TW202215241A - Anomaly detection system and anomaly detection method - Google Patents

Anomaly detection system and anomaly detection method Download PDF

Info

Publication number
TW202215241A
TW202215241A TW109135460A TW109135460A TW202215241A TW 202215241 A TW202215241 A TW 202215241A TW 109135460 A TW109135460 A TW 109135460A TW 109135460 A TW109135460 A TW 109135460A TW 202215241 A TW202215241 A TW 202215241A
Authority
TW
Taiwan
Prior art keywords
sensing data
processor
generate
abnormality
restored
Prior art date
Application number
TW109135460A
Other languages
Chinese (zh)
Other versions
TWI779365B (en
Inventor
劉一帆
黃彥鈞
梁欣雅
陳奎廷
郭宗賢
Original Assignee
中強光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中強光電股份有限公司 filed Critical 中強光電股份有限公司
Publication of TW202215241A publication Critical patent/TW202215241A/en
Application granted granted Critical
Publication of TWI779365B publication Critical patent/TWI779365B/en

Links

Images

Landscapes

  • Testing And Monitoring For Control Systems (AREA)
  • Selective Calling Equipment (AREA)

Abstract

An anomaly detection system and an anomaly detection method are provided. The anomaly detection method includes: obtaining sensed data through a communication device; inputting the sensed data to an model to generate anomaly score through a processor, wherein the model includes anomaly detection model or an energy-based model (EBM); setting a boundary according to the anomaly score through the processor; generating a health indicator according to the anomaly score and the boundary through the processor.

Description

異常偵測系統以及異常偵測方法Anomaly detection system and anomaly detection method

本發明是有關於一種異常偵測系統以及異常偵測方法。The present invention relates to an anomaly detection system and an anomaly detection method.

異常偵測演算法常用於偵測訊號中的異常,從而判斷是否發生異常事件。舉例來說,財金領域常使用異常偵測演算法來判斷是否發生異常交易事件。工業領域常使用異常偵測演算法來判斷是否發生機台故障事件。一般來說,使用者可通過正常資料(即:未發生異常事件時所收集的資料)來訓練異常偵測模型。訓練好的異常偵測模型很容易將夾帶著雜訊的正常資料誤判為異常資料(即:發生異常事件時所收集的資料),從而產生誤警(false alarm)。Anomaly detection algorithms are often used to detect anomalies in signals to determine whether an abnormal event occurs. For example, the financial field often uses anomaly detection algorithms to determine whether an abnormal transaction event occurs. Anomaly detection algorithms are often used in the industrial field to determine whether a machine failure event occurs. Generally, users can train anomaly detection models with normal data (that is, data collected when no anomalous events occur). A trained anomaly detection model can easily misjudge normal data with noise as abnormal data (that is, data collected when an abnormal event occurs), resulting in false alarms.

“先前技術”段落只是用來幫助了解本發明內容,因此在“先前技術”段落所揭露的內容可能包含一些沒有構成所屬技術領域中具有通常知識者所知道的習知技術。在“先前技術”段落所揭露的內容,不代表該內容或者本發明一個或多個實施例所要解決的問題,在本發明申請前已被所屬技術領域中具有通常知識者所知曉或認知。The "prior art" paragraph is only used to help understand the present disclosure, so the content disclosed in the "prior art" paragraph may contain some that do not constitute the prior art known to those with ordinary skill in the art. The content disclosed in the "prior art" paragraph does not represent the content or the problem to be solved by one or more embodiments of the present invention, and has been known or recognized by those with ordinary knowledge in the technical field before the application of the present invention.

本發明提供一種異常偵測系統以及異常偵測方法,可降地異常偵測的誤警。The invention provides an abnormality detection system and abnormality detection method, which can reduce false alarms of abnormality detection.

本發明的一種異常偵測系統,包含通訊裝置、儲存裝置以及處理器。通訊裝置用以取得感測資料。儲存裝置用以儲存模型,其中模型包含異常偵測模型或能量模型。處理器耦接儲存裝置以及通訊裝置,並且將感測資料輸入模型以產生異常指標,根據異常指標設定界限,根據異常指標及界限產生健康指標。An anomaly detection system of the present invention includes a communication device, a storage device and a processor. The communication device is used to obtain sensing data. The storage device is used for storing the model, wherein the model includes an abnormality detection model or an energy model. The processor is coupled to the storage device and the communication device, and inputs the sensing data into the model to generate an abnormal index, sets a limit according to the abnormal index, and generates a health index according to the abnormal index and the limit.

本發明的一種異常偵測方法,包含:透過通訊裝置以取得感測資料;透過處理器將感測資料輸入至模型以產生異常指標,其中模型包含異常偵測模型或能量模型;透過處理器以根據異常指標設定界限;以及透過處理器以根據異常指標及界限產生健康指標。An anomaly detection method of the present invention includes: obtaining sensing data through a communication device; inputting the sensing data into a model through a processor to generate an anomaly index, wherein the model includes an anomaly detection model or an energy model; Setting a limit according to the abnormal index; and generating, by the processor, a health index according to the abnormal index and the limit.

基於上述,本發明可通過由異常指標推導出的界限來產生用於判斷感測資料是否為異常的健康指標。健康指標可用於預判是否發生異常事件。使用者可根據基於健康指標的預判結果來提前維護發生異常事件的設備。Based on the above, the present invention can generate a health index for judging whether the sensing data is abnormal or not through the limit derived from the abnormal index. Health indicators can be used to predict whether an abnormal event occurs. Users can maintain equipment that has abnormal events in advance according to the prediction results based on health indicators.

為了使本發明之內容可以被更容易明瞭,以下特舉實施例作為本發明確實能夠據以實施的範例。另外,凡可能之處,在圖式及實施方式中使用相同標號的元件/構件/步驟,係代表相同或類似部件。In order to make the content of the present invention more comprehensible, the following specific embodiments are given as examples according to which the present invention can indeed be implemented. Additionally, where possible, elements/components/steps using the same reference numerals in the drawings and embodiments represent the same or similar parts.

圖1根據本發明的一實施例繪示一種異常偵測系統100的示意圖。異常偵測系統100包含處理器110、儲存裝置120以及通訊裝置130。FIG. 1 is a schematic diagram of an anomaly detection system 100 according to an embodiment of the present invention. The abnormality detection system 100 includes a processor 110 , a storage device 120 and a communication device 130 .

處理器110例如是中央處理單元(central processing unit,CPU),或是其他可程式化之一般用途或特殊用途的微控制單元(micro control unit,MCU)、微處理器(microprocessor)、數位信號處理器(digital signal processor,DSP)、可程式化控制器、特殊應用積體電路(application specific integrated circuit,ASIC)、圖形處理器(graphics processing unit,GPU)、影像訊號處理器(image signal processor,ISP)、影像處理單元(image processing unit,IPU)、算數邏輯單元(arithmetic logic unit,ALU)、複雜可程式邏輯裝置(complex programmable logic device,CPLD)、現場可程式化邏輯閘陣列(field programmable gate array,FPGA)或其他類似元件或上述元件的組合。處理器110可耦接至儲存裝置120以及通訊裝置130,並且存取和執行儲存於儲存裝置120中的多個模組和各種應用程式。The processor 110 is, for example, a central processing unit (CPU), or other programmable general-purpose or special-purpose micro control unit (micro control unit, MCU), microprocessor (microprocessor), digital signal processing digital signal processor (DSP), programmable controller, application specific integrated circuit (ASIC), graphics processor (graphics processing unit, GPU), image signal processor (image signal processor, ISP) ), image processing unit (IPU), arithmetic logic unit (ALU), complex programmable logic device (CPLD), field programmable gate array (field programmable gate array) , FPGA) or other similar elements or a combination of the above. The processor 110 may be coupled to the storage device 120 and the communication device 130 , and access and execute a plurality of modules and various application programs stored in the storage device 120 .

儲存裝置120例如是任何型態的固定式或可移動式的隨機存取記憶體(random access memory,RAM)、唯讀記憶體(read-only memory,ROM)、快閃記憶體(flash memory)、硬碟(hard disk drive,HDD)、固態硬碟(solid state drive,SSD)或類似元件或上述元件的組合,而用於儲存可由處理器110執行的多個模組或各種應用程式。The storage device 120 is, for example, any type of fixed or removable random access memory (random access memory, RAM), read-only memory (ROM), flash memory (flash memory) , a hard disk drive (HDD), a solid state drive (SSD), or similar components or a combination of the above components for storing a plurality of modules or various application programs executable by the processor 110 .

通訊裝置130例如是以無線或有線的方式傳送及接收訊號的裝置,例如是以藍芽、紅外線、有線網路、無線網路或行動網路傳送及接收訊號。The communication device 130 is, for example, a device that transmits and receives signals in a wireless or wired manner, such as Bluetooth, infrared, wired network, wireless network or mobile network.

在一實施例中,儲存裝置120可儲存異常偵測模型及能量模型(energy-based model,EBM)。能量模型可用以還原輸入資料。舉例來說,若將受到雜訊干擾的資料輸入至能量模型,則能量模型可將受到雜訊干擾的資料中的雜訊去除,並且將還原後的資料輸出。異常偵測模型及能量模型可以是基於以下演算法所訓練出來的:基於單類別支援向量機(one-class support vector machine,one-class SVM)、孤立森林(isolation tree)、自動編碼器(autoencoder)、變分自動編碼器(variational autoencoder)或自編碼卷積神經網路(convolutional autoencoder)。In one embodiment, the storage device 120 can store an abnormality detection model and an energy-based model (EBM). An energy model can be used to restore the input data. For example, if the data disturbed by noise is input into the energy model, the energy model can remove the noise from the data disturbed by the noise, and output the restored data. The anomaly detection model and energy model can be trained based on the following algorithms: based on one-class support vector machine (one-class SVM), isolation tree, autoencoder ), variational autoencoder, or convolutional autoencoder.

異常偵測系統100可收集感測資料,並且判斷感測資料是否與異常事件有關。具體來說,通訊裝置130可取得感測資料,其中感測資料可為在正常的情況下(即:未發生異常事件)所測量到的資料。感測資料可關聯於例如機械設備的震動或溫度等狀態,但本發明不限於此。The anomaly detection system 100 can collect sensing data and determine whether the sensing data is related to an abnormal event. Specifically, the communication device 130 can obtain sensing data, wherein the sensing data can be data measured under normal conditions (ie, no abnormal event occurs). The sensing data may be related to states such as vibration or temperature of mechanical equipment, but the invention is not limited thereto.

在取得感測資料後,處理器110可將感測資料輸入至能量模型以產生還原感測資料。處理器110可根據感測資料以及還原感測資料計算異常指標(anomaly score)。具體的說,還原感測資料是能量模型嘗試模仿針對輸入的感測資料,在輸出端產生相似於感測資料的資料。異常指標可以例如為感測資料以及還原感測資料的均方誤差(mean square error,MSE)、絕對誤差或其他計算誤差的方法,本發明不以此為限。本實施例中以均方誤差作為例子說明,如方程式(1)所示,其中x為感測資料、x’為還原感測資料並且z為異常指標。

Figure 02_image001
…(1) After acquiring the sensing data, the processor 110 may input the sensing data into the energy model to generate the restored sensing data. The processor 110 may calculate an anomaly score according to the sensing data and the restored sensing data. Specifically, the restoration of the sensing data is an attempt by the energy model to imitate the sensing data for the input to generate data similar to the sensing data at the output. The abnormal index can be, for example, the sensing data and the mean square error (MSE) of the restored sensing data, the absolute error, or other methods for calculating the error, and the present invention is not limited to this. In this embodiment, the mean square error is used as an example for illustration, as shown in equation (1), where x is the sensing data, x' is the restored sensing data, and z is the abnormality index.
Figure 02_image001
…(1)

在一實施例中,在將感測資料輸入至能量模型前,處理器110可先平滑化(smoothing)感測資料,平滑化處理可以例如是最小二乘法、移動平均法、指數平滑法、高通濾波或低通濾波等方法。接著,處理器110可將經平滑化的感測資料輸入至能量模型以產生還原感測資料。在一實施例中,在將感測資料輸入至能量模型前,處理器110可先將感測資料中高於強度閾值的雜訊去除以產生經前處理的感測資料。接著,處理器110可將經前處理的感測資料輸入至能量模型以產生還原感測資料。In one embodiment, before inputting the sensing data into the energy model, the processor 110 may smooth the sensing data. The smoothing process may be, for example, least squares, moving average, exponential smoothing, high-pass filtering or low-pass filtering. Then, the processor 110 may input the smoothed sensing data to the energy model to generate reduced sensing data. In one embodiment, before inputting the sensing data to the energy model, the processor 110 may first remove the noise higher than the intensity threshold in the sensing data to generate pre-processed sensing data. Next, the processor 110 may input the pre-processed sensing data into the energy model to generate reduced sensing data.

在一實施例中,在產生還原感測資料後,處理器110可先平滑化還原感測資料以產生經平滑化的還原感測資料。接著,處理器110可根據經平滑化的還原感測資料計算異常指標。在一實施例中,在產生還原感測資料後,處理器110可將還原感測資料中高於強度閾值的雜訊去除以產生經前處理的還原感測資料。接著,處理器110可根據經前處理的還原感測資料計算異常指標。In one embodiment, after generating the restored sensing data, the processor 110 may first smooth the restored sensing data to generate smoothed restored sensing data. Then, the processor 110 may calculate the abnormality index according to the smoothed restored sensing data. In one embodiment, after generating the restored sensing data, the processor 110 may remove the noise higher than the intensity threshold in the restored sensing data to generate pre-processed restored sensing data. Next, the processor 110 may calculate the abnormality index according to the pre-processed restored sensing data.

處理器110可根據異常指標判斷感測資料是否與異常事件有關。具體來說,儲存裝置120可預存對應於異常指標的正常範圍。若處理器110根據感測資料以及還原感測資料所計算出的異常指標的超出了正常範圍,則處理器110可判斷感測資料與異常事件有關。處理器110可在判斷異常指標超出了正常範圍時通過通訊裝置130發出告警(Alert)。若感測資料與一設備有關,設備的管理者可根據告警來提前維護該設備。The processor 110 can determine whether the sensing data is related to an abnormal event according to the abnormal index. Specifically, the storage device 120 may pre-store the normal range corresponding to the abnormal index. If the abnormality index calculated by the processor 110 according to the sensed data and the restored sensed data exceeds the normal range, the processor 110 may determine that the sensed data is related to an abnormal event. The processor 110 may issue an alert (Alert) through the communication device 130 when it is determined that the abnormality index exceeds the normal range. If the sensing data is related to a device, the administrator of the device can maintain the device in advance according to the alarm.

然而,根據異常指標來偵測異常事件存在諸多缺點。舉例來說,當感測資料受到雜訊干擾時,就算該感測資料與異常事件無關,基於該感測資料所計算出的異常指標也會因為雜訊的影響而顯著地改變,從而使異常指標超出正常範圍。如此,處理器110可能會發出誤警。當感測資料持續地受到雜訊干擾時,處理器110所發出的誤警會非常的頻繁。圖2根據本發明的一實施例繪示利用異常指標偵測異常事件的示意圖。曲線20為處理器110根據一受到雜訊干擾的正常的感測資料(即:與異常事件無關的感測資料)所產生的異常指標的曲線。曲線20中有許多異常指標的值都超出了正常範圍25,但該些異常指標所對應的感測資料都與異常事件無關。因此,處理器110在該些異常指標超出正常範圍25時所發出的告警都屬於誤警。However, there are many disadvantages in detecting anomalous events based on anomaly indicators. For example, when the sensing data is disturbed by noise, even if the sensing data has nothing to do with abnormal events, the abnormality index calculated based on the sensing data will be significantly changed due to the influence of the noise, so that the abnormality The indicator is outside the normal range. As such, the processor 110 may issue a false alarm. When the sensing data is continuously disturbed by noise, the false alarms issued by the processor 110 will be very frequent. FIG. 2 is a schematic diagram of detecting abnormal events using abnormal indicators according to an embodiment of the present invention. The curve 20 is a curve of an abnormality index generated by the processor 110 according to a normal sensing data (ie, sensing data not related to abnormal events) disturbed by noise. The values of many abnormal indicators in the curve 20 are beyond the normal range 25 , but the sensing data corresponding to these abnormal indicators are not related to abnormal events. Therefore, the alarms issued by the processor 110 when the abnormal indicators exceed the normal range 25 are all false alarms.

為了降低誤警發生的機率,異常偵測系統100可產生一較不容易受到雜訊影響的健康指標。根據健康指標來偵測異常事件可顯著地降低誤警發生的機率。具體來說,處理器110可根據異常指標產生界限(boundary),其中界限可包含上界(upper boundary)或下界(lower boundary)。In order to reduce the probability of false alarms, the anomaly detection system 100 can generate a health indicator that is less susceptible to noise. Detecting abnormal events based on health indicators can significantly reduce the chance of false alarms. Specifically, the processor 110 may generate a boundary according to the abnormality index, wherein the boundary may include an upper boundary or a lower boundary.

在設定上界和下界後,處理器110可根據異常指標以及界限(上界和下界的至少其中之一)產生健康指標。處理器110可根據健康指標判斷感測資料是否與異常事件有關。具體來說,儲存裝置120可預存對應於健康指標的預設範圍。若處理器110根據感測資料以及還原感測資料所計算出的健康指標的超出了預設範圍,則處理器110可判斷感測資料與異常事件有關。處理器110可在判斷健康指標超出了預設範圍時通過通訊裝置130發出告警。若感測資料與一設備有關,設備的管理者可根據告警來提前維護該設備。After setting the upper bound and the lower bound, the processor 110 may generate the health index according to the abnormal index and the bound (at least one of the upper bound and the lower bound). The processor 110 can determine whether the sensing data is related to an abnormal event according to the health index. Specifically, the storage device 120 may pre-store a preset range corresponding to the health index. If the health index calculated by the processor 110 according to the sensing data and the restored sensing data exceeds the preset range, the processor 110 may determine that the sensing data is related to an abnormal event. The processor 110 may issue an alarm through the communication device 130 when judging that the health index exceeds the preset range. If the sensing data is related to a device, the administrator of the device can maintain the device in advance according to the alarm.

相較於根據異常指標偵測異常事件,根據健康指標偵測異常事件較不容易產生誤警。圖3根據本發明的一實施例繪示利用健康指標偵測異常事件的示意圖。曲線30為處理器110根據一受到雜訊干擾的正常的感測資料(即:與異常事件無關的感測資料)所產生的健康指標的曲線。雖然感測資料受到了雜訊干擾,但根據感測資料所產生的健康指標都未超出預設範圍35。因此,根據健康指標來偵測異常事件的處理器110將不會發出誤警。Compared with detecting abnormal events based on abnormal indicators, detecting abnormal events based on health indicators is less likely to generate false alarms. FIG. 3 is a schematic diagram of detecting abnormal events using health indicators according to an embodiment of the present invention. The curve 30 is a curve of the health index generated by the processor 110 according to a normal sensing data (ie, sensing data irrelevant to abnormal events) disturbed by noise. Although the sensing data is disturbed by noise, the health indicators generated according to the sensing data do not exceed the preset range 35 . Therefore, the processor 110 that detects abnormal events according to the health indicators will not issue false alarms.

圖4根據本發明的一實施例繪示設備的軸承的震動資料以及對應的健康指標的示意圖。曲線40為感測一設備的軸承的震動而產生的震動資料。時間點t1為軸承開始老化的時間點,並且時間點t2為軸承故障的時間點。處理器110可根據軸承的震動資料計算出對應的健康指標。當健康指標超出了預設範圍45時,處理器110可判斷異常事件發生。如圖4所示,處理器110可在軸承尚未故障前(即:時間點t2)的時間點t1根據健康指標判斷軸承即將故障。據此,處理器110可通過通訊裝置130發出警示以提示設備的管理者維護設備的軸承。4 is a schematic diagram illustrating vibration data of a bearing of a device and a corresponding health index according to an embodiment of the present invention. Curve 40 is vibration data generated by sensing the vibration of a bearing of a device. The time point t1 is the time point when the bearing begins to age, and the time point t2 is the time point when the bearing fails. The processor 110 may calculate the corresponding health index according to the vibration data of the bearing. When the health index exceeds the preset range 45, the processor 110 may determine that an abnormal event occurs. As shown in FIG. 4 , the processor 110 may determine that the bearing is about to fail according to the health index at time t1 before the bearing fails (ie, time t2 ). Accordingly, the processor 110 can issue a warning through the communication device 130 to prompt the manager of the equipment to maintain the bearing of the equipment.

處理器110還可用以訓練能量模型,並可定義健康指標的預設範圍。具體來說,通訊裝置130可取得用以訓練能量模型的歷史感測資料,其中歷史感測資料可為在正常的情況下(即:未發生異常事件)所測量到的資料。歷史感測資料可關聯於例如機械設備的震動或溫度等狀態,但本發明不限於此。The processor 110 can also be used to train an energy model, and can define a predetermined range of health indicators. Specifically, the communication device 130 may obtain historical sensing data for training the energy model, wherein the historical sensing data may be data measured under normal conditions (ie, no abnormal event occurs). The historical sensing data may be associated with states such as vibration or temperature of mechanical equipment, but the present invention is not limited thereto.

處理器110可根據歷史感測資料產生能量模型。舉例來說,處理器110可基於以下演算法訓練出能量模型:單類別支援向量機、自動編碼器、變分自動編碼器、孤立森林以及自編碼卷積神經網路。處理器110可根據如方程式(2)所示的損失函數來訓練能量模型,其中y為歷史感測資料、f()為代表訓練中的能量模型的函數,y’為能量模型的輸出資料並且MSE為損失函數。處理器110可通過最小化損失函數MSE來完成能量模型的訓練。

Figure 02_image003
…(2) The processor 110 may generate an energy model according to historical sensing data. For example, the processor 110 may train an energy model based on the following algorithms: single-class support vector machines, autoencoders, variational autoencoders, isolation forests, and autoencoder convolutional neural networks. The processor 110 may train the energy model according to a loss function as shown in equation (2), where y is the historical sensing data, f( ) is a function representing the energy model under training, y' is the output data of the energy model and MSE is the loss function. The processor 110 may complete the training of the energy model by minimizing the loss function MSE.
Figure 02_image003
…(2)

在完成能量模型的訓練後,處理器110可將歷史感測資料輸入至能量模型以產生還原歷史感測資料。處理器110可根據歷史感測資料以及還原歷史感測資料產生參考異常指標,如方程式(3)所示,其中y為歷史感測資料,F()為代表能量模型的函數,y’’為還原歷史感測資料並且AS為參考異常指標。

Figure 02_image005
…(3) After completing the training of the energy model, the processor 110 may input the historical sensing data to the energy model to generate restored historical sensing data. The processor 110 can generate the reference abnormality index according to the historical sensing data and the restored historical sensing data, as shown in equation (3), where y is the historical sensing data, F( ) is a function representing the energy model, and y'' is Restore historical sensing data and AS is the reference anomaly indicator.
Figure 02_image005
…(3)

在產生參考異常指標後,處理器110可根據參考異常指標產生參考界限,其中參考界限可包含參考上界以及參考下界。在一實施例中,參考上界的值可以設定為參考異常指標的值的一上界,參考下界的值可以設定為參考異常指標的值的一下界,但本發明不限於此。在設定參考上界和參考下界後,處理器110可根據參考異常指標以及參考界限(參考上界和參考下界的至少其中之一)產生參考健康指標,並且根據參考健康指標產生預設範圍。但本發明不限於此。After generating the reference abnormality index, the processor 110 may generate a reference limit according to the reference abnormality index, wherein the reference limit may include a reference upper bound and a reference lower bound. In one embodiment, the value of the reference upper bound can be set as an upper bound of the value of the reference abnormality index, and the value of the reference lower bound can be set as a lower bound of the value of the reference abnormality index, but the invention is not limited thereto. After setting the reference upper bound and the reference lower bound, the processor 110 may generate the reference health index according to the reference abnormality index and the reference limit (at least one of the reference upper bound and the reference lower bound), and generate the preset range according to the reference health index. However, the present invention is not limited to this.

圖5根據本發明的一實施例繪示一種異常偵測方法的流程圖,其中所述異常偵測方法可由如圖1所示的異常偵測系統100實施。在步驟S501中,透過通訊裝置以取得感測資料。在步驟S502中,透過處理器將感測資料輸入至模型以產生異常指標,其中所述模型包括異常偵測模型或能量模型。在步驟S503中,透過處理器以根據異常指標設定界限。在步驟S504中,透過處理器以根據異常指標及界限產生健康指標。FIG. 5 is a flowchart illustrating an abnormality detection method according to an embodiment of the present invention, wherein the abnormality detection method can be implemented by the abnormality detection system 100 shown in FIG. 1 . In step S501, the sensing data is obtained through the communication device. In step S502, the sensor data is input into a model through the processor to generate an anomaly index, wherein the model includes an anomaly detection model or an energy model. In step S503, the processor is used to set the limit according to the abnormality index. In step S504, the processor generates the health index according to the abnormal index and the limit.

綜上所述,本發明可通過由異常指標推導出的界限來產生用於判斷感測資料是否為異常的健康指標。相較於根據異常指標來進行異常偵測,根據健康指標來進行設備的異常偵測可降低誤警發生的機率。此外,本發明可對能量模型的輸入資料或輸出資料進行前處理或平滑化,從而使能量模型的輸出資料更為正確。因此,基於能量模型的輸出資料所產生的健康指標也能更為正確,使得異常偵測系統可通過更為正確的健康指標來預判是否發生異常事件,進而警示使用者提前維護設備。To sum up, the present invention can generate a health index for judging whether the sensing data is abnormal or not through the limit derived from the abnormal index. Compared with abnormal detection based on abnormal indicators, abnormal detection of equipment based on health indicators can reduce the probability of false alarms. In addition, the present invention can perform preprocessing or smoothing on the input data or output data of the energy model, so that the output data of the energy model is more accurate. Therefore, the health index generated based on the output data of the energy model can also be more accurate, so that the abnormality detection system can predict whether an abnormal event occurs through a more accurate health index, thereby alerting the user to maintain the equipment in advance.

惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及發明說明內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。另外本發明的任一實施例或申請專利範圍不須達成本發明所揭露之全部目的或優點或特點。此外,摘要部分和標題僅是用來輔助專利文件搜尋之用,並非用來限制本發明之權利範圍。此外,本說明書或申請專利範圍中提及的“第一”、“第二”等用語僅用於命名元件(element)的名稱或區別不同實施例或範圍,而並非用來限制元件數量上的上限或下限。However, the above are only preferred embodiments of the present invention, and should not limit the scope of the present invention, that is, any simple equivalent changes and modifications made according to the scope of the patent application of the present invention and the contents of the description of the invention, All still fall within the scope of the patent of the present invention. In addition, it is not necessary for any embodiment of the present invention or the claimed scope of the present invention to achieve all of the objects or advantages or features disclosed in the present invention. In addition, the abstract section and the title are only used to aid the search of patent documents and are not intended to limit the scope of the present invention. In addition, terms such as "first" and "second" mentioned in this specification or the scope of the patent application are only used to name the elements or to distinguish different embodiments or scopes, and are not used to limit the number of elements. upper or lower limit.

100:異常偵測系統 110:處理器 120:儲存裝置 130:通訊裝置 20、30、40:曲線 25:正常範圍 35、45:預設範圍 t1、t2:時間點 S501、S502、S503、S504:步驟 100: Anomaly Detection System 110: Processor 120: Storage Device 130: Communication device 20, 30, 40: Curves 25: normal range 35, 45: Preset range t1, t2: time point S501, S502, S503, S504: Steps

圖1根據本發明的一實施例繪示一種異常偵測系統的示意圖。 圖2根據本發明的一實施例繪示利用異常指標偵測異常事件的示意圖。 圖3根據本發明的一實施例繪示利用健康指標偵測異常事件的示意圖。 圖4根據本發明的一實施例繪示設備的軸承的震動資料以及對應的健康指標的示意圖。 圖5根據本發明的一實施例繪示一種異常偵測方法的流程圖。 FIG. 1 is a schematic diagram of an anomaly detection system according to an embodiment of the present invention. FIG. 2 is a schematic diagram of detecting abnormal events using abnormal indicators according to an embodiment of the present invention. FIG. 3 is a schematic diagram of detecting abnormal events using health indicators according to an embodiment of the present invention. 4 is a schematic diagram illustrating vibration data of a bearing of a device and a corresponding health index according to an embodiment of the present invention. FIG. 5 is a flowchart illustrating an abnormality detection method according to an embodiment of the present invention.

S501、S502、S503、S504:步驟 S501, S502, S503, S504: Steps

Claims (22)

一種異常偵測系統,包括: 通訊裝置,用以取得感測資料; 儲存裝置,用以儲存模型,其中所述模型包括異常偵測模型或能量模型;以及 處理器,耦接所述儲存裝置以及所述通訊裝置,並且將所述感測資料輸入所述模型以產生異常指標,根據所述異常指標設定界限,根據所述異常指標及所述界限產生健康指標。 An anomaly detection system, comprising: a communication device for obtaining sensing data; a storage device for storing a model, wherein the model includes an anomaly detection model or an energy model; and a processor, coupled to the storage device and the communication device, and inputting the sensing data into the model to generate an abnormality index, setting a limit according to the abnormality index, and generating health according to the abnormality index and the limit index. 如請求項1所述的異常偵測系統,其中所述界限包括上界以及下界的至少其中之一,其中所述處理器更根據所述上界以及所述下界的所述至少其中之一產生所述健康指標。The anomaly detection system of claim 1, wherein the bound includes at least one of an upper bound and a lower bound, wherein the processor further generates according to the at least one of the upper bound and the lower bound the health indicators. 如請求項1所述的異常偵測系統,其中所述處理器更將所述感測資料輸入至所述模型中的所述能量模型以產生還原感測資料,並且根據所述感測資料以及所述還原感測資料計算所述異常指標。The anomaly detection system of claim 1, wherein the processor further inputs the sensing data into the energy model in the model to generate reduced sensing data, and according to the sensing data and The restored sensing data calculates the abnormality index. 如請求項3所述的異常偵測系統,其中所述處理器更在判斷所述健康指標超出預設範圍後透過所述通訊裝置發出告警。The abnormality detection system according to claim 3, wherein the processor further issues an alarm through the communication device after judging that the health index exceeds a preset range. 如請求項1所述的異常偵測系統,其中所述異常指標為所述感測資料以及所述還原感測資料的差異。The abnormality detection system of claim 1, wherein the abnormality indicator is the difference between the sensing data and the restored sensing data. 如請求項4所述的異常偵測系統,其中所述處理器更用以透過所述通訊裝置取得歷史感測資料,根據所述歷史感測資料產生所述能量模型,將所述歷史感測資料輸入至所述能量模型以產生還原歷史感測資料,根據所述歷史感測資料以及所述還原歷史感測資料產生參考異常指標,根據所述參考異常指標產生參考界限,根據所述參考異常指標以及所述參考界限產生參考健康指標,並且根據所述參考健康指標產生所述預設範圍。The abnormality detection system according to claim 4, wherein the processor is further configured to obtain historical sensing data through the communication device, generate the energy model according to the historical sensing data, and use the historical sensing data to generate the energy model. Data is input to the energy model to generate restored historical sensing data, a reference abnormality index is generated according to the historical sensing data and the restored historical sensing data, a reference limit is generated according to the reference abnormality index, and a reference abnormality is generated according to the reference abnormality The index and the reference limit generate a reference health index, and the preset range is generated according to the reference health index. 如請求項6所述的異常偵測系統,其中所述處理器基於下列的演算法的其中之一產生所述異常偵測模型及所述能量模型: 單類別支援向量機、孤立森林法、自動編碼器、變分自動編碼器以及自編碼卷積神經網路。 The anomaly detection system of claim 6, wherein the processor generates the anomaly detection model and the energy model based on one of the following algorithms: Single-Class Support Vector Machines, Isolation Forests, Autoencoders, Variational Autoencoders, and Autoencoder Convolutional Neural Networks. 如請求項3所述的異常偵測系統,其中所述處理器更用以平滑化所述感測資料以產生經平滑化的所述感測資料,並將經平滑化的所述感測資料輸入至所述能量模型以產生所述還原感測資料。The anomaly detection system of claim 3, wherein the processor is further configured to smooth the sensing data to generate the smoothed sensing data, and convert the smoothed sensing data input to the energy model to generate the reduction sensing data. 如請求項3所述的異常偵測系統,其中所述處理器更用以將所述感測資料中高於強度閾值的雜訊去除以產生經前處理的所述感測資料,並將經前處理的所述感測資料輸入至所述能量模型以產生所述還原感測資料。The anomaly detection system as claimed in claim 3, wherein the processor is further configured to remove noise higher than an intensity threshold in the sensing data to generate the pre-processed sensing data, and The processed sensed data is input to the energy model to generate the reduced sensed data. 如請求項3所述的異常偵測系統,其中所述處理器更用以平滑化所述還原感測資料以產生經平滑化的所述還原感測資料,並根據經平滑化的所述還原感測資料計算所述異常指標。The anomaly detection system of claim 3, wherein the processor is further configured to smooth the restored sensing data to generate the smoothed restored sensing data, and generate the smoothed restored sensing data according to the smoothed restored sensing data. The abnormality index is calculated from the sensing data. 如請求項3所述的異常偵測系統,其中所述處理器更用以將所述還原感測資料中高於強度閾值的雜訊去除以產生經前處理的所述還原感測資料,並根據經前處理的所述還原感測資料計算所述異常指標。The anomaly detection system of claim 3, wherein the processor is further configured to remove noise higher than an intensity threshold in the restored sensing data to generate the pre-processed restored sensing data, and according to The abnormality index is calculated from the preprocessed restored sensing data. 一種異常偵測方法,包括: 透過通訊裝置以取得感測資料; 透過處理器將所述感測資料輸入至模型以產生異常指標,其中所述模型包括異常偵測模型或能量模型; 透過所述處理器以根據所述異常指標設定界限;以及 透過所述處理器以根據所述異常指標及所述界限產生健康指標。 An anomaly detection method, comprising: Obtain sensory data through a communication device; inputting the sensing data into a model through a processor to generate anomaly indicators, wherein the model includes an anomaly detection model or an energy model; setting, by the processor, a limit based on the anomaly indicator; and A health indicator is generated based on the abnormality indicator and the boundary by the processor. 如請求項12所述的異常偵測方法,其中所述界限包括上界以及下界的至少其中之一,其中透過所述處理器以根據所述異常指標及所述界限產生所述健康指標的步驟包括: 透過所述處理器以根據所述上界以及所述下界的所述至少其中之一產生所述健康指標。 The abnormality detection method of claim 12, wherein the bound includes at least one of an upper bound and a lower bound, and wherein the step of generating the health index according to the abnormality index and the bound by the processor include: The health indicator is generated by the processor according to the at least one of the upper bound and the lower bound. 如請求項12所述的異常偵測方法,更包括: 透過所述處理器將所述感測資料輸入至所述模型中的所述能量模型以產生還原感測資料,根據所述感測資料以及所述還原感測資料計算所述異常指標。 The anomaly detection method according to claim 12, further comprising: Inputting the sensing data into the energy model in the model through the processor to generate restored sensing data, and calculating the abnormality index according to the sensing data and the restored sensing data. 如請求項12所述的異常偵測方法,更包括: 在透過所述處理器判斷所述健康指標超出預設範圍後透過所述通訊裝置發出告警。 The anomaly detection method according to claim 12, further comprising: After the processor determines that the health index exceeds a preset range, an alarm is sent through the communication device. 如請求項12所述的異常偵測方法,其中所述異常指標為所述感測資料以及所述還原感測資料的差異。The abnormality detection method of claim 12, wherein the abnormality indicator is the difference between the sensing data and the restored sensing data. 如請求項15所述的異常偵測方法,更包括: 透過所述通訊裝置以取得歷史感測資料; 透過所述處理器以根據所述歷史感測資料產生所述能量模型; 透過所述處理器以將所述歷史感測資料輸入至所述能量模型以產生還原歷史感測資料; 透過所述處理器以根據所述歷史感測資料以及所述還原歷史感測資料產生參考異常指標; 透過所述處理器以根據所述參考異常指標產生參考界限; 透過所述處理器以根據所述參考異常指標以及所述參考界限產生參考健康指標;以及 透過所述處理器以根據所述參考健康指標產生所述預設範圍。 The anomaly detection method as claimed in claim 15, further comprising: obtaining historical sensing data through the communication device; generating, by the processor, the energy model according to the historical sensing data; inputting the historical sensing data to the energy model through the processor to generate restored historical sensing data; generating, through the processor, a reference abnormality index according to the historical sensing data and the restored historical sensing data; generating, by the processor, a reference limit based on the reference anomaly indicator; generating, by the processor, a reference health indicator based on the reference abnormality indicator and the reference limit; and The predetermined range is generated by the processor according to the reference health index. 如請求項17所述的異常偵測方法,其中透過所述處理器以根據所述歷史感測資料產生所述能量模型的步驟包括: 基於下列的演算法的其中之一產生所述異常偵測模型或所述能量模型:單類別支援向量機、孤立森林法、自動編碼器、變分自動編碼器以及自編碼卷積神經網路。 The abnormality detection method of claim 17, wherein the step of generating the energy model according to the historical sensing data by the processor comprises: The anomaly detection model or the energy model is generated based on one of the following algorithms: single-class support vector machine, isolated forest method, autoencoder, variational autoencoder, and autoencoder convolutional neural network. 如請求項14所述的異常偵測方法,其中透過所述處理器以將所述感測資料輸入至所述能量模型以產生所述還原感測資料的步驟包括: 透過所述處理器以平滑化所述感測資料以產生經平滑化的所述感測資料;以及 透過所述處理器以將經平滑化的所述感測資料輸入至所述能量模型以產生所述還原感測資料。 The abnormality detection method of claim 14, wherein the step of inputting the sensing data into the energy model through the processor to generate the restored sensing data comprises: smoothing the sensed data by the processor to generate the smoothed sensed data; and The smoothed sensing data is input to the energy model by the processor to generate the reduced sensing data. 如請求項14所述的異常偵測方法,其中透過所述處理器以將所述感測資料輸入至所述能量模型以產生所述還原感測資料的步驟包括: 透過所述處理器以將所述感測資料中高於強度閾值的雜訊去除以產生經前處理的所述感測資料;以及 透過所述處理器以將經前處理的所述感測資料輸入至所述能量模型以產生所述還原感測資料。 The abnormality detection method of claim 14, wherein the step of inputting the sensing data into the energy model through the processor to generate the restored sensing data comprises: by the processor to remove noise above an intensity threshold in the sensed data to generate the preprocessed sensed data; and Inputting the pre-processed sensing data into the energy model through the processor to generate the reduced sensing data. 如請求項14所述的異常偵測方法,其中根據所述感測資料以及所述還原感測資料計算所述異常指標的步驟包括: 透過所述處理器以平滑化所述還原感測資料以產生經平滑化的所述還原感測資料;以及 透過所述處理器以根據經平滑化的所述還原感測資料計算所述異常指標。 The abnormality detection method according to claim 14, wherein the step of calculating the abnormality index according to the sensing data and the restored sensing data comprises: smoothing the reduced sensing data by the processor to generate the smoothed reduced sensing data; and The abnormality index is calculated by the processor according to the smoothed restored sensing data. 如請求項14所述的異常偵測方法,其中根據所述感測資料以及所述還原感測資料計算所述異常指標的步驟包括: 透過所述處理器以將所述還原感測資料中高於強度閾值的雜訊去除以產生經前處理的所述還原感測資料;以及 透過所述處理器以根據經前處理的所述還原感測資料計算所述異常指標。 The abnormality detection method according to claim 14, wherein the step of calculating the abnormality index according to the sensing data and the restored sensing data comprises: by the processor to remove noise above an intensity threshold in the restored sensing data to generate the preprocessed restored sensing data; and The abnormality index is calculated by the processor according to the preprocessed restored sensing data.
TW109135460A 2020-09-30 2020-10-14 Anomaly detection system and anomaly detection method TWI779365B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011059280.5 2020-09-30
CN202011059280.5A CN114328639A (en) 2020-09-30 2020-09-30 Abnormality detection system and abnormality detection method

Publications (2)

Publication Number Publication Date
TW202215241A true TW202215241A (en) 2022-04-16
TWI779365B TWI779365B (en) 2022-10-01

Family

ID=81011529

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109135460A TWI779365B (en) 2020-09-30 2020-10-14 Anomaly detection system and anomaly detection method

Country Status (2)

Country Link
CN (1) CN114328639A (en)
TW (1) TWI779365B (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8467949B2 (en) * 2009-05-29 2013-06-18 Honeywell International Inc. Methods and systems for turbine line replaceable unit fault detection and isolation during engine startup
US8738334B2 (en) * 2011-04-29 2014-05-27 International Business Machines Corporation Anomaly detection, forecasting and root cause analysis of energy consumption for a portfolio of buildings using multi-step statistical modeling
US9996405B2 (en) * 2012-04-13 2018-06-12 Siemens Corporation Embedded prognostics on PLC platforms for equipment condition monitoring, diagnosis and time-to-failure/service prediction
TWI533159B (en) * 2013-10-18 2016-05-11 國立臺灣科技大學 A continuous identity authentication method for computer users
TWI727213B (en) * 2018-10-08 2021-05-11 安碁資訊股份有限公司 Method and system for detecting abnormal operation of operating system

Also Published As

Publication number Publication date
TWI779365B (en) 2022-10-01
CN114328639A (en) 2022-04-12

Similar Documents

Publication Publication Date Title
US11727279B2 (en) Method and apparatus for performing anomaly detection using neural network
JP6906612B2 (en) Anomaly detection device, anomaly detection method, and program
CN109397703B (en) Fault detection method and device
TW388787B (en) Bearing condition evaluation
JP6774636B2 (en) Abnormality analysis methods, programs and systems
JP2021056927A (en) Abnormality detection system, abnormality detection method, and abnormality detection program
US20160196175A1 (en) Information processing system, information processing method, and program
JPH11338848A (en) Data abnormality detector
JP2020052740A (en) Abnormality detection device, abnormality detection method, and program
US11747035B2 (en) Pipeline for continuous improvement of an HVAC health monitoring system combining rules and anomaly detection
KR20170053692A (en) Apparatus and method for ensembles of kernel regression models
JP2022094037A (en) Abnormal temperature detection device, abnormal temperature detection method, and abnormal temperature detection program
JP2022084435A5 (en)
TW202215241A (en) Anomaly detection system and anomaly detection method
CN114285612A (en) Method, system, device, equipment and medium for detecting abnormal data
CN110672326B (en) Bearing fault detection method and computer readable storage medium
KR102108975B1 (en) Apparatus and method for condition based maintenance support of naval ship equipment
JP5949032B2 (en) Pre-processing method and abnormality diagnosis device
JP4775100B2 (en) Signal identification device
JP5802575B2 (en) Plant monitoring apparatus, control method, and control program
CN114391093B (en) Abnormality determination device and abnormality determination method
Luca et al. Anomaly detection using the Poisson process limit for extremes
TWI783360B (en) Abnormal detection device and abnormal detection method
JPWO2021193101A5 (en)
JP2021149727A (en) Factor analysis apparatus and factor analysis method

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent