TW202215909A - 寬頻電漿處理系統及方法 - Google Patents

寬頻電漿處理系統及方法

Info

Publication number
TW202215909A
TW202215909A TW109134951A TW109134951A TW202215909A TW 202215909 A TW202215909 A TW 202215909A TW 109134951 A TW109134951 A TW 109134951A TW 109134951 A TW109134951 A TW 109134951A TW 202215909 A TW202215909 A TW 202215909A
Authority
TW
Taiwan
Prior art keywords
frequency
signal
plasma processing
output
power amplifier
Prior art date
Application number
TW109134951A
Other languages
English (en)
Inventor
建平 趙
彼得 凡特薩克
Original Assignee
日商東京威力科創股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商東京威力科創股份有限公司 filed Critical 日商東京威力科創股份有限公司
Priority to TW109134951A priority Critical patent/TW202215909A/zh
Publication of TW202215909A publication Critical patent/TW202215909A/zh

Links

Images

Landscapes

  • Plasma Technology (AREA)

Abstract

一種例示電漿處理系統包含:一電漿處理腔室;一電極,用於對在該電漿處理腔室之中的電漿供電;一可調諧射頻(RF)信號發生器,建構以輸出於第一頻率的一第一信號、及於第二頻率的一第二信號。該第二頻率係該第一頻率的至少1.1倍。該系統包含一寬頻功率放大器,與該可調諧RF信號發生器耦接,該第一頻率及該第二頻率係在該寬頻功率放大器的一操作頻率範圍之內。該寬頻功率放大器的輸出係與該電極耦接。該寬頻功率放大器係建構以在該輸出處供給於該第一頻率的第一功率、及於該第二頻率的第二功率。

Description

寬頻電漿處理系統及方法
本發明大致上涉及電漿系統和操作方法,並且在特定實施例中,涉及寬頻電漿處理系統和方法。
通常,藉由使用光微影術和蝕刻在半導體基板上依次沉積和圖案化介電層、導電層、及半導體材料層,以形成結構用於電路組件和互連元件(例如電晶體、電阻器、電容器、金屬線、接觸窗、及介層窗),將半導體裝置(例如積體電路(IC))加以製造。一些組件包括複雜的三維結構,例如,在動態隨機存取記憶體(DRAM)胞元中的堆疊電容器及鰭式場效電晶體(FinFET)。諸如反應離子蝕刻(RIE)、電漿輔助化學氣相沉積(PECVD)、電漿輔助原子層蝕刻和沉積(PEALE和PEALD)的電漿輔助技術在用於形成半導體裝置結構的沉積和蝕刻製程中已成為不可或缺的。
最小特徵部尺寸受到週期性縮減以藉由增加堆積密度來降低成本。幾奈米的特徵部可以通過諸如浸沒式微影和多重圖案化之創新來加以圖案化。這種微縮趨勢加劇了在形成緻密的高縱橫比奈米結構中的技術挑戰。特別是,電漿製程提供能力以均勻地在一寬(例如300 mm)的晶圓上,通常以原子尺度的尺寸,形成準確尺寸的奈米結構以及精確控制的結構特徵部(例如,寬度、深度、邊緣輪廓、膜厚度、保形性、及各向異性)。已經開發出各種電漿處理技術,例如選擇性沉積和蝕刻、同時沉積和蝕刻、脈衝電漿製程、以及使用交替的沉積與蝕刻循環的循環製程,以克服對於製造微縮之半導體裝置的一些障礙。此類技術在半導體製造中的成功部署可能需要電漿器材設計的進一步創新,其考慮諸如處理成本、器材可配置性、及器材成本之因素。
根據本發明的一實施例,一種電漿處理系統,包含:一電漿處理腔室;一第一電極,用於對在該電漿處理腔室之中的電漿供電;一可調諧射頻(RF)信號發生器,建構以輸出於第一頻率的一第一信號、及於第二頻率的一第二信號。該第二頻率係該第一頻率的至少1.1倍。該系統更包含一寬頻功率放大器,與該可調諧RF信號發生器耦接,該第一頻率及該第二頻率係在該寬頻功率放大器的一操作頻率範圍之內。該寬頻功率放大器的輸出係與該第一電極耦接。該寬頻功率放大器係建構以在該輸出處供給於該第一頻率的第一功率、及於該第二頻率的第二功率。
根據本發明的一實施例,一種電漿處理系統,包含:一可調諧射頻(RF)信號發生器,建構以輸出於第一頻率的一第一信號、及於第二頻率的一第二信號。該第二頻率係該第一頻率的至少1.1倍。該系統更包含一寬頻功率放大器,與該可調諧RF信號發生器耦接。該第一頻率及該第二頻率係在該寬頻功率放大器的一操作頻率範圍之內。該寬頻功率放大器的輸出係建構以與一電漿處理腔室的一電極加以耦接。該寬頻功率放大器係建構以:在該輸出處,供給於該第一頻率的第一功率、及於該第二頻率的第二功率,及提供一反饋以將該寬頻功率放大器的該輸出針對該第一頻率或該第二頻率加以調諧。
根據本發明的一實施例,一種操作電漿處理系統的方法,包含:在可調諧RF信號發生器,產生一射頻(RF)信號;在一寬頻功率放大器,放大該RF信號而產生一放大的RF信號;供給該放大的RF信號,以對在一電漿處理腔室之內的電漿供電;藉由量測該電漿的阻抗,產生一反饋信號;及基於該反饋信號,在該可調諧RF信號發生器調整該RF信號的頻率。
在習知的電漿處理中,蝕刻機台和沉積機台具有分開的處理腔室。然而,許多製程配方需要重複的蝕刻和沉積,這可能需要大量的處理時間,因為必須在不破壞不同腔室之間的真空的情況下轉移晶圓。當執行這樣的多個沉積和蝕刻製程時,在單一腔室中結合沉積與蝕刻製程可以減少處理時間。例如,可以進行各種蝕刻和沉積製程的單一腔室可以幫助消除在不同蝕刻和沉積腔室之間的晶圓轉移。不同的電漿沉積和蝕刻製程(例如,各向同性和定向沉積/蝕刻)可以在寬泛的不同射頻下操作,且因此使用非常不同的硬體,尤其是具有不同的RF源和匹配網路。不同的RF源也將具有獨立的RF隔離,從而使系統更加複雜。例如,如果電漿處理設備包括與具有第一RF頻率的RF信號連接的第一RF電極、及與具有第二RF頻率的RF信號同時連接的第二RF電極,則可能發生進一步的複雜性。另外,傳統上,調諧幾個獨立的匹配網路係非常耗時的。調諧不僅會在每個操作頻率上進行,而且調諧是一個緩慢的機械驅動程序。
本申請案的實施例揭露一種單一腔室設計,例如,用於進行蝕刻和沉積製程二者。本申請案的實施例揭露與電子反饋控制系統耦合的一寬頻功率放大器,其有助於在蝕刻與沉積製程之間快速切換。電子反饋控制系統係設計用於調諧寬頻RF信號發生器,以實現超快的阻抗匹配。
首先使用圖1描述利用單渠道寬頻RF功率放大器的寬頻電漿系統的實施例。然後參照圖2進一步詳細描述單渠道寬頻RF功率放大器。參照圖3和圖4描述利用單渠道寬頻功率放大器的寬頻電漿系統的其他例示實施例。使用圖5描述一種寬頻電漿系統,其中,電漿處理腔室可使用雙渠道寬頻RF功率放大器而以雙頻模式加以操作。然後,參考圖6更詳細地描述雙渠道寬頻RF功率放大器。參考圖7-9描述實施例,繪示使用包括電控脈衝發生器的寬頻電漿系統的脈衝模式操作。然後,將在圖10中討論操作電漿處理系統的示例性方法。
圖1顯示包括一電漿處理設備111的寬頻電漿處理系統1111的示意圖,該電漿處理設備111包括例如以剖面圖繪示的電漿處理腔室150。
在一個實施例中,如圖1所示,電漿處理腔室150在腔室內部於頂部附近裝有第一RF電極156,在底部附近裝有基板固持器158。第一RF電極156和基板固持器158在一個實施例中可以是圓形的。在電漿處理步驟期間,可以將基板(例如,半導體晶圓)放置在基板固持器158之上。基板溫度可以藉由反饋溫度控制系統154使用基板固持器158之中的加熱器和冷卻器而加以調節,以保持規定的溫度。
可編程控制器110可以利用一製程配方120加以編程,該製程配方120係例如作為可編程指令存儲在寬頻電漿處理系統1111的記憶體之中。製程配方120提供用於選擇寬頻可調諧RF信號發生器100的一窄頻帶的中心頻率的資訊。通常,RF信號發生器100產生正弦波形。在一些實施例中,可以生成其他波形,例如,鋸齒波形。基於製程配方120,可編程控制器110生成第一控制信號,該第一控制信號然後被發送到可調諧RF信號發生器100。在處理期間,可編程控制器110可以在所選擇的窄操作頻帶中以小的頻率偏移來精煉RF頻率,如以下進一步解釋。
在操作期間,電漿製程係藉由提供給電漿處理腔室的一個或多個電極的RF功率和DC偏壓而加以驅動。電漿處理腔室的操作模式可以藉由具有控制信號的可編程控制器來加以改變,該控制信號控制施加在各個電極的RF功率和DC偏壓的頻率和幅值。
基於第一控制信號,可調諧RF信號發生器100產生一RF信號,其在寬頻RF功率放大器1000的輸入埠I處加以提供。寬頻RF功率放大器1000在其輸出埠O輸出放大的RF信號,然後將其提供以例如通過第一RF電極156為電漿供電。寬頻RF功率放大器1000具有在至少0.1 MHz與10 GHz之間的操作頻率範圍。在寬頻RF功率放大器1000的一種示例性設計中,使用400 kHz至3 GHz之間的操作頻率範圍。
在圖1所示的示例實施例中,直接電漿(direct plasma)可以使用從第一RF電極156和接地的基板耦合到電漿的RF功率而在基板與第一RF電極156之間加以維持。在一實施例中,接地的基板包括將基板固持器158連接到一參考電位,該參考電位被稱為接地。
製程配方120亦由可編程控制器110加以使用,而將第二控制信號發送到寬頻RF功率放大器1000的信號埠S,其中第二控制信號用於配置內部開關(例如,固態電子開關,諸如閘流體及絕緣閘雙極性電晶體(IGBT)),其在寬頻RF功率放大器1000中選擇一輸出匹配網路。所選的輸出匹配網路對應於使用初始第一控制信號所選擇的窄操作頻帶的中心頻率,從而確保輸出匹配網路的分量係與操作頻帶加以調準,如製成配方120所指定。
從寬頻RF功率放大器1000的反饋埠Z到可編程控制器110的一反饋信號對寬頻RF功率放大器1000的輸出埠O的輸出頻率進行微調。該反饋信號是對RF功率從寬頻RF功率放大器1000傳輸到電漿之效率的度量,並且可由可編程控制器110加以使用而藉由調整對RF信號發生器的第一控制信號來動態地調諧RF信號頻率而對RF信號的頻率進行微調,以例如保持最大的功率傳輸效率。功率傳輸效率係由在輸出埠O反射的功率的分率加以表示。據此,在一個實施例中,前向功率和反射功率係加以量測,且與反射功率成比例的一反饋信號係使用寬頻RF功率放大器1000內部的電路系統加以產生,如下面參考圖2進一步詳細說明的。
仍參考圖1,電漿處理腔室150包括管狀側壁101、基底105、及頂蓋103,其係共同地實質上包圍電漿處理腔室150。側壁101、基底105、及頂蓋103可由導電材料加以形成,例如不銹鋼或鋁,塗佈有例如氧化釔(例如,Y xO y或Y xO yF z)的一膜,或與該製程相容的一膜(例如,碳或矽),或熟習此技藝者所知者。通常,電漿處理腔室150係接地,但在一些實施例中,電漿處理腔室150可以是浮接的。
在本揭露內容的示例實施例中,載體氣體和製程氣體係藉由包括在側壁101中的入口155的一氣體輸入系統加以引入到電漿處理腔室150。氣體輸入系統可以包括多個入口,並且可以在不同的時間將不同的氣體輸入到電漿處理腔室150中,如製程配方中所指定的。例如,該設計可以包括穿過頂蓋103的額外氣體入口。包括例如在基底105中的出口107及真空泵152的一氣體排放系統可以用於從電漿處理腔室150去除諸如產物氣體的廢氣。真空泵152在電漿處理腔室150的入口155與出口107之間維持一氣流。
電漿處理腔腔室150內部的輸入和排放系統的各種其他組件(例如流量計、壓力感測器、及控制閥)、電漿參數感測器(例如光學發射光譜(OES)感測器、四極質譜儀(QMS)和朗茂探針)、靜電柵、電連接器等未加以顯示,並且對於熟習此技藝者而言是已知的。
第一RF電極156的設計(例如,其直徑、厚度、電阻、及自電感),基板固持器的設計(例如,其直徑、台座高度、內建的加熱和冷卻元件的幾何形狀),對於熟習此技藝者而言是已知的,因此不再進一步討論。
儘管圖1中所示的電漿處理設備111的組件具有特定的幾何形狀和布置,但是應當理解,這些形狀和布置僅用於說明目的。其他實施例可以具有其他形狀和/或布置。
在圖1所示的寬頻電漿處理系統1111中,來自寬頻RF功率放大器1000的RF功率係使用設置在電漿處理腔室150之內的第一RF電極156加以傳輸到一直接電漿。
在其他實施例中,第一RF電極156可以放置在電漿處理腔室150之外,並且與電漿處理腔室150內的電漿加以感應/電容地耦合。在一些其他實施例中,第一RF電極156可以由設置在頂蓋103上方的平面螺旋線圈代替,其中在平面線圈下方的頂蓋103的一部分包括一介電窗。在又其他實施例中,可以使用纏繞在管狀側壁101的外表面的螺旋線圈,其中側壁101包括介電材料。在一些實施例中,電漿處理腔室150內部的電漿可以由微波功率源(例如,磁控管或固態微波發生器)使用槽式天線(例如位於管狀側壁101外部的環形波導或在佈置在頂蓋103之上的槽式天線碟)來加以維持。來自環形波導的微波功率可以使用沿著環形波導和側壁101的介電質覆蓋物加以耦合到電漿,並且來自槽式天線碟的微波功率可以使用作為介電窗之在槽式天線碟下方的頂蓋103的一部分加以耦合到電漿。
而且,在其他實施例中,可以藉由使用電漿放電遠離於基板固持器的腔室設計,使用遠程電漿(而不是直接電漿)來處理基板。
接下來,參考圖2中的示意圖,描述單渠道寬頻RF功率放大器1000的結構,其具有四個埠:輸入埠I、輸出埠O、信號埠S、及反饋埠Z,連接到參照圖1上述的寬頻電漿系統的其他各種電路。
如圖2所示,施加到輸入埠I的某個RF頻率的輸入信號係分配到由DC電源供應器210所供電的功率放大器220的陣列,該DC電源供應器210由橫跨放大器陣列繪製的寬箭頭表示。儘管圖2中的八個功率放大器220其中任何一者可以設計為放大在相對窄的頻帶內的RF信號,但是功率放大器220的陣列總體上跨越寬的頻率範圍。取決於功率和頻率,功率放大器220可以包括橫向擴散或延伸汲極金屬氧化物半導體(LDMOS或EDMOS)矽電晶體、或矽碳化物、或基於氮化鎵的功率裝置等等。
來自功率放大器220的輸出係由一集合的組合器以一或多級加以組合,例如,兩個四輸入中間組合器230和一個二輸入最終組合器240的集合。共同地,功率放大器220的陣列、四輸入中間組合器230及最終組合器240用作寬頻功率放大器單元。如熟習此技藝者已知的,可以基於電漿系統的個別設計要求來選擇放大器和組合器的數量。
最終組合器240的輸出係連接到被動元件的電子可組態網路,稱為輸出匹配網路,包括例如一調諧電容器( C T )、一負載電容器( C L )、及一選用性的電感器( L)。如熟習此技藝者已知的,包括電容器(或電感器)的輸出匹配網路的阻抗是頻率相依的。由於寬頻電漿處理系統1111可以在寬間隔的頻帶操作電漿體處理設備111,因此所使用的電容(或電感)數值必須與製程配方120中指定的操作頻率調準。因此,無論何時製程配方120指定不同的操作RF頻率,則可編程控制器110可以針對寬頻RF功率放大器1000生成一新的第二控制信號,以從在一輸出匹配網路電路250中的多個被動組件中選擇一個或多個組件。
在一個實施例中,輸出匹配網路電路250使用在寬頻RF功率放大器1000的信號埠S處所接收的第二控制信號,以使用內建的固態電子開關(諸如閘流體和IGBT)來配置匹配網路電路250,以選擇例如幾個調諧電容器其中一者並將其串聯和/或並聯連接至固定電感器和固定負載電容器的一組合。然後,此三個被動元件使用與各別操作頻帶調準的 C T C L 、和 L的特定組合形成一輸出匹配網路。
儘管可以選擇與製程配方120中指定的RF頻率相對應的被動組件(例如,調諧電容器),但它可能仍不足以用於寬頻RF功率放大器1000與連接在輸出埠O的負載阻抗(例如圖1中的電漿處理設備111的阻抗)之間的適當阻抗匹配。由於負載阻抗不僅包括硬體(例如,RF電極和電纜)的阻抗亦包含可能是可變的電漿的阻抗,甚至在相同的製程步驟期間,輸出匹配網路的阻抗可能必須進一步調整。次優的阻抗匹配會降低功率傳輸效率,並藉由歸一化為在負載中耗散的前向功率的來自輸出埠O的較大反射功率加以表示。
在本揭露內容的實施例可以藉由使用一反饋控制系統來連續地調整所選的輸出匹配網路的阻抗來快速地最小化歸一化的反射功率,該反饋控制系統以對發射到RF信號發生器100的第一控制信號進行的連續調整來連續地微調RF信號的頻率。在各種實施例中,在針對最小反射功率而微調頻率的同時,也可以改變來自功率放大器220的陣列的輸出功率。以下進一步描述了產生可用於最佳化阻抗匹配的適當反饋信號的幾種方法。
仍然參考圖2,在一個實施例中,反射功率和前向功率係由功率分析器電路260加以測量。輸出匹配網路電路250的輸出係加以輸入到功率分析器電路260的入射埠。入射功率大部分通過功率分析器電路260而至寬頻RF功率放大器1000的輸出埠O。
在一個或多個實施例中,反射功率和前向功率可以藉由使用寬頻RF V-I感測器加以測量,該感測器獨立地感測離開功率分析器電路260的RF信號的電壓(V)和電流(I)的幅值和相位。功率分析器電路260內部的電路系統可以分析測得的V和I,以在反饋埠Z處生成與歸一化的反射功率(在圖2中表示為R)成比例的反饋信號。
在一些實施例中,如上所述,V-I感測器係用於測量反射功率和前向功率,而在一些其他實施例中,定向耦合器可以用於直接檢測前向功率和反射功率。輸出匹配網路電路250的輸出可以輸入到放置在功率分析器電路260之內的定向耦合器的入射埠。定向耦合器的直通埠可以連接到輸出埠O。已知小分率的前向RF信號出現在耦合埠處,且反射的RF信號出現在定向耦合器的隔離埠處。在功率分析器電路260之中的其他電路系統可以產生與在反饋埠Z處的歸一化反射功率成比例的反饋信號(R)。
在本揭露內容中描述的寬頻電漿處理系統1111包括具有幾個內建電路的寬頻RF功率放大器1000,例如匹配網路電路250和功率分析器電路260。然而,應當理解,在一些其他實施例中,整合在寬頻RF功率放大器1000之中的組件可以改放在外側,並且在寬頻RF功率放大器1000之外的組件可以在不改變寬頻電漿處理系統1111的功能的情況下加以整合。例如,匹配網路電路250或功率分析器電路260可以整合在與寬頻RF功率放大器1000分離的組件中。類似地,在另一個示例中,RF信號發生器100可以整合在寬頻RF功率放大器1000之內。
如圖1所示,來自反饋埠Z的反饋信號係發送到可編程控制器110。可編程控制器110連續地處理來自反饋埠Z的反饋信號,並精煉第一控制信號以將在可調諧RF信號發生器100的頻率在以製程配方中指定的頻率為中心的窄頻帶之內加以調整。連續地微調RF頻率直到阻抗係加以匹配以實現從寬頻RF功率放大器1000到第一RF電極156和電漿的最大功率傳輸效率的這種反饋方法,稱為具有中心頻率偏移的掃頻調諧,並且可用於超快速阻抗匹配。
圖3顯示寬頻電漿處理系統3333的示意圖,其中用於維持電漿的RF信號功率係使用與圖1中示意描述的寬頻電漿處理系統1111相同的方法而加以產生和控制。然而,在實施例中,電漿處理設備333包括一電漿處理腔室350,其中基板固持器158用作第一RF電極。特別是,不存在如圖1所示的實施例的獨立的第一RF電極156(或頂部電極)。如圖3所示,代替將基板固持器158接地,電漿處理設備333的基板固持器158係連接到寬頻RF功率放大器1000的輸出埠O,並且RF功率係用於維持緊鄰基板(未顯示)的直接電漿。圖3的寬頻RF功率放大器1000可以類似於使用圖2描述的寬頻RF功率放大器1000。
在各種實施例中,寬頻電漿處理系統1111和3333可以在第一頻帶與第二頻帶之間順序地或交替地操作相應的電漿處理設備111/333。在順序操作模式中,在離開電漿處理腔室150/350之前,基板經歷至少兩個順序的電漿製程步驟。第一電漿製程步驟(例如,PECVD製程)首先使用第一頻率的RF功率加以執行,然後接著進行第二電漿製程步驟(例如,RIE製程步驟),其係使用第二頻率的RF功率加以執行。
在交替操作模式中,一循環電漿製程步驟(例如,波希(Bosch)蝕刻製程)可以藉由使用例如在電漿沉積期間的第一頻率和在電漿蝕刻期間的第二頻率而在電漿蝕刻與電漿沉積之間進行交替來加以執行。
為了向第一RF電極156(用於電漿處理設備111)或基板固持器158(用於電漿處理設備333)提供多個頻率的RF功率,製程配方120可以包括用於可編程控制器110的明確指令,以藉由使用該對的第一控制信號和第二控制信號而將寬頻RF功率放大器1000的輸出匹配網路和可調諧RF信號發生器100配置為在兩個頻帶之間同步地切換,如上所述。替代地,可編程控制器110可以基於由製程配方120所定義的操作頻率,自己確定用於輸出匹配網路電路250和/或用於可調諧RF信號發生器100的輸入的不同配置。
儘管這裡參照第一頻率和第二頻率描述了順序操作模式和交替操作模式,但是應當理解,本申請案中揭露的實施例可以用以調適超過兩個的頻率。
圖4顯示寬頻電漿處理系統4444,其中,上面參考圖1至圖3描述的電漿處理設備111和333的設計係加以組合以增強針對調節電漿處理腔室450中的電漿放電的特性的靈活性。使用與寬頻電漿處理系統1111和3333所述相同的方法來生成和控制用於維持電漿的RF信號功率。圖4的寬頻RF功率放大器1000可以類似於使用圖2描述的寬頻RF功率放大器1000。
如圖4所示,電漿處理設備444使用兩個RF電極:位於電漿處理腔室450頂部附近的第一RF電極156和位於基底105附近的第二RF電極(其為基板固持器158)。第一RF電極156和基板固持器158都從寬頻RF功率放大器1000的輸出埠O接收功率。
然而,在此實施例中,到第一RF電極156的信號係由阻擋在第一頻帶之外的RF功率的第一帶通濾波器440加以濾波,並且到基板固持器158的信號係由阻擋在第二頻帶之外的RF功率的第二帶通濾波器455加以濾波。藉由在各別的信號路徑中插入第一和第二帶通濾波器440和455,寬頻電漿處理系統4444提供了一種方法在半導體基板上執行順序和交替的電漿製程。因此,第一RF電極156可以與基板固持器158同時加以供電,或者它們可以交替代地加以供電。然而,第一帶通濾波器440確保第一RF電極156在第一頻帶上受到供電,而基板固持器158在第二頻帶上受到供電。
寬頻電漿處理系統4444可以另外包括兩個獨立的DC電源供應器,一個用於將第一DC偏壓V1疊加在第一RF電極156上,另一個用於將第二DC偏壓V2疊加在基板固持器158(第二RF 電極)。根據寬頻電漿處理系統4444的製程配方120,第一和第二DC偏壓數值可以藉由可編程控制器110加以控制或禁用。
圖5顯示雙頻寬頻電漿處理系統5555的示例,其包括具有兩個RF電極的電漿處理設備444(參考圖4描述)。在雙頻操作期間,該兩個RF電極可以由在二個離散頻率的獨立RF信號同時地加以供電。
如上所述,可以理解的是,在此實施例和先前的實施例中,雙頻的選擇僅用於舉例說明。在本申請案中討論的各種電漿系統,例如雙頻寬頻電漿處理系統5555,可用於適應超過兩個的頻率。
如圖5所示,來自雙頻寬頻電漿處理系統5555的雙渠道寬頻RF功率放大器5000的兩個隔離的輸出埠O 1和O 2的RF功率可以用來獨立地對第一RF電極156和基板固持器158(第二RF電極)供電。由可調諧雙渠道RF信號發生器500產生的兩個獨立的RF信號,驅動雙渠道寬頻RF功率放大器5000的輸入埠I 1和I 2,如圖5所示。
兩個RF輸入信號的頻帶係加以同步地控制,其中第一控制信號從雙渠道可編程控制器510發送到可調諧雙渠道RF信號發生器500。雙渠道可編程控制器510還將兩個控制信號發送到雙渠道寬頻RF功率放大器5000的信號埠S 1和S 2,以將頻帶對雙渠道寬頻RF功率放大器5000之中的各別輸出匹配網路加以同步。用於選擇頻帶和同步地配置輸出匹配網路的控制信號是根據雙頻寬頻電漿處理系統5555的製程配方520。
來自雙渠道寬頻RF功率放大器5000的兩個阻抗埠Z 1和Z 2的反饋信號係用於微調頻率。如在先前的實施例中,反饋信號可以用於調整輸出匹配網路的阻抗,以供對雙渠道RF信號發生器500的輸入以及電漿處理期間的最有效率的功率傳輸。
如在先前的實施例中,雙頻寬頻電漿處理系統5555可以另外包括兩個獨立的DC電源供應器,用於將第一DC偏壓V1和第二DV偏壓V2施加到第一RF電極156和基板固持器158。施加的DC偏壓電壓可以由雙渠道可編程控制器510加以控制,如上面針對寬頻電漿處理系統4444所述。
在圖6中進一步詳細說明了在圖5中的雙頻寬頻電漿處理系統5555中使用的雙渠道寬頻RF功率放大器5000。如圖6中的兩個虛線矩形所示意指示,八埠雙渠道寬頻RF功率放大器5000的各渠道是四埠單渠道寬頻RF功率放大器,類似於圖2所示的單渠道寬頻RF功率放大器1000。因此,雙渠道寬頻RF功率放大器5000可以包括在例如圖2的先前的實施例中描述的單渠道RF功率放大器其中二者。因此,雙渠道寬頻RF功率放大器5000的操作可能相似,除了由於更多的組件,獨立的渠道可加以平行處理,以同時在輸出埠O 1和O 2產生雙頻輸出。
圖7和8顯示適用於脈衝的順序或交替電漿處理的寬頻電漿處理系統7777和8888的兩個示例。 脈衝電漿處理與連續電漿處理的不同之處在於,使用例如包括電子開關裝置和脈衝發生器電路系統的可編程斬波器電路將針對電漿放電的RF功率切成短脈衝(例如10毫秒脈衝)。 電漿處理系統在其他方面與用於連續電漿處理的相應系統相同。
如圖7和圖8所示,寬頻電漿處理系統7777和8888具有斬波器電路700,該斬波器電路700插入在將可調諧RF信號發生器100的輸出分別連接到寬頻電漿處理系統1111和4444的寬頻RF功率放大器1000的輸入埠I的信號路徑之中。斬波器電路700可以由可編程控制器710加以控制。
除了斬波器電路700和來自可編程控制器710的控制路徑之外,圖7中的寬頻電漿處理系統7777的示意圖係與圖1中的寬頻電漿處理系統1111的示意圖相同。同樣地,除了斬波器電路700和相應的控制路徑之外,圖8中的寬頻電漿處理系統8888的示意圖係與圖4中的寬頻電漿處理系統4444的示意圖相同。儘管未顯示出,斬波器電路700可以類似地加入圖3中描述的實施例。
斬波器電路700的斬波器電路藉由週期性地斷開和閉合由斬波器電路700中的低頻脈衝發生器所控制的電子開關來中斷/調制連續的RF信號。低頻脈衝波形的頻率為100 Hz等級,而來自可調諧RF信號發生器100的RF信號的頻率係在約100 kHz至約10 GHz之間。斬波器電路700可以被觸發,並且用於調制來自可調諧RF信號發生器100的RF信號的低頻脈衝的頻率和佔空比可以由可編程控制器710加以控制,其中一控制信號係發送到斬波器電路700的控制端子P,如圖7和8所示。
在某些脈衝處理應用中,可以在某些脈衝期間關閉RF信號,在此期間不執行電漿處理。例如,PEALD和PEALE在一個反應循環期間利用交替的反應和驅淨脈衝。因此,RF信號發生器100係藉由可編程控制器710接通(反應脈衝)和斷開(驅淨脈衝)。在反應脈衝開始時電漿放電啟動之後的短暫時間,寬頻RF功率放大器1000的輸出埠O處的瞬時RF功率波形可以表現出暫態性變化。暫態可能是當在打開RF電源而點燃電漿時由隨時間快速變化的負載阻抗的電漿成分所引起的阻抗不匹配的結果。如上文針對寬頻電漿處理系統1111和3333所述,使用具有中心頻率偏移的掃頻調諧的超快速阻抗匹配(例如,響應時間小於100微秒),提供了減少RF功率的暫態的優點,該RF功率係在脈衝電漿處理期間供給於電漿處理設備444。可以藉由減少(甚至消除)不受控制的暫態變化來實現在脈衝電漿製程步驟的各個脈衝期間提供給電漿的RF功率的精確控制。
圖9顯示適用於脈衝的順序或交替電漿處理的寬頻電漿處理系統9999的替代實施例。該實施例類似於圖8-9的先前實施例,包括可以中斷/調制連續RF信號的斬波器電路。然而,與圖5中描述的實施例不同,圖9中的示例實施例可以在可調諧雙渠道RF信號發生器500與雙渠道寬頻RF功率放大器5000之間的信號路徑之中包括雙渠道斬波器電路900。雙渠道斬波器電路900可以包括在先前實施例中描述的斬波器電路700的多個單元,並且可以在其控制端子P1和P2處從雙渠道可編程控制器910接收多個脈衝控制信號(除了還為雙渠道斬波器電路900提供控制信號,其操作類似於先前討論的雙渠道可編程控制器510)。
圖10揭露根據本發明實施例的操作電漿處理系統的方法。圖10的方法可以應用於圖1-9中描述的任何系統。
參照圖10,在可調諧RF信號發生器(例如,圖1的可調諧RF信號發生器100)處,產生射頻(RF)信號(方框21)。
在寬頻RF功率放大器處(例如,在圖1的寬頻RF功率放大器1000處),RF信號係加以放大以產生放大的RF信號(方框22)。該放大的RF信號係提供給一RF電極(例如,圖1的第一RF電極156)以向電漿處理腔室內的電漿供電(方框23)。在例如寬頻RF功率放大器1000處產生反饋信號,該反饋信號包含對寬頻功率放大器的輸出處的反射功率的測量(方框24)。該反射功率包括電漿阻抗的效應,並使用寬頻V-I感測器或定向耦合器進行量測。基於該反饋信號,在例如可調諧RF信號發生器100處調整RF信號的頻率。
在說明性實施例中(參見圖1作為代表系統),可以首先執行一沉積製程步驟。在沉積製程步驟,可調諧RF信號發生器100將於期望振幅將於第一頻率(例如,高RF頻率(f 1))的一信號發送至寬頻RF功率放大器1000,寬頻RF功率放大器1000放大功率並將其輸出至第一RF電極156以點燃高密度的第一電漿。一旦第一電漿被點燃,可調諧RF信號發生器100圍繞高RF頻率f 1以特定的偏移範圍Δf 1開始一掃頻,以最小化由在寬頻RF功率放大器1000之內的功率分析器電路260所量測的反射功率。沉積步驟將開始,並且沉積可以持續幾個反應循環(順序反應和驅淨脈衝),如電漿輔助原子層沉積(PEALD)。
接下來,可以起始示例性蝕刻製程步驟。在蝕刻步驟,可調諧RF信號發生器100切換輸出頻率,並將於期望的振幅於第二頻率(例如,低RF頻率f 2)的一信號發送給寬頻RF功率放大器1000。舉例來說,在一個例子中,高RF頻率f 1至少是低RF頻率f 2的1.1倍。例如,一個實施例可以使用27 MHz的低RF頻率和40 MHz的高RF頻率,而另一個實施例可以使用40 MHz的低RF頻率和60 MHz的高RF頻率。替代地,在其他示例中,高RF頻率f 1是低RF頻率f 2的至少兩倍。寬頻RF功率放大器1000將於第二頻率的接收到的信號加以放大,並將其輸出到第一電極156以點燃第二電漿。一旦第二電漿被點燃,可調諧RF信號發生器100圍繞低頻率f 2以特定的偏移範圍Δf 2開始一掃頻,以最小化由寬頻RF功率放大器1000之內的功率分析器電路260所量測的反射功率。這開始蝕刻材料,例如在電漿處理室腔之中的基板固持器158之上的基板。額外的方法步驟,尤其是特定於一特定硬體設計的步驟,已在上面(圖1至9)進行了更詳細的討論,而為了簡潔在此不再贅述那些特徵。
因此,在各種實施例中,該製程可以藉由改變在可調諧RF信號發生器100處的頻率而在蝕刻與沉積之間快速切換,而不必像習知器具那樣使用機械驅動的調諧。
因此,本申請案的實施例揭露了寬頻電漿系統和用於以順序、交替、或脈衝模式操作電漿處理設備的方法。
因此,本發明的各種實施例可以實現如在電漿製程配方中編程的,在離散功率位準之間(例如,在開和關之間)或在離散RF頻率之間(例如,在10 MHz與100 MHz之間)的RF功率的快速且平滑的過渡。另外,藉由在反饋控制系統中使用可編程控制器,可以實現在一窄頻帶內的RF頻率的微調。反饋控制系統包括一外部可調諧寬頻RF信號發生器(其連接到裝備有電子可組態輸出匹配網路的寬頻RF功率放大器),並且可以由可編程電子控制器加以組態。精細的頻率調諧可用於快速調整匹配網路的頻率相依阻抗,以使電漿處理設備的阻抗(包括電漿的阻抗)與寬頻RF功率放大器的輸出阻抗相匹配,以實現有效率的功率傳輸。如上面進一步詳細描述的,電子控制器使用電漿處理設備阻抗的反饋來動態調諧RF信號發生器的輸出頻率,該電漿處理設備阻抗係使用例如整合進寬頻RF功率放大器的輸出級的一RF電壓-電流(V-I)感測器加以量測。
這裡總結本發明的示例實施例。 從說明書的整體以及此處提出的申請專利範圍,也可以理解其他實施例。
實例1。一種電漿處理系統包含一電漿處理腔室;一第一電極,用於對在該電漿處理腔室之中的電漿供電;一可調諧射頻(RF)信號發生器,建構以輸出於第一頻率的一第一信號、及於第二頻率的一第二信號。該第二頻率係該第一頻率的至少1.1倍。該系統更包含:一寬頻功率放大器,與該可調諧RF信號發生器耦接,該第一頻率及該第二頻率係在該寬頻功率放大器的一操作頻率範圍之內。該寬頻功率放大器的輸出係與該第一電極耦接。該寬頻功率放大器係建構以在該輸出處供給於該第一頻率的第一功率、及於該第二頻率的第二功率。
實例2。如實例1的電漿處理系統,其中該寬頻功率放大器係建構以在該輸出處同時地供給該第一功率及該第二功率。
實例3。如實例1的電漿處理系統,其中該寬頻功率放大器係建構以在該輸出處順序地供給該第一功率及該第二功率。
實例4。如實例1至3其中一者的電漿處理系統,更包含一第二電極,配置在該電漿處理腔室之中,該第二電極係耦接至該寬頻功率放大器的該輸出。
實例5。如實例1至4其中一者的電漿處理系統,更包含:一第一帶通濾波器,配置在該寬頻功率放大器的該輸出與該第一電極之間,該第一帶通濾波器具有一第一通帶以使該第一頻率通過並過濾該第二頻率;及一第二帶通濾波器,配置在該寬頻功率放大器的該輸出與該第二電極之間,該第二帶通濾波器具有一第二通帶以使該第二頻率通過並過濾該第一頻率。
實例6。如實例1至5其中一者的電漿處理系統,更包含:一斬波器電路,配置在該可調諧RF信號發生器與該寬頻功率放大器之間,該斬波器電路建構成以一較低頻率脈衝信號調制該第一信號及該第二信號。
實例7。如實例1至6其中一者的電漿處理系統,其中該斬波器電路包含:一低頻脈衝發生器;及電子開關,配置在介於該可調諧RF信號發生器與該寬頻功率放大器之間的一信號路徑之中,該等電子開關係藉由該低頻脈衝發生器加以控制。
實例8。如實例1至7其中一者的電漿處理系統,其中該寬頻功率放大器的該輸出包含:一第一輸出埠,用以輸出於該第一頻率的該第一功率;及一第二輸出埠,用以輸出於該第二頻率的該第二功率。
實例9。如實例1至7其中一者的電漿處理系統,其中該寬頻功率放大器的該輸出包含:一單一輸出埠,用以輸出於該第一頻率的該第一功率及於該第二頻率的該第二功率。
實例10。一種電漿處理系統,包含一可調諧射頻(RF)信號發生器,建構以輸出於第一頻率的一第一信號、及於第二頻率的一第二信號。該第二頻率係該第一頻率的至少1.1倍。該系統更包含一寬頻功率放大器,與該可調諧RF信號發生器耦接。該第一頻率及該第二頻率係在該寬頻功率放大器的一操作頻率範圍之內。該寬頻功率放大器的輸出係建構以與一電漿處理腔室的一電極加以耦接。該寬頻功率放大器係建構以在該輸出處供給於該第一頻率的第一功率、及於該第二頻率的第二功率,且提供一反饋以將該寬頻功率放大器的該輸出針對該第一頻率或該第二頻率加以調諧。
實例11。如實例10的電漿處理系統,其中該寬頻功率放大器包含:多個功率放大器,耦接至該寬頻功率放大器的一輸入;一組合器,耦接至該多個功率放大器的一輸出;一定向耦合器,耦接至該組合器的一輸出且具有與該寬頻功率放大器的該輸出耦接的一輸出;及一阻抗功率分析器電路,耦接至該定向耦合器或一V-I感測器,且建構以提供一反饋信號。
實例12。如實例10或11其中一者的電漿處理系統,更包含:一輸出匹配網路電路,耦接於該組合器的輸出與該定向耦合器或一V-I感測器之間,該輸出匹配網路電路包含被動元件的電子可組態網路。
實例13。如實例10至12其中一者的電漿處理系統,更包含:一可編程控制器;一第一信號路徑,將該可編程控制器耦接至該可調諧RF信號發生器;一第二信號路徑,將該可編程控制器耦接至該輸出匹配網路電路;及一第三信號路徑,將該阻抗功率分析器電路耦接至該可編程控制器。
實例14。如實例10至13其中一者的電漿處理系統,其中該可編程控制器係建構以:經由該第三信號路徑從該阻抗功率分析器電路接收該反饋信號;經由該第一信號路徑提供一第一控制信號至該可調諧RF信號發生器;及提供一第二控制信號至該輸出匹配網路電路。
實例15。如實例10至14其中一者的電漿處理系統,其中該輸出匹配網路電路係建構以基於該第二控制信號對該輸出匹配網路電路加以重組態。
實例16。一種操作電漿處理系統的方法,包含:在可調諧RF信號發生器產生一射頻(RF)信號;在一寬頻功率放大器處,放大該RF信號而產生一放大的RF信號;供給該放大的RF信號,以對在一電漿處理腔室之內的電漿供電;藉由量測該電漿的阻抗,產生一反饋信號;及基於該反饋信號,在該可調諧RF信號發生器調整該RF信號的頻率。
實例17。如實例16的方法,更包含:基於該反饋信號,對一輸出匹配網路電路進行重組態。
實例18。如實例16或17其中一者的方法,更包含:供給該放大的RF信號的步驟包含:供給該放大的RF信號至該電漿處理腔室之內的一頂部電極。
實例19。如實例16或17其中一者的方法,更包含:供給該放大的RF信號的步驟包含:供給該放大的RF信號至該電漿處理腔室之內的一基板固持器。
實例20。如實例16至19其中一者的方法,更包含:供給該放大的RF信號的步驟包含供給該放大的RF信號至一第一帶通濾波器;當該放大的RF信號具有在一第一頻率範圍之內的一頻率,經由該第一帶通濾波器而輸出該放大的RF信號;將該第一帶通濾波器的輸出耦接至在該電漿處理腔室之內的一頂部電極;供給該放大的RF信號的步驟包含供給該放大的RF信號至一第二帶通濾波器;當該放大的RF信號具有在一第二頻率範圍之內的一頻率,經由該第二帶通濾波器而輸出該放大的RF信號;及將該第二帶通濾波器的輸出耦接至在該電漿處理腔室之內的一基板固持器。
實例21。如實例16至20其中一者的方法,更包含:以一較低頻率的脈衝信號,調制該放大的RF信號,其中,供給該放大的RF信號以對該電漿供電的步驟包含:供給經調制之放大的RF信號,以對該電漿供電。
儘管已經參考說明性實施例描述了本發明,但是此說明書並非旨在以限制性的意義來理解。參考說明書,說明性實施例以及本發明的其他實施例的各種修改和組合對於熟習此技藝者將是顯而易見的。因此,意圖是隨附申請專利範圍包含任何這樣的修改或實施例。
100:RF信號發生器 101:側壁 103:頂蓋 105:基底 107:出口 110:可編程控制器 111:電漿處理設備 120:製程配方 150:電漿處理腔室 152:真空泵 154:反饋溫度控制系統 155:入口 156:第一RF電極 158:基板固持器 210:DC電源供應器 220:功率放大器 230:組合器 240:組合器 250:匹配網路電路 260:功率分析器電路 333:電漿處理設備 350:電漿處理腔室 440:第一帶通濾波器 444:電漿處理設備 450:電漿處理腔室 455:第二帶通濾波器 500:可調諧雙渠道RF信號發生器 510:雙渠道可編程控制器 520:製程配方 700:斬波器電路 710:可編程控制器 900:雙渠道斬波器電路 910:雙渠道可編程控制器 1000:寬頻RF功率放大器 1111:寬頻電漿處理系統 3333:寬頻電漿處理系統 4444:寬頻電漿處理系統 5000:雙渠道寬頻RF功率放大器 5555:雙頻寬頻電漿處理系統 7777:寬頻電漿處理系統 8888:寬頻電漿處理系統 9999:寬頻電漿處理系統
為了更全面地理解本發明及其優點,現在參照與隨附圖式結合的以下說明,其中:
圖1係根據本發明一實施例以剖面圖繪示的包含一電漿處理設備的一寬頻電漿系統的示意圖。
圖2係根據本發明一實施例的一單渠道寬頻RF功率放大器的示意圖。
圖3係根據本發明一替代實施例以剖面圖繪示的包含一電漿處理設備的一寬頻電漿系統的示意圖。
圖4係根據本發明一替代實施例以剖面圖繪示的包含一電漿處理設備的一寬頻電漿系統的示意圖。
圖5係根據本發明一替代實施例以剖面圖繪示的包含一電漿處理設備的一寬頻電漿系統的示意圖。
圖6係根據本發明一替代實施例的一雙渠道寬頻RF功率放大器的示意圖。
圖7係根據本發明一實施例以剖面圖繪示的包含一電漿處理設備的一寬頻電漿系統的示意圖。
圖8係根據本發明一替代實施例以剖面圖繪示的包含一電漿處理設備的一寬頻電漿系統的示意圖。
圖9係根據本發明一替代實施例以剖面圖繪示的包含一電漿處理設備的一寬頻電漿系統的示意圖。
圖10揭露根據本發明一實施例的操作電漿處理系統的方法。
100:RF信號發生器
101:側壁
103:頂蓋
105:基底
107:出口
110:可編程控制器
111:電漿處理設備
120:製程配方
150:電漿處理腔室
152:真空泵
154:反饋溫度控制系統
155:入口
156:第一RF電極
158:基板固持器
1000:寬頻RF功率放大器
1111:寬頻電漿處理系統

Claims (20)

  1. 一種電漿處理系統,包含: 一電漿處理腔室; 一第一電極,用於對在該電漿處理腔室之中的電漿供電; 一可調諧射頻(RF)信號發生器,建構以輸出於第一頻率的一第一信號、及於第二頻率的一第二信號,該第二頻率係該第一頻率的至少1.1倍;及 一寬頻功率放大器,與該可調諧RF信號發生器耦接,該第一頻率及該第二頻率係在該寬頻功率放大器的一操作頻率範圍之內,其中該寬頻功率放大器的輸出係與該第一電極耦接,其中該寬頻功率放大器係建構以在該輸出處供給於該第一頻率的第一功率、及於該第二頻率的第二功率。
  2. 如請求項1所述之電漿處理系統,其中該寬頻功率放大器係建構以在該輸出處同時地供給該第一功率及該第二功率。
  3. 如請求項1所述之電漿處理系統,其中該寬頻功率放大器係建構以在該輸出處順序地供給該第一功率及該第二功率。
  4. 如請求項1所述之電漿處理系統,更包含: 一第二電極,配置在該電漿處理腔室之中,該第二電極係耦接至該寬頻功率放大器的該輸出。
  5. 如請求項4所述之電漿處理系統,更包含: 一第一帶通濾波器,配置在該寬頻功率放大器的該輸出與該第一電極之間,該第一帶通濾波器具有一第一通帶以使該第一頻率通過並過濾該第二頻率;及 一第二帶通濾波器,配置在該寬頻功率放大器的該輸出與該第二電極之間,該第二帶通濾波器具有一第二通帶以使該第二頻率通過並過濾該第一頻率。
  6. 如請求項1所述之電漿處理系統,更包含: 一斬波器電路,配置在該可調諧RF信號發生器與該寬頻功率放大器之間,該斬波器電路建構成以一較低頻率脈衝信號調制該第一信號及該第二信號。
  7. 如請求項6所述之電漿處理系統,其中該斬波器電路包含: 一低頻脈衝發生器;及 電子開關,配置在介於該可調諧RF信號發生器與該寬頻功率放大器之間的一信號路徑之中,該等電子開關係藉由該低頻脈衝發生器加以控制。
  8. 如請求項1所述之電漿處理系統,其中該寬頻功率放大器的該輸出包含:一第一輸出埠,用以輸出於該第一頻率的該第一功率;及一第二輸出埠,用以輸出於該第二頻率的該第二功率。
  9. 如請求項1所述之電漿處理系統,其中該寬頻功率放大器的該輸出包含:一單一輸出埠,用以輸出於該第一頻率的該第一功率及於該第二頻率的該第二功率。
  10. 一種電漿處理系統,包含: 一可調諧射頻(RF)信號發生器,建構以輸出於第一頻率的一第一信號、及於第二頻率的一第二信號,該第二頻率係該第一頻率的至少1.1倍; 一寬頻功率放大器,與該可調諧RF信號發生器耦接,該第一頻率及該第二頻率係在該寬頻功率放大器的一操作頻率範圍之內,其中該寬頻功率放大器的輸出係建構以與一電漿處理腔室的一電極加以耦接,其中該寬頻功率放大器係建構以: 在該輸出處,供給於該第一頻率的第一功率、及於該第二頻率的第二功率,及 提供一反饋以將該寬頻功率放大器的該輸出針對該第一頻率或該第二頻率加以調諧。
  11. 如請求項10所述之電漿處理系統,其中該寬頻功率放大器包含: 多個功率放大器,耦接至該寬頻功率放大器的一輸入; 一組合器,耦接至該多個功率放大器的一輸出; 一定向耦合器,耦接至該組合器的一輸出且具有與該寬頻功率放大器的該輸出耦接的一輸出;及 一阻抗功率分析器電路,耦接至該定向耦合器或一V-I感測器,且建構以提供一反饋信號。
  12. 如請求項11所述之電漿處理系統,更包含: 一輸出匹配網路電路,耦接於該組合器的輸出與該定向耦合器或一V-I感測器之間,該輸出匹配網路電路包含被動元件的電子可組態網路。
  13. 如請求項12所述之電漿處理系統,更包含: 一可編程控制器; 一第一信號路徑,將該可編程控制器耦接至該可調諧RF信號發生器; 一第二信號路徑,將該可編程控制器耦接至該輸出匹配網路電路;及 一第三信號路徑,將該阻抗功率分析器電路耦接至該可編程控制器。
  14. 如請求項13所述之電漿處理系統,其中該可編程控制器係建構以: 經由該第三信號路徑從該阻抗功率分析器電路接收該反饋信號; 經由該第一信號路徑提供一第一控制信號至該可調諧RF信號發生器;及 提供一第二控制信號至該輸出匹配網路電路。
  15. 如請求項14所述之電漿處理系統,其中該輸出匹配網路電路係建構以基於該第二控制信號對該輸出匹配網路電路加以重組態。
  16. 一種操作電漿處理系統的方法,該方法包含: 在可調諧RF信號發生器,產生一射頻(RF)信號; 在一寬頻功率放大器,放大該RF信號而產生一放大的RF信號; 供給該放大的RF信號,以對在一電漿處理腔室之內的電漿供電; 藉由量測該電漿的阻抗,產生一反饋信號;及 基於該反饋信號,在該可調諧RF信號發生器調整該RF信號的頻率。
  17. 如請求項16所述之操作電漿處理系統的方法,更包含:基於該反饋信號,對一輸出匹配網路電路進行重組態。
  18. 如請求項16所述之操作電漿處理系統的方法,更包含: 供給該放大的RF信號的步驟包含:供給該放大的RF信號至該電漿處理腔室之內的一頂部電極、或該電漿處理腔室之內的一基板固持器。
  19. 如請求項16所述之操作電漿處理系統的方法,更包含: 供給該放大的RF信號的步驟包含:供給該放大的RF信號至一第一帶通濾波器; 當該放大的RF信號具有在一第一頻率範圍之內的一頻率,經由該第一帶通濾波器而輸出該放大的RF信號; 將該第一帶通濾波器的輸出耦接至在該電漿處理腔室之內的一頂部電極; 供給該放大的RF信號的步驟包含:供給該放大的RF信號至一第二帶通濾波器; 當該放大的RF信號具有在一第二頻率範圍之內的一頻率,經由該第二帶通濾波器而輸出該放大的RF信號;及 將該第二帶通濾波器的輸出耦接至在該電漿處理腔室之內的一基板固持器。
  20. 如請求項16所述之操作電漿處理系統的方法,更包含:以一較低頻率脈衝信號,調制該放大的RF信號,其中,供給該放大的RF信號以對該電漿供電的步驟包含:供給經調制之放大的RF信號,以對該電漿供電。
TW109134951A 2020-10-08 2020-10-08 寬頻電漿處理系統及方法 TW202215909A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109134951A TW202215909A (zh) 2020-10-08 2020-10-08 寬頻電漿處理系統及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109134951A TW202215909A (zh) 2020-10-08 2020-10-08 寬頻電漿處理系統及方法

Publications (1)

Publication Number Publication Date
TW202215909A true TW202215909A (zh) 2022-04-16

Family

ID=82197033

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109134951A TW202215909A (zh) 2020-10-08 2020-10-08 寬頻電漿處理系統及方法

Country Status (1)

Country Link
TW (1) TW202215909A (zh)

Similar Documents

Publication Publication Date Title
US11830709B2 (en) Broadband plasma processing systems and methods
US11295937B2 (en) Broadband plasma processing systems and methods
US10043683B2 (en) Plasma system, chuck and method of making a semiconductor device
US5935373A (en) Plasma processing apparatus
JP7360391B2 (ja) プラズマ均一性を制御するための複数の無線周波数メッシュを有する静電チャック
CN101866807B (zh) 具有响应多个rf频率的等离子体处理器
KR102469576B1 (ko) 플라즈마 처리 장치
TW201737338A (zh) 電漿處理方法及電漿處理裝置
US20190080916A1 (en) Bottom and side plasma tuning having closed loop control
WO2009086782A1 (zh) 等离子体处理装置
JP7345600B2 (ja) 空間プラズマ原子層堆積(pe-ald)処理ツール用のマイクロ波プラズマ源
TW202329193A (zh) 射頻電漿處理腔室中的失真電流減緩
CN107369604A (zh) 反应腔室及半导体加工设备
KR20030043670A (ko) 플라스마 처리장치
WO2022081449A1 (en) Push-pull power supply for multi-mesh processing chambers
TW202215909A (zh) 寬頻電漿處理系統及方法
WO2022075975A1 (en) Broadband plasma processing systems and methods
KR100391063B1 (ko) 유도결합으로 보강된 축전결합형 플라즈마 발생장치 및플라즈마 발생방법
US12020902B2 (en) Plasma processing with broadband RF waveforms
TWM588353U (zh) 電感耦合等離子體處理器
TW202420382A (zh) 利用寬頻帶rf波形的電漿處理
US20240194447A1 (en) Learning based tuning in a radio frequency plasma processing chamber
US20230207294A1 (en) Plasma control apparatus and plasma processing system
US20240222081A1 (en) Electrostatic chuck with multiple radio frequency meshes to control plasma uniformity
KR20150037621A (ko) 고 주파수 무선 주파수에 대한 전극 임피던스를 튜닝하고 저 주파수 무선 주파수를 접지로 종단하기 위한 장치 및 방법