TW202213939A - An intelligent diagnosis system and method for defects of solar power module - Google Patents
An intelligent diagnosis system and method for defects of solar power module Download PDFInfo
- Publication number
- TW202213939A TW202213939A TW109132157A TW109132157A TW202213939A TW 202213939 A TW202213939 A TW 202213939A TW 109132157 A TW109132157 A TW 109132157A TW 109132157 A TW109132157 A TW 109132157A TW 202213939 A TW202213939 A TW 202213939A
- Authority
- TW
- Taiwan
- Prior art keywords
- image
- training
- solar power
- module
- power generation
- Prior art date
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Image Analysis (AREA)
Abstract
Description
本發明係有關於太陽能發電模組的診斷有關,更特別是有關於應用深度學習訓練太陽能發電模組缺陷智慧診斷系統與方法。 The present invention relates to the diagnosis of solar power generation modules, and more particularly, to an intelligent diagnosis system and method for applying deep learning to train solar power generation module defects.
太陽能發電具有:系統使用方便長久、受環境與地理限制小,應用廣泛、可與建築物結合,易普及化、發電時段隨日光強度而變、對抑制尖峰用電有助益,且安全、無污染、無噪音..等優點,目前全球多國已經廣泛設置。太陽能發電效益與裝置規模有關,為了有效提升太陽能廠整體發電量,用戶通常會大規模鋪設面板。然而,太陽能模組會因為天氣、溫度變化、空氣污染和紫外線而受損。目前太陽能模組壽命至少25年,在運轉期間,維護保養是模組壽命是否能達到設計值的關鍵。若系統可以使用越久,發的電量越多,則平均起來,每瓦的成本可以降低。 Solar power generation has the following advantages: the system is easy to use for a long time, limited by the environment and geography, has a wide range of applications, can be combined with buildings, is easy to popularize, the power generation period changes with the intensity of sunlight, is helpful for suppressing peak power consumption, and is safe and free. The advantages of pollution, no noise, etc. have been widely installed in many countries around the world. The benefit of solar power generation is related to the scale of the installation. In order to effectively increase the overall power generation of a solar power plant, users usually lay panels on a large scale. However, solar modules can be damaged by weather, temperature changes, air pollution and UV rays. At present, the life of solar modules is at least 25 years. During operation, maintenance is the key to whether the life of the modules can reach the design value. The longer the system can be used and the more electricity it can generate, the cost per watt can be reduced on average.
目前所有的太陽能光電系統設計安裝廠商,都是從評估、設計規劃、補助與貸款、送件申請到安裝施工。模組保養維護與遠端監控多半需要另外再找其他清洗公司與專業監控公司。電站安裝和電站運維是兩個非常重要的服務型環節,這兩個部分的良好運行保證了電站的品質,也幫助安裝業主獲取最大的收益。 At present, all solar photovoltaic system design and installation manufacturers are from evaluation, design planning, subsidies and loans, application for submission to installation and construction. Module maintenance and remote monitoring mostly need to find other cleaning companies and professional monitoring companies. Power station installation and power station operation and maintenance are two very important service-oriented links. The good operation of these two parts ensures the quality of the power station and helps the installation owner to obtain the maximum benefit.
目前系統從業廠商對太陽能發電模組缺陷分析技術的瞭解 不是很多,導致了電站運行後大量的故障發生,造成很多的人力物力損失。此外,由於太陽能發電廠佔地面積大,傳統人工巡檢存在對異常的太陽能元件定位難,工作效率低、運維成本高等缺陷。 Current system manufacturers' understanding of solar power module defect analysis technology Not many, resulting in a large number of failures after the operation of the power station, resulting in a lot of loss of manpower and material resources. In addition, due to the large area of the solar power plant, the traditional manual inspection has the disadvantages of difficulty in locating abnormal solar elements, low work efficiency, and high operation and maintenance costs.
雖然現在也有廠商運用無人機空拍技術來執行巡檢工作,期望藉此降低維修成本,只不過無人機檢測方法只能說是「快篩」,僅用紅外線(Infrared,IR)熱感攝影機來檢查太陽能發電模組溫度是否過高。這個檢測僅能量測到廣義的熱斑現象(即可能為內阻和電池片自身暗電流造成),該資訊只能評估缺陷可能性,無法準確判定缺陷處理方式。若要精準掌握太陽能發電模組的運作效率與健康狀況,偶爾為之的檢測與快速檢查是不夠的,可隨時隨地與遠程監控或許才是讓太陽能發電模組維持正常運作良方。 Although some manufacturers now use drone aerial photography technology to perform inspection work, hoping to reduce maintenance costs, the drone detection method can only be said to be "quick screening", which only uses infrared (Infrared, IR) thermal cameras. Check whether the temperature of the solar power module is too high. This test can only detect the generalized hot spot phenomenon (that may be caused by the internal resistance and the dark current of the cell itself). This information can only evaluate the possibility of defects, but cannot accurately determine the defect processing method. In order to accurately grasp the operation efficiency and health status of solar power modules, occasional detection and quick inspection are not enough. Anytime, anywhere and remote monitoring may be the best way to maintain the normal operation of solar power modules.
想要釐清缺陷程度是否嚴重須即時改善,通常還需要借助其他工具做進一步檢測,例如用電致發光(Electroluminescence,EL)檢測才能看到裂紋或更細的問題。然而,太陽能發電模組缺陷模式之判定仰賴經驗、目視診斷過程主觀因素、判定模式難以量化,大量數據判定耗時等問題。 In order to clarify whether the degree of defect is serious and needs immediate improvement, it is usually necessary to use other tools for further inspection, such as electroluminescence (EL) inspection to see cracks or finer problems. However, the determination of the defect mode of a solar power generation module relies on experience, subjective factors in the visual diagnosis process, the difficulty of quantifying the determination mode, and the time-consuming determination of a large amount of data.
有鑑於上述問題,有必要提出一種新的太陽能發電模組缺陷評估系統與方法,以解決上述問題。 In view of the above problems, it is necessary to propose a new solar power generation module defect assessment system and method to solve the above problems.
本發明之主要目的係在於提出一種太陽能發電模組缺陷智慧診斷系統。該系統可以針對大型太陽能發電案場,同時使用IR/EL影像資訊,經由深度學習訓練,以進行診斷找出缺陷模式,對太陽能發電系統故障提出預防,降低了維修事故及成本,確保獲利模式。 The main purpose of the present invention is to provide an intelligent diagnosis system for solar power module defects. The system can be used for large-scale solar power generation projects, using IR/EL image information at the same time, through deep learning training, to diagnose and find defect patterns, and to prevent solar power generation system failures, reduce maintenance accidents and costs, and ensure a profitable model. .
本發明之另一目的係在於提出一種太陽能發電模組缺陷智慧診斷方法。該技術可以針對大型太陽能發電案場,同時使用IR/EL影像資訊,經由深度學習訓練,以進行診斷找出缺陷模式,避免電量損失及事故發生,大幅度提高太陽能電廠的發電量。 Another object of the present invention is to provide an intelligent method for diagnosing defects of solar power generation modules. This technology can be used for large-scale solar power generation projects, using IR/EL image information at the same time, through deep learning training, to diagnose and find defect patterns, avoid power loss and accidents, and greatly increase the power generation of solar power plants.
為達本發明之主要目的,本發明提供一種太陽能發電模組缺陷智慧診斷系統,用於複數個太陽能發電模組的缺陷分析,其包含: In order to achieve the main purpose of the present invention, the present invention provides a solar power generation module defect intelligent diagnosis system, which is used for defect analysis of a plurality of solar power generation modules, comprising:
一第一影像擷取模組,取得該些太陽能發電模組的一第一影像資料; a first image capture module to obtain a first image data of the solar power generation modules;
一第二影像擷取模組,取得該些太陽能發電模組的一第二影像資料; a second image capturing module to obtain a second image data of the solar power generation modules;
一影像處理模組,將該第一影像資料與該第二影像資料做一影像處理,以分別得到一第一影像特徵資料與一第二影像特徵資料; an image processing module for performing image processing on the first image data and the second image data to obtain a first image feature data and a second image feature data respectively;
一深度學習模組,先對該第一影像特徵資料做一第一期數的深度訓練,接著對該第二影像特徵資料做一第二期數的深度訓練,且該第一期數少於該第二期數;以及 A deep learning module, firstly performs a first period of in-depth training on the first image feature data, and then performs a second period of in-depth training on the second image feature data, and the first period is less than the second instalment; and
一資訊判斷模組,藉由該第二期數的深度訓練的結果分析出該些太陽能發電模組的缺陷。 An information judging module analyzes the defects of the solar power generation modules according to the result of the deep training of the second phase.
為達本發明之另一目的,本發明提供一種太陽能發電模組缺陷智慧診斷方法,用於複數個太陽能發電模組的缺陷分析,其包含: In order to achieve another object of the present invention, the present invention provides a method for diagnosing defects of solar power generation modules, which is used for defect analysis of a plurality of solar power generation modules, comprising:
步驟一:取得該些太陽能發電模組的一第一影像資料; Step 1: obtaining a first image data of the solar power generation modules;
步驟二:取得該些太陽能發電模組的一第二影像資料; Step 2: obtaining a second image data of the solar power modules;
步驟三:將該第一影像資料與該第二影像資料做一影像處理,以分別得到一第一影像特徵資料與一第二影像特徵資料; Step 3: performing image processing on the first image data and the second image data to obtain a first image feature data and a second image feature data respectively;
步驟四:先對該第一影像特徵資料做一第一期數的深度訓練,接著對該第二影像特徵資料做一第二期數的深度訓練,且該第一期數少於該第二 期數;以及 Step 4: Perform a first-stage in-depth training on the first image feature data, and then perform a second-stage in-depth training on the second image feature data, and the first stage is less than the second stage. number of periods; and
步驟五:藉由該第二期數的深度訓練的結果分析出該些太陽能發電模組的缺陷。 Step 5: Analyze the defects of the solar power generation modules based on the results of the second phase of in-depth training.
本發明藉由兩階段的影像深度訓練,能夠快速且精確地鑑別出太陽能發電模組缺陷的位置與種類。為了達到快速大量數據判定的功效,本發明之太陽能發電模組缺陷智慧診斷系統與方法,更配合了人工智慧的深度學習模組,以進行穩定的影像鑑別。本發明鑑於第一影像資料與第二影像資料能達到的目的,因此設定出不同期數的訓練方式。先對該第一影像特徵資料做一第一期數(epoch)的深度訓練,接著對該第二影像特徵資料做一第二期數(epoch)的深度訓練,且該第一期數少於該第二期數。 The present invention can quickly and accurately identify the location and type of defects in the solar power generation module through the two-stage image depth training. In order to achieve the effect of rapid and large-scale data determination, the intelligent diagnosis system and method of the solar power generation module defect of the present invention is further matched with the deep learning module of artificial intelligence to perform stable image identification. In view of the goals that the first image data and the second image data can achieve, the present invention sets different training methods. First perform a first epoch of depth training on the first image feature data, and then perform a second epoch of depth training on the second image feature data, and the first epoch is less than The second period.
且,本發明之太陽能發電模組缺陷智慧診斷系統與方法所使用的深度學習訓練方式,該深度訓練包含複數個卷積層訓練,是一種將卷積層依底層、中層、頂層的順序漸進式訓練方法。首先全部卷積層的權重都不會凍結,訓練數個期數後,比較底層的卷積層凍結程度較大,以訓練中層的卷積層;再訓練數個期數後,中層的卷積層也進行凍結,以訓練頂層的卷積層。需注意的是,該第一期數的深度訓練係對對該第一影像特徵資料做底層訓練與中層訓練。該第二期數的深度訓練係對對該第二影像特徵資料做中層訓練與頂層訓練。 Moreover, the deep learning training method used by the intelligent diagnosis system and method for solar power module defects of the present invention includes a plurality of convolutional layer training, which is a progressive training method in which the convolutional layers are in the order of the bottom layer, the middle layer and the top layer. . First of all, the weights of all convolutional layers will not be frozen. After training for several periods, the convolutional layers at the bottom layer are frozen to a greater degree to train the convolutional layers in the middle layer; after training for a few more periods, the convolutional layers in the middle layer are also frozen. , to train the top convolutional layers. It should be noted that the depth training of the first phase is to perform bottom training and middle training on the first image feature data. The depth training of the second phase is to perform middle-level training and top-level training on the second image feature data.
本發明之太陽能發電模組缺陷智慧診斷系統與方法,能協助上下游業者(系統廠商、安裝業者、銀行業者、保業險者)能夠更加的專業、更加簡便的發現電站安裝運維中出現的各種問題。隨著太陽能電廠的興建,缺陷模式智能診斷運維將具有很大的市場空間和推廣價值。 The intelligent diagnosis system and method for solar power generation module defects of the present invention can assist upstream and downstream operators (system manufacturers, installers, banks, and insurance companies) to more professionally and easily find faults that appear in the installation, operation and maintenance of power plants. various problems. With the construction of solar power plants, the intelligent diagnosis operation and maintenance of defect mode will have great market space and promotion value.
5:太陽能發電模組缺陷智慧診斷系統 5: Intelligent diagnosis system for solar power module defects
10:第一影像擷取模組 10: The first image capture module
20:第二影像擷取模組 20: Second image capture module
30:影像處理模組 30: Image processing module
40:深度學習模組 40: Deep Learning Module
50:資訊判斷模組 50: Information Judgment Module
為讓本發明之上述和其他目的、特徵、和優點能更明顯易懂,下文特舉數個較佳實施例,並配合所附圖式,作詳細說明如下。 In order to make the above-mentioned and other objects, features, and advantages of the present invention more clearly understood, several preferred embodiments are hereinafter described in detail in conjunction with the accompanying drawings.
第1圖為本發明太陽能發電模組缺陷智慧診斷系統示意圖; Fig. 1 is a schematic diagram of the intelligent diagnosis system for defects of solar power generation modules according to the present invention;
第2圖為本發明太陽能發電模組缺陷智慧診斷方法之流程圖。 FIG. 2 is a flow chart of the intelligent diagnosis method for solar power module defects according to the present invention.
雖然本發明可表現為不同形式之實施例,但附圖所示者及於本文中說明者係為本發明可之較佳實施例。熟習此項技術者將瞭解,本文所特定描述且在附圖中繪示之裝置及方法係考量為本發明之一範例,非限制性例示性實施例,且本發明之範疇僅由申請專利範圍加以界定。結合一例示性實施例繪示或描述之特徵可與其他實施例之諸特徵進行結合。此等修飾及變動將包括於本發明之範疇內。 While the present invention may be embodied in various forms of embodiment, those shown in the drawings and described herein are preferred embodiments of the invention. Those skilled in the art will appreciate that the apparatus and methods specifically described herein and illustrated in the accompanying drawings are considered to be exemplary, non-limiting, exemplary embodiments of the present invention, and that the scope of the present invention is limited only by the scope of the claims be defined. Features illustrated or described in connection with one exemplary embodiment may be combined with features of other embodiments. Such modifications and variations are intended to be included within the scope of the present invention.
本發明之太陽能發電模組缺陷智慧診斷系統與方法,藉由兩種影像的兩階段影像深度訓練,能夠快速且精確地鑑別出太陽能發電模組缺陷的位置與種類。此外,為了達到快速大量數據判定的功效,本發明之太陽能發電模組缺陷智慧診斷系統與方法,更配合了人工智慧的深度學習模組,以進行穩定的影像鑑別。 The intelligent diagnosis system and method for solar power generation module defects of the present invention can quickly and accurately identify the position and type of solar power generation module defects through two-stage image depth training of two types of images. In addition, in order to achieve the effect of rapid and large-scale data determination, the intelligent diagnosis system and method of the solar power generation module defect of the present invention is further matched with the deep learning module of artificial intelligence to perform stable image identification.
現請參考第1圖,其為本發明一種太陽能發電模組缺陷智慧診斷系統5,用於複數個太陽能發電模組的缺陷分析,其包含:一第一影像擷取模組10;一第二影像擷取模組20;一影像處理模組30;一深度學習模組40;以及一資訊判斷模組50。
Please refer to FIG. 1, which is a solar power generation module defect
在太陽能發電模組中,各元件組成,包含電池、連接線(ribbon)、EVA膠、玻璃/背板及接線盒(含旁路二極體)、邊框等都有可能產生缺陷。模組各組件缺陷可能:電池破裂或裂紋、連接線(ribbon,solder)斷 裂、封裝EVA材料的黃化(Encapsulant discoloration)與脫層(Delamination)、前後板:玻璃/背板破裂、接線盒與旁路二極體斷裂、光誘發衰退(Light induced degradation)等。 In a solar power module, each component, including batteries, ribbons, EVA glue, glass/backplane, junction boxes (including bypass diodes), and frames, may have defects. Defects of each component of the module may be: battery rupture or crack, broken connecting wire (ribbon, solder) Cracks, Encapsulant discoloration and Delamination of encapsulated EVA materials, Front and rear panels: glass/back panel cracks, junction box and bypass diode cracks, Light induced degradation, etc.
該第一影像擷取模組10,取得該些太陽能發電模組的一第一影像資料。該第二影像擷取模組20,取得該些太陽能發電模組的一第二影像資料。該影像處理模組30,將來自該第一影像擷取模組10之該第一影像資料與來自該第二影像擷取模組20之該第二影像資料做一影像處理,以分別得到一第一影像特徵資料與一第二影像特徵資料。該深度學習模組40,先對來自該影像處理模組30之該第一影像特徵資料做一第一期數的深度訓練,接著對來自該影像處理模組30之該第二影像特徵資料做一第二期數的深度訓練,且該第一期數少於該第二期數。該資訊判斷模組50,藉由來自該深度學習模組40之該第二期數的深度訓練的結果分析出該些太陽能發電模組的缺陷。
The first
其中,該第一影像資料係紅外線(Infrared,IR)影像,且該第二影像資料係電致發光(Electroluminescence,EL)影像。建立紅外線(Infrared,IR)影像的標準主要依據熱影像檢測標準IEC62446-3。 Wherein, the first image data is an infrared (Infrared, IR) image, and the second image data is an electroluminescence (Electroluminescence, EL) image. The standard for establishing infrared (Infrared, IR) images is mainly based on the thermal image detection standard IEC62446-3.
取得該些太陽能發電模組的該第一影像資料是於白天時候拍攝該些太陽能發電模組。用於取得該些太陽能發電模組的該第一影像資料的該第一影像擷取模組10包含:紅外鏡頭:接收和彙聚被測物體發射的紅外輻射;紅外探測器組件:將熱輻射信號變成電信號;電子組件:對電信號進行處理;顯示組件:將電信號轉變成可見光圖像:擷取軟體:處理採集到的溫度數據,轉換成溫度讀數和圖像。
The first image data of the solar power generation modules is obtained by photographing the solar power generation modules during daytime. The first
取得該些太陽能發電模組的該第二影像資料是於夜間時候
或低照度(照度<200mW/cm2)拍攝該些太陽能發電模組。較佳地,取得該些太陽能發電模組的該第二影像資料是於照度介於100mW/cm2至200mW/cm2之間拍攝。用於取得該些太陽能發電模組的該第二影像資料的該第二影像擷取模組20包含:攝影鏡頭:接收和彙聚被測物體發射的螢光輻射;螢光探測器組件:將螢光輻射信號變成電信號;電子組件:對電信號進行處理;顯示組件:將電信號轉變成可見光圖像:擷取軟體:處理採集到的溫度數據,轉換成溫度讀數和圖像。該第二影像資料特別是電致發光該第二影像資料,可以偵測出傳統目視檢查或光學影像測量所無法看出的電池與模組缺陷種類,包含1.電池製作缺陷、2.表面網印缺陷、3.電池隱裂缺陷、4.電池破裂缺陷、5.低效率傳導區域缺陷。
The second image data of the solar power generation modules are obtained by photographing the solar power generation modules at night or with low illumination (illuminance<200mW/cm 2 ). Preferably, the second image data of the solar power generation modules are obtained when the illumination is between 100 mW/cm 2 and 200 mW/cm 2 . The second
取得該些太陽能發電模組的該第一影像資料與該第二影像資料影像的規格包含:感測解析度:640×512像素;像素尺寸17μm;紅外線影像使用紅外線頻寬:7.5-13.5μm拍攝,電致發光影像為可見光拍攝;影像圖框速度(Full Frame Rates):30Hz(National Television System Committee,NTSC)與25Hz(Phase Alternating Line,PAL)。 The specifications of the first image data and the second image data obtained from the solar power modules include: sensing resolution: 640×512 pixels; pixel size 17 μm; infrared image using infrared bandwidth: 7.5-13.5 μm shooting , the electroluminescence images were taken with visible light; the image frame rates (Full Frame Rates): 30 Hz (National Television System Committee, NTSC) and 25 Hz (Phase Alternating Line, PAL).
取得該些太陽能發電模組的該第一影像資料與該第二影像資料影像的紅外鏡頭與電致發光鏡頭主要設置於無人飛行器上,無人飛行器在該些太陽能發電模組上方取得影像傳送到該第一影像擷取模組10與該第二影像擷取模組20。無人飛行器相關規格大致如下:GPS懸停精度:垂直:±0.5m;水平:±1.5m;最大下降速度:垂直:5m/s;最大水平飛行速度:54km/h或15m/s;遙控方式:採FASST 2.4 G自動掃描鎖頻;工作環境溫度:-30℃至45℃。
The infrared lens and the electroluminescence lens for obtaining the first image data and the second image data of the solar power modules are mainly installed on the unmanned aerial vehicle, and the unmanned aerial vehicle obtains the image above the solar power generation modules and transmits them to the unmanned aerial vehicle. The first
在本發明中,採用的影像處理工具:Adobe Photoshop、 Aphelion、ImageJ、OpenCV、Ulead PhotoImpact或Rapidminer。典型的影像處理流程包含:一、影像之表示與模式建立(Image Modeling)、二、影像之強化處理(Image Enhancement)、三、影像之復原(Image Restoration)、四、影像分析(Image Analysis)、五、影像重建(Image Reconstruction)、六、影像資料壓縮(Image Compression)。 In the present invention, the image processing tools used: Adobe Photoshop, Aphelion, ImageJ, OpenCV, Ulead PhotoImpact or Rapidminer. Typical image processing procedures include: 1. Image representation and model establishment (Image Modeling), 2. Image Enhancement, 3. Image Restoration, 4. Image Analysis, Five, image reconstruction (Image Reconstruction), six, image data compression (Image Compression).
在訓練之前,必須對紅外線/電致發光取得之影像數據進行各類缺陷模式的判別,以得到各種特徵及對應缺陷模式。本發明的影像一開始先藉由人工對該第一影像資料與該第二影像資料影像做特徵提取,並將特徵提取的影像進行影像切割處理,以定義太陽能模組之紅外線/電致發光影像的辨識區域(Region-of-Interest,ROI)。以這些初始資料作為該影像處理模組30的參考資料(reference data)。並對該第一影像資料與該第二影像資料影像,亦即紅外線/電致發光取得之影像,進行失效特徵人工標記、整合分析與各類缺陷模式的判別。將初步分析及處理後之影像數據導入該深度學習模組40,進行調測與訓練,並對模型導出之訓練成果進行分辨率量化及測試。
Before training, it is necessary to discriminate various defect modes on the image data obtained by infrared/electroluminescence, so as to obtain various features and corresponding defect modes. In the image of the present invention, the first image data and the second image data image are manually extracted from the first image data, and the image of the feature extracted image is processed by image cutting to define the infrared/electroluminescence image of the solar module. The identification region (Region-of-Interest, ROI). These initial data are used as reference data of the
該影像處理模組30,將來自該第一影像擷取模組10之該第一影像資料與來自該第二影像擷取模組20之該第二影像資料做一影像處理(Image processing)。
The
該影像處理(Image processing)包含下列: The image processing includes the following:
1.前處理(Image Pre-processing),將取得的太陽能模組之紅外線/電致發光影像(IR/EL image)執行影像前處理(Image Pre-processing),方式主要為:影像二值化(Binarization)取得二值化影像(binary image),將二值化影像(binary image)分別進行邊緣檢測(Edge Detection)以及隔離(Isolation)/增強 (Enhancement)。 1. Image Pre-processing: Perform Image Pre-processing on the obtained IR/EL image of the solar module. The main methods are: image binarization ( Binarization) to obtain a binary image, and perform Edge Detection and Isolation/Enhancement on the binary image respectively. (Enhancement).
2.特徵提取(Feature Extraction),將前處理後的影像進行太陽能模組之紅外線/電致發光影像特徵提取(Feature Extraction),方式包含但不限於:重複線跟蹤法(repeated line tracking)、最大曲率(maximum curvature)、寬線檢測(wide line detector)與Gabor濾波器(Gabor filter)。 2. Feature extraction (Feature Extraction), the pre-processed image is subjected to infrared/electroluminescence image feature extraction (Feature Extraction) of the solar module, including but not limited to: repeated line tracking (repeated line tracking), maximum Maximum curvature, wide line detector and Gabor filter.
3.辨識區域(Region-of-Interest,ROI),將特徵提取的影像進行影像切割處理以定義太陽能模組之紅外線/電致發光影像的辨識區域(Region-of-Interest,ROI)。 3. Recognition region (Region-of-Interest, ROI), the image of the feature extraction is processed by image cutting to define the recognition region (Region-of-Interest, ROI) of the infrared/electroluminescence image of the solar module.
4.資料增強處理(Data Augmentation),將ROI影像進行資料增強處理(Data Augmentation),方法將ROI影像做各式各樣的變換,如影像模糊(Gaussian Blur)、影像銳化(Sharpen)、仿射變換(Affine transform)、影像晃動(Shake)、加入高斯雜訊(Gaussian Noise)、以及加入影像隨機丟失(Coarse Dropout),將資料做這些處理增加訓練資料集的資料量及多樣性,可避免在後續深度學習訓練階段出現過度擬合(overfitting)的現象。 4. Data Augmentation, perform Data Augmentation on the ROI image, and perform various transformations on the ROI image, such as image blur (Gaussian Blur), image sharpening (Sharpen), imitation Affine transform, Shake, Gaussian Noise, and Coarse Dropout are used to process the data to increase the data volume and diversity of the training data set, which can avoid Overfitting occurs in subsequent deep learning training stages.
5.資料前處理(Data Pre-Processing),將資料增強處理後所得到的資料進行正規化(Data Normalization)、標準化(Standardization)及標記(Labeling)等,可有助於在高維特徵空間上之下降速度。 5. Data pre-processing (Data Pre-Processing), normalization (Data Normalization), standardization (Standardization) and labeling (Labeling) of the data obtained after data enhancement processing, which can help in the high-dimensional feature space. the rate of decline.
6.產生資料集(dataset),該第一影像特徵資料與該第二影像特徵資料,包含:訓練資料集(Training dataset)、驗證資料集(Validation dataset)及測試資料集(Testing dataset)。將處理好的該第一影像特徵資料加上第一標籤,處理好的該第二影像特徵資料也加上第二標籤,輸入後續的該深度學習模組40中做訓練並做性能評估、預測分類。
6. Generate a dataset. The first image feature data and the second image feature data include: a training dataset, a validation dataset, and a testing dataset. Add a first label to the processed first image feature data, add a second label to the processed second image feature data, and input the subsequent
一般而言,在深度學習的訓練中,底層特徵較為低階通用, 頂層特徵較為高階特別,而高階特別的特徵比較接近全連接層。因此可以合理推測,神經網路主要以高階特徵進行分類。而高階特徵從中階特徵成形,中階特徵從低階特徵成形,因此可以推測若低中階特徵變動過於劇烈,將造成高階特徵不易成形;反之若低中階特徵給予一定時間訓練完成後,將之凍結,讓神經網路的訓練著重於成形高階特徵,推測應可加速深度學習的訓練。 Generally speaking, in the training of deep learning, the underlying features are relatively low-level and general. Top-level features are more high-order special, and high-order special features are closer to fully connected layers. It is therefore reasonable to speculate that neural networks are mainly classified by high-order features. The high-level features are formed from the middle-level features, and the middle-level features are formed from the low-level features. Therefore, it can be speculated that if the low- and medium-level features change too drastically, the high-level features will be difficult to form. The freezing allows the training of the neural network to focus on forming higher-order features, which is supposed to speed up the training of deep learning.
因此,本發明該深度學習模組40,提出的訓練策略在訓練過程中會兩段式訓練。由於該第一影像資料,特別是紅外線影像,能夠快速且輕易地地知道太陽能發電模組可能缺陷的位置。本發明藉由該第二影像資料,特別是電致發光影像,在已經知道太陽能發電模組可能缺陷的位置上更進一步的分辨太陽能發電模組的缺陷模式的種類。本發明鑑於第一影像資料與第二影像資料能達到的目的,亦即分別是鑑別出太陽能發電模組缺陷模式的位置與太陽能發電模組缺陷模式的種類,因此設定出不同期數的訓練方式。因此,該深度學習模組40,先對該第一影像特徵資料做一第一期數(epoch)的深度訓練,接著對該第二影像特徵資料做一第二期數(epoch)的深度訓練,且該第一期數少於該第二期數。
Therefore, the training strategy proposed by the
此外,在該深度學習模組40中,該深度訓練包含複數個卷積層訓練,該些卷積層訓練按照一序列做底層訓練、中層訓練與頂層訓練。該第一期數的深度訓練係對對該第一影像特徵資料做底層訓練與中層訓練。且,該第二期數的深度訓練係對對該第二影像特徵資料做中層訓練與頂層訓練。亦即,第一影像特徵資料不需要做到頂層訓練,而第二影像特徵資料藉由第一影像特徵資料訓練的結果,所以不需要做底層訓練。
In addition, in the
該資訊判斷模組50,藉由來自該深度學習模組40之該第二
期數的深度訓練的結果分析出該些太陽能發電模組的缺陷。
The
現請參考第2圖,其為本發明一種太陽能發電模組缺陷智慧診斷方法,用於複數個太陽能發電模組的缺陷分析,其包含: Please refer to FIG. 2, which is an intelligent diagnosis method for solar power module defects of the present invention, which is used for defect analysis of a plurality of solar power modules, including:
步驟一:取得該些太陽能發電模組的一第一影像資料; Step 1: obtaining a first image data of the solar power generation modules;
步驟二:取得該些太陽能發電模組的一第二影像資料; Step 2: obtaining a second image data of the solar power modules;
步驟三:將該第一影像資料與該第二影像資料做一影像處理,以分別得到一第一影像特徵資料與一第二影像特徵資料; Step 3: performing image processing on the first image data and the second image data to obtain a first image feature data and a second image feature data respectively;
步驟四:先對該第一影像特徵資料做一第一期數的深度訓練,接著對該第二影像特徵資料做一第二期數的深度訓練,且該第一期數少於該第二期數;以及 Step 4: Perform a first-stage in-depth training on the first image feature data, and then perform a second-stage in-depth training on the second image feature data, and the first stage is less than the second stage. number of periods; and
步驟五:藉由該第二期數的深度訓練的結果分析出該些太陽能發電模組的缺陷分析。 Step 5: Analyze the defect analysis of the solar power generation modules according to the result of the second-stage in-depth training.
其中,該第一影像資料係紅外線影像,且該第二影像資料係電致發光影像。該深度訓練包含複數個卷積層訓練,該些卷積層訓練按照一序列做底層訓練、中層訓練與頂層訓練。該第一期數的深度訓練係對對該第一影像特徵資料做底層訓練與中層訓練。該第二期數的深度訓練係對對該第二影像特徵資料做中層訓練與頂層訓練。 Wherein, the first image data is an infrared image, and the second image data is an electroluminescence image. The depth training includes training of a plurality of convolutional layers, and the trainings of the convolutional layers are performed in a sequence of bottom training, middle training and top training. The depth training of the first phase is to perform bottom training and middle training on the first image feature data. The depth training of the second phase is to perform middle-level training and top-level training on the second image feature data.
在步驟四中,重複訓練的部分會分成兩種,一種是模型內遞迴修正參數的次數,這部分是設定遞迴次數越多模型完成訓練耗費時間越長。另一種是在測試模型階段,隨著樣本累積用不同數量的樣本或測試模型進行的訓練。兩個部分都會隨重複訓練的次數逐步去提高精準度。 In step 4, the part of repeated training will be divided into two types. One is the number of recursive correction parameters in the model. This part is that the more recursive times are set, the longer the model will take to complete the training. The other is training with different numbers of samples or test models as the samples accumulate during the test model phase. Both parts will gradually improve the accuracy with the number of repetitions.
在步驟四中,採用兩種深度卷積神經網路架構:ResNet-50(Residual Network,殘差網路)與DenseNet(Dense Convolutional Network,稠密卷積神經網路)進行訓練作為驗證案例。 In step 4, two deep convolutional neural network architectures are used: ResNet-50 (Residual Network, residual network) and DenseNet (Dense Convolutional Network) Network, dense convolutional neural network) for training as a validation case.
在步驟四中,首先全部卷積層的權重都不會凍結,訓練數個期數後,比較底層的卷積層凍結,以訓練中層的卷積層。再訓練數個期數後,中層的卷積層也進行凍結,以訓練頂層的卷積層。基本概念是由前面的網路訓練中間的網路,再由中間的網路訓練後面的網路,最後訓練出分類器的訓練方式。 In step 4, the weights of all convolutional layers will not be frozen first. After training for several periods, the bottom convolutional layers will be frozen to train the convolutional layers of the middle layer. After training for a few more epochs, the middle convolutional layers are also frozen to train the top convolutional layers. The basic concept is that the middle network is trained by the front network, the latter network is trained by the middle network, and finally the training method of the classifier is trained.
由於該第一影像資料,特別是紅外線影像,能夠快速且輕易地知道太陽能發電模組可能缺陷的位置,但卻無法精準的知道缺陷的種類。因此本發明藉由該第二影像資料,特別是電致發光影像,在已經知道太陽能發電模組可能缺陷的位置上更進一步的分辨太陽能發電模組的缺陷模式的種類。亦即是,本發明藉由兩階段的影像深度訓練,能夠快速且精確地鑑別出太陽能發電模組缺陷的位置與種類。 Due to the first image data, especially the infrared image, the position of possible defects in the solar power generation module can be quickly and easily known, but the types of defects cannot be accurately known. Therefore, the present invention uses the second image data, especially the electroluminescence image, to further distinguish the type of defect mode of the solar power module at the position where the possible defects of the solar power module are known. That is, the present invention can quickly and accurately identify the location and type of defects in the solar power generation module through the two-stage image depth training.
此外,為了達到快速大量數據判定的功效,本發明之太陽能發電模組缺陷智慧診斷系統與方法,更配合了人工智慧的深度學習模組,以進行穩定的影像鑑別。有別於傳統深度學習模組的訓練方式,對各種資料都做一定期數的訓練,本發明鑑於第一影像資料與第二影像資料能達到的目的,亦即分別是鑑別出太陽能發電模組缺陷模式的位置與太陽能發電模組缺陷模式的種類,因此設定出不同期數的訓練方式。先對該第一影像特徵資料做一第一期數(epoch)的深度訓練,接著對該第二影像特徵資料做一第二期數(epoch)的深度訓練,且該第一期數少於該第二期數。 In addition, in order to achieve the effect of rapid and large-scale data determination, the intelligent diagnosis system and method of the solar power generation module defect of the present invention is further matched with the deep learning module of artificial intelligence to perform stable image identification. Different from the training method of the traditional deep learning module, various data are trained for a certain period of time. In view of the purpose that the first image data and the second image data can achieve, the present invention is to identify the solar power generation module respectively. The location of the defect mode and the type of defect mode of the solar power generation module, therefore, set different training methods for the number of stages. First perform a first epoch of depth training on the first image feature data, and then perform a second epoch of depth training on the second image feature data, and the first epoch is less than The second period.
且,本發明之太陽能發電模組缺陷智慧診斷系統與方法所使用的深度學習訓練方式,是一種將卷積層依底層、中層、頂層的順序漸進式訓練方法。首先全部卷積層的權重都不會凍結,訓練數個期數後,比 較底層的卷積層凍結程度較大,以訓練中層的卷積層;再訓練數個期數後,中層的卷積層也進行凍結,以訓練頂層的卷積層。需注意的是,該第一期數的深度訓練係對對該第一影像特徵資料做底層訓練與中層訓練。該第二期數的深度訓練係對對該第二影像特徵資料做中層訓練與頂層訓練。亦即是,第一影像特徵資料不需要做到頂層訓練,而第二影像特徵資料藉由第一影像特徵資料訓練的結果,所以不需要做底層訓練。 Moreover, the deep learning training method used by the intelligent diagnosis system and method for solar power module defects of the present invention is a progressive training method of convolutional layers in the order of bottom layer, middle layer and top layer. First, the weights of all convolutional layers will not be frozen. After training for several periods, the The lower convolutional layers are frozen to a greater extent to train the convolutional layers of the middle layer; after training for several more epochs, the convolutional layers of the middle layer are also frozen to train the convolutional layers of the top layer. It should be noted that the depth training of the first phase is to perform bottom training and middle training on the first image feature data. The depth training of the second phase is to perform middle-level training and top-level training on the second image feature data. That is, the first image feature data does not need top-level training, and the second image feature data is trained based on the first image feature data, so bottom-level training is not required.
雖然本發明已以前述較佳實施例揭示,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與修改。如上述的解釋,都可以作各型式的修正與變化,而不會破壞此發明的精神。因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed by the aforementioned preferred embodiments, it is not intended to limit the present invention, and any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention. As explained above, various modifications and changes can be made without destroying the spirit of the invention. Therefore, the protection scope of the present invention should be determined by the scope of the appended patent application.
5:太陽能發電模組缺陷智慧診斷系統 5: Intelligent diagnosis system for solar power module defects
10:第一影像擷取模組 10: The first image capture module
20:第二影像擷取模組 20: Second image capture module
30:影像處理模組 30: Image processing module
40:深度學習模組 40: Deep Learning Module
50:資訊判斷模組 50: Information Judgment Module
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109132157A TWI732683B (en) | 2020-09-17 | 2020-09-17 | An intelligent diagnosis system and method for defects of solar power module |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109132157A TWI732683B (en) | 2020-09-17 | 2020-09-17 | An intelligent diagnosis system and method for defects of solar power module |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI732683B TWI732683B (en) | 2021-07-01 |
TW202213939A true TW202213939A (en) | 2022-04-01 |
Family
ID=77911501
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109132157A TWI732683B (en) | 2020-09-17 | 2020-09-17 | An intelligent diagnosis system and method for defects of solar power module |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI732683B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113567446B (en) * | 2021-07-06 | 2022-07-19 | 北京东方国信科技股份有限公司 | Method and system for grading component defect detection quality |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015179632A1 (en) * | 2014-05-22 | 2015-11-26 | Scheffler Lee J | Methods and systems for neural and cognitive processing |
US20200225655A1 (en) * | 2016-05-09 | 2020-07-16 | Strong Force Iot Portfolio 2016, Llc | Methods, systems, kits and apparatuses for monitoring and managing industrial settings in an industrial internet of things data collection environment |
CN106503461B (en) * | 2016-10-26 | 2018-12-07 | 广东产品质量监督检验研究院 | A kind of photovoltaic module acceleration degradation model and photovoltaic module life-span prediction method based on deep approach of learning building |
JP2018082602A (en) * | 2016-11-18 | 2018-05-24 | 北陸電話工事株式会社 | Solar cell module deterioration diagnosis system |
US10984757B2 (en) * | 2017-05-19 | 2021-04-20 | Semiconductor Energy Laboratory Co., Ltd. | Machine learning method, machine learning system, and display system |
WO2019038693A1 (en) * | 2017-08-23 | 2019-02-28 | Telefonaktiebolaget Lm Ericsson (Publ) | Neural networks for decoding |
US20190286990A1 (en) * | 2018-03-19 | 2019-09-19 | AI Certain, Inc. | Deep Learning Apparatus and Method for Predictive Analysis, Classification, and Feature Detection |
CN110610475B (en) * | 2019-07-07 | 2021-09-03 | 河北工业大学 | Visual defect detection method of deep convolutional neural network |
CN110555474B (en) * | 2019-08-28 | 2023-06-02 | 上海电力大学 | Photovoltaic panel fault detection method based on semi-supervised learning |
-
2020
- 2020-09-17 TW TW109132157A patent/TWI732683B/en active
Also Published As
Publication number | Publication date |
---|---|
TWI732683B (en) | 2021-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110031477B (en) | Bridge key component disease early warning system and method based on image monitoring data | |
CN108416294B (en) | Fan blade fault intelligent identification method based on deep learning | |
CN111275679B (en) | Image-based solar cell defect detection system and method | |
Aghaei et al. | Innovative automated control system for PV fields inspection and remote control | |
CN109743019B (en) | System and method for hot spot temperature prediction and hot spot positioning based on meteorological factors | |
CN110689011A (en) | Solar cell panel defect detection method of multi-scale combined convolution neural network | |
CN108492291B (en) | CNN segmentation-based solar photovoltaic silicon wafer defect detection system and method | |
CN114973032B (en) | Deep convolutional neural network-based photovoltaic panel hot spot detection method and device | |
Prabhakaran et al. | Deep Learning-Based Model for Defect Detection and Localization on Photovoltaic Panels. | |
CN113837994B (en) | Photovoltaic panel defect diagnosis method based on edge detection convolutional neural network | |
CN113485432A (en) | Photovoltaic power station electroluminescence intelligent diagnosis system and method based on unmanned aerial vehicle | |
CN112258490A (en) | Low-emissivity coating intelligent damage detection method based on optical and infrared image fusion | |
CN115908354A (en) | Photovoltaic panel defect detection method based on double-scale strategy and improved YOLOV5 network | |
CN114972225A (en) | Two-stage photovoltaic panel defect detection method based on deep learning | |
CN116310274A (en) | State evaluation method for power transmission and transformation equipment | |
TWI732683B (en) | An intelligent diagnosis system and method for defects of solar power module | |
TWI732682B (en) | An analyzed system and method for failures of solar power module | |
CN118053118B (en) | Comprehensive monitoring, evaluating and maintaining method and system for photovoltaic performance | |
Terzoglou et al. | Employing deep learning framework for improving solar panel defects using drone imagery | |
Özer et al. | An approach based on deep learning methods to detect the condition of solar panels in solar power plants | |
CN114627044A (en) | Solar photovoltaic module hot spot detection method based on deep learning | |
Chen et al. | Attention mechanism-based CNN for surface damage detection of wind turbine blades | |
CN110518881B (en) | Hot spot monitoring device and prediction method based on environmental meteorological factors | |
CN111539950A (en) | Solar panel defect detection system based on machine vision | |
CN116091472A (en) | Intelligent detection method for defects of photovoltaic module by fusing visible light and infrared images |