than the sum of the length of the gate electrode and the length of the spacer layer . 如請求項1所述的電晶體結構,其中一高應力的介電層形成於該第一導電區、該間隔層、和該閘極之上。The transistor structure of claim 1, wherein a highly stressed dielectric layer is formed over the first conductive region, the spacer layer, and the gate. 一種電晶體結構,包含: 一閘極,位於一矽表面上方; 一間隔層,覆蓋該閘極的一側壁; 一通道區,其中該通道區的至少一部分是位於該閘極和該間隔層下方;以及 一第一導電區,形成於該間隔層和一側面絕緣層之間,其中該第一導電區的一側壁的部分被該側面絕緣層覆蓋。 A transistor structure comprising: a gate located above a silicon surface; a spacer layer covering a side wall of the gate electrode; a channel region, wherein at least a portion of the channel region is located below the gate and the spacer layer; and A first conductive area is formed between the spacer layer and a side insulating layer, wherein a part of a side wall of the first conductive area is covered by the side insulating layer. 如請求項11所述的電晶體結構,其中該第一導電區是部分形成於一第一凹槽內,以及該側面絕緣層是部分形成於該第一凹槽內。The transistor structure of claim 11, wherein the first conductive region is partially formed in a first recess, and the side insulating layer is partially formed in the first recess. 如請求項12所述的電晶體結構,其中一底部絕緣層形成於該第一凹槽內,且該第一導電區是位於該底部絕緣層之上。The transistor structure of claim 12, wherein a bottom insulating layer is formed in the first groove, and the first conductive region is located on the bottom insulating layer. 如請求項13所述的電晶體結構,其中該第一導電區包含一第一上方部分、一第二上方部分、和一下方部分,該第一上方部分和該第二上方部分接觸該間隔層,以及該下方部分接觸該通道區且位於該底部絕緣層之上。The transistor structure of claim 13, wherein the first conductive region comprises a first upper portion, a second upper portion, and a lower portion, the first upper portion and the second upper portion contacting the spacer layer , and the lower portion contacts the channel region and is above the bottom insulating layer. 如請求項14所述的電晶體結構,另包含: 一接觸區,至少部分地形成於該第一凹槽內,其中該第一導電區的該第二上方部分接觸該接觸區,以及該側面絕緣層將該第一導電區的該第一上方部分和該下方部分與該接觸區分開。 The transistor structure of claim 14, further comprising: a contact area formed at least partially within the first recess, wherein the second upper portion of the first conductive area contacts the contact area, and the side insulating layer the first upper portion of the first conductive area and the lower portion is distinguished from the contact. 如請求項11所述的電晶體結構,其中該第一導電區包含矽,碳化矽,或鍺化矽。The transistor structure of claim 11, wherein the first conductive region comprises silicon, silicon carbide, or silicon germanium. 如請求項11所述的電晶體結構,另包含: 一第二導電區,部分地形成於一第二凹槽內; 另一側面絕緣層,部分地形成於該第二凹槽內;以及 另一接觸區,部分地形成於該第二凹槽內; 其中該第二導電區包含一第一上方部分、一第二上方部分、和一下方部分,該第二導電區的該下方部分接觸該通道區,該第二導電區的該第二上方部分接觸該另一接觸區,以及該另一側面絕緣層將該第二導電區的該第一上方部分和該下方部分與該另一接觸區分開。 The transistor structure of claim 11, further comprising: a second conductive area partially formed in a second groove; The other side insulating layer is partially formed in the second groove; and another contact area, partially formed in the second groove; The second conductive region includes a first upper portion, a second upper portion, and a lower portion, the lower portion of the second conductive region contacts the channel region, and the second upper portion of the second conductive region contacts The other contact region, and the other side insulating layer separate the first upper portion and the lower portion of the second conductive region from the other contact region. 如請求項11所述的電晶體結構,另包含: 另一間隔層,其中該另一間隔層覆蓋該閘極的另一側壁,以及該通道區的長度不小於該閘極的長度、該間隔層的長度、與該另一間隔層的長度的總和。 The transistor structure of claim 11, further comprising: Another spacer layer, wherein the other spacer layer covers the other side wall of the gate electrode, and the length of the channel region is not less than the sum of the length of the gate electrode, the length of the spacer layer, and the length of the other spacer layer . 如請求項18所述的電晶體結構,其中該間隔層和該另一間隔層是再生成的間隔層。The transistor structure of claim 18, wherein the spacer layer and the further spacer layer are regenerated spacer layers. 如請求項18所述的電晶體結構,另包含: 一輕摻雜汲極區,位於該間隔層下方。 The transistor structure of claim 18, further comprising: A lightly doped drain region is located below the spacer layer. 一種電晶體結構,包含: 一閘極,位於一矽表面上方; 一間隔層,位於該矽表面上方且覆蓋該閘極的一側壁; 一通道區,其中該通道區的至少一部分是位於該閘極和該間隔層的下方;以及 一第一導電區和一第二導電區; 其中該電晶體結構是一非對稱電晶體結構。 A transistor structure comprising: a gate located above a silicon surface; a spacer layer over the silicon surface and covering a sidewall of the gate; a channel region, wherein at least a portion of the channel region is located below the gate and the spacer layer; and a first conductive area and a second conductive area; Wherein the transistor structure is an asymmetric transistor structure. 如請求項21所述的電晶體結構,其中該第一導電區沿著一第一延伸方向的一第一摻雜濃度分佈不同於該第二導電區沿著一第二延伸方向的一第二摻雜濃度分佈。The transistor structure of claim 21, wherein a first doping concentration distribution of the first conductive region along a first extending direction is different from a second doping concentration distribution of the second conductive region along a second extending direction Doping concentration profile. 如請求項21所述的電晶體結構,其中該閘極和該第一導電區之間的結構不同於該閘極和該第二導電區之間的結構。The transistor structure of claim 21, wherein the structure between the gate electrode and the first conductive region is different from the structure between the gate electrode and the second conductive region. 如請求項23所述的電晶體結構,其中一輕摻雜汲極區形成於該閘極和該第一導電區之間。The transistor structure of claim 23, wherein a lightly doped drain region is formed between the gate and the first conductive region. 如請求項23所述的電晶體結構,其中該第一導電區包含在該矽表面下方的一第一下方部分,該第二導電區包含在該矽表面下方的一第二下方部分,以及該第一下方部分的厚度不同於該第二下方部分的厚度。The transistor structure of claim 23, wherein the first conductive region comprises a first lower portion below the silicon surface, the second conductive region comprises a second lower portion below the silicon surface, and The thickness of the first lower portion is different from the thickness of the second lower portion. 如請求項23所述的電晶體結構,其中相鄰於該第一導電區的該通道區的一端的寬度不同於相鄰於該第二導電區的該通道區的另一端的寬度。The transistor structure of claim 23, wherein the width of one end of the channel region adjacent to the first conductive region is different from the width of the other end of the channel region adjacent to the second conductive region. 如請求項21所述的電晶體結構,其中該第一導電區的材料不同於該第二導電區的材料。The transistor structure of claim 21, wherein the material of the first conductive region is different from the material of the second conductive region. 一種電晶體結構,包含: 一閘極,位於一矽表面上方; 一間隔層,位於該矽表面上方且覆蓋該閘極的一側壁; 一通道區,其中該通道區的至少一部分是位於該閘極和該間隔層下方;以及 一第一導電區和一第二導電區,其中該第一導電區電耦接於該通道區的一端以及該第二導電區電耦接於該通道區的另一端; 其中該電晶體結構的開啟電流是取決於該第一導電區的參數,該通道區的參數,該電晶體結構的非對稱參數,以及存在覆蓋該第一導電區的側壁的第二絕緣層的至少其中之一。 A transistor structure comprising: a gate located above a silicon surface; a spacer layer over the silicon surface and covering a sidewall of the gate; a channel region, wherein at least a portion of the channel region is located below the gate and the spacer layer; and a first conductive region and a second conductive region, wherein the first conductive region is electrically coupled to one end of the channel region and the second conductive region is electrically coupled to the other end of the channel region; The turn-on current of the transistor structure depends on the parameters of the first conductive region, the parameters of the channel region, the asymmetric parameters of the transistor structure, and the presence of the second insulating layer covering the sidewalls of the first conductive region. at least one of them. 如請求項28所述的電晶體結構,其中該電晶體結構的關閉電流是取決於該第一導電區的參數,該通道區的參數,該電晶體結構的非對稱參數,以及存在於該第一導電區下方的第一絕緣層的至少其中之一。The transistor structure of claim 28, wherein the off current of the transistor structure is dependent on parameters of the first conductive region, parameters of the channel region, asymmetric parameters of the transistor structure, and parameters present in the first conductive region at least one of the first insulating layers below a conductive region.
TW109135910A 2020-10-16 Transistor structure TWI836152B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109135910A TWI836152B (en) 2020-10-16 Transistor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109135910A TWI836152B (en) 2020-10-16 Transistor structure

Publications (2)

Publication Number Publication Date
TW202218112A true TW202218112A (en) 2022-05-01
TWI836152B TWI836152B (en) 2024-03-21

Family

ID=

Similar Documents

Publication Publication Date Title
KR101637679B1 (en) Mechanisms for forming finfet device
KR100748261B1 (en) Fin field effect transistor haiving low leakage current and method of manufacturing the finfet
KR100532353B1 (en) FinFET and Method of manufacturing the same
US6855588B1 (en) Method of fabricating a double gate MOSFET device
US9245975B2 (en) Recessed channel insulated-gate field effect transistor with self-aligned gate and increased channel length
US10943837B2 (en) Device having overlapping semiconductor fins oriented in different directions
US20230207645A1 (en) Transistor structure with reduced leakage current and adjustable on/off current
US9660054B2 (en) Tunneling field effect transistor (TFET) with ultra shallow pockets formed by asymmetric ion implantation and method of making same
JP5925740B2 (en) Tunnel field effect transistor
US9812368B2 (en) Method to prevent lateral epitaxial growth in semiconductor devices
US20060175661A1 (en) SOI MOSFET device with reduced polysilicon loading on active area
CN111223934A (en) Transistor structure and process method thereof
KR101026479B1 (en) Semiconductor device and manufacturing method of the same
US20200111713A1 (en) Finfet having insulating layers between gate and source/drain contacts
US20190027606A1 (en) Semiconductor device and fabrication method thereof
TWI836152B (en) Transistor structure
US20050045949A1 (en) Ultra-thin body transistor with recessed silicide contacts
KR102501554B1 (en) Transistor structure with reduced leakage current and adjustable on/off current
TW202218112A (en) Transistor structure
CN111668309A (en) Field effect transistor having diffusion barrier spacer portion
KR100823874B1 (en) High density fin field effect transistor having low leakage current and method of manufacturing the finfet
US20230402504A1 (en) Metal-oxide-semiconductor field-effect transistor structure with low leakage current and reserved gate length
US11908903B2 (en) Process window control for gate formation in semiconductor devices
US11688741B2 (en) Gate-all-around devices with isolated and non-isolated epitaxy regions for strain engineering
US20230056668A1 (en) Semiconductor structure and method for forming same