TW202215241A - Anomaly detection system and anomaly detection method - Google Patents
Anomaly detection system and anomaly detection method Download PDFInfo
- Publication number
- TW202215241A TW202215241A TW109135460A TW109135460A TW202215241A TW 202215241 A TW202215241 A TW 202215241A TW 109135460 A TW109135460 A TW 109135460A TW 109135460 A TW109135460 A TW 109135460A TW 202215241 A TW202215241 A TW 202215241A
- Authority
- TW
- Taiwan
- Prior art keywords
- sensing data
- processor
- generate
- abnormality
- restored
- Prior art date
Links
Images
Landscapes
- Testing And Monitoring For Control Systems (AREA)
- Selective Calling Equipment (AREA)
Abstract
Description
本發明是有關於一種異常偵測系統以及異常偵測方法。The present invention relates to an anomaly detection system and an anomaly detection method.
異常偵測演算法常用於偵測訊號中的異常,從而判斷是否發生異常事件。舉例來說,財金領域常使用異常偵測演算法來判斷是否發生異常交易事件。工業領域常使用異常偵測演算法來判斷是否發生機台故障事件。一般來說,使用者可通過正常資料(即:未發生異常事件時所收集的資料)來訓練異常偵測模型。訓練好的異常偵測模型很容易將夾帶著雜訊的正常資料誤判為異常資料(即:發生異常事件時所收集的資料),從而產生誤警(false alarm)。Anomaly detection algorithms are often used to detect anomalies in signals to determine whether an abnormal event occurs. For example, the financial field often uses anomaly detection algorithms to determine whether an abnormal transaction event occurs. Anomaly detection algorithms are often used in the industrial field to determine whether a machine failure event occurs. Generally, users can train anomaly detection models with normal data (that is, data collected when no anomalous events occur). A trained anomaly detection model can easily misjudge normal data with noise as abnormal data (that is, data collected when an abnormal event occurs), resulting in false alarms.
“先前技術”段落只是用來幫助了解本發明內容,因此在“先前技術”段落所揭露的內容可能包含一些沒有構成所屬技術領域中具有通常知識者所知道的習知技術。在“先前技術”段落所揭露的內容,不代表該內容或者本發明一個或多個實施例所要解決的問題,在本發明申請前已被所屬技術領域中具有通常知識者所知曉或認知。The "prior art" paragraph is only used to help understand the present disclosure, so the content disclosed in the "prior art" paragraph may contain some that do not constitute the prior art known to those with ordinary skill in the art. The content disclosed in the "prior art" paragraph does not represent the content or the problem to be solved by one or more embodiments of the present invention, and has been known or recognized by those with ordinary knowledge in the technical field before the application of the present invention.
本發明提供一種異常偵測系統以及異常偵測方法,可降地異常偵測的誤警。The invention provides an abnormality detection system and abnormality detection method, which can reduce false alarms of abnormality detection.
本發明的一種異常偵測系統,包含通訊裝置、儲存裝置以及處理器。通訊裝置用以取得感測資料。儲存裝置用以儲存模型,其中模型包含異常偵測模型或能量模型。處理器耦接儲存裝置以及通訊裝置,並且將感測資料輸入模型以產生異常指標,根據異常指標設定界限,根據異常指標及界限產生健康指標。An anomaly detection system of the present invention includes a communication device, a storage device and a processor. The communication device is used to obtain sensing data. The storage device is used for storing the model, wherein the model includes an abnormality detection model or an energy model. The processor is coupled to the storage device and the communication device, and inputs the sensing data into the model to generate an abnormal index, sets a limit according to the abnormal index, and generates a health index according to the abnormal index and the limit.
本發明的一種異常偵測方法,包含:透過通訊裝置以取得感測資料;透過處理器將感測資料輸入至模型以產生異常指標,其中模型包含異常偵測模型或能量模型;透過處理器以根據異常指標設定界限;以及透過處理器以根據異常指標及界限產生健康指標。An anomaly detection method of the present invention includes: obtaining sensing data through a communication device; inputting the sensing data into a model through a processor to generate an anomaly index, wherein the model includes an anomaly detection model or an energy model; Setting a limit according to the abnormal index; and generating, by the processor, a health index according to the abnormal index and the limit.
基於上述,本發明可通過由異常指標推導出的界限來產生用於判斷感測資料是否為異常的健康指標。健康指標可用於預判是否發生異常事件。使用者可根據基於健康指標的預判結果來提前維護發生異常事件的設備。Based on the above, the present invention can generate a health index for judging whether the sensing data is abnormal or not through the limit derived from the abnormal index. Health indicators can be used to predict whether an abnormal event occurs. Users can maintain equipment that has abnormal events in advance according to the prediction results based on health indicators.
為了使本發明之內容可以被更容易明瞭,以下特舉實施例作為本發明確實能夠據以實施的範例。另外,凡可能之處,在圖式及實施方式中使用相同標號的元件/構件/步驟,係代表相同或類似部件。In order to make the content of the present invention more comprehensible, the following specific embodiments are given as examples according to which the present invention can indeed be implemented. Additionally, where possible, elements/components/steps using the same reference numerals in the drawings and embodiments represent the same or similar parts.
圖1根據本發明的一實施例繪示一種異常偵測系統100的示意圖。異常偵測系統100包含處理器110、儲存裝置120以及通訊裝置130。FIG. 1 is a schematic diagram of an
處理器110例如是中央處理單元(central processing unit,CPU),或是其他可程式化之一般用途或特殊用途的微控制單元(micro control unit,MCU)、微處理器(microprocessor)、數位信號處理器(digital signal processor,DSP)、可程式化控制器、特殊應用積體電路(application specific integrated circuit,ASIC)、圖形處理器(graphics processing unit,GPU)、影像訊號處理器(image signal processor,ISP)、影像處理單元(image processing unit,IPU)、算數邏輯單元(arithmetic logic unit,ALU)、複雜可程式邏輯裝置(complex programmable logic device,CPLD)、現場可程式化邏輯閘陣列(field programmable gate array,FPGA)或其他類似元件或上述元件的組合。處理器110可耦接至儲存裝置120以及通訊裝置130,並且存取和執行儲存於儲存裝置120中的多個模組和各種應用程式。The
儲存裝置120例如是任何型態的固定式或可移動式的隨機存取記憶體(random access memory,RAM)、唯讀記憶體(read-only memory,ROM)、快閃記憶體(flash memory)、硬碟(hard disk drive,HDD)、固態硬碟(solid state drive,SSD)或類似元件或上述元件的組合,而用於儲存可由處理器110執行的多個模組或各種應用程式。The
通訊裝置130例如是以無線或有線的方式傳送及接收訊號的裝置,例如是以藍芽、紅外線、有線網路、無線網路或行動網路傳送及接收訊號。The
在一實施例中,儲存裝置120可儲存異常偵測模型及能量模型(energy-based model,EBM)。能量模型可用以還原輸入資料。舉例來說,若將受到雜訊干擾的資料輸入至能量模型,則能量模型可將受到雜訊干擾的資料中的雜訊去除,並且將還原後的資料輸出。異常偵測模型及能量模型可以是基於以下演算法所訓練出來的:基於單類別支援向量機(one-class support vector machine,one-class SVM)、孤立森林(isolation tree)、自動編碼器(autoencoder)、變分自動編碼器(variational autoencoder)或自編碼卷積神經網路(convolutional autoencoder)。In one embodiment, the
異常偵測系統100可收集感測資料,並且判斷感測資料是否與異常事件有關。具體來說,通訊裝置130可取得感測資料,其中感測資料可為在正常的情況下(即:未發生異常事件)所測量到的資料。感測資料可關聯於例如機械設備的震動或溫度等狀態,但本發明不限於此。The
在取得感測資料後,處理器110可將感測資料輸入至能量模型以產生還原感測資料。處理器110可根據感測資料以及還原感測資料計算異常指標(anomaly score)。具體的說,還原感測資料是能量模型嘗試模仿針對輸入的感測資料,在輸出端產生相似於感測資料的資料。異常指標可以例如為感測資料以及還原感測資料的均方誤差(mean square error,MSE)、絕對誤差或其他計算誤差的方法,本發明不以此為限。本實施例中以均方誤差作為例子說明,如方程式(1)所示,其中x為感測資料、x’為還原感測資料並且z為異常指標。
…(1)
After acquiring the sensing data, the
在一實施例中,在將感測資料輸入至能量模型前,處理器110可先平滑化(smoothing)感測資料,平滑化處理可以例如是最小二乘法、移動平均法、指數平滑法、高通濾波或低通濾波等方法。接著,處理器110可將經平滑化的感測資料輸入至能量模型以產生還原感測資料。在一實施例中,在將感測資料輸入至能量模型前,處理器110可先將感測資料中高於強度閾值的雜訊去除以產生經前處理的感測資料。接著,處理器110可將經前處理的感測資料輸入至能量模型以產生還原感測資料。In one embodiment, before inputting the sensing data into the energy model, the
在一實施例中,在產生還原感測資料後,處理器110可先平滑化還原感測資料以產生經平滑化的還原感測資料。接著,處理器110可根據經平滑化的還原感測資料計算異常指標。在一實施例中,在產生還原感測資料後,處理器110可將還原感測資料中高於強度閾值的雜訊去除以產生經前處理的還原感測資料。接著,處理器110可根據經前處理的還原感測資料計算異常指標。In one embodiment, after generating the restored sensing data, the
處理器110可根據異常指標判斷感測資料是否與異常事件有關。具體來說,儲存裝置120可預存對應於異常指標的正常範圍。若處理器110根據感測資料以及還原感測資料所計算出的異常指標的超出了正常範圍,則處理器110可判斷感測資料與異常事件有關。處理器110可在判斷異常指標超出了正常範圍時通過通訊裝置130發出告警(Alert)。若感測資料與一設備有關,設備的管理者可根據告警來提前維護該設備。The
然而,根據異常指標來偵測異常事件存在諸多缺點。舉例來說,當感測資料受到雜訊干擾時,就算該感測資料與異常事件無關,基於該感測資料所計算出的異常指標也會因為雜訊的影響而顯著地改變,從而使異常指標超出正常範圍。如此,處理器110可能會發出誤警。當感測資料持續地受到雜訊干擾時,處理器110所發出的誤警會非常的頻繁。圖2根據本發明的一實施例繪示利用異常指標偵測異常事件的示意圖。曲線20為處理器110根據一受到雜訊干擾的正常的感測資料(即:與異常事件無關的感測資料)所產生的異常指標的曲線。曲線20中有許多異常指標的值都超出了正常範圍25,但該些異常指標所對應的感測資料都與異常事件無關。因此,處理器110在該些異常指標超出正常範圍25時所發出的告警都屬於誤警。However, there are many disadvantages in detecting anomalous events based on anomaly indicators. For example, when the sensing data is disturbed by noise, even if the sensing data has nothing to do with abnormal events, the abnormality index calculated based on the sensing data will be significantly changed due to the influence of the noise, so that the abnormality The indicator is outside the normal range. As such, the
為了降低誤警發生的機率,異常偵測系統100可產生一較不容易受到雜訊影響的健康指標。根據健康指標來偵測異常事件可顯著地降低誤警發生的機率。具體來說,處理器110可根據異常指標產生界限(boundary),其中界限可包含上界(upper boundary)或下界(lower boundary)。In order to reduce the probability of false alarms, the
在設定上界和下界後,處理器110可根據異常指標以及界限(上界和下界的至少其中之一)產生健康指標。處理器110可根據健康指標判斷感測資料是否與異常事件有關。具體來說,儲存裝置120可預存對應於健康指標的預設範圍。若處理器110根據感測資料以及還原感測資料所計算出的健康指標的超出了預設範圍,則處理器110可判斷感測資料與異常事件有關。處理器110可在判斷健康指標超出了預設範圍時通過通訊裝置130發出告警。若感測資料與一設備有關,設備的管理者可根據告警來提前維護該設備。After setting the upper bound and the lower bound, the
相較於根據異常指標偵測異常事件,根據健康指標偵測異常事件較不容易產生誤警。圖3根據本發明的一實施例繪示利用健康指標偵測異常事件的示意圖。曲線30為處理器110根據一受到雜訊干擾的正常的感測資料(即:與異常事件無關的感測資料)所產生的健康指標的曲線。雖然感測資料受到了雜訊干擾,但根據感測資料所產生的健康指標都未超出預設範圍35。因此,根據健康指標來偵測異常事件的處理器110將不會發出誤警。Compared with detecting abnormal events based on abnormal indicators, detecting abnormal events based on health indicators is less likely to generate false alarms. FIG. 3 is a schematic diagram of detecting abnormal events using health indicators according to an embodiment of the present invention. The
圖4根據本發明的一實施例繪示設備的軸承的震動資料以及對應的健康指標的示意圖。曲線40為感測一設備的軸承的震動而產生的震動資料。時間點t1為軸承開始老化的時間點,並且時間點t2為軸承故障的時間點。處理器110可根據軸承的震動資料計算出對應的健康指標。當健康指標超出了預設範圍45時,處理器110可判斷異常事件發生。如圖4所示,處理器110可在軸承尚未故障前(即:時間點t2)的時間點t1根據健康指標判斷軸承即將故障。據此,處理器110可通過通訊裝置130發出警示以提示設備的管理者維護設備的軸承。4 is a schematic diagram illustrating vibration data of a bearing of a device and a corresponding health index according to an embodiment of the present invention.
處理器110還可用以訓練能量模型,並可定義健康指標的預設範圍。具體來說,通訊裝置130可取得用以訓練能量模型的歷史感測資料,其中歷史感測資料可為在正常的情況下(即:未發生異常事件)所測量到的資料。歷史感測資料可關聯於例如機械設備的震動或溫度等狀態,但本發明不限於此。The
處理器110可根據歷史感測資料產生能量模型。舉例來說,處理器110可基於以下演算法訓練出能量模型:單類別支援向量機、自動編碼器、變分自動編碼器、孤立森林以及自編碼卷積神經網路。處理器110可根據如方程式(2)所示的損失函數來訓練能量模型,其中y為歷史感測資料、f()為代表訓練中的能量模型的函數,y’為能量模型的輸出資料並且MSE為損失函數。處理器110可通過最小化損失函數MSE來完成能量模型的訓練。
…(2)
The
在完成能量模型的訓練後,處理器110可將歷史感測資料輸入至能量模型以產生還原歷史感測資料。處理器110可根據歷史感測資料以及還原歷史感測資料產生參考異常指標,如方程式(3)所示,其中y為歷史感測資料,F()為代表能量模型的函數,y’’為還原歷史感測資料並且AS為參考異常指標。
…(3)
After completing the training of the energy model, the
在產生參考異常指標後,處理器110可根據參考異常指標產生參考界限,其中參考界限可包含參考上界以及參考下界。在一實施例中,參考上界的值可以設定為參考異常指標的值的一上界,參考下界的值可以設定為參考異常指標的值的一下界,但本發明不限於此。在設定參考上界和參考下界後,處理器110可根據參考異常指標以及參考界限(參考上界和參考下界的至少其中之一)產生參考健康指標,並且根據參考健康指標產生預設範圍。但本發明不限於此。After generating the reference abnormality index, the
圖5根據本發明的一實施例繪示一種異常偵測方法的流程圖,其中所述異常偵測方法可由如圖1所示的異常偵測系統100實施。在步驟S501中,透過通訊裝置以取得感測資料。在步驟S502中,透過處理器將感測資料輸入至模型以產生異常指標,其中所述模型包括異常偵測模型或能量模型。在步驟S503中,透過處理器以根據異常指標設定界限。在步驟S504中,透過處理器以根據異常指標及界限產生健康指標。FIG. 5 is a flowchart illustrating an abnormality detection method according to an embodiment of the present invention, wherein the abnormality detection method can be implemented by the
綜上所述,本發明可通過由異常指標推導出的界限來產生用於判斷感測資料是否為異常的健康指標。相較於根據異常指標來進行異常偵測,根據健康指標來進行設備的異常偵測可降低誤警發生的機率。此外,本發明可對能量模型的輸入資料或輸出資料進行前處理或平滑化,從而使能量模型的輸出資料更為正確。因此,基於能量模型的輸出資料所產生的健康指標也能更為正確,使得異常偵測系統可通過更為正確的健康指標來預判是否發生異常事件,進而警示使用者提前維護設備。To sum up, the present invention can generate a health index for judging whether the sensing data is abnormal or not through the limit derived from the abnormal index. Compared with abnormal detection based on abnormal indicators, abnormal detection of equipment based on health indicators can reduce the probability of false alarms. In addition, the present invention can perform preprocessing or smoothing on the input data or output data of the energy model, so that the output data of the energy model is more accurate. Therefore, the health index generated based on the output data of the energy model can also be more accurate, so that the abnormality detection system can predict whether an abnormal event occurs through a more accurate health index, thereby alerting the user to maintain the equipment in advance.
惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及發明說明內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。另外本發明的任一實施例或申請專利範圍不須達成本發明所揭露之全部目的或優點或特點。此外,摘要部分和標題僅是用來輔助專利文件搜尋之用,並非用來限制本發明之權利範圍。此外,本說明書或申請專利範圍中提及的“第一”、“第二”等用語僅用於命名元件(element)的名稱或區別不同實施例或範圍,而並非用來限制元件數量上的上限或下限。However, the above are only preferred embodiments of the present invention, and should not limit the scope of the present invention, that is, any simple equivalent changes and modifications made according to the scope of the patent application of the present invention and the contents of the description of the invention, All still fall within the scope of the patent of the present invention. In addition, it is not necessary for any embodiment of the present invention or the claimed scope of the present invention to achieve all of the objects or advantages or features disclosed in the present invention. In addition, the abstract section and the title are only used to aid the search of patent documents and are not intended to limit the scope of the present invention. In addition, terms such as "first" and "second" mentioned in this specification or the scope of the patent application are only used to name the elements or to distinguish different embodiments or scopes, and are not used to limit the number of elements. upper or lower limit.
100:異常偵測系統
110:處理器
120:儲存裝置
130:通訊裝置
20、30、40:曲線
25:正常範圍
35、45:預設範圍
t1、t2:時間點
S501、S502、S503、S504:步驟
100: Anomaly Detection System
110: Processor
120: Storage Device
130:
圖1根據本發明的一實施例繪示一種異常偵測系統的示意圖。 圖2根據本發明的一實施例繪示利用異常指標偵測異常事件的示意圖。 圖3根據本發明的一實施例繪示利用健康指標偵測異常事件的示意圖。 圖4根據本發明的一實施例繪示設備的軸承的震動資料以及對應的健康指標的示意圖。 圖5根據本發明的一實施例繪示一種異常偵測方法的流程圖。 FIG. 1 is a schematic diagram of an anomaly detection system according to an embodiment of the present invention. FIG. 2 is a schematic diagram of detecting abnormal events using abnormal indicators according to an embodiment of the present invention. FIG. 3 is a schematic diagram of detecting abnormal events using health indicators according to an embodiment of the present invention. 4 is a schematic diagram illustrating vibration data of a bearing of a device and a corresponding health index according to an embodiment of the present invention. FIG. 5 is a flowchart illustrating an abnormality detection method according to an embodiment of the present invention.
S501、S502、S503、S504:步驟 S501, S502, S503, S504: Steps
Claims (22)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011059280.5 | 2020-09-30 | ||
CN202011059280.5A CN114328639A (en) | 2020-09-30 | 2020-09-30 | Abnormality detection system and abnormality detection method |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202215241A true TW202215241A (en) | 2022-04-16 |
TWI779365B TWI779365B (en) | 2022-10-01 |
Family
ID=81011529
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109135460A TWI779365B (en) | 2020-09-30 | 2020-10-14 | Anomaly detection system and anomaly detection method |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114328639A (en) |
TW (1) | TWI779365B (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8467949B2 (en) * | 2009-05-29 | 2013-06-18 | Honeywell International Inc. | Methods and systems for turbine line replaceable unit fault detection and isolation during engine startup |
US8738334B2 (en) * | 2011-04-29 | 2014-05-27 | International Business Machines Corporation | Anomaly detection, forecasting and root cause analysis of energy consumption for a portfolio of buildings using multi-step statistical modeling |
US9996405B2 (en) * | 2012-04-13 | 2018-06-12 | Siemens Corporation | Embedded prognostics on PLC platforms for equipment condition monitoring, diagnosis and time-to-failure/service prediction |
TWI533159B (en) * | 2013-10-18 | 2016-05-11 | 國立臺灣科技大學 | A continuous identity authentication method for computer users |
TWI727213B (en) * | 2018-10-08 | 2021-05-11 | 安碁資訊股份有限公司 | Method and system for detecting abnormal operation of operating system |
-
2020
- 2020-09-30 CN CN202011059280.5A patent/CN114328639A/en active Pending
- 2020-10-14 TW TW109135460A patent/TWI779365B/en active
Also Published As
Publication number | Publication date |
---|---|
TWI779365B (en) | 2022-10-01 |
CN114328639A (en) | 2022-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11727279B2 (en) | Method and apparatus for performing anomaly detection using neural network | |
JP6906612B2 (en) | Anomaly detection device, anomaly detection method, and program | |
CN109397703B (en) | Fault detection method and device | |
TW388787B (en) | Bearing condition evaluation | |
JP6774636B2 (en) | Abnormality analysis methods, programs and systems | |
JP2021056927A (en) | Abnormality detection system, abnormality detection method, and abnormality detection program | |
US20160196175A1 (en) | Information processing system, information processing method, and program | |
JPH11338848A (en) | Data abnormality detector | |
JP2020052740A (en) | Abnormality detection device, abnormality detection method, and program | |
US11747035B2 (en) | Pipeline for continuous improvement of an HVAC health monitoring system combining rules and anomaly detection | |
KR20170053692A (en) | Apparatus and method for ensembles of kernel regression models | |
JP2022094037A (en) | Abnormal temperature detection device, abnormal temperature detection method, and abnormal temperature detection program | |
JP2022084435A5 (en) | ||
TW202215241A (en) | Anomaly detection system and anomaly detection method | |
CN114285612A (en) | Method, system, device, equipment and medium for detecting abnormal data | |
CN110672326B (en) | Bearing fault detection method and computer readable storage medium | |
KR102108975B1 (en) | Apparatus and method for condition based maintenance support of naval ship equipment | |
JP5949032B2 (en) | Pre-processing method and abnormality diagnosis device | |
JP4775100B2 (en) | Signal identification device | |
JP5802575B2 (en) | Plant monitoring apparatus, control method, and control program | |
CN114391093B (en) | Abnormality determination device and abnormality determination method | |
Luca et al. | Anomaly detection using the Poisson process limit for extremes | |
TWI783360B (en) | Abnormal detection device and abnormal detection method | |
JPWO2021193101A5 (en) | ||
JP2021149727A (en) | Factor analysis apparatus and factor analysis method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent |