TW202215711A - 單層廣角阻抗匹配(waim) - Google Patents

單層廣角阻抗匹配(waim) Download PDF

Info

Publication number
TW202215711A
TW202215711A TW110118041A TW110118041A TW202215711A TW 202215711 A TW202215711 A TW 202215711A TW 110118041 A TW110118041 A TW 110118041A TW 110118041 A TW110118041 A TW 110118041A TW 202215711 A TW202215711 A TW 202215711A
Authority
TW
Taiwan
Prior art keywords
antenna
layer
waim
elements
aperture
Prior art date
Application number
TW110118041A
Other languages
English (en)
Inventor
雅巴迪 撒也 默和穆德 阿鳴 默曼尼 哈撒
默森 撒爵格
Original Assignee
美商凱米塔公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商凱米塔公司 filed Critical 美商凱米塔公司
Publication of TW202215711A publication Critical patent/TW202215711A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/335Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • H01Q1/523Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas between antennas of an array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0086Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices having materials with a synthesized negative refractive index, e.g. metamaterials or left-handed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0012Radial guide fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/245Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction provided with means for varying the polarisation 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/24Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • H01Q9/0457Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means electromagnetically coupled to the feed line

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)
  • Networks Using Active Elements (AREA)

Abstract

本發明描述一種單層廣角阻抗匹配(WAIM)及其使用方法。在一項實施例中,天線包括:一孔徑,其具有可操作以輻射射頻(RF)能量之複數個天線元件;及一單層廣角阻抗匹配(WAIM)結構,其經耦合至該孔徑以提供該天線孔徑與自由空間之間的阻抗匹配。

Description

單層廣角阻抗匹配(WAIM)
本發明之實施例係關於衛星通信之領域;更特定而言,本發明之實施例係關於在一衛星天線中使用之廣角阻抗匹配(WAIM)結構。
天線增益係衛星通信系統之最重要參數之一,因為其決定網路覆蓋範圍及速度。更具體而言,較大增益意謂較好覆蓋範圍及較高速度,此在競爭激烈的衛星市場中至關重要。接收(Rx)頻帶上之天線增益可能係關鍵的,因為在衛星端,天線處之接收功率非常低。此在平板電掃描天線之掃描角變得甚至更加關鍵,歸因於與垂射情況相較,在此等角下之衰減增加及天線增益降低,從而使一更高增益值成為斷開天線與衛星之間的鏈接之一重要參數。在發射(Tx)頻帶上,增益亦係重要的,因為較低增益意謂需要將較多功率供應至天線以達成所要信號強度,此意謂較高成本、較高溫度、較高熱雜訊等。
一種在衛星通信中使用之類型之天線係一徑向孔徑槽孔陣列天線。最近,已對此等徑向孔徑槽孔陣列天線之效能進行數次改良。限制此等天線之輻射效率之參數之一係天線孔徑與自由空間之間的阻抗失配。若此失配在掃描角下較高,則此額外輻射效率損耗導致不良掃描損耗。WAIM結構藉由提供適當阻抗匹配來緩解此問題。
偶極負載已被提及與徑向孔徑槽孔陣列天線一起使用。此負載可藉由提供阻抗匹配來改良輻射效率。其亦可用於改變頻率回應。一槽孔偶極概念亦已應用於徑向孔徑槽孔陣列天線以改良天線之方向性,包含改良天線,特別是在垂射時操作之天線之總回波損耗效能。
描述一種單層廣角阻抗匹配(WAIM)及其使用方法。在一項實施例中,天線包括:一孔徑,其具有可操作以輻射射頻(RF)能量之複數個天線元件;及一單層廣角阻抗匹配(WAIM)結構,其經耦合至該孔徑以提供該天線孔徑與自由空間之間的阻抗匹配。
優先權
本申請案依據35 USC 119(e)主張2020年5月19日申請之標題為「SINGLE-LAYER WIDE ANGLE IMPEDANCE MATCHING (WAIM)」之美國臨時專利申請案第63/027,190號之權益,該案之全文以引用的方式併入本文中。
在以下描述中,闡述眾多細節以提供對本發明之一更徹底解釋。然而,對於熟習此項技術者而言將顯而易見的是,可在沒有此等特定細節之情況下實踐本發明。在其他情況下,熟知結構及裝置以方塊圖形式而非詳細地展示,以避免混淆本發明。
描述一種用於孔徑天線之新廣角阻抗匹配(WAIM)結構及其使用方法。該WAIM結構藉由提供天線孔徑與自由空間之間的適當阻抗匹配來改良一孔徑天線之輻射效率。掃描損耗之改良亦歸因於在掃描角下提供更好的匹配。在一項實施例中,阻抗匹配係傳播波之頻率、掃描角及極化之函數,因為天線孔徑阻抗及自由空間阻抗隨此等參數而變動。
在一項實施例中,WAIM設計特性取決於天線孔徑之類型。在一項實施例中,天線孔徑係一漏波天線之部分且具有次波長輻射槽孔。在一項實施例中,天線孔徑係具有輻射射頻(RF)能量之複數個天線元件之一超穎表面。此等天線元件可為表面散射超穎材料天線元件。下文更詳細地描述基於液晶(LC)之表面散射超穎材料天線元件之實例。然而,該等天線元件不限於係基於LC之天線元件。例如,在另一實施例中,該等天線元件係基於變容二極體之超穎材料天線元件,其中一變容二極體用於調諧輻射槽孔天線元件。具有次波長輻射槽孔之一輻射表面之等效電路模型係具有一小電阻部分之一並聯共振器。因此,一史密斯圖上之阻抗曲線與頻率係朝向短截面之一圓。在一項實施例中,包括並聯電容及一串聯電感之一L型匹配網路為此組態提供適當阻抗匹配。
在一項實施例中,WAIM結構係具有次波長電容性貼片之一二維週期性陣列之單層結構。在一項實施例中,此結構經印刷於一介電質基板上且藉由一介電質間隔件(例如,泡沫等)與彼孔徑分開。與先前技術相比,本文中所描述之單層WAIM結構之一個核心優勢在於其可以一非常低成本簡單地進行原型製作及組裝。
WAIM結構之實施例具有其他核心優勢,包含低成本製造及簡單組裝程序。在一項實施例中,因為該設計之實施例包含一單層結構,所以此與替代方案相較導致一更低製造成本,消除有關多個實體尺寸之嚴格容限,且降低組裝程序之複雜性。在挑選其阻抗匹配元件之尺寸方面亦存在靈活性,因此其等可在製造技術之容限內良好之一方式進行選擇。
此外,且重要的是,本文中所描述之實施例不需要其阻抗匹配元件與天線孔徑元件之間的任何位置/旋轉對準。此導致一較低成本,因為其消除位置容限且亦簡化組裝程序。再者,由於其不依賴於其阻抗匹配元件與天線元件之間的對準,因此該設計提供一完全可重複的RF效能。
此外,可利用多種像素尺寸達成相同RF效能。此實現使用不一定提供有關特徵尺寸之嚴格容限之成本製造技術之可能性。例如,在一項實施例中,WAIM結構包括一基板,該基板具有如網版印刷至該基板上之元件。在此一情況下使用網版印刷係印刷電路板(PCB)技術之一非常低成本的替代方案。
應注意,單層WAIM結構可與數個不同天線孔徑一起使用。下文更詳細地描述孔徑天線之實例。但應注意,本文中所揭示之WAIM結構可與除下文所描述之彼等天線孔徑之外的天線孔徑一起使用。
在一項實施例中,單層WAIM結構包括由藉由一介電質間隔件與孔徑分開之一電容性表面實現之一L型阻抗網路。在一些實施例中,電容性阻抗表面使用次波長元件之一2D陣列。次波長元件可為諸多不同類型之一或多者。一些實例係次波長貼片、偶極、裂環共振器(SRR)等。
圖1A繪示一WAIM結構之一項實施例。在此實施例中,單層WAIM結構100在包括具有複數個天線元件101之一超穎表面之一天線孔徑上。在一項實施例中,天線元件101包括槽孔共振器(例如,表面散射超穎材料天線元件、RF輻射天線元件等)。WAIM結構100包括次波長方形貼片102之一二維(2D)陣列。在一項實施例中,貼片102係次波長貼片以確保此結構(其係一超穎表面)充當一電容性層。在一項實施例中,貼片102係電容性貼片。在一項實施例中,貼片102經印刷於一基板上。在一項實施例中,WAIM結構100藉由一介電質間隔件或泡沫與孔徑分開。如圖1A所示之一項實施例,一天線元件包括具有在槽孔110上之一貼片111之一槽孔110及在槽孔110上一距離h之一電容性貼片102A。
WAIM結構可使用圖1B中所展示之一等效電路模型來模型化。參考圖1B中之模型,電容性貼片102由一並聯電容來模型化且孔徑與貼片102之間的間隔件利用發射線之一短區段來模型化。
存在期望此類型之單層WAIM結構之若干原因。第一,可靈活地挑選實體參數以達成相同效能。此表面之固有電容係貼片及其周圍介質之實體尺寸之一函數。方程式(1)展示計算一法向入射波之此電容值之一階近似公式:
Figure 02_image001
(1) 有關此公式之更多資訊,請參閱Luukkonen等人之2008年6月IEEE Transactions on Antennas and Propagation第56卷第6號第1623至1632頁「Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches」。在此方程式中,
Figure 02_image003
係相鄰貼片之間的間隙間距且
Figure 02_image005
係週期性。此方程式展示,可藉由多組間隙間距及週期性來達成相同電容,只要其等遠小於波長即可。此很重要係因為其允許根據製造方法容限挑選參數。
第二,此表面之阻抗與天線之掃描平面(即,phi)無關。此係歸因於結構之90度旋轉對稱性及固有電容由相鄰貼片之平行邊緣之間的電場形成之事實。在具有一旋轉對稱孔徑之特定天線中期望此特徵。
第三,在一項實施例中,WAIM結構之表面阻抗係傳播波之掃描角及極化之一函數。若設計得當,則WAIM結構可為在多種掃描角下之兩個正交極化(即,TE及TM)提供天線孔徑與自由空間阻抗之間的阻抗匹配。
第四,在一項實施例中,WAIM結構係非常寬頻帶的。因此,其可潛在地為具有寬頻帶輻射元件或具有不同頻率之多個輻射元件之孔徑提供阻抗匹配。此特徵在其中孔徑由多個輻射元件填入之特定天線中係重要的。
WAIM結構之實施例之一設計程序之一項實施例基於圖1B中所展示之其等效電路模型。在此模型中,所有參數係該波之掃描角及極化之函數。方程式(2)及(3)展示發射線阻抗如何作為掃描角及極化之一函數而變化(
Figure 02_image007
係垂射處之自由空間阻抗)。此等方程式亦適用於自由空間。
Figure 02_image009
(2)
Figure 02_image011
(3)
方程式(4)及(5)展示電容如何針對正交極化作為掃描角之一函數而變動。
Figure 02_image013
係垂射時之電容。
Figure 02_image015
(4)
Figure 02_image017
(5)
假定介電質基板之性質係預定義的,則設計中之核心參數係泡沫之厚度及電容值
Figure 02_image013
。此等值係以該設計在所有掃描中且為橫向電(TE)及橫向磁(TM)極化提供所要阻抗匹配之一方式定義。此係一般解決方案,因為任何其他極化可被分解成此兩個正交極化。
接下來,將等效電路模型中之選定參數映射至實體參數。應注意,
Figure 02_image019
僅係介電質間隔件(例如,泡沫、介電質層壓板、聚酯、聚碳酸酯、玻璃、蜂窩體間隔件等)之厚度。使用方程式(1)將電容映射至貼片尺寸及週期性。
應注意,在一項實施例中,單層WAIM結構使用黏合劑附接至介電質間隔件。在一項實施例中,介電質間隔件使用黏合劑附接至天線孔徑。在一項實施例中,介電質層之高度係60密耳。替代地,介電質層可為其他大小(例如,1.5 mm)。在替代實施例中,單層WAIM結構、介電質層及天線層未附接在一起而是彼此接觸。在此一情況下,其他天線組件(例如,一天線罩)將此等組件固持於適當位置。
在一項實施例中,單層WAIM經製造於介電質層之頂部上。在一項實施例中,單層WAIM經網版印刷至介電質層上。此將兩個層減少為一個層。
存在與本文中所揭示之WAIM結構之實施例相關聯之數個優點。例如,如上文所提及,所提出設計不需要任何位置/旋轉對準。圖2A至圖2C繪示WAIM在具有各種對準之孔徑上之替代安裝。在此情況下,此等實施例之各者中之WAIM結構包含相同大小之方形電容性貼片。
參考圖2A,單層WAIM結構201包括在具有天線元件202之一孔徑上之電容性貼片203之一2D陣列。2D陣列中之貼片203係跨在水平及垂直方向上對準之陣列圖案化之方形。參考圖2B,單層WAIM結構211包括在具有天線元件212之一孔徑上之電容性貼片213之一2D陣列。圖2B中之2D陣列相同於圖2A之2D陣列相同,但其旋轉22.5 o除外。參考圖2C,單層WAIM結構221包括在具有天線元件222之一孔徑上之電容性貼片223之一2D陣列。圖2C中之2D陣列相同於圖2A之2D陣列,但其旋轉45 o除外(22.5 o相對於圖2B中之2D陣列)。
再者,如所論述,可使用具有不同貼片寬度及週期性之電容性貼片之一2D陣列達成相同效能。圖2D至圖2F繪示使用多種特徵尺寸達成相同效能之單層WAIM結構之實例。參考圖2D,單層WAIM結構231包括在具有天線元件232之一孔徑上之電容性貼片233之一2D陣列。2D陣列中之貼片233係方形的且跨在水平及垂直方向上對準之陣列圖案化。參考圖2E,單層WAIM結構241包括在具有天線元件242之一孔徑上之電容性貼片243之一2D陣列。然而,圖2E中之2D陣列中之貼片之大小小於圖2A之貼片。參考圖2F,單層WAIM結構251包括在具有天線元件252之一孔徑上之電容性貼片253之一2D陣列。在此情況下,圖2F中之2D陣列中之貼片之尺寸小於圖2E之貼片(且因此小於圖2D中之貼片)。
在一項實施例中,電容性貼片係一基板(例如,印刷電路板(PCB)(例如,FR4等)、聚碳酸酯、玻璃等)上之金屬(例如,銅、銀等)。在一項實施例中,當網版印刷該等貼片時,該基板包括聚酯。該等貼片可具有多種厚度。在一項實施例中,該等貼片之厚度係17 um、35 um等。在一項實施例中,方形貼片之各者係200密耳×200密耳。然而,如上文所論述,可使用其他大小(例如,250密耳×250密耳等)。
本文中所揭示之WAIM實施例藉由提供天線孔徑與自由空間之間的適當阻抗匹配來改良輻射效率。輻射效率改良導致天線增益改良。圖3展示一實例天線孔徑上之TE平面(H-pol)處垂射及60度時之增益量測。參考圖3,在三個子頻帶處展示測試結果。虛線展示沒有WAIM結構之量測且實線展示安裝WAIM結構時之增益。當在垂射及掃描兩者安裝WAIM結構時,觀察到顯著改良。由於增益改良比垂射更顯著,因此亦極大地改良掃描損耗。
圖4係用於設計一單層WAIM結構之一程序之一項實施例之一流程圖。參考圖4,該程序開始於判定在各種掃描角及極化下之天線孔徑阻抗(處理方塊401)。在一項實施例中,此係使用分析及全波弗洛凱模型模擬來執行且使用包括所有天線元件(例如,一孔徑上之所有接收及發射輻射元件)、掃描角及極化之輸入來執行(410)。
一旦已判定在各種掃描角及極化下之天線孔徑阻抗,處理邏輯便將參數值輸入至一WAIM等效電路模型中(處理方塊402)。在一項實施例中,模型之輸入包含執行分析ABCD矩陣計算(411)之結果。輸出係電路模型電參數。在一項實施例中,此等輸出包含發射線之長度及等效電路模型中之電容值。
接著,處理邏輯將電參數映射至實體參數(處理方塊403)。在一項實施例中,此係使用一階近似公式或全波模擬以此項技術中熟知之一方式來完成(412)。一旦映射完成,處理邏輯便對設計執行全波孔徑模擬(處理方塊404)。
存在數項替代實施例。例如,本文中所揭示之WAIM結構可與具有次波長輻射元件陣列之任何天線孔徑一起使用。此外,相同的元件幾何形狀可擴展至具有多個層作為一阻抗匹配網路之WAIM結構。
再者,如上文所論述,可使用多種次波長元件之一2D陣列實施電容性表面。圖5A至圖5C繪示具有替代組態之WAIM結構之實例。參考圖5A,單層WAIM結構500包含方形電容性貼片501之一2D圖案。參考圖5B,單層WAIM結構510包含六邊形電容性貼片511之一2D圖案。參考圖5C,單層WAIM結構520包含裂環共振器(SSR) 521之一2D圖案。亦可使用其他形狀之電容元件。 天線系統之實例
在一項實施例中,平板天線係一超穎材料天線系統之部分。描述用於通信衛星地面站之一超穎材料天線系統之實施例。在一項實施例中,天線系統係在使用用於民用商業衛星通信之Ka頻帶頻率或Ku頻帶頻率操作之一行動平台(例如,航空、海上、陸地等)上操作之一衛星地面站(ES)之一組件或子系統。應注意,天線系統之實施例亦可用於不在行動平台上之地面站(例如,固定或可運送地面站)中。
在一項實施例中,天線系統使用表面散射超穎材料技術來形成及引導通過單獨天線之發射及接收波束。
在一項實施例中,天線系統由三個功能子系統組成:(1)一波導引結構,其由一圓柱形波饋送架構組成;(2)作為天線元件之部分之波散射超穎材料單位單元之一陣列;及(3)一控制結構,其用來命令使用全像術原理自超穎材料散射元件形成一可調整輻射場(波束)。 天線元件
圖6繪示一圓柱形饋送全像徑向孔徑天線之一項實施例之示意圖。參考圖6,該天線孔徑具有呈同心環放置於圓柱形饋送天線之一輸入饋源602周圍之天線元件603之一或多個陣列601。在一項實施例中,天線元件603係輻射RF能量之射頻(RF)共振器。在一項實施例中,天線元件603包括在天線孔徑之整個表面上交錯及分佈之Rx及Tx虹膜兩者。下文更詳細地描述此等天線元件之實例。應注意,本文中所描述之RF共振器可用於不包含一圓柱形饋源之天線中。
在一項實施例中,天線包含用來經由輸入饋源602提供一柱面波饋源之一同軸饋源。在一項實施例中,柱面波饋源架構自一中心點向天線饋送以一圓柱形方式自饋送點向外擴散之一激勵。即,一圓柱形饋送天線產生一向外行進之同心饋送波。即便如此,圓柱形饋源周圍之圓柱形饋送天線之形狀可為圓形、方形或任何形狀。在另一實施例中,一圓柱形饋送天線產生一向內行進之饋送波。在此一情況下,該饋送波最自然地來自一圓形結構。
在一項實施例中,天線元件603包括虹膜且圖6之孔徑天線用來產生藉由使用來自一柱面饋送波之激勵而成形以透過可調諧液晶(LC)材料輻射虹膜之一主波束。在一項實施例中,可激勵天線以在所要掃描角下輻射一水平或垂直極化電場。
在一項實施例中,天線元件包括貼片天線之一群組。貼片天線之此群組包括散射超穎材料元件之一陣列。在一項實施例中,天線系統中之各散射元件係一單位單元之部分,該單位單元由一下導體、一介電質基板及一上導體組成,該上導體嵌入蝕刻於該上導體中或沈積至該上導體上之一互補電感應電容性共振器(「互補電LC」或「CELC」)。如熟習此項技術者將理解,與液晶相反,CELC脈絡中之LC指代電感-電容。
在一項實施例中,一液晶(LC)經安置於散射元件周圍之間隙中。此LC由上文所描述之直接驅動實施例驅動。在一項實施例中,液晶經囊封於各單位單元中且將相關聯於一槽孔之下導體與相關聯於其貼片之一上導體分開。液晶具有作為包括液晶之分子之定向之一函數之一介電常數,且分子之定向(及因此介電常數)可藉由調整跨液晶之偏壓電壓來控制。使用此性質,在一項實施例中,液晶整合用於將能量自導波發射至CEL之一導通/關斷開關。當接通時,CELC如同一電的小偶極天線一樣發射一電磁波。應注意,本文中之教示不限於具有在能量發射方面以一二進位方式操作之一液晶。
在一項實施例中,此天線系統之饋源幾何結構允許天線元件定位成與波饋源中之波向量成四十五度(45 o)角。應注意,可使用其他位置(例如,40 o角)。該等元件之此位置實現由該等元件接收或自該等元件發射/輻射之自由空間波之控制。在一項實施例中,該等天線元件以小於天線之操作頻率之一自由空間波長之一元件間間距配置。例如,若每個波長存在四個散射元件,則30 GHz發射天線中之元件將近似2.5 mm(即,30 GHz之10 mm自由空間波長之1/4)。
在一項實施例中,若控制為相同調諧狀態,則兩組元件彼此垂直且同時具有相等振幅激勵。將其等相對於饋送波激勵旋轉+/-45度會一次達成兩個所要特徵。將一組旋轉0度且將另一組旋轉90度將達成垂直目標,但無法達成相等振幅的激勵目標。應注意,當自兩側饋送單個結構中之天線元件之陣列時,可使用0及90度來達成隔離。
藉由使用一控制器將一電壓(跨LC頻道之電位)施加至貼片來控制來自各單位單元之輻射功率之量。至各貼片之跡線用來將電壓提供至貼片天線。電壓用來調諧或失諧電容及因此個別元件之共振頻率以實現波束成形。所需電壓取決於所使用之液晶混合物。液晶混合物之電壓調諧特性主要由液晶開始受該電壓及飽和電壓影響之一臨限電壓來描述,高於該臨限電壓時,該電壓之一增加不會致使液晶之大調諧。對於不同液晶混合物,此兩個特徵參數可改變。
在一項實施例中,如上文所論述,一矩陣驅動用來將電壓施加至貼片以便將各單元與所有其他單元分開地驅動,而無需具有用於各單元之一單獨連接(直接驅動)。由於元件之高密度,矩陣驅動係個別地對各單元進行定址之一有效方式。
在一項實施例中,用於天線系統之控制結構具有2個主組件:天線陣列控制器,其包含用於天線系統之驅動電子裝置,在波散射結構下方,而矩陣驅動切換陣列以使得不干涉輻射之一方式遍及輻射RF陣列散佈。在一項實施例中,用於天線系統之驅動電子裝置包括用於商業電視器具中之商業現成LCD控制器,該等控制器藉由調整各散射元件之一AC偏壓信號之振幅或工作週期來調整彼元件之偏壓電壓。
在一項實施例中,天線陣列控制器亦含有執行軟體之一微處理器。控制結構亦可併入感測器(例如,一GPS接收器、一三軸羅盤、一3軸加速度計、一3軸陀螺儀、一3軸磁力計等)以將位置及定向資訊提供至處理器。位置及定向資訊可由地面站中之其他系統提供至處理器及/或可並非為天線系統之部分。
更具體而言,天線陣列控制器控制在操作頻率下哪些元件被關斷及彼等元件被開啟以及處於哪個相位及振幅位準。使該等元件選擇性地失諧以藉由電壓施加進行頻率操作。
針對發射,一控制器將電壓信號之一陣列供應至RF貼片以產生一調變或控制圖案。控制圖案致使該等元件變成不同狀態。在一項實施例中,使用多狀態控制,其中將各種元件開啟及關斷至不同位準,從而進一步近似於一正弦控制圖案,而非一方波(即,一正弦灰度調變圖案)。在一項實施例中,一些元件比其他元件更強地輻射,而非一些元件輻射但一些元件不輻射。可變輻射係藉由施加特定電壓位準來達成,其將液晶介電常數調整為不同量,由此使元件可變地失諧且致使一些元件比其他元件更多地輻射。
元件之超穎材料陣列產生一聚焦波束可藉由相長干涉及相消干涉現象來解釋。若個別電磁波在自由空間中相遇時具有相同相位,則其等相加(相長干擾)且若其等在自由空間中相遇時具有相反相位,則波相互抵消(相消干涉)。若一開槽天線中之槽孔經定位使得各連續槽孔經定位於不同於導波之激勵點之一距離處,則來自彼元件之散射波將具有不同於先前槽孔之散射波之一相位。若該等槽孔隔開一導引波長之四分之一,則各槽孔將散射比先前槽孔相位延遲四分之一之一波。
使用該陣列,可增加可產生之相長及相消干擾圖案之數目使得波束理論上可使用全像原理指向與天線陣列視軸成正或負九十度(90 o)之任何方向。因此,藉由控制開啟或關斷哪些超穎材料單位單元(即,藉由改變哪些單元被開啟及哪些單元被關斷之圖案),可產生相長及相消干擾之一不同圖案,且天線可改變主波束之方向。開啟及關斷單位單元所需之時間決定波束可自一個位置切換至另一位置之速度。
在一項實施例中,天線系統為上行鏈路天線產生一個可引導波束且為下行鏈路天線產生一個可引導波束。在一項實施例中,天線系統使用超穎材料技術來接收波束且解碼來自衛星之信號且形成指向衛星之發射波束。在一項實施例中,與採用數位信號處理來電形成及引導波束之天線系統(例如,相控陣列天線)相比,該等天線系統係類比系統。在一項實施例中,天線系統被視為平面及相對低剖面之一「表面」天線,尤其是與習知衛星碟形接收器相較時。
圖7繪示包含一接地平面及一可重新組態共振器層之天線元件之一列之一透視圖。可重新組態共振器層1230包含可調諧槽孔1210之陣列。可調諧槽孔1210之陣列可經組態以將天線指向一所要方向。可藉由更改跨液晶之一電壓來調諧/調整可調諧槽孔之各者。
控制模組1280經耦合至可重新組態共振器層1230以藉由更改跨圖8A中之液晶之電壓來調變可調諧槽孔1210之陣列。控制模組1280可包含一場可程式化閘陣列(「FPGA」)、一微處理器、一控制器、一系統單晶片(SoC)或其他處理邏輯。在一項實施例中,控制模組1280包含用來驅動可調諧槽孔1210之陣列之邏輯電路系統(例如,多工器)。在一項實施例中,控制模組1280接收包含待驅動至可調諧槽孔1210之陣列上之一全像繞射圖案之規格之資料。可回應於天線與一衛星之間的一空間關係而產生全像繞射圖案使得全像繞射圖案在適當通信方向上引導下行鏈路波束(及若天線系統執行發射則係上行鏈路波束)。儘管各圖中未繪製,但類似於控制模組1280之一控制模組可驅動本發明之圖中所描述之可調諧槽孔之各陣列。
使用類似技術,射頻(「RF」)全像亦係可能的,其中當一RF參考波束遇到一RF全像繞射圖案時可產生一所要RF波束。在衛星通信之情況下,參考波束係呈一饋送波之形式,諸如饋送波1205 (在一些實施例中近似20 GHz)。為了將一饋送波變換成一輻射波束(用於發射或接收目的),需要計算所要RF波束(目標波束)與饋送波(參考波束)之間的一干涉圖案。干涉圖案作為一繞射圖案驅動至可調諧槽孔1210之陣列上使得饋送波經「引導」至所要RF波束(具有所要形狀及方向)中。換言之,遇到全像繞射圖案之饋送波「重構」目標波束,其係根據通信系統之設計要求形成。全像繞射圖案含有各元件之激勵且藉由
Figure 02_image021
計算,其中
Figure 02_image023
係波導中之波方程式且
Figure 02_image025
係出射波上之波方程式。
圖8A繪示一可調諧共振器/槽孔1210之一項實施例。可調諧槽孔1210包含一虹膜/槽孔1212、一輻射貼片1211及安置於虹膜1212與貼片1211之間的液晶1213。在一項實施例中,輻射貼片1211與虹膜1212同位。
圖8B繪示一實體天線孔徑之一項實施例之一截面視圖。天線孔徑包含接地平面1245,及虹膜層1232內之一金屬層1236,該虹膜層1232包含於可重新組態共振器層1230中。在一項實施例中,圖8B之天線孔徑包含圖8A之複數個可調諧共振器/槽孔1210。孔徑/槽孔1212由金屬層1236中之開口界定。一饋送波,諸如圖7之饋送波1205,可具有與衛星通信頻道相容之一微波頻率。饋送波在接地平面1245與共振器層1230之間傳播。
可重新組態共振器層1230亦包含襯墊層1233及貼片層1231。襯墊層1233經安置於貼片層1231與虹膜層1232之間。應注意,在一項實施例中,一間隔件可取代襯墊層1233。在一項實施例中,虹膜層1232係包含作為金屬層1236之一銅層之一印刷電路板(「PCB」)。在一項實施例中,虹膜層1232係玻璃。虹膜層1232可為其他類型之基板。
開口可經蝕刻於銅層中以形成槽孔1212。在一項實施例中,虹膜層1232藉由一導電接合層導電地耦合至圖8B中之另一結構(例如,一波導)。應注意,在一實施例中,虹膜層未藉由一導電接合層導電地耦合且代替地與一非導電接合層介接。
貼片層1231亦可為包含作為輻射貼片1211之金屬之一PCB。在一項實施例中,襯墊層1233包含提供一機械間隔以界定金屬層1236與貼片1211之間的尺寸之間隔件1239。在一項實施例中,間隔件係75微米,但亦可使用其他大小(例如,3 mm至200 mm)。如上文所提及,在一項實施例中,圖8B之天線孔徑包含多個可調諧共振器/槽孔,諸如可調諧共振器/槽孔1210包含圖8A之貼片1211、液晶1213及虹膜1212。用於液晶之腔室1213A由間隔件1239、虹膜層1232及金屬層1236界定。當該腔室充滿液晶時,貼片層1231可經層壓至間隔件1239上以將液晶密封於共振器層1230內。
貼片層1231與虹膜層1232之間的一電壓可經調變以調諧貼片與槽孔(例如,可調諧共振器/槽孔1210)之間的間隙中之液晶。調整跨液晶1213之電壓會更改一槽孔(例如,可調諧共振器/槽孔1210)之電容。據此,可藉由改變電容來更改一槽孔(例如,可調諧共振器/槽孔1210)之電抗。槽孔1210之共振頻率亦根據方程式
Figure 02_image027
而改變,其中
Figure 02_image029
係槽孔1210之共振頻率且L及C分別係槽孔1210之電感及電容。槽孔1210之共振頻率影響自傳播通過波導之饋送波1205輻射之能量。作為一實例,若饋送波1205係20 GHz,則可(藉由更改電容)將一槽孔1210之共振頻率調整至17 GHz使得槽孔1210實質上不耦合來自饋送波1205之能量。或,可將一槽孔1210之共振頻率調整至20 GHz使得槽孔1210耦合來自饋送波1205之能量且將彼能量輻射至自由空間中。儘管給出的實例係二進位的(完全輻射或根本不輻射),但控制電抗之全灰度及因此槽孔1210之共振頻率在一多值範圍內之電壓變化下係可能的。因此,可精細地控制自各槽孔1210輻射之能量使得可藉由可調諧槽孔之陣列形成之詳細全像繞射圖案。
在一項實施例中,一列中之可調諧槽孔彼此隔開λ/5。可使用其他間距。在一項實施例中,一列中之各可調諧槽孔與相鄰列中之最接近的可調諧槽孔隔開λ/2且因此,不同列中之共同定向的可調諧槽孔隔開λ/4,儘管其他間距亦係可能的(例如,λ/5、λ/6.3)。在另一實施例中,一列中之各可調諧槽孔與相鄰列中之最接近的可調諧槽孔隔開λ/3。
實施例使用可重新組態超穎材料技術,諸如在2014年11月21日申請之標題為「Dynamic Polarization and Coupling Control from a Steerable Cylindrily Fed Holographic Antenna」之美國專利申請案第14/550,178號及2015年1月30日申請之標題為「Ridged Waveguide Feed Structures for Reconfigurable Antenna」之美國專利申請案第14/610,502號中所描述。
圖9A至圖9D繪示用於產生開槽陣列之不同層之一項實施例。天線陣列包含呈環定位之天線元件,諸如圖6中所展示之實例環。應注意,在此實例中,天線陣列具有用於兩種不同類型之頻率頻帶之兩種不同類型之天線元件。
圖9A繪示具有對應於槽孔之位置之第一虹膜板層之一部分。參考圖9A,圓係虹膜基板之底側中之金屬化層中之敞開區域/槽孔,且用於控制元件到饋源(饋送波)之耦合。應注意,此層係一可選層且並非用於所有設計中。圖9B繪示含有槽孔之第二虹膜板層之一部分。圖9C繪示第二虹膜板層之一部分上之貼片。圖9D繪示開槽陣列之一部分之一俯視圖。
圖10繪示一圓柱形饋送天線結構之一項實施例之一側視圖。天線使用一雙層饋送結構(即,一饋送結構之兩個層)產生一向內行進波。在一項實施例中,天線包含一圓形外形,但此並非必需的。即,可使用非圓形的向內行進結構。在一項實施例中,圖10中之天線結構包含一同軸饋源,舉例而言諸如在2014年11月21日申請之標題為「Dynamic Polarization and Coupling Control from a Steerable Cylindrily Fed Holographic Antenna」之美國公開案第2015/0236412號中所描述。
參考圖10,一同軸接腳1601用來在天線之較低層級上激勵場。在一項實施例中,同軸接腳1601係容易獲得之一50 Ω同軸接腳。同軸接腳1601經耦合(例如,螺接)至天線結構之底部,該底部係導電接地平面1602。
與導電接地平面1602分開的係填隙導體1603,該填隙導體1603係一內部導體。在一項實施例中,導電接地平面1602及填隙導體1603彼此平行。在一項實施例中,接地平面1602與填隙導體1603之間的距離係0.1”至0.15”。在另一實施例中,此距離可為λ/2,其中λ係在操作頻率下之行進波之波長。
接地平面1602經由一間隔件1604與填隙導體1603分開。在一項實施例中,間隔件1604係一泡沫或空氣狀間隔件。在一項實施例中,間隔件1604包含一塑膠間隔件。
在填隙導體1603之頂部上係介電質層1605。在一項實施例中,介電質層1605係塑膠。介電質層1605之目的係相對於自由空間速度減慢行進波。在一項實施例中,介電質層1605相對於自由空間使行進波減慢30%。在一項實施例中,適合於波束成形之折射率範圍係1.2至1.8,其中根據定義,自由空間具有等於1之一折射率。其他介電質間隔件材料,舉例而言諸如塑膠可用來達成此效應。應注意,可使用除塑膠以外之材料,只要其等達成所要波減慢效應即可。替代地,具有分佈式結構之一材料可用作介電質1605,諸如可機械加工或微影界定之週期性次波長金屬結構。
一RF陣列1606在介電質1605之頂部上。在一項實施例中,填隙導體1603與RF陣列1606之間的距離係0.1”至0.15”。在另一實施例中,此距離可為
Figure 02_image031
,其中
Figure 02_image033
係在設計頻率下之介質中之有效波長。
天線包含側1607及1608。側1607及1608成角以致使來自同軸接腳1601之一行進波饋送經由反射自填隙導體1603下方之區域(間隔件層)傳播至填隙導體1603上方之區域(介電質層)。在一項實施例中,邊1607及1608成45°角。在一替代實施例中,側1607及1608可用一連續半徑取代以達成反射。雖然圖10展示具有45度角之成角側,但亦可使用完成自低層級饋源至高層級饋源之信號發射之其他角度。即,假設下饋源中之有效波長通常將不同於上饋源中,則可使用與理想45°角之一些偏差來輔助自下至上饋源層級之發射。例如,在另一實施例中,45°角由單個階部取代。天線之一端上之階部圍繞介電質層、填隙導體及間隔件層。相同的兩個階部在此等層之另一端處。
在操作中,當一饋送波自同軸接腳1601饋入時,該波在接地平面1602與填隙導體1603之間的區域中自同軸接腳1601同心定向地向外行進。同心出射波被側1607及1608反射且在填隙導體1603與RF陣列1606之間的區域中向內行進。來自圓形周邊之邊緣之反射致使該波保持同相(即,其係一同相反射)。行進波被介電質層1605減慢。此時,行進波開始與RF陣列1606中之元件相互作用且被其激勵以獲得所要散射。
為了終止行進波,在天線中,在天線之幾何中心處包含一終端1609。在一項實施例中,終端1609包括一接腳終端(例如,一50 Ω接腳)。在另一實施例中,終端1609包括終止未使用能量以防止彼未使用能量透過天線之饋送結構回射之一RF吸收器。此等可用於RF陣列1606之頂部處。
圖11繪示具有一出射波之天線系統之另一實施例。參考圖11,兩個接地平面1610及1611實質上彼此平行,其中一介電質層1612 (例如,一塑膠層等)在接地平面之間。RF吸收器1619 (例如,電阻器)將兩個接地平面1610及1611耦合在一起。一同軸接腳1615 (例如,50 Ω)饋送天線。一RF陣列1616在介電質層1612及接地平面1611之頂部上。
在操作中,一饋送波透過同軸接腳1615饋送且同心地向外行進且與RF陣列1616之元件相互作用。
圖10及圖11之兩個天線中之圓柱形饋源改良天線之服務角。代替正或負四十五度方位角(±45° Az)及正或負二十五度仰角(±25° El)之一服務角的是,在一項實施例中,天線系統在所有方向上與視軸具有七十五度(75°)之一服務角。正如由諸多個別輻射器組成之任何波束成形天線,總天線增益取決於所構成元件之增益,而其等本身與角度有關。當使用普通輻射元件時,總天線增益通常隨著波束進一步背離視軸而減小。在偏離視軸75度時,預計約6 dB之顯著增益劣化。
具有一圓柱形饋源之天線之實施例解決一或多個問題。此等包含與使用一共同分壓器網路之天線饋源相較,明顯簡化饋送結構且因此減少總的所需天線及天線饋源量;藉由以更粗略控制(一直擴展至簡單二進位控制)維持高波束效能來減小對製造及控制誤差之敏感性;與直線饋源相較,提供一更有利的旁波瓣圖案,因為圓柱形定向的饋送波導致遠場中之空間不同的旁波瓣;及允許極化係動態的,包含允許左旋圓、右旋圓及線性極化,而不需要一極化器。 波散射元件之陣列
圖10之RF陣列1606及圖11之RF陣列1616包含一波散射子系統,該波散射子系統包含充當輻射器之貼片天線(即,散射器)之一群組。貼片天線之此群組包括散射超穎材料元件之一陣列。
在一項實施例中,天線系統中之各散射元件係一單位單元之一部分,該單位單元由一下導體、一介電質基板及一上導體組成,該上導體嵌入蝕刻於該上導體中或沈積至該上導體上之一互補電感應電容性共振器(「互補電LC」或「CELC」)。
在一項實施例中,一液晶(LC)經注入於散射元件周圍之間隙中。液晶經囊封於各單位單元中且將相關聯於一槽孔之下導體與相關聯於其貼片之一上導體分開。液晶具有作為包括液晶之分子之定向之一函數之一介電常數,且分子之定向(及因此介電常數)可藉由調整跨液晶之偏壓電壓來控制。使用此性質,液晶充當用於將能量自導波發射至CELC之一導通/關斷開關。當接通時,CELC如同一電的小偶極天線一樣發射電磁波。
控制LC之厚度會增加波束切換速度。下導體與上導體之間的間隙(液晶之厚度)減少百分之五十(50%)會導致速度增加四倍。在另一實施例中,液晶之厚度導致近似十四毫秒(14 ms)之一波束切換速度。在一項實施例中,以此項技術中熟知之一方式摻雜LC以改良回應性使得可滿足一七毫秒(7 ms)要求。
CELC元件回應於平行於CELC元件之平面且垂直於CELC間隙補體施加之一磁場。當將一電壓施加至超穎材料散射單位單元中之液晶時,導波之磁場分量感應CELC之一磁激勵,其繼而產生相同於導波之頻率之電磁波。
由單個CELC產生之電磁波之相位可藉由CELC在導波向量上之位置來選擇。各單元產生與平行於CELC之導波同相之一波。因為CELC小於波長,所以輸出波在其於CELC下面傳遞時具有相同於導波相位之相位。
在一項實施例中,此天線系統之圓柱形饋源幾何形狀允許CELC元件定位成與波饋源中之波向量成四十五度(45°)角。該等元件之此位置實現由該等元件接收或自該等元件產生之自由空間波之控制。在一項實施例中,CELC以小於天線之操作頻率之一自由空間波長之一元件間間距配置。例如,若每個波長存在四個散射元件,則30 GHz發射天線中之元件將近似2.5 mm(即,30 GHz之10 mm自由空間波長之1/4)。
在一項實施例中,CELC使用貼片天線來實施,該等貼片天線包含同位於一槽孔上之一貼片,在該貼片與該槽孔之間具有液晶。在此方面,超穎材料天線充當一開槽(散射)波導。利用一開槽波導,輸出波之相位取決於槽孔相對於導波之位置。 單元放置
在一項實施例中,天線元件以允許一系統性矩陣驅動電路之一方式放置於圓柱形饋送天線孔徑上。單元之放置包含用於矩陣驅動之電晶體之放置。圖12繪示矩陣驅動電路系統相對於天線元件之放置之一項實施例。參考圖12,列控制器1701分別經由列選擇信號Row1及Row2耦合至電晶體1711及1712,且列控制器1702經由行選擇信號Column1耦合至電晶體1711及1712。電晶體1711亦經由與貼片1731之連接耦合至天線元件1721,而電晶體1712經由與貼片1732之連接耦合至天線元件1722。
在具有呈一非規則網格放置之單位單元之圓柱形饋送天線上實現矩陣驅動電路系統之一初始方法中,執行兩個步驟。在第一步驟中,呈同心環放置單元且單元之各者經連接至放置於該單元後側之一電晶體且充當一開關以單獨地驅動各單元。在第二步驟中,建置矩陣驅動電路系統以便按照矩陣驅動方法之要求將每個電晶體與唯一位址連接。因為矩陣驅動電路係由列及行跡線(類似於LCD)建置但單元呈環放置,所以不存在系統性方式來將唯一位址指派給各電晶體。此映射問題導致覆蓋所有電晶體之非常複雜電路系統且導致完成佈線之實體跡線之數目顯著增加。由於單元之高密度,彼等跡線歸因於耦合效應而干擾天線之RF效能。再者,歸因於跡線複雜性及高包裝密度,跡線之佈線無法藉由市售佈局工具來完成。
在一項實施例中,在放置單元及電晶體之前預界定矩陣驅動電路系統。此確保驅動所有單元所需之最小數目個跡線,各單元具有唯一位址。此策略降低驅動電路系統之複雜性且簡化佈線,其隨後改良天線之RF效能。
更具體而言,在一種方法中,在第一步驟中,呈由描述各單元之唯一位址之列及行組成之一規則矩形網格放置單元於。在第二步驟中,對單元進行分群且將其變換為同心圓,同時維持其等位址及與如第一步驟中界定之列及行之連接。此變換之一目標不僅係呈環放置單元,而且保持單元之間的距離及環之間的距離在整個孔徑上恆定。為了實現此目標,存在對單元進行分群之若干方式。
在一項實施例中,一TFT封裝用來在矩陣驅動中實現放置及唯一定址。圖13繪示一TFT封裝之一項實施例。參考圖13,展示具有輸入及輸出埠之一TFT及一固持電容器1803。存在連接至跡線1801之兩個輸入埠及連接至跡線1802之兩個輸出埠以使用列及行將TFT連接在一起。在一項實施例中,列及行跡線以90°角交叉以減少且可能最小化列與行跡線之間的耦合。在一項實施例中,列及行跡線在不同層上。 一全雙工通信系統之一實例
在另一實施例中,組合天線孔徑用於一全雙工通信系統中。圖14係具有同時發射及接收路徑之一通信系統之另一實施例之一方塊圖。雖然僅展示一個發射路徑及一個接收路徑,但該通信系統可包含一個以上發射路徑及/或一個以上接收路徑。
參考圖14,天線1401包含可獨立地操作以如上文所描述般在不同頻率下同時發射及接收之兩個空間交錯的天線陣列。在一項實施例中,天線1401經耦合至雙工器1445。該耦合可藉由一或多個饋送網路進行。在一項實施例中,在一徑向饋送天線之情況下,雙工器1445組合兩個信號且天線1401與雙工器1445之間的連接係可攜載兩個頻率之單個寬頻帶饋送網路。
雙工器1445經耦合至一低雜訊區塊降頻轉換器(LNB) 1427,該LNB 1427以此項技術中熟知之一方式執行一雜訊濾波功能與一降頻轉換及放大功能。在一項實施例中,LNB 1427在一室外單元(ODU)中。在另一實施例中,LNB 1427經整合至天線設備中。LNB 1427經耦合至一數據機1460,該數據機1460經耦合至運算系統1440 (例如,一電腦系統、數據機等)。
數據機1460包含一類比至數位轉換器(ADC) 1422,該ADC 1422經耦合至LNB 1427以將自雙工器1445輸出之經接收信號轉換成數位格式。一旦轉換為數位格式,該信號便由解調變器1423解調變且由解碼器1424解碼以獲得關於經接收波之經編碼資料。接著,將經解碼資料發送至控制器1425,該控制器1425將該經解碼資料發送至運算系統1440。
數據機1460亦包含對待自運算系統1440發射之資料進行編碼之一編碼器1430。由調變器1431調變經編碼資料且接著由數位至類比轉換器(DAC) 1432將經編碼資料轉換為類比信號。接著,由一BUC (升頻轉換及高通放大器) 1433對類比信號進行濾波且將類比信號提供至雙工器1445之一個埠。在一項實施例中,BUC 1433在一室外單元(ODU)中。
以此項技術中熟知之一方式操作之雙工器1445將發射信號提供至天線1401以供發射。
控制器1450控制天線1401,包含單個組合實體孔徑上之天線元件之兩個陣列。
通信系統將經修改以包含上文所描述之組合器/仲裁器。在此一情況下,組合器/仲裁器在數據機之後但在BUC及LNB之前。
應注意,圖14中所展示之全雙工通信系統具有數個應用,包含但不限於網際網路通信、車輛通信(包含軟體更新)等。
本文中描述數項實例實施例。
實例1係一種天線,其包括:一孔徑,其具有可操作以輻射射頻(RF)能量之複數個天線元件;及一單層廣角阻抗匹配(WAIM)結構,其經耦合至該孔徑以提供該天線孔徑與自由空間之間的阻抗匹配。
實例2係如實例1之天線,其可視情況包含該單層WAIM結構包括具有次波長元件之一二維(2D)陣列之一電容性阻抗表面。
實例3係如實例2之天線,其可視情況包含該等次波長元件包括電容性貼片之一2D陣列。
實例4係如實例3之天線,其可視情況包含該等電容性貼片係方形貼片。
實例5係如實例3之天線,其可視情況包含該等電容性貼片係六邊形貼片。
實例6係如實例2之天線,其可視情況包含該等次波長元件係裂環共振器或偶極。
實例7係如實例1之天線,其可視情況包含該單層WAIM結構包括一基板且該單層WAIM結構之該等次波長元件經網版印刷於該基板上。
實例8係如實例1之天線,其可視情況包含該單層WAIM結構藉由至少一介電質間隔件與該孔徑分開。
實例9係如實例8之天線,其可視情況包含該單層WAIM結構之阻抗基於其特徵及其周圍介質之實體尺寸。
實例10係如實例1之天線,其可視情況包含該單層WAIM結構之阻抗係一傳播波之掃描角及極化之一函數且與該天線之一掃描平面無關。
實例11係如實例1之天線,其可視情況包含該單層WAIM結構具有旋轉對稱性。
實例12係如實例1之天線,其可視情況包含該孔徑包括一超穎表面。
實例13係一種天線,其包括:一超穎表面,其具有可操作以輻射射頻(RF)能量之複數個天線元件;及一單層廣角阻抗匹配(WAIM)結構,其經耦合至該超穎表面以提供該天線超穎表面與自由空間之間的阻抗匹配,該單層WAIM結構具有帶有次波長元件之一二維(2D)陣列之一電容性阻抗表面。
實例14係如實例13之天線,其可視情況包含該等次波長元件包括電容性貼片之一2D陣列。
實例15係如實例14之天線,其可視情況包含該等電容性貼片係方形貼片或六邊形貼片。
實例16係如實例13之天線,其可視情況包含該等次波長元件係裂環共振器或偶極。
實例17係如實例13之天線,其可視情況包含該單層WAIM結構包括一基板且該單層WAIM結構之該等次波長元件經網版印刷於該基板上。
實例18係如實例13之天線,其可視情況包含該單層WAIM結構藉由至少一介電質間隔件與該孔徑分開。
實例19係如實例18之天線,其可視情況包含該單層WAIM結構之阻抗基於其特徵及其周圍介質之實體尺寸。
實例20係如實例13之天線,其可視情況包含該單層WAIM結構之阻抗係一傳播波之掃描角及極化之一函數且與該天線之一掃描平面無關。
實例21係一種天線,其包括:一超穎表面,其具有可操作以輻射射頻(RF)能量之複數個天線元件;一介電質層,其經耦合至該超穎表面;及一單層廣角阻抗匹配(WAIM)結構,其經耦合至該介電質層以提供該天線超穎表面與自由空間之間的阻抗匹配,其中單層WAIM結構包括具有網版印刷於其上之電容性元件之一二維(2D)陣列之一基板。
已關於對一電腦記憶體內之資料位元之演算法及操作之符號表示呈現以上詳細描述之一些部分。此等演算法描述及表示係熟習資料處理技術者用來最有效地向熟習此項技術者傳達其工作實質之手段。一演算法在此且通常被認為係導致一所要結果之步驟之一自我一致序列。該等步驟係需要對物理量進行實體操縱之步驟。通常,儘管並非必需,但此等量採取能夠被儲存、傳送、組合、比較及以其他方式操縱之電或磁性信號之形式。主要出於通用之原因,已證明有時將此等信號稱為位元、值、元件、符號、字符、項、數字或類似者係方便的。
然而,應牢記,所有此等及類似術語皆與適當物理量相關聯且僅僅係應用於此等量之方便標籤。除非如自以下論述顯而易見地另有具體地陳述,否則應明白,貫穿該描述,利用諸如「處理」或「運算」或「計算」或「判定」或「顯示」或類似者之論述涉及一電腦系統或類似電子運算裝置之動作及程序,該電腦系統或類似電子運算裝置將表示為電腦系統之暫存器及記憶體內之物理(電子)量之資料操縱及變換成類似地表示為電腦系統記憶體或暫存器或其他此等資訊儲存、發射或顯示裝置內之物理量之其他資料。
本發明亦係關於用於執行本文中之操作之設備。此設備可特殊地經構建用於所需目的,或其可包括由儲存於電腦中之一電腦程式選擇性地啟動或重新組態之一通用電腦。此一電腦程式可經儲存於一電腦可讀儲存媒體中,諸如但不限於任何類型之磁碟,包含軟碟、光碟、CD-ROM及磁光碟、唯讀記憶體(ROM)、隨機存取記憶體(RAM)、EPROM、EEPROM、磁卡或光卡、或適於儲存電子指令之任何類型之媒體,且各媒體經耦合至一電腦系統匯流排。
本文中所呈現之演算法及顯示並非與任何特定電腦或其他設備固有地相關。各種通用系統可與根據本文中之教示之程式一起使用,或可證明構建更專用設備來執行所需方法步驟係方便的。多種此等系統之所需結構將自下文描述出現。另外,未參考任何特定程式設計語言描述本發明。將明白,可使用多種程式設計語言來實施如本文中所描述之本發明之教示。
一機器可讀媒體包含用於以一機器(例如,一電腦)可讀之一形式儲存或發射資訊之任何機構。例如,一機器可讀媒體包含唯讀記憶體(「ROM」);隨機存取記憶體(「RAM」);磁碟儲存媒體;光學儲存媒體;快閃記憶體裝置等。
儘管在閱讀前文描述之後本發明之諸多變動及修改對於一般技術者而言無疑將變得顯而易見,但應理解,以闡釋方式展示及描述之任何特定實施例係決非意欲於被視為限制性。因此,對各項實施例之細節之引用並非意欲於限制發明申請專利範圍之範疇,發明申請專利範圍本身僅陳述被認為對本發明必不可少之彼等特徵。
100:單層廣角阻抗匹配(WAIM)結構 101:天線元件 102:次波長方形貼片/電容性貼片 110:槽孔 102A:電容性貼片 111:貼片 201:單層WAIM結構 202:天線元件 203:電容性貼片 211:單層WAIM結構 212:天線元件 213:電容性貼片 221:單層WAIM結構 222:天線元件 223:電容性貼片 231:單層WAIM結構 232:天線元件 233:電容性貼片 241:單層WAIM結構 242:天線元件 243:電容性貼片 251:單層WAIM結構 252:天線元件 253:電容性貼片 401:處理方塊 402:處理方塊 403:處理方塊 404:處理方塊 410:處理方塊 411:處理方塊 412:處理方塊 500:單層WAIM結構 501:方形電容性貼片 510:單層WAIM結構 511:六邊形電容性貼片 520:單層WAIM結構 521:裂環共振器(SSR) 601:陣列 602:輸入饋源 603:天線元件 1205:饋送波 1210:可調諧槽孔/可調諧共振器/槽孔 1211:輻射貼片 1212:虹膜/槽孔 1213:液晶 1213A:腔室 1230:可重新組態共振器層 1231:貼片層 1232:虹膜層 1233:襯墊層 1236:金屬層 1239:間隔件 1245:接地平面 1280:控制模組 1401:天線 1422:類比至數位轉換器(ADC) 1423:解調器 1424:解碼器 1425:控制器 1427:低雜訊區塊降頻轉換器(LNB) 1430:編碼器 1431:調變器 1432:數位至類比轉換器(DAC) 1433:升頻轉換及高通放大器(BUC) 1440:運算系統 1445:雙工器 1450:控制器 1460:數據機 1601:同軸接腳 1602:導電接地平面 1603:填隙導體 1604:間隔件 1605:介電質層 1606:射頻(RF)陣列 1607:側 1608:側 1609:終端 1610:接地平面 1611:接地平面 1612:介電質層 1615:同軸接腳 1616:RF陣列 1619:RF吸收器 1701:列控制器 1702:列控制器 1711:電晶體 1712:電晶體 1721:天線元件 1722:天線元件 1731:貼片 1732:貼片 1801:跡線 1802:跡線 1803:固持電容器 Column1:行選擇信號 Row1:列選擇信號 Row2:列選擇信號
藉由參考結合隨附圖式進行之以下描述,可最好地理解所描述實施例及其等優點。此等圖式決不限制熟習此項技術者在不脫離所描述實施例之精神及範疇之情況下可對所描述實施例進行之形式及細節上之任何改變。 圖1A至圖1B繪示一單層廣角阻抗匹配(WAIM)結構之一項實施例。 圖2A至圖2C繪示一WAIM結構在具有各種對準之一孔徑上之一替代安裝。 圖2D至圖2F繪示使用多種特徵尺寸達成相同效能之靈活性。 圖3繪示一單層WAIM結構之一項實施例之增益及掃描損耗改良。 圖4係用於設計一單層WAIM結構之一程序之一項實施例之一流程圖。 圖5A至圖5C繪示用於WAIM結構中之替代電容性表面。 圖6繪示具有呈同心環放置於圓柱形饋送天線之一輸入饋源周圍之一或多個天線元件陣列之一孔徑。 圖7繪示包含一接地平面及一可重新組態共振器層之天線元件之一列之一透視圖。 圖8A繪示一可調諧共振器/槽孔之一項實施例。 圖8B繪示一實體天線孔徑之一項實施例之一截面視圖。 圖9A繪示具有對應於槽孔之位置之第一虹膜板層之一部分。 圖9B繪示含有槽孔之第二虹膜板層之一部分。 圖9C繪示第二虹膜板層之一部分上之貼片。 圖9D繪示開槽陣列之一部分之一俯視圖。 圖10繪示一圓柱形饋送天線結構之一項實施例之一側視圖。 圖11繪示具有一出射波之天線系統之另一實施例。 圖12繪示矩陣驅動電路系統相對於天線元件之放置之一項實施例。 圖13繪示一TFT封裝之一項實施例。 圖14係具有同時發射及接收路徑之一通信系統之另一實施例之一方塊圖。
100:單層廣角阻抗匹配(WAIM)結構
101:天線元件
102:次波長方形貼片/電容性貼片
110:槽孔
102A:電容性貼片
111:貼片

Claims (21)

  1. 一種天線,其包括: 一孔徑,其具有可操作以輻射射頻(RF)能量之複數個天線元件;及 一單層廣角阻抗匹配(WAIM)結構,其經耦合至該孔徑以提供該天線孔徑與自由空間之間的阻抗匹配。
  2. 如請求項1之天線,其中該單層WAIM結構包括具有次波長元件之一二維(2D)陣列之一電容性阻抗表面。
  3. 如請求項2之天線,其中該等次波長元件包括電容性貼片之一2D陣列。
  4. 如請求項3之天線,其中該等電容性貼片係方形貼片。
  5. 如請求項3之天線,其中該等電容性貼片係六邊形貼片。
  6. 如請求項2之天線,其中該等次波長元件係裂環共振器或偶極。
  7. 如請求項1之天線,其中該單層WAIM結構包括一基板且該單層WAIM結構之該等次波長元件經網版印刷於該基板上。
  8. 如請求項1之天線,其中該單層WAIM結構藉由至少一介電質間隔件與該孔徑分開。
  9. 如請求項8之天線,其中該單層WAIM結構之阻抗基於其特徵及其周圍介質之實體尺寸。
  10. 如請求項1之天線,其中該單層WAIM結構之阻抗係一傳播波之掃描角及極化之一函數且與該天線之一掃描平面無關。
  11. 如請求項1之天線,其中該單層WAIM結構具有旋轉對稱性。
  12. 如請求項1之天線,其中該孔徑包括一超穎表面。
  13. 一種天線,其包括: 一超穎表面,其具有可操作以輻射射頻(RF)能量之複數個天線元件;及 一單層廣角阻抗匹配(WAIM)結構,其經耦合至該超穎表面以提供該天線超穎表面與自由空間之間的阻抗匹配,該單層WAIM結構具有帶有次波長元件之一二維(2D)陣列之一電容性阻抗表面。
  14. 如請求項13之天線,其中該等次波長元件包括電容性貼片之一2D陣列。
  15. 如請求項14之天線,其中該等電容性貼片係方形貼片或六邊形貼片。
  16. 如請求項13之天線,其中該等次波長元件係裂環共振器或偶極。
  17. 如請求項13之天線,其中該單層WAIM結構包括一基板且該單層WAIM結構之該等次波長元件經網版印刷於該基板上。
  18. 如請求項13之天線,其中該單層WAIM結構藉由至少一介電質間隔件與該孔徑分開。
  19. 如請求項18之天線,其中該單層WAIM結構之阻抗基於其特徵及其周圍介質之實體尺寸。
  20. 如請求項13之天線,其中該單層WAIM結構之阻抗係一傳播波之掃描角及極化之一函數且與該天線之一掃描平面無關。
  21. 一種天線,其包括: 一超穎表面,其具有可操作以輻射射頻(RF)能量之複數個天線元件; 一介電質層,其經耦合至該超穎表面;及 一單層廣角阻抗匹配(WAIM)結構,其經耦合至該介電質層以提供該天線超穎表面與自由空間之間的阻抗匹配,其中單層WAIM結構包括具有網版印刷於其上之電容性元件之一二維(2D)陣列之一基板。
TW110118041A 2020-05-19 2021-05-19 單層廣角阻抗匹配(waim) TW202215711A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202063027190P 2020-05-19 2020-05-19
US63/027,190 2020-05-19
US17/322,602 US11705634B2 (en) 2020-05-19 2021-05-17 Single-layer wide angle impedance matching (WAIM)
US17/322,602 2021-05-17

Publications (1)

Publication Number Publication Date
TW202215711A true TW202215711A (zh) 2022-04-16

Family

ID=78608435

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110118041A TW202215711A (zh) 2020-05-19 2021-05-19 單層廣角阻抗匹配(waim)

Country Status (8)

Country Link
US (1) US11705634B2 (zh)
EP (1) EP4154356A1 (zh)
JP (1) JP2023526456A (zh)
KR (1) KR20230012490A (zh)
CN (1) CN115668641A (zh)
IL (1) IL298285A (zh)
TW (1) TW202215711A (zh)
WO (1) WO2021236846A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11063661B2 (en) * 2018-06-06 2021-07-13 Kymeta Corporation Beam splitting hand off systems architecture
US11705634B2 (en) * 2020-05-19 2023-07-18 Kymeta Corporation Single-layer wide angle impedance matching (WAIM)
CN114639962B (zh) * 2022-03-17 2023-03-07 山西大学 一种基于相位梯度超表面的二维波束可重构Fabry-Perot谐振腔天线
CN115036681B (zh) * 2022-05-07 2023-12-26 西安电子科技大学 一种产生te模态表面波的全向天线及其应用装置
CN115332812B (zh) * 2022-08-25 2024-03-22 中国人民解放军空军工程大学 一种基于有源超表面的反射阵列天线及其制造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6768471B2 (en) * 2002-07-25 2004-07-27 The Boeing Company Comformal phased array antenna and method for repair
US7889127B2 (en) * 2008-09-22 2011-02-15 The Boeing Company Wide angle impedance matching using metamaterials in a phased array antenna system
US7893867B2 (en) * 2009-01-30 2011-02-22 The Boeing Company Communications radar system
ES2583753T3 (es) * 2011-02-04 2016-09-22 Airbus Ds Electronics And Border Security Gmbh Antena de grupos
US9343816B2 (en) * 2013-04-09 2016-05-17 Raytheon Company Array antenna and related techniques
US9437929B2 (en) * 2014-01-15 2016-09-06 Raytheon Company Dual polarized array antenna with modular multi-balun board and associated methods
US10756445B2 (en) * 2014-12-12 2020-08-25 The Boeing Company Switchable transmit and receive phased array antenna with high power and compact size
US10700429B2 (en) * 2016-09-14 2020-06-30 Kymeta Corporation Impedance matching for an aperture antenna
US10424847B2 (en) * 2017-09-08 2019-09-24 Raytheon Company Wideband dual-polarized current loop antenna element
CN111247695B (zh) * 2017-10-18 2022-08-19 康普技术有限责任公司 宽带堆叠贴片辐射元件及相关的相控阵列天线
EP3570375A1 (en) 2018-05-14 2019-11-20 Paris Sciences et Lettres - Quartier Latin Reconfigurable antenna assembly having a metasurface of metasurfaces
WO2019222585A1 (en) * 2018-05-18 2019-11-21 Raytheon Company Antenna element having a segmentation cut plane
WO2020009979A1 (en) * 2018-07-02 2020-01-09 Sea Tel, Inc. (Dba Cobham Satcom) Open ended waveguide antenna for one-dimensional active arrays
WO2020223387A1 (en) * 2019-05-01 2020-11-05 Smiths Interconnect, Inc. Differential fed dual polarized tightly coupled dielectric cavity radiator for electronically scanned array applications
KR102037227B1 (ko) * 2019-05-20 2019-10-28 아주대학교산학협력단 메타표면을 갖는 기판 집적 도파관 슬롯 안테나
US11705634B2 (en) * 2020-05-19 2023-07-18 Kymeta Corporation Single-layer wide angle impedance matching (WAIM)

Also Published As

Publication number Publication date
US11705634B2 (en) 2023-07-18
WO2021236846A1 (en) 2021-11-25
CN115668641A (zh) 2023-01-31
EP4154356A1 (en) 2023-03-29
JP2023526456A (ja) 2023-06-21
KR20230012490A (ko) 2023-01-26
IL298285A (en) 2023-01-01
US20210367341A1 (en) 2021-11-25

Similar Documents

Publication Publication Date Title
US11322843B2 (en) Impedance matching for an aperture antenna
TW202215711A (zh) 單層廣角阻抗匹配(waim)
US11049658B2 (en) Storage capacitor for use in an antenna aperture
TW202147694A (zh) 用於超材料射頻天線之電定址
US11670858B2 (en) Non-circular center-fed antenna and method for using the same
TW202207524A (zh) 用於經改良調諧範圍之射頻元件設計
TW202207528A (zh) 天線中的佈線及佈局
CN114982065A (zh) 用于天线的多频带波导结构
KR20230022152A (ko) 안테나에서의 라우팅 및 레이아웃
KR20220115934A (ko) 웨지 플레이트 방사형 도파관을 이용하는 방사형 피드 세그멘테이션