TW202213004A - Precision predictive and correction system of tool machine - Google Patents

Precision predictive and correction system of tool machine Download PDF

Info

Publication number
TW202213004A
TW202213004A TW109132567A TW109132567A TW202213004A TW 202213004 A TW202213004 A TW 202213004A TW 109132567 A TW109132567 A TW 109132567A TW 109132567 A TW109132567 A TW 109132567A TW 202213004 A TW202213004 A TW 202213004A
Authority
TW
Taiwan
Prior art keywords
sub
machine tool
error
industrial computer
parameters
Prior art date
Application number
TW109132567A
Other languages
Chinese (zh)
Other versions
TWI771757B (en
Inventor
覺文郁
謝東賢
謝東興
Original Assignee
國立虎尾科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立虎尾科技大學 filed Critical 國立虎尾科技大學
Priority to TW109132567A priority Critical patent/TWI771757B/en
Publication of TW202213004A publication Critical patent/TW202213004A/en
Application granted granted Critical
Publication of TWI771757B publication Critical patent/TWI771757B/en

Links

Images

Abstract

A system for predicting and compensating machine tool accuracy. It is equipped with an Internet of Things device in the sub-system of the machine tool, and the physical parameter of the sub-system is sensed by the Internet of Things device, and when the machine tool is performing processing simulation, the instrument quantity is detected by error Measure multiple errors of the sub-system, use an industrial computer to capture and receive the parameters of the industrial computer main controller during processing simulation, and cooperate with the aforementioned physical parameters and errors to build an artificial intelligence model using the parameters and errors Installed on the industrial computer, and then when the industrial computer captures and receives multiple controller parameters and several physical parameters of each sub-system in real time, the artificial intelligence model can be used to simulate the current simulation error and input the main controller to perform Error compensation achieves the effect of predicting and compensating the accuracy of the machine tool.

Description

工具機精度預測與補償系統Machine Tool Accuracy Prediction and Compensation System

本發明涉及一種人工智慧模型的補償系統,尤其涉及一種工具機精度預測與補償系統。The invention relates to a compensation system for an artificial intelligence model, in particular to a machine tool precision prediction and compensation system.

工具機監控系統有許多研究人員投入,主要研究方向是著重於主軸軸狀態監控、軸承狀態監控等元件的狀態監控,透過設備元件的狀態監控可以幫助維修人員於工具機發生異常狀態時,能夠快速辨識出需要維修的元件,對損壞的元件進行維修。Many researchers have invested in the machine tool monitoring system. The main research direction is to focus on the status monitoring of components such as spindle shaft status monitoring and bearing status monitoring. Through the status monitoring of equipment components, it can help maintenance personnel to quickly Identify components that require repair and repair damaged components.

然而前述監控設備元件狀態的手段,雖然可以讓維修人員快速地辨識出需要維修的元件,但由監控元件所獲得的資訊,卻無法幫現場加工人員判定該機台的精度是否足夠,運用於工件的加工時是否可以加工出符合工單需求公差的工件。However, although the aforementioned means of monitoring the status of equipment components can allow maintenance personnel to quickly identify components that need to be repaired, the information obtained by monitoring components cannot help on-site processing personnel to determine whether the accuracy of the machine is sufficient to apply to the workpiece. Whether it is possible to process workpieces that meet the tolerances required by the work order during processing.

由於現有工具機的監控系統主要著重於元件狀態的監控,因此無法對工具機的加工精度進行預測,也無法對其誤差進行補償。為此,本發明透過主控制器以及元件物理量的參數收集,配合工具機的誤差量測建立人工智慧模型,以人工智慧模型模擬的方式對工具機的精度進行監控與誤差的補償。Since the monitoring system of the existing machine tool mainly focuses on the monitoring of the state of the components, it cannot predict the machining accuracy of the machine tool, nor can it compensate for its error. Therefore, the present invention establishes an artificial intelligence model through the parameter collection of the main controller and the physical quantities of the components, and cooperates with the error measurement of the machine tool to monitor the precision of the machine tool and compensate for the error by means of artificial intelligence model simulation.

為達到上述的創作目的,本發明提供一種工具機精度預測與補償系統,運用於一工具機,該工具機設有一主控制器並且包括一個以上的次系統,該系統包括:In order to achieve the above-mentioned creative purpose, the present invention provides a machine tool accuracy prediction and compensation system, which is applied to a machine tool. The machine tool is provided with a main controller and includes more than one sub-system, and the system includes:

一個以上的物聯網裝置,各物聯網裝置安裝於各次系統並且包括數個感測器,以數個感測器感測各次系統的數個物理量參數;More than one IoT device, each IoT device is installed in each sub-system and includes several sensors, and the several sensors are used to sense several physical parameters of each sub-system;

一個以上的精度誤差檢測儀器,當該工具機進行多次加工模擬時,各精度誤差檢測儀器以離線或線上的方式分別量測該工具機各次系統的多個誤差量;以及One or more precision error detection instruments, when the machine tool performs multiple machining simulations, each precision error detection instrument measures the multiple error amounts of the machine tool's sub-systems in an offline or online manner; and

一工業電腦,該工業電腦接收各次系統的多個誤差量輸入,該工業電腦與該主控制器連接而擷取各次系統於加工模擬時的多個控制器參數,該工業電腦與各物聯網裝置訊號連接而接收各次系統於加工模擬時的數個物理量參數;該工業電腦設有一資料庫,該資料庫儲存各次系統的多個控制器參數、數個物理量參數以及多個誤差量,並運用該些參數與多個誤差量建立一對應各次系統的人工智慧模型,將此人工智慧模型安裝於該工業電腦;之後當該工業電腦即時擷取、接收各次系統的多個控制器參數以及數個物理量參數,輸入對應的各人工智慧模型模擬當前的一模擬誤差量,將各模擬誤差量輸入該主控制器進行誤差補償。An industrial computer, the industrial computer receives a plurality of error inputs of each sub-system, the industrial computer is connected with the main controller to capture a plurality of controller parameters of each sub-system during processing simulation, the industrial computer is connected with each object The networking device is connected with a signal to receive several physical parameters of each sub-system during processing simulation; the industrial computer is provided with a database, which stores a plurality of controller parameters, a plurality of physical parameters and a plurality of error quantities of each sub-system , and use these parameters and a plurality of error quantities to establish an artificial intelligence model corresponding to each sub-system, and install the artificial intelligence model on the industrial computer; then, when the industrial computer immediately captures and receives multiple controls of each sub-system Enter the corresponding artificial intelligence model to simulate a current simulation error, and input each simulation error into the main controller for error compensation.

進一步,本發明所述各物聯網裝置設有一物聯網無線模組,透過該物聯網無線模組與所述的數個感測器電連接;該工業電腦設有一無線模組,以該無線模組與各物聯網無線模組訊號連接。Further, each Internet of Things device of the present invention is provided with an Internet of Things wireless module, which is electrically connected to the plurality of sensors through the Internet of Things wireless module; the industrial computer is provided with a wireless module, and the wireless module The group is connected to the signal of each IoT wireless module.

更進一步,本發明所述工業電腦設有一精度補償控制介面,於該精度補償控制介面對應所述各次系統設定一誤差警戒閥值,當各模擬誤差量超出對應的誤差警戒閥值時,該工業電腦將該模擬誤差量輸入該主控制器進行誤差補償。Furthermore, the industrial computer of the present invention is provided with an accuracy compensation control interface, and an error warning threshold is set corresponding to each sub-system on the precision compensation control interface. When each analog error exceeds the corresponding error warning threshold, the The industrial computer inputs the analog error amount to the main controller for error compensation.

較佳的,本發明所述之工具機精度預測與補償系統,其中所述各物聯網裝置的數個感測器包括一溫度感測器、一振動感測器、一電流感測器,以及一形變感測器。Preferably, in the machine tool accuracy prediction and compensation system of the present invention, the sensors of each IoT device include a temperature sensor, a vibration sensor, a current sensor, and a deformation sensor.

進一步,本發明該工具機的次系統包括一主軸系統;配合量測該主軸系統的精度誤差檢測儀器是主軸溫升位移與偏擺檢測裝置;該主軸系統的多個控制器參數包括加工轉速、切削深度量、切削速度、供液壓力、泵浦馬達轉速,以及冷卻液溫度;該主軸系統的數個物理量參數包括溫度變化、振動程度、馬達驅動電流大小,以及結構變形量。Further, the sub-system of the machine tool of the present invention includes a main shaft system; the precision error detection instrument for measuring the main shaft system is a main shaft temperature rise displacement and yaw detection device; a plurality of controller parameters of the main shaft system include machining speed, Depth of cut, cutting speed, fluid supply pressure, pump motor speed, and coolant temperature; several physical parameters of the spindle system include temperature change, vibration level, motor drive current, and structural deformation.

進一步,本發明該工具機的次系統有四個並且分為一主軸系統、一進給系統、一旋轉軸系統以及一基座水平系統。配合量測該主軸系統的精度誤差檢測儀器是主軸溫升位移與偏擺檢測裝置;配合量測該進給系統的精度誤差檢測儀器是線性定位檢測裝置;配合量測該旋轉軸系統的精度誤差檢測儀器是旋轉軸定位檢測裝置;配合量測該基座水平系統的精度誤差檢測儀器是水平儀。Further, the sub-system of the machine tool of the present invention has four and is divided into a main shaft system, a feeding system, a rotating shaft system and a base leveling system. The instrument for measuring the accuracy and error of the spindle system is the spindle temperature rise, displacement and yaw detection device; the instrument for measuring the accuracy and error of the feed system is a linear positioning detection device; the instrument for measuring the accuracy and error of the rotating shaft system The detection instrument is a rotating shaft positioning detection device; the precision error detection instrument for measuring the leveling system of the base is a spirit level.

本發明使用時,利用該工具機進行多次加工模擬過程中所擷取的數個物理量參數、多個控制器參數以及量測各次系統加工的誤差量,以演算法建立在輸入物理量參數、控制器參數後即可模擬誤差量變化的人工智慧模型,並將該人工智慧模型安裝於工業電腦。When the present invention is used, several physical quantity parameters, a plurality of controller parameters captured in the process of multiple processing simulations by the machine tool, and the error amount of each system processing are measured, and the algorithm is established on the input physical quantity parameters, After the parameters of the controller can be simulated, the artificial intelligence model of the variation of the error amount can be simulated, and the artificial intelligence model can be installed on the industrial computer.

本發明的功效在於,在後續該工業電腦擷取、接收對應各次系統的物理量參數與控制器參數時,能透過對應的人工智慧模型模擬、推算出相對應的模擬誤差量,達到對工具機進行精度預測的功效,並且將該模擬誤差量輸入該工具機的主控制器時,能對該工具機的次系統進行誤差的補償,可確保該加工機的加工精度能保持在較佳的狀態。The effect of the present invention is that when the industrial computer subsequently captures and receives the physical quantity parameters and controller parameters corresponding to each sub-system, it can simulate and calculate the corresponding simulation error through the corresponding artificial intelligence model, so as to achieve the accuracy of the machine tool. The effect of precision prediction, and when the analog error amount is input to the main controller of the machine tool, the error can be compensated for the sub-system of the machine tool, which can ensure that the machining accuracy of the machine tool can be maintained in a better state .

為能詳細瞭解本發明的技術特徵及實用功效,並可依照說明書的內容來實施,進一步以如圖式所示的較佳實施例,詳細說明如下。In order to understand the technical features and practical effects of the present invention in detail, and to implement it according to the contents of the description, the preferred embodiments shown in the drawings are further described in detail as follows.

如圖1至圖3所示的較佳實施例,本發明提供一種工具機精度預測與補償系統,使用時是運用於一工具機10,該工具機10設有一主控制器11並且包括四個次系統12,該主控制器11是電腦數值控制器(CNC控制器),前述的四個次系統12分為一主軸系統121、一進給系統122、一旋轉軸系統123以及一基座水平系統124,該主軸系統121包括主軸與冷卻系統等元件,該進給系統122包括馬達、螺桿、線性滑軌、馬達座以及軸承座等元件,該旋轉軸系統123包括馬達、轉盤、渦桿與渦輪、齒輪以及軸承等元件,該基座水平系統124包括水平基座以及五大鑄件(頭部、立柱、工作台、鞍座以及底座)等元件;運用於前述工具機10的本發明系統包括:1 to 3, the present invention provides a machine tool accuracy prediction and compensation system, which is applied to a machine tool 10. The machine tool 10 is provided with a main controller 11 and includes four The sub-system 12, the main controller 11 is a computer numerical controller (CNC controller), the aforementioned four sub-systems 12 are divided into a spindle system 121, a feed system 122, a rotary axis system 123 and a base level System 124, the spindle system 121 includes components such as a spindle and a cooling system, the feed system 122 includes components such as a motor, a screw, a linear slide, a motor seat and a bearing seat, and the rotating shaft system 123 includes a motor, a turntable, a worm and a Elements such as turbines, gears and bearings, the base horizontal system 124 includes a horizontal base and five major castings (head, column, table, saddle and base) and other elements; The system of the present invention applied to the aforementioned machine tool 10 includes:

四個配合次系統12數量的物聯網裝置20,四個物聯網裝置20分別安裝於該主軸系統121、該進給系統122、該旋轉軸系統123以及該基座水平系統124,各物聯網裝置20包括一溫度感測器21、一振動感測器22、一電流感測器23、一形變感測器24,以及一與該些感測器電連接的物聯網無線模組25,該形變感測器24可以是應力或應變感測器;各物聯網裝置20的感測器用以感測該主軸系統121、該進給系統122、該旋轉軸系統123或該基座水平系統124的元件的數個物理量參數,例如該主軸系統121的主軸的溫度變化、振動程度、馬達驅動電流大小,以及結構變形量等物理量參數。Four IoT devices 20 matching the number of sub-systems 12, four IoT devices 20 are respectively installed on the spindle system 121, the feed system 122, the rotation axis system 123 and the base level system 124, each IoT device 20 includes a temperature sensor 21, a vibration sensor 22, a current sensor 23, a deformation sensor 24, and an IoT wireless module 25 electrically connected to these sensors. The deformation The sensor 24 may be a stress or strain sensor; the sensors of each IoT device 20 are used to sense elements of the spindle system 121 , the feed system 122 , the rotation axis system 123 or the base level system 124 Several physical quantity parameters, such as the temperature change of the main shaft of the main shaft system 121, the degree of vibration, the magnitude of the motor drive current, and the amount of structural deformation and other physical quantity parameters.

當工具機10運作時,各次系統12的元件會因溫度變化產生影響加工精度的形狀變化,各物聯網裝置20的溫度感測器21用於量測元件的溫度變化;各振動感測器22用於感測各次系統12的元件是否因為長時間運轉而產生磨耗、或接合面鬆脫等問題,造成異常的振動或晃動;當元件的負載不同時,馬達的驅動電流會有不同,各電流感測器23用於感測各次系統12的馬達驅動電流大小;各形變感測器24則是感測各次系統12的元件的結構變形量;分別安裝於該進給系統122、該旋轉軸系統123以及該基座水平系統124的各物聯網裝置20的感測器,依據前述不同感測器的作用量測與該工具機10加工精度有關的數個物理量參數。When the machine tool 10 operates, the components of each sub-system 12 will have a shape change that affects the machining accuracy due to temperature changes. The temperature sensors 21 of each IoT device 20 are used to measure the temperature changes of the components; each vibration sensor 22 is used to sense whether the components of each sub-system 12 are worn out due to long-term operation, or the joint surface is loose, resulting in abnormal vibration or shaking; when the load of the components is different, the driving current of the motor will be different, Each current sensor 23 is used to sense the motor driving current of each sub-system 12; each deformation sensor 24 is used to sense the structural deformation of the components of each sub-system 12; The sensors of each IoT device 20 of the rotating shaft system 123 and the base level system 124 measure several physical parameters related to the machining accuracy of the machine tool 10 according to the functions of the aforementioned different sensors.

四個配合次系統12數量的精度誤差檢測儀器30,四個精度誤差檢測儀器30分別用於量測各次系統12運作時的多個誤差量。配合量測該主軸系統121的精度誤差檢測儀器30是主軸溫升位移與偏擺檢測裝置;配合量測該進給系統122的精度誤差檢測儀器30是線性定位檢測裝置;配合量測該旋轉軸系統123的精度誤差檢測儀器30是旋轉軸定位檢測裝置;配合量測該基座水平系統124的精度誤差檢測儀器30是水平儀。當該工具機10以不同的加工條件進行多次的加工模擬時,各精度誤差檢測儀器30以離線或線上的方式分別量測該工具機10各次系統12,也就是該主軸系統121、該進給系統122、該旋轉軸系統123或該基座水平系統124的多個誤差量。There are four precision error detection instruments 30 corresponding to the number of the sub-systems 12 , and the four precision and error detection instruments 30 are respectively used to measure a plurality of errors when each sub-system 12 operates. The precision error detection instrument 30 that cooperates with the measurement of the spindle system 121 is a main shaft temperature rise displacement and deflection detection device; the precision error detection instrument 30 cooperates with the measurement of the feed system 122 is a linear positioning detection device; The precision error detection instrument 30 of the system 123 is a rotation axis positioning detection device; the precision error detection instrument 30 that cooperates with the measurement of the base leveling system 124 is a spirit level. When the machine tool 10 performs multiple machining simulations under different machining conditions, each precision error detection instrument 30 measures each sub-system 12 of the machine tool 10 in an offline or online manner, that is, the spindle system 121 , the Error quantities of the feed system 122 , the rotary axis system 123 or the base level system 124 .

一工業電腦40,該工業電腦40安裝有能與該工具機10的主控制器11連線的主控制器連線軟體,作為機聯網系統的智慧機上盒(SMB)與該工具機10連線,該工業電腦40設有一無線模組41、一資料庫42以及一顯示於顯示器的精度補償控制介面43。該工業電腦40以線下檔案傳輸的方式或以連接埠連接的線上傳輸方式,接收各精度誤差檢測儀器30於該工具機10進行多次加工模擬時所量測的各次系統12的多個誤差量輸入,該工業電腦40也透過連接埠與該主控制器11連線,並以該無線模組41與各物聯網裝置20的物聯網無線模組25訊號連接。An industrial computer 40, the industrial computer 40 is installed with the main controller connection software that can connect with the main controller 11 of the machine tool 10, and is connected to the machine tool 10 as a smart set-top box (SMB) of the machine tool 10. Line, the industrial computer 40 is provided with a wireless module 41, a database 42 and a precision compensation control interface 43 displayed on the display. The industrial computer 40 receives a plurality of measurements of each sub-system 12 measured by each precision error detection instrument 30 when the machine tool 10 performs multiple processing simulations in an offline file transmission mode or an online transmission mode connected by a port. For error input, the industrial computer 40 is also connected to the main controller 11 through a connection port, and the wireless module 41 is connected with the signal of the IoT wireless module 25 of each IoT device 20 via the wireless module 41 .

該工業電腦40與該主控制器11連接而擷取各次系統12於加工模擬時的多個控制器參數,該工業電腦40與各物聯網裝置20訊號連接而接收各次系統12於加工模擬時的數個物理量參數,將各次系統12的多個控制器參數、數個物理量參數以及多個誤差量儲存於該資料庫42,以各次系統12於加工模擬時的多個控制器參數、數個物理量參數以及多個誤差量作為數據資料,使用演算法例如數據資料少時以線性回歸分析,當數據資料量較多時以基因演算法或類神經演算法,建立一對應各次系統12的人工智慧模型,將此人工智慧模型安裝於該工業電腦40。The industrial computer 40 is connected to the main controller 11 to capture a plurality of controller parameters of each sub-system 12 during processing simulation, and the industrial computer 40 is connected to each IoT device 20 to receive signals from each sub-system 12 during processing simulation Several physical parameters of each sub-system 12 are stored in the database 42, and a plurality of controller parameters of each sub-system 12 during processing simulation are stored in the database 42 , Several physical parameters and multiple error quantities are used as data data, using algorithms such as linear regression analysis when the data data is small, and genetic algorithm or neural algorithm when the data data is large to establish a corresponding system. The artificial intelligence model of 12 is installed on the industrial computer 40 .

之後當該工業電腦40即時擷取、接收各次系統12的多個控制器參數以及數個物理量參數,輸入對應的各人工智慧模型模擬當前的一模擬誤差量,即可先於該精度補償控制介面43對應所述各次系統12設定一誤差警戒閥值,當各模擬誤差量超出對應的誤差警戒閥值時,該工業電腦40將該模擬誤差量輸入該主控制器11進行誤差補償。Afterwards, when the industrial computer 40 instantly captures and receives a plurality of controller parameters and a plurality of physical quantity parameters of each sub-system 12, and inputs the corresponding artificial intelligence model to simulate a current simulation error, the control can be compensated prior to the accuracy. The interface 43 sets an error warning threshold corresponding to each of the sub-systems 12 . When each analog error exceeds the corresponding error warning threshold, the industrial computer 40 inputs the analog error to the main controller 11 for error compensation.

前述以各人工智慧模型模擬各次系統12當前模擬誤差量的過程,以該主軸系統121的主軸的熱變形為例子:該工具機10運作時以熱所影響的精度誤差影響最深,熱會造成主軸伸長使刀具下刀的刀尖點與原本設定有誤差而影響加工精度。建立人工智慧模型時,是以安裝在該主軸系統121的物聯網裝置20來感測該主軸系統121的物理量參數,這些物理量參數包括該主軸系統121的主軸的溫度變化、振動程度、馬達驅動電流大小,以及結構變形量,並擷取該主控制器11的多個控制器參數,這些控制器參數包括加工轉速、切削深度量、切削速度、供液壓力、泵浦馬達轉速、泵浦馬達電流負載、冷卻液流量大小,以及冷卻液溫度(控制器參數的數量可以增減,僅使用其中對精度誤差影響較明顯的部分參數),配合精度誤差檢測儀器30(亦即主軸溫升位移與偏擺檢測裝置)量測刀尖點於工具機10於多次加工模擬時,於每一個軸向包括X軸、Y軸、Z軸的位移變化與角度偏擺變化的多個誤差量,運用演算法建立包含物理量參數、控制器參數與最終下刀的刀尖點變化關係的人工智慧模型。The aforementioned process of simulating the current simulation error amount of each sub-system 12 with each artificial intelligence model, taking the thermal deformation of the main shaft of the main shaft system 121 as an example: when the machine tool 10 operates, the precision error affected by heat is the most affected, and the heat will cause The extension of the spindle makes the tool nose point of the cutting tool deviate from the original setting, which affects the machining accuracy. When establishing the artificial intelligence model, the Internet of Things device 20 installed in the spindle system 121 is used to sense the physical parameters of the spindle system 121, and these physical parameters include the temperature change of the spindle of the spindle system 121, the degree of vibration, the motor drive current size, and structural deformation, and capture a number of controller parameters of the main controller 11, these controller parameters include machining speed, depth of cut, cutting speed, hydraulic pressure, pump motor speed, and pump motor current. Load, coolant flow rate, and coolant temperature (the number of controller parameters can be increased or decreased, and only some parameters that have a significant impact on the accuracy error are used), in conjunction with the accuracy error detection instrument 30 (that is, the spindle temperature rise displacement and deviation The pendulum detection device) measures the tool tip point on the machine tool 10 during multiple machining simulations, including multiple errors in the displacement changes of the X-axis, Y-axis, and Z-axis and the angular yaw change in each axis, and uses calculation The artificial intelligence model including the physical quantity parameters, controller parameters and the change of the final tool tip point is established by the method.

將對應主軸系統121的刀尖點變化的人工智慧模型安裝於工業電腦40後,透過該工業電腦40即時地擷取、接收主軸系統121相關的物理量參數、控制器參數,即可模擬、推算出當前的刀尖點位移變化的模擬誤差量,用於對該工具機10的主軸系統121的誤差進行補償。如此,在該工具機10運用本發明而後出廠時,不需要在異地使用主軸溫升位移與偏擺檢測裝置的精度誤差檢測儀器30量測該工具機10的主軸系統121,也能利用先前建立的人工智慧模型進行參數的模擬、推知同一工具機10的刀尖點變化,藉此進行加工精度的補償。After the artificial intelligence model corresponding to the change of the tool nose point of the spindle system 121 is installed on the industrial computer 40, the physical quantity parameters and controller parameters related to the spindle system 121 can be captured and received in real time through the industrial computer 40, and then simulated and calculated. The simulated error amount of the current tool nose point displacement change is used to compensate the error of the spindle system 121 of the machine tool 10 . In this way, when the machine tool 10 uses the present invention and then leaves the factory, it is not necessary to use the precision error detection instrument 30 of the spindle temperature rise displacement and yaw detection device to measure the spindle system 121 of the machine tool 10 in a different place. The artificial intelligence model performs parameter simulation and infers the change of the tool nose point of the same machine tool 10, thereby compensating the machining accuracy.

本發明除前述較佳實施例,是在各次系統12皆安裝有物聯網裝置20以外,也可以僅於其中一個或其他數量的次系統12安裝所述的物聯網裝置20,建立對應各次系統12的人工智慧模型,將對應不同次系統12的人工智慧模型安裝於工業電腦40,用於配合該工業電腦40擷取、接收的物理量參數、控制器參數來模擬、推算各次系統12的模擬誤差量,用於對該工具機10各次系統12加工精度的誤差補償。In addition to the above-mentioned preferred embodiment of the present invention, in addition to installing the IoT device 20 in each sub-system 12, the IoT device 20 can also be installed in only one or other number of sub-systems 12 to establish corresponding The artificial intelligence models of the system 12 are installed on the industrial computer 40 corresponding to the artificial intelligence models of different sub-systems 12, and are used to simulate and calculate the The analog error amount is used for error compensation of the machining accuracy of each sub-system 12 of the machine tool 10 .

以上所述僅為本發明的較佳實施例而已,並非用以限定本發明主張的權利範圍,凡其它未脫離本發明所揭示的精神所完成的等效改變或修飾,均應包括在本發明的申請專利範圍內。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the scope of rights claimed by the present invention. All other equivalent changes or modifications that do not depart from the spirit disclosed in the present invention shall be included in the present invention. within the scope of the patent application.

10:工具機 11:主控制器 12:次系統 121:主軸系統 122:進給系統 123:旋轉軸系統 124:基座水平系統 20:物聯網裝置 21:溫度感測器 22:振動感測器 23:電流感測器 24:形變感測器 25:物聯網無線模組 30:精度誤差檢測儀器 40:工業電腦 41:無線模組 42:資料庫 43:精度補償控制介面 10: Tool machine 11: Main Controller 12: Subsystem 121: Spindle system 122: Feeding system 123: Rotary axis system 124: Pedestal Leveling System 20: IoT Devices 21: Temperature sensor 22: Vibration sensor 23: Current sensor 24: Deformation sensor 25: IoT Wireless Module 30: Precision error detection instrument 40: Industrial Computer 41: Wireless Module 42:Database 43: Precision compensation control interface

圖1是本發明較佳實施例的系統方塊圖。 圖2是本發明較佳實施例物聯網裝置的方塊圖。 圖3是本發明較佳實施例檢測誤差量的方塊圖。 FIG. 1 is a system block diagram of a preferred embodiment of the present invention. FIG. 2 is a block diagram of an IoT device according to a preferred embodiment of the present invention. FIG. 3 is a block diagram of the detection error amount according to the preferred embodiment of the present invention.

10:工具機 10: Tool machine

11:主控制器 11: Main Controller

12:次系統 12: Subsystem

121:主軸系統 121: Spindle system

122:進給系統 122: Feeding system

123:旋轉軸系統 123: Rotary axis system

124:基座水平系統 124: Pedestal Leveling System

20:物聯網裝置 20: IoT Devices

30:精度誤差檢測儀器 30: Precision error detection instrument

40:工業電腦 40: Industrial Computer

41:無線模組 41: Wireless Module

42:資料庫 42:Database

43:精度補償控制介面 43: Precision compensation control interface

Claims (7)

一種工具機精度預測與補償系統,運用於一工具機,該工具機設有一主控制器並且包括一個以上的次系統,該系統包括: 一個以上的物聯網裝置,各物聯網裝置安裝於各次系統並且包括數個感測器,以數個感測器感測各次系統的數個物理量參數; 一個以上的精度誤差檢測儀器,當該工具機進行多次加工模擬時,各精度誤差檢測儀器以離線或線上的方式分別量測該工具機各次系統的多個誤差量;以及 一工業電腦,該工業電腦接收各次系統的多個誤差量輸入,該工業電腦與該主控制器連接而擷取各次系統於加工模擬時的多個控制器參數,該工業電腦與各物聯網裝置訊號連接而接收各次系統於加工模擬時的數個物理量參數;該工業電腦設有一資料庫,該資料庫儲存各次系統的多個控制器參數、數個物理量參數以及多個誤差量,並運用該些參數與多個誤差量建立一對應各次系統的人工智慧模型,將此人工智慧模型安裝於該工業電腦;之後當該工業電腦即時擷取、接收各次系統的多個控制器參數以及數個物理量參數,輸入對應的各人工智慧模型模擬當前的一模擬誤差量,將各模擬誤差量輸入該主控制器進行誤差補償。 A machine tool accuracy prediction and compensation system, applied to a machine tool, the machine tool is provided with a main controller and includes more than one sub-system, the system includes: More than one IoT device, each IoT device is installed in each sub-system and includes several sensors, and the several sensors are used to sense several physical parameters of each sub-system; One or more precision error detection instruments, when the machine tool performs multiple machining simulations, each precision error detection instrument measures the multiple error amounts of the machine tool's sub-systems in an offline or online manner; and An industrial computer, the industrial computer receives a plurality of error inputs of each sub-system, the industrial computer is connected with the main controller to capture a plurality of controller parameters of each sub-system during processing simulation, the industrial computer is connected with each object The networking device is connected with a signal to receive several physical parameters of each sub-system during processing simulation; the industrial computer is provided with a database, which stores a plurality of controller parameters, a plurality of physical parameters and a plurality of error quantities of each sub-system , and use these parameters and a plurality of error quantities to establish an artificial intelligence model corresponding to each sub-system, and install the artificial intelligence model on the industrial computer; then, when the industrial computer immediately captures and receives multiple controls of each sub-system Enter the corresponding artificial intelligence model to simulate a current simulation error, and input each simulation error into the main controller for error compensation. 如請求項1所述之工具機精度預測與補償系統,其中所述各物聯網裝置設有一物聯網無線模組,透過該物聯網無線模組與所述的數個感測器電連接;該工業電腦設有一無線模組,以該無線模組與各物聯網無線模組訊號連接。The machine tool accuracy prediction and compensation system according to claim 1, wherein each IoT device is provided with an IoT wireless module, and the IoT wireless module is electrically connected to the plurality of sensors; the The industrial computer is provided with a wireless module, and the wireless module is used for signal connection with the wireless modules of the Internet of Things. 如請求項2所述之工具機精度預測與補償系統,其中所述工業電腦設有一精度補償控制介面,於該精度補償控制介面對應所述各次系統設定一誤差警戒閥值,當各模擬誤差量超出對應的誤差警戒閥值時,該工業電腦將該模擬誤差量輸入該主控制器進行誤差補償。The machine tool accuracy prediction and compensation system according to claim 2, wherein the industrial computer is provided with an accuracy compensation control interface, and an error warning threshold is set corresponding to the respective sub-systems on the accuracy compensation control interface. When the amount exceeds the corresponding error warning threshold, the industrial computer inputs the analog error amount to the main controller for error compensation. 如請求項1至3中任一項所述之工具機精度預測與補償系統,其中所述各物聯網裝置的數個感測器包括一溫度感測器、一振動感測器、一電流感測器,以及一形變感測器。The machine tool accuracy prediction and compensation system according to any one of claims 1 to 3, wherein the sensors of each IoT device include a temperature sensor, a vibration sensor, a current sensor detector, and a deformation sensor. 如請求項4所述之工具機精度預測與補償系統,其中該工具機的次系統包括一主軸系統;配合量測該主軸系統的精度誤差檢測儀器是主軸溫升位移與偏擺檢測裝置;該主軸系統的多個控制器參數包括加工轉速、切削深度量、切削速度、供液壓力、泵浦馬達轉速,以及冷卻液溫度;該主軸系統的數個物理量參數包括溫度變化、振動程度、馬達驅動電流大小,以及結構變形量。The machine tool accuracy prediction and compensation system according to claim 4, wherein the sub-system of the machine tool includes a main shaft system; the precision error detection instrument for measuring the main shaft system is a main shaft temperature rise displacement and deflection detection device; the Several controller parameters of the spindle system include machining speed, depth of cut, cutting speed, hydraulic pressure, pump motor speed, and coolant temperature; several physical parameters of the spindle system include temperature change, vibration level, motor drive The magnitude of the current, and the amount of structural deformation. 如請求項4所述之工具機精度預測與補償系統,其中該工具機的次系統有四個並且分為一主軸系統、一進給系統、一旋轉軸系統以及一基座水平系統。The machine tool accuracy prediction and compensation system as claimed in claim 4, wherein the machine tool has four sub-systems and is divided into a spindle system, a feed system, a rotary axis system and a base level system. 如請求項6所述之工具機精度預測與補償系統,其中配合量測該主軸系統的精度誤差檢測儀器是主軸溫升位移與偏擺檢測裝置;配合量測該進給系統的精度誤差檢測儀器是線性定位檢測裝置;配合量測該旋轉軸系統的精度誤差檢測儀器是旋轉軸定位檢測裝置;配合量測該基座水平系統的精度誤差檢測儀器是水平儀。The machine tool accuracy prediction and compensation system according to claim 6, wherein the precision error detection instrument for measuring the spindle system is a spindle temperature rise displacement and yaw detection device; the precision error detection instrument for measuring the feed system is matched It is a linear positioning detection device; the precision error detection device for measuring the rotation axis system is a rotary axis positioning detection device; the precision error detection device for measuring the base level system is a spirit level.
TW109132567A 2020-09-21 2020-09-21 Precision predictive and correction system of tool machine TWI771757B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109132567A TWI771757B (en) 2020-09-21 2020-09-21 Precision predictive and correction system of tool machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109132567A TWI771757B (en) 2020-09-21 2020-09-21 Precision predictive and correction system of tool machine

Publications (2)

Publication Number Publication Date
TW202213004A true TW202213004A (en) 2022-04-01
TWI771757B TWI771757B (en) 2022-07-21

Family

ID=82197366

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109132567A TWI771757B (en) 2020-09-21 2020-09-21 Precision predictive and correction system of tool machine

Country Status (1)

Country Link
TW (1) TWI771757B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116224930A (en) * 2023-01-17 2023-06-06 扬州市职业大学(扬州开放大学) Processing control method and system for numerically controlled grinder product

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201008697A (en) * 2008-08-27 2010-03-01 Univ Nat Formosa Five-axis tool machine detection device
CN103424185B (en) * 2012-05-21 2015-10-28 敦宏科技股份有限公司 The detection system of automatic error correction and method
US11513477B2 (en) * 2015-03-16 2022-11-29 Rockwell Automation Technologies, Inc. Cloud-based industrial controller
KR20200037816A (en) * 2017-08-02 2020-04-09 스트롱 포스 아이오티 포트폴리오 2016, 엘엘씨 Methods and systems for detection in an industrial Internet of Things data collection environment with large data sets
CN111381563B (en) * 2018-12-29 2023-08-15 鸿富锦精密电子(成都)有限公司 Error correction method and system for processing equipment
TWI683194B (en) * 2019-04-22 2020-01-21 公準精密工業股份有限公司 Intelligent five-axis simultaneous multi-phase waterjet machining system
TWI704028B (en) * 2019-08-21 2020-09-11 漢翔航空工業股份有限公司 Tool path location compensation system based on offset of fixture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116224930A (en) * 2023-01-17 2023-06-06 扬州市职业大学(扬州开放大学) Processing control method and system for numerically controlled grinder product
CN116224930B (en) * 2023-01-17 2023-08-22 扬州市职业大学(扬州开放大学) Processing control method and system for numerically controlled grinder product

Also Published As

Publication number Publication date
TWI771757B (en) 2022-07-21

Similar Documents

Publication Publication Date Title
JP6542713B2 (en) Machine learning device, numerical controller and machine learning method for learning an abnormal load detection threshold
CN109799784A (en) Cutter Abrasion detecting device, its detection method and cutter wear compensation method
Lei et al. Double ballbar test for the rotary axes of five-axis CNC machine tools
CN105700473B (en) A kind of full workbench curved surface thermal error compensation method of precise numerical control machine
DE112015004920T5 (en) Computer-implemented method for partial analysis of a workpiece, which is processed by at least one CNC machine
WO2020155230A1 (en) Method for determining real-time thermal deformation attitude of spindle
CN110614537B (en) Adjustment necessity determining device
JP2009526296A (en) A system for calculating the wear state of machine tools
CN105890521B (en) Grating scale reliability test and method
CN105389455A (en) Cnc machine thermal growth characterization
Kovač et al. A review of machining monitoring systems
CN110889091B (en) Machine tool thermal error prediction method and system based on temperature sensitive interval segmentation
TWI771757B (en) Precision predictive and correction system of tool machine
CN111596612A (en) Numerical control machine tool thermal error compensation method and system based on workpiece dimension data
CN115398360A (en) Machine tool control and method for feature map-based error compensation on a machine tool
CN101823235B (en) Method for automatically detecting and controlling water cutting of arc-shaped thin plate spay nozzle cutting head in normal direction
WO2022043516A1 (en) System and method for instantaneous performance management of a machine tool
Mares et al. Robustness and portability of machine tool thermal error compensation model based on control of participating thermal sources
CN117170308A (en) Machine tool dynamic error compensation method and system based on instruction sequence analysis
CN108919746B (en) Thermal error testing and analyzing method of rotary swing table
US20200103845A1 (en) Tool monitoring system and tool monitoring method
Blaser Adaptive learning control for thermal error compensation
Spaan Software error compensation of machine tools
KR20180054354A (en) Adaptive Control Method For Vibration Of Machine Tool
Ma et al. High Precision Gear Manufacturing with three Thermal Error Measuring Methods and Performance Comparison