TW202212574A - Production of oligosaccharide mixtures by a cell - Google Patents

Production of oligosaccharide mixtures by a cell Download PDF

Info

Publication number
TW202212574A
TW202212574A TW110129387A TW110129387A TW202212574A TW 202212574 A TW202212574 A TW 202212574A TW 110129387 A TW110129387 A TW 110129387A TW 110129387 A TW110129387 A TW 110129387A TW 202212574 A TW202212574 A TW 202212574A
Authority
TW
Taiwan
Prior art keywords
udp
oligosaccharides
cell
cells
oligosaccharide
Prior art date
Application number
TW110129387A
Other languages
Chinese (zh)
Inventor
蘇菲 艾薩爾特
喬立 畢普瑞茲
彼得 卡斯曼
湯馬士 狄康
諾希卡 蘭諾
葛特 彼得斯
克里斯多夫 凡德沃
安妮里斯 法克特潤
Original Assignee
比利時商因比奧斯公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP20190205.3A external-priority patent/EP3954769A1/en
Application filed by 比利時商因比奧斯公司 filed Critical 比利時商因比奧斯公司
Publication of TW202212574A publication Critical patent/TW202212574A/en

Links

Abstract

The present invention is in the technical field of synthetic biology and metabolic engineering. More particularly, the present invention is in the technical field of fermentation of metabolically engineered cells. The present invention provides a method for the production of a mixture of at least two different oligosaccharides by a cell as well as the purification of at least one of said oligosaccharides from the cultivation. In addition, the present invention provides a method for the production of a mixture of at least two different oligosaccharides by a metabolically engineered cell as well as the purification of at least one of said oligosaccharides from the cultivation.

Description

藉由細胞製造寡醣混合物Making Oligosaccharide Mixtures by Cells

本發明處於合成生物學及代謝工程改造之技術領域。更特定言之,本發明處於經代謝工程改造之細胞之醱酵之技術領域。本發明提供一種用於藉由細胞製造至少兩種不同寡醣之混合物以及自培養純化該等寡醣中之至少一者的方法。另外,本發明提供一種用於藉由經代謝工程改造之細胞製造至少兩種不同寡醣之混合物以及自該培養純化該等寡醣中之至少一者的方法。The present invention is in the technical field of synthetic biology and metabolic engineering. More particularly, the present invention is in the technical field of fermentation of metabolically engineered cells. The present invention provides a method for producing by cells a mixture of at least two different oligosaccharides and purifying at least one of the oligosaccharides from culture. Additionally, the present invention provides a method for producing a mixture of at least two different oligosaccharides by metabolically engineered cells and purifying at least one of the oligosaccharides from the culture.

常常以與蛋白質及脂質之糖結合形式存在的寡醣參與許多生命現象,諸如與受精、胚胎發生、發炎、癌轉移及宿主病原體黏附之發生及進展相關的分化、發育及生物識別過程。寡醣亦可以未結合聚醣形式存在於體液及人乳中,其中寡醣亦調節重要的發育及免疫過程(Bode, Early Hum. Dev. 1-4 (2015);Reily等人, Nat. Rev. Nephrol. 15, 346-366 (2019);Varki, Glycobiology 27, 3-49 (2017))。由於寡醣之廣泛功能譜,對寡醣混合物存在巨大科學及商業關注。然而,寡醣混合物之可用性受到限制,因為生產依賴於化學或化學酶合成或依賴於自天然來源諸如動物乳汁之純化。化學合成方法為費力且耗時的,且由於所涉及之大量步驟,該等方法難以擴大規模。使用醣基轉移酶之酶促途徑提供優於化學合成之許多優勢。醣基轉移酶催化糖部分自活化核苷酸-糖供體轉移至醣或非醣受體上(Coutinho等人, J. Mol. Biol. 328 (2003) 307-317)。此等醣基轉移酶為生物技術人員合成寡醣之來源且用於(化學)酶促途徑以及基於細胞之生產系統中。然而,醣基轉移酶之立體特異性及區位選擇性仍為難對付的挑戰。另外,化學酶促途徑需要原位再生核苷酸-糖供體。寡醣之細胞生產需要嚴格控制足夠水準之核苷酸-糖供體在互補醣基轉移酶附近之時空可用性。由於此等困難,當前方法通常使得合成單一寡醣而非寡醣混合物。Oligosaccharides, often present in sugar-bound forms to proteins and lipids, are involved in many biological phenomena such as differentiation, development and biorecognition processes associated with the initiation and progression of fertilization, embryogenesis, inflammation, cancer metastasis and host pathogen adhesion. Oligosaccharides can also be present in body fluids and human milk as unconjugated glycans, where oligosaccharides also regulate important developmental and immune processes (Bode, Early Hum. Dev. 1-4 (2015); Reily et al., Nat. Rev. . Nephrol. 15, 346-366 (2019); Varki, Glycobiology 27, 3-49 (2017)). Due to the broad functional spectrum of oligosaccharides, there is great scientific and commercial interest in oligosaccharide mixtures. However, the availability of oligosaccharide mixtures is limited because production relies on chemical or chemoenzymatic synthesis or on purification from natural sources such as animal milk. Chemical synthesis methods are laborious and time-consuming, and these methods are difficult to scale up due to the large number of steps involved. Enzymatic routes using glycosyltransferases offer many advantages over chemical synthesis. Glycosyltransferases catalyze the transfer of sugar moieties from activated nucleotide-sugar donors to sugar or non-sugar acceptors (Coutinho et al., J. Mol. Biol. 328 (2003) 307-317). These glycosyltransferases are the source of the synthesis of oligosaccharides by biotechnologists and are used in (chemical) enzymatic pathways as well as in cell-based production systems. However, the stereospecificity and regioselectivity of glycosyltransferases remain a formidable challenge. Additionally, chemoenzymatic pathways require in situ regeneration of nucleotide-sugar donors. Cellular production of oligosaccharides requires tight control of the spatiotemporal availability of sufficient levels of nucleotide-sugar donors in the vicinity of complementary glycosyltransferases. Due to these difficulties, current methods often result in the synthesis of single oligosaccharides rather than mixtures of oligosaccharides.

本發明之一目標為提供工具及方法,藉助於該等工具及方法,包含至少兩種不同寡醣之寡醣混合物可以高效、時間效益及成本效益之方式且必要時以連續製程藉由細胞,較佳單一細胞製造。An object of the present invention is to provide tools and methods by means of which oligosaccharide mixtures comprising at least two different oligosaccharides can be passed through cells in an efficient, time-efficient and cost-effective manner and if necessary in a continuous process, Preferably single cell manufacture.

根據本發明,此目標及其他目標藉由提供用於製造包含至少兩種不同寡醣之寡醣混合物的細胞及方法來達成,其中該細胞經代謝工程改造以用於製造該等寡醣。According to the present invention, this and other objects are achieved by providing cells and methods for producing oligosaccharide mixtures comprising at least two different oligosaccharides, wherein the cells are metabolically engineered for producing the oligosaccharides.

出人意料地,現已發現,有可能藉由單一細胞製造包含至少兩種不同寡醣之寡醣混合物。本發明提供一種用於製造包含至少兩種不同寡醣之寡醣混合物的方法。該方法包含以下步驟:提供表現至少一種醣基轉移酶且能夠合成作為用於該醣基轉移酶之供體的核苷酸-糖之細胞,其中該細胞與至少兩種用於該寡醣製造之受體一起培養,其中該等受體中之任一者為雙醣或寡醣。本發明亦提供自該寡醣混合物分離該等所製造之寡醣中之至少一者之方法。此外,本發明提供一種經代謝工程改造以用於製造包含至少兩種不同寡醣之寡醣混合物的細胞。Surprisingly, it has now been found that it is possible to produce oligosaccharide mixtures comprising at least two different oligosaccharides from a single cell. The present invention provides a method for producing an oligosaccharide mixture comprising at least two different oligosaccharides. The method comprises the steps of providing a cell expressing at least one glycosyltransferase and capable of synthesizing a nucleotide-sugar as a donor for the glycosyltransferase, wherein the cell and at least two are used in the manufacture of the oligosaccharide receptors, wherein either of the receptors is a disaccharide or an oligosaccharide. The present invention also provides methods of isolating at least one of the produced oligosaccharides from the oligosaccharide mixture. Furthermore, the present invention provides a cell metabolically engineered for the manufacture of an oligosaccharide mixture comprising at least two different oligosaccharides.

定義definition

用於本說明書中以描述本發明之字組及其各種實施方式應不僅以其通常所定義含義之意義來理解,而且應包括在通常所定義含義之範疇以外之在本說明書中特定定義的結構、材料或作用。因此,若元件在本說明書之上下文中可理解為包括多於一個含義,則其在申請專利範圍中之使用必須理解為由本說明書及字組自身支援之一般至所有可能含義。The word group used in this specification to describe the present invention and its various embodiments should be understood not only in the sense of its commonly defined meaning, but also to include structures specifically defined in this specification outside the scope of the commonly defined meaning , material or effect. Thus, if an element can be understood in the context of this specification to include more than one meaning, its use within the scope of the claim must be understood to mean from the ordinary to all possible meanings supported by this specification and the word group itself.

本文所揭示之本發明之各種實施方式及實施方式之態樣應不僅以本說明書中特定描述之次序及情形來理解,而且包括任何次序及其任何組合。每當情形需要時,將認為以單數形式使用之所有字組包括複數形式,且反之亦然。除非另外定義,否則本文中所用之所有技術及科學術語一般具有與本發明所屬技術領域中具有通常知識者通常所理解相同之含義。一般而言,本文所使用之命名法及本文所描述的細胞培養中之實驗步驟、分子遺傳學、有機化學及核酸化學及雜合為所屬領域中熟知且常用之命名法、細胞培養中之實驗步驟、分子遺傳學、有機化學及核酸化學及雜合。使用標準技術進行核酸及肽合成。一般而言,純化步驟係根據製造商說明書進行。Various implementations and aspects of implementations of the invention disclosed herein are to be construed not only in the order and circumstances specifically described in this specification, but also in any order and any combination thereof. Whenever the situation requires, all words used in the singular will be considered to include the plural, and vice versa. Unless otherwise defined, all technical and scientific terms used herein generally have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein and the experimental procedures in cell culture, molecular genetics, organic chemistry and nucleic acid chemistry and hybridization described herein are those well known and commonly used in the art, experiments in cell culture Procedures, Molecular Genetics, Organic Chemistry and Nucleic Acid Chemistry and Hybridization. Nucleic acid and peptide synthesis is performed using standard techniques. Generally, purification steps are carried out according to the manufacturer's instructions.

在本說明書中,已揭示本發明之實施方式,且儘管採用特定術語,但該等術語僅以描述性意義使用且並非出於限制本發明之範圍之目的,本發明之範圍闡述於以下申請專利範圍中。必須理解,已僅出於示例之目的闡述所說明之實施方式,且不應視為限制本發明。熟習此項技術者將顯而易見,改變、其他實施方式、改良、細節及用途可根據本文中本發明之文字及精神且在本發明之範圍內進行,本發明之範圍僅由申請專利範圍限制,根據包括等同原則之專利法予以解釋。在以下申請專利範圍中,僅為便於描述,提供用以指明申請專利範圍步驟之參考字元,且該等參考字元並不意欲暗示用於執行該等步驟之任何特定次序。In this specification, embodiments of the present invention have been disclosed, and although specific terms are used, these terms are used in a descriptive sense only and not for the purpose of limiting the scope of the present invention, which is set forth in the following patent applications in the range. It must be understood that the illustrated embodiments have been presented for purposes of example only, and should not be construed as limiting the invention. It will be apparent to those skilled in the art that changes, other embodiments, improvements, details and uses can be made in accordance with the letter and spirit of the invention herein and within the scope of the invention, which is limited only by the scope of the patent application, according to Patent law including the doctrine of equivalents is explained. In the following claims, reference characters used to designate claims steps are provided for ease of description only, and such reference characters are not intended to imply any particular order for performing the steps.

在此文件及其申請專利範圍中,動詞「包含(to comprise)」及其詞形變化形式以其非限制性意義使用,意謂包括該字組之後的項目,但不排除未具體提及之項目。另外,動詞「由……組成」可由「基本上由……組成」替換,意謂 如本文所定義之組成物可包含除具體鑑別之組分外的(多種)額外組分,該(等)額外組分不改變本發明之獨特特徵。另外,除非上下文明確要求存在一個元件且僅存在一個元件,否則藉由不定冠詞「一(a/an)」提及一元件並不排除存在多於一個元件的可能性。因此不定冠詞「一」通常意謂「至少一個(at least one)」。在整個申請案中,除非另外明確陳述,否則冠詞「一(a及an)」較佳由「至少兩個(at least two)」置換,更佳由「至少三個(at least three)」置換,甚至更佳由「至少四個(at least four)」置換,甚至更佳由「至少五個(at least five)」置換,甚至更佳由「至少六個(at least six)」置換,最佳由「至少兩個(at least two)」置換。 In this document and the scope of its patent application, the verb "to comprise" and its inflections are used in their non-limiting sense, meaning to include items following the word group, but not to exclude items not specifically mentioned project. Additionally, the verb "consisting of" may be replaced by "consisting essentially of", meaning that a composition as defined herein may comprise additional component(s) in addition to the specifically identified component(s), the(s) The additional components do not alter the unique characteristics of the present invention. In addition, reference to an element by the indefinite article "a (a/an)" does not preclude the presence of more than one element unless the context clearly requires the presence of one and only one element. Therefore the indefinite article "a" usually means "at least one". Throughout this application, unless expressly stated otherwise, the articles "a and an" are preferably replaced by "at least two", more preferably "at least three" , even better by "at least four", even better by "at least five", even better by "at least six", and most Preferably replaced by "at least two".

除非另外指示,否則如本文中鑑別之各實施方式可組合在一起。本說明書中所提及之所有公開案、專利及專利申請案均以引用的方式併入本文中,其引用程度如同特定及個別地指示將各個別公開案、專利或專利申請案以引用之方式併入一般。優先權申請案,包括EP20190198、EP20190200、EP20190204及EP20190205之全部內容,亦以引用之方式併入本文中,其引用程度如同特定及個別地指示將該等優先權申請案以引用之方式併入一般。Various embodiments as identified herein may be combined together unless otherwise indicated. All publications, patents and patent applications mentioned in this specification are incorporated herein by reference to the same extent as if each individual publication, patent or patent application was specifically and individually indicated by reference Incorporated into general. The priority applications, including the entire contents of EP20190198, EP20190200, EP20190204 and EP20190205, are also incorporated herein by reference to the same extent as if such priority applications were specifically and individually indicated to be incorporated by reference .

根據本發明,術語「聚核苷酸(polynucleotide)」一般係指可為未修飾RNA或DNA或經修飾RNA或DNA之任何聚核糖核苷酸或聚去氧核糖核苷酸。「聚核苷酸」包括(但不限於)單股及雙股DNA;為單股及雙股區或單股、雙股及三股區之混合物的DNA;單股及雙股RNA;及為單股及雙股區之混合物的RNA;包含可為單股或更通常雙股或三股區、或單股及雙股區之混合物的DNA及RNA的雜合分子。另外,如本文所用,術語「聚核苷酸」係指包含RNA或DNA或RNA及DNA兩者的三股區。此類區中之股可來自相同分子或來自不同分子。該等區可包括該等分子中之一或多者之全部,但更通常僅涉及具有該等分子中之一些之區。三螺旋區之分子中之一者常為寡核苷酸。如本文所用,術語「聚核苷酸」亦包括含有一或多個經修飾鹼基之如上文所描述之DNA或RNA。因此,具有出於穩定性或出於其他原因進行修飾之主鏈的DNA或RNA為根據本發明之「聚核苷酸」。此外,包含不常見鹼基(諸如肌苷)或經修飾鹼基(諸如三苯甲基化鹼基)的DNA或RNA應理解為由術語「聚核苷酸」覆蓋。應瞭解,已對DNA及RNA進行多種修飾,此用於所屬技術領域中具有通常知識者已知之許多適用目的。術語「聚核苷酸」在本文使用時涵蓋此類經化學、酶促或代謝修飾之形式之聚核苷酸,以及病毒及細胞(包括(例如)簡單及複雜細胞)所特有之DNA及RNA之化學形式。術語「聚核苷酸」亦涵蓋通常稱為寡核苷酸之短聚核苷酸。According to the present invention, the term "polynucleotide" generally refers to any polyribonucleotide or polydeoxyribonucleotide that may be unmodified RNA or DNA or modified RNA or DNA. "Polynucleotide" includes, but is not limited to, single- and double-stranded DNA; DNA that is a mixture of single- and double-stranded regions or a mixture of single-, double- and triple-stranded regions; single- and double-stranded RNA; RNA that is a mixture of stranded and double-stranded regions; hybrid molecules comprising DNA and RNA that may be single-stranded or more commonly double-stranded or triple-stranded regions, or a mixture of single-stranded and double-stranded regions. Additionally, as used herein, the term "polynucleotide" refers to a three-stranded region comprising RNA or DNA or both RNA and DNA. Strands in such regions can be from the same molecule or from different molecules. The regions may include all of one or more of the molecules, but more generally refer to regions having only some of the molecules. One of the molecules of the triple helix region is often an oligonucleotide. As used herein, the term "polynucleotide" also includes DNA or RNA as described above containing one or more modified bases. Thus, DNA or RNA having a backbone modified for stability or for other reasons is a "polynucleotide" according to the present invention. Furthermore, DNA or RNA comprising uncommon bases (such as inosine) or modified bases (such as tritylated bases) should be understood to be covered by the term "polynucleotide". It will be appreciated that various modifications have been made to DNA and RNA for many suitable purposes known to those of ordinary skill in the art. The term "polynucleotide" as used herein encompasses such chemically, enzymatically or metabolically modified forms of polynucleotides, as well as DNA and RNA specific to viruses and cells, including, for example, simple and complex cells the chemical form. The term "polynucleotide" also encompasses short polynucleotides commonly referred to as oligonucleotides.

「多肽(polypeptide)」係指包含兩個或更多個藉由肽鍵或經修飾肽鍵彼此接合之胺基酸的任何肽或蛋白質。「多肽」係指短鏈(通常稱為肽、寡肽及寡聚物)及長鏈(通常稱為蛋白質)。多肽可含有除20種基因編碼之胺基酸以外之胺基酸。「多肽」包括藉由自然過程(諸如加工及其他轉譯後修飾)以及藉由化學修飾技術修飾之多肽。此類修飾充分描述於基本文本及更詳細的專論中以及大量研究文獻中,且其為所屬技術領域中具有通常知識者所熟知。相同類型之修飾可在既定多肽中若干位點處以相同或不同程度存在。此外,既定多肽可含有多種類型之修飾。修飾可出現在多肽中之任何地方,包括肽主鏈、胺基酸側鏈及胺基端或羧基端。修飾包括例如:乙醯化、醯化、ADP-核糖基化、醯胺化、黃素之共價連接、血基質部分之共價連接、核苷酸或核苷酸衍生物之共價連接、脂質或脂質衍生物之共價連接、磷脂酸肌醇之共價連接、交聯、環化、雙硫鍵形成、去甲基化、共價交聯之形成、焦麩胺酸之形成、甲醯化、γ-羧化、醣基化、GPI錨定形成、羥基化、碘化、甲基化、豆蔻醯化、氧化、蛋白水解加工、磷酸化、異戊烯化、外消旋化、脂質連接、硫酸化、麩胺酸殘基之γ-羧化、羥基化及ADP-核糖基化、硒化、轉移RNA介導之向蛋白質添加胺基酸(諸如精胺醯化)及泛素化。多肽可為分支鏈的或在存在或不存在分支情況下為環狀的。環狀、分支鏈及分支鏈環狀多肽可由轉譯後自然過程產生,且亦可藉由完全合成方法製備。"Polypeptide" refers to any peptide or protein comprising two or more amino acids joined to each other by peptide bonds or modified peptide bonds. "Polypeptide" refers to both short chains (often referred to as peptides, oligopeptides and oligomers) and long chains (often referred to as proteins). Polypeptides may contain amino acids other than the 20 gene-encoded amino acids. "Polypeptide" includes polypeptides modified by natural processes, such as processing and other post-translational modifications, as well as by chemical modification techniques. Such modifications are well described in the basic text and in more detailed monographs, as well as in the extensive research literature, and are well known to those of ordinary skill in the art. Modifications of the same type may be present to the same or varying degrees at several sites in a given polypeptide. Furthermore, a given polypeptide may contain various types of modifications. Modifications can occur anywhere in a polypeptide, including the peptide backbone, amino acid side chains, and amino or carboxyl termini. Modifications include, for example: acetylation, acetylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of blood matrix moieties, covalent attachment of nucleotides or nucleotide derivatives, lipids or Covalent attachment of lipid derivatives, covalent attachment of phosphatidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of pyroglutamic acid, methylation , γ-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristylation, oxidation, proteolytic processing, phosphorylation, prenylation, racemization, lipid linkage , sulfation, gamma-carboxylation of glutamic acid residues, hydroxylation and ADP-ribosylation, selenylation, transfer RNA-mediated addition of amino acids to proteins (such as spermidine) and ubiquitination. Polypeptides may be branched or cyclic with or without branching. Cyclic, branched, and branched cyclic polypeptides can arise from natural post-translational processes, and can also be prepared by fully synthetic methods.

如本文所用,術語「編碼多肽之聚核苷酸(polynucleotide encoding a polypeptide)」涵蓋包括編碼本發明多肽之序列的聚核苷酸。術語亦涵蓋如下聚核苷酸,其包括編碼多肽之單個連續區或非連續區(例如間雜有整合噬菌體或插入序列或編輯)以及亦可含有編碼序列及/或非編碼序列之其他區。As used herein, the term "polynucleotide encoding a polypeptide" encompasses polynucleotides comprising sequences encoding the polypeptides of the present invention. The term also encompasses polynucleotides that include single contiguous or non-contiguous regions encoding polypeptides (eg interspersed with integrated phage or insert sequences or edits) and other regions that may also contain coding and/or non-coding sequences.

「經分離(isolated)」意謂自天然狀態「人工(by the hand of man)」改變,亦即若其存在於自然界中,則其自其原始環境改變或移除或兩者。舉例而言,天然存在於活生物體中之聚核苷酸或多肽未「經分離」,但與其天然狀態之共存物質分離的相同聚核苷酸或多肽「經分離」,如該術語在本文中所用。類似地,如本文所用之術語「合成(synthetic)」序列意謂已以合成方式產生且不直接自天然來源分離之任何序列。如本文所用之術語「合成」意謂任何合成產生之序列且不直接自天然來源分離。"Isolated" means altered "by the hand of man" from its natural state, that is, if it exists in nature, it is altered or removed or both from its original environment. For example, a polynucleotide or polypeptide that naturally occurs in a living organism is not "isolated," but the same polynucleotide or polypeptide that is separated from coexisting materials in its natural state is "isolated," as that term is used herein. used in. Similarly, the term "synthetic" sequence as used herein means any sequence that has been synthetically produced and not isolated directly from a natural source. The term "synthetic" as used herein means any synthetically produced sequence and not isolated directly from a natural source.

如本文中提及細胞或宿主細胞所用,術語「重組(recombinant)」或「轉殖基因(transgenic)」或「經代謝工程改造(metabolically engineered)」或「經遺傳修飾(genetically modified)」可互換使用,且指示細胞複製異源核酸,或表現由異源核酸(亦即,「對該細胞外來(foreign to said cell)」之序列或「對該細胞中之該位置或環境外來(foreign to said location or environment in said cell)」之序列)編碼之肽或蛋白質。此類細胞描述為經至少一種異源或外源基因轉型,或描述為藉由引入至少一種異源或外源基因轉型。經代謝工程改造或重組或轉殖基因細胞可含有在天然(非重組)形式之細胞內未發現之基因。重組細胞亦可含有天然形式之細胞中所發現之基因,其中基因藉由人工手段修飾且再引入至細胞中。該等術語亦涵蓋含有對於細胞而言內源之核酸的細胞,該核酸已經修飾或其表現或活性已經修飾而無需自該細胞移除該核酸;此類修飾包括藉由基因置換、啟動子置換;位點特異性突變;及相關技術獲得之修飾。相應地,「重組多肽(recombinant polypeptide)」係藉由重組細胞產生之多肽。如本文所用,「異源序列(heterologous sequence)」或「異源核酸(heterologous nucleic acid)」係源自對特定細胞而言外來的來源(例如來自不同物種),或若來自相同來源則自其原始形式或基因體中之位置進行修飾之序列或核酸。因此,與啟動子可操作地連接之異源核酸係來自與衍生啟動子之來源不同的來源,或若來自相同來源,則自其原始形式或基因體中之位置進行修飾。異源序列可例如藉由轉染、轉型、結合或轉導穩定引入至宿主微生物細胞之基因體中,其中可視細胞及待引入之序列而定來應用技術。各種技術為所屬領域中具有通常知識者所已知且例如揭示於Sambrook等人, Molecular Cloning: A Laboratory Manual, 第2版, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989)中。如在本發明之上下文中所用之術語「突變(mutant)」細胞或微生物係指經遺傳修飾之細胞或微生物。As used herein in reference to a cell or host cell, the terms "recombinant" or "transgenic" or "metabolically engineered" or "genetically modified" are interchangeable used, and instructs the cell to replicate a heterologous nucleic acid, or to exhibit a sequence from a heterologous nucleic acid (i.e., a sequence "foreign to said cell" or "foreign to said location or environment in the cell" location or environment in said cell)" sequence) encoded peptide or protein. Such cells are described as being transformed by, or by introducing at least one heterologous or exogenous gene. Metabolically engineered or recombinant or transgenic cells may contain genes not found in the native (non-recombinant) form of the cell. Recombinant cells may also contain the gene found in the cell in its native form, wherein the gene has been modified by artificial means and reintroduced into the cell. These terms also encompass cells containing nucleic acid endogenous to the cell that has been modified or whose expression or activity has been modified without removing the nucleic acid from the cell; such modifications include by gene replacement, promoter replacement ; site-specific mutations; and related art-obtained modifications. Accordingly, a "recombinant polypeptide" is a polypeptide produced by recombinant cells. As used herein, a "heterologous sequence" or "heterologous nucleic acid" is derived from a source foreign to a particular cell (eg, from a different species), or from the same source if from the same A sequence or nucleic acid that has been modified from its original form or position in the genome. Thus, a heterologous nucleic acid operably linked to a promoter is from a source different from the source from which the promoter was derived, or if from the same source, modified from its original form or location in the gene body. Heterologous sequences can be stably introduced into the genome of a host microbial cell, eg, by transfection, transformation, conjugation or transduction, wherein techniques are applied depending on the cell and the sequence to be introduced. Various techniques are known to those of ordinary skill in the art and are disclosed, for example, in Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989). The term "mutant" cell or microorganism as used in the context of the present invention refers to a genetically modified cell or microorganism.

在本發明之上下文內,術語「內源(endogenous)」係指任何作為細胞之天然部分且存在於其在細胞染色體中之天然位置處且與作用於其表現之天然控制機制相比,表現之控制尚未改變的聚核苷酸、多肽或蛋白質序列。術語「外源(exogenous)」係指任何來源於研究下之細胞的外部且不來源於細胞之天然部分或不存在於其在細胞染色體或質體中之天然位置處的聚核苷酸、多肽或蛋白質序列。In the context of the present invention, the term "endogenous" refers to anything that is a natural part of the cell and is present at its natural location in the cell's chromosomes and that behaves in contrast to the natural control mechanisms acting on its expression. Control unaltered polynucleotide, polypeptide or protein sequences. The term "exogenous" refers to any polynucleotide, polypeptide that is derived from the outside of the cell under study and not from a natural part of the cell or in its natural location in the cell's chromosome or plastid or protein sequence.

當提及聚核苷酸、基因、核酸、多肽或酶使用時,術語「異源」係指來自宿主生物體物種之外的源或源自宿主生物體物種之外的源的聚核苷酸、基因、核酸、多肽或酶。相比之下,本文使用「同源」聚核苷酸、基因、核酸、多肽或酶指示源自宿主生物體物種之聚核苷酸、基因、核酸、多肽或酶。當提及用於維持或操縱基因序列之基因調節序列或輔助核酸序列(例如,啟動子、5'非轉譯區、3'非轉譯區、聚A添加序列、內含子序列、剪接位點、核糖體結合位點、內部核糖體進入序列、基因體同源區、重組位點等)時,「異源」意謂調節序列或輔助序列不與該調節或輔助核酸序列在構築體、基因體、染色體或游離基因體中與其並置之基因天然相關。因此,可操作地連接於在自然狀態下(亦即以非基因工程改造生物體之基因體形式)不可與啟動子操作連接之基因的啟動子在本文中稱為「異源啟動子(heterologous promoter)」,即使該啟動子可源自與其連接之基因相同的物種(或在一些情況下,源自相同的生物體)。When used in reference to a polynucleotide, gene, nucleic acid, polypeptide or enzyme, the term "heterologous" refers to a polynucleotide derived from a source other than the host organism species or derived from a source other than the host organism species , gene, nucleic acid, polypeptide or enzyme. In contrast, the use of "homologous" polynucleotides, genes, nucleic acids, polypeptides or enzymes herein refers to polynucleotides, genes, nucleic acids, polypeptides or enzymes derived from a species of host organism. When referring to gene regulatory sequences or helper nucleic acid sequences (eg, promoters, 5' untranslated regions, 3' untranslated regions, poly A addition sequences, intron sequences, splice sites, ribosome binding sites, internal ribosome entry sequences, gene body homology regions, recombination sites, etc.), "heterologous" means that a regulatory or auxiliary sequence is not associated with the regulatory or auxiliary nucleic acid sequence in a construct, gene body , chromosomes or episomal bodies with which the genes are naturally associated. Accordingly, a promoter operably linked to a gene that is not operably linked to a promoter in its natural state (ie, in the form of the gene body of a non-genetically engineered organism) is referred to herein as a "heterologous promoter" )" even though the promoter may be derived from the same species (or in some cases, the same organism) as the gene to which it is linked.

術語蛋白質或酶之「經修飾活性(modified activity)」與蛋白質或酶之活性相比於該蛋白質或酶之野生型(亦即天然)活性的變化有關。該經修飾活性可為與蛋白質或酶之野生型活性相比,該蛋白質或酶之消除、減弱、降低或延遲之活性,但亦可為與蛋白質或酶之野生型活性相比,該蛋白質或酶之加速或增強之活性。蛋白質或酶之經修飾活性藉由該蛋白質或酶之經修飾表現獲得或藉由蛋白質或酶之經修飾(亦即突變)形式之表現獲得。酶之經修飾活性進一步關於酶之表觀米氏常數(apparent Michaelis constant)Km及/或表觀最大速度(Vmax)之修飾。The term "modified activity" of a protein or enzyme relates to a change in the activity of a protein or enzyme compared to the wild-type (ie, native) activity of the protein or enzyme. The modified activity can be the activity of the protein or enzyme that is eliminated, attenuated, reduced or delayed compared to the wild-type activity of the protein or enzyme, but can also be the activity of the protein or enzyme compared to the wild-type activity of the protein or enzyme. The accelerated or enhanced activity of an enzyme. The modified activity of a protein or enzyme is obtained by modified expression of the protein or enzyme or by the expression of a modified (ie, mutated) form of the protein or enzyme. The modified activity of the enzyme further relates to the modification of the apparent Michaelis constant Km and/or the apparent maximum velocity (Vmax) of the enzyme.

術語基因之「經修飾表現(modified expression)」係關於與在經編碼蛋白質之生產過程之任何階段中該基因之野生型表現相比的表現之變化。該經修飾表現相比於野生型為較低或較高表現,其中在內源基因之情況下,術語「較高表現(higher expression)」亦定義為該基因之「過度表現(overexpression)」,或在野生型菌株中不存在之異源基因的情況下,定義為「表現(expression)」。較低表現或減少之表現係藉助於所屬技術領域中具有通常知識者之常見熟知技術獲得(諸如使用siRNA、CrispR、CrispRi、核糖開關、重組工程、同源重組、ssDNA突變誘發、RNAi、miRNA、asRNA、突變基因、剔除基因、轉位子突變誘發、……),該等技術用於以使得基因不太能夠(亦即與功能性野生型基因相比統計上顯著『不太能夠』)或完全不能(諸如剔除基因)產生功能性最終產物之方式改變基因。如本文所用之術語「核糖開關(riboswitch)」定義為信使RNA之一部分,該信使RNA摺疊成藉由干擾轉譯而阻斷表現之錯綜結構。效應分子之結合誘導構形變化,允許轉錄後之調節表現。隨後以使得如上文所描述獲得較低表現之方式改變所關注之基因,亦可藉由改變轉錄單元、啟動子、非轉譯區、核糖體結合位點、夏因達爾加諾(Shine Dalgarno)序列或轉錄終止子獲得較低表現。較低表現或減少之表現可例如藉由使啟動子序列中之一或多個鹼基對突變或將啟動子序列完全改為具有與野生型相比更低之表現強度的持續型啟動子或引起經調節之表現的可誘導型啟動子或引起經調節之表現的可抑制型啟動子來獲得。過度表現或表現係藉助於所屬技術領域中具有通常知識者之常見熟知技術獲得(諸如使用人工轉錄因子、重新設計啟動子序列、核糖體工程改造、在真染色質處引入或再引入表現模組、使用高複本數之質體),其中該基因為「表現卡匣(expression cassette)」之一部分,該表現卡匣係關於其中存在啟動子序列、非轉譯區序列(含有核糖體結合序列、夏因達爾加諾或科紮克(Kozak)序列)、編碼序列及視情況選用之轉譯終止子且引起功能性活性蛋白質之表現的任何序列。該表現為持續型或調節性的。The term "modified expression" of a gene refers to the change in expression compared to the wild-type expression of the gene at any stage of the production process of the encoded protein. The modified expression is lower or higher than the wild-type expression, wherein in the case of an endogenous gene, the term "higher expression" is also defined as "overexpression" of that gene, Or in the case of a heterologous gene not present in the wild-type strain, it is defined as "expression". Lower expression or reduced expression is obtained by means of common well-known techniques of those of ordinary skill in the art (such as the use of siRNA, CrispR, CrispRi, riboswitches, recombineering, homologous recombination, ssDNA mutagenesis, RNAi, miRNA, asRNA, mutated gene, knockout gene, transposon mutagenesis, ...), these techniques are used to render the gene less capable (i.e. statistically significantly "less capable" compared to a functional wild-type gene) or completely A gene cannot be altered in such a way that a functional end product is produced, such as by knocking out the gene. The term "riboswitch" as used herein is defined as a portion of a messenger RNA that folds into an intricate structure that blocks expression by interfering with translation. Binding of effector molecules induces conformational changes allowing post-transcriptional regulatory expression. The gene of interest is then altered in such a way that lower performance is obtained as described above, also by altering transcription units, promoters, untranslated regions, ribosome binding sites, Shine Dalgarno sequences or transcription terminators for lower performance. Lower expression or reduced expression can be achieved, for example, by mutating one or more base pairs in the promoter sequence or completely changing the promoter sequence to a persistent promoter with a lower expression strength compared to the wild type or An inducible promoter that causes regulated expression or a repressible promoter that causes regulated expression can be obtained. Overexpression or expression is obtained by means of common well-known techniques to those of ordinary skill in the art (such as the use of artificial transcription factors, redesign of promoter sequences, ribosome engineering, introduction or reintroduction of expression modules at eukaryotic , using high-copy-count plastids), in which the gene is part of an "expression cassette" related to the presence of promoter sequences, non-translated region sequences (containing ribosome-binding sequences, summer Indalgano or Kozak sequences), coding sequences, and optionally translation terminators, and any sequence that results in the expression of a functionally active protein. The manifestations are persistent or accommodative.

術語「持續型表現(constitutive expression)」定義為在某些生長條件下不受除RNA聚合酶之亞單元以外之轉錄因子(例如,如σ 70、σ 54之細菌δ因子或相關σ因子;及與RNA聚合酶核心酶共締合之酵母粒線體RNA聚合酶特異性因子MTF1)調節的表現。此類轉錄因子之非限制性實例為大腸桿菌中之CRP、LacI、ArcA、Cra、IclR,或釀酒酵母( Saccharomyces cerevisiae)中之Aft2p、Crz1p、Skn7,或枯草芽孢桿菌( B. subtilis)中之DeoR、GntR、Fur。此等轉錄因子結合於特異性序列上且可阻斷或增強在某些生長條件下之表現。RNA聚合酶為用於自DNA模板合成RNA之催化機構。RNA聚合酶結合特異性序列以例如經由原核宿主中之δ因子或經由酵母中之MTF1使轉錄起始。持續型表現在不需要誘導或抑制之情況下提供恆定表現量。 The term "constitutive expression" is defined as being free under certain growth conditions from transcription factors other than subunits of RNA polymerase (eg, bacterial delta factors such as σ70 , σ54 , or related σ factors; and Expression of the yeast mitochondrial RNA polymerase-specific factor (MTF1) regulation by co-association with the RNA polymerase core enzyme. Non-limiting examples of such transcription factors are CRP, LacI, ArcA, Cra, IclR in E. coli, or Aft2p, Crzlp, Skn7 in Saccharomyces cerevisiae , or B. subtilis DeoR, GntR, Fur. These transcription factors bind to specific sequences and can block or enhance performance under certain growth conditions. RNA polymerase is the catalytic mechanism for the synthesis of RNA from DNA templates. RNA polymerase binds specific sequences to initiate transcription, eg, via delta factor in prokaryotic hosts or via MTF1 in yeast. Persistent expression provides a constant amount of expression without the need for induction or inhibition.

術語「調節性表現(regulated expression)」定義為除在某些生長條件下的RNA聚合酶之次單元(例如細菌δ因子)外,受轉錄因子調節的表現。此類轉錄因子之實例描述於上文。通常表現調節藉助於誘導物或抑制物獲得,該誘導物或抑制物諸如(但不限於)IPTG、阿拉伯糖、鼠李糖、岩藻糖、別位乳糖(allo-lactose),或pH變化,或溫度變化,或碳耗乏或受體或所產生之產物或化學抑制。The term "regulated expression" is defined as an expression regulated by transcription factors other than subunits of RNA polymerase (eg bacterial delta factor) under certain growth conditions. Examples of such transcription factors are described above. Usually performance modulation is obtained by means of an inducer or inhibitor such as (but not limited to) IPTG, arabinose, rhamnose, fucose, allo-lactose, or pH changes, or temperature changes, or carbon depletion or receptors or resulting products or chemical inhibition.

術語「藉由天然誘導物之表現(expression by a natural inducer)」定義為僅在宿主之某一天然條件(例如生物體在分娩中或在泌乳期間)下表現之基因的兼性或調節表現,作為對環境變化(例如包括(但不限於)激素、熱、冷、pH變化、光、氧化或滲透應激/信號傳導)之反應,或取決於發育階段之位置或該宿主細胞之細胞週期,包括(但不限於)細胞凋亡及自體吞噬。The term "expression by a natural inducer" is defined as a facultative or regulatory expression of a gene that is expressed only under a certain natural condition of the host (eg, an organism during parturition or during lactation), As a response to environmental changes (e.g. including, but not limited to, hormones, heat, cold, pH changes, light, oxidative or osmotic stress/signaling), or depending on the location of the developmental stage or the cell cycle of the host cell, Including (but not limited to) apoptosis and autophagy.

術語「在化學處理後之誘導型表現(inducible expression upon chemical treatment)」定義為僅在用化學誘導物或抑制劑處理後表現之基因的兼性或調節表現,其中該誘導物及抑制劑包含(但不限於)醇(例如乙醇、甲醇)、碳水化合物(例如葡萄糖、半乳糖、甘油、乳糖、阿拉伯糖、鼠李糖、岩藻糖、別位乳糖)、金屬離子(例如鋁、銅、鋅)、氮、磷酸鹽、IPTG、乙酸鹽、甲酸鹽、二甲苯。術語「控制序列(control sequence)」係指藉由細胞轉錄及轉譯系統識別之序列,允許聚核苷酸序列轉錄及轉譯成多肽。此類DNA序列因此為在特定細胞或生物體中表現可操作地連接之編碼序列所必需的。此類控制序列可為(但不限於)啟動子序列、核糖體結合序列、夏因達爾加諾序列、科紮克序列、轉錄終止子序列。適用於原核生物之控制序列例如包括啟動子、視情況選用之操縱序列及核糖體結合位點。已知真核細胞利用啟動子、聚腺苷酸化信號及強化子。若前序列或分泌性前導序列之DNA表現為參與多肽分泌之前蛋白,則其可與該多肽之DNA可操作地連接;若啟動子或強化子影響編碼序列之轉錄,則其與該序列可操作地連接;或若核糖體結合位點影響編碼序列之轉錄,則其與該序列可操作地連接;或若核糖體結合位點經定位以便有助於轉譯,則其與編碼序列可操作地連接。該等控制序列可另外經外部化學物質,諸如(但不限於)IPTG、阿拉伯糖、乳糖、別位乳糖(allo-lactose)、鼠李糖或岩藻糖經由誘導型啟動子或經由誘導或抑制該聚核苷酸轉錄或轉譯成多肽之基因迴路控制。The term "inducible expression upon chemical treatment" is defined as a facultative or regulated expression of a gene that is expressed only upon treatment with a chemical inducer or inhibitor, wherein the inducer and inhibitor comprise ( but not limited to) alcohols (eg ethanol, methanol), carbohydrates (eg glucose, galactose, glycerol, lactose, arabinose, rhamnose, fucose, allolactose), metal ions (eg aluminium, copper, zinc) ), nitrogen, phosphate, IPTG, acetate, formate, xylene. The term "control sequence" refers to a sequence recognized by the cellular transcription and translation system that allows transcription and translation of a polynucleotide sequence into a polypeptide. Such DNA sequences are thus necessary for the expression of the operably linked coding sequence in a particular cell or organism. Such control sequences can be, but are not limited to, promoter sequences, ribosome binding sequences, Schyndalgarno sequences, Kozak sequences, transcription terminator sequences. Control sequences suitable for use in prokaryotes include, for example, promoters, optional operator sequences and ribosome binding sites. Eukaryotic cells are known to utilize promoters, polyadenylation signals and enhancers. The DNA of a presequence or a secretory leader sequence is operably linked to the DNA of a polypeptide if it appears to be involved in the secretion of a pre-protein; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence or operably linked to a coding sequence if the ribosome binding site affects the transcription of the sequence; or operably linked to the coding sequence if the ribosome binding site is positioned so as to facilitate translation . These control sequences may additionally be via inducible promoters or via induction or repression by external chemicals such as, but not limited to, IPTG, arabinose, lactose, allo-lactose, rhamnose or fucose The gene circuit controls the transcription or translation of the polynucleotide into a polypeptide.

一般而言,「可操作地連接(operably linked)」意謂所連接之DNA序列為連續的且在分泌性前導序列之情況下,為連續的且處於閱讀階段(reading phase)。然而,強化子不必為連續的。In general, "operably linked" means that the DNA sequences being linked are contiguous and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers need not be contiguous.

如本文所用之術語「蛋白質之經修飾表現(modified expression of a protein)」係指與野生型(亦即天然)蛋白質相比,i)內源蛋白之較高表現或過度表現,ii)異源蛋白之表現或iii)具有較高活性之變異蛋白的表現及/或過度表現。The term "modified expression of a protein" as used herein refers to i) a higher expression or overexpression of an endogenous protein, ii) a heterologous protein, as compared to a wild-type (ie, native) protein expression of the protein or iii) expression and/or overexpression of a variant protein with higher activity.

如本文所用,術語「乳腺細胞(mammary cell)」大體上係指乳腺上皮細胞、乳腺上皮管腔細胞或哺乳動物上皮肺泡細胞或其任何組合。如本文所用,術語「乳腺樣細胞(mammary-like cell)」大體上係指具有類似於(或實質上類似於)天然乳腺細胞但衍生自非乳腺細胞來源之表型/基因型的細胞。此類乳腺樣細胞可經工程改造以移除至少一個非所需遺傳組件及/或包括乳腺細胞所特有之至少一個預定遺傳構築體。乳腺樣細胞之非限制性實例可包括乳腺上皮樣細胞、乳腺上皮管腔樣細胞、呈現乳腺細胞譜系之細胞之一或多個特徵的非乳腺細胞或其任何組合。乳腺樣細胞之其他非限制性實例可包括具有與天然乳腺細胞類似(或實質上類似)之表型,或更特定言之與天然乳腺上皮細胞類似(或實質上類似)之表型的細胞。具有表型或展現至少一種與天然乳腺細胞或乳腺上皮細胞類似(或實質上與其類似)之特徵的細胞可包含展現天然或已經工程改造以能夠表現至少一種乳汁組分之細胞(例如衍生於乳腺細胞譜系或非乳腺細胞譜系)。As used herein, the term "mammary cell" generally refers to mammary epithelial cells, mammary epithelial luminal cells, or mammalian epithelial alveolar cells, or any combination thereof. As used herein, the term "mammary-like cell" generally refers to cells having a phenotype/genotype that is similar (or substantially similar) to natural breast cells, but derived from sources other than mammary cells. Such mammary gland-like cells can be engineered to remove at least one undesired genetic component and/or include at least one predetermined genetic construct characteristic of mammary gland cells. Non-limiting examples of mammary-like cells can include mammary epithelioid cells, mammary epithelial lumen-like cells, non-mammary cells exhibiting one or more characteristics of cells of the mammary cell lineage, or any combination thereof. Other non-limiting examples of mammary-like cells may include cells having a phenotype similar (or substantially similar) to native breast cells, or more specifically, similar (or substantially similar) to native mammary epithelial cells. Cells having a phenotype or exhibiting at least one characteristic similar (or substantially similar) to native breast cells or mammary epithelial cells can include cells that exhibit native or have been engineered to be capable of expressing at least one milk component (e.g., derived from mammary glands). cell lineage or non-mammary cell lineage).

如本文所用,術語「非乳腺細胞(non-mammary cell)」一般可包括任何非乳腺譜系之細胞。在本發明之上下文中,非乳腺細胞可為能夠經工程改造以表現至少一種乳汁組分之任何哺乳動物細胞。此類非乳腺細胞之非限制性實例包括肝細胞、血球、腎細胞、臍帶血細胞、上皮細胞、表皮細胞、肌細胞、纖維母細胞、間葉細胞或其任何組合。在一些情況下,分子生物學及基因體編輯技術可經工程改造以同時消除、沉默或減弱無數基因。As used herein, the term "non-mammary cell" may generally include cells of any non-mammary lineage. In the context of the present invention, a non-mammary gland cell can be any mammalian cell capable of being engineered to express at least one milk component. Non-limiting examples of such non-mammary cells include hepatocytes, blood cells, kidney cells, umbilical cord blood cells, epithelial cells, epidermal cells, muscle cells, fibroblasts, mesenchymal cells, or any combination thereof. In some cases, molecular biology and genome editing techniques can be engineered to eliminate, silence or attenuate numerous genes simultaneously.

在整個本申請案中,除非另外明確地陳述,否則表述「能夠……<動詞>(capable of…<verb>)」及「能夠……<動詞>(capable to…<verb>)」較佳地用該動詞之主動語態替換,且反之亦然。舉例而言,表述「能夠表現(capable of expressing)」較佳地用「表現(express)」替換,且反之亦然,亦即「表現」較佳地用「能夠表現」替換。Throughout this application, unless expressly stated otherwise, the expressions "capable of...<verb>" and "capable to...<verb>" are preferred is replaced by the active voice of the verb, and vice versa. For example, the expression "capable of expressing" is preferably replaced with "express", and vice versa, ie "capable of expressing" is preferably replaced with "capable of expressing".

如本文所用,術語「變異體(variant)」為分別與參考聚核苷酸或多肽不同但保持基本特性之聚核苷酸或多肽。聚核苷酸之典型變異體與另一參考聚核苷酸在核苷酸序列方面不同。變異體之核苷酸序列之變化可能會或可能不會改變由參考聚核苷酸編碼之多肽之胺基酸序列。如下文所論述,核苷酸變化可能在參考序列編碼之多肽中引起胺基酸取代、添加、缺失、融合及截斷。多肽之典型變異體與另一參考多肽在胺基酸序列方面不同。通常,差異係有限的,以致參考多肽之序列與變異體之序列總體上十分相似且在許多區中一致。藉由呈任何組合之一或多個取代、添加、缺失,變異體與參考多肽可在胺基酸序列方面不同。取代或插入之胺基酸殘基可為或可不為由遺傳密碼編碼之殘基。聚核苷酸或多肽之變異體可為天然產生的,諸如對偶基因變異體,或其可為未已知為天然產生的變異體。聚核苷酸及多肽之非天然產生變異體可藉由突變誘發技術、藉由直接合成及藉由所屬領域中具有通常知識者已知之其他重組方法製得。As used herein, the term "variant" is a polynucleotide or polypeptide that differs from a reference polynucleotide or polypeptide, respectively, but retains essential properties. A typical variant of a polynucleotide differs in nucleotide sequence from another reference polynucleotide. Changes in the nucleotide sequence of the variant may or may not alter the amino acid sequence of the polypeptide encoded by the reference polynucleotide. As discussed below, nucleotide changes may result in amino acid substitutions, additions, deletions, fusions and truncations in the polypeptide encoded by the reference sequence. A typical variant of a polypeptide differs in amino acid sequence from another reference polypeptide. Usually, the differences are limited such that the sequence of the reference polypeptide and the sequence of the variant are generally quite similar and identical in many regions. A variant and a reference polypeptide may differ in amino acid sequence by one or more substitutions, additions, deletions, in any combination. A substituted or inserted amino acid residue may or may not be a residue encoded by the genetic code. Variants of polynucleotides or polypeptides can be naturally-occurring, such as dual gene variants, or they can be variants not known to be naturally-occurring. Non-naturally occurring variants of polynucleotides and polypeptides can be prepared by mutagenesis techniques, by direct synthesis, and by other recombinant methods known to those of ordinary skill in the art.

如本文所用之術語「功能同源物(functional homolog)」描述具有序列相似性(換言之,同源性)且亦共有至少一種功能性特徵(諸如生物化學活性)的彼等分子(Altenhoff等人 ,PLoS Comput. Biol. 8 (2012) e1002514)。功能同源物典型地將產生類似但未必相同程度之相同特徵。功能上同源之蛋白質產生相同特徵,其中藉由一種同源物產生之定量量測值為另一者之至少10%;更典型地,為由原始分子產生之定量量測值的至少20%,在約30%與約40%之間;例如在約50%與約60%之間;在約70%與約80%之間;或在約90%與約95%之間;在約98%與約100%之間,或大於100%。因此,在分子具有酶活性的情況下,功能同源物將具有與原始酶相比以上所列舉之酶活性百分比。在分子為DNA結合分子(例如多肽)的情況下,與原始分子相比,如藉由結合分子之重量所量測,同源物將具有結合親和力之以上所列舉百分比。 The term "functional homolog" as used herein describes those molecules that share sequence similarity (in other words, homology) and also share at least one functional characteristic (such as biochemical activity) (Altenhoff et al ., PLoS Comput. Biol. 8 (2012) e1002514). Functional homologues will typically produce the same characteristics to a similar, but not necessarily the same, degree. Functionally homologous proteins produce the same characteristics, wherein the quantitative measure produced by one homologue is at least 10% of the quantitative measure produced by the other; more typically, at least 20% of the quantitative measure produced by the original molecule , between about 30% and about 40%; for example, between about 50% and about 60%; between about 70% and about 80%; or between about 90% and about 95%; % and about 100%, or greater than 100%. Thus, where the molecule has enzymatic activity, the functional homologue will have the enzymatic activity percentages listed above compared to the original enzyme. In the case of a molecule that is a DNA binding molecule (eg, a polypeptide), the homologue will have binding affinity above the recited percentages compared to the original molecule, as measured by the weight of the binding molecule.

功能同源物及參考多肽可為天然存在之多肽,且序列相似性可歸因於趨同或趨異進化事件。功能同源物有時被稱為異種同源物,其中「異種同源物(ortholog)」係指作為另一物種中所參考之基因或蛋白質之功能等效物的同源基因或蛋白質。Functional homologs and reference polypeptides can be naturally occurring polypeptides, and sequence similarity can be due to convergent or divergent evolutionary events. Functional homologs are sometimes referred to as heterologs, where "ortholog" refers to a homologous gene or protein that is the functional equivalent of a referenced gene or protein in another species.

異種同源基因為藉由最後共同祖先之單一基因之垂直傳遞產生的不同物種中之同源基因,其中基因及其主要功能為保守性的。同源基因為由共同祖先在兩個物種中遺傳之基因。Heterologous genes are homologous genes in different species that arise by vertical transmission of a single gene from the last common ancestor, where the genes and their major functions are conserved. Homologous genes are genes inherited in two species by a common ancestor.

當參考來自給定物種之胺基酸或核苷酸/核酸序列使用時,術語「異種同源物」係指來自不同物種之相同胺基酸或核苷酸/核酸序列。應理解,兩個序列在其經由線性傳遞衍生自共同祖先序列時為彼此之異種同源物,及/或就其序列及其生物功能兩者而言在其他方面為緊密相關的。異種同源物通常將具有高度序列一致性但可能不(且通常將不)共有100%序列一致性。When used with reference to an amino acid or nucleotide/nucleic acid sequence from a given species, the term "heterolog" refers to the same amino acid or nucleotide/nucleic acid sequence from a different species. It will be understood that two sequences are xenologs of each other when they are derived from a common ancestral sequence through linear transmission, and/or are otherwise closely related with respect to both their sequence and their biological function. Heterologs will typically have a high degree of sequence identity but may not (and usually will not) share 100% sequence identity.

同種同源基因為藉由基因複製事件產生之同源基因。同種同源基因通常屬於相同物種,但此並非必需的。同種同源物可分裂成同種內同源物(in-paralog)(在物種形成事件之後出現的同種同源對)及同種外同源物(out-paralog)(在物種形成事件之前出現的同種同源對)。在物種之間,同種外同源物為由於在物種形成之前複製而存在於兩個生物體之間的同種同源物對。在物種內,同種外同源物為存在於同一生物體中但其複製事件發生在物種形成之後的同種同源物對。同種同源物典型地具有相同或類似功能。A homologous gene is a homologous gene produced by a gene duplication event. Homologous genes usually belong to the same species, but this is not required. Homologs can be split into in-paralogs (homologous pairs that appear after the speciation event) and out-paralogs (the same species that appear before the speciation event) homologous pair). Between species, an exolog is a pair of homologs that exists between two organisms due to replication prior to speciation. Within a species, an exolog is a pair of homologs that exist in the same organism but whose replication event occurs after speciation. Homologs typically have the same or similar function.

可藉由分析核苷酸及多肽序列比對來鑑別功能同源物。舉例而言,對核苷酸或多肽序列之資料庫執行查詢可鑑別所關注多肽之同源物,如生物質調節多肽、醣基轉移酶、參與核苷酸-活化糖合成之蛋白質或膜運輸蛋白。序列分析可涉及分別使用生物質調節多肽、醣基轉移酶、參與核苷酸-活化糖合成之蛋白質或膜運輸蛋白之胺基酸序列作為參考序列對非冗餘資料庫之BLAST、Reciprocal BLAST或PSI-BLAST分析。在一些情況下,胺基酸序列係自核苷酸序列推導出。典型地,資料庫中具有超過40%序列一致性之彼等多肽為進一步評估是否適合分別作為生物質調節多肽、醣基轉移酶、參與核苷酸-活化糖合成之蛋白質或膜運輸蛋白的候選物。胺基酸序列相似性允許保守胺基酸取代,諸如一個疏水性殘基經另一疏水性殘基取代或一個極性殘基經另一極性殘基取代或一個酸性胺基酸經另一酸性胺基酸取代或一個鹼性胺基酸經另一鹼性胺基酸取代等。較佳地,藉由保守取代,意指以下組合,諸如甘胺酸藉由丙胺酸取代,且反之亦然;纈胺酸、異白胺酸及白胺酸藉由甲硫胺酸取代,且反之亦然;天冬胺酸藉由麩胺酸取代,且反之亦然;天冬醯胺藉由麩醯胺酸取代,且反之亦然;絲胺酸藉由蘇胺酸取代,且反之亦然;離胺酸藉由精胺酸取代,且反之亦然;半胱胺酸藉由甲硫胺酸取代,且反之亦然;及苯丙胺酸及酪胺酸藉由色胺酸取代,且反之亦然。視需要,可進行此類候選物之人工檢驗以便限制待進一步評估之候選物之數目。人工檢驗可藉由選擇似乎具有存在於生產力調節多肽中之域(例如保守功能域)之彼等候選物來進行。如本文所用之術語「醣基轉移酶(glycosyltransferase)」係指能夠催化糖部分自活化供體分子轉移至特異性受體分子,從而形成糖苷鍵之酶。由此合成之寡醣可具有直鏈類型或分支鏈類型且可含有多個單醣建構嵌段。已描述使用核苷酸二磷酸-糖、核苷酸單磷酸-糖及磷酸糖及相關蛋白將醣基轉移酶分類成不同的基於序列之家族(Campbell等人, Biochem. J. 326, 929-939 (1997))且可在CAZy(碳水化合物活性酶)網站(www.cazy.org)上獲得。Functional homologues can be identified by analysis of nucleotide and polypeptide sequence alignments. For example, performing a query on a database of nucleotide or polypeptide sequences can identify homologues of the polypeptide of interest, such as biomass-modulating polypeptides, glycosyltransferases, proteins involved in nucleotide-activated sugar synthesis, or membrane trafficking protein. Sequence analysis may involve BLAST, Reciprocal BLAST, or Reciprocal BLAST against non-redundant databases using the amino acid sequences of biomass-modulating polypeptides, glycosyltransferases, proteins involved in nucleotide-activated sugar synthesis, or membrane transport proteins, respectively, as reference sequences. PSI-BLAST analysis. In some cases, the amino acid sequence is deduced from the nucleotide sequence. Typically, those polypeptides in the database with more than 40% sequence identity are candidates for further evaluation as biomass-modulating polypeptides, glycosyltransferases, proteins involved in nucleotide-activated sugar synthesis, or membrane transport proteins, respectively. thing. Amino acid sequence similarity allows for conservative amino acid substitutions, such as substitution of one hydrophobic residue by another hydrophobic residue or substitution of one polar residue by another polar residue or substitution of one acidic amino acid by another acidic amine base acid substitution or substitution of one basic amino acid with another basic amino acid, etc. Preferably, by conservative substitution, is meant a combination of, such as glycine by alanine, and vice versa; valine, isoleucine, and leucine by methionine, and Vice versa; aspartic acid is replaced by glutamic acid and vice versa; aspartic acid is replaced by glutamic acid and vice versa; serine is replaced by threonine and vice versa However; lysine is substituted by arginine, and vice versa; cysteine is substituted by methionine, and vice versa; and phenylalanine and tyrosine are substituted by tryptophan, and vice versa The same is true. If desired, manual inspection of such candidates can be performed in order to limit the number of candidates to be further evaluated. Manual inspection can be performed by selecting candidates that appear to have domains (eg, conserved functional domains) present in productivity-modulating polypeptides. The term "glycosyltransferase" as used herein refers to an enzyme capable of catalyzing the transfer of a sugar moiety from an activating donor molecule to a specific acceptor molecule, thereby forming a glycosidic bond. The oligosaccharides thus synthesized may be of linear type or branched type and may contain multiple monosaccharide building blocks. Glycosyltransferases have been described using nucleotide diphosphate-sugars, nucleotide monophosphate-sugars, and phosphate sugars and related proteins to classify glycosyltransferases into different sequence-based families (Campbell et al., Biochem. J. 326, 929- 939 (1997)) and available on the CAZy (Carbohydrate Active Enzymes) website (www.cazy.org).

如本文所用,醣基轉移酶可選自包含(但不限於)以下者之清單:岩藻糖基轉移酶(例如α-1,2-岩藻糖基轉移酶、α-1,3/1,4-岩藻糖基轉移酶、α-1,6-岩藻糖基轉移酶)、唾液酸基轉移酶(例如α-2,3-唾液酸基轉移酶、α-2,6-唾液酸基轉移酶、α-2,8-唾液酸基轉移酶)、半乳糖基轉移酶(例如β-1,3-半乳糖基轉移酶、β-1,4-半乳糖基轉移酶、α-1,3-半乳糖基轉移酶、α-1,4-半乳糖基轉移酶)、N-乙醯基葡萄糖胺基轉移酶、N-乙醯基半乳糖胺基轉移酶、葡萄糖基轉移酶、甘露糖基轉移酶、N-乙醯基甘露糖胺基轉移酶、木糖基轉移酶、葡萄糖醛酸苷轉移酶、半乳糖醛酸苷轉移酶、葡萄糖胺基轉移酶、N-羥乙醯基神經胺基轉移酶、鼠李糖基轉移酶、N-乙醯基鼠李糖基轉移酶、UDP-4-胺基-4,6-二去氧-N-乙醯基-β-L-阿卓糖胺轉胺酶、UDP-N-乙醯基葡萄糖胺烯醇丙酮醯基(enolpyruvyl)轉移酶及岩藻糖胺基轉移酶。As used herein, a glycosyltransferase may be selected from a list including, but not limited to, fucosyltransferases (eg, alpha-1,2-fucosyltransferase, alpha-1,3/1 ,4-fucosyltransferase, alpha-1,6-fucosyltransferase), sialyltransferase (e.g. alpha-2,3-sialyltransferase, alpha-2,6-sialyltransferase) acid transferase, alpha-2,8-sialyltransferase), galactosyltransferase (e.g. beta-1,3-galactosyltransferase, beta-1,4-galactosyltransferase, alpha -1,3-galactosyltransferase, α-1,4-galactosyltransferase), N-acetylglucosaminyltransferase, N-acetylgalactosyltransferase, transglucosyltransferase Enzymes, Mannosyltransferase, N-Acetylmannosyltransferase, Xylosyltransferase, Glucuronidase, Galacturonyltransferase, Glucosyltransferase, N-Hydroxytransferase Acetylneuraminotransferase, Rhamnosyltransferase, N-Acetylrhamnosyltransferase, UDP-4-amino-4,6-dideoxy-N-acetyl-β -L-altrosamine transaminase, UDP-N-acetylglucosamine enolpyruvyl transferase and fucosaminotransferase.

岩藻糖基轉移酶為將岩藻糖殘基(Fuc)自GDP-岩藻糖(GDP-Fuc)供體轉移至聚醣受體上的醣基轉移酶。岩藻糖基轉移酶包含α-1,2-岩藻糖基轉移酶、α-1,3-岩藻糖基轉移酶、α-1,4-岩藻糖基轉移酶及α-1,6-岩藻糖基轉移酶,其催化經由α-糖苷鍵使Fuc殘基自GDP-Fuc轉移至聚醣受體上。岩藻糖基轉移酶可發現但不限於為GT10、GT11、GT23、GT65及GT68 CAZy家族。唾液酸基轉移酶為將唾液酸基(如Neu5Ac或Neu5Gc)自供體(如CMP-Neu5Ac或CMP-Neu5Gc)轉移至聚醣受體上的醣基轉移酶。唾液酸基轉移酶包含α-2,3-唾液酸基轉移酶、α-2,6-唾液酸基轉移酶及α-2,8-唾液酸基轉移酶,其催化經由α-糖苷鍵將唾液酸基轉移至聚醣受體上。唾液酸基轉移酶可發現但不限於為GT29、GT42、GT80及GT97 CAZy家族。半乳糖基轉移酶為將半乳糖苷基(Gal)自UDP-半乳糖(UDP-Gal)供體轉移至聚醣受體上的醣基轉移酶。半乳糖基轉移酶包含β-1,3-半乳糖基轉移酶、β-1,4-半乳糖基轉移酶、α-1,3-半乳糖基轉移酶及α-1,4-半乳糖基轉移酶,其經由α-或β-糖苷鍵將Gal殘基自UDP-Gal轉移至聚醣受體上。半乳糖基轉移酶可發現但不限於為GT2、GT6、GT8、GT25及GT92 CAZy家族。葡萄糖基轉移酶為將葡萄糖基(Glc)自UDP-葡萄糖(UDP-Glc)供體轉移至聚醣受體上的醣基轉移酶。葡萄糖基轉移酶包含α-葡萄糖基轉移酶、β-1,2-葡萄糖基轉移酶、β-1,3-葡萄糖基轉移酶及β-1,4-葡萄糖基轉移酶,其經由α-或β-糖苷鍵將Glc殘基自UDP-Glc轉移至聚醣受體上。葡萄糖基轉移酶可發現但不限於為GT1、GT4及GT25 CAZy家族。甘露糖基轉移酶為將甘露糖基(Man)自GDP-甘露糖(GDP-Man)供體轉移至聚醣受體上的醣基轉移酶。甘露糖基轉移酶包含α-1,2-甘露糖基轉移酶、α-1,3-甘露糖基轉移酶及α-1,6-甘露糖基轉移酶,其經由α-糖苷鍵將Man殘基自GDP-Man轉移至聚醣受體上。甘露糖基轉移酶可發現但不限於為GT22、GT39、GT62及GT69 CAZy家族。N-乙醯基葡萄糖胺基轉移酶為將N-乙醯基葡萄糖胺基(GlcNAc)自UDP-N-乙醯基葡萄糖胺(UDP-GlcNAc)供體轉移至聚醣受體上之醣基轉移酶。N-乙醯基葡萄糖胺基轉移酶可發現但不限於為GT2及GT4 CAZy家族。Fucosyltransferases are glycosyltransferases that transfer fucose residues (Fuc) from a GDP-fucose (GDP-Fuc) donor to a glycan acceptor. Fucosyltransferase includes α-1,2-fucosyltransferase, α-1,3-fucosyltransferase, α-1,4-fucosyltransferase and α-1, 6-fucosyltransferase, which catalyzes the transfer of Fuc residues from GDP-Fuc to glycan acceptors via an alpha-glycosidic bond. Fucosyltransferases can be found but are not limited to the GT10, GT11, GT23, GT65 and GT68 CAZy families. Sialyltransferases are glycosyltransferases that transfer a sialic acid group (eg, Neu5Ac or Neu5Gc) from a donor (eg, CMP-Neu5Ac or CMP-Neu5Gc) to a glycan acceptor. Sialyltransferases include α-2,3-sialyltransferase, α-2,6-sialyltransferase and α-2,8-sialyltransferase, which catalyze the conversion of The sialic acid group is transferred to the glycan acceptor. Sialyltransferases can be found but are not limited to the GT29, GT42, GT80 and GT97 CAZy families. Galactosyltransferases are glycosyltransferases that transfer a galactosyl group (Gal) from a UDP-galactose (UDP-Gal) donor to a glycan acceptor. Galactosyltransferases include β-1,3-galactosyltransferase, β-1,4-galactosyltransferase, α-1,3-galactosyltransferase and α-1,4-galactosyltransferase Syltransferases that transfer Gal residues from UDP-Gal to glycan acceptors via alpha- or beta-glycosidic linkages. Galactosyltransferases can be found but are not limited to the GT2, GT6, GT8, GT25 and GT92 CAZy families. Glucosyltransferases are glycosyltransferases that transfer glucose groups (Glc) from UDP-glucose (UDP-Glc) donors to glycan acceptors. Glucosyltransferases include α-glucosyltransferase, β-1,2-glucosyltransferase, β-1,3-glucosyltransferase, and β-1,4-glucosyltransferase, which are produced by α- or β-glucosyltransferase The β-glycosidic bond transfers the Glc residue from UDP-Glc to the glycan acceptor. Glucosyltransferases can be found but are not limited to the GT1, GT4 and GT25 CAZy families. Mannosyltransferases are glycosyltransferases that transfer mannosyl (Man) from a GDP-mannose (GDP-Man) donor to a glycan acceptor. Mannosyltransferases include α-1,2-mannosyltransferase, α-1,3-mannosyltransferase and α-1,6-mannosyltransferase, which convert Mannosyltransferase through α-glycosidic bonds. Residues are transferred from GDP-Man to the glycan acceptor. Mannosyltransferases can be found but are not limited to the GT22, GT39, GT62 and GT69 CAZy families. N-acetylglucosaminyltransferase is a glycosyl group that transfers N-acetylglucosamine (GlcNAc) from a UDP-N-acetylglucosamine (UDP-GlcNAc) donor to a glycan acceptor transferase. N-acetylglucosaminyltransferases can be found but not limited to the GT2 and GT4 CAZy families.

N-乙醯基半乳糖胺基轉移酶為將N-乙醯基半乳糖胺基(GalNAc)自UDP-N-乙醯基半乳糖胺(UDP-GalNAc)供體轉移至聚醣受體上的醣基轉移酶。N-乙醯基半乳糖胺基轉移酶可發現但不限於為GT7、GT12及GT27 CAZy家族。N-乙醯基甘露糖胺基轉移酶為將N-乙醯基甘露糖胺基(ManNAc)自UDP-N-乙醯基甘露糖胺(UDP-ManNAc)供體轉移至聚醣受體上的醣基轉移酶。木糖基轉移酶為將木糖殘基(Xyl)自UDP-木糖(UDP-Xyl)供體轉移至聚醣受體上之醣基轉移酶。木糖基轉移酶可發現但不限於為GT61及GT77 CAZy家族。葡萄糖醛酸苷轉移酶為經由α-或β-糖苷鍵將葡萄糖醛酸酯自UDP-葡萄糖醛酸酯供體轉移至聚醣受體上的醣基轉移酶。葡萄糖醛酸苷轉移酶可發現但不限於為GT4、GT43及GT93 CAZy家族。N-Acetylgalactosamine transferase is an enzyme that transfers N-acetylgalactosamine (GalNAc) from a UDP-N-acetylgalactosamine (UDP-GalNAc) donor to a glycan acceptor glycosyltransferase. N-Acetylgalactosaminyltransferases can be found but are not limited to the GT7, GT12 and GT27 CAZy families. N-Acetylmannosylaminotransferase is an enzyme that transfers N-acetylmannosamine (ManNAc) from a UDP-N-acetylmannosamine (UDP-ManNAc) donor to a glycan acceptor glycosyltransferase. Xylosyltransferases are glycosyltransferases that transfer a xylose residue (Xyl) from a UDP-xylose (UDP-Xyl) donor to a glycan acceptor. Xylosyltransferases can be found but are not limited to the GT61 and GT77 CAZy families. Glucuronidase is a glycosyltransferase that transfers glucuronide from a UDP-glucuronide donor to a glycan acceptor via an α- or β-glycosidic bond. Glucuronidyltransferases can be found but are not limited to the GT4, GT43 and GT93 CAZy families.

半乳糖醛酸苷轉移酶為將半乳糖醛酸酯自UDP-半乳糖醛酸酯供體轉移至聚醣受體上的醣基轉移酶。N-羥乙醯基神經胺基轉移酶為將N-羥乙醯基神經胺酸基(Neu5Gc)自CMP-Neu5Gc供體轉移至聚醣受體上的醣基轉移酶。鼠李糖基轉移酶為將鼠李糖殘基自GDP-鼠李糖供體轉移至聚醣受體上的醣基轉移酶。鼠李糖基轉移酶可發現但不限於為GT1、GT2及GT102 CAZy家族。N-乙醯基鼠李糖基轉移酶為將N-乙醯基鼠李糖胺殘基自UDP-N-乙醯基-L-鼠李糖胺供體轉移至聚醣受體上之醣基轉移酶。UDP-4-胺基-4,6-二去氧-N-乙醯基-β-L-阿卓糖胺轉胺酶為使用UDP-2-乙醯胺基-2,6-二去氧--L-阿拉伯糖(arabino)-4-己酮糖用於偽胺酸(pseudaminic acid)之生物合成的醣基轉移酶,該偽胺酸為用於修飾鞭毛蛋白之唾液酸類糖。UDP-N-乙醯基葡萄糖胺烯醇丙酮醯基轉移酶(murA)為將烯醇丙酮醯基自磷酸烯醇丙酮酸鹽(PEP)轉移至UDP-N-乙醯基葡萄糖胺(UDPAG)以形成UDP-N-乙醯基葡萄糖胺烯醇丙酮酸鹽的醣基轉移酶。岩藻糖胺基轉移酶為將N-乙醯基岩藻糖胺殘基自dTDP-N-乙醯基岩藻糖胺或UDP-N-乙醯基岩藻糖胺供體轉移至聚醣受體上的醣基轉移酶。Galacturonyltransferases are glycosyltransferases that transfer galacturonates from UDP-galacturonate donors to glycan acceptors. N-hydroxyacetylneuraminosyltransferase is a glycosyltransferase that transfers an N-hydroxyacetylneuraminic acid group (Neu5Gc) from a CMP-Neu5Gc donor to a glycan acceptor. Rhamnosyltransferases are glycosyltransferases that transfer rhamnose residues from a GDP-rhamnose donor to a glycan acceptor. Rhamnosyltransferases can be found but are not limited to the GT1, GT2 and GT102 CAZy families. N-Acetylrhamnosyltransferases are sugars that transfer N-acetylrhamnosamine residues from UDP-N-acetyl-L-rhamnosamine donors to glycan acceptors base transferase. UDP-4-Amino-4,6-dideoxy-N-acetyl-β-L-altrosaminotransferase was used for UDP-2-acetamido-2,6-dideoxy --L-arabino-4-hexulose glycosyltransferase for the biosynthesis of pseudoamines, which are sialic sugars used to modify flagellin. UDP-N-Acetylglucosamine enolacetonyltransferase (murA) is used to transfer enolacetonyl from phosphoenolpyruvate (PEP) to UDP-N-acetylglucosamine (UDPAG) A glycosyltransferase to form UDP-N-acetylglucosamine enolpyruvate. Fucosaminotransferases are used to transfer N-acetylfucosamine residues from dTDP-N-acetylfucosamine or UDP-N-acetylfucosamine donors to glycans Glycosyltransferases on receptors.

如本文所用之術語「核苷酸-糖(nucleotide-sugar)」或「活化糖(activated sugar)」係指單醣之活化形式。活化單醣之實例包括(但不限於)UDP-半乳糖(UDP-Gal)、UDP-N-乙醯基葡萄糖胺(UDP-GlcNAc)、UDP-N-乙醯基半乳糖胺(UDP-GalNAc)、UDP-N-乙醯基甘露糖胺(UDP-ManNAc)、GDP-岩藻糖(GDP-Fuc)、GDP-甘露糖(GDP-Man)、UDP-葡萄糖(UDP-Glc)、UDP-2-乙醯胺基-2,6-二去氧--L-阿拉伯糖-4-己酮糖、UDP-2-乙醯胺基-2,6-二去氧--L-來蘇糖-4-己酮糖、UDP-N-乙醯基-L-鼠李糖胺(UDP-L-RhaNAc或UDP-2-乙醯胺基-2,6-二去氧-L-甘露糖)、dTDP-N-乙醯基岩藻糖胺、UDP-N-乙醯基岩藻糖胺(UDP-L-FucNAc或UDP-2-乙醯胺基-2,6-二去氧-L-半乳糖)、UDP-N-乙醯基-L-紐莫糖胺(UDP-L-PneNAC或UDP-2-乙醯胺基-2,6-二去氧-L-塔羅糖)、UDP-N-乙醯基胞壁酸、UDP-N-乙醯基-L-異鼠李糖胺(UDP-L-QuiNAc或UDP-2-乙醯胺基-2,6-二去氧-L-葡萄糖)、GDP-L-異鼠李糖、CMP-N-乙醯基神經胺酸(CMP-Neu5Ac)、CMP-N-羥乙醯基神經胺酸(CMP-Neu5Gc)、CMP-Neu4Ac、CMP-Neu5Ac9N 3、CMP-Neu4,5Ac 2、CMP-Neu5,7Ac 2、CMP-Neu5,9Ac 2、CMP-Neu5,7(8,9)Ac 2、UDP-葡萄糖醛酸酯、GDP-鼠李糖或UDP-木糖。核苷酸-糖在醣基化反應中充當醣基供體。彼等反應藉由醣基轉移酶催化。 The term "nucleotide-sugar" or "activated sugar" as used herein refers to the activated form of a monosaccharide. Examples of activated monosaccharides include, but are not limited to, UDP-galactose (UDP-Gal), UDP-N-acetylglucosamine (UDP-GlcNAc), UDP-N-acetylgalactosamine (UDP-GalNAc) ), UDP-N-acetylmannosamine (UDP-ManNAc), GDP-fucose (GDP-Fuc), GDP-mannose (GDP-Man), UDP-glucose (UDP-Glc), UDP- 2-Acetamido-2,6-dideoxy--L-arabinose-4-hexulose, UDP-2-acetamido-2,6-dideoxy--L-lyxose -4-Hexylose, UDP-N-acetyl-L-rhamnosamine (UDP-L-RhaNAc or UDP-2-acetylamino-2,6-dideoxy-L-mannose) , dTDP-N-acetylfucosamine, UDP-N-acetylfucosamine (UDP-L-FucNAc or UDP-2-acetamido-2,6-dideoxy-L- galactose), UDP-N-Acetyl-L-Neomosamine (UDP-L-PneNAC or UDP-2-Acetylamino-2,6-dideoxy-L-talose), UDP -N-Acetylmuramic acid, UDP-N-Acetyl-L-isorhamnosamine (UDP-L-QuiNAc or UDP-2-Acetylamino-2,6-dideoxy-L -glucose), GDP-L-isorhamnose, CMP-N-acetylneuraminic acid (CMP-Neu5Ac), CMP-N-hydroxyacetylneuraminic acid (CMP-Neu5Gc), CMP-Neu4Ac, CMP-Neu5Ac9N 3 , CMP-Neu4,5Ac 2 , CMP-Neu5,7Ac 2 , CMP-Neu5,9Ac 2 , CMP-Neu5,7(8,9)Ac 2 , UDP-glucuronide, GDP-rhamnet sugar or UDP-xylose. Nucleotide-sugars act as sugar donors in glycosylation reactions. These reactions are catalyzed by glycosyltransferases.

如本文所用之術語且如目前先進技術中通常所理解,「寡醣(Oligosaccharide)」係指含有少量、典型地三至二十個簡單糖(亦即單醣)的醣聚合物。如本文所用之單醣為還原糖。寡醣可為還原或非還原糖且具有還原及非還原端。還原糖為能夠還原另一種化合物且本身經氧化的任何糖,亦即糖之羰基碳經氧化成羧基。如本發明中所用之寡醣可為直鏈結構或可包括分支。兩個糖單元之間的鍵(例如糖苷鍵、半乳糖苷鍵、葡萄糖苷鍵等)可表示為例如1,4、1->4或(1-4),在本文中可互換使用。舉例而言,術語「Gal-b1,4-Glc」、「β-Gal-(1->4)-Glc」、「Galβ1-4-Glc」及「Gal-b(1-4)-Glc」具有相同含義,亦即半乳糖(Gal)之碳-1與葡萄糖(Glc)之碳-4的β-糖苷鍵鍵聯。各單醣可呈環狀形式(例如呋喃醣形式之哌喃醣)。個別單醣單元之間的鍵聯可包括α 1->2、α 1->3、α 1->4、α 1->6、α 2->1、α 2->3、α 2->4、α 2->6、β 1->2、β 1->3、β 1->4、β 1->6、β 2->1、β 2->3、β 2->4及β 2->6。寡醣可含有α-糖苷鍵及β-糖苷鍵或可僅含有β-糖苷鍵。As the term is used herein, and as commonly understood in the state of the art, "Oligosaccharide" refers to a sugar polymer containing small amounts, typically three to twenty simple sugars (ie, monosaccharides). A monosaccharide as used herein is a reducing sugar. Oligosaccharides can be reducing or non-reducing sugars and have reducing and non-reducing ends. A reducing sugar is any sugar that is capable of reducing another compound and is itself oxidized, ie, the carbonyl carbon of the sugar is oxidized to a carboxyl group. Oligosaccharides as used in the present invention may be linear in structure or may include branches. A bond between two sugar units (eg, glycosidic, galactosidic, glucosidic, etc.) may be represented, for example, as 1,4, 1->4, or (1-4), used interchangeably herein. For example, the terms "Gal-b1,4-Glc", "β-Gal-(1->4)-Glc", "Galβ1-4-Glc" and "Gal-b(1-4)-Glc" It has the same meaning, that is, the carbon-1 of galactose (Gal) is linked with the β-glycosidic bond of carbon-4 of glucose (Glc). Each monosaccharide can be in a cyclic form (eg, piperanose in the form of furanose). The linkages between individual monosaccharide units may include α1->2, α1->3, α1->4, α1->6, α2->1, α2->3, α2- >4, α2->6, β1->2, β1->3, β1->4, β1->6, β2->1, β2->3, β2->4 and β 2->6. Oligosaccharides may contain alpha-glycosidic linkages as well as beta-glycosidic linkages or may contain beta-glycosidic linkages only.

如本文所用之術語且如目前先進技術中通常所理解之「雙醣(Disaccharide)」,係指含有兩個單醣之醣聚合物。雙醣之實例包含乳糖(Gal-b1,4-Glc)、乳-N-二糖(Gal-b1,3-GlcNAc)、N-乙醯基乳糖胺(Gal-b1,4-GlcNAc)、LacDiNAc(GalNAc-b1,4-GlcNAc)、N-乙醯基半乳糖胺基葡萄糖(GalNAc-b1,4-Glc)、Neu5Ac-a2,3-Gal、Neu5Ac-a2,6-Gal及哌喃岩藻糖基-(1-4)-N-羥乙醯基神經胺酸(Fuc-(1-4)-Neu5Gc)。"Disaccharide" as the term is used herein, and as commonly understood in the current state of the art, refers to a sugar polymer containing two monosaccharides. Examples of disaccharides include lactose (Gal-b1,4-Glc), lacto-N-disaccharide (Gal-b1,3-GlcNAc), N-acetyllactosamine (Gal-b1,4-GlcNAc), LacDiNAc (GalNAc-b1,4-GlcNAc), N-Acetyl galactosamine glucosamine (GalNAc-b1,4-Glc), Neu5Ac-a2,3-Gal, Neu5Ac-a2,6-Gal and Fucoidan Glycosyl-(1-4)-N-hydroxyacetylneuraminic acid (Fuc-(1-4)-Neu5Gc).

如本文所用之術語「單醣(monosaccharide)」係指藉由水解不可分解為更簡單的糖,經醛醣或酮醣分類,且每分子含有一或多個羥基的糖。單醣為含有僅一個簡單糖的醣。單醣之實例包含己糖、D-葡萄哌喃糖、D-半乳呋喃糖、D-半乳哌喃糖、L-半乳哌喃糖、D-哌喃甘露糖、D-別哌喃糖(Allopyranose)、L-阿卓哌喃糖、D-古洛哌喃糖(Gulopyranose)、L-艾杜哌喃糖(Idopyranose)、D-塔羅哌喃糖(Talopyranose)、D-呋喃核糖、D-哌喃核糖、D-阿拉伯呋喃糖(Arabinofuranose)、D-阿拉伯哌喃糖、L-阿拉伯呋喃糖、L-阿拉伯哌喃糖、D-木哌喃糖、D-來蘇哌喃糖、D-赤呋喃糖(Erythrofuranose)、D-蘇糖呋喃糖(Threofuranose)、庚醣、L-甘油-D-甘露-庚糖哌喃糖(LDmanHep)、D-甘油-D-甘露-庚糖哌喃糖、(DDmanHep)、6-去氧-L-阿卓哌喃糖、6-去氧-D-古洛哌喃糖、6-去氧-D-塔羅哌喃糖、6-去氧-D-半乳哌喃糖、6-去氧-L-半乳哌喃糖、6-去氧-D-甘露哌喃糖、6-去氧-甘露哌喃糖、6-去氧-D-葡萄哌喃糖、2-去氧-D-阿拉伯糖-己糖、2-去氧-D-赤-戊糖、2,6-二去氧-D-阿拉伯糖-己哌喃糖、3,6-二去氧-D-阿拉伯糖-己哌喃糖、3,6-二去氧-L-阿拉伯糖-己哌喃糖、3,6-二去氧-D-木糖-己哌喃糖、3,6-二去氧-D-核糖-己哌喃糖、2,6-二去氧-D-核糖-己哌喃糖、3,6-二去氧-L-木糖-己哌喃糖、2-胺基-2-去氧-D-葡萄哌喃糖、2-胺基-2-去氧-D-半乳哌喃糖、2-胺基-2-去氧-D-甘露哌喃糖、2-胺基-2-去氧-D-別哌喃糖、2-胺基-2-去氧-L-阿卓哌喃糖、2-胺基-2-去氧-D-古洛哌喃糖、2-胺基-2-去氧-L-艾杜哌喃糖、2-胺基-2-去氧-D-塔羅哌喃糖、2-乙醯胺基-2-去氧-D-葡萄哌喃糖、2-乙醯胺基-2-去氧-D-半乳哌喃糖、2-乙醯胺基-2-去氧-D-甘露哌喃糖、2-乙醯胺基-2-去氧-D-別哌喃糖、2-乙醯胺基-2-去氧-L-阿卓哌喃糖、2-乙醯胺基-2-去氧-D-古洛哌喃糖、2-乙醯胺基-2-去氧-L-艾杜哌喃糖、2-乙醯胺基-2-去氧-D-塔羅哌喃糖、2-乙醯胺基-2,6-二去氧-D-半乳哌喃糖、2-乙醯胺基-2,6-二去氧-L-半乳哌喃糖、2-乙醯胺基-2,6-二去氧-L-甘露哌喃糖、2-乙醯胺基-2,6-二去氧-D-葡萄哌喃糖、2-乙醯胺基-2,6-二去氧-L-阿卓哌喃糖、2-乙醯胺基-2,6-二去氧-D-塔羅哌喃糖、D-葡萄哌喃糖醛酸、D-半乳哌喃糖醛酸、D-甘露哌喃糖醛酸、D-別哌喃糖醛酸、L-阿卓哌喃糖醛酸、D-古洛哌喃糖醛酸、L-古洛哌喃糖醛酸、L-艾杜哌喃糖醛酸、D-塔羅哌喃糖醛酸、唾液酸、5-胺基-3,5-二去氧-D-甘油-D-半乳糖-壬-2-酮糖酸、5-乙醯胺基-3,5-二去氧-D-甘油-D-半乳糖-壬-2-酮糖酸、5-羥乙醯基醯胺基-3,5-二去氧-D-甘油-D-半乳糖-壬-2-酮糖酸、赤藻糖醇、阿拉伯糖醇、木糖醇、核糖醇、葡萄糖醇、半乳糖醇、甘露糖醇、D-核糖-己-2-酮哌喃糖、D-阿拉伯糖-己-2-酮呋喃糖(D-呋喃果糖)、D-阿拉伯糖-己-2-酮哌喃糖、L-木糖-己-2-酮哌喃糖、D-來蘇糖-己-2-酮哌喃糖、D-蘇糖-戊-2-酮哌喃糖、D-阿卓-庚-2-酮哌喃糖、3-C-(羥甲基)-D-赤呋喃糖、2,4,6-三去氧-2,4-二胺基-D-葡萄哌喃糖、6-去氧-3-O-甲基-D-葡萄糖、3-O-甲基-D-鼠李糖、2,6-二去氧-3-甲基-D-核糖-己糖、2-胺基-3-O-[(R)-1-羧乙基]-2-去氧-D-葡萄哌喃糖、2-乙醯胺基-3-O-[(R)-羧乙基]-2-去氧-D-葡萄哌喃糖、2-羥乙醯基醯胺基-3-O-[(R)-1-羧乙基]-2-去氧-D-葡萄哌喃糖、3-去氧-D-來蘇糖-庚-2-酮哌喃糖酸、3-去氧-D-甘露-辛-2-酮哌喃糖酸、3-去氧-D-甘油-D-半乳糖-壬-2-酮哌喃糖酸、5,7-二胺基-3,5,7,9-四去氧-L-甘油-L-甘露-壬-2-酮哌喃糖酸、5,7-二胺基-3,5,7,9-四去氧-L-甘油-L-阿卓-壬-2-酮哌喃糖酸、5,7-二胺基-3,5,7,9-四去氧-D-甘油-D-半乳糖-壬-2-酮哌喃糖酸、5,7-二胺基-3,5,7,9-四去氧-D-甘油-D-塔羅-壬-2-酮哌喃糖酸、葡萄糖、半乳糖、N-乙醯基葡萄糖胺、葡萄糖胺、甘露糖、木糖、N-乙醯基甘露糖胺、N-乙醯基神經胺酸、N-羥乙醯基神經胺酸、N-乙醯基半乳糖胺、半乳胺糖、岩藻糖、鼠李糖、葡萄糖醛酸、葡萄糖酸、果糖及多元醇。The term "monosaccharide" as used herein refers to sugars that are not broken down by hydrolysis into simpler sugars, classified as aldoses or ketoses, and contain one or more hydroxyl groups per molecule. Monosaccharides are sugars that contain only one simple sugar. Examples of monosaccharides include hexose, D-glucopyranose, D-galactofuranose, D-galactofuranose, L-galactopyranose, D-mannanose, D-alopyranose Sugar (Allopyranose), L-Aldropyranose, D-Gulopyranose (Gulopyranose), L-Idopyranose (Idopyranose), D-Talopyranose (Talopyranose), D-Ribofuranose , D-Ribophenanose, D-Arabinofuranose (Arabinofuranose), D-Arabinofuranose, L-Arabinofuranose, L-Arabinopyranose, D-Xylopyranose, D-Lyxopyranose , D-erythrofuranose (Erythrofuranose), D-threofuranose (Threofuranose), heptose, L-glycerol-D-mannose-heptopyranose (LDmanHep), D-glycerol-D-mannose-heptose Piperanose, (DDmanHep), 6-Deoxy-L-Aldropyranose, 6-Deoxy-D-Gulopranose, 6-Deoxy-D-Talopranose, 6-Deoxy-D-Talopranose Oxy-D-galactopyranose, 6-deoxy-L-galactopyranose, 6-deoxy-D-mannopyranose, 6-deoxy-mannopyranose, 6-deoxy- D-glucopyranose, 2-deoxy-D-arabinose-hexose, 2-deoxy-D-erythro-pentose, 2,6-dideoxy-D-arabinose-hexanose, 3,6-dideoxy-D-arabinose-hexylpyranose, 3,6-dideoxy-L-arabinose-hexylpyranose, 3,6-dideoxy-D-xylose-hexyl Pyranose, 3,6-dideoxy-D-ribose-hexylpyranose, 2,6-dideoxy-D-ribose-hexylpyranose, 3,6-dideoxy-L-xylose -Hexoperanose, 2-amino-2-deoxy-D-glucopyranose, 2-amino-2-deoxy-D-galactopyranose, 2-amino-2-deoxy -D-Mannopyranose, 2-amino-2-deoxy-D-allopyranose, 2-amino-2-deoxy-L-aldropyranose, 2-amino-2- Deoxy-D-guloperanose, 2-amino-2-deoxy-L-iduranose, 2-amino-2-deoxy-D-talopiperanose, 2-ethyl Acetamino-2-deoxy-D-glucopyranose, 2-acetamido-2-deoxy-D-galactopyranose, 2-acetamido-2-deoxy-D- Mannopyranose, 2-Acetamido-2-deoxy-D-allopyranose, 2-acetamido-2-deoxy-L-aldropyranose, 2-acetamido -2-Deoxy-D-gulopranose, 2-acetamido-2-deoxy-L-iduranose, 2-acetamido-2-deoxy-D-tarot pyranose, 2-acetamido-2,6-dideoxy-D-galactopyranose, 2-acetamido-2,6-dideoxy-L-galactopyranose, 2-Acetamido-2,6-dideoxy-L-mannopyranose, 2-acetamido-2,6-dideoxy-D-glucopyranose, 2-acetamido -2,6-dideoxy-L -Aldropyranose, 2-Acetamido-2,6-dideoxy-D-talopyranose, D-glucopyranuronic acid, D-galactopyranuronic acid, D- -Mannopyranuronic acid, D-allopiperanuronic acid, L-aldropyranuronic acid, D-gulopranuronic acid, L-gulopranuronic acid, L-alpine Dupiranuronic acid, D-talopyranuronic acid, sialic acid, 5-amino-3,5-dideoxy-D-glycerol-D-galactose-nonan-2-ketonic acid, 5-Acetylamino-3,5-dideoxy-D-glycerol-D-galactose-nonan-2-ketonic acid, 5-hydroxyacetylamino-3,5-dideoxy- D-glycerol-D-galactose-nonan-2-ketonic acid, erythritol, arabitol, xylitol, ribitol, glucitol, galactitol, mannitol, D-ribose-hex- 2-ketopyranose, D-arabinose-hex-2-ketofuranose (D-fructofuranose), D-arabinose-hex-2-ketopyranose, L-xylose-hex-2-one Pyranose, D-lyxose-hex-2-ketopyranose, D-threose-pentan-2-ketopyranose, D-alzo-hepta-2-ketopyranose, 3-C -(Hydroxymethyl)-D-erythrofuranose, 2,4,6-trideoxy-2,4-diamino-D-glucopyranose, 6-deoxy-3-O-methyl- D-glucose, 3-O-methyl-D-rhamnose, 2,6-dideoxy-3-methyl-D-ribose-hexose, 2-amino-3-O-[(R) -1-Carboxyethyl]-2-deoxy-D-glucopyranose, 2-acetamido-3-O-[(R)-carboxyethyl]-2-deoxy-D-glucopyranose Ranose, 2-hydroxyacetamido-3-O-[(R)-1-carboxyethyl]-2-deoxy-D-glucopyranose, 3-deoxy-D-lysole Sugar-hept-2-ketopyranoic acid, 3-deoxy-D-manno-oct-2-ketopyranoic acid, 3-deoxy-D-glycerol-D-galactose-nonan-2-one Phranosic acid, 5,7-diamino-3,5,7,9-tetradeoxy-L-glycerol-L-manno-non-2-ketopyranoic acid, 5,7-diamino -3,5,7,9-Tetradeoxy-L-glycerol-L-alzo-non-2-ketopyranoic acid, 5,7-diamino-3,5,7,9-tetrade Oxy-D-glycerol-D-galactose-nonan-2-ketopyranoic acid, 5,7-diamino-3,5,7,9-tetradeoxy-D-glycerol-D-tarot- Non-2-ketopyranoic acid, glucose, galactose, N-acetylglucosamine, glucosamine, mannose, xylose, N-acetylmannosamine, N-acetylneuraminic acid, N-hydroxyacetylneuraminic acid, N-acetylgalactosamine, galactosamine, fucose, rhamnose, glucuronic acid, gluconic acid, fructose and polyols.

術語多元醇意指含有多個羥基之醇。舉例而言,甘油、山梨糖醇或甘露糖醇。The term polyol means an alcohol containing multiple hydroxyl groups. For example, glycerol, sorbitol or mannitol.

寡醣為由三個或更多個單醣次單元構成的聚醣結構,該等單醣次單元經由糖苷鍵以直鏈或分支鏈結構彼此連接。較佳地,如本文所描述之寡醣含有選自如本文上文所用之清單的單醣。寡醣之實例包括(但不限於)路易斯型(Lewis-type)抗原寡醣、哺乳動物乳寡醣及人乳寡醣。Oligosaccharides are glycan structures composed of three or more monosaccharide subunits connected to each other in a linear or branched structure via glycosidic bonds. Preferably, the oligosaccharide as described herein contains a monosaccharide selected from the list as used herein above. Examples of oligosaccharides include, but are not limited to, Lewis-type antigenic oligosaccharides, mammalian milk oligosaccharides, and human milk oligosaccharides.

如本文所用,「哺乳動物乳寡醣(mammalian milk oligosaccharide)」(MMO)係指諸如(但不限於)以下者之寡醣:3-岩藻基乳糖、2'-岩藻基乳糖、6-岩藻基乳糖、2',3-二岩藻基乳糖、2',2-二岩藻基乳糖、3,4-二岩藻基乳糖、6'-唾液酸基乳糖、3'-唾液酸基乳糖、3,6-二唾液酸基乳糖、6,6'-二唾液酸基乳糖、8,3-二唾液酸基乳糖、3,6-二唾液酸基乳-N-四糖、乳糖二岩藻四糖、乳-N-四糖、乳-N-新四糖、乳-N-岩藻五糖II、乳-N-岩藻五糖I、乳-N-岩藻五糖III、乳-N-岩藻五糖V、乳-N-岩藻五糖VI、唾液酸基乳-N-新四糖c、唾液酸基乳-N-四糖b、唾液酸基乳-N-四糖a、乳-N-二岩藻六糖I、乳-N-二岩藻六糖II、乳-N-六糖、乳-N-新六糖、對-乳-N-六糖、單岩藻糖基單唾液酸基乳-N-新四糖c、單岩藻糖基對-乳-N-六糖、單岩藻糖基乳-N-六糖III、異構岩藻糖基化乳-N-六糖III、異構岩藻糖基化乳-N-六糖I、唾液酸基乳-N-六糖、唾液酸基乳-N-新六糖II、二岩藻糖基-對-乳-N-六糖、二岩藻糖基乳-N-六糖、二岩藻糖基乳-N-六糖a、二岩藻糖基乳-N-六糖c、半乳糖基化聚葡萄胺糖、岩藻糖基化寡醣、中性寡醣及/或唾液酸基化寡醣。哺乳動物乳寡醣(MMO)包含在泌乳期間之任何階段中發現的乳汁中所存在之寡醣,該乳汁包括來自人類(亦即人類乳寡醣或HMO)及哺乳動物之初乳,該等哺乳動物包括(但不限於)牛(歐洲牛( Bos Taurus))、綿羊(綿羊( Ovis aries))、山羊(家畜山羊( Capra aegagrus hircus))、雙峰駱駝(雙峰駝( Camelus bactrianus))、馬(歐洲野馬( Equus ferus caballus))、豬(野豬( Sus scropha))、犬(家犬亞種( Canis lupus familiaris))、蝦夷棕熊(ezo brown bear)(日本棕熊( Ursus arctos yesoensis))、北極熊(海熊( Ursus maritimus))、日本黑熊(亞洲黑熊( Ursus thibetanus japonicus))、條紋臭鼬(條紋臭鼬( Mephitis mephitis))、冠海豹(冠海豹( Cystophora cristata))、亞洲大象(亞洲象( Elephas maximus))、非洲大象(非洲象( Loxodonta africana))、巨食蟻獸(大食蟻獸( Myrmecophaga tridactyla))、真瓶鼻海豚(瓶鼻海豚( Tursiops truncates))、北極小鬚鯨(小鬚鯨( Balaenoptera acutorostrata))、尤金袋鼠(尤金袋鼠( Macropus eugenii))、紅袋鼠(紅袋鼠( Macropus rufus))、普通袋狐(帚尾袋貂( Trichosurus Vulpecula))、無尾熊(考拉( Phascolarctos cinereus))、東袋鼬(細腳袋鼩( Dasyurus viverrinus))、鴨嘴獸(鴨嘴獸( Ornithorhynchus anatinus))。人類乳寡醣(HMO)亦稱為人類一致乳寡醣,其在化學上與人類母乳中發現之人類乳寡醣一致,但為生物技術產生的(例如使用不含細胞之系統或細胞及包含細菌、真菌、酵母菌、植物、動物或原蟲細胞之生物體,較佳經基因工程改造之細胞及生物體)。人類一致乳寡醣以名稱HiMO出售。 As used herein, "mammalian milk oligosaccharide" (MMO) refers to oligosaccharides such as (but not limited to) the following: 3-fucosyllactose, 2'-fucosyllactose, 6- Fucoyllactose, 2',3-difucoyllactose, 2',2-difucoyllactose, 3,4-difucoyllactose, 6'-sialyllactose, 3'-sialic acid Lactose, 3,6-disialolactose, 6,6'-disialolactose, 8,3-disialolactose, 3,6-disialolacto-N-tetrasaccharide, lactose Difucotetraose, lacto-N-tetraose, lacto-N-neotetraose, lacto-N-fucopentose II, lacto-N-fucopentaose I, lacto-N-fucopentaose III , lacto-N-fucopentose V, lacto-N-fucopentaose VI, sialyl lacto-N-neotetrasaccharide c, sialyl lacto-N-tetrasaccharide b, sialyl lacto-N -Tetrasaccharide a, lacto-N-difucohexaose I, lacto-N-difucohexaose II, lacto-N-hexaose, lacto-N-neohexaose, p-lacto-N-hexaose , monofucosyl monosialyl lacto-N-neotetrasaccharide c, monofucosyl p-lacto-N-hexasaccharide, monofucosyl lacto-N-hexasaccharide III, isofucosyl Glycosylated lacto-N-hexasaccharide III, isofucosylated lacto-N-hexasaccharide I, sialyl lacto-N-hexaose, sialyl lacto-N-neohexaose II, diyan Fucosyl-p-lacto-N-hexasaccharide, difucosyllacto-N-hexasaccharide, difucosyllacto-N-hexasaccharide a, difucosyllacto-N-hexasaccharide c , galactosylated polyglucosamine, fucosylated oligosaccharides, neutral oligosaccharides and/or sialylated oligosaccharides. Mammalian milk oligosaccharides (MMOs) comprise oligosaccharides present in milk found at any stage during lactation, including colostrum from humans (i.e. human milk oligosaccharides or HMOs) and mammals, which Mammals include (but are not limited to) cattle ( Bos Taurus ), sheep ( Ovis aries ), goats ( Capra aegagrus hircus ), Bactrian camels ( Camelus bactrianus ) , horse ( Equus ferus caballus ), pig ( Sus scropha ), dog ( Canis lupus familiaris ), ezo brown bear ( Ursus arctos yesoensis ) , polar bear ( Ursus maritimus ), Japanese black bear (Asian black bear ( Ursus thibetanus japonicus )), striped skunk ( Mephitis mephitis ), hooded seal ( Cystophora cristata ), Asian elephant (Asian Elephant ( Elephas maximus )), African Elephant ( Loxodonta africana ), Giant Anteater ( Myrmecophaga tridactyla ), True Bottlenose Dolphin ( Tursiops truncates ), Arctic Minke Whale ( Balaenoptera acutorostrata ), Eugene Kangaroo ( Macropus eugenii ), Red Kangaroo ( Macropus rufus ), Common Kangaroo ( Trichosurus Vulpecula ), Koala (Koala ( Phascolarctos cinereus )), Eastern quoll ( Dasyurus viverrinus ), Platypus ( Ornithorhynchus anatinus ). Human milk oligosaccharides (HMOs), also known as human homogenous milk oligosaccharides, are chemically identical to human milk oligosaccharides found in human breast milk, but are biotechnologically produced (eg using cell-free systems or cells and containing Bacterial, fungal, yeast, plant, animal or protozoal cell organisms, preferably genetically engineered cells and organisms). Human consensus lacto-oligosaccharide is sold under the name HiMO.

如本文所用,術語「路易斯型抗原(Lewis-type antigen)」包含以下寡醣:H1抗原,其為Fucα1-2Galβ1-3GlcNAc,或簡言之2'FLNB;Lewisa,其為三醣Galβ1-3[Fucα1-4]GlcNAc,或簡言之4-FLNB;Lewisb,其為四醣Fucα1-2Galβ1-3[Fucα1-4]GlcNAc,或簡言之DiF-LNB;唾液酸基Lewisa,其為5-乙醯基神經胺基-(2-3)-半乳糖苷-(1-3)-(岩藻哌喃糖基-(1-4))-N-乙醯基葡萄糖胺,或簡寫為Neu5Acα2-3Galβ1-3[Fucα1-4]GlcNAc;H2抗原,其為Fucα1-2Galβ1-4GlcNAc,或另外稱作2'岩藻糖基-N-乙醯基-乳糖胺,簡言之2'FLacNAc;Lewisx,其為三醣Galβ1-4[Fucα1-3]GlcNAc,或另外稱為3-岩藻糖基-N-乙醯基-乳糖胺,簡言之3-FLacNAc;Lewisy,其為四醣Fucα1-2Galβ1-4[Fucα1-3]GlcNAc;及唾液酸基Lewisx,其為5-乙醯基神經胺基-(2-3)-半乳糖苷-(1-4)-(岩藻哌喃糖基-(1-3))-N-乙醯基葡萄糖胺,或簡寫為Neu5Acα2-3Galβ1-4[Fucα1-3]GlcNAc。[ Fuca1-4]GlcNAc, or simply 4-FLNB; Lewisb, which is the tetrasaccharide Fuca1-2Galβ1-3[Fucα1-4]GlcNAc, or simply DiF-LNB; Sialyl Lewisa, which is 5-ethyl Acylneuramido-(2-3)-galactoside-(1-3)-(fucopyranosyl-(1-4))-N-acetylglucosamine, or Neu5Acα2- 3Galβ1-3[Fucα1-4]GlcNAc; H2 antigen, which is Fuca1-2Galβ1-4GlcNAc, or otherwise known as 2'fucosyl-N-acetyl-lactosamine, simply 2'FLacNAc; Lewisx, It is the trisaccharide Galβ1-4[Fucα1-3]GlcNAc, or otherwise known as 3-fucosyl-N-acetyl-lactosamine, simply 3-FLacNAc; Lewisy, which is the tetrasaccharide Fuca1-2Galβ1 -4[Fucα1-3]GlcNAc; and Sialyl Lewisx, which is 5-acetylneuramido-(2-3)-galactoside-(1-4)-(fucopyranosyl- (1-3))-N-acetylglucosamine, or Neu5Acα2-3Galβ1-4[Fucα1-3]GlcNAc for short.

如本文所用且如目前先進技術中通常所理解,『岩藻糖基化寡醣(fucosylated oligosaccharide)』為帶有岩藻糖殘基之寡醣。此類岩藻糖基化寡醣為包含經由糖苷鍵彼此連接之至少三個單醣次單元的醣結構,其中該單醣次單元中之至少一者為岩藻糖。岩藻糖基化寡醣可含有超過一個岩藻糖殘基,例如兩個、三個或更多個岩藻糖殘基。岩藻糖基化寡醣可為中性寡醣或帶電寡醣,例如亦包含唾液酸結構。岩藻糖可經由α-糖苷鍵連接至包含葡萄糖、半乳糖、GlcNAc之其他單醣次單元,該等α-糖苷鍵包含α-1,2、α-1,3、α-1,4、α-1,6鍵。As used herein and as generally understood in the current state of the art, a "fucosylated oligosaccharide" is an oligosaccharide bearing a fucose residue. Such fucosylated oligosaccharides are sugar structures comprising at least three monosaccharide subunits linked to each other via glycosidic bonds, wherein at least one of the monosaccharide subunits is fucose. Fucosylated oligosaccharides may contain more than one fucose residue, eg, two, three or more fucose residues. Fucosylated oligosaccharides can be neutral oligosaccharides or charged oligosaccharides, eg also containing sialic acid structures. Fucose can be linked to other monosaccharide subunits including glucose, galactose, GlcNAc via α-glycosidic bonds including α-1,2, α-1,3, α-1,4, α-1,6 bond.

實例包含2'-岩藻糖基乳糖(2'FL)、3-岩藻糖基乳糖(3FL)、4-岩藻糖基乳糖(4FL)、6-岩藻糖基乳糖(6FL)、二岩藻糖基乳糖(diFL)、乳糖二岩藻四糖(LDFT)、乳-N-岩藻五糖I(LNFP I)、乳-N-岩藻五糖II(LNFP II)、乳-N-岩藻五糖III(LNFP III)、乳-N-岩藻五糖V(LNFP V)、乳-N-岩藻五糖VI(LNFP VI)、乳-N-新岩藻五糖I、乳-N-二岩藻六糖I(LDFH I)、乳-N-二岩藻六糖II(LDFH II)、單岩藻糖基乳-N-六糖III(MFLNH III)、二岩藻糖基乳-N-六糖(DFLNHa)、二岩藻糖基-乳-N-新六糖。Examples include 2'-fucosyllactose (2'FL), 3-fucosyllactose (3FL), 4-fucosyllactose (4FL), 6-fucosyllactose (6FL), di- Fucosyllactose (diFL), lactodifucotetraose (LDFT), lacto-N-fucopentose I (LNFP I), lacto-N-fucopentaose II (LNFP II), lacto-N -Fucopentaose III (LNFP III), Lacto-N-fucopentaose V (LNFP V), Lacto-N-fucopentaose VI (LNFP VI), Lacto-N-neofucopentaose I, Lacto-N-difucohexaose I (LDFH I), lacto-N-difucohexaose II (LDFH II), monofucosyl lacto-N-hexaose III (MFLNH III), difucoid Glycosyl lacto-N-hexasaccharide (DFLNHa), difucosyl-lacto-N-neohexaose.

如本發明中所用之術語「α-1,2-岩藻糖基轉移酶(alpha-1,2-fucosyltransferase)」、「α 1,2岩藻糖基轉移酶(alpha 1,2 fucosyltransferase)」、「2-岩藻糖基轉移酶(2-fucosyltransferase)」、「α-1,2-岩藻糖基轉移酶(α-1,2-fucosyltransferase)」、「α 1,2岩藻糖基轉移酶(α 1,2 fucosyltransferase)」、「2岩藻糖基轉移酶(2 fucosyltransferase)」、「2-FT」或「2FT」可互換使用且係指催化岩藻糖自供體GDP-L-岩藻糖轉移至α-1,2-鍵中之受體分子的醣基轉移酶。如本發明中所用之術語「2'岩藻基乳糖(2' fucosyllactose)」、「2'-岩藻基乳糖(2'-fucosyllactose)」、「α-1,2-岩藻基乳糖(α-1,2-fucosyllactose)」、「α 1,2岩藻基乳糖(α 1,2 fucosyllactose)」、「α-1,2-岩藻基乳糖(α-1,2-fucosyllactose)」、「α 1,2岩藻基乳糖(α 1,2 fucosyllactose)」、「Galβ-4(Fucα1-2)Glc」、「2FL」或「2'FL」可互換使用且係指藉由催化α-1,2-岩藻糖基轉移酶將岩藻糖殘基自GDP-L-岩藻糖移轉至α-1,2-鍵中之乳糖獲得的產物。如本發明中所用之術語「二岩藻基乳糖(difucosyllactose)」、「二-岩藻基乳糖(di-fucosyllactose)」、「乳糖二岩藻四糖(lactodifucotetraose)」、「2',3-二岩藻基乳糖(2',3-difucosyllactose)」、「2',3二岩藻基乳糖(2',3 difucosyllactose)」、「α-2',3-岩藻基乳糖(α-2',3-fucosyllactose)」、「α 2',3岩藻基乳糖(fucosyllactose)」、「Fucα1-2Galβ 1-4(Fucα1-3)Glc」、「DFLac」、「2',3 diFL」、「DFL」、「DiFL」或「diFL」可互換使用。The terms "alpha-1,2-fucosyltransferase", "alpha 1,2 fucosyltransferase" as used in the present invention , "2-fucosyltransferase (2-fucosyltransferase)", "α-1,2-fucosyltransferase (α-1,2-fucosyltransferase)", "α1,2-fucosyltransferase" Transferase (α 1,2 fucosyltransferase)", "2 fucosyltransferase (2 fucosyltransferase)", "2-FT" or "2FT" are used interchangeably and refer to the catalysis of fucose from the donor GDP-L- A glycosyltransferase that transfers fucose to acceptor molecules in α-1,2-bonds. As used in the present invention, the terms "2' fucosyllactose", "2'-fucosyllactose", "α-1,2-fucosyllactose (α-1,2-fucosyllactose)" -1,2-fucosyllactose)", "α 1,2 fucosyllactose (α 1,2 fucosyllactose)", "α-1,2-fucosyllactose (α-1,2-fucosyllactose)", " α 1,2 fucosyllactose (α 1,2 fucosyllactose)", "Galβ-4(Fucα1-2)Glc", "2FL" or "2'FL" are used interchangeably and refer to α-1 by catalysis , 2-fucosyltransferase transfers fucose residues from GDP-L-fucose to lactose in α-1,2-bonds. The terms "difucosyllactose", "di-fucosyllactose", "lactodifucotetraose", "2',3- Difucosyllactose (2',3-difucosyllactose)", "2',3 difucosyllactose (2',3 difucosyllactose)", "α-2',3-fucosyllactose (α-2 ',3-fucosyllactose)", "α 2',3 fucosyllactose", "Fucα1-2Galβ 1-4(Fucα1-3)Glc", "DFLac", "2',3 diFL", "DFL", "DiFL" or "diFL" are used interchangeably.

如本發明中所用之術語「α-1,3-岩藻糖基轉移酶(alpha-1,3-fucosyltransferase)」、「α 1,3岩藻糖基轉移酶(alpha 1,3 fucosyltransferase)」、「3-岩藻糖基轉移酶(3-fucosyltransferase)」、「α-1,3-岩藻糖基轉移酶(α-1,3-fucosyltransferase)」、「α 1,3岩藻糖基轉移酶(α 1,3 fucosyltransferase)」、「3岩藻糖基轉移酶(3 fucosyltransferase)」、「3-FT」或「3FT」可互換使用且係指催化岩藻糖自供體GDP-L-岩藻糖轉移至α-1,3-鍵中之受體分子的醣基轉移酶。如本發明中所用之術語「3-岩藻基乳糖(3-fucosyllactose)」、「α-1,3-岩藻基乳糖(alpha-1,3-fucosyllactose)」、「α 1,3岩藻基乳糖(alpha 1,3 fucosyllactose)」、「α-1,3-岩藻基乳糖(α-1,3-fucosyllactose)」、「α 1,3岩藻基乳糖(α 1,3 fucosyllactose)」、「Galβ-4(Fucα1-3)Glc」、「3FL」或「3-FL」可互換使用且係指藉由催化α-1,3-岩藻糖基轉移酶將岩藻糖殘基自GDP-L-岩藻糖移轉至α-1,3-鍵中之乳糖獲得的產物。The terms "alpha-1,3-fucosyltransferase", "alpha 1,3 fucosyltransferase" as used in the present invention , "3-fucosyltransferase (3-fucosyltransferase)", "α-1,3-fucosyltransferase (α-1,3-fucosyltransferase)", "α1,3fucosyltransferase" Transferase (α 1,3 fucosyltransferase)", "3 fucosyltransferase (3 fucosyltransferase)", "3-FT" or "3FT" are used interchangeably and refer to the catalysis of fucose from the donor GDP-L- Glycosyltransferase that transfers fucose to acceptor molecules in α-1,3-bonds. Terms as used in the present invention "3-fucosyllactose (3-fucosyllactose)", "alpha-1,3-fucosyllactose (alpha-1,3-fucosyllactose)", "alpha 1,3 fucoidose" Alpha 1,3 fucosyllactose”, “α-1,3-fucosyllactose”, “α 1,3 fucosyllactose” , "Galβ-4(Fucα1-3)Glc", "3FL" or "3-FL" are used interchangeably and refer to the conversion of a fucose residue from a fucose residue by a catalytic α-1,3-fucosyltransferase. Product obtained by the transfer of GDP-L-fucose to lactose in α-1,3-bonds.

如本文所用,『唾液酸基化寡醣(sialylated oligosaccharide)』應理解為含有寡醣(亦即具有唾液酸殘基之寡醣)之帶電唾液酸。其具有酸性性質。唾液酸基化寡醣含有至少一個唾液酸單醣次單元,如例如(但不限於)Neu5Ac及Neu5Gc。該唾液酸基化寡醣為包含經由糖苷鍵彼此連接之至少三個單醣次單元的醣結構,其中該單醣次單元中之至少一者為唾液酸。該唾液酸基化寡醣可含有超過一個唾液酸殘基,例如兩個、三個或更多個唾液酸殘基。該唾液酸可經由包含α-2,3鍵、α-2,6鍵之α-糖苷鍵連接至包含半乳糖、GlcNAc、唾液酸之其他單醣次單元。一些實例為3-SL(3'-唾液酸基乳糖或3'-SL或Neu5Ac-a2,3-Gal-b1,4-Glc);3'-唾液酸基乳糖胺;6-SL(6'-唾液酸基乳糖或6'-SL或Neu5Ac-a2,6-Gal-b1,4-Glc);6'-唾液酸基乳糖胺;寡醣,包含6'-唾液酸基乳糖、3,6-二唾液酸基乳糖(Neu5Ac-a2,3-(Neu5Ac-a2,6)-Gal-b1,4-Glc)、6,6'-二唾液酸基乳糖(Neu5Ac-a2,6-Gal-b1,4-(Neu5Ac-a2,6)-Glc)、8,3-二唾液酸基乳糖(Neu5Ac-a2,8-Neu5Ac-a2,3-Gal-b1,4-Glc)、SGG六醣(Neu5Acα- 2,3Galβ- 1,3GalNacβ-1,3Galα-1,4Galβ-1,4Gal)、唾液酸基化四醣(Neu5Acα- 2,3Galβ- 1,4GlcNacβ-14GlcNAc)、五醣LSTD(Neu5Acα-2,3Galβ- 1,4GlcNacβ- 1,3Galβ- 1,4Glc)、唾液酸基化乳-N-丙糖、唾液酸基化乳-N-四糖、唾液酸基乳-N-新四糖、單唾液酸基乳-N-六糖、二唾液酸基乳-N-六糖I、單唾液酸基乳-N-新六糖I、單唾液酸基乳-N-新六糖II、二唾液酸基乳-N-新六糖、二唾液酸基乳-N-四糖、二唾液酸基乳-N-六糖II、唾液酸基乳-N-四糖a、二唾液酸基乳-N-六糖I、唾液酸基乳-N-四糖b、唾液酸基乳-N-新四糖c、唾液酸基乳-N-新四糖d、3'-唾液酸基-3-岩藻基乳糖、二唾液酸單岩藻基乳-N-新六糖、單岩藻基單唾液酸基乳-N-八糖(唾液酸基Lea)、唾液酸基乳-N-岩藻六糖II、二唾液酸基乳-N-岩藻五糖II、單岩藻基二唾液酸基乳-N-四糖;及帶有一或若干個唾液酸殘基之寡醣,包括(但不限於):選自GM3之神經節苷脂的寡醣部分(3'唾液酸基乳糖、Neu5Acα-2,3Galβ-4Glc);及寡醣,包含GM3模體、GD3 Neu5Acα-2,8Neu5Acα- 2,3Galβ-1,4Glc GT3(Neu5Acα- 2,8Neu5Acα- 2,8Neu5Acα-2,3Galβ-1,4Glc);GM2 GalNAcβ-1,4(Neu5Acα-2,3)Galβ-1,4Glc、GM1 Galβ-1,3GalNAcβ- 1,4(Neu5Acα- 2,3)Galβ-1,4Glc、GD1a Neu5Acα-2,3Galβ- 1,3GalNAcβ- 1,4(Neu5Acα- 2,3)Galβ- 1,4Glc、GT1a Neu5Acα-2,8Neu5Acα- 2,3Galβ- 1,3GalNAcβ- 1,4(Neu5Acα- 2,3)Galβ-1,4Glc、GD2 GalNAcβ-1,4(Neu5Acα- 2,8Neu5Acα2,3)Galβ- 1,4Glc、GT2 GalNAcβ-1,4(Neu5Acα- 2,8Neu5Acα- 2,8Neu5Acα2,3)Galβ-1,4Glc、GD1b、Galβ-1,3GalNAcβ-1,4(Neu5Acα-2,8Neu5Acα2,3)Galβ-1,4Glc、GT1b Neu5Acα- 2,3Galβ- 1,3GalNAcβ-1,4(Neu5Acα- 2,8Neu5Acα2,3)Galβ-1,4Glc、GQ1b Neu5Acα- 2,8Neu5Acα- 2,3Galβ-1,3GalNAcβ- 1,4(Neu5Acα-2,8Neu5Acα2,3)Galβ-1,4Glc、GT1c Galβ-1,3GalNAcβ- 1,4(Neu5Acα- 2,8Neu5Acα-2,8Neu5Acα2,3)Galβ-1,4Glc、GQ1c Neu5Acα-2,3Galβ-1,3GalNAc β-1,4(Neu5Acα-2,8Neu5Acα- 2,8Neu5Acα2,3)Galβ-1,4Glc、GP1c Neu5Acα-2,8Neu5Acα-2,3Galβ-1,3GalNAc β- 1,4(Neu5Acα- 2,8Neu5Acα- 2,8Neu5Acα2,3)Galβ-1,4Glc、GD1a Neu5Acα-2,3Galβ- 1,3(Neu5Acα-2,6)GalNAcβ-1,4Galβ-1,4Glc、岩藻基-GM1 Fucα-1,2Galβ- 1,3GalNAcβ-1,4(Neu5Acα-2,3)Galβ-1,4Glc;其皆可藉由使以上寡醣部分與神經醯胺反應或在神經醯胺上合成以上寡醣而擴展至相應神經節苷脂之產生。As used herein, "sialylated oligosaccharide" should be understood as a charged sialic acid containing an oligosaccharide (ie an oligosaccharide having a sialic acid residue). It has acidic properties. Sialyl oligosaccharides contain at least one sialic acid monosaccharide subunit, such as, for example, but not limited to, Neu5Ac and Neu5Gc. The sialylated oligosaccharide is a sugar structure comprising at least three monosaccharide subunits linked to each other via glycosidic bonds, wherein at least one of the monosaccharide subunits is sialic acid. The sialylated oligosaccharide may contain more than one sialic acid residue, eg, two, three or more sialic acid residues. The sialic acid can be linked to other monosaccharide subunits comprising galactose, GlcNAc, sialic acid via α-glycosidic bonds comprising α-2,3 bonds, α-2,6 bonds. Some examples are 3-SL (3'-sialyllactose or 3'-SL or Neu5Ac-a2,3-Gal-b1,4-Glc); 3'-sialyllactosamine; 6-SL (6' - Sialylactose or 6'-SL or Neu5Ac-a2,6-Gal-b1,4-Glc); 6'-Sialyllactosamine; Oligosaccharides, including 6'-sialyllactose, 3,6 - Disialolactose (Neu5Ac-a2,3-(Neu5Ac-a2,6)-Gal-b1,4-Glc), 6,6'-disialolactose (Neu5Ac-a2,6-Gal-b1 ,4-(Neu5Ac-a2,6)-Glc), 8,3-disialolactose (Neu5Ac-a2,8-Neu5Ac-a2,3-Gal-b1,4-Glc), SGG hexasaccharide (Neu5Acα - 2,3Galβ- 1,3GalNacβ-1,3Galα-1,4Galβ-1,4Gal), sialylated tetrasaccharide (Neu5Acα- 2,3Galβ- 1,4GlcNacβ-14GlcNAc), pentasaccharide LSTD (Neu5Acα-2, 3Galβ- 1,4GlcNacβ- 1,3Galβ- 1,4Glc), Sialyllacto-N-Triose, Sialyllacto-N-tetraose, Sialyllacto-N-neotetraose, Monosialyl Acid-based lacto-N-hexasaccharide, disialyl lacto-N-hexaose I, monosialo-N-hexose I, monosialo-N-neohexaose II, disialo lactyl lacto-N-neohexasaccharide, disialo lacto-N-tetrasaccharide, disialo lacto-N-hexasaccharide II, disialo lacto-N-tetrasaccharide a, disialo lacto-N - hexasaccharide I, sialyllacto-N-tetrasaccharide b, sialyllacto-N-neotetrasaccharide c, sialyllacto-N-neotetrasaccharide d, 3'-sialyl-3-rock Alginyl lactose, disialo-mono-fuco-N-neohexaose, mono-fuco-mono-sialo-N-octasaccharide (Sialyl Lea), sialyl-milk-N-fucohexa Saccharides II, disialyllacto-N-fucopentose II, monofucosyldisialolacto-N-tetrasaccharides; and oligosaccharides with one or more sialic acid residues, including (but not Limited to): the oligosaccharide moiety of gangliosides selected from GM3 (3' sialyllactose, Neu5Acα-2, 3Galβ-4Glc); and oligosaccharides, including GM3 motif, GD3 Neu5Acα-2, 8Neu5Acα-2, 3Galβ-1,4Glc GT3 (Neu5Acα- 2,8Neu5Acα- 2,8Neu5Acα-2,3Galβ-1,4Glc); GM2 GalNAcβ-1,4(Neu5Acα-2,3)Galβ-1,4Glc, GM1 Galβ-1, 3GalNAcβ- 1,4 (Neu5Acα- 2,3 )Galβ-1,4Glc, GD1a Neu5Acα-2,3Galβ- 1,3GalNAcβ- 1,4(Neu5Acα- 2,3)Galβ- 1,4Glc, GT1a Neu5Acα-2,8Neu5Acα- 2,3Galβ- 1,3GalNAcβ- 1 ,4(Neu5Acα- 2,3)Galβ-1,4Glc, GD2 GalNAcβ-1,4(Neu5Acα- 2,8Neu5Acα2,3)Galβ- 1,4Glc, GT2 GalNAcβ-1,4(Neu5Acα- 2,8Neu5Acα- 2 ,8Neu5Acα2,3)Galβ-1,4Glc, GD1b, Galβ-1,3GalNAcβ-1,4(Neu5Acα-2,8Neu5Acα2,3)Galβ-1,4Glc, GT1b Neu5Acα- 2,3Galβ- 1,3GalNAcβ-1, 4(Neu5Aα- 2,8Neu5Aca2,3)Galβ-1,4Glc, GQ1b Neu5Aα- 2,8Neu5Aα- 2,3Galβ-1,3GalNAcβ- 1,4(Neu5Aα-2,8Neu5Aα2,3)Galβ-1,4Glc, GT1c Galβ-1,3GalNAcβ- 1,4(Neu5Acα- 2,8Neu5Acα-2,8Neu5Acα2,3)Galβ-1,4Glc, GQ1c Neu5Acα-2,3Galβ-1,3GalNAc β-1,4(Neu5Acα-2,8Neu5Aα- 2,8Neu5Acα2,3)Galβ-1,4Glc, GP1c Neu5Acα-2,8Neu5Acα-2,3Galβ-1,3GalNAc β-1,4(Neu5Acα- 2,8Neu5Acα- 2,8Neu5Acα2,3)Galβ-1,4Glc, GD1a Neu5Acα-2,3Galβ-1,3(Neu5Acα-2,6)GalNAcβ-1,4Galβ-1,4Glc, Fucoyl-GM1 Fuca-1,2Galβ-1,3GalNAcβ-1,4(Neu5Acα-2, 3) Galβ-1,4Glc; both can be extended to the production of the corresponding gangliosides by reacting the above oligosaccharide moieties with ceramide or synthesizing the above oligosaccharides on ceramide.

如本發明中所用之術語「α-2,3-唾液酸基轉移酶(alpha-2,3-sialyltransferase)」、「α 2,3唾液酸基轉移酶(alpha 2,3 sialyltransferase)」、「3-唾液酸基轉移酶(3-sialyltransferase)」、「α-2,3-唾液酸基轉移酶(α-2,3-sialyltransferase)」、「α 2,3唾液酸基轉移酶(α 2,3 sialyltransferase)」、「3唾液酸基轉移酶(3 sialyltransferase)」、「3-ST」或「3ST」可互換使用且係指催化唾液酸自供體CMP-Neu5Ac轉移至α-2,3-鍵中之受體分子的醣基轉移酶。如本發明中所用之術語「3'唾液酸基乳糖(3' sialyllactose)」、「3'-唾液酸基乳糖(3'-sialyllactose)」、「α-2,3-唾液酸基乳糖(alpha-2,3-sialyllactose)」、「α 2,3唾液酸基乳糖(alpha 2,3 sialyllactose)」、「α-2,3-唾液酸基乳糖(α-2,3-sialyllactose)」、「α 2,3唾液酸基乳糖(α 2,3 sialyllactose)」、「3SL」或「3'SL」可互換使用且係指藉由催化α-2,3-岩藻糖基轉移酶將唾液酸基自CMP-Neu5Ac移轉至α-2,3-鍵中之乳糖獲得的產物。如本發明中所用之術語「α-2,6-唾液酸基轉移酶(alpha-2,6-sialyltransferase)」、「α 2,6唾液酸基轉移酶(alpha 2,6 sialyltransferase)」、「6-唾液酸基轉移酶(6-sialyltransferase)」、「α-2,6-唾液酸基轉移酶(α-2,6-sialyltransferase)」、「α 2,6唾液酸基轉移酶(α 2,6 sialyltransferase)」、「6唾液酸基轉移酶(6 sialyltransferase)」、「6-ST」或「6ST」可互換使用且係指催化唾液酸自供體CMP-Neu5Ac轉移至α-2,6-鍵中之受體的醣基轉移酶。如本發明中所用之術語「6'唾液酸基乳糖(6' sialyllactose)」、「6'-唾液酸基乳糖(6'-sialyllactose)」、「α-2,6-唾液酸基乳糖(alpha-2,6-sialyllactose)」、「α 2,6唾液酸基乳糖(alpha 2,6 sialyllactose)」、「α-2,6-唾液酸基乳糖(α-2,6-sialyllactose)」、「α 2,6唾液酸基乳糖(α 2,6 sialyllactose)」、「6SL」或「6'SL」可互換使用且係指藉由催化α-2,6-岩藻糖基轉移酶將唾液酸基自CMP-Neu5Ac移轉至α-2,6-鍵中之乳糖獲得的產物。如本發明中所用之術語「α-2,8-唾液酸基轉移酶(alpha-2,8-sialyltransferase)」、「α 2,8唾液酸基轉移酶(alpha 2,8 sialyltransferase)」、「8-唾液酸基轉移酶(8-sialyltransferase)」、「α-2,8-唾液酸基轉移酶(α-2,8-sialyltransferase)」、「α 2,8唾液酸基轉移酶(α 2,8 sialyltransferase)」、「8唾液酸基轉移酶(8 sialyltransferase)」、「8-ST」或「8ST」可互換使用且係指催化唾液酸自供體CMP-Neu5Ac轉移至α-2,8-鍵中之受體的醣基轉移酶。As used in the present invention, the terms "alpha-2,3-sialyltransferase (alpha-2,3-sialyltransferase)", "alpha 2,3 sialyltransferase (alpha 2,3 sialyltransferase)", " 3-sialyltransferase (3-sialyltransferase), "α-2,3-sialyltransferase (α-2,3-sialyltransferase)", "α2,3 sialyltransferase (α2 ,3 sialyltransferase)", "3 sialyltransferase (3 sialyltransferase)", "3-ST" or "3ST" are used interchangeably and refer to the catalyzed transfer of sialic acid from the donor CMP-Neu5Ac to α-2,3- The glycosyltransferase of the acceptor molecule in the bond. As used in the present invention, the terms "3' sialyllactose (3' sialyllactose)", "3'-sialyllactose (3'-sialyllactose)", "α-2,3-sialyllactose (alpha) -2,3-sialyllactose)", "α 2,3 sialyllactose (alpha 2,3 sialyllactose)", "α-2,3-sialyllactose (α-2,3-sialyllactose)", " "α2,3 sialyllactose", "3SL" or "3'SL" are used interchangeably and refer to the conversion of sialic acid by catalyzing α-2,3-fucosyltransferase. The product obtained by the transfer of the group from CMP-Neu5Ac to lactose in the α-2,3-bond. As used in the present invention, the terms "alpha-2,6-sialyltransferase (alpha-2,6-sialyltransferase)", "alpha 2,6 sialyltransferase (alpha 2,6 sialyltransferase)", " 6-sialyltransferase (6-sialyltransferase), "α-2,6-sialyltransferase (α-2,6-sialyltransferase)", "α2,6 sialyltransferase (α2 ,6 sialyltransferase)", "6 sialyltransferase (6 sialyltransferase)", "6-ST" or "6ST" are used interchangeably and refer to the catalyzed transfer of sialic acid from the donor CMP-Neu5Ac to α-2,6- Glycosyltransferase of the acceptor in the bond. As used in the present invention, the terms "6' sialyllactose (6' sialyllactose)", "6'-sialyllactose (6'-sialyllactose)", "α-2,6-sialyllactose (alpha) -2,6-sialyllactose)", "α 2,6 sialyllactose (alpha 2,6 sialyllactose)", "α-2,6-sialyllactose (α-2,6-sialyllactose)", " "α2,6 sialyllactose", "6SL" or "6'SL" are used interchangeably and refer to the conversion of sialic acid by catalyzing α-2,6-fucosyltransferase. The product obtained by the transfer of the group from CMP-Neu5Ac to lactose in the α-2,6-bond. As used in the present invention, the terms "alpha-2,8-sialyltransferase (alpha-2,8-sialyltransferase)", "alpha 2,8 sialyltransferase (alpha 2,8 sialyltransferase)", " 8-sialyltransferase (8-sialyltransferase), "α-2,8-sialyltransferase (α-2,8-sialyltransferase)", "α2,8 sialyltransferase (α2 ,8 sialyltransferase)", "8 sialyltransferase (8 sialyltransferase)", "8-ST" or "8ST" are used interchangeably and refer to the catalyzed transfer of sialic acid from the donor CMP-Neu5Ac to α-2,8- Glycosyltransferase of the acceptor in the bond.

如本文所用且如目前先進技術中通常所理解,『中性寡醣(neutral oligosaccharide)』為不具有源自羧酸基之負電荷的寡醣。此類中性寡醣之實例包含2'-岩藻基乳糖(2'FL)、3-岩藻基乳糖(3FL)、2',3-二岩藻基乳糖(diFL)、乳-N-丙糖II、乳-N-四糖、乳-N-新四糖、乳-N-岩藻五糖I、乳-N-新岩藻五糖I、乳-N-岩藻五糖II、乳-N-岩藻五糖III、乳-N-岩藻五糖V、乳-N-岩藻五糖VI、乳-N-新岩藻五糖V、乳-N-二岩藻六糖I、乳-N-二岩藻六糖II、6'-半乳糖基乳糖、3'-半乳糖基乳糖、乳-N-六糖、乳-N-新六糖、對-乳-N-六糖、對-乳-N-新六糖、二岩藻基-乳-N-六糖及二岩藻基-乳-N-新六糖。As used herein and as generally understood in the current state of the art, a "neutral oligosaccharide" is an oligosaccharide that does not have a negative charge derived from a carboxylic acid group. Examples of such neutral oligosaccharides include 2'-fucosyllactose (2'FL), 3-fucosyllactose (3FL), 2',3-difucosyllactose (diFL), lacto-N- Triose II, lacto-N-tetraose, lacto-N-neotetraose, lacto-N-fucopentaose I, lacto-N-neofucopentose I, lacto-N-fucopentaose II, Lacto-N-fucopentaose III, Lacto-N-fucopentaose V, Lacto-N-fucopentaose VI, Lacto-N-neofucopentose V, Lacto-N-difucohexaose I, lacto-N-difucohexaose II, 6'-galactosylose, 3'-galactosylose, lacto-N-hexaose, lacto-N-neohexaose, p-lacto-N- Hexose, p-lacto-N-neohexaose, difucosyl-lacto-N-hexasaccharide and difucosyl-lacto-N-neohexaose.

如本文所用,人類ABO血型系統之抗原為寡醣。人類ABO血型系統之此類抗原不限於人類結構。該等結構涉及存在於包含Gal-β1,3-GlcNAc、Gal-β1,4-GlcNAc、Gal-β1,3-GalNAc及Gal-β1,4-Glc之雙醣核心結構上的A決定子GalNAc-α1,3(Fuc-α1,2)-Gal-、B決定子Gal-α1,3(Fuc-α1,2)-Gal-及H決定子Fuc-α1,2-Gal-。As used herein, the antigens of the human ABO blood group system are oligosaccharides. Such antigens of the human ABO blood group system are not limited to human structures. These structures involve the A determinant GalNAc- present on the disaccharide core structure comprising Gal-β1,3-GlcNAc, Gal-β1,4-GlcNAc, Gal-β1,3-GalNAc and Gal-β1,4-Glc α1,3(Fuc-α1,2)-Gal-, B determinant Gal-α1,3(Fuc-α1,2)-Gal- and H determinant Fuc-α1,2-Gal-.

如本發明中所用之術語「LNT II」、「LNT-II」、「LN3」、「乳-N-丙糖II(lacto-N-triose II)」、「乳- N-丙糖II(lacto- N-triose II)」、「乳-N-丙糖(lacto-N-triose)」、「乳- N-丙糖(lacto- N-triose)」或「GlcNAcβ1-3Galβ1-4Glc」可互換使用。 Terms "LNT II", "LNT-II", "LN3", "lacto-N-triose II", "lacto- N -triose II" as used in the present invention - N -triose II)", "lacto-N-triose", "lacto- N -triose" or " GlcNAcβ1-3Galβ1-4Glc " are used interchangeably .

如本發明中所用之術語「LNT」、「乳-N-四糖(lacto-N-tetraose)」、「乳- N-四糖(lacto- N-tetraose)」或「Galβ1-3GlcNAcβ1-3Galβ1-4Glc」可互換使用。 The terms "LNT", "lacto- N -tetraose", "lacto- N -tetraose" or "Galβ1-3GlcNAcβ1-3Galβ1-" as used in the present invention 4Glc" can be used interchangeably.

如本發明中所用之術語「LNnT」、「乳-N-新四糖(lacto-N- neotetraose)」、「乳- N-新四糖(lacto- N-neotetraose)」、「新-LNT(neo-LNT)」或「Galβ1-4GlcNAcβ1-3Galβ1-4Glc」可互換使用。 The terms "LNnT", "lacto- N -neotetraose", "lacto- N -neotetraose", " neo -LNT" as used in the present invention (neo-LNT)" or "Galβ1-4GlcNAcβ1-3Galβ1-4Glc" are used interchangeably.

如本發明中所用之術語「LSTa」、「LS-四醣a(LS-Tetrasaccharide a)」、「唾液酸基-乳-N-四糖a(Sialyl-lacto-N-tetraose a)」、「唾液酸基乳-N-四糖a(sialyllacto-N-tetraose a)」或「Neu5Ac-a2,3-Gal-b1,3-GlcNAc-b1,3-Gal-b1,4-Glc」可互換使用。As used in the present invention, the terms "LSTa", "LS-Tetrasaccharide a", "Sialyl-lacto-N-tetraose a", "Sialyl-lacto-N-tetraose a", " Sialyllacto-N-tetraose a" or "Neu5Ac-a2,3-Gal-b1,3-GlcNAc-b1,3-Gal-b1,4-Glc" are used interchangeably .

如本發明中所用之術語「LSTb」、「LS-四醣b(LS-Tetrasaccharide b)」、「唾液酸基-乳-N-四糖b(Sialyl-lacto-N-tetraose b)」、「唾液酸基乳-N-四糖b(sialyllacto-N-tetraose b)」或「Gal-b1,3-(Neu5Ac-a2,6)-GlcNAc-b1,3-Gal-b1,4-Glc」可互換使用。The terms "LSTb", "LS-Tetrasaccharide b", "Sialyl-lacto-N-tetraose b", "Sialyl-lacto-N-tetraose b" as used in the present invention Sialyllacto-N-tetraose b” or “Gal-b1,3-(Neu5Ac-a2,6)-GlcNAc-b1,3-Gal-b1,4-Glc” can be Used interchangeably.

如本發明中所用之術語「LSTc」、「LS-四醣c(LS-Tetrasaccharide c)」、「唾液酸基-乳-N-四糖c(Sialyl-lacto-N-tetraose c)」、「唾液酸基乳-N-四糖c(sialyllacto-N-tetraose c)」、「唾液酸基乳-N-新四糖c(sialyllacto-N-neotetraose c)」或「Neu5Ac-a2,6-Gal-b1,4-GlcNAc-b1,3-Gal-b1,4-Glc」可互換使用。As used in the present invention, the terms "LSTc", "LS-Tetrasaccharide c (LS-Tetrasaccharide c)", "Sialyl-lacto-N-tetraose c (Sialyl-lacto-N-tetraose c)", " Sialyllacto-N-tetraose c, "Sialyllacto-N-neotetraose c" or "Neu5Ac-a2,6-Gal" -b1,4-GlcNAc-b1,3-Gal-b1,4-Glc" can be used interchangeably.

如本發明中所用之術語「LSTd」、「LS-四醣d(LS-Tetrasaccharide d)」、「唾液酸基-乳-N-四糖d(Sialyl-lacto-N-tetraose d)」、「唾液酸基乳-N-四糖d(sialyllacto-N-tetraose d)」、「唾液酸基乳-N-新四糖d(sialyllacto-N-neotetraose d)」或「Neu5Ac-a2,3-Gal-b1,4-GlcNAc-b1,3-Gal-b1,4-Glc」可互換使用。As used in the present invention, the terms "LSTd", "LS-Tetrasaccharide d (LS-Tetrasaccharide d)", "Sialyl-lacto-N-tetraose d (Sialyl-lacto-N-tetraose d)", " Sialyllacto-N-tetraose d (sialyllacto-N-tetraose d), "Sialyllacto-N-neotetraose d" or "Neu5Ac-a2,3-Gal" -b1,4-GlcNAc-b1,3-Gal-b1,4-Glc" can be used interchangeably.

術語「DSLNnT」及「二唾液酸基乳-N-新四糖(Disialyllacto-N-neotetraose)」可互換使用且係指Neu5Ac-a2,6-[Neu5Ac-a2,6-Gal-b1,4-GlcNAc-b1,3]-Gal-b1,4-Glc。The terms "DSLNnT" and "Disialyllacto-N-neotetraose" are used interchangeably and refer to Neu5Ac-a2,6-[Neu5Ac-a2,6-Gal-b1,4- GlcNAc-b1,3]-Gal-b1,4-Glc.

術語「DSLNT」及「二唾液酸基乳-N-四糖(Disialyllacto-N-tetraose)」可互換使用且係指Neu5Ac-a2,6-[Neu5Ac- a2,3-Gal-b1,3-GlcNAc-b1,3]-Gal-b1,4-Glc。術語「LNFP-I」、「乳-N-岩藻五糖I(lacto-N-fucopentaose I)」、「LNFP I」、「LNF I OH I型決定子(LNF I OH type I determinant)」、「LNF I」、「LNF1」、「LNF 1」及「H血型抗原伍醣1型(Blood group H antigen pentaose type 1)」可互換使用且係指Fuc-a1,2-Gal-b1,3- GlcNAc-b1,3-Gal-b1,4-Glc。The terms "DSLNT" and "Disialyllacto-N-tetraose" are used interchangeably and refer to Neu5Ac-a2,6-[Neu5Ac-a2,3-Gal-b1,3-GlcNAc -b1,3]-Gal-b1,4-Glc. Terms "LNFP-I", "lacto-N-fucopentaose I", "LNFP I", "LNF I OH type I determinant", "LNF I", "LNF1", "LNF 1" and "Blood group H antigen pentaose type 1" are used interchangeably and refer to Fuc-a1,2-Gal-b1,3- GlcNAc-b1,3-Gal-b1,4-Glc.

術語「GalNAc-LNFP-I」及「A血型抗原六糖I型(blood group A antigen hexaose type I)」可互換使用且係指GalNAc- a1,3- (Fuc-a1,2)-Gal-b1,3-GlcNAc-b1,3-Gal-b1,4-Glc。The terms "GalNAc-LNFP-I" and "blood group A antigen hexaose type I" are used interchangeably and refer to GalNAc-a1,3-(Fuc-a1,2)-Gal-b1 ,3-GlcNAc-b1,3-Gal-b1,4-Glc.

術語「LNFP-II」及「乳-N-岩藻五糖II(lacto-N-fucopentaose II)」可互換使用且係指Gal-b1,3-(Fuc-a1,4)-GlcNAc-b1,3-Gal-b1,4-Glc。The terms "LNFP-II" and "lacto-N-fucopentaose II" are used interchangeably and refer to Gal-b1,3-(Fuc-a1,4)-GlcNAc-b1, 3-Gal-b1,4-Glc.

術語「LNFP-III」及「乳-N-岩藻五糖III(lacto-N-fucopentaose III)」可互換使用且係指Gal-b1,4-(Fuc-a1,3)-GlcNAc-b1,3-Gal-b1,4-Glc。The terms "LNFP-III" and "lacto-N-fucopentaose III" are used interchangeably and refer to Gal-b1,4-(Fuc-a1,3)-GlcNAc-b1, 3-Gal-b1,4-Glc.

術語「LNFP-V」及「乳-N-岩藻五糖V(lacto-N-fucopentaose V)」可互換使用且係指Gal-b1,3-GlcNAc-b1,3-Gal-b1,4-(Fuc-a1,3)-Glc。The terms "LNFP-V" and "lacto-N-fucopentaose V" are used interchangeably and refer to Gal-b1,3-GlcNAc-b1,3-Gal-b1,4- (Fuc-a1,3)-Glc.

術語「LNFP-VI」、「LNnFP V」及「乳-N-新岩藻五糖V(lacto-N-neofucopentaose V)」可互換使用且係指Gal-b1,4- GlcNAc- b1,3-Gal-b1,4-(Fuc-a1,3)-Glc。The terms "LNFP-VI", "LNnFP V" and "lacto-N-neofucopentaose V" are used interchangeably and refer to Gal-b1,4-GlcNAc-b1,3- Gal-b1,4-(Fuc-a1,3)-Glc.

術語「LNnFP I」及「乳-N-新岩藻五糖I(Lacto-N-neofucopentaose I)」可互換使用且係指Fuc-a1,2-Gal-b1,4-GlcNAc-b1,3-Gal-b1,4-Glc。The terms "LNnFP I" and "Lacto-N-neofucopentaose I" are used interchangeably and refer to Fuc-a1,2-Gal-b1,4-GlcNAc-b1,3- Gal-b1,4-Glc.

術語「LNDFH I」、「乳-N-二岩藻六糖I(Lacto-N-difucohexaose I)」、「LNDFH-I」、「LDFH I」、「Le b-乳糖」及「路易斯-b六醣(Lewis-b hexasaccharide)」可互換使用且係指Fuc-a1,2-Gal-b1,3-[Fuc-a1,4]-GlcNAc-b1,3-Gal-b1,4-Glc。 Terms "LNDFH I", "Lacto-N-difucohexaose I", "LNDFH-I", "LDFH I", "Le b -lactose" and "Lewis-b six" Sugar (Lewis-b hexasaccharide)" is used interchangeably and refers to Fuc-a1,2-Gal-b1,3-[Fuc-a1,4]-GlcNAc-b1,3-Gal-b1,4-Glc.

術語「LNDFH II」、「乳-N-二岩藻六糖II(Lacto-N-difucohexaose II)」、「路易斯a-路易斯x(Lewis a-Lewis x)」及「LDFH II」可互換使用且係指Fuc-a1,4-(Gal-b1,3)-GlcNAc-b1,3-Gal-b1,4-(Fuc-a1,3)-Glc。The terms "LNDFH II", "Lacto-N-difucohexaose II", "Lewis a-Lewis x" and "LDFH II" are used interchangeably and Refers to Fuc-a1,4-(Gal-b1,3)-GlcNAc-b1,3-Gal-b1,4-(Fuc-a1,3)-Glc.

術語「LNnDFH」、「乳-N-新二岩藻六糖(Lacto-N- neoDiFucohexaose)」及「路易斯x六糖(Lewis x hexaose)」可互換使用且係指Gal-b1,4-(Fuc-a1,3)-GlcNAc-b1,3-Gal-b1,4-(Fuc-a1,3)-Glc。The terms "LNnDFH", "Lacto-N-neoDiFucohexaose" and "Lewis x hexaose" are used interchangeably and refer to Gal-b1,4-(Fuc -a1,3)-GlcNAc-b1,3-Gal-b1,4-(Fuc-a1,3)-Glc.

術語「α-四醣(alpha-tetrasaccharide)」及「A-四醣(A-tetrasaccharide)」可互換使用且係指GalNAc-a1,3-(Fuc-a1,2)-Gal-b1,4-Glc。The terms "alpha-tetrasaccharide" and "A-tetrasaccharide" are used interchangeably and refer to GalNAc-a1,3-(Fuc-a1,2)-Gal-b1,4- Glc.

如本文所用之『岩藻糖基化路徑(fucosylation pathway)』係由以下者組成之生化路徑:酶及其各別基因,甘露糖-6-磷酸鹽異構酶、磷酸甘露糖變位酶、甘露糖-1-磷酸鳥苷醯基轉移酶、GDP-甘露糖4,6-脫水酶、GDP-L-岩藻糖合酶及/或再利用路徑L-岩藻糖激酶/GDP-岩藻糖焦磷酸化酶,以及產生α 1,2、α 1,3、α 1,4或α 1,6岩藻糖基化寡醣之岩藻糖基轉移酶。A "fucosylation pathway" as used herein is a biochemical pathway consisting of enzymes and their respective genes, mannose-6-phosphate isomerase, phosphomannose mutase, Mannose-1-phosphate guanosyltransferase, GDP-mannose 4,6-dehydratase, GDP-L-fucose synthase and/or recycling pathway L-fucose kinase/GDP-fucoidase Sugar pyrophosphorylase, and fucosyltransferase producing alpha 1,2, alpha 1,3, alpha 1,4 or alpha 1,6 fucosylated oligosaccharides.

『唾液酸基化路徑(sialylation pathway)』係由以下者組成之生化路徑:酶及其各別基因,L-麩醯胺酸-D-果糖-6-磷酸胺基轉移酶、葡萄糖胺-6-磷酸脫胺酶、磷酸葡萄糖胺變位酶、N-乙醯基葡萄糖胺-6-磷酸去乙醯酶、N-乙醯基葡萄糖胺表異構酶、UDP-N-乙醯基葡萄糖胺2-表異構酶、N-乙醯基葡萄糖胺-6P 2-表異構酶、葡萄糖胺6-磷酸N-乙醯基轉移酶、N-乙醯基葡萄糖胺-6-磷酸磷酸酶、N-乙醯基甘露糖胺-6-磷酸磷酸酶、N-乙醯基甘露糖胺激酶、磷酸乙醯基葡萄糖胺變位酶、N-乙醯基葡萄糖胺-1-磷酸尿苷醯基轉移酶、葡萄糖胺-1-磷酸乙醯基轉移酶、唾液酸合酶、N-乙醯基神經胺酸解離酶、N-醯基神經胺酸-9-磷酸合酶、N-醯基神經胺酸-9-磷酸磷酸酶及/或CMP-唾液酸合酶,以及產生α 2,3、α 2,6或α 2,8唾液酸基化寡醣之唾液酸基轉移酶。"Sialylation pathway" is a biochemical pathway consisting of: enzymes and their respective genes, L-glutamic acid-D-fructose-6-phosphate aminotransferase, glucosamine-6 - Phosphate deaminase, phosphoglucosamine mutase, N-acetylglucosamine-6-phosphate deacetylase, N-acetylglucosamine epimerase, UDP-N-acetylglucosamine 2-Epimerase, N-Acetylglucosamine-6P 2-Epimerase, Glucosamine 6-Phosphate N-Acetyltransferase, N-Acetylglucosamine-6-Phosphate Phosphatase, N-acetylmannosamine-6-phosphate phosphatase, N-acetylmannosamine kinase, phosphoacetylglucosamine mutase, N-acetylglucosamine-1-phosphate uridine Transferase, glucosamine-1-phosphate acetyltransferase, sialic acid synthase, N-acetylneuraminic acid lysase, N-acetylneuraminic acid-9-phosphate synthase, N-acetylneuraminic acid Amino acid-9-phosphate phosphatase and/or CMP-sialic acid synthase, and sialyltransferase producing alpha 2,3, alpha 2,6 or alpha 2,8 sialylated oligosaccharides.

如本文所用之『半乳糖基化路徑(galactosylation pathway)』為由以下者組成之生化路徑:酶及其各別基因,半乳糖-1-表異構酶、半乳糖激酶、葡萄糖激酶、半乳糖-1-磷酸尿苷醯基轉移酶、UDP-葡萄糖4-表異構酶、葡萄糖-1-磷酸尿苷醯基轉移酶及/或葡萄糖磷酸變位酶,以及產生寡醣之2、3、4、6羥基上之α或β結合半乳糖的半乳糖基轉移酶。A "galactosylation pathway" as used herein is a biochemical pathway consisting of enzymes and their respective genes, galactose-1-epimerase, galactokinase, glucokinase, galactose -1-phosphate uridine syltransferase, UDP-glucose 4-epimerase, glucose-1-phosphate uridine syltransferase and/or glucose phosphomutase, and oligosaccharide-producing 2, 3, 4. Galactosyltransferases that bind galactose to alpha or beta on the 6 hydroxyl group.

如本文所用之『N-乙醯基葡萄糖胺碳水化合物路徑(N-acetylglucosamine carbohydrate pathway)』為由以下者組成之生化路徑:酶及其各別基因,L-麩醯胺酸-D-果糖-6-磷酸胺基轉移酶、葡萄糖胺-6-磷酸脫胺酶、磷酸葡萄糖胺變位酶、N-乙醯基葡萄糖胺-6-磷酸去乙醯酶、葡萄糖胺6-磷酸N-乙醯基轉移酶、N-乙醯基葡萄糖胺-1-磷酸尿苷醯基轉移酶、葡萄糖胺-1-磷酸乙醯基轉移酶及/或葡萄糖胺-1-磷酸乙醯基轉移酶,以及產生寡醣之3、4、6羥基上之α或β結合N-乙醯基葡萄糖胺的醣基轉移酶。"N-acetylglucosamine carbohydrate pathway" as used herein is a biochemical pathway consisting of enzymes and their respective genes, L-glutamic acid-D-fructose- 6-Phosphate aminotransferase, glucosamine-6-phosphate deaminase, phosphoglucosamine mutase, N-acetylglucosamine-6-phosphate deacetylase, glucosamine 6-phosphate N-acetyl Syltransferase, N-acetylglucosamine-1-phosphate uridine transferase, glucosamine-1-phosphate acetyltransferase and/or glucosamine-1-phosphate acetyltransferase, and producing A glycosyltransferase that binds N-acetylglucosamine to alpha or beta on the 3, 4, and 6 hydroxyl groups of oligosaccharides.

如本文所用之『N-乙醯基半乳糖胺基化路徑(N-acetylgalactosaminylation pathway)』為包含酶及其各別基因中之至少一者的生化路徑,該等酶及其各別基因選自包含以下者之清單:L-麩醯胺酸-D-果糖-6-磷酸胺基轉移酶、磷酸葡萄糖胺變位酶、 N-乙醯基葡萄糖胺1-磷酸尿苷醯基轉移酶、葡萄糖胺-1-磷酸乙醯基轉移酶、 UDP- N-乙醯基葡萄糖胺4-表異構酶、 UDP-葡萄糖 4-表異構酶、 N-乙醯基半乳糖胺激酶及/或 UDP- N-乙醯基半乳糖胺焦磷酸化酶,以及產生GalNAc修飾之化合物的醣基轉移酶,該化合物包含在單-、二-或寡醣上具有α或β結合N-乙醯基半乳糖胺之該單-、二-或寡醣。 "N-acetylgalactosaminylation pathway" as used herein is a biochemical pathway comprising at least one of enzymes and their respective genes selected from List containing the following: L-glutamic acid-D-fructose-6-phosphate aminotransferase, phosphoglucosamine mutase, N -acetylglucosamine 1-phosphate uridine transferase, glucose Amine-1-phosphate acetyltransferase, UDP - N -acetylglucosamine 4-epimerase, UDP -glucose 4 -epimerase, N -acetylgalactosamine kinase and/or UDP - N -Acetylgalactosamine pyrophosphorylase, and glycosyltransferases that produce GalNAc-modified compounds comprising an alpha- or beta-binding N-acetyl half-saccharide on a mono-, di- or oligosaccharide The mono-, di- or oligosaccharide of lactosamine.

如本文所用之『甘露糖基化路徑(mannosylation pathway)』為包含酶及其各別基因中之至少一者的生化路徑,該等酶及其各別基因選自包含以下者之清單:甘露糖-6-磷酸異構酶、磷酸甘露糖變位酶及/或甘露糖-1-磷酸鳥苷醯基轉移酶,以及產生甘露糖基化化合物之醣基轉移酶,該化合物包含在單-、二-或寡醣上具有α或β結合甘露糖之該單-、二-或寡醣。A "mannosylation pathway" as used herein is a biochemical pathway comprising at least one of an enzyme and its respective gene selected from a list comprising: mannose -6-phosphate isomerase, phosphomannose mutase and/or mannose-1-phosphate guanosyltransferase, and glycosyltransferases producing mannosylated compounds contained in mono-, The mono-, di- or oligosaccharide having alpha or beta bound mannose on the di- or oligosaccharide.

如本文所用之『N-乙醯基甘露糖胺基化路徑(N-acetylmannosaminylation pathway)』為包含酶及其各別基因中之至少一者的生化路徑,該等酶及其各別基因選自包含以下者之清單:L-麩醯胺酸-D-果糖-6-磷酸胺基轉移酶、葡萄糖胺-6-磷酸脫胺酶、磷酸葡萄糖胺變位酶、N-乙醯基葡萄糖胺-6-磷酸去乙醯酶、葡萄糖胺6-磷酸N-乙醯基轉移酶、N-乙醯基葡萄糖胺-1-磷酸尿苷醯基轉移酶、葡萄糖胺-1-磷酸乙醯基轉移酶、葡萄糖胺-1-磷酸乙醯基轉移酶、UDP-GlcNAc 2-表異構酶及/或ManNAc激酶,以及產生ManNAc修飾之化合物的醣基轉移酶,該化合物包含在單-、二-或寡醣上具有α或β結合N-乙醯甘露糖胺之該單-、二-或寡醣。"N-acetylmannosaminylation pathway" as used herein is a biochemical pathway comprising at least one of enzymes and their respective genes selected from A list containing the following: L-glutamic acid-D-fructose-6-phosphate aminotransferase, glucosamine-6-phosphate deaminase, phosphoglucosamine mutase, N-acetylglucosamine- 6-Phosphate Deacetylase, Glucosamine 6-Phosphate N-Acetyl Transferase, N-Acetyl Glucosamine-1-Phosphate Uridine Transferase, Glucosamine-1-Phosphate Acetyl Transferase , glucosamine-1-phosphate acetyltransferase, UDP-GlcNAc 2-epimerase and/or ManNAc kinase, and glycosyltransferases that produce ManNAc-modified compounds contained in mono-, di- or The mono-, di- or oligosaccharide having alpha or beta bound N-acetylmannosamine on the oligosaccharide.

術語「甘露糖-6-磷酸異構酶(mannose-6-phosphate isomerase)」、「磷酸甘露糖異構酶(phosphomannose isomerase)」、「甘露糖磷酸異構酶(mannose phosphate isomerase)」、「磷酸已糖異構酶(phosphohexoisomerase)」、「磷酸甘露糖異構酶(phosphomannoisomerase)」、「磷酸甘露糖-異構酶(phosphomannose-isomerase)」、「磷酸已糖變位酶(phosphohexomutase)」、「D-甘露糖-6-磷酸鹽酮醇-異構酶(D-mannose-6-phosphate ketol-isomerase)」及「manA」可互換使用且係指催化D-果糖6-磷酸鹽可逆地轉化為D-甘露糖6-磷酸鹽之酶。Terms "mannose-6-phosphate isomerase", "phosphomannose isomerase", "mannose phosphate isomerase", "phosphate "phosphohexoisomerase", "phosphomannoisomerase", "phosphomannose-isomerase", "phosphohexomutase", " D-mannose-6-phosphate ketol-isomerase (D-mannose-6-phosphate ketol-isomerase)" and "manA" are used interchangeably and refer to catalyzing the reversible conversion of D-fructose 6-phosphate to D-mannose 6-phosphate enzyme.

術語「磷酸甘露糖變位酶(phosphomannomutase)」、「甘露糖磷酸變位酶(mannose phosphomutase)」、「磷酸甘露糖變位酶(phosphomannose mutase)」、「D-甘露糖1,6-磷酸變位酶(D-mannose 1,6-phosphomutase)」及「manB」可互換使用且係指催化D-甘露糖6-磷酸鹽可逆地轉化為D-甘露糖1-磷酸鹽之酶。Terms "phosphomannomutase", "mannose phosphomutase", "phosphomannose mutase", "D-mannose 1,6-phosphate mutase" D-mannose 1,6-phosphomutase" and "manB" are used interchangeably and refer to an enzyme that catalyzes the reversible conversion of D-mannose 6-phosphate to D-mannose 1-phosphate.

術語「甘露糖-1-磷酸鳥苷醯基轉移酶(mannose-1-phosphate guanylyltransferase)」、「GTP-甘露糖-1-磷酸鳥苷醯基轉移酶(GTP-mannose-1-phosphate guanylyltransferase)」、「磷酸甘露糖異構酶-鳥苷5'-二磷酸-D-甘露糖焦磷酸化酶(phosphomannose isomerase-guanosine 5'-diphospho-D-mannose pyrophosphorylase;PIM-GMP)」、「GDP-甘露糖焦磷酸化酶(GDP-mannose pyrophosphorylase)」、「鳥苷5'-二磷酸-D-甘露糖焦磷酸化酶(guanosine 5'-diphospho-D-mannose pyrophosphorylase)」、「鳥苷二磷酸甘露糖焦磷酸化酶(guanosine diphosphomannose pyrophosphorylase)」、「鳥苷三磷酸-甘露糖1-磷酸鳥苷醯基轉移酶(guanosine triphosphate-mannose 1-phosphate guanylyltransferase)」、「甘露糖1-磷酸鳥苷醯基轉移酶(三磷酸鳥苷)(mannose 1-phosphate guanylyltransferase (guanosine triphosphate))」及「manC」可互換使用且係指使用GTP將D-甘露糖-1-磷酸鹽轉化為GDP-甘露糖及二磷酸鹽之酶。Terms "mannose-1-phosphate guanylyltransferase", "GTP-mannose-1-phosphate guanylyltransferase" , "phosphomannose isomerase-guanosine 5'-diphosphate-D-mannose pyrophosphorylase (phosphomannose isomerase-guanosine 5'-diphospho-D-mannose pyrophosphorylase; PIM-GMP)", "GDP-mannose Sugar pyrophosphorylase (GDP-mannose pyrophosphorylase), "guanosine 5'-diphospho-D-mannose pyrophosphorylase (guanosine 5'-diphospho-D-mannose pyrophosphorylase)", "guanosine diphosphate mannose Sugar pyrophosphorylase (guanosine diphosphomannose pyrophosphorylase), "guanosine triphosphate-mannose 1-phosphate guanylyltransferase", "mannose 1-phosphate guanylyltransferase" "mannose 1-phosphate guanylyltransferase (guanosine triphosphate)" and "manC" are used interchangeably and refer to the use of GTP to convert D-mannose-1-phosphate to GDP-mannose and Diphosphate enzyme.

術語「GDP-甘露糖4,6-脫水酶(GDP-mannose 4,6-dehydratase)」、「鳥苷5'-二磷酸鹽-D-甘露糖氧化還原酶(guanosine 5'-diphosphate-D-mannose oxidoreductase)」、「鳥苷二磷酸甘露糖氧化還原酶(guanosine diphosphomannose oxidoreductase)」、「鳥苷二磷酸甘露糖4,6-脫水酶(guanosine diphosphomannose 4,6-dehydratase)」、「GDP-D-甘露糖脫水酶(GDP-D-mannose dehydratase)」、「GDP-D-甘露糖4,6-脫水酶(GDP-D-mannose 4,6-dehydratase)」、「GDP-甘露糖4,6-氫-解離酶(GDP-mannose 4,6-hydro-lyase)」、「GDP-甘露糖4,6-氫-解離酶(形成GDP-4-脫氫-6-去氧-D-甘露糖)(GDP-mannose 4,6-hydro-lyase (GDP-4-dehydro-6-deoxy-D-mannose-forming))」及「gmd」可互換使用且係指在GDP-鼠李糖及GDP-岩藻糖之生物合成中形成第一步驟之酶。Terms "GDP-mannose 4,6-dehydratase", "guanosine 5'-diphosphate-D-mannose oxidoreductase" mannose oxidoreductase)", "guanosine diphosphomannose oxidoreductase", "guanosine diphosphomannose 4,6-dehydratase", "GDP-D -Mannose dehydratase (GDP-D-mannose dehydratase)", "GDP-D-mannose 4,6-dehydratase (GDP-D-mannose 4,6-dehydratase)", "GDP-mannose 4,6 - Hydrogen-dissociation enzyme (GDP-mannose 4,6-hydro-lyase)", "GDP-mannose 4,6-hydro-dissociation enzyme (to form GDP-4-dehydro-6-deoxy-D-mannose) ) (GDP-mannose 4,6-hydro-lyase (GDP-4-dehydro-6-deoxy-D-mannose-forming))” and “gmd” are used interchangeably and refer to GDP-rhamnose and GDP- The enzyme that forms the first step in the biosynthesis of fucose.

術語「GDP-L-岩藻糖合酶(GDP-L-fucose synthase)」、「GDP-4-酮-6-去氧-D-甘露糖-3,5-表異構酶-4-還原酶(GDP-4-keto-6- deoxy-D-mannose- 3,5-epimerase-4-reductase)」、「GDP-L-岩藻糖:NADP+4-氧化還原酶(3,5-表異構化)(GDP-L-fucose:NADP+ 4-oxidoreductase (3,5-epimerizing))」及「fcl」可互換使用且係指在GDP-岩藻糖之生物合成中形成第二步驟之酶。Terms "GDP-L-fucose synthase", "GDP-4-keto-6-deoxy-D-mannose-3,5-epimerase-4-reduction" Enzyme (GDP-4-keto-6-deoxy-D-mannose-3,5-epimerase-4-reductase)", "GDP-L-fucose:NADP+4-oxidoreductase (3,5-epimerase-4-reductase)" Isomerizing) (GDP-L-fucose:NADP+ 4-oxidoreductase (3,5-epimerizing))" and "fcl" are used interchangeably and refer to the enzyme that forms the second step in the biosynthesis of GDP-fucose .

術語「L-岩藻糖激酶/GDP-岩藻糖焦磷酸化酶(L-fucokinase/GDP-fucose pyrophosphorylase)」、「L-岩藻糖激酶/L-岩藻糖-1-P鳥苷醯基轉移酶(L-fucokinase/L-fucose-1-P guanylyltransferase)」、「GDP-岩藻糖焦磷酸化酶(GDP-fucose pyrophosphorylase)」、「GDP-L-岩藻糖焦磷酸化酶(GDP-L-fucose pyrophosphorylase)」及「fkp」可互換使用且係指催化使用GTP將L-岩藻糖-1-磷酸鹽轉化為GDP-岩藻糖之酶。Terms "L-fucokinase/GDP-fucose pyrophosphorylase (L-fucokinase/GDP-fucose pyrophosphorylase)", "L-fucose kinase/L-fucose-1-P guanosine Syltransferase (L-fucokinase/L-fucose-1-P guanylyltransferase), "GDP-fucose pyrophosphorylase", "GDP-L-fucose pyrophosphorylase (GDP-L-fucose pyrophosphorylase)" GDP-L-fucose pyrophosphorylase)" and "fkp" are used interchangeably and refer to an enzyme that catalyzes the conversion of L-fucose-1-phosphate to GDP-fucose using GTP.

術語「L-麩醯胺酸-D-果糖-6-磷酸胺基轉移酶(L-glutamine-D-fructose-6-phosphate aminotransferase)」、「麩醯胺酸---果糖-6-磷酸轉胺酶(異構化)(glutamine---fructose-6-phosphate transaminase (isomerizing))」、「磷酸己糖胺基轉移酶(hexosephosphate aminotransferase)」、「葡萄糖胺-6-磷酸異構酶(形成麩醯胺酸)(glucosamine-6-phosphate isomerase (glutamine-forming)」、「麩醯胺酸-果糖-6-磷酸轉胺酶(異構化)(glutamine-fructose-6-phosphate transaminase (isomerizing))」、「D-果糖-6-磷酸醯胺轉移酶(D-fructose-6-phosphate amidotransferase)」、「磷酸葡萄糖胺異構酶(glucosaminephosphate isomerase)」、「葡萄糖胺6-磷酸合酶(glucosamine 6-phosphate synthase)」、「GlcN6P合酶(GlcN6P synthase)」、「GFA」及「glmS」可互換使用且係指催化使用L-麩醯胺酸將D-果糖-6-磷酸鹽轉化為D-葡萄糖胺-6-磷酸鹽之酶。The terms "L-glutamine-D-fructose-6-phosphate aminotransferase", "glutamine-fructose-6-phosphate aminotransferase" Aminase (isomerization) (glutamine---fructose-6-phosphate transaminase (isomerizing))", "hexosephosphate aminotransferase", "glucosamine-6-phosphate isomerase (forming Glutamine-6-phosphate isomerase (glutamine-forming), glutamine-fructose-6-phosphate transaminase (isomerizing) )", "D-fructose-6-phosphate amidotransferase", "glucosaminephosphate isomerase", "glucosamine 6-phosphate synthase" 6-phosphate synthase)", "GlcN6P synthase (GlcN6P synthase)", "GFA" and "glmS" are used interchangeably and refer to the catalysis of the conversion of D-fructose-6-phosphate to D using L-glutamic acid - The enzyme glucosamine-6-phosphate.

術語「葡萄糖胺-6-P脫胺酶(glucosamine-6-P deaminase)」、「葡萄糖胺-6-磷酸脫胺酶(glucosamine-6-phosphate deaminase)」、「GlcN6P脫胺酶(GlcN6P deaminase)」、「葡萄糖胺-6-磷酸異構酶(glucosamine-6-phosphate isomerase)」、「glmD」及「nagB」可互換使用且係指催化葡萄糖胺-6-磷酸鹽(GlcN6P)之可逆異構化-脫胺作用以形成果糖-6-磷酸鹽及銨離子之酶。Terms "glucosamine-6-P deaminase", "glucosamine-6-phosphate deaminase", "GlcN6P deaminase" ", "glucosamine-6-phosphate isomerase", "glmD" and "nagB" are used interchangeably and refer to catalyzing the reversible isomerization of glucosamine-6-phosphate (GlcN6P) An enzyme that reacts with deamination to form fructose-6-phosphate and ammonium ions.

術語「磷酸葡萄糖胺變位酶(phosphoglucosamine mutase)」及「glmM」可互換使用且係指催化葡萄糖胺-6-磷酸鹽轉化成葡萄糖胺-1-磷酸鹽之酶。磷酸葡萄糖胺變位酶亦可催化自葡萄糖-1-P形成葡萄糖-6-P,儘管速率要低1400倍。The terms "phosphoglucosamine mutase" and "glmM" are used interchangeably and refer to the enzyme that catalyzes the conversion of glucosamine-6-phosphate to glucosamine-1-phosphate. Phosphoglucosamine mutase also catalyzes the formation of glucose-6-P from glucose-1-P, albeit at a 1400-fold slower rate.

術語「N-乙醯基葡萄糖胺-6-P去乙醯酶(N-acetylglucosamine-6-P deacetylase)」、「N-乙醯基葡萄糖胺-6-磷酸去乙醯酶(N-acetylglucosamine-6-phosphate deacetylase)」及「nagA」可互換使用且係指催化N-乙醯基葡萄糖胺-6-磷酸鹽(GlcNAc-6-P)之N-乙醯基的水解以產生葡萄糖胺-6-磷酸鹽(GlcN6P)及乙酸鹽的酶。The terms "N-acetylglucosamine-6-P deacetylase", "N-acetylglucosamine-6-phosphate deacetylase" 6-phosphate deacetylase)" and "nagA" are used interchangeably and refer to catalyzing the hydrolysis of the N-acetyl group of N-acetylglucosamine-6-phosphate (GlcNAc-6-P) to yield glucosamine-6 - Phosphate (GlcN6P) and acetate enzymes.

N-醯基葡萄糖胺2-表異構酶為催化反應N-醯基-D-葡萄糖胺=N-醯基-D-甘露糖胺之酶。此酶之替代名稱包含N-乙醯基葡萄糖胺2-表異構酶、N-乙醯基-D-葡萄糖胺2-表異構酶、GlcNAc 2-表異構酶、N-醯基-D-葡萄糖胺2-表異構酶及N-乙醯基葡萄糖胺表異構酶。N-Acylglucosamine 2-epimerase is an enzyme that catalyzes the reaction N-Acyl-D-Glucosamine=N-Acyl-D-Mannosamine. Alternative names for this enzyme include N-acetylglucosamine 2-epimerase, N-acetyl-D-glucosamine 2-epimerase, GlcNAc 2-epimerase, N-acetyl- D-glucosamine 2-epimerase and N-acetylglucosamine epimerase.

UDP-N-乙醯基葡萄糖胺2-表異構酶為催化反應N-乙醯基-D-葡萄糖胺=N-乙醯基甘露糖胺之酶。此酶之替代名稱包含UDP-N-醯基葡萄糖胺2-表異構酶、UDP-GlcNAc-2-表異構酶及UDP-N-乙醯基-D-葡萄糖胺2-表異構酶。UDP-N-acetylglucosamine 2-epimerase is an enzyme that catalyzes the reaction N-acetyl-D-glucosamine=N-acetylmannosamine. Alternative names for this enzyme include UDP-N-acetylglucosamine 2-epimerase, UDP-GlcNAc-2-epimerase and UDP-N-acetyl-D-glucosamine 2-epimerase .

N-乙醯基甘露糖胺-6-磷酸2-表異構酶為催化反應N-乙醯基-D-葡萄糖胺6-磷酸鹽=N-乙醯基-D-甘露糖胺6-磷酸鹽之酶。N-Acetylmannosamine-6-phosphate 2-epimerase catalyzes the reaction N-Acetyl-D-glucosamine 6-phosphate = N-Acetyl-D-mannosamine 6-phosphate salt enzyme.

雙官能UDP-GlcNAc 2-表異構酶/激酶為催化反應UDP-N-乙醯基-D-葡萄糖胺=N-乙醯基-D-甘露糖胺及反應N-乙醯基-D-甘露糖胺+ATP=ADP+N-乙醯基-D-甘露糖胺6-磷酸鹽之雙官能酶。Bifunctional UDP-GlcNAc 2-epimerase/kinase catalyzes the reaction UDP-N-acetyl-D-glucosamine=N-acetyl-D-mannosamine and the reaction N-acetyl-D- Mannosamine+ATP=ADP+N-acetyl-D-mannosamine 6-phosphate bifunctional enzyme.

葡萄糖胺6-磷酸N-乙醯基轉移酶為催化乙醯基自乙醯基-CoA轉移至D-葡萄糖胺-6-磷酸鹽從而產生游離CoA及N-乙醯基-D-葡萄糖胺6-磷酸鹽之酶。替代名稱包含胺基去氧葡萄糖磷酸乙醯基轉移酶、D-葡萄糖胺-6-P N-乙醯基轉移酶、葡萄糖胺6-磷酸乙醯基酶、葡萄糖胺6-磷酸N-乙醯基轉移酶、葡萄糖胺-磷酸N-乙醯基轉移酶、葡萄糖胺-6-磷酸乙醯基酶、N-乙醯基葡萄糖胺-6-磷酸合酶、磷酸葡萄糖胺乙醯基酶、磷酸葡萄糖胺N-乙醯基酶磷酸葡萄糖胺N-乙醯基酶、磷酸葡萄糖胺轉乙醯基酶、GNA及GNA1。Glucosamine 6-phosphate N-acetyltransferase catalyzes the transfer of an acetyl group from acetyl-CoA to D-glucosamine-6-phosphate to generate free CoA and N-acetyl-D-glucosamine 6 - Phosphate enzyme. Alternative names include aminodeoxyglucose phosphate acetyltransferase, D-glucosamine-6-P N-acetyltransferase, glucosamine 6-phosphate acetyltransferase, glucosamine 6-phosphate N-acetyltransferase N-acetyltransferase, glucosamine-phosphate N-acetyltransferase, glucosamine-6-phosphate acetylase, N-acetylglucosamine-6-phosphate synthase, phosphoglucosamine acetylase, phosphoric acid Glucosamine N-acetylase phosphoglucosamine N-acetylase, phosphoglucosamine transacetylase, GNA and GNA1.

術語「N-乙醯基葡萄糖胺-6-磷酸磷酸酶(N-acetylglucosamine-6-phosphate phosphatase)」係指使N-乙醯基葡萄糖胺-6-磷酸鹽(GlcNAc-6-P)去磷酸化由此合成N-乙醯基葡萄糖胺(GlcNAc)之酶。The term "N-acetylglucosamine-6-phosphate phosphatase" refers to the dephosphorylation of N-acetylglucosamine-6-phosphate (GlcNAc-6-P) This is an enzyme that synthesizes N-acetylglucosamine (GlcNAc).

術語「N-乙醯基甘露糖胺-6-磷酸磷酸酶(N-acetylmannosamine-6-phosphate phosphatase)」係指使N-乙醯基甘露糖胺-6-磷酸鹽(ManNAc-6P)去磷酸化成N-乙醯基甘露糖胺(ManNAc)之酶。The term "N-acetylmannosamine-6-phosphate phosphatase" refers to the dephosphorylation of N-acetylmannosamine-6-phosphate (ManNAc-6P) into N-acetylmannosamine (ManNAc) enzyme.

術語「N-乙醯基甘露糖胺-6-磷酸2-表異構酶(N-acetylmannosamine-6-phosphate 2-epimerase)」、「ManNAc-6-P異構酶(ManNAc-6-P isomerase)」、「ManNAc-6-P 2-表異構酶(ManNAc-6-P 2-epimerase)」、「N-乙醯基葡萄糖胺-6P 2-表異構酶(N-acetylglucosamine-6P 2-epimerase)」及「nanE」可互換使用且係指將ManNAc-6-P轉化為N-乙醯基葡萄糖胺-6-磷酸鹽(GlcNAc-6-P)之酶。Terms "N-acetylmannosamine-6-phosphate 2-epimerase", "ManNAc-6-P isomerase" )", "ManNAc-6-P 2-epimerase (ManNAc-6-P 2-epimerase)", "N-acetylglucosamine-6P 2-epimerase (N-acetylglucosamine-6P 2 - epimerase)" and "nanE" are used interchangeably and refer to the enzyme that converts ManNAc-6-P to N-acetylglucosamine-6-phosphate (GlcNAc-6-P).

術語「磷酸乙醯基葡萄糖胺變位酶(phosphoacetylglucosamine mutase)」、「乙醯基葡萄糖胺磷酸變位酶(acetylglucosamine phosphomutase)」、「乙醯基胺基去氧葡萄糖磷酸變位酶(acetylaminodeoxyglucose phosphomutase)」、「二氧磷基-N-乙醯基葡萄糖胺變位酶(phospho-N-acetylglucosamine mutase)」及「N-乙醯基-D-葡萄糖胺1,6-磷酸變位酶(N-acetyl-D-glucosamine 1,6-phosphomutase)」可互換使用且係指催化將N-乙醯基-葡萄糖胺1-磷酸鹽轉化成N-乙醯基葡萄糖胺6-磷酸鹽之酶。Terms "phosphoacetylglucosamine mutase", "acetylglucosamine phosphomutase", "acetylaminodeoxyglucose phosphomutase" ", "phospho-N-acetylglucosamine mutase (phospho-N-acetylglucosamine mutase)" and "N-acetyl-D-glucosamine 1,6-phosphate mutase (N-acetylglucosamine mutase)" acetyl-D-glucosamine 1,6-phosphomutase)" is used interchangeably and refers to an enzyme that catalyzes the conversion of N-acetyl-glucosamine 1-phosphate to N-acetyl-glucosamine 6-phosphate.

術語「N-乙醯基葡萄糖胺1-磷酸尿苷醯基轉移酶(N-acetylglucosamine 1-phosphate uridylyltransferase)」、「N-乙醯基葡萄糖胺-1-磷酸尿苷醯基轉移酶(N-acetylglucosamine-1-phosphate uridyltransferase)」、「UDP-N-乙醯基葡萄糖胺二磷酸酶(UDP-N-acetylglucosamine diphosphorylase)」、「UDP-N-乙醯基葡萄糖胺焦磷酸化酶(UDP-N-acetylglucosamine pyrophosphorylase)」、「尿苷二磷酸乙醯基葡萄糖胺焦磷酸化酶(uridine diphosphoacetylglucosamine pyrophosphorylase)」、「UTP:2-乙醯胺基-2-去氧-α-D-葡萄糖-1-磷酸尿苷醯基轉移酶(UTP:2-acetamido-2- deoxy-alpha-D-glucose- 1-phosphate uridylyltransferase)」、「UDP-GlcNAc焦磷酸化酶(UDP-GlcNAc pyrophosphorylase)」、「GlmU尿苷醯基轉移酶(GlmU uridylyltransferase)」、「乙醯基葡萄糖胺1-磷酸尿苷醯基轉移酶(Acetylglucosamine 1-phosphate uridylyltransferase)」、「UDP-乙醯基葡萄糖胺焦磷酸化酶(UDP-acetylglucosamine pyrophosphorylase)」、「二磷酸尿苷-N-乙醯基葡萄糖胺焦磷酸化酶(uridine diphosphate-N-acetylglucosamine pyrophosphorylase)」、「尿苷二磷酸乙醯基葡萄糖胺磷酸化酶(uridine diphosphoacetylglucosamine phosphorylase)」及「乙醯基葡萄糖胺1-磷酸尿苷醯基轉移酶(acetylglucosamine 1-phosphate uridylyltransferase)」可互換使用且係指催化藉由轉移尿苷5-單磷酸鹽(自尿苷5-三磷酸鹽(uridine 5-triphosphate;UTP)轉移)將N-乙醯基葡萄糖胺1-磷酸鹽(GlcNAc-1-P)轉化為UDP-N-乙醯基葡萄糖胺(UDP-GlcNAc)之酶。The terms "N-acetylglucosamine 1-phosphate uridine syltransferase", "N-acetylglucosamine 1-phosphate uridine syltransferase" (N-acetylglucosamine 1-phosphate uridine syltransferase) acetylglucosamine-1-phosphate uridyltransferase)", "UDP-N-acetylglucosamine diphosphorylase", "UDP-N-acetylglucosamine pyrophosphorylase (UDP-N-acetylglucosamine diphosphorylase)" -acetylglucosamine pyrophosphorylase)", "uridine diphosphoacetylglucosamine pyrophosphorylase", "UTP:2-acetylglucosamine-2-deoxy-α-D-glucose-1- Uridine phosphate transferase (UTP: 2-acetamido-2-deoxy-alpha-D-glucose- 1-phosphate uridylyltransferase)", "UDP-GlcNAc pyrophosphorylase", "GlmU urine Glysyltransferase (GlmU uridylyltransferase)", "Acetylglucosamine 1-phosphate uridineyltransferase (Acetylglucosamine 1-phosphate uridylyltransferase)", "UDP-acetylglucosamine pyrophosphorylase (UDP- "acetylglucosamine pyrophosphorylase", "uridine diphosphate-N-acetylglucosamine pyrophosphorylase", "uridine diphosphoacetylglucosamine phosphorylase" )" and "acetylglucosamine 1-phosphate uridineyltransferase" are used interchangeably and refer to catalyzed transfer of uridine 5-monophosphate (from uridine 5-triphosphate Phosphate (uridine 5-triphosphate; UTP) transfer) converts N-acetylglucosamine 1-phosphate (GlcNAc-1-P) into UDP-N-acetylglucosamine (UDP-GlcNAc) enzyme.

術語葡萄糖胺-1-磷酸乙醯基轉移酶係指催化乙醯基自乙醯基輔酶A轉移至葡萄糖胺-1-磷酸鹽(GlcN-1-P)以產生N-乙醯基葡萄糖胺-1-磷酸鹽(GlcNAc-1-P)之酶。The term glucosamine-1-phosphate acetyltransferase refers to the catalyzed transfer of an acetyl group from acetyl-CoA to glucosamine-1-phosphate (GlcN-1-P) to produce N-acetylglucosamine- 1-Phosphate (GlcNAc-1-P) enzyme.

術語「glmU」係指具有N-乙醯基葡萄糖胺-1-磷酸尿苷醯基轉移酶及葡萄糖胺-1-磷酸乙醯基轉移酶活性兩者且催化UDP-GlcNAc之從頭生物合成路徑中之兩個依序反應的雙官能酶。C端域催化乙醯基自乙醯基輔酶A轉移至GlcN-1-P以產生GlcNAc-1-P,其藉由尿苷5-單磷酸鹽之轉移而轉化成UDP-GlcNAc,此係由N端域催化之反應。The term "glmU" refers to a pathway that has both N-acetylglucosamine-1-phosphate uridine transferase and glucosamine-1-phosphate acetyltransferase activities and catalyzes the de novo biosynthetic pathway of UDP-GlcNAc Two sequentially reacting bifunctional enzymes. The C-terminal domain catalyzes the transfer of an acetyl group from acetyl-CoA to GlcN-1-P to generate GlcNAc-1-P, which is converted to UDP-GlcNAc by transfer of uridine 5-monophosphate, which is obtained by Reactions catalyzed by the N-terminal domain.

如本文所用之術語「NeunAc合酶(NeunAc synthase)、「N-乙醯基神經胺酸合酶(N-acetylneuraminic acid synthase)」、「N-乙醯基神經胺酸合酶(N-acetylneuraminate synthase)」、「唾液酸合酶(sialic acid synthase)」、「NeuAc合酶(NeuAc synthase)」、「NeuB」、「NeuB1」、「NeuNAc合酶(NeuNAc synthase)」、「NANA縮合酶(NANA condensing enzyme)」、「N-乙醯基神經胺酸解離酶合酶(N-acetylneuraminate lyase synthase)」、「N-乙醯基神經胺酸縮合酶(N-acetylneuraminic acid condensing enzyme)」可互換使用且係指能夠在反應中使用磷酸烯醇丙酮酸鹽(phosphoenolpyruvate;PEP)自N-乙醯基甘露糖胺(ManNAc)合成唾液酸之酶。The terms "NeunAc synthase (NeunAc synthase), "N-acetylneuraminic acid synthase", "N-acetylneuraminate synthase" as used herein )", "sialic acid synthase", "NeuAc synthase", "NeuB", "NeuB1", "NeuNAc synthase", "NANA condensing" enzyme)", "N-acetylneuraminate lyase synthase", "N-acetylneuraminic acid condensing enzyme" are used interchangeably and Refers to an enzyme capable of synthesizing sialic acid from N-acetylmannosamine (ManNAc) using phosphoenolpyruvate (PEP) in a reaction.

術語「N-乙醯基神經胺酸解離酶(N-acetylneuraminate lyase)」、「Neu5Ac解離酶(Neu5Ac lyase)」、「N-乙醯基神經胺酸丙酮酸解離酶(N-acetylneuraminate pyruvate-lyase)」、「N-乙醯基神經胺酸醛縮酶(N-acetylneuraminic acid aldolase)」、「NALase」、「唾液酸解離酶(sialate lyase)」、「唾液酸醛縮酶(sialic acid aldolase)」、「唾液酸解離酶(sialic acid lyase)」及「nanA」可互換使用且係指將N-乙醯基神經胺酸鹽降解為N-乙醯基甘露糖胺(ManNAc)及丙酮酸酯之酶。Terms "N-acetylneuraminate lyase", "Neu5Ac lyase", "N-acetylneuraminate pyruvate-lyase" )", "N-acetylneuraminic acid aldolase", "NALase", "sialate lyase", "sialic acid aldolase" ", "sialic acid lyase" and "nanA" are used interchangeably and refer to the degradation of N-acetylneuraminate to N-acetylmannosamine (ManNAc) and pyruvate the enzyme.

如本文所用之術語「N-醯基神經胺酸-9-磷酸合酶(N-acylneuraminate-9-phosphate synthase)」、「N-醯基神經胺酸-9-磷酸合酶(N-acylneuraminate-9-phosphate synthetase)」、「NANA合酶(NANA synthase)」、「NANAS」、「NANS」、「NmeNANAS」、「N-乙醯基神經胺酸丙酮酸解離酶(丙酮酸酯磷酸化)(N-acetylneuraminate pyruvate-lyase (pyruvate-phosphorylating))」可互換使用且係指能夠在反應中使用磷酸烯醇丙酮酸鹽(PEP)自N-乙醯基甘露糖胺-6-磷酸鹽(ManNAc-6-磷酸鹽)合成N-醯基神經胺酸-9-磷酸鹽之酶。As used herein, the terms "N-acylneuraminate-9-phosphate synthase", "N-acylneuraminate-9-phosphate synthase" 9-phosphate synthetase)", "NANA synthase (NANA synthase)", "NANAS", "NANS", "NmeNANAS", "N-acetylneuraminic acid pyruvate lyase (pyruvate phosphorylation) ( N-acetylneuraminate pyruvate-lyase (pyruvate-phosphorylating)" is used interchangeably and refers to the ability to use phosphoenolpyruvate (PEP) in a reaction from N-acetylmannosamine-6-phosphate (ManNAc- 6-Phosphate) is an enzyme that synthesizes N-acylneuraminic acid-9-phosphate.

術語「N-醯基神經胺酸-9-磷酸酶(N-acylneuraminate- 9-phosphatase)」係指能夠使N-醯基神經胺酸-9-磷酸鹽去磷酸化以合成N-醯基神經胺酸鹽之酶。The term "N-acylneuraminate-9-phosphatase" refers to a enzyme capable of dephosphorylating N-acylneuraminic acid-9-phosphate to synthesize N-acylneuraminic acid Amino acid enzyme.

如本文所用之術語「CMP-唾液酸合酶(CMP-sialic acid synthase)」、「N-醯基神經胺酸胞苷醯基轉移酶(N-acylneuraminate cytidylyltransferase)」、「CMP-唾液酸合酶(CMP-sialate synthase)」、「CMP-NeuAc合酶(CMP-NeuAc synthase)」、「NeuA」及「CMP-N-乙醯基神經胺酸合酶(CMP-N-acetylneuraminic acid synthase)」可互換使用且係指能夠在反應中使用CTP自N-乙醯基神經胺酸鹽合成CMP-N-乙醯基神經胺酸鹽之酶。The terms "CMP-sialic acid synthase", "N-acylneuraminate cytidylyltransferase", "CMP-sialic acid synthase" as used herein (CMP-sialate synthase)", "CMP-NeuAc synthase (CMP-NeuAc synthase)", "NeuA" and "CMP-N-acetylneuraminic acid synthase (CMP-N-acetylneuraminic acid synthase)" can be Used interchangeably and refer to an enzyme capable of synthesizing CMP-N-acetylneuraminate from N-acetylneuraminate using CTP in a reaction.

術語「半乳糖-1-表異構酶(galactose-1-epimerase)」、「醛糖1-表異構酶(aldose 1-epimerase)」、「變旋酶(mutarotase)」、「醛醣變旋酶(aldose mutarotase)」、「半乳糖變旋酶(galactose mutarotase)」、「半乳糖1-表異構酶(galactose 1-epimerase)」及「D-半乳糖1-表異構酶(D-galactose 1-epimerase)」可互換使用且係指催化β-D-半乳糖轉化為α-D-半乳糖之酶。Terms "galactose-1-epimerase", "aldose 1-epimerase", "mutarotase", "aldose 1-epimerase" Gyrase (aldose mutarotase), "galactose mutarotase (galactose mutarotase)", "galactose 1-epimerase (galactose 1-epimerase)" and "D-galactose 1-epimerase (D -galactose 1-epimerase)" is used interchangeably and refers to an enzyme that catalyzes the conversion of β-D-galactose to α-D-galactose.

術語「半乳糖激酶(galactokinase)」、「半乳糖激酶(磷酸化)(galactokinase(phosphorylating))」及「ATP:D-半乳糖-1-磷酸轉移酶(ATP:D-galactose-1-phosphotransferase)」可互換使用且係指催化使用ATP將α-D-半乳糖轉化成α-D-半乳糖1-磷酸鹽之酶。Terms "galactokinase", "galactokinase (phosphorylating)" and "ATP:D-galactose-1-phosphotransferase" " is used interchangeably and refers to an enzyme that catalyzes the conversion of α-D-galactose to α-D-galactose 1-phosphate using ATP.

術語葡萄糖激酶及「葡萄糖激酶(磷酸化)(glucokinase (phosphorylating))」可互換使用且係指催化使用ATP將D-葡萄糖轉化成D-葡萄糖6-磷酸鹽之酶。The terms glucokinase and "glucokinase (phosphorylating)" are used interchangeably and refer to an enzyme that catalyzes the conversion of D-glucose to D-glucose 6-phosphate using ATP.

術語「半乳糖-1-磷酸尿苷醯基轉移酶(galactose-1-phosphate uridylyltransferase)」、「Gal-1-P尿苷醯基轉移酶(Gal-1-P uridylyltransferase)」、「UDP-葡萄糖---己糖-1-磷酸尿苷醯基轉移酶(UDP-glucose---hexose-1-phosphate uridylyltransferase)」、「尿苷醯基轉移酶(uridyl transferas)」、「己糖-1-磷酸尿苷醯基轉移酶(hexose-1-phosphate uridylyltransferase)」、「尿苷醯基轉移酶(uridyltransferase)」、「己糖1-磷酸尿苷醯基轉移酶(hexose 1-phosphate uridyltransferase)」、「UDP-葡萄糖:α-D-半乳糖-1-磷酸尿苷醯基轉移酶(UDP-glucose:alpha-D-galactose-1-phosphate uridylyltransferase)」、「galB」及「galT」可互換使用且係指催化反應D-半乳糖1-磷酸鹽+UDP-D-葡萄糖=D-葡萄糖1-磷酸鹽+UDP-D-半乳糖之酶。Terms "galactose-1-phosphate uridineyltransferase", "Gal-1-P uridineyltransferase", "UDP-glucose" --- Hexose-1-phosphate uridine transferase (UDP-glucose---hexose-1-phosphate uridylyltransferase)", "uridine transferase (uridyl transferas)", "hexose-1- Hexose-1-phosphate uridyltransferase, "uridyltransferase", "hexose 1-phosphate uridyltransferase", "UDP-glucose:alpha-D-galactose-1-phosphate uridineyltransferase", "galB" and "galT" are used interchangeably and Refers to the enzyme that catalyzes the reaction D-galactose 1-phosphate + UDP-D-glucose = D-glucose 1-phosphate + UDP-D-galactose.

術語「UDP-葡萄糖4-表異構酶(UDP-glucose 4-epimerase)」、「UDP-半乳糖4-表異構酶(UDP-galactose 4-epimerase)」、「尿苷二磷酸葡萄糖表異構酶(uridine diphosphoglucose epimerase)」、「半乳糖瓦爾登轉化酶(galactowaldenase)」、「UDPG-4-表異構酶(UDPG-4-epimerase)」、「尿苷二磷酸半乳糖4-表異構酶(uridine diphosphate galactose 4-epimerase)」、「尿苷二磷酸-半乳糖-4-表異構酶(uridine diphospho-galactose-4-epimerase)」、「UDP-葡萄糖表異構酶(UDP-glucose epimerase)」、「4-表異構酶(4-epimerase)」、「尿苷二磷酸葡萄糖4-表異構酶(uridine diphosphoglucose 4-epimerase)」、「尿苷二磷酸葡萄糖4-表異構酶(uridine diphosphate glucose 4-epimerase)」及「UDP-D-半乳糖4-表異構酶(UDP-D-galactose 4-epimerase)」可互換使用且係指催化UDP-D-葡萄糖轉化為UDP-半乳糖之酶。Terms "UDP-glucose 4-epimerase", "UDP-galactose 4-epimerase", "uridine diphosphate glucose epimerase" "uridine diphosphoglucose epimerase", "galactowaldenase", "UDPG-4-epimerase", "uridine diphosphate galactose 4-epimerase" Constructing enzyme (uridine diphosphate galactose 4-epimerase)", "uridine diphospho-galactose-4-epimerase (uridine diphospho-galactose-4-epimerase)", "UDP-glucose epimerase (UDP- "glucose epimerase", "4-epimerase", "uridine diphosphoglucose 4-epimerase", "uridine diphosphoglucose 4-epimerase" "uridine diphosphate glucose 4-epimerase" and "UDP-D-galactose 4-epimerase" are used interchangeably and refer to the conversion of UDP-D-glucose into UDP-galactose enzyme.

術語「葡萄糖-1-磷酸尿苷醯基轉移酶(glucose-1-phosphate uridylyltransferase)」、「UTP---葡萄糖-1-磷酸尿苷醯基轉移酶(UTP---glucose-1-phosphate uridylyltransferase)」、「UDP葡萄糖焦磷酸化酶(UDP glucose pyrophosphorylase)」、「UDPG磷酸化酶(UDPG phosphorylase)」、「UDPG焦磷酸化酶(UDPG pyrophosphorylase)」、「尿苷5'-二磷酸葡萄糖焦磷酸化酶(uridine 5'-diphosphoglucose pyrophosphorylase)」、「尿苷二磷酸葡萄糖焦磷酸化酶(uridine diphosphoglucose pyrophosphorylase)」、「尿苷二磷酸-D-葡萄糖焦磷酸化酶(uridine diphosphate-D-glucose pyrophosphorylase)」、「尿苷-二磷酸葡萄糖焦磷酸化酶(uridine-diphosphate glucose pyrophosphorylase)」及「galU」可互換使用且係指催化使用UTP將D-葡萄糖-1-磷酸鹽轉化為UDP-葡萄糖之酶。Terms "glucose-1-phosphate uridine syltransferase (glucose-1-phosphate uridylyltransferase)", "UTP---glucose-1-phosphate uridylyltransferase (UTP---glucose-1-phosphate uridylyltransferase)" )", "UDP glucose pyrophosphorylase", "UDPG phosphorylase", "UDPG pyrophosphorylase", "uridine 5'-diphosphate glucose pyrophosphate" Phosphorylase (uridine 5'-diphosphoglucose pyrophosphorylase), "uridine diphosphoglucose pyrophosphorylase", "uridine diphosphate-D-glucose pyrophosphorylase" "phosphorylase", "uridine-diphosphate glucose pyrophosphorylase" and "galU" are used interchangeably and refer to the catalysis of the conversion of D-glucose-1-phosphate to UDP-glucose using UTP the enzyme.

術語「磷酸葡萄糖變位酶(α-D-葡萄糖-1,6-二磷酸依賴型)(phosphoglucomutase (alpha-D-glucose-1,6-bisphosphate-dependent))」、「葡萄糖磷酸變位酶(不明確)(glucose phosphomutase (ambiguous))」及「磷酸葡萄糖變位酶(不明確)(phosphoglucose mutase (ambiguous))」可互換使用且係指催化D-葡萄糖1-磷酸鹽轉化為D-葡萄糖6-磷酸鹽之酶。The terms "phosphoglucomutase (alpha-D-glucose-1,6-bisphosphate-dependent)", "phosphoglucomutase (alpha-D-glucose-1,6-bisphosphate-dependent)" "glucose phosphomutase (ambiguous)" and "phosphoglucose mutase (ambiguous)" are used interchangeably and refer to the conversion of D-glucose 1-phosphate to D-glucose 6 - Phosphate enzyme.

術語「UDP-N-乙醯基葡萄糖胺4-表異構酶(UDP-N-acetylglucosamine 4-epimerase)」、「UDP乙醯基葡萄糖胺表異構酶(UDP acetylglucosamine epimerase)」、「尿苷二磷酸乙醯基葡萄糖胺表異構酶(uridine diphosphoacetylglucosamine epimerase)」、「尿苷二磷酸N-乙醯基葡萄糖胺-4-表異構酶(uridine diphosphate N-acetylglucosamine-4-epimerase)」、「尿苷5'-二磷酸-N-乙醯基葡萄糖胺-4-表異構酶(uridine 5'-diphospho-N-acetylglucosamine- 4-epimerase)」及「UDP-N-乙醯基-D-葡萄糖胺4-表異構酶(UDP-N-acetyl-D-glucosamine 4-epimerase)」可互換使用且係指催化UDP-N-乙醯基葡萄糖胺(UDP-GlcNAc)差向異構化為UDP-N-乙醯基半乳糖胺(UDP-GalNAc)之酶。Terms "UDP-N-acetylglucosamine 4-epimerase", "UDP acetylglucosamine epimerase", "uridine "uridine diphosphoacetylglucosamine epimerase", "uridine diphosphate N-acetylglucosamine-4-epimerase", "uridine 5'-diphospho-N-acetylglucosamine-4-epimerase" and "UDP-N-acetylglucosamine-D" - UDP-N-acetyl-D-glucosamine 4-epimerase" is used interchangeably and refers to catalyzing the epimerization of UDP-N-acetyl-glucosamine (UDP-GlcNAc) It is the enzyme of UDP-N-acetylgalactosamine (UDP-GalNAc).

術語「N-乙醯基半乳糖胺激酶(N-acetylgalactosamine kinase)」、「GALK2」、「GK2」、「GalNAc激酶(GalNAc kinase)」、「N-乙醯基半乳糖胺(GalNAc)-1-磷酸激酶(N-acetylgalactosamine (GalNAc)-1-phosphate kinase)」及「ATP:N-乙醯基-D-半乳糖胺1-磷酸轉移酶(ATP:N-acetyl-D-galactosamine 1-phosphotransferase)」可互換使用且係指催化使用ATP自N-乙醯基半乳糖胺(GalNAc)合成N-乙醯基半乳糖胺1-磷酸鹽(GalNAc-1-P)之酶。Terms "N-acetylgalactosamine kinase", "GALK2", "GK2", "GalNAc kinase", "N-acetylgalactosamine (GalNAc)-1" -N-acetylgalactosamine (GalNAc)-1-phosphate kinase" and "ATP:N-acetyl-D-galactosamine 1-phosphotransferase" )" is used interchangeably and refers to an enzyme that catalyzes the synthesis of N-acetylgalactosamine 1-phosphate (GalNAc-1-P) from N-acetylgalactosamine (GalNAc) using ATP.

術語「UDP-N-乙醯基半乳糖胺焦磷酸化酶(UDP-N-acetylgalactosamine pyrophosphorylase)」及「UDP-GalNAc焦磷酸化酶(UDP-GalNAc pyrophosphorylase)」可互換使用且係指使用UTP催化N-乙醯基半乳糖胺1-磷酸鹽(GalNAc-1-P)轉化為UDP-N-乙醯基半乳糖胺(UDP-GalNAc)之酶。The terms "UDP-N-acetylgalactosamine pyrophosphorylase" and "UDP-GalNAc pyrophosphorylase" are used interchangeably and refer to the use of UTP catalysis The enzyme that converts N-acetylgalactosamine 1-phosphate (GalNAc-1-P) to UDP-N-acetylgalactosamine (UDP-GalNAc).

術語「N-乙醯基神經胺酸激酶(N-acetylneuraminate kinase)」、「ManNAc激酶(ManNAc kinase)」、「N-乙醯基-D-甘露糖胺激酶(N-acetyl-D-mannosamine kinase)」及「nanK」可互換使用且係指使ManNAc磷酸化以合成N-乙醯基甘露糖胺-磷酸鹽(ManNAc-6-P)之酶。Terms "N-acetylneuraminate kinase", "ManNAc kinase", "N-acetyl-D-mannosamine kinase" )" and "nanK" are used interchangeably and refer to the enzyme that phosphorylates ManNAc to synthesize N-acetylmannosamine-phosphate (ManNAc-6-P).

術語「乙醯基-輔酶A合成酶(acetyl-coenzyme A synthetase)」、「acs」、「乙醯基-CoA合成酶(acetyl-CoA synthetase)」、「AcCoA合成酶(AcCoA synthetase)」、「乙酸鹽--CoA接合酶(acetate--CoA ligase)」、「醯基活化酶(acyl-activating enzyme)」及「yfaC」可互換使用且係指在ATP依賴性反應中催化乙酸鹽轉化為乙醯基-輔酶A(AcCoA)之酶。Terms "acetyl-coenzyme A synthetase", "acs", "acetyl-CoA synthetase", "AcCoA synthetase", " Acetate--CoA ligase, "acyl-activating enzyme" and "yfaC" are used interchangeably and refer to catalyzing the conversion of acetate to ethyl acetate in an ATP-dependent reaction Acyl-CoA (AcCoA) enzyme.

術語「丙酮酸脫氫酶(pyruvate dehydrogenase)」、「丙酮酸氧化酶(pyruvate oxidase)」、「POX」、「poxB」及「丙酮酸鹽:泛醌-8氧化還原酶(pyruvate:ubiquinone-8 oxidoreductase)」可互換使用且係指催化丙酮酸鹽之氧化去羧以產生乙酸鹽及CO2之酶。Terms "pyruvate dehydrogenase", "pyruvate oxidase", "POX", "poxB" and "pyruvate:ubiquinone-8 oxidoreductase" oxidoreductase)" is used interchangeably and refers to an enzyme that catalyzes the oxidative decarboxylation of pyruvate to produce acetate and CO2.

術語「乳酸脫氫酶(lactate dehydrogenase)、「D-乳酸脫氫酶(D-lactate dehydrogenase)」、「ldhA」、「hslI」、「htpH」、「D-LDH」、「醱酵性乳酸脫氫酶(fermentative lactate dehydrogenase)」及「D-特異性2-羥基酸脫氫酶(D-specific 2-hydroxyacid dehydrogenase)」可互換使用且係指催化乳酸鹽轉化成丙酮酸鹽由此生成NADH之酶。Terms "lactate dehydrogenase (lactate dehydrogenase), "D-lactate dehydrogenase (D-lactate dehydrogenase)", "ldhA", "hslI", "htpH", "D-LDH", "enzymatic lactate dehydrogenase" "fermentative lactate dehydrogenase" and "D-specific 2-hydroxyacid dehydrogenase" are used interchangeably and refer to the enzyme that catalyzes the conversion of lactate to pyruvate, thereby producing NADH. enzymes.

如本文所用,術語「細胞生產力指數(cell productivity index;CPI)」係指藉由細胞產生之產物的質量除以培養物中產生之細胞的質量。As used herein, the term "cell productivity index (CPI)" refers to the mass of product produced by cells divided by the mass of cells produced in culture.

術語「純化(purified)」係指實質上或基本上不含干擾生物分子活性之組分的物質。對於細胞、醣類、核酸及多肽,術語「純化」係指實質上或基本上不含通常伴隨如天然狀態下所發現之物質的組分的物質。典型地,本發明之經純化醣、寡醣、蛋白質或核酸為至少約50%、55%、60%、65%、70%、75%、80%或85%純,通常至少約90%、91%、92%、93%、94%、95%、96%、97%、98%或99%純,如藉由基於銀染凝膠之條帶強度或用於測定純度之其他方法所量測。純度或均質性可藉由所屬技術領域中熟知之多種方式指示,該等方式諸如蛋白質或核酸樣品之聚丙烯醯胺凝膠電泳,之後在染色後進行觀測。出於某些目的,將需要高解析度及採用HPLC或用於純化之類似方式。對於寡醣,純度可使用諸如(但不限於)薄層層析、氣相層析、NMR、HPLC、毛細管電泳或質譜分析之方法測定。The term "purified" refers to a substance that is substantially or substantially free of components that interfere with the activity of a biomolecule. With respect to cells, carbohydrates, nucleic acids and polypeptides, the term "purified" refers to a material that is substantially or substantially free of components that normally accompany the material as found in its natural state. Typically, a purified saccharide, oligosaccharide, protein or nucleic acid of the invention is at least about 50%, 55%, 60%, 65%, 70%, 75%, 80% or 85% pure, usually at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% pure, as measured by band intensity based on silver-stained gels or other methods for determining purity Measurement. Purity or homogeneity can be indicated by a variety of means well known in the art, such as polyacrylamide gel electrophoresis of protein or nucleic acid samples followed by observation after staining. For some purposes, high resolution and the use of HPLC or similar means for purification will be required. For oligosaccharides, purity can be determined using methods such as, but not limited to, thin layer chromatography, gas chromatography, NMR, HPLC, capillary electrophoresis, or mass spectrometry.

術語「培養(cultivation)」係指培養或醱酵細胞之培養基、細胞本身及由細胞在全培養液中產生之寡醣,亦即在細胞之內部(胞內)以及外部(胞外)產生。The term "cultivation" refers to the medium in which the cells are cultured or fermented, the cells themselves, and the oligosaccharides produced by the cells in whole culture broth, ie, both internally (intracellularly) and externally (extracellularly).

如本文所用之術語「膜運輸蛋白(membrane transporter proteins)」係指作為細胞膜之一部分或與細胞膜相互作用且控制分子及資訊跨越細胞之流動的蛋白質。因此,膜蛋白參與轉運,不論其輸入至細胞中或自細胞輸出。The term "membrane transporter proteins" as used herein refers to proteins that are part of or interact with the cell membrane and control the flow of molecules and information across the cell. Thus, membrane proteins are involved in transport, whether they are imported into or exported from cells.

此類膜運輸蛋白可為如由運輸蛋白分類資料庫(Transporter Classification Database)所定義之搬運蛋白(porter)、P-P-鍵水解驅動之運輸蛋白、β-桶狀孔蛋白(β-Barrel Porin)、輔助運輸蛋白、推定運輸蛋白及磷酸轉移驅動之基團移位蛋白,該資料庫經由www.tcdb.org獲得由Saier Lab Bioinformatics Group運作及管理且提供膜運輸蛋白之功能性及系統發生分類。此運輸蛋白分類資料庫詳述膜運輸蛋白之IUBMB核准之綜合分類系統,稱為運輸蛋白分類(Transporter Classification;TC)系統。如此處所描述之TCDB分類搜尋係基於如2019年6月17日發佈之TCDB. org而定義。Such membrane transporters can be porters as defined by the Transporter Classification Database, transporters driven by P-P-bond hydrolysis, β-Barrel Porin, Accessory Transporters, Putative Transporters, and Phosphotransfer-Driven Group Translocation Proteins, this database is operated and managed by the Saier Lab Bioinformatics Group via www.tcdb.org and provides a functional and phylogenetic classification of membrane transporters. This transporter classification database details the IUBMB-approved comprehensive classification system for membrane transporters, called the Transporter Classification (TC) system. TCDB taxonomy searches as described herein are defined based on TCDB.org as published on June 17, 2019.

搬運蛋白為利用載體介導之過程的單向搬運蛋白、同向搬運蛋白及反向搬運蛋白的集合名稱(Saier等人, Nucleic Acids Res. 44 (2016) D372-D379)。其屬於電化學電位驅動運輸蛋白且亦稱為次級載體型促進劑。膜運輸蛋白在利用載體介導之過程時包括於此類別中,以當單個物種藉由易化擴散或在膜電位依賴型過程(若溶質帶電)中進行轉運時,則催化單向搬運;當兩個或更多個物種在緊耦合過程中以相反方向轉運時,不耦合至除化學滲透能量之外的直接能量形式,則催化反向搬運;及/或當兩個或更多個物種在緊耦合過程中以相同方向一起轉運時,不耦合至除化學滲透能量之外的直接能量形式,則催化同向搬運,該等蛋白均屬於次級載體(Forrest等人, Biochim. Biophys. Acta 1807 (2011) 167-188)。此等系統通常具有立體特異性。溶質:溶質反向運輸為次級載體之典型特徵。搬運蛋白及酶之動態締合產生功能性膜轉運代謝群組,其將典型地獲自胞外隔室之基質直接地導入至其細胞代謝中(Moraes及Reithmeier, Biochim. Biophys. Acta 1818 (2012), 2687-2706)。經由此搬運蛋白系統轉運之溶質包括(但不限於)陽離子、有機陰離子、無機陰離子、核苷、胺基酸、多元醇、磷酸化糖分解中間物、滲透劑、螯鐵蛋白。Porter is the collective name for uniporter, coporter, and antiporter that utilize carrier-mediated processes (Saier et al., Nucleic Acids Res. 44 (2016) D372-D379). It belongs to the class of electrochemical potential-driven transport proteins and is also known as a secondary carrier-type enhancer. Membrane transport proteins are included in this category when using carrier-mediated processes to catalyze unidirectional transport when a single species is transported by facilitated diffusion or in a membrane potential-dependent process (if the solute is charged); when Catalytic reverse transport occurs when two or more species are transported in opposite directions in a tightly coupled process, not coupled to a direct energy form other than chemi-osmotic energy; and/or when two or more species are transported in opposite directions. When they are transported together in the same direction in the process of tight coupling, they are not coupled to direct energy forms other than chemical osmotic energy, and catalyze the transport in the same direction. These proteins belong to secondary carriers (Forrest et al., Biochim. Biophys. Acta 1807 (2011) 167-188). These systems are usually stereospecific. Solute: Solute reverse transport is a typical feature of secondary carriers. Dynamic association of transporters and enzymes produces a functional membrane transport metabolite that directly imports substrates typically obtained from the extracellular compartment into their cellular metabolism (Moraes and Reithmeier, Biochim. Biophys. Acta 1818 (2012). ), 2687-2706). Solutes transported via this transporter system include, but are not limited to, cations, organic anions, inorganic anions, nucleosides, amino acids, polyols, phosphorylated saccharolytic intermediates, osmotic agents, chelating iron.

若膜運輸蛋白水解無機焦磷酸、ATP或另一核苷三磷酸之二磷酸鍵以驅動一種溶質或多種溶質之主動吸收及/或擠出,則膜運輸蛋白包括於P-P-鍵水解驅動之運輸蛋白之類別中(Saier等人, Nucleic Acids Res. 44 (2016) D372-D379)。膜運輸蛋白可或可不暫時磷酸化,但基質未磷酸化。經由P-P-鍵水解驅動之運輸蛋白之類別轉運之基質包括(但不限於)陽離子、重金屬、β-葡聚糖、UDP-葡萄糖、脂多醣、磷壁酸。A membrane transporter is included in P-P-bond hydrolysis-driven transport if it hydrolyzes the diphosphate bond of an inorganic pyrophosphate, ATP, or another nucleoside triphosphate to drive active uptake and/or extrusion of a solute or solutes in the class of proteins (Saier et al, Nucleic Acids Res. 44 (2016) D372-D379). Membrane transporters may or may not be transiently phosphorylated, but substrates are not. Substrates transported by classes of transporters driven by hydrolysis of P-P-bonds include, but are not limited to, cations, heavy metals, beta-glucans, UDP-glucose, lipopolysaccharides, teichoic acid.

β-桶狀孔蛋白膜運輸蛋白形成跨膜孔隙,其通常允許溶質以能量無關之方式穿過膜。此等蛋白質之跨膜部分僅僅由β股組成,形成β-桶狀(Saier等人, Nucleic Acids Res. 44 (2016) D372-D379)。此等孔蛋白型蛋白質發現於革蘭氏陰性細菌(Gram-negative bacteria)、粒線體、質體及可能抗酸性(acid-fast)革蘭氏陽性細菌之外膜中。經由此等β-桶狀孔蛋白轉運之溶質包括(但不限於)核苷、棉子糖、葡萄糖、β-葡糖苷、寡醣。Beta-barrel porin membrane transport proteins form transmembrane pores that generally allow solutes to pass through the membrane in an energy-independent manner. The transmembrane portion of these proteins consists solely of beta strands, forming a beta-barrel (Saier et al., Nucleic Acids Res. 44 (2016) D372-D379). These porin-type proteins are found in the outer membranes of Gram-negative bacteria, mitochondria, plastids and possibly acid-fast Gram-positive bacteria. Solutes transported through these β-barrel porins include, but are not limited to, nucleosides, raffinose, glucose, β-glucosides, oligosaccharides.

輔助運輸蛋白定義為促進跨越一或多個生物膜轉運但本身不直接參與轉運之蛋白質。此等膜運輸蛋白始終結合一或多種現有轉運系統起作用,該等系統諸如(但不限於)外膜因子(outer membrane factor;OMF)、多醣(PST)搬運蛋白、ATP結合卡匣(ATP-binding cassette;ABC)型運輸蛋白。其可提供與能量耦合相關以進行轉運之功能,在複合物形成中起結構作用,提供生源或穩定性功能或調節功能(Saier等人, Nucleic Acids Res. 44 (2016) D372-D379)。輔助運輸蛋白之實例包括(但不限於)參與多醣轉運之多醣共聚合酶家族、參與細菌素及化學毒素轉運之膜融合蛋白家族。Auxiliary transport proteins are defined as proteins that facilitate transport across one or more biological membranes but are not themselves directly involved in transport. These membrane transporters consistently function in conjunction with one or more existing transport systems such as (but not limited to) outer membrane factor (OMF), polysaccharide (PST) transporter, ATP-binding cassette (ATP- binding cassette; ABC) type transport protein. It may provide functions associated with energy coupling for transport, play a structural role in complex formation, provide biogenic or stabilizing functions or regulatory functions (Saier et al, Nucleic Acids Res. 44 (2016) D372-D379). Examples of helper transport proteins include, but are not limited to, the family of polysaccharide copolymerases involved in the transport of polysaccharides, the family of membrane fusion proteins involved in the transport of bacteriocins and chemical toxins.

推定運輸蛋白包含以下者之家族,當成員之轉運功能確認時,該等家族將被分類為別處,或若所提出之轉運功能被證明無效,則將自運輸蛋白分類系統中消除。此等家族包括一或多個已針對其提出轉運功能之成員,但此類功能之證據尚未令人信服(Saier等人, Nucleic Acids Res. 44 (2016) D372-D379)。如在2019年6月17日發佈之TCDB系統下歸入此組之推定運輸蛋白的實例包括(但不限於)銅運輸蛋白。Putative transporters comprise families of which will be classified elsewhere when the transport function of the members is confirmed, or eliminated from the transporter classification system if the proposed transport function proves ineffective. These families include one or more members for which transport functions have been proposed, but evidence for such functions has not been convincing (Saier et al, Nucleic Acids Res. 44 (2016) D372-D379). Examples of putative transport proteins that fall into this group as under the TCDB system published on June 17, 2019 include, but are not limited to, copper transport proteins.

磷酸轉移驅動之基團移位蛋白亦稱為細菌磷酸烯醇丙酮酸:糖磷酸轉移酶系統(phosphotransferase system;PTS)之PEP依賴型磷氧基轉移驅動之基團移位蛋白。衍生自胞外糖之反應產物為細胞質磷酸糖類。催化糖磷酸化之酶促成分在緊耦合過程中疊加於轉運過程上。PTS系統涉及許多不同態樣,包含調節及趨化性、生物膜形成及發病機制(Lengeler, J. Mol. Microbiol. Biotechnol. 25 (2015) 79-93;Saier, J. Mol. Microbiol. Biotechnol. 25 (2015) 73-78)。如在2019年6月17日發佈之TCDB系統下歸於磷酸轉移驅動之基團移位蛋白內的膜運輸蛋白家族包括與葡萄糖-葡糖苷、果糖-甘露糖醇、乳糖-N,N'-二乙醯基殼二糖-β-葡糖苷、葡萄糖醇、半乳糖醇、甘露糖-果糖-山梨糖及抗壞血酸鹽之轉運有關聯的PTS系統。Phosphate transfer-driven group translocation proteins are also known as bacterial phosphoenolpyruvate:sugar phosphotransferase systems (phosphotransferase systems; PTS) PEP-dependent phosphooxyl transfer-driven group translocation proteins. The reaction products derived from extracellular sugars are cytoplasmic phosphate sugars. Enzymatic components that catalyze the phosphorylation of sugars are superimposed on the transport process in a tightly coupled process. The PTS system is involved in many different aspects, including regulation and chemotaxis, biofilm formation and pathogenesis (Lengeler, J. Mol. Microbiol. Biotechnol. 25 (2015) 79-93; Saier, J. Mol. Microbiol. Biotechnol. 25 (2015) 73-78). As in the TCDB system published on June 17, 2019, the membrane transport protein family within the phosphate transfer-driven group translocation proteins includes proteins related to glucose-glucoside, fructose-mannitol, lactose-N,N'-di The PTS system associated with the transport of acetylchitobiose-beta-glucoside, glucitol, galactitol, mannose-fructose-sorbose and ascorbate.

主要易化子超家族(major facilitator superfamily;MFS)為膜運輸蛋白之超家族,其催化單向搬運、溶質:陽離子(H+,但幾乎不為Na+)同向搬運及/或溶質:H+或溶質:溶質反向搬運。大多數長度為400-600個胺基醯基殘基且具有12、14或偶爾24個跨膜α-螺旋扳手(TMS),如藉由Saier Lab Bioinformatics Group(www.tcdb.org)運作之運輸蛋白分類資料庫所定義。The major facilitator superfamily (MFS) is a superfamily of membrane transport proteins that catalyze unidirectional transport, solute:cation (H+, but hardly Na+) co-transport and/or solute:H+ or solute : Solute reverse transport. Most are 400-600 amido residues in length and have 12, 14 or occasionally 24 transmembrane alpha-helical spanners (TMS), as transported by Saier Lab Bioinformatics Group (www.tcdb.org) Defined by the Protein Taxonomy Database.

如本文所用之「SET」或「糖流出運輸蛋白(Sugar Efflux Transporter)」係指SET家族之膜蛋白,其為具有InterPRO域IPR004750之蛋白質及/或為屬於eggNOGv4.5家族ENOG410XTE9之蛋白質。InterPro域之鑑別可藉由使用https://www.ebi.ac.uk/interpro/上之線上工具或InterProScan(https://www.ebi.ac.uk/interpro/download.html)之獨立版本使用預設值進行。在eggNOGv4.5中鑑別直系同源家族可使用eggNOG-mapperv1(http://eggnogdb.embl.de/#/app/home)之在線版本或獨立版本進行。"SET" or "Sugar Efflux Transporter" as used herein refers to a membrane protein of the SET family, which is a protein with the InterPRO domain IPR004750 and/or a protein belonging to the eggNOGv4.5 family ENOG410XTE9. InterPro domains can be authenticated by using the online tool at https://www.ebi.ac.uk/interpro/ or the standalone version of InterProScan (https://www.ebi.ac.uk/interpro/download.html) Use preset values. Identification of orthologous families in eggNOGv4.5 can be performed using the online or standalone version of eggNOG-mapperv1 (http://eggnogdb.embl.de/#/app/home).

如本文所用之術語「螯鐵蛋白(Siderophore)」係指各種微生物之次級代謝物,其主要為鐵離子特異性螯合劑。此等分子已分類為兒茶酚鹽(catecholate)、氧肟酸鹽(hydroxamate)、羧酸鹽及混合類型。螯鐵蛋白一般藉由非核糖體肽合成酶(nonribosomal peptide synthetase;NRPS)依賴性路徑或NRPS非依賴性路徑(NRPS independent pathway;NIS)合成。NRPS依賴性螯鐵蛋白生物合成路徑中最重要之前驅物為分支酸鹽(chorismate)。2,3-DHBA可藉由異分支酸合酶、異分支酸酶及2,3-二羥基苯甲酸酯-2,3-脫氫酶催化之三步驟反應自分支酸鹽形成。螯鐵蛋白亦可由水楊酸鹽形成,該水楊酸鹽藉由異分支酸丙酮酸酯解離酶自異分支酸鹽形成。當鳥胺酸用作螯鐵蛋白之前驅物時,生物合成取決於由L-鳥胺酸N5-單加氧酶催化之鳥胺酸的羥基化。在NIS路徑中,螯鐵蛋白生物合成中之重要步驟係N(6)-羥基離胺酸合酶。The term "Siderophore" as used herein refers to the secondary metabolites of various microorganisms, which are primarily iron ion-specific chelators. These molecules have been classified as catecholate, hydroxamate, carboxylates and mixed types. Chelaterin is generally synthesized by a nonribosomal peptide synthetase (NRPS)-dependent pathway or an NRPS-independent pathway (NIS). The most important precursor in the NRPS-dependent chelatin biosynthesis pathway is chorismate. 2,3-DHBA can be formed from chorismate by a three-step reaction catalyzed by isochorismate synthase, isochorismate, and 2,3-dihydroxybenzoate-2,3-dehydrogenase. Chelaterin can also be formed from salicylates, which are formed from isochorismates by isochorismate pyruvate lyase. When ornithine is used as a chelating iron precursor, biosynthesis depends on the hydroxylation of ornithine catalyzed by L-ornithine N5-monooxygenase. In the NIS pathway, an important step in the biosynthesis of chelatin is N(6)-hydroxylysine synthase.

需要運輸蛋白以將螯鐵蛋白輸出至細胞外。至此在此過程中鑑別出膜蛋白之四個超家族:主要易化子超家族(MFS);多藥/寡醣基脂質/多醣翻轉酶超家族(Multidrug/Oligosaccharidyl-lipid/Polysaccharide Flippase Superfamily;MOP);抗性、結節性及細胞分裂超家族(resistance, nodulation and cell division superfamily;RND);及ABC超家族。一般而言,參與螯鐵蛋白輸出之基因與螯鐵蛋白生物合成基因簇聚在一起。如本文所用之術語「螯鐵蛋白輸出蛋白(siderophore exporter)」係指將螯鐵蛋白輸出至細胞外所需的此類運輸蛋白。Transport proteins are required to export chelatin out of the cell. So far, four superfamilies of membrane proteins have been identified in the process: major facilitator superfamily (MFS); multidrug/oligosaccharidyl-lipid/polysaccharide flippase superfamily (Multidrug/Oligosaccharidyl-lipid/Polysaccharide Flippase Superfamily; MOP ); the resistance, nodulation and cell division superfamily (RND); and the ABC superfamily. In general, genes involved in chelatin export are clustered with chelatin biosynthesis genes. The term "siderophore exporter" as used herein refers to such transport proteins required for the export of chelatin to the outside of the cell.

ATP結合卡匣(ABC)超家族含有吸收及流出轉運系統,且此等兩組中之成員通常鬆散地簇聚在一起。無蛋白質磷酸化之ATP水解為轉運供以能量。ABC超家族內存在數十個家族,且家族一般與基質特異性相關。成員根據如藉由運輸蛋白分類資料庫所定義的類別3.A.1分類,該資料庫藉由經由www.tcdb.org可獲得之Saier Lab Bioinformatics Group運作且提供膜運輸蛋白之功能性及系統發生分類。The ATP-binding cassette (ABC) superfamily contains uptake and efflux transport systems, and members of these two groups are usually loosely clustered together. ATP hydrolysis without protein phosphorylation provides energy for transport. There are dozens of families within the ABC superfamily, and families are generally associated with substrate specificity. Members are classified according to class 3.A.1 as defined by the Transport Protein Taxonomy Database operated by the Saier Lab Bioinformatics Group, available through www.tcdb.org and providing the functionality and systems of membrane transport proteins Classification occurs.

術語「致能流出(enabled efflux)」意謂在細胞質膜及/或細胞壁上引入溶質之轉運的活動。該轉運可藉由引入及/或增加如本發明中所描述之運輸蛋白之表現來實現。術語「增強之流出(enhanced efflux)」意謂改善溶質在細胞質膜及/或細胞壁上之轉運的活動。溶質在細胞質膜及/或細胞壁上之轉運可藉由引入及/或增加如本發明所描述之膜運輸蛋白之表現來增強。膜運輸蛋白之「表現(Expression)」在基因為內源基因之情況下,被定義為編碼該膜運輸蛋白之該基因的「過度表現(overexpression)」;或在編碼該膜運輸蛋白之基因為不存在於野生型菌株或細胞中之異源基因的情況下,被定義為「表現(expression)」。The term "enabled efflux" means the activity of introducing transport of solutes on the cytoplasmic membrane and/or cell wall. This transport can be achieved by introducing and/or increasing the expression of transport proteins as described in the present invention. The term "enhanced efflux" means an activity that improves the transport of solutes across the cytoplasmic membrane and/or cell wall. Transport of solutes across the cytoplasmic membrane and/or cell wall can be enhanced by introducing and/or increasing the expression of membrane transport proteins as described herein. "Expression" of a membrane transport protein is defined as "overexpression" of the gene encoding the membrane transport protein in the case of an endogenous gene; or in the case of the gene encoding the membrane transport protein being The absence of a heterologous gene in a wild-type strain or cell is defined as "expression".

如本文所用之術語「前驅物(precursor)」係指藉由細胞吸收或合成以特異性生產根據本發明之寡醣的物質。在此意義上,前驅物可為如本文所定義之受體,但亦可為另一物質、代謝物,其首先在細胞內經修飾作為寡醣之生物化學合成途徑之一部分。The term "precursor" as used herein refers to a substance taken up or synthesized by a cell to specifically produce an oligosaccharide according to the invention. In this sense, a precursor may be a receptor as defined herein, but may also be another substance, a metabolite, which is first modified in the cell as part of the biochemical synthesis pathway of the oligosaccharide.

此類前驅物之實例包含如本文所定義之受體;及/或葡萄糖、半乳糖、果糖、甘油、唾液酸、岩藻糖、甘露糖、麥芽糖、蔗糖、乳糖、二羥基丙酮、葡萄糖胺、N-乙醯基-葡萄糖胺、甘露糖胺、N-乙醯基-甘露糖胺、半乳糖胺、N-乙醯基半乳糖胺;磷酸化糖,如例如但不限於葡萄糖-1-磷酸、半乳糖-1-磷酸、葡萄糖-6-磷酸、果糖-6-磷酸、果糖-1,6-二磷酸、甘露糖-6-磷酸、甘露糖-1-磷酸、甘油-3-磷酸、甘油醛-3-磷酸、二羥基丙酮-磷酸、葡萄糖胺-6-磷酸、N-乙醯基-葡萄糖胺-6-磷酸、N-乙醯基甘露糖胺-6-磷酸、N-乙醯基葡萄糖胺-1-磷酸、N-乙醯基-神經胺酸-9-磷酸;及/或如本文所定義之核苷酸活化糖,如例如UDP-葡萄糖、UDP-半乳糖、UDP-N-乙醯基葡萄糖胺、CMP-唾液酸、GDP-甘露糖、GDP-4-脫氫-6-去氧-α-D-甘露糖、GDP-岩藻糖。Examples of such precursors include receptors as defined herein; and/or glucose, galactose, fructose, glycerol, sialic acid, fucose, mannose, maltose, sucrose, lactose, dihydroxyacetone, glucosamine, N-Acetyl-glucosamine, Mannosamine, N-Acetyl-mannosamine, Galactosamine, N-Acetylgalactosamine; Phosphorylated sugars such as, for example, but not limited to, glucose-1-phosphate , galactose-1-phosphate, glucose-6-phosphate, fructose-6-phosphate, fructose-1,6-diphosphate, mannose-6-phosphate, mannose-1-phosphate, glycerol-3-phosphate, glycerol Aldehyde-3-Phosphate, Dihydroxyacetone-Phosphate, Glucosamine-6-Phosphate, N-Acetyl-Glucosamine-6-Phosphate, N-Acetyl Mannosamine-6-Phosphate, N-Acetyl Glucosamine-1-phosphate, N-acetyl-neuraminic acid-9-phosphate; and/or nucleotide-activated sugars as defined herein, such as, for example, UDP-glucose, UDP-galactose, UDP-N- Acetylglucosamine, CMP-sialic acid, GDP-mannose, GDP-4-dehydro-6-deoxy-α-D-mannose, GDP-fucose.

如本文所用之術語「受體(acceptor)」係指由細胞吸收且藉由添加一或多個用於寡醣組裝之單醣單元之一或多種醣基轉移酶修飾的雙醣或寡醣。該等受體藉由包含自天然來源萃取、生物技術製程、物理製程、化學製程及其等之組合之方法產生。此類受體之實例包含乳糖,2'FL、3-FL、乳-N-二糖(LNB)、乳-N-丙糖、乳-N-四糖(LNT)、乳-N-新四糖(LNnT)、N-乙醯基-乳糖胺(LacNAc)、乳-N-五糖(LNP)、乳-N-新五糖、對乳-N-五糖、對乳-N-新五糖、乳-N-新生五糖I(lacto-N-novopentaose I)、乳-N-六糖(lacto-N-hexaose;LNH)、乳-N-新六糖(lacto-N-neohexaose;LNnH)、對乳-N-新六糖(para lacto-N-neohexaose;pLNnH)、對乳-N-六糖(para lacto-N-hexaose;pLNH)、乳-N-七糖、乳-N-新七糖、對乳-N-新七糖、對乳-N-七糖、乳-N-八糖(lacto-N-octaose;LNO)、乳-N-新八糖、異乳-N-八糖、對乳-N-八糖、異乳-N-新八糖、新生乳-N-新八糖、對乳-N-新八糖、異乳-N-九糖、新生乳-N-九糖、乳-N-九糖、乳-N-十糖、異乳-N-十糖、新生乳-N-十糖、乳-N-新十糖;半乳糖基乳糖,經延伸具有1、2、3、4、5或多個N-乙醯基乳糖胺單元及/或1、2、3、4、5或多個乳-N-二糖單元之乳糖及含有1或多個N-乙醯基乳糖胺單元及或1或多個乳-N-二糖單元之寡醣,或其轉為寡醣、岩藻糖基化及唾液酸基化形式之中間物。The term "acceptor" as used herein refers to a disaccharide or oligosaccharide that is taken up by a cell and modified by the addition of one or more monosaccharide units for oligosaccharide assembly by one or more glycosyltransferases. These receptors are produced by methods including extraction from natural sources, biotechnological processes, physical processes, chemical processes, and combinations thereof. Examples of such receptors include lactose, 2'FL, 3-FL, lacto-N-disaccharide (LNB), lacto-N-triose, lacto-N-tetrasaccharide (LNT), lacto-N-neotetraose Sugar (LNnT), N-Acetyl-Lactosamine (LacNAc), Lacto-N-Pentasaccharide (LNP), Lacto-N-Neopentasaccharide, P-Lacto-N-Pentasaccharide, P-Lacto-N-Pentaose Sugar, lacto-N-novopentaose I (lacto-N-novopentaose I), lacto-N-hexaose (LNH), lacto-N-neohexaose (LNnH) ), para lacto-N-neohexaose (pLNnH), para lacto-N-hexaose (pLNH), lacto-N-heptaose, lacto-N- New heptaose, p-lacto-N-heptaose, p-lacto-N-heptaose, lacto-N-octaose (LNO), lacto-N-new octaose, isolacto-N- Octose, para-milk-N-octa sugar, isomilk-N-octa sugar, neonatal milk-N-octa sugar, paramilk-N-octa sugar, isomilk-N-nona sugar, neonatal milk-N - nona sugar, lacto-N-nona sugar, lacto-N-deca sugar, isolacto-N-deca sugar, neonatal milk-N-deca sugar, lacto-N-neodeca sugar; galactosyl lactose, which by extension has 1, 2, 3, 4, 5 or more N-acetyllactosamine units and/or 1, 2, 3, 4, 5 or more lactose-N-disaccharide units and lactose containing 1 or more Oligosaccharides of N-acetyllactosamine units and or 1 or more lacto-N-disaccharide units, or intermediates thereof converted to oligosaccharide, fucosylated and sialylated forms.

在整個本申請案中,除非另外明確陳述,否則特徵「合成(synthesize)」、「合成(synthesized)」及「合成(synthesis)」可分別與特徵「製造(produce)」、「製造(produced)」及「製造(production)」互換地使用。 本發明之詳細描述 Throughout this application, unless expressly stated otherwise, the features "synthesize", "synthesized" and "synthesis" may be associated with the features "produce", "produced", respectively " and "production" are used interchangeably. DETAILED DESCRIPTION OF THE INVENTION

根據第一態樣,本發明提供一種用於製造包含至少兩種寡醣之混合物的方法。該方法包含以下步驟: i.     提供能夠表現醣基轉移酶且能夠合成核苷酸-糖之細胞,較佳單一細胞,其中該核苷酸-糖為用於該醣基轉移酶之供體,及 ii.    在容許表現該醣基轉移酶及合成該核苷酸-糖之條件下培養該細胞,及 iii.   向該培養中添加至少兩種受體,使得該細胞能夠製造至少兩種寡醣,較佳地,該等受體中之任一者為雙醣或寡醣, iv.   較佳地,自該培養分離該等寡醣中之至少一者,更佳地,自該培養分離該等寡醣中之全部。 According to a first aspect, the present invention provides a method for producing a mixture comprising at least two oligosaccharides. The method includes the following steps: i. Provide a cell, preferably a single cell, capable of expressing a glycosyltransferase and capable of synthesizing a nucleotide-sugar, wherein the nucleotide-sugar is a donor for the glycosyltransferase, and ii. culturing the cell under conditions that allow expression of the glycosyltransferase and synthesis of the nucleotide-sugar, and iii. adding at least two receptors to the culture such that the cells are capable of producing at least two oligosaccharides, preferably any one of these receptors is a disaccharide or an oligosaccharide, iv. Preferably, at least one of the oligosaccharides is isolated from the culture, more preferably, all of the oligosaccharides are isolated from the culture.

在本發明之範圍內,容許條件應理解為與物理或化學參數相關之條件,該等參數包括(但不限於)溫度、pH、壓力、滲透壓及產物/前驅物/受體濃度。Within the scope of the present invention, permissive conditions are understood as conditions related to physical or chemical parameters including, but not limited to, temperature, pH, pressure, osmotic pressure and product/precursor/acceptor concentrations.

在一特定實施方式中,容許條件可包括30 +/- 20攝氏度之溫度範圍、7 +/- 3之pH範圍。In a particular embodiment, allowable conditions may include a temperature range of 30 +/- 20 degrees Celsius, a pH range of 7 +/- 3.

在本發明方法之一較佳實施方式中,向培養中饋入至少兩種,較佳至少三種,更佳至少四種,甚至更佳至少五種受體以用於合成該混合物中之該等寡醣中之任一者。在該方法之另一較佳實施方式中,向培養中饋入至少兩種,較佳至少三種,更佳至少四種,甚至更佳至少五種受體以用於合成混合物中之所有該等寡醣。在一更佳實施方式中,向培養中饋入至少三種受體以用於合成該混合物中之該等寡醣中之任一者或全部。In a preferred embodiment of the method of the present invention, the culture is fed with at least two, preferably at least three, more preferably at least four, even more preferably at least five receptors for the synthesis of the receptors in the mixture any of the oligosaccharides. In another preferred embodiment of the method, the culture is fed with at least two, preferably at least three, more preferably at least four, even more preferably at least five receptors for use in synthesizing all of these in the mixture Oligosaccharides. In a more preferred embodiment, the culture is fed with at least three receptors for the synthesis of any or all of the oligosaccharides in the mixture.

根據本發明,較佳地,該等受體中之任一者為雙醣或寡醣,更佳地,該等受體中之每一者為雙醣或寡醣,亦即,較佳地,各受體為雙醣或寡醣。所屬技術領域中具有通常知識者將因此理解,較佳在本發明之範圍內,在根據本發明之方法中添加之受體可全部為雙醣,可全部為寡醣或可為雙醣及寡醣之混合物。雙醣受體較佳選自包含以下者之清單:乳糖(Gal-b1,4-Glc)、乳-N-二糖(Gal-b1,3-GlcNAc)、N-乙醯基乳糖胺(Gal-b1,4-GlcNAc)、LacDiNAc(GalNAc-b1,4-GlcNAc)及N-乙醯基半乳糖胺基葡萄糖(GalNAc-b1,4-Glc)。寡醣受體較佳為如本文所定義之哺乳動物乳寡醣(MMO),更佳為人乳寡醣(human milk oligosaccharide;HMO)。寡醣受體較佳選自包含以下者之清單:2'FL、3-FL、乳-N-丙糖、乳-N-四糖(LNT)、乳-N-新四糖(LNnT)、乳-N-五糖(LNP)、乳-N-新五糖、對乳-N-五糖、對乳-N-新五糖、乳-N-新生五糖I、乳-N-六糖(LNH)、乳-N-新六糖(LNnH)、對乳-N-新六糖(pLNnH)、對乳-N-六糖(pLNH)、乳-N-七糖、乳-N-新七糖、對乳-N-新七糖、對乳-N-七糖、乳-N-八糖(LNO)、乳-N-新八糖、異乳-N-八糖、對乳-N-八糖、異乳-N-新八糖、新生乳-N-新八糖、對乳-N-新八糖、異乳-N-九糖、新生乳-N-九糖、乳-N-九糖、乳-N-十糖、異乳-N-十糖、新生乳-N-十糖、乳-N-新十糖;半乳糖基乳糖,經延伸具有1、2、3、4、5或多個N-乙醯基乳糖胺單元及/或1、2、3、4、5或多個乳-N-二糖單元之乳糖及含有1或多個N-乙醯基乳糖胺單元及或1或多個乳-N-二糖單元之寡醣,或其轉為寡醣、岩藻糖基化及唾液酸基化形式之中間物。According to the present invention, preferably, any one of these receptors is a disaccharide or oligosaccharide, more preferably, each of these receptors is a disaccharide or oligosaccharide, that is, preferably , each receptor is a disaccharide or an oligosaccharide. Those of ordinary skill in the art will therefore understand that, preferably within the scope of the present invention, the receptors added in the method according to the present invention may all be disaccharides, may all be oligosaccharides or may be both disaccharides and oligosaccharides sugar mixture. The disaccharide receptor is preferably selected from the list comprising: lactose (Gal-b1,4-Glc), lacto-N-disaccharide (Gal-b1,3-GlcNAc), N-acetyllactosamine (Gal -b1,4-GlcNAc), LacDiNAc (GalNAc-b1,4-GlcNAc) and N-acetylgalactosamine (GalNAc-b1,4-Glc). The oligosaccharide receptor is preferably a mammalian milk oligosaccharide (MMO) as defined herein, more preferably a human milk oligosaccharide (HMO). The oligosaccharide acceptor is preferably selected from the list comprising: 2'FL, 3-FL, lacto-N-triose, lacto-N-tetraose (LNT), lacto-N-neotetraose (LNnT), Lacto-N-pentasaccharide (LNP), lacto-N-neopentasaccharide, p-lacto-N-pentasaccharide, p-lacto-N-neopentasaccharide, lacto-N-neopentasaccharide I, lacto-N-hexasaccharide (LNH), lacto-N-neohexaose (LNnH), p-lacto-N-neohexaose (pLNnH), p-lacto-N-hexose (pLNH), lacto-N-heptaose, lacto-N-neohexaose Heptaose, p-lacto-N-heptaose, p-lacto-N-heptaose, lacto-N-octaose (LNO), lacto-N-new octaose, isolacto-N-octaose, p-lacto-N -Octose, Isomilk-N-Octose, Neonatal Milk-N-Octose, Paramilk-N- Neooctaose, Isomilk-N-Nonaose, Neonatal Milk-N-Nonaose, Milk-N - nona, lacto-N-deca, isolacto-N-deca, neonatal lacto-N-deca, lacto-N-neodeca; galactosyl lactose, extended with 1, 2, 3, 4 , 5 or more N-acetyllactosamine units and/or 1, 2, 3, 4, 5 or more lactose-N-disaccharide units and lactose containing 1 or more N-acetyllactosamine Units and oligosaccharides of 1 or more lacto-N-disaccharide units, or intermediates thereof to oligosaccharide, fucosylated and sialylated forms.

在根據本發明之方法及/或細胞的一視情況選用之實施方式中,根據本發明之混合物進一步包含LacdiNAc(亦即GalNAc-b1,4-GlCNAc)及/或GalNAc-b1,4-葡萄糖。In an optional embodiment of the method and/or cell according to the invention, the mixture according to the invention further comprises LacdiNAc (ie GalNAc-bl,4-GlCNAc) and/or GalNAc-bl,4-glucose.

在根據本發明方法之一較佳實施方式中,添加至培養中之一種受體的聚合度為二(DP3),較佳地該受體為乳糖,且添加至培養中之其他受體的聚合度為至少三(DP3)。受體之聚合度(degree of polymerization;DP)係指受體結構中存在之單醣單元之數目。在根據本發明方法之另一實施方式中,添加至培養中之受體中的任一者的聚合度為至少三(DP3),較佳地,所有受體的聚合度均為至少三(DP3)。在根據本發明方法之一替代實施方式中,添加至培養中之受體中之任一者的DP高於三。DP高於三之受體應理解為包含由4個單醣次單元(DP4)建構之四糖、由5個單醣次單元(DP5)建構之五醣、由DP6或更高直至DP20建構之寡醣結構。在一較佳替代實施方式中,添加至培養中之全部受體具有高於三之DP。舉例而言,添加至培養中之所有受體均為四醣及/或由5、6或更多個單醣次單元建構之較長寡醣。在根據本發明方法之一替代實施方式中,添加至培養中之受體中之任一者的聚合度為三(DP3)。具有DP3之受體應理解為由三個單醣次單元建構之寡醣,亦稱為三醣。在本發明之一較佳實施方式中,所有該等受體均具有DP3結構。因此較佳地,向培養中饋入包含至少兩種受體之寡醣混合物,其中所有受體均為由三個單醣次單元構成之三醣。在根據本發明方法之一替代實施方式中,添加至培養中之受體中之任一者,較佳全部具有高於四,較佳高於五之DP。In a preferred embodiment of the method according to the invention, one of the receptors added to the culture has a degree of polymerization of two (DP3), preferably the receptor is lactose, and the polymerization of the other receptors added to the culture A degree of at least three (DP3). The degree of polymerization (DP) of the acceptor refers to the number of monosaccharide units present in the acceptor structure. In another embodiment of the method according to the invention, any one of the receptors added to the culture has a degree of polymerization of at least three (DP3), preferably all receptors have a degree of polymerization of at least three (DP3). ). In an alternative embodiment of the method according to the invention, the DP of any of the recipients added to the culture is higher than three. Receptors with a DP higher than three are understood to include tetrasaccharides constructed from 4 monosaccharide subunits (DP4), pentasaccharides constructed from 5 monosaccharide subunits (DP5), pentasaccharides constructed from DP6 or higher up to DP20 Oligosaccharide structure. In a preferred alternative embodiment, all receptors added to the culture have a DP higher than three. For example, all receptors added to the culture are tetrasaccharides and/or longer oligosaccharides built from 5, 6 or more monosaccharide subunits. In an alternative embodiment of the method according to the invention, any of the receptors added to the culture has a degree of polymerization of three (DP3). Receptors with DP3 are understood to be oligosaccharides built up from three monosaccharide subunits, also known as trisaccharides. In a preferred embodiment of the present invention, all of these receptors have a DP3 structure. Preferably, therefore, the culture is fed with a mixture of oligosaccharides comprising at least two receptors, all of which are trisaccharides composed of three monosaccharide subunits. In an alternative embodiment of the method according to the invention, any, preferably all, of the receptors added to the culture have a DP higher than four, preferably higher than five.

在根據本發明方法之一較佳實施方式中,添加至培養中之所有受體均具有不同的DP。舉例而言,可向培養中饋入兩種受體,其中第一受體為雙醣且第二受體為三醣。或者,可向培養中饋入兩種受體,其中第一受體為雙醣且第二受體為四醣或5、6或更多個次單元之較長醣。亦可向培養中饋入兩種受體,其中第一受體為三醣且第二受體為四醣或5、6或更多個次單元之較長醣。在一較佳實施方式中,向培養中饋入超過兩種受體,其中所有該等受體均經構建具有不同數目個單醣次單元。In a preferred embodiment of the method according to the invention, all receptors added to the culture have different DPs. For example, two receptors can be fed into the culture, wherein the first receptor is a disaccharide and the second receptor is a trisaccharide. Alternatively, the culture can be fed with two receptors, wherein the first receptor is a disaccharide and the second receptor is a tetrasaccharide or a longer saccharide of 5, 6 or more subunits. Two receptors can also be fed into the culture, wherein the first receptor is a trisaccharide and the second receptor is a tetrasaccharide or a longer saccharide of 5, 6 or more subunits. In a preferred embodiment, the culture is fed with more than two receptors, all of which are constructed with different numbers of monosaccharide subunits.

在本發明之另一實施方式中,向培養中饋入三種或更多種受體以用於寡醣合成,其中該等受體可具有相對於彼此相同或不同的DP。In another embodiment of the invention, the culture is fed with three or more receptors for oligosaccharide synthesis, wherein the receptors may have the same or different DPs relative to each other.

根據本發明,用於製造包含至少兩種寡醣之混合物的該方法可利用未經代謝工程改造之細胞或可利用經代謝工程改造之細胞,亦即,經代謝工程改造以用於製造包含至少兩種寡醣之該混合物的細胞。在整個申請案中,除非另外明確陳述,否則「經遺傳修飾之細胞(genetically modified cell)」或「經代謝工程改造之細胞(metabolically engineered cell)」較佳意謂分別經遺傳修飾或經代謝工程改造以用於製造包含至少兩種根據本發明之寡醣之該混合物的細胞。在本發明之上下文中,如本文所揭示之該混合物中的至少兩種寡醣較佳地不出現於該經代謝工程改造之細胞的野生型先驅細胞中。According to the present invention, the method for producing a mixture comprising at least two oligosaccharides may utilize cells that are not metabolically engineered or may utilize cells that are metabolically engineered, ie metabolically engineered for the manufacture of a mixture comprising at least two oligosaccharides. cells of the mixture of the two oligosaccharides. Throughout the application, unless expressly stated otherwise, "genetically modified cell" or "metabolically engineered cell" preferably means genetically modified or metabolically engineered, respectively Cells engineered for the manufacture of this mixture comprising at least two oligosaccharides according to the invention. In the context of the present invention, at least two oligosaccharides in the mixture as disclosed herein are preferably not present in wild-type precursor cells of the metabolically engineered cell.

根據本發明方法之一較佳實施方式,用於寡醣合成之經代謝工程改造之細胞經基因表現模組修飾,其中來自該等表現模組中之任一者的表現為持續型的或藉由天然誘導物產生。According to a preferred embodiment of the method of the invention, metabolically engineered cells for oligosaccharide synthesis are modified with gene expression modules, wherein the expression from any of the expression modules is persistent or borrowed Produced by natural inducers.

該等表現模組亦稱為轉錄單元且包含用於表現重組基因之聚核苷酸,該等基因包括編碼基因序列及可操作地連接於編碼基因之適當轉錄及/或轉譯控制信號。該等控制信號包含啟動子序列、非轉譯區、核糖體結合位點、終止子序列。該等表現模組可含有用於表現一個單一重組基因之元件,但亦可含有用於表現更多重組基因之元件或可組織於用於整合表現兩個或更多個重組基因之操縱子結構中。該等聚核苷酸可藉由重組DNA技術,使用所屬技術領域中熟知之技術來產生。所屬技術領域中具有通常知識者熟知的構築表現模組之方法包括例如試管內重組DNA技術、合成技術及活體內基因重組。參見例如描述於以下者中之技術:Sambrook等人(2001) Molecular Cloning: a laboratory manual,第3版, Cold Spring Harbor Laboratory Press, CSH, New York或Current Protocols in Molecular Biology, John Wiley and Sons, N.Y. (1989及每年更新)。These expression modules are also referred to as transcriptional units and comprise polynucleotides for expression of recombinant genes including the coding gene sequence and appropriate transcriptional and/or translational control signals operably linked to the coding gene. Such control signals include promoter sequences, non-translated regions, ribosome binding sites, terminator sequences. These expression modules may contain elements for expression of a single recombinant gene, but may also contain elements for expression of more recombinant genes or may be organized in operon structures for integrated expression of two or more recombinant genes middle. Such polynucleotides can be produced by recombinant DNA technology using techniques well known in the art. Methods of constructing expression modules well known to those of ordinary skill in the art include, for example, in vitro recombinant DNA techniques, synthetic techniques, and in vivo gene recombination. See, eg, techniques described in: Sambrook et al. (2001) Molecular Cloning: a laboratory manual, 3rd edition, Cold Spring Harbor Laboratory Press, CSH, New York or Current Protocols in Molecular Biology, John Wiley and Sons, N.Y. (1989 and updated annually).

根據本發明之一較佳實施方式,細胞經一或多個表現模組修飾。表現模組可整合於該細胞之基因體中或可在載體上呈遞至該細胞。該載體可以質體、黏質體、噬菌體、脂質體或病毒形式存在,其將穩定轉型/轉染至該經代謝工程改造之細胞中。其中,此類載體包括染色體、游離型及病毒衍生之載體,例如,來源於細菌質體、噬菌體、轉位子、酵母游離基因體、插入元件、酵母染色體元件、病毒之載體及來源於其等之組合之載體,諸如來源於質體及噬菌體遺傳元件(諸如黏質體及噬質體)之載體。此等載體可含有選擇標記,諸如(但不限於)抗生素標記、營養缺陷型標記、毒素-抗毒素標記、RNA有義/反義標記。表現系統構築體可含有調節以及產生表現之控制區。一般而言,就此而言,適用於在宿主中維持、擴增或表現聚核苷酸及/或表現多肽之任何系統或載體可用於表現。適當DNA序列可藉由各種熟知及慣例技術、諸如(例如)闡述於Sambrook等人(參見上文)文獻中之彼等技術中之任一者插入至表現系統中。對於重組生產,細胞可經基因工程改造以併入表現系統或其部分或本發明之聚核苷酸。向細胞中引入聚核苷酸可藉由許多標準實驗室手冊,諸如Davis等人, Basic Methods in Molecular Biology, (1986)及Sambrook等人, 1989,前述文獻中所描述之方法來實現。According to a preferred embodiment of the present invention, the cells are modified with one or more expression modules. The expression module can be integrated into the genome of the cell or can be presented to the cell on a vector. The vector may be in the form of a plastid, cosmid, phage, liposome or virus, which will be stably transformed/transfected into the metabolically engineered cell. Among them, such vectors include chromosomal, episomal, and virus-derived vectors, for example, vectors derived from bacterial plastids, phages, transposons, yeast episomes, insertion elements, yeast chromosomal elements, viruses, and vectors derived therefrom. Combination vectors, such as those derived from plastid and phage genetic elements such as cosmids and phages. Such vectors may contain selectable markers such as, but not limited to, antibiotic markers, auxotrophic markers, toxin-antitoxin markers, RNA sense/antisense markers. A performance system construct may contain control areas that regulate and generate performance. In general, any system or vector suitable for maintaining, amplifying or expressing polynucleotides and/or expressing polypeptides in a host can be used for expression in this regard. Appropriate DNA sequences can be inserted into the expression system by any of a variety of well-known and conventional techniques, such as, for example, those described in Sambrook et al., supra. For recombinant production, cells can be genetically engineered to incorporate an expression system or portion thereof or a polynucleotide of the invention. Introduction of polynucleotides into cells can be accomplished by methods described in a number of standard laboratory manuals, such as Davis et al, Basic Methods in Molecular Biology, (1986) and Sambrook et al, 1989, supra.

如本文所用,表現模組包含用於表現至少一種重組基因之聚核苷酸。該重組基因參與在合成該寡醣混合物中起作用之多肽的表現;或該重組基因與該宿主細胞中之其他路徑相關聯,該等路徑不參與三種或更多種寡醣之該混合物的合成。該等重組基因編碼具有經修飾之表現或活性之內源蛋白,較佳該等內源蛋白經過度表現;或該等重組基因編碼異質引入且表現於該經修飾細胞中,較佳過度表現之異源蛋白。內源蛋白可在亦表現異源蛋白之細胞中具有經修飾之表現。As used herein, expression modules comprise polynucleotides for expression of at least one recombinant gene. The recombinant gene is involved in the expression of a polypeptide that functions in the synthesis of the oligosaccharide mixture; or the recombinant gene is associated with other pathways in the host cell that are not involved in the synthesis of the mixture of three or more oligosaccharides . The recombinant genes encode endogenous proteins with modified expression or activity, preferably the endogenous proteins are overexpressed; or the recombinant genes encode heterologous introduction and expression in the modified cells, preferably overexpressed heterologous protein. An endogenous protein can have a modified expression in cells that also express the heterologous protein.

根據本發明之一較佳實施方式,該等表現模組中之每一者的表現為持續型的或藉由天然誘導物產生。如本文所用,持續型表現應理解為在生物體中連續轉錄之基因的表現。藉由天然誘導物產生之表現應理解為僅在宿主之某一天然條件(例如生物體在分娩中或在泌乳期間)下表現之基因的兼性或調節表現,作為對環境變化(例如包括(但不限於)激素、熱、冷、光、氧化或滲透應激/信號傳導)之反應,或取決於發育階段之位置或該宿主細胞之細胞週期,包括(但不限於)細胞凋亡及自體吞噬。According to a preferred embodiment of the present invention, the expression of each of the expression modules is either persistent or produced by natural inducers. As used herein, persistent expression is understood to mean the expression of genes that are continuously transcribed in an organism. Expression by a natural inducer is to be understood as a facultative or regulatory expression of a gene that is expressed only under certain natural conditions of the host (such as an organism during parturition or during lactation), as a response to environmental changes (such as including ( but not limited to) responses to hormones, heat, cold, light, oxidative or osmotic stress/signaling), or depending on the location of the developmental stage or the cell cycle of the host cell, including but not limited to apoptosis and autonomic body phagocytosis.

根據本發明之一較佳實施方式,細胞較佳包含編碼一種蛋白質之同一編碼DNA序列的多個複本。在本發明之上下文中,該蛋白可為醣基轉移酶、膜運輸蛋白或如本文所揭示之任何其他蛋白。在整個本申請案中,特徵「多個(multiple)」意謂至少2個,較佳至少3個,更佳至少4個,甚至更佳至少5個。According to a preferred embodiment of the present invention, the cells preferably contain multiple copies of the same coding DNA sequence encoding a protein. In the context of the present invention, the protein may be a glycosyltransferase, a membrane transport protein or any other protein as disclosed herein. Throughout this application, the feature "multiple" means at least 2, preferably at least 3, more preferably at least 4, even better at least 5.

根據一較佳實施方式,本發明提供一種用於製造包含至少兩種,較佳至少三種,更佳至少四種,甚至更佳至少五種,甚至更佳至少六種,甚至更佳至少七種不同寡醣之混合物的方法。該方法包含如本文先前所揭示之步驟。在此上下文中,較佳向該培養中添加多種受體及/或提供能夠表現多種醣基轉移酶之細胞,其中各所需核苷酸-糖較佳由細胞合成。According to a preferred embodiment, the present invention provides a method for the manufacture of at least two kinds, preferably at least three kinds, more preferably at least four kinds, even better at least five kinds, even better at least six kinds, even better at least seven kinds Method for mixtures of different oligosaccharides. The method comprises steps as previously disclosed herein. In this context, it is preferred to add various receptors to the culture and/or to provide cells capable of expressing various glycosyltransferases, wherein each desired nucleotide-sugar is preferably synthesized by the cells.

較佳地,細胞製造包含三種不同寡醣或超過三種不同寡醣之混合物。Preferably, the cell manufactures a mixture comprising three different oligosaccharides or more than three different oligosaccharides.

根據另一較佳實施方式,細胞製造不同寡醣之混合物,該等寡醣包含至少兩種根據本發明之在聚合度方面不同之寡醣。According to another preferred embodiment, the cells produce a mixture of different oligosaccharides comprising at least two oligosaccharides according to the invention which differ in the degree of polymerization.

根據本發明方法之一更佳實施方式,如根據本發明製造之混合物中的寡醣中之至少一者,較佳至少兩者,更佳全部為如本文所定義之MMO,較佳HMO。在整個本申請案中,除非另外明確陳述,否則特徵「包含至少兩種寡醣之混合物(mixture comprising at least two oligosaccharides)」較佳經「包含至少兩種MMO,較佳HMO之混合物(mixture comprising at least two MMOs, preferably HMOs)」替換,同樣較佳的係用「包含至少三種MMO,較佳HMO之混合物(mixture comprising at least three MMOs, preferably HMOs)」替換「包含至少三種寡醣之混合物(mixture comprising at least three oligosaccharides)」。According to a more preferred embodiment of the method of the present invention, at least one, preferably at least two, more preferably all of the oligosaccharides in the mixture produced according to the present invention are MMOs, preferably HMOs, as defined herein. Throughout this application, unless expressly stated otherwise, the feature "mixture comprising at least two oligosaccharides" is preferably referred to as "mixture comprising at least two MMOs, preferably HMOs" at least two MMOs, preferably HMOs)" is replaced by "mixture comprising at least three MMOs, preferably HMOs" with "mixture comprising at least three MMOs, preferably HMOs" mixture comprising at least three oligosaccharides)”.

在根據本發明之方法之一實施方式中,該醣基轉移酶係選自包含以下者之清單:岩藻糖基轉移酶、唾液酸基轉移酶、半乳糖基轉移酶、葡萄糖基轉移酶、甘露糖基轉移酶、N-乙醯基葡萄糖胺基轉移酶、N-乙醯基半乳糖胺基轉移酶、N-乙醯基甘露糖胺基轉移酶、木糖基轉移酶、葡萄糖醛酸苷轉移酶、半乳糖醛酸苷轉移酶、葡萄糖胺基轉移酶、N-羥乙醯基神經胺基轉移酶、鼠李糖基轉移酶、N-乙醯基鼠李糖基轉移酶、UDP-4-胺基-4,6-二去氧-N-乙醯基-β-L-阿卓糖胺轉胺酶、UDP-N-乙醯基葡萄糖胺烯醇丙酮醯基轉移酶及岩藻糖胺基轉移酶,如本文所定義。In one embodiment of the method according to the invention, the glycosyltransferase is selected from the list comprising: fucosyltransferase, sialyltransferase, galactosyltransferase, glucosyltransferase, Mannosyltransferase, N-Acetylglucosaminyltransferase, N-Acetylgalactosaminyltransferase, N-Acetylmannosyltransferase, Xylosyltransferase, Glucuronic acid Glycosyltransferase, galacturonyltransferase, glucosaminyltransferase, N-hydroxyacetylneuraminosyltransferase, rhamnosyltransferase, N-acetylrhamnosyltransferase, UDP -4-Amino-4,6-dideoxy-N-acetyl-β-L-altrosaminotransferase, UDP-N-acetylglucosamine enolacetonyltransferase and rock Fucosaminyltransferase, as defined herein.

在一較佳實施方式中,該岩藻糖基轉移酶係選自包含以下者之清單:α-1,2-岩藻糖基轉移酶、α-1,3-岩藻糖基轉移酶、α-1,4-岩藻糖基轉移酶及α-1,6-岩藻糖基轉移酶。在另一較佳實施方式中,該唾液酸基轉移酶係選自包含以下者之清單:α-2,3-唾液酸基轉移酶、α-2,6-唾液酸基轉移酶及α-2,8-唾液酸基轉移酶。在另一較佳實施方式中,該半乳糖基轉移酶係選自包含以下者之清單:β-1,3-半乳糖基轉移酶、N-乙醯基葡萄糖胺β-1,3-半乳糖基轉移酶、β-1,4-半乳糖基轉移酶、N-乙醯基葡萄糖胺β-1,4-半乳糖基轉移酶、α-1,3-半乳糖基轉移酶及α-1,4-半乳糖基轉移酶。在另一較佳實施方式中,該葡萄糖基轉移酶係選自包含以下者之清單:α-葡萄糖基轉移酶、β-1,2-葡萄糖基轉移酶、β-1,3-葡萄糖基轉移酶及β-1,4-葡萄糖基轉移酶。在另一較佳實施方式中,該甘露糖基轉移酶係選自包含以下者之清單:α-1,2-甘露糖基轉移酶、α-1,3-甘露糖基轉移酶及α-1,6-甘露糖基轉移酶。在另一較佳實施方式中,該N-乙醯基葡萄糖胺基轉移酶係選自包含以下者之清單:半乳糖苷β-1,3-N-乙醯基葡萄糖胺基轉移酶及β-1,6-N-乙醯基葡萄糖胺基轉移酶。在另一較佳實施方式中,該N-乙醯基半乳糖胺基轉移酶為α-1,3-N-乙醯基半乳糖胺基轉移酶。In a preferred embodiment, the fucosyltransferase is selected from the list comprising: α-1,2-fucosyltransferase, α-1,3-fucosyltransferase, α-1,4-fucosyltransferase and α-1,6-fucosyltransferase. In another preferred embodiment, the sialyltransferase is selected from the list comprising: α-2,3-sialyltransferase, α-2,6-sialyltransferase and α- 2,8-Sialyltransferase. In another preferred embodiment, the galactosyltransferase is selected from the list comprising: β-1,3-galactosyltransferase, N-acetylglucosamine β-1,3-half Lactosyltransferase, β-1,4-galactosyltransferase, N-acetylglucosamine β-1,4-galactosyltransferase, α-1,3-galactosyltransferase and α- 1,4-Galactosyltransferase. In another preferred embodiment, the glucosyltransferase is selected from the list comprising: α-glucosyltransferase, β-1,2-glucosyltransferase, β-1,3-glucosyltransferase enzyme and β-1,4-glucosyltransferase. In another preferred embodiment, the mannosyltransferase is selected from the list comprising α-1,2-mannosyltransferase, α-1,3-mannosyltransferase and α- 1,6-Mannosyltransferase. In another preferred embodiment, the N-acetylglucosaminyltransferase is selected from the list comprising: galactoside beta-1,3-N-acetylglucosaminyltransferase and beta -1,6-N-Acetylglucosaminyltransferase. In another preferred embodiment, the N-acetylgalactosaminyltransferase is α-1,3-N-acetylgalactosaminyltransferase.

在一較佳實施方式中,細胞表現超過一種如本文所描述之醣基轉移酶。較佳地,細胞表現如本文所描述之至少兩種,更佳至少三種,甚至更佳至少4種醣基轉移酶,甚至更佳至少5種醣基轉移酶,甚至更佳至少6種醣基轉移酶。In a preferred embodiment, the cells express more than one glycosyltransferase as described herein. Preferably, the cells exhibit at least two, more preferably at least three, even more preferably at least 4 glycosyltransferases, even more preferably at least 5 glycosyltransferases, even more preferably at least 6 glycosyltransferases as described herein transferase.

在本發明之方法的另一實施方式中,細胞在該醣基轉移酶之表現或活性方面經修飾。在一較佳實施方式中,該醣基轉移酶為經修飾表現或活性之細胞的內源蛋白,較佳該內源性醣基轉移酶過度表現;或者該醣基轉移酶為異質引入且表現於該細胞中,較佳過度表現之異源蛋白。該內源性醣基轉移酶可在亦表現異源性醣基轉移酶之細胞中具有經修飾之表現。In another embodiment of the method of the invention, the cell is modified in the expression or activity of the glycosyltransferase. In a preferred embodiment, the glycosyltransferase is an endogenous protein of the cell that has been modified for expression or activity, preferably the endogenous glycosyltransferase is overexpressed; or the glycosyltransferase is heterogeneously introduced and expressed In such cells, overexpressed heterologous proteins are preferred. The endogenous glycosyltransferase can have a modified expression in cells that also express the heterologous glycosyltransferase.

在本發明之方法的另一實施方式中,該醣基轉移酶為岩藻糖基轉移酶且該細胞能夠合成GDP-Fuc。GDP-岩藻糖可由細胞中表現之酶提供或藉由細胞代謝提供。產生GDP-岩藻糖之此類細胞可表現將例如添加至細胞中之岩藻糖轉化為GDP-岩藻糖之酶。此酶可為例如雙功能性岩藻糖激酶/岩藻糖-1-磷酸鳥苷醯基轉移酶,如來自脆弱類桿菌( Bacteroides fragilis)之Fkp,或一種各別岩藻糖激酶連同一種各別岩藻糖-1-磷酸鳥苷醯基轉移酶之組合,如已知其來自若干物種,包括智人、野豬( Sus scrofa)及褐鼠( Rattus norvegicus)。 In another embodiment of the method of the invention, the glycosyltransferase is a fucosyltransferase and the cell is capable of synthesizing GDP-Fuc. GDP-fucose can be provided by enzymes expressed in cells or by cellular metabolism. Such cells producing GDP-fucose may express enzymes that convert, for example, fucose added to the cell to GDP-fucose. This enzyme can be, for example, a bifunctional fucosokinase/fucose-1-phosphate guanosyltransferase, such as Fkp from Bacteroides fragilis , or a respective fucose kinase together with a respective A combination of allofucose-1-phosphate guanosyltransferases, as known from several species, including Homo sapiens, Sus scrofa and Rattus norvegicus .

較佳地,細胞經修飾以產生GDP-岩藻糖。更佳地,細胞經修飾以用於增強GDP-岩藻糖產生。該修飾可為選自包含以下者之群的任何一或多者:UDP-葡萄糖:十一異戊烯基(undecaprenyl)-磷酸葡萄糖-1-磷酸轉移酶編碼基因之剔除、GDP-L-岩藻糖合酶編碼基因之過度表現、GDP-甘露糖4,6-脫水酶編碼基因之過度表現、甘露糖-1-磷酸鳥苷醯基轉移酶編碼基因之過度表現、磷酸甘露糖變位酶編碼基因之過度表現及甘露糖-6-磷酸異構酶編碼基因之過度表現。Preferably, the cells are modified to produce GDP-fucose. More preferably, the cells are modified for enhanced GDP-fucose production. The modification may be any one or more selected from the group comprising: UDP-glucose: undecaprenyl-phosphoglucose-1-phosphotransferase-encoding gene deletion, GDP-L-rock Overexpression of the gene encoding alucose synthase, overexpression of the gene encoding GDP-mannose 4,6-dehydratase, overexpression of the gene encoding mannose-1-phosphate guanosyltransferase, phosphomannose mutase Overexpression of encoding genes and overexpression of genes encoding mannose-6-phosphate isomerase.

在本發明之方法的另一實施方式中,該醣基轉移酶為唾液酸基轉移酶且該細胞能夠合成CMP-Neu5Ac。CMP-Neu5Ac可由細胞中表現之酶提供或藉由細胞代謝提供。產生CMP-Neu5Ac之此類細胞可表現將例如添加至細胞中之唾液酸轉化為CMP-Neu5Ac之酶。此酶可為CMP-唾液酸合酶,如來自包括智人、腦膜炎奈瑟氏菌及敗血性巴氏桿菌( Pasteurella multocida)之若干物種的N-醯基神經胺酸胞苷醯基轉移酶。較佳地,細胞經修飾以產生CMP-Neu5Ac。更佳地,細胞經修飾以用於增強CMP-Neu5Ac產生。該修飾可為選自包含以下者之群的任一或多者:N-乙醯基葡萄糖胺-6-磷酸去乙醯酶之基因剔除、葡萄糖胺-6-磷酸脫胺酶之基因剔除、唾液酸合酶編碼基因之過度表現以及N-乙醯基-D-葡萄糖胺-2-表異構酶編碼基因之過度表現。 In another embodiment of the method of the invention, the glycosyltransferase is a sialyltransferase and the cell is capable of synthesizing CMP-Neu5Ac. CMP-Neu5Ac can be provided by enzymes expressed in cells or by cellular metabolism. Such cells producing CMP-Neu5Ac may express enzymes that convert, for example, sialic acid added to the cell to CMP-Neu5Ac. This enzyme can be a CMP-sialic acid synthase, such as N-acylneuraminic acid cytidine acyltransferase from several species including Homo sapiens, Neisseria meningitidis, and Pasteurella multocida . Preferably, the cells are modified to produce CMP-Neu5Ac. More preferably, the cells are modified for enhanced CMP-Neu5Ac production. The modification may be any one or more selected from the group consisting of gene deletion of N-acetylglucosamine-6-phosphate deacetylase, gene deletion of glucosamine-6-phosphate deaminase, Overexpression of a gene encoding sialic acid synthase and overexpression of a gene encoding N-acetyl-D-glucosamine-2-epimerase.

在本發明之方法之另一實施方式中,該醣基轉移酶為N-乙醯基葡萄糖胺基轉移酶且該細胞能夠合成UDP-GlcNAc。UDP-GlcNAc可由細胞中表現之酶提供或藉由細胞代謝提供。此類產生UDP-GlcNAc之細胞可表現例如將GlcNAc轉化為UDP-GlcNAc之酶。此等酶可為來自包括智人、大腸桿菌之若干物種之N-乙醯基-D-葡萄糖胺激酶、N-乙醯基葡萄糖胺-6-磷酸去乙醯酶、磷酸葡萄糖胺變位酶及N-乙醯基葡萄糖胺-1-磷酸尿苷醯基轉移酶/葡萄糖胺-1-磷酸乙醯基轉移酶。較佳地,細胞經修飾以產生UDP-GlcNAc。更佳地,細胞經修飾以用於增強UDP-GlcNAc產生。該修飾可為選自包含以下者之群的任一或多者:N-乙醯基葡萄糖胺-6-磷酸去乙醯酶之剔除、L-麩醯胺酸-D-果糖-6-磷酸胺基轉移酶之過度表現、磷酸葡萄糖胺變位酶之過度表現以及N-乙醯基葡萄糖胺-1-磷酸尿苷醯基轉移酶/葡萄糖胺-1-磷酸乙醯基轉移酶之過度表現。In another embodiment of the method of the invention, the glycosyltransferase is N-acetylglucosaminyltransferase and the cell is capable of synthesizing UDP-GlcNAc. UDP-GlcNAc can be provided by enzymes expressed in cells or by cellular metabolism. Such UDP-GlcNAc-producing cells can express, for example, enzymes that convert GlcNAc to UDP-GlcNAc. Such enzymes may be N-acetyl-D-glucosamine kinase, N-acetylglucosamine-6-phosphate deacetylase, phosphoglucosamine mutase from several species including Homo sapiens, Escherichia coli and N-acetylglucosamine-1-phosphate uridine transferase/glucosamine-1-phosphate acetyltransferase. Preferably, the cells are modified to produce UDP-GlcNAc. More preferably, the cells are modified for enhanced UDP-GlcNAc production. The modification may be any one or more selected from the group comprising: deletion of N-acetylglucosamine-6-phosphate deacetylase, L-glutamic acid-D-fructose-6-phosphate Overexpression of aminotransferase, overexpression of phosphoglucosamine mutase, and overexpression of N-acetylglucosamine-1-phosphate uridine transferase/glucosamine-1-phosphate acetyltransferase .

在本發明之方法之另一實施方式中,該醣基轉移酶為半乳糖基轉移酶且該細胞能夠合成UDP-Gal。UDP-Gal可由細胞中表現之酶提供或藉由細胞代謝提供。產生UDP-Gal之此類細胞可表現將例如UDP-葡萄糖轉化為UDP-Gal之酶。此酶可例如為如自包括智人、大腸桿菌及褐鼠之若干物種已知之UDP-葡萄糖-4-表異構酶GalE。較佳地,細胞經修飾以產生UDP-Gal。更佳地,細胞經修飾以用於增強UDP-Gal產生。該修飾可為選自包含以下者之群的任一或多者:雙功能性5'-核苷酸酶/UDP-糖水解酶編碼基因之基因剔除、半乳糖-1-磷酸尿苷醯基轉移酶編碼基因之基因剔除及UDP-葡萄糖-4-表異構酶編碼基因之過度表現。In another embodiment of the method of the invention, the glycosyltransferase is a galactosyltransferase and the cell is capable of synthesizing UDP-Gal. UDP-Gal can be provided by enzymes expressed in cells or by cellular metabolism. Such cells that produce UDP-Gal may express enzymes that convert, for example, UDP-glucose to UDP-Gal. This enzyme may for example be the UDP-glucose-4-epimerase GalE as known from several species including Homo sapiens, E. coli and brown rat. Preferably, the cells are modified to produce UDP-Gal. More preferably, the cells are modified for enhanced UDP-Gal production. The modification may be any one or more selected from the group comprising: gene deletion of bifunctional 5'-nucleotidase/UDP-glycohydrolase encoding gene, galactose-1-phosphate uridine group Knockout of transferase-encoding gene and overexpression of UDP-glucose-4-epimerase-encoding gene.

在本發明之方法之另一實施方式中,該醣基轉移酶為N-乙醯基半乳糖胺基轉移酶且該細胞能夠合成UDP-GalNAc。UDP-GalNAc可由細胞中表現之酶提供或藉由細胞代謝提供。產生UDP-GalNAc之此類細胞可表現將例如UDP-GlcNAc轉化為UDP-GalNAc之酶。此酶可為例如UDP-N-乙醯基葡萄糖胺4-表異構酶,如例如來自類志賀鄰單胞菌( Plesiomonas shigelloides)之wbgU、來自小腸結腸耶氏菌( Yersinia enterocolitica)之gne或來自綠膿假單胞菌血清型O6之wbpP。較佳地,細胞經修飾以產生UDP-GalNAc。更佳地,細胞經修飾以用於增強UDP-GalNAc產生。該修飾可為UDP-N-乙醯基葡萄糖胺4-表異構酶之過度表現。 In another embodiment of the method of the present invention, the glycosyltransferase is N-acetylgalactosaminyltransferase and the cell is capable of synthesizing UDP-GalNAc. UDP-GalNAc can be provided by enzymes expressed in cells or by cellular metabolism. Such cells producing UDP-GalNAc can express enzymes that convert, for example, UDP-GlcNAc to UDP-GalNAc. This enzyme may be, for example, UDP-N-acetylglucosamine 4-epimerase, such as, for example, wbgU from Plesiomonas shigelloides , gne from Yersinia enterocolitica , or wbpP from Pseudomonas aeruginosa serotype O6. Preferably, the cells are modified to produce UDP-GalNAc. More preferably, the cells are modified for enhanced UDP-GalNAc production. This modification may be an overexpression of UDP-N-acetylglucosamine 4-epimerase.

在本發明之方法之另一實施方式中,該醣基轉移酶為N-乙醯基甘露糖胺基轉移酶且該細胞能夠合成UDP-ManNAc。UDP-ManNAc可由細胞中表現之酶提供或藉由細胞代謝提供。產生UDP-ManNAc之此類細胞可表現將例如UDP-GlcNAc轉化為UDP-ManNAc之酶。此酶可為例如UDP-GlcNAc 2-表異構酶,如例如來自金黃色葡萄球菌( Staphylococcusaureus)之cap5P、來自大腸桿菌之RffE、來自肺炎鏈球菌( S. pneumoniae)之Cps19fK或來自腸沙門氏菌( S. enterica)之RfbC。較佳地,細胞經修飾以產生UDP-ManNAc。更佳地,細胞經修飾以用於增強UDP-ManNAc產生。該修飾可為UDP-GlcNAc 2-表異構酶之過度表現。 In another embodiment of the method of the invention, the glycosyltransferase is N-acetylmannosylaminotransferase and the cell is capable of synthesizing UDP-ManNAc. UDP-ManNAc can be provided by enzymes expressed in cells or by cellular metabolism. Such cells producing UDP-ManNAc may express enzymes that convert, for example, UDP-GlcNAc to UDP-ManNAc. This enzyme may be eg a UDP-GlcNAc 2-epimerase such as eg cap5P from Staphylococcus aureus, RffE from Escherichia coli, Cps19fK from S. pneumoniae or from Salmonella enterica RfbC of ( S. enterica ). Preferably, the cells are modified to produce UDP-ManNAc. More preferably, the cells are modified for enhanced UDP-ManNAc production. This modification may be an overexpression of UDP-GlcNAc 2-epimerase.

在本發明之方法之另一實施方式中,細胞能夠合成該等核苷酸-糖中之任一者,該等核苷酸-糖選自包含以下者之清單:GDP-Fuc、CMP-Neu5Ac、UDP-GlcNAc、UDP-Gal、UDP-N-乙醯基半乳糖胺(UDP-GalNAc)、UDP-N-乙醯基甘露糖胺(UDP-ManNAc)、GDP-甘露糖(GDP-Man)、UDP-葡萄糖(UDP-Glc)、UDP-2-乙醯胺基-2,6-二去氧--L-阿拉伯糖-4-己酮糖、UDP-2-乙醯胺基-2,6-二去氧--L-來蘇糖-4-己酮糖、UDP-N-乙醯基-L-鼠李糖胺(UDP-L-RhaNAc或UDP-2-乙醯胺基-2,6-二去氧-L-甘露糖)、dTDP-N-乙醯基岩藻糖胺、UDP-N-乙醯基岩藻糖胺(UDP-L-FucNAc或UDP-2-乙醯胺基-2,6-二去氧-L-半乳糖)、UDP-N-乙醯基-L-紐莫糖胺(UDP-L-PneNAC或UDP-2-乙醯胺基-2,6-二去氧-L-塔羅糖)、UDP-N-乙醯基胞壁酸、UDP-N-乙醯基-L-異鼠李糖胺(UDP-L-QuiNAc或UDP-2-乙醯胺基-2,6-二去氧-L-葡萄糖)、GDP-L-異鼠李糖、CMP-N-羥乙醯基神經胺酸(CMP-Neu5Gc)、CMP-Neu4Ac、CMP-Neu5Ac9N 3、CMP-Neu4,5Ac 2、CMP-Neu5,7Ac 2、CMP-Neu5,9Ac 2、CMP-Neu5,7(8,9)Ac 2、UDP-葡萄糖醛酸酯、UDP-半乳糖醛酸酯、GDP-鼠李糖、UDP-木糖。在一較佳實施方式中,該細胞經代謝工程改造以用於製造核苷酸-糖。在另一較佳實施方式中,該細胞經修飾及/或經工程改造以用於核苷酸-糖之最佳化生產。 In another embodiment of the method of the invention, the cell is capable of synthesizing any of the nucleotide-sugars selected from the list comprising: GDP-Fuc, CMP-Neu5Ac , UDP-GlcNAc, UDP-Gal, UDP-N-acetylgalactosamine (UDP-GalNAc), UDP-N-acetylmannosamine (UDP-ManNAc), GDP-mannose (GDP-Man) , UDP-glucose (UDP-Glc), UDP-2-acetamido-2,6-dideoxy--L-arabinose-4-hexulose, UDP-2-acetamido-2, 6-dideoxy--L-lyxose-4-hexulose, UDP-N-acetyl-L-rhamnosamine (UDP-L-RhaNAc or UDP-2-acetylamino-2 , 6-dideoxy-L-mannose), dTDP-N-acetylfucosamine, UDP-N-acetylfucosamine (UDP-L-FucNAc or UDP-2-acetamide 2,6-dideoxy-L-galactose), UDP-N-acetamido-L-neumosamine (UDP-L-PneNAC or UDP-2-acetamido-2,6- Dideoxy-L-talose), UDP-N-Acetylmuramic acid, UDP-N-Acetyl-L-Isorhamnosamine (UDP-L-QuiNAc or UDP-2-Acetyl Amino-2,6-dideoxy-L-glucose), GDP-L-isorhamnose, CMP-N-hydroxyacetylneuraminic acid (CMP-Neu5Gc), CMP-Neu4Ac, CMP-Neu5Ac9N 3 , CMP-Neu4,5Ac 2 , CMP-Neu5,7Ac 2 , CMP-Neu5,9Ac 2 , CMP-Neu5,7(8,9)Ac 2 , UDP-glucuronic acid ester, UDP-galacturonic acid ester, GDP-rhamnose, UDP-xylose. In a preferred embodiment, the cell is metabolically engineered for the manufacture of nucleotide-sugars. In another preferred embodiment, the cells are modified and/or engineered for optimal production of nucleotide-sugars.

根據本發明之方法,該混合物之該等寡醣中之至少一者經岩藻糖基化、唾液酸基化、半乳糖基化、葡萄糖基化、木糖基化、甘露糖基化、含有N-乙醯基葡萄糖胺、含有N-乙醯基神經胺酸、含有N-羥乙醯基神經胺酸、含有N-乙醯基半乳糖胺、含有鼠李糖、含有葡萄糖醛酸酯、含有半乳糖醛酸酯及/或含有N-乙醯基甘露糖胺。According to the method of the present invention, at least one of the oligosaccharides of the mixture is fucosylated, sialylated, galactosylated, glycosylated, xylosylated, mannosylated, containing N-acetylglucosamine, containing N-acetylneuraminic acid, containing N-hydroxyacetylneuraminic acid, containing N-acetylgalactosamine, containing rhamnose, containing glucuronide, Contains galacturonic acid esters and/or N-acetylmannosamine.

在一較佳實施方式中,寡醣混合物包含帶電寡醣。更佳地,該等帶電寡醣中之至少一者為唾液酸基化寡醣。或者及或另外,寡醣混合物包含中性寡醣。In a preferred embodiment, the oligosaccharide mixture comprises charged oligosaccharides. More preferably, at least one of the charged oligosaccharides is a sialylated oligosaccharide. Alternatively and or additionally, the oligosaccharide mixture comprises neutral oligosaccharides.

在另一較佳實施方式中,寡醣混合物包含岩藻糖基化中性寡醣。或者及或另外,寡醣混合物包含未岩藻糖基化中性寡醣。In another preferred embodiment, the oligosaccharide mixture comprises fucosylated neutral oligosaccharides. Alternatively and or additionally, the oligosaccharide mixture comprises unfucosylated neutral oligosaccharides.

較佳地,寡醣混合物包含至少一種如本文所定義之岩藻糖基化寡醣。Preferably, the oligosaccharide mixture comprises at least one fucosylated oligosaccharide as defined herein.

或者或另外,寡醣混合物包含至少一種如本文所定義之唾液酸基化寡醣。Alternatively or additionally, the oligosaccharide mixture comprises at least one sialylated oligosaccharide as defined herein.

或者或另外,寡醣之混合物包含至少一種具有經由糖苷鍵彼此連接之三個或更多個單醣次單元的寡醣,其中該等單醣殘基中之至少一者為GlcNAc殘基。該寡醣可含有多於一個GlcNAc殘基,例如兩個、三個或更多個。該寡醣可為中性寡醣或帶電寡醣,例如亦包含唾液酸結構。GlcNAc可存在於寡醣之還原端處。該GlcNAc亦可存在於該寡醣之非還原端處。該GlcNAc亦可存在於寡醣結構內。GlcNAc可連接至包含半乳糖、岩藻糖、Neu5Ac、Neu5Gc之其他單醣次單元。Alternatively or additionally, the mixture of oligosaccharides comprises at least one oligosaccharide having three or more monosaccharide subunits linked to each other via glycosidic bonds, wherein at least one of the monosaccharide residues is a GlcNAc residue. The oligosaccharide may contain more than one GlcNAc residue, eg, two, three or more. The oligosaccharide may be neutral or charged, eg also comprising a sialic acid structure. GlcNAc can be present at the reducing end of the oligosaccharide. The GlcNAc can also be present at the non-reducing end of the oligosaccharide. The GlcNAc can also be present within the oligosaccharide structure. GlcNAc can be linked to other monosaccharide subunits including galactose, fucose, Neu5Ac, Neu5Gc.

或者或另外,寡醣混合物包含至少一種半乳糖基化寡醣且含有至少一個半乳糖單醣次單元。該半乳糖基化寡醣為包含至少三個經由糖苷鍵彼此連接之單醣次單元的醣結構,其中該單醣次單元中之至少一者為半乳糖。該半乳糖基化寡醣可含有多於一個半乳糖殘基,例如兩個、三個或更多個。該半乳糖基化寡醣可為中性寡醣或帶電寡醣,例如亦包含唾液酸結構。半乳糖可連接至包含葡萄糖、GlcNAc、岩藻糖、唾液酸之其他單醣次單元。Alternatively or additionally, the oligosaccharide mixture comprises at least one galactosylated oligosaccharide and contains at least one galactose monosaccharide subunit. The galactosylated oligosaccharide is a sugar structure comprising at least three monosaccharide subunits linked to each other via glycosidic bonds, wherein at least one of the monosaccharide subunits is galactose. The galactosylated oligosaccharide may contain more than one galactose residue, eg, two, three or more. The galactosylated oligosaccharides can be neutral oligosaccharides or charged oligosaccharides, eg also comprising sialic acid structures. Galactose can be linked to other monosaccharide subunits including glucose, GlcNAc, fucose, sialic acid.

較佳地,寡醣混合物中存在之所有寡醣係岩藻糖基化寡醣。更佳地,寡醣混合物包含如本文所定義之三種岩藻糖基化寡醣。Preferably, all oligosaccharides present in the oligosaccharide mixture are fucosylated oligosaccharides. More preferably, the oligosaccharide mixture comprises three fucosylated oligosaccharides as defined herein.

根據一較佳實施方式,本發明提供一種用於製造包含至少兩種,較佳至少三種,更佳至少四種,甚至更佳至少五種,甚至更佳至少六種,甚至更佳至少七種以下不同寡醣之混合物的方法:(i)寡醣,其中該混合物由帶電,較佳唾液酸基化及中性寡醣(較佳中性岩藻糖基化、或較佳中性未岩藻糖基化)構成;(ii)中性岩藻糖基化寡醣;(iii)唾液酸基化寡醣;及/或(iv)中性未岩藻糖基化寡醣。該方法包含如本文先前所揭示之步驟。在此上下文中,較佳向該培養中添加至少兩種,更佳至少三種受體及/或提供能夠表現多種醣基轉移酶之細胞,其中各所需核苷酸-糖較佳由細胞合成。According to a preferred embodiment, the present invention provides a method for the manufacture of at least two kinds, preferably at least three kinds, more preferably at least four kinds, even better at least five kinds, even better at least six kinds, even better at least seven kinds A method of a mixture of different oligosaccharides: (i) oligosaccharides, wherein the mixture consists of charged, preferably sialylated and neutral oligosaccharides (preferably neutral fucosylated, or preferably neutral unrocked) (ii) neutral fucosylated oligosaccharides; (iii) sialylated oligosaccharides; and/or (iv) neutral unfucosylated oligosaccharides. The method comprises steps as previously disclosed herein. In this context, preferably at least two, more preferably at least three receptors are added to the culture and/or cells capable of expressing a variety of glycosyltransferases are provided, wherein each desired nucleotide-sugar is preferably synthesized by the cells .

在此方面,對於根據以上(i)生產混合物,較佳提供細胞,較佳單一細胞,其能夠表現唾液酸基轉移酶及至少一種如本文所描述之額外醣基轉移酶,合成核苷酸-糖CMP-N-乙醯基神經胺酸(CMP-Neu5Ac)及一或多種如本文所描述之核苷酸-糖,該一或多種核苷酸-糖為用於該額外醣基轉移酶之供體,且較佳其中至少三種,更佳至少四種,甚至更佳至少五種受體被添加至培養中以用於合成該混合物中之該等寡醣中之任一者,較佳用於合成該混合物中之該等寡醣中之全部。In this regard, for the production of the mixture according to (i) above, it is preferred to provide a cell, preferably a single cell, capable of expressing a sialyltransferase and at least one additional glycosyltransferase as described herein, synthesizing a nucleotide- The sugar CMP-N-acetylneuraminic acid (CMP-Neu5Ac) and one or more nucleotide-sugars as described herein for use in the additional glycosyltransferase Donors, and preferably at least three, more preferably at least four, even more preferably at least five acceptors are added to the culture for the synthesis of any of the oligosaccharides in the mixture, preferably All of the oligosaccharides in the mixture were synthesized.

在此方面,對於根據以上(ii)生產混合物,較佳提供細胞,較佳單一細胞,其能夠表現岩藻糖基轉移酶及至少一種如本文所描述之額外醣基轉移酶,合成核苷酸-糖GDP-岩藻糖(GDP-Fuc)及一或多種如本文所描述之核苷酸-糖,該一或多種核苷酸-糖為用於該額外醣基轉移酶之供體,且較佳其中至少三種,更佳至少四種,甚至更佳至少五種受體被添加至培養中以用於合成該混合物中之該等寡醣中之任一者,較佳用於合成該混合物中之該等寡醣中之全部。In this regard, for the production of the mixture according to (ii) above, it is preferred to provide a cell, preferably a single cell, capable of expressing a fucosyltransferase and at least one additional glycosyltransferase as described herein, synthesizing nucleotides - the sugar GDP-fucose (GDP-Fuc) and one or more nucleotide-sugars as described herein which are donors for the additional glycosyltransferase, and Preferably at least three, more preferably at least four, even more preferably at least five receptors are added to the culture for the synthesis of any of the oligosaccharides in the mixture, preferably for the synthesis of the mixture all of these oligosaccharides.

在此方面,對於根據以上(iii)生產混合物,較佳提供細胞,較佳單一細胞,其能夠表現唾液酸基轉移酶及至少一種如本文所描述之額外醣基轉移酶,合成核苷酸-糖CMP-N-乙醯基神經胺酸(CMP-Neu5Ac)及一或多種如本文所描述之核苷酸-糖,該一或多種核苷酸-糖為用於該額外醣基轉移酶之供體,且較佳其中至少三種,更佳至少四種,甚至更佳至少五種受體被添加至培養中以用於合成該混合物中之該等寡醣中之任一者,較佳用於合成該混合物中之該等寡醣中之全部。In this regard, for producing the mixture according to (iii) above, preferably a cell, preferably a single cell is provided, which is capable of expressing a sialyltransferase and at least one additional glycosyltransferase as described herein, synthesizing a nucleotide- The sugar CMP-N-acetylneuraminic acid (CMP-Neu5Ac) and one or more nucleotide-sugars as described herein for use in the additional glycosyltransferase Donors, and preferably at least three, more preferably at least four, even more preferably at least five acceptors are added to the culture for the synthesis of any of the oligosaccharides in the mixture, preferably All of the oligosaccharides in the mixture were synthesized.

在此方面,對於根據以上(iv)生產混合物,較佳提供細胞,較佳單一細胞,其能夠表現至少兩種如本文所描述之醣基轉移酶,合成一或多種如本文所描述之核苷酸-糖,該一或多種核苷酸-糖為用於該額外醣基轉移酶之供體,且較佳其中至少三種,更佳至少四種,甚至更佳至少五種受體被添加至培養中以用於合成該混合物中之該等寡醣中之任一者,較佳用於合成該混合物中之該等寡醣中之全部。In this regard, for the production of the mixture according to (iv) above, it is preferred to provide a cell, preferably a single cell, capable of expressing at least two glycosyltransferases as described herein, synthesizing one or more nucleosides as described herein Acid-sugars, the one or more nucleotide-sugars are donors for the additional glycosyltransferases, and preferably at least three, more preferably at least four, even more preferably at least five acceptors are added to the Culturing for the synthesis of any of the oligosaccharides in the mixture, preferably for the synthesis of all of the oligosaccharides in the mixture.

在本發明之上下文中,應理解,根據本發明之包含至少兩種寡醣之該混合物較佳胞內合成。所屬技術領域中具有通常知識者將進一步理解,所合成之寡醣之一部分或實質上全部保留在胞內及/或經由被動或主動運輸排出到細胞外。In the context of the present invention, it is understood that the mixture comprising at least two oligosaccharides according to the present invention is preferably synthesized intracellularly. Those of ordinary skill in the art will further appreciate that some or substantially all of the synthesized oligosaccharides remain intracellularly and/or are excreted extracellularly via passive or active transport.

在本發明之方法之一較佳實施方式中,該等寡醣中之任一者,更佳該等寡醣中之全部,藉由被動運輸亦即無需藉助於主動運輸系統消耗來自該細胞之能量而移位至細胞外。In a preferred embodiment of the method of the invention, any of the oligosaccharides, more preferably all of the oligosaccharides, is consumed by passive transport, ie without the aid of an active transport system, from the cell energy is displaced outside the cell.

在本發明之方法之另一較佳實施方式中,細胞經進一步代謝工程改造以用於 i)內源膜蛋白之經修飾表現,及/或 ii)內源膜蛋白之經修飾活性,及/或 iii)同源膜蛋白之表現,及/或 iv)異源膜蛋白之表現, 其中該膜蛋白參與在該細胞外分泌該等寡醣中之任一者。該細胞可表現該等膜蛋白中之一者,該等膜蛋白參與將該等寡醣中之任一者自該細胞分泌至該細胞外。該細胞亦可表現該等膜蛋白中之多於一者。該等膜蛋白中之任一者可將該等寡醣中之一或多者移位至該細胞外。製造至少兩種,較佳至少三種寡醣之混合物的該細胞可使該等寡醣中之任一者移位,該等寡醣包含被動擴散體(passive diffusion)、通道膜蛋白、膜運輸蛋白、膜載體蛋白。 In another preferred embodiment of the method of the present invention, the cells are further metabolically engineered for use in i) Modified expression of endogenous membrane proteins, and/or ii) the modified activity of endogenous membrane proteins, and/or iii) Representation of homologous membrane proteins, and/or iv) performance of heterologous membrane proteins, wherein the membrane protein is involved in the extracellular secretion of any of the oligosaccharides. The cell may express one of the membrane proteins involved in the secretion of either of the oligosaccharides from the cell to the outside of the cell. The cell may also express more than one of the membrane proteins. Any of the membrane proteins can translocate one or more of the oligosaccharides outside the cell. The cell producing a mixture of at least two, preferably at least three, oligosaccharides can translocate any of the oligosaccharides including passive diffusion, channel membrane proteins, membrane transport proteins , Membrane carrier protein.

在一個實施方式中,細胞經進一步代謝工程改造以用於 i.     內源膜蛋白之經修飾表現,及/或 ii.    內源膜蛋白之經修飾活性,及/或 iii.   同源膜蛋白之表現,及/或 iv.   異源膜蛋白之表現, 其中該膜蛋白參與吸收用於合成該混合物中之該等寡醣中之任一者的前驅物,較佳地其中該膜蛋白參與吸收所有所需前驅物,更佳地其中該膜蛋白參與吸收所有該等受體。 In one embodiment, the cells are further metabolically engineered for use in i. Modified expression of endogenous membrane proteins, and/or ii. Modified activity of endogenous membrane proteins, and/or iii. Representation of homologous membrane proteins, and/or iv. Representation of heterologous membrane proteins, wherein the membrane protein is involved in the uptake of precursors for the synthesis of any of the oligosaccharides in the mixture, preferably wherein the membrane protein is involved in the uptake of all desired precursors, more preferably wherein the membrane protein is involved in uptake all such receptors.

在本發明之方法之另一較佳實施方式中,細胞經進一步代謝工程改造以用於 i)內源膜蛋白之經修飾表現,及/或 ii)內源膜蛋白之經修飾活性,及/或 iii)同源膜蛋白之表現,及/或 iv)異源膜蛋白之表現, 其中該膜蛋白參與吸收用於合成該等寡醣中之任一者的受體。如本文所揭示之定義中所解釋,應瞭解術語「受體(acceptor)」。該細胞可表現該等膜蛋白中之一者,該等膜蛋白參與吸收用於合成該等寡醣中之任一者的任何類型之受體。該細胞亦可表現該等膜蛋白中之多於一者,該等膜蛋白參與吸收該等受體中之至少一者。該細胞可經修飾以用於吸收多於一種用於合成該等寡醣中之任一者的受體。 In another preferred embodiment of the method of the present invention, the cells are further metabolically engineered for use in i) Modified expression of endogenous membrane proteins, and/or ii) the modified activity of endogenous membrane proteins, and/or iii) Representation of homologous membrane proteins, and/or iv) performance of heterologous membrane proteins, wherein the membrane protein is involved in uptake of receptors for the synthesis of any of the oligosaccharides. As explained in the definitions disclosed herein, the term "acceptor" should be understood. The cell may express one of the membrane proteins involved in uptake of any type of receptor used to synthesize any of the oligosaccharides. The cell may also express more than one of the membrane proteins involved in the uptake of at least one of the receptors. The cells can be modified for uptake of more than one receptor for the synthesis of any of the oligosaccharides.

在本發明之方法之一更佳實施方式中,膜蛋白係選自包含以下者之清單:搬運蛋白、P-P-鍵水解驅動之運輸蛋白、β-桶狀孔蛋白、輔助運輸蛋白、推定運輸蛋白及磷酸轉移驅動之基團移位蛋白。在本發明之方法之甚至更佳實施方式中,搬運蛋白包含MFS運輸蛋白、糖流出運輸蛋白及螯鐵蛋白輸出蛋白。在本發明之方法之另一更佳實施方式中,P-P-鍵水解驅動之運輸蛋白包含ABC運輸蛋白及螯鐵蛋白輸出蛋白。In a more preferred embodiment of the method of the present invention, the membrane protein is selected from the list comprising: a transporter protein, a P-P-bond hydrolysis driven transporter protein, a β-barrel porin, an accessory transporter protein, a putative transporter protein and phosphotransfer driven group translocation proteins. In an even more preferred embodiment of the method of the invention, the transporter protein comprises MFS transporter, carbohydrate efflux transporter and chelatin exporter. In another more preferred embodiment of the method of the present invention, the P-P-bond hydrolysis-driven transporter comprises ABC transporter and chelatin exporter.

在本發明之方法之另一較佳實施方式中,膜蛋白提供至少兩種寡醣之該混合物的改善之製造。在本發明方法之替代及/或額外較佳實施方式中,膜蛋白提供能夠實現至少兩種寡醣之該混合物之流出。In another preferred embodiment of the method of the invention, the membrane protein provides for the improved manufacture of this mixture of at least two oligosaccharides. In an alternative and/or additional preferred embodiment of the method of the present invention, the membrane protein provides for the efflux of this mixture of at least two oligosaccharides.

在本發明之方法之一更佳實施方式中,細胞表現屬於MFS運輸蛋白家族之膜蛋白,該等運輸蛋白如例如來自包含大腸桿菌(UniProt ID P0AEY8)、莫金斯克羅諾桿菌( Cronobacter muytjensii)(UniProt ID A0A2T7ANQ9)、楊氏檸檬酸桿菌( Citrobacter youngae)(UniProt ID D4BC23)及雷金斯堡約克氏菌( Yokenella regensburgei)(UniProt ID G9Z5F4)之物種的多藥運輸蛋白MdfA家族之MdfA多肽。在本發明之方法之另一更佳實施方式中,細胞表現屬於糖流出運輸蛋白家族之膜蛋白,該等運輸蛋白如例如來自包含大腸桿菌(UniProt ID P31675)、克氏檸檬酸桿菌( Citrobacter koseri)(UniProt ID A0A078LM16)及肺炎克雷伯氏桿菌( Klebsiella pneumoniae)(UniProt ID A0A0C4MGS7)之物種的SetA家族之SetA多肽。在本發明之方法之另一更佳實施方式中,細胞表現屬於螯鐵蛋白輸出蛋白家族之膜蛋白,該等輸出蛋白如例如大腸桿菌entS(UniProt ID P24077)及大腸桿菌iceT(UniProt ID A0A024L207)。在本發明之方法之另一更佳實施方式中,細胞表現屬於ABC運輸蛋白家族之膜蛋白,該等運輸蛋白如例如來自大腸桿菌之oppF(UniProt ID P77737)、來自乳酸乳球菌乳酸亞種二乙醯基乳酸變種( Lactococcus lactissubsp. lactis bv. diacetylactis)之lmrA(UniProt ID A0A1V0NEL4)及來自長雙歧桿菌嬰兒亞種( Bifidobacterium longumsubsp. infantis)之Blon_2475(UniProt ID B7GPD4)。 In a more preferred embodiment of the method of the present invention, the cells express membrane proteins belonging to the MFS transporter family, such as for example derived from Escherichia coli (UniProt ID P0AEY8), Cronobacter muytjensii MdfA polypeptides of the MdfA family of multidrug transport proteins of species (UniProt ID A0A2T7ANQ9), Citrobacter youngae (UniProt ID D4BC23) and Yokenella regensburgei (UniProt ID G9Z5F4). In another more preferred embodiment of the method of the invention, the cells express membrane proteins belonging to the family of sugar efflux transporters, such as those derived from, for example, Escherichia coli (UniProt ID P31675), Citrobacter koseri ) (UniProt ID A0A078LM16) and SetA polypeptides of the SetA family of species Klebsiella pneumoniae (UniProt ID A0A0C4MGS7). In another more preferred embodiment of the method of the invention, the cells express membrane proteins belonging to the chelatin export protein family, such as eg E. coli entS (UniProt ID P24077) and E. coli iceT (UniProt ID A0A024L207) . In another more preferred embodiment of the method of the invention, the cells express membrane proteins belonging to the ABC transporter family, such as eg oppF from Escherichia coli (UniProt ID P77737), from Lactococcus lactis subsp. lactis II lmrA (UniProt ID A0A1V0NEL4) of Lactococcus lactis subsp. lactis bv. diacetylactis and Blon_2475 (UniProt ID B7GPD4) from Bifidobacterium longum subsp. infantis.

視情況,細胞經轉型以包含至少一種編碼選自由以下者組成之群之蛋白質的核酸序列:乳糖運輸蛋白;N-乙醯基神經胺酸運輸蛋白、岩藻糖運輸蛋白;用於核苷酸活化糖之運輸蛋白,其中該運輸蛋白內化至添加前驅物或受體之培養基以用於寡醣合成。Optionally, the cell is transformed to comprise at least one nucleic acid sequence encoding a protein selected from the group consisting of: lactose transporter; N-acetylneuraminic acid transporter, fucose transporter; for nucleotides Activates a carbohydrate transporter, wherein the transporter is internalized into the medium to which precursors or receptors are added for oligosaccharide synthesis.

在根據本發明之方法之一較佳實施方式中,當細胞在乳糖與一或多種其他碳源合併之環境中生長時抵抗乳糖殺滅現象。在術語「乳糖殺滅(lactose killing)」之情況下,意指其中存在乳糖以及另一碳源之培養基中之細胞生長受阻。在一較佳實施例中,細胞經基因修飾使得其保持至少50%之乳糖流入而不經歷乳糖殺滅,甚至在高乳糖濃度下,如WO 2016/075243中所描述。該基因修飾包含藉由異源啟動子表現及/或過度表現外源性及/或內源性乳糖運輸蛋白基因,該異源啟動子不引起乳糖殺滅表型及/或乳糖運輸蛋白之密碼子使用之修飾,以產生不引起乳糖殺滅表型的該乳糖運輸蛋白之經改變之表現。在此方面WO 2016/075243之內容以引用之方式併入。In a preferred embodiment of the method according to the present invention, cells are resistant to lactose killing when they are grown in an environment where lactose is combined with one or more other carbon sources. In the context of the term "lactose killing" it is meant that cell growth in a medium in which lactose and another carbon source are present is stunted. In a preferred embodiment, the cells are genetically modified such that they maintain at least 50% influx of lactose without undergoing lactose kill, even at high lactose concentrations, as described in WO 2016/075243. The genetic modification comprises expression and/or overexpression of an exogenous and/or endogenous lactose transporter gene by a heterologous promoter that does not cause a lactose-killing phenotype and/or the codon of the lactose transporter Modifications used by the gene to produce altered performance of the lactose transporter protein that do not cause the lactose-killing phenotype. The contents of WO 2016/075243 are incorporated by reference in this regard.

在本發明之另一實施方式中,該等受體藉由如下方法產生,該等方法包含自天然來源萃取;生物技術製程,包括藉由產生根據本發明之寡醣混合物的該細胞或另一不產生根據本發明之寡醣混合物的細胞合成;物理製程;化學製程及其等之組合。In another embodiment of the present invention, the receptors are produced by methods comprising extraction from natural sources; biotechnological processes comprising by the cell or another producing the oligosaccharide mixture according to the present invention Cellular synthesis that does not produce the oligosaccharide mixture according to the invention; physical processes; chemical processes and combinations thereof.

在方法之另一較佳實施方式中,細胞產生用於合成該等寡醣中之任一者的受體。在一更佳實施方式中,該細胞產生一或多種用於合成該寡醣混合物之受體,更佳地,該細胞產生所有用於合成根據本發明之該寡醣混合物的受體。在一甚至更佳實施方式中,該細胞經修飾以最佳化產生用於合成該等寡醣中之任一者的任一該等受體,更佳地,該細胞經修飾以最佳化產生用於合成根據本發明之該寡醣混合物的所有該等受體。In another preferred embodiment of the method, the cell produces a receptor for the synthesis of any of the oligosaccharides. In a more preferred embodiment, the cell produces one or more receptors for the synthesis of the oligosaccharide mixture, more preferably, the cell produces all receptors for the synthesis of the oligosaccharide mixture according to the invention. In an even more preferred embodiment, the cell is modified to optimize the production of any of the receptors for the synthesis of any of the oligosaccharides, more preferably, the cell is modified to optimize All the receptors are generated for the synthesis of the oligosaccharide mixture according to the invention.

在方法之另一較佳實施方式中,添加至培養中之受體不藉由根據本發明之方法中所提供之細胞產生。In another preferred embodiment of the method, the receptor added to the culture is not produced by the cells provided in the method according to the invention.

在本發明之方法之一較佳實施方式中,細胞賦予增強之噬菌體抗性。噬菌體抗性之該增強可源自內源膜蛋白之降低的表現及/或內源膜蛋白編碼基因之突變。術語「噬菌體不敏感性(phage insensitive)」或「抗噬菌體(phage resistant)」或「噬菌體抗性(phage resistance)」或「抗噬菌體概況(phage resistant profile)」應理解為意指對藉由噬菌體及/或生長抑制之感染及/或殺滅較不敏感且較佳不敏感的細菌菌株。如本文所用,術語「抗噬菌體活性(anti-phage activity)」或「對藉由至少一種噬菌體之感染具抗性(resistant to infection by at least one phage)」係指表現功能性噬菌體抗性系統之細菌細胞相比於不表現功能性噬菌體抗性系統之相同發育階段(例如培養狀態)下之相同物種之細菌細胞對藉由至少一種噬菌體家族之感染的抗性增加,如可藉由例如細菌活力、噬菌體溶原性、噬菌體基因體複製及噬菌體基因體降解所確定。噬菌體可為裂解噬菌體或溫和(溶原性)噬菌體。涉及細胞之噬菌體抗性之膜蛋白包含OmpA、OmpC、OmpF、OmpT、BtuB、TolC、LamB、FhuA、TonB、FadL、Tsx、FepA、YncD、PhoE及NfrA及其同源物。In a preferred embodiment of the method of the present invention, the cell confers enhanced phage resistance. This enhancement of phage resistance may result from reduced expression of endogenous membrane proteins and/or mutations in genes encoding endogenous membrane proteins. The terms "phage insensitive" or "phage resistant" or "phage resistance" or "phage resistant profile" should be understood to mean and/or growth inhibition of infection and/or killing of less susceptible and preferably less susceptible bacterial strains. As used herein, the term "anti-phage activity" or "resistant to infection by at least one phage" refers to a system that exhibits a functional phage resistance system Increased resistance of bacterial cells to infection by at least one family of bacteriophages, as can be achieved by, for example, bacterial viability, compared to bacterial cells of the same species at the same developmental stage (eg, in culture) that do not exhibit a functional phage resistance system , phage lysogenicity, phage genome replication, and phage genome degradation. Phages can be lytic phages or mild (lysogenic) phages. Membrane proteins involved in phage resistance of cells include OmpA, OmpC, OmpF, OmpT, BtuB, TolC, LamB, FhuA, TonB, FadL, Tsx, FepA, YncD, PhoE and NfrA and their homologues.

在本發明之方法之一較佳實施方式中,細胞賦予降低之黏度。細胞黏度降低可藉由經修飾之細胞壁生物合成獲得。細胞壁生物合成可經修飾,包含例如聚-N-乙醯基-葡萄糖胺、腸內菌共同抗原、纖維素、可拉酸(colanic acid)、核寡醣、滲透調節周質葡聚糖及甘油葡萄糖苷、聚醣及繭蜜糖之合成減少或消除。In a preferred embodiment of the method of the present invention, the cells impart reduced viscosity. Reduction in cell viscosity can be obtained by biosynthesis of modified cell walls. Cell wall biosynthesis can be modified to include, for example, poly-N-acetyl-glucosamine, enterobacterial common antigen, cellulose, colanic acid, nuclear oligosaccharides, osmoregulatory periplasmic glucans, and glycerol The synthesis of glucosides, polysaccharides and cocoon honey is reduced or eliminated.

根據本發明之方法之另一實施方式,細胞能夠製造磷酸烯醇丙酮酸鹽(PEP)。在本發明之方法之一較佳實施方式中,與未經修飾之先驅細胞相比,細胞經修飾以用於PEP之經增強產生及/或供應。According to another embodiment of the method of the present invention, the cells are capable of producing phosphoenolpyruvate (PEP). In a preferred embodiment of the method of the invention, the cells are modified for enhanced production and/or supply of PEP compared to unmodified precursor cells.

在一較佳實施方式中且作為用於PEP之經增強產生及/或供應的手段,一或多種PEP依賴型、糖運輸磷酸轉移酶系統被破壞,諸如(但不限於):1)N-乙醯基-D-葡萄糖胺Npi-磷酸轉移酶(EC 2.7.1.193),其舉例而言由大腸桿菌或芽孢桿菌物種中之nagE基因(或簇nagABCD)編碼,2)ManXYZ,其編碼輸入外源性己糖(甘露糖、葡萄糖、葡萄糖胺、果糖、2-去氧葡萄糖、甘露糖胺、N-乙醯基葡萄糖胺等)及釋放磷酸至細胞細胞質中之酶ll Man複合物(甘露糖PTS透過酶、蛋白質-Npi-磷酸組胺酸-D-甘露糖磷酸轉移酶),3)葡萄糖特異性PTS運輸蛋白(舉例而言由PtsG/Crr編碼),其在細胞質中吸收葡萄糖且形成葡萄糖-6-磷酸鹽,4)蔗糖特異性PTS運輸蛋白,其在細胞質中吸收蔗糖且形成蔗糖-6-磷酸鹽,5)果糖特異性PTS運輸蛋白(舉例而言由基因fruA及fruB編碼及激酶fruK編碼,該激酶fruK在第一步驟中吸收果糖且形成果糖-1-磷酸鹽且在第二步驟中形成果糖1,6二磷酸鹽,6)乳糖PTS運輸蛋白(舉例而言由乾酪乳球菌(Lactococcus casei)中之lacE編碼),其吸收乳糖且形成乳糖-6-磷酸鹽,7)半乳糖醇特異性PTS酶,其吸收半乳糖醇及/或山梨醇且分別形成半乳糖醇-1-磷酸鹽或山梨醇-6-磷酸鹽,8)甘露糖醇特異性PTS酶,其吸收甘露糖醇及/或山梨醇且分別形成甘露糖醇-1-磷酸鹽或山梨醇-6-磷酸鹽,及9)繭蜜糖特異性PTS酶,其吸收繭蜜糖且形成繭蜜糖-6-磷酸鹽。In a preferred embodiment and as a means for enhanced production and/or supply of PEP, one or more PEP-dependent, sugar transport phosphotransferase systems are disrupted, such as (but not limited to): 1) N- Acetyl-D-glucosamine Npi-phosphotransferase (EC 2.7.1.193), which is encoded by, for example, the nagE gene (or cluster nagABCD) in E. coli or Bacillus species, 2) ManXYZ, which encodes imported extraneous Source hexose (mannose, glucose, glucosamine, fructose, 2-deoxyglucose, mannosamine, N-acetylglucosamine, etc.) and the enzyme ll Man complex (mannose PTS permease, protein-Npi-phosphohistidine-D-mannose phosphotransferase), 3) glucose-specific PTS transporter (encoded by PtsG/Crr for example), which takes up glucose in the cytoplasm and forms glucose -6-phosphate, 4) sucrose-specific PTS transporter protein, which takes up sucrose in the cytoplasm and forms sucrose-6-phosphate, 5) fructose-specific PTS transporter protein (encoded for example by the genes fruA and fruB and a kinase Coding for fruK, the kinase fruK takes up fructose and forms fructose-1-phosphate in a first step and fructose 1,6 diphosphate in a second step, 6) Lactose PTS transporter (eg by Lactococcus casei) (lacE code in Lactococcus casei), which absorbs lactose and forms lactose-6-phosphate, 7) galactitol-specific PTS enzymes, which absorbs galactitol and/or sorbitol and forms galactitol-1, respectively - Phosphate or sorbitol-6-phosphate, 8) Mannitol-specific PTS enzymes that absorb mannitol and/or sorbitol and form mannitol-1-phosphate or sorbitol-6-phosphate, respectively salt, and 9) molasses-specific PTS enzymes that absorb molasses and form molasses-6-phosphate.

在另一及/或額外較佳實施方式中及作為用於PEP之經增強生產及/或供應的手段,藉由破壞PtsIH/Crr基因簇來破壞完整PTS系統。PtsI(酶I)為充當大腸桿菌K-12之磷酸烯醇丙酮酸:糖磷酸轉移酶系統(PTS糖)之閘道的細胞質蛋白。PtsI為PTS糖之兩種(PtsI及PtsH)糖非特異性蛋白質成分中之一者,其與糖特異性內膜透過酶一起實現引起多種碳水化合物受質之偶合磷酸化及運輸的磷酸轉移級聯。HPr(含有組胺酸之蛋白質)為PTS糖之兩種糖非特異性蛋白質成分中之一者。其接受來自磷酸化酶I(PtsI-P)之磷氧基且接著將其轉移至PTS糖之許多糖特異性酶(統稱為酶II)中之任一者的EIIA域。在需要PtsH及PtsI之反應中,Crr或EIIAGlc由PEP磷酸化。In another and/or additional preferred embodiment and as a means for enhanced production and/or supply of PEP, the complete PTS system is disrupted by disrupting the PtsIH/Crr gene cluster. PtsI (enzyme I) is a cytoplasmic protein that acts as a gateway to the phosphoenolpyruvate:sugar phosphotransferase system (PTS sugar) of E. coli K-12. PtsI is one of the two sugar-nonspecific protein components of PTS sugars (PtsI and PtsH), which together with sugar-specific endomembrane permease enzymes achieve a phosphotransfer stage that results in coupled phosphorylation and transport of various carbohydrate substrates link. HPr (histidine-containing protein) is one of two sugar-nonspecific protein components of PTS sugars. It accepts the phosphooxyl group from phosphorylase I (PtsI-P) and then transfers it to the EIIA domain of any of the many carbohydrate-specific enzymes (collectively referred to as Enzyme II) of the PTS carbohydrate. In reactions requiring PtsH and PtsI, Crr or EIIAGlc are phosphorylated by PEP.

在另一及/或額外較佳實施方式中,細胞進一步修飾以藉由對應透過酶之引入及/或過度表現來補償碳源之PTS系統的缺失。等為例如透過酶或ABC運輸蛋白,其包含但不限於特異性地輸入乳糖之運輸蛋白,諸如由來自大腸桿菌之LacY基因編碼之運輸蛋白;輸入蔗糖之運輸蛋白,諸如由來自大腸桿菌之cscB基因編碼之運輸蛋白;輸入葡萄糖之運輸蛋白,諸如由來自大腸桿菌之galP基因編碼之運輸蛋白;輸入果糖之運輸蛋白,諸如由來自變形鏈球菌( Streptococcus mutans)之fruI基因編碼之運輸蛋白;或為山梨醇/甘露糖醇ABC運輸蛋白,諸如由類球紅細菌(Rhodobacter sphaeroides)之簇SmoEFGK編碼之運輸蛋白;繭蜜糖/蔗糖/麥芽糖運輸蛋白,諸如由苜蓿根瘤菌(Sinorhizobium meliloti)之基因簇ThuEFGK編碼之運輸蛋白;及N-乙醯基葡萄糖胺/半乳糖/葡萄糖運輸蛋白,諸如由奧奈達希瓦氏菌( Shewanella oneidensis)之NagP編碼之運輸蛋白。PTS缺失與替代運輸蛋白之過度表現的組合之實例為:1)葡萄糖PTS系統(例如ptsG基因)之缺失與葡萄糖透過酶(例如glcP之galP)之引入及/或過度表現組合,2)果糖PTS系統(例如fruB、fruA、fruK基因中之一或多者)之缺失與果糖透過酶(例如fruI)之引入及/或過度表現組合,3)乳糖PTS系統之缺失與乳糖透過酶(例如LacY)之引入及/或過度表現組合,及/或4)蔗糖PTS系統之缺失與蔗糖透過酶(例如cscB)之引入及/或過度表現組合。 In another and/or additional preferred embodiment, the cells are further modified to compensate for the absence of the PTS system of the carbon source by the introduction and/or overexpression of the corresponding permease. etc. are, for example, permease or ABC transport proteins including, but not limited to, transport proteins that specifically import lactose, such as those encoded by the LacY gene from E. coli; transport proteins that import sucrose, such as those encoded by cscB from E. coli a gene-encoded transporter; a glucose-import transporter, such as the transporter encoded by the galP gene from E. coli; a fructose-import transporter, such as the transporter encoded by the fruI gene from Streptococcus mutans ; or are sorbitol/mannitol ABC transporters, such as those encoded by the cluster SmoEFGK of Rhodobacter sphaeroides; cocoon honey/sucrose/maltose transporters, such as those encoded by the genes of Sinorhizobium meliloti A transporter protein encoded by the cluster ThuEFGK; and an N-acetylglucosamine/galactose/glucose transporter protein, such as the transporter protein encoded by NagP of Shewanella oneidensis . Examples of combinations of PTS deletion and overexpression of alternative transporters are: 1) deletion of a glucose PTS system (eg ptsG gene) combined with introduction and/or overexpression of a glucose permease (eg galP of glcP), 2) fructose PTS Deletion of system (eg one or more of fruB, fruA, fruK genes) combined with introduction and/or overexpression of fructose permease (eg fruI), 3) deletion of lactose PTS system with lactose permease (eg LacY) and/or 4) deletion of the sucrose PTS system combined with the introduction and/or overexpression of a sucrose permeating enzyme such as cscB.

在另一較佳實施方式中,細胞經修飾以藉由引入碳水化合物激酶,諸如葡萄糖激酶(EC 2.7.1.1、EC 2.7.1.2、EC 2.7.1.63)、半乳糖激酶(EC 2.7.1.6)及/或果糖激酶(EC 2.7.1.3、EC 2.7.1.4)來補償碳源之PTS系統的缺失。PTS缺失與替代運輸蛋白及激酶之過度表現的組合之實例為:1)葡萄糖PTS系統(例如ptsG基因)之缺失,與葡萄糖透過酶(例如glcP之galP)之引入及/或過度表現組合,與葡萄糖激酶(例如glk)之引入及/或過度表現組合,及/或2)果糖PTS系統(例如fruB、fruA、fruK基因中之一或多者)之缺失,與果糖透過酶(例如fruI)之引入及/或過度表現組合,與果糖激酶(例如frk或mak)之引入及/或過度表現組合。In another preferred embodiment, cells are modified by introducing carbohydrate kinases such as glucokinase (EC 2.7.1.1, EC 2.7.1.2, EC 2.7.1.63), galactokinase (EC 2.7.1.6) and / or fructokinase (EC 2.7.1.3, EC 2.7.1.4) to compensate for the lack of carbon source PTS system. Examples of combinations of PTS deletion with overexpression of alternative transport proteins and kinases are: 1) deletion of the glucose PTS system (eg the ptsG gene) combined with introduction and/or overexpression of a glucose permease (eg galP of glcP), and Introduction and/or combination of overexpression of glucokinase (eg glk), and/or 2) deletion of fructose PTS system (eg one or more of fruB, fruA, fruK genes), and fructose permease (eg fruI) Combination of introduction and/or overexpression, combined with introduction and/or overexpression of fructokinase (eg frk or mak).

在另一及/或額外較佳實施方式中且作為用於PEP之經增強產生及/或供應的手段,細胞藉由引入包含以下者之清單中之任一或多者或在包含以下者之清單中之任一或多者方面進行修飾來修飾:磷酸烯醇丙酮酸合酶活性(EC: 2.7.9.2,舉例而言在大腸桿菌中藉由ppsA編碼)、磷酸烯醇丙酮酸羧激酶活性(EC 4.1.1.32或EC 4.1.1.49,舉例而言分別在麩胺酸棒狀桿菌中藉由PCK編碼或在大腸桿菌中藉由pckA編碼);磷酸烯醇丙酮酸羧化酶活性(EC 4.1.1.31,舉例而言在大腸桿菌中藉由ppc編碼);草醯乙酸脫羧酶活性(EC 4.1.1.112,舉例而言在大腸桿菌中藉由eda編碼);丙酮酸激酶活性(EC 2.7.1.40,舉例而言在大腸桿菌中藉由pykA及pykF編碼);丙酮酸羧化酶活性(EC 6.4.1.1,舉例而言在枯草芽孢桿菌中藉由pyc編碼);及蘋果酸脫氫酶活性(EC 1.1.1.38或EC 1.1.1.40,舉例而言在大腸桿菌中分別藉由maeA或maeB編碼)。In another and/or additional preferred embodiment and as a means for the enhanced production and/or supply of PEP, cells by introducing any one or more of a list comprising or in a Modification of any one or more aspects of the list to modify: phosphoenolpyruvate synthase activity (EC: 2.7.9.2, eg encoded by ppsA in E. coli), phosphoenolpyruvate carboxykinase activity (EC 4.1.1.32 or EC 4.1.1.49, for example encoded by PCK in Corynebacterium glutamicum or by pckA in E. coli, respectively); phosphoenolpyruvate carboxylase activity (EC 4.1 .1.31, for example in E. coli encoded by ppc); oxaloacetate decarboxylase activity (EC 4.1.1.112, for example in E. coli encoded by eda); pyruvate kinase activity (EC 2.7.1.40 , for example in E. coli by pykA and pykF); pyruvate carboxylase activity (EC 6.4.1.1, for example in Bacillus subtilis by pyc); and malate dehydrogenase activity ( EC 1.1.1.38 or EC 1.1.1.40, for example in E. coli encoded by maeA or maeB, respectively).

在一更佳實施方式中,細胞經修飾以過度表現該等多肽中之任一或多者,該等多肽包含來自大腸桿菌之ppsA(UniProt ID P23538)、來自麩胺酸棒狀桿菌之PCK(UniProt ID Q6F5A5)、來自大腸桿菌之pcka(UniProt ID P22259)、來自大腸桿菌之eda(UniProt ID P0A955)、來自大腸桿菌之maeA(UniProt ID P26616)及來自大腸桿菌之maeB(UniProt ID P76558)。In a more preferred embodiment, the cells are modified to overexpress any one or more of these polypeptides comprising ppsA (UniProt ID P23538) from Escherichia coli, PCK from Corynebacterium glutamicum ( UniProt ID Q6F5A5), pcka from E. coli (UniProt ID P22259), eda from E. coli (UniProt ID P0A955), maeA from E. coli (UniProt ID P26616) and maeB from E. coli (UniProt ID P76558).

在另一及/或額外較佳實施方式中,細胞經修飾以表現具有磷酸烯醇丙酮酸合酶活性、磷酸烯醇丙酮酸羧激酶活性、草醯乙酸脫羧酶活性或蘋果酸脫氫酶活性之任一或多種多肽。In another and/or additional preferred embodiment, the cell is modified to exhibit phosphoenolpyruvate synthase activity, phosphoenolpyruvate carboxykinase activity, oxaloacetate decarboxylase activity or malate dehydrogenase activity any one or more of the polypeptides.

在另一及/或額外較佳實施方式中且作為用於PEP之經增強產生及/或供應的手段,細胞藉由磷酸烯醇丙酮酸羧化酶活性及/或丙酮酸激酶活性之降低活性,較佳缺失編碼磷酸烯醇丙酮酸羧化酶、丙酮酸羧化酶活性及/或丙酮酸激酶之基因加以修飾。In another and/or additional preferred embodiment and as a means for enhanced production and/or supply of PEP, cells are activated by a reduction in phosphoenolpyruvate carboxylase activity and/or pyruvate kinase activity , preferably modified by deletion of genes encoding phosphoenolpyruvate carboxylase, pyruvate carboxylase activity and/or pyruvate kinase.

在一例示性實施方式中,細胞藉由不同調適經遺傳修飾,該等不同調適諸如磷酸烯醇丙酮酸合酶之過度表現與丙酮酸激酶基因之缺失組合、磷酸烯醇丙酮酸合酶之過度表現與磷酸烯醇丙酮酸羧化酶基因之缺失組合、磷酸烯醇丙酮酸合酶之過度表現與丙酮酸羧化酶基因之缺失組合、磷酸烯醇丙酮酸羧激酶之過度表現與丙酮酸激酶基因之缺失組合、磷酸烯醇丙酮酸羧激酶之過度表現與磷酸烯醇丙酮酸羧化酶基因之缺失組合、磷酸烯醇丙酮酸羧激酶之過度表現與丙酮酸羧化酶基因之缺失組合、草醯乙酸脫羧酶之過度表現與丙酮酸激酶基因之缺失組合、草醯乙酸脫羧酶之過度表現與磷酸烯醇丙酮酸羧化酶基因之缺失組合、草醯乙酸脫羧酶之過度表現與丙酮酸羧化酶基因之缺失組合、蘋果酸脫氫酶之過度表現與丙酮酸激酶基因之缺失組合、蘋果酸脫氫酶之過度表現與磷酸烯醇丙酮酸羧化酶基因之缺失組合及/或蘋果酸脫氫酶之過度表現與丙酮酸羧化酶基因之缺失組合。In an exemplary embodiment, cells are genetically modified by different adaptations such as overexpression of phosphoenolpyruvate synthase in combination with deletion of the pyruvate kinase gene, overexpression of phosphoenolpyruvate synthase Expression combined with deletion of phosphoenolpyruvate carboxylase gene, overexpression of phosphoenolpyruvate synthase combined with deletion of pyruvate carboxylase gene, overexpression of phosphoenolpyruvate carboxykinase and pyruvate kinase Deletion combination of genes, overexpression of phosphoenolpyruvate carboxykinase and deletion of phosphoenolpyruvate carboxylase gene, combination of overexpression of phosphoenolpyruvate carboxykinase and deletion of pyruvate carboxylase gene, Overexpression of oxaloacetate decarboxylase combined with deletion of pyruvate kinase gene, combination of overexpression of oxaloacetate decarboxylase and deletion of phosphoenolpyruvate carboxylase gene, overexpression of oxaloacetate decarboxylase and pyruvate Deletion combination of carboxylase gene, overexpression of malate dehydrogenase and deletion combination of pyruvate kinase gene, combination of deletion of malate dehydrogenase overexpression and phosphoenolpyruvate carboxylase gene and/or apple Overexpression of acid dehydrogenase combined with deletion of the pyruvate carboxylase gene.

在另一例示性實施方式中,細胞藉由不同調適經遺傳修飾,該等不同調適諸如磷酸烯醇丙酮酸合酶之過度表現與磷酸烯醇丙酮酸羧激酶之過度表現組合、磷酸烯醇丙酮酸合酶之過度表現與草醯乙酸脫羧酶之過度表現組合、磷酸烯醇丙酮酸合酶之過度表現與蘋果酸脫氫酶之過度表現組合、磷酸烯醇丙酮酸羧激酶之過度表現與草醯乙酸脫羧酶之過度表現組合、磷酸烯醇丙酮酸羧激酶之過度表現與蘋果酸脫氫酶之過度表現組合、草醯乙酸脫羧酶之過度表現與蘋果酸脫氫酶之過度表現組合、磷酸烯醇丙酮酸合酶之過度表現與磷酸烯醇丙酮酸羧激酶之過度表現及草醯乙酸脫羧酶之過度表現組合,磷酸烯醇丙酮酸合酶之過度表現與磷酸烯醇丙酮酸羧激酶之過度表現及蘋果酸脫氫酶之過度表現組合、磷酸烯醇丙酮酸合酶之過度表現與磷酸烯醇丙酮酸羧激酶之過度表現及草醯乙酸脫羧酶之過度表現及蘋果酸脫氫酶之過度表現組合、磷酸烯醇丙酮酸羧激酶之過度表現與草醯乙酸脫羧酶之過度表現及蘋果酸脫氫酶之過度表現組合及/或磷酸烯醇丙酮酸合酶之過度表現與草醯乙酸脫羧酶之過度表現及蘋果酸脫氫酶之過度表現組合。In another exemplary embodiment, the cells are genetically modified by different adaptations such as overexpression of phosphoenolpyruvate synthase in combination with overexpression of phosphoenolpyruvate carboxykinase, phosphoenolacetone Overexpression of acid synthase combined with overexpression of oxaloacetate decarboxylase, overexpression of phosphoenolpyruvate synthase combined with overexpression of malate dehydrogenase, overexpression of phosphoenolpyruvate carboxykinase and grass Overexpression combination of oxalate decarboxylase, combination of overexpression of phosphoenolpyruvate carboxykinase and overexpression of malate dehydrogenase, combination of overexpression of oxalate decarboxylase and overexpression of malate dehydrogenase, phosphate Overexpression of enolpyruvate synthase combined with overexpression of phosphoenolpyruvate carboxykinase and overexpression of oxaloacetate decarboxylase, overexpression of phosphoenolpyruvate synthase and overexpression of phosphoenolpyruvate carboxykinase Overexpression and combination of overexpression of malate dehydrogenase, overexpression of phosphoenolpyruvate synthase and overexpression of phosphoenolpyruvate carboxykinase and overexpression of oxalate decarboxylase and overexpression of malate dehydrogenase Combination of overexpression, overexpression of phosphoenolpyruvate carboxykinase and overexpression of oxaloacetate decarboxylase and combination of overexpression of malate dehydrogenase and/or overexpression of phosphoenolpyruvate synthase and oxaloacetate Overexpression of decarboxylase combined with overexpression of malate dehydrogenase.

在另一例示性實施方式中,細胞藉由不同調適經遺傳修飾,該等不同調適諸如磷酸烯醇丙酮酸合酶之過度表現與磷酸烯醇丙酮酸羧激酶之過度表現以及丙酮酸激酶基因之缺失組合、磷酸烯醇丙酮酸合酶之過度表現與草醯乙酸脫羧酶之過度表現以及丙酮酸激酶基因之缺失組合、磷酸烯醇丙酮酸合酶之過度表現與蘋果酸脫氫酶之過度表現以及丙酮酸激酶基因之缺失組合、磷酸烯醇丙酮酸羧激酶之過度表現與草醯乙酸脫羧酶之過度表現以及丙酮酸激酶基因之缺失組合、磷酸烯醇丙酮酸羧激酶之過度表現與蘋果酸脫氫酶之過度表現以及丙酮酸激酶基因之缺失組合、草醯乙酸脫羧酶之過度表現與蘋果酸脫氫酶之過度表現以及丙酮酸激酶基因之缺失組合、磷酸烯醇丙酮酸合酶之過度表現與磷酸烯醇丙酮酸羧激酶之過度表現及草醯乙酸脫羧酶之過度表現以及丙酮酸激酶基因之缺失組合、磷酸烯醇丙酮酸合酶之過度表現與磷酸烯醇丙酮酸羧激酶之過度表現及蘋果酸脫氫酶之過度表現以及丙酮酸激酶基因之缺失組合、磷酸烯醇丙酮酸合酶之過度表現與磷酸烯醇丙酮酸羧激酶之過度表現及草醯乙酸脫羧酶之過度表現及蘋果酸脫氫酶之過度表現以及丙酮酸激酶基因之缺失組合、磷酸烯醇丙酮酸羧激酶之過度表現與草醯乙酸脫羧酶之過度表現及蘋果酸脫氫酶之過度表現以及丙酮酸激酶基因之缺失組合、磷酸烯醇丙酮酸合酶之過度表現與草醯乙酸脫羧酶之過度表現及蘋果酸脫氫酶之過度表現以及丙酮酸激酶基因之缺失組合。In another exemplary embodiment, the cells are genetically modified by different adaptations such as overexpression of phosphoenolpyruvate synthase and overexpression of phosphoenolpyruvate carboxykinase and between pyruvate kinase genes Combination of deletions, overexpression of phosphoenolpyruvate synthase and overexpression of oxalate decarboxylase and combination of deletions of pyruvate kinase gene, overexpression of phosphoenolpyruvate synthase and overexpression of malate dehydrogenase And the combination of deletion of pyruvate kinase gene, overexpression of phosphoenolpyruvate carboxykinase and overexpression of oxaloacetate decarboxylase and combination of deletion of pyruvate kinase gene, overexpression of phosphoenolpyruvate carboxykinase and malate Overexpression of dehydrogenase and combination of deletion of pyruvate kinase gene, overexpression of oxalate decarboxylase and overexpression of malate dehydrogenase and combination of deletion of pyruvate kinase gene, excess of phosphoenolpyruvate synthase Expression combined with overexpression of phosphoenolpyruvate carboxykinase and overexpression of oxaloacetate decarboxylase and deletion of the pyruvate kinase gene, overexpression of phosphoenolpyruvate synthase and overexpression of phosphoenolpyruvate carboxykinase Overexpression and overexpression of malate dehydrogenase and deletion combinations of pyruvate kinase genes, overexpression of phosphoenolpyruvate synthase and overexpression of phosphoenolpyruvate carboxykinase and overexpression of oxaloacetate decarboxylase and Overexpression of malate dehydrogenase and deletion combination of pyruvate kinase gene, overexpression of phosphoenolpyruvate carboxykinase and overexpression of oxalate decarboxylase and overexpression of malate dehydrogenase and pyruvate kinase gene Combination of deletions, overexpression of phosphoenolpyruvate synthase and overexpression of oxalate decarboxylase and overexpression of malate dehydrogenase and deletion of the pyruvate kinase gene.

在另一例示性實施方式中,細胞藉由不同調適經遺傳修飾,該等不同調適諸如磷酸烯醇丙酮酸合酶之過度表現與磷酸烯醇丙酮酸羧激酶之過度表現以及磷酸烯醇丙酮酸羧化酶基因之缺失組合、磷酸烯醇丙酮酸合酶之過度表現與草醯乙酸脫羧酶之過度表現以及磷酸烯醇丙酮酸羧化酶基因之缺失組合、磷酸烯醇丙酮酸合酶之過度表現與蘋果酸脫氫酶之過度表現以及磷酸烯醇丙酮酸羧化酶基因之缺失組合、磷酸烯醇丙酮酸羧激酶之過度表現與草醯乙酸脫羧酶之過度表現以及磷酸烯醇丙酮酸羧化酶基因之缺失組合、磷酸烯醇丙酮酸羧激酶之過度表現與蘋果酸脫氫酶之過度表現以及磷酸烯醇丙酮酸羧化酶基因之缺失組合、草醯乙酸脫羧酶之過度表現與蘋果酸脫氫酶之過度表現以及磷酸烯醇丙酮酸羧化酶基因之缺失組合、磷酸烯醇丙酮酸合酶之過度表現與磷酸烯醇丙酮酸羧激酶之過度表現及草醯乙酸脫羧酶之過度表現以及磷酸烯醇丙酮酸羧化酶基因之缺失組合、磷酸烯醇丙酮酸合酶之過度表現與磷酸烯醇丙酮酸羧激酶之過度表現及蘋果酸脫氫酶之過度表現以及磷酸烯醇丙酮酸羧化酶基因之缺失組合、磷酸烯醇丙酮酸合酶之過度表現與磷酸烯醇丙酮酸羧激酶之過度表現及草醯乙酸脫羧酶之過度表現及蘋果酸脫氫酶之過度表現以及磷酸烯醇丙酮酸羧化酶基因之缺失組合、磷酸烯醇丙酮酸羧激酶之過度表現與草醯乙酸脫羧酶之過度表現及蘋果酸脫氫酶之過度表現以及磷酸烯醇丙酮酸羧化酶基因之缺失組合、磷酸烯醇丙酮酸合酶之過度表現與草醯乙酸脫羧酶之過度表現及蘋果酸脫氫酶之過度表現以及磷酸烯醇丙酮酸羧化酶基因之缺失組合。In another exemplary embodiment, cells are genetically modified by different adaptations such as overexpression of phosphoenolpyruvate synthase and overexpression of phosphoenolpyruvate carboxykinase and phosphoenolpyruvate Deletion combination of carboxylase gene, overexpression of phosphoenolpyruvate synthase and overexpression of oxaloacetate decarboxylase and deletion combination of phosphoenolpyruvate carboxylase gene, overexpression of phosphoenolpyruvate synthase Expression combined with overexpression of malate dehydrogenase and deletion of phosphoenolpyruvate carboxylase gene, overexpression of phosphoenolpyruvate carboxykinase and overexpression of oxaloacetate decarboxylase and phosphoenolpyruvate carboxylate Deletion combination of phosphoenolpyruvate gene, overexpression of phosphoenolpyruvate carboxykinase and overexpression of malate dehydrogenase and deletion combination of phosphoenolpyruvate carboxylase gene, overexpression of oxaloacetate decarboxylase and apple Overexpression of acid dehydrogenase and deletion combination of phosphoenolpyruvate carboxylase gene, overexpression of phosphoenolpyruvate synthase and overexpression of phosphoenolpyruvate carboxykinase and overexpression of oxaloacetate decarboxylase Expression and combination of deletions in the phosphoenolpyruvate carboxylase gene, overexpression of phosphoenolpyruvate synthase and overexpression of phosphoenolpyruvate carboxykinase and overexpression of malate dehydrogenase and phosphoenolacetone Deletion combination of acid carboxylase gene, overexpression of phosphoenolpyruvate synthase and overexpression of phosphoenolpyruvate carboxykinase and overexpression of oxalate decarboxylase and overexpression of malate dehydrogenase and phosphorylation Deletion combination of enolpyruvate carboxylase gene, overexpression of phosphoenolpyruvate carboxykinase and overexpression of oxalate decarboxylase and overexpression of malate dehydrogenase and phosphoenolpyruvate carboxylase gene A combination of deletions, overexpression of phosphoenolpyruvate synthase and overexpression of oxaloacetate decarboxylase and overexpression of malate dehydrogenase and a combination of deletions of the phosphoenolpyruvate carboxylase gene.

在另一例示性實施方式中,細胞藉由不同調適經遺傳修飾,該等不同調適諸如磷酸烯醇丙酮酸合酶之過度表現與磷酸烯醇丙酮酸羧激酶之過度表現以及丙酮酸羧化酶基因之缺失組合、磷酸烯醇丙酮酸合酶之過度表現與草醯乙酸脫羧酶之過度表現以及丙酮酸羧化酶基因之缺失組合、磷酸烯醇丙酮酸合酶之過度表現與蘋果酸脫氫酶之過度表現以及丙酮酸羧化酶基因之缺失組合、磷酸烯醇丙酮酸羧激酶之過度表現與草醯乙酸脫羧酶之過度表現以及丙酮酸羧化酶基因之缺失組合、磷酸烯醇丙酮酸羧激酶之過度表現與蘋果酸脫氫酶之過度表現以及丙酮酸羧化酶基因之缺失組合、草醯乙酸脫羧酶之過度表現與蘋果酸脫氫酶之過度表現以及丙酮酸羧化酶基因之缺失組合、磷酸烯醇丙酮酸合酶之過度表現與磷酸烯醇丙酮酸羧激酶之過度表現及草醯乙酸脫羧酶之過度表現以及丙酮酸羧化酶基因之缺失組合、磷酸烯醇丙酮酸合酶之過度表現與磷酸烯醇丙酮酸羧激酶之過度表現及蘋果酸脫氫酶之過度表現以及丙酮酸羧化酶基因之缺失組合、磷酸烯醇丙酮酸合酶之過度表現與磷酸烯醇丙酮酸羧激酶之過度表現及草醯乙酸脫羧酶之過度表現及蘋果酸脫氫酶之過度表現以及丙酮酸羧化酶基因之缺失組合、磷酸烯醇丙酮酸羧激酶之過度表現與草醯乙酸脫羧酶之過度表現及蘋果酸脫氫酶之過度表現以及丙酮酸羧化酶基因之缺失組合、磷酸烯醇丙酮酸合酶之過度表現與草醯乙酸脫羧酶之過度表現及蘋果酸脫氫酶之過度表現以及丙酮酸羧化酶基因之缺失組合。In another exemplary embodiment, the cells are genetically modified by different adaptations such as overexpression of phosphoenolpyruvate synthase and overexpression of phosphoenolpyruvate carboxykinase and pyruvate carboxylase Deletion combination of genes, overexpression of phosphoenolpyruvate synthase and overexpression of oxalate decarboxylase and deletion combination of pyruvate carboxylase gene, overexpression of phosphoenolpyruvate synthase and malate dehydrogenase Enzyme overexpression and combination of deletion of pyruvate carboxylase gene, overexpression of phosphoenolpyruvate carboxykinase and overexpression of oxaloacetate decarboxylase and combination of deletion of pyruvate carboxylase gene, phosphoenolpyruvate Overexpression of carboxykinase and overexpression of malate dehydrogenase and deletion of pyruvate carboxylase gene combination, overexpression of oxalate decarboxylase and overexpression of malate dehydrogenase and combination of pyruvate carboxylase gene Deletion combination, overexpression of phosphoenolpyruvate synthase and overexpression of phosphoenolpyruvate carboxykinase and overexpression of oxaloacetate decarboxylase and deletion combination of pyruvate carboxylase gene, phosphoenolpyruvate synthase Enzyme overexpression and phosphoenolpyruvate carboxykinase overexpression and malate dehydrogenase and pyruvate carboxylase gene deletion combinations, phosphoenolpyruvate synthase overexpression and phosphoenolacetone Overexpression of acid carboxykinase and overexpression of oxaloacetate decarboxylase and overexpression of malate dehydrogenase and deletion combination of pyruvate carboxylase gene, overexpression of phosphoenolpyruvate carboxykinase and oxalate decarboxylation Enzyme overexpression and malate dehydrogenase and deletion combination of pyruvate carboxylase gene, phosphoenolpyruvate synthase and oxalate decarboxylase overexpression and malate dehydrogenase A combination of overexpression and deletion of the pyruvate carboxylase gene.

在另一例示性實施方式中,細胞藉由不同調適經遺傳修飾,該等不同調適諸如磷酸烯醇丙酮酸合酶之過度表現與磷酸烯醇丙酮酸羧激酶之過度表現以及丙酮酸激酶基因及磷酸烯醇丙酮酸羧化酶基因之缺失組合、磷酸烯醇丙酮酸合酶之過度表現與草醯乙酸脫羧酶之過度表現以及丙酮酸激酶基因及磷酸烯醇丙酮酸羧化酶基因之缺失組合、磷酸烯醇丙酮酸合酶之過度表現與蘋果酸脫氫酶之過度表現以及丙酮酸激酶基因及磷酸烯醇丙酮酸羧化酶基因之缺失組合、磷酸烯醇丙酮酸羧激酶之過度表現與草醯乙酸脫羧酶之過度表現以及丙酮酸激酶基因及磷酸烯醇丙酮酸羧化酶基因之缺失組合、磷酸烯醇丙酮酸羧激酶之過度表現與蘋果酸脫氫酶之過度表現以及丙酮酸激酶基因及磷酸烯醇丙酮酸羧化酶基因之缺失組合、草醯乙酸脫羧酶之過度表現與蘋果酸脫氫酶之過度表現以及丙酮酸激酶基因及磷酸烯醇丙酮酸羧化酶基因之缺失組合、磷酸烯醇丙酮酸合酶之過度表現與磷酸烯醇丙酮酸羧激酶之過度表現及草醯乙酸脫羧酶之過度表現以及丙酮酸激酶基因及磷酸烯醇丙酮酸羧化酶基因之缺失組合、磷酸烯醇丙酮酸合酶之過度表現與磷酸烯醇丙酮酸羧激酶之過度表現及蘋果酸脫氫酶之過度表現以及丙酮酸激酶基因及磷酸烯醇丙酮酸羧化酶基因之缺失組合、磷酸烯醇丙酮酸合酶之過度表現與磷酸烯醇丙酮酸羧激酶之過度表現及草醯乙酸脫羧酶之過度表現及蘋果酸脫氫酶之過度表現以及丙酮酸激酶基因及磷酸烯醇丙酮酸羧化酶基因之缺失組合、磷酸烯醇丙酮酸羧激酶之過度表現與草醯乙酸脫羧酶之過度表現及蘋果酸脫氫酶之過度表現以及丙酮酸激酶基因及磷酸烯醇丙酮酸羧化酶基因之缺失組合、磷酸烯醇丙酮酸合酶之過度表現與草醯乙酸脫羧酶之過度表現及蘋果酸脫氫酶之過度表現以及丙酮酸激酶基因及磷酸烯醇丙酮酸羧化酶基因之缺失組合。In another exemplary embodiment, cells are genetically modified by different adaptations such as overexpression of phosphoenolpyruvate synthase and overexpression of phosphoenolpyruvate carboxykinase and pyruvate kinase genes and Deletion combination of phosphoenolpyruvate carboxylase gene, overexpression of phosphoenolpyruvate synthase and overexpression of oxaloacetate decarboxylase, and deletion combination of pyruvate kinase gene and phosphoenolpyruvate carboxylase gene , Overexpression of phosphoenolpyruvate synthase and overexpression of malate dehydrogenase, combined with deletion of pyruvate kinase gene and phosphoenolpyruvate carboxylase gene, overexpression of phosphoenolpyruvate carboxykinase and Overexpression of oxalate decarboxylase and deletion combination of pyruvate kinase gene and phosphoenolpyruvate carboxylase gene, overexpression of phosphoenolpyruvate carboxykinase and overexpression of malate dehydrogenase and pyruvate kinase Deletion combination of gene and phosphoenolpyruvate carboxylase gene, overexpression of oxalate decarboxylase and overexpression of malate dehydrogenase, and deletion combination of pyruvate kinase gene and phosphoenolpyruvate carboxylase gene , Overexpression of phosphoenolpyruvate synthase, overexpression of phosphoenolpyruvate carboxykinase, overexpression of oxaloacetate decarboxylase, and combination of deletions of pyruvate kinase gene and phosphoenolpyruvate carboxylase gene, Overexpression of phosphoenolpyruvate synthase, overexpression of phosphoenolpyruvate carboxykinase, overexpression of malate dehydrogenase, and deletion combinations of pyruvate kinase gene and phosphoenolpyruvate carboxylase gene, phosphate Overexpression of enolpyruvate synthase and overexpression of phosphoenolpyruvate carboxykinase and overexpression of oxaloacetate decarboxylase and overexpression of malate dehydrogenase and pyruvate kinase gene and phosphoenolpyruvate carboxykinase Deletion combination of phosphoenolpyruvate gene, overexpression of phosphoenolpyruvate carboxykinase, overexpression of oxalate decarboxylase and overexpression of malate dehydrogenase, and pyruvate kinase gene and phosphoenolpyruvate carboxylase gene Deletion combinations, overexpression of phosphoenolpyruvate synthase and overexpression of oxalate decarboxylase and overexpression of malate dehydrogenase, and deletion combinations of pyruvate kinase genes and phosphoenolpyruvate carboxylase genes .

在另一例示性實施方式中,細胞藉由不同調適經遺傳修飾,該等不同調適諸如磷酸烯醇丙酮酸合酶之過度表現與磷酸烯醇丙酮酸羧激酶之過度表現以及丙酮酸激酶基因及丙酮酸羧化酶基因及磷酸烯醇丙酮酸羧化酶基因之缺失組合、磷酸烯醇丙酮酸合酶之過度表現與草醯乙酸脫羧酶之過度表現以及丙酮酸激酶基因及丙酮酸羧化酶基因及磷酸烯醇丙酮酸羧化酶基因之缺失組合、磷酸烯醇丙酮酸合酶之過度表現與蘋果酸脫氫酶之過度表現以及丙酮酸激酶基因及丙酮酸羧化酶基因及磷酸烯醇丙酮酸羧化酶基因之缺失組合、磷酸烯醇丙酮酸羧激酶之過度表現與草醯乙酸脫羧酶之過度表現以及丙酮酸激酶基因及丙酮酸羧化酶基因及磷酸烯醇丙酮酸羧化酶基因之缺失組合、磷酸烯醇丙酮酸羧激酶之過度表現與蘋果酸脫氫酶之過度表現以及丙酮酸激酶基因及丙酮酸羧化酶基因及磷酸烯醇丙酮酸羧化酶基因之缺失組合、草醯乙酸脫羧酶之過度表現與蘋果酸脫氫酶之過度表現以及丙酮酸激酶基因及丙酮酸羧化酶基因及磷酸烯醇丙酮酸羧化酶基因之缺失組合、磷酸烯醇丙酮酸合酶之過度表現與磷酸烯醇丙酮酸羧激酶之過度表現及草醯乙酸脫羧酶之過度表現以及丙酮酸激酶基因及丙酮酸羧化酶基因及磷酸烯醇丙酮酸羧化酶基因之缺失組合、磷酸烯醇丙酮酸合酶之過度表現與磷酸烯醇丙酮酸羧激酶之過度表現及蘋果酸脫氫酶之過度表現以及丙酮酸激酶基因及丙酮酸羧化酶基因及磷酸烯醇丙酮酸羧化酶基因之缺失組合、磷酸烯醇丙酮酸合酶之過度表現與磷酸烯醇丙酮酸羧激酶之過度表現及草醯乙酸脫羧酶之過度表現及蘋果酸脫氫酶之過度表現以及丙酮酸激酶基因及丙酮酸羧化酶基因及磷酸烯醇丙酮酸羧化酶基因之缺失組合、磷酸烯醇丙酮酸羧激酶之過度表現與草醯乙酸脫羧酶之過度表現及蘋果酸脫氫酶之過度表現以及丙酮酸激酶基因及丙酮酸羧化酶基因及磷酸烯醇丙酮酸羧化酶基因之缺失組合、磷酸烯醇丙酮酸合酶之過度表現與草醯乙酸脫羧酶之過度表現及蘋果酸脫氫酶之過度表現以及丙酮酸激酶基因及丙酮酸羧化酶基因及磷酸烯醇丙酮酸羧化酶基因之缺失組合。In another exemplary embodiment, cells are genetically modified by different adaptations such as overexpression of phosphoenolpyruvate synthase and overexpression of phosphoenolpyruvate carboxykinase and pyruvate kinase genes and Deletion combination of pyruvate carboxylase gene and phosphoenolpyruvate carboxylase gene, overexpression of phosphoenolpyruvate synthase and overexpression of oxaloacetate decarboxylase, and pyruvate kinase gene and pyruvate carboxylase Deletion combination of gene and phosphoenolpyruvate carboxylase gene, overexpression of phosphoenolpyruvate synthase and overexpression of malate dehydrogenase and pyruvate kinase gene and pyruvate carboxylase gene and phosphoenol Deletion combination of pyruvate carboxylase gene, overexpression of phosphoenolpyruvate carboxykinase and overexpression of oxaloacetate decarboxylase and pyruvate kinase gene and pyruvate carboxylase gene and phosphoenolpyruvate carboxylase Deletion combination of genes, overexpression of phosphoenolpyruvate carboxykinase and overexpression of malate dehydrogenase, and deletion combination of pyruvate kinase gene and pyruvate carboxylase gene and phosphoenolpyruvate carboxylase gene, Overexpression of oxalate decarboxylase and overexpression of malate dehydrogenase and deletion combination of pyruvate kinase gene and pyruvate carboxylase gene and phosphoenolpyruvate carboxylase gene, phosphoenolpyruvate synthase Overexpression of phosphoenolpyruvate carboxykinase and overexpression of oxaloacetate decarboxylase and deletion combination of pyruvate kinase gene and pyruvate carboxylase gene and phosphoenolpyruvate carboxylase gene, phosphate Overexpression of enolpyruvate synthase and overexpression of phosphoenolpyruvate carboxykinase and overexpression of malate dehydrogenase and pyruvate kinase gene and pyruvate carboxylase gene and phosphoenolpyruvate carboxylase Deletion combinations of genes, overexpression of phosphoenolpyruvate synthase and overexpression of phosphoenolpyruvate carboxykinase and overexpression of oxalate decarboxylase and overexpression of malate dehydrogenase and pyruvate kinase genes and Deletion combination of pyruvate carboxylase gene and phosphoenolpyruvate carboxylase gene, overexpression of phosphoenolpyruvate carboxykinase and overexpression of oxalate decarboxylase and overexpression of malate dehydrogenase and acetone Deletion combination of acid kinase gene and pyruvate carboxylase gene and phosphoenolpyruvate carboxylase gene, overexpression of phosphoenolpyruvate synthase and overexpression of oxalate decarboxylase and malate dehydrogenase Overexpression and combination of deletions of the pyruvate kinase gene and the pyruvate carboxylase gene and the phosphoenolpyruvate carboxylase gene.

根據本發明之方法之另一較佳實施方式,與未經修飾之先驅細胞相比,細胞包含用於減少乙酸鹽之產生的修飾。該修飾可為選自包含以下者之群的任何一或多者:乙醯基-輔酶A合成酶之過度表現、完全或部分剔除丙酮酸脫氫酶或致使其功能較弱及完全或部分剔除乳酸脫氫酶或致使其功能較弱。According to another preferred embodiment of the method of the present invention, the cells comprise modifications for reducing acetate production compared to unmodified precursor cells. The modification may be any one or more selected from the group comprising: overexpression of acetyl-CoA synthase, complete or partial deletion or rendering of pyruvate dehydrogenase less functional and complete or partial deletion Lactate dehydrogenase may cause its function to be weak.

在本發明之方法之另一實施方式中,細胞在至少一種乙醯基-輔酶A合成酶,如例如來自大腸桿菌、釀酒酵母、智人、小鼠之acs的表現或活性方面經修飾。在一較佳實施方式中,該乙醯基-輔酶A合成酶為具有修飾之表現或活性之細胞之內源蛋白,較佳該內源性乙醯基-輔酶A合成酶經過度表現;或者,該乙醯基-輔酶A合成酶係異質引入且表現於該細胞中,較佳過度表現之異源蛋白。該內源性乙醯基-輔酶A合成酶可在亦表現異源性乙醯基-輔酶A合成酶之細胞中具有經修飾之表現。在一更佳實施方式中,細胞在來自大腸桿菌之乙醯基-輔酶A合成酶acs(UniProt ID P27550)之表現或活性方面經修飾。在另一及/或額外較佳實施方式中,細胞在與來自大腸桿菌(UniProt ID P27550)之該多肽之全長具有至少80%整體序列一致性且具有乙醯基-輔酶A合成酶活性的來自大腸桿菌(UniProt ID P27550)之功能同源物、變異體或衍生物的表現或活性方面經修飾。In another embodiment of the methods of the invention, the cells are modified in the expression or activity of at least one acetyl-CoA synthetase, such as, eg, acs from Escherichia coli, Saccharomyces cerevisiae, Homo sapiens, mouse. In a preferred embodiment, the acetyl-CoA synthetase is an endogenous protein of the cell with modified expression or activity, preferably the endogenous acetyl-CoA synthase is overexpressed; or , the acetyl-CoA synthetase is heterogeneously introduced and expressed in the cell, preferably a heterologous protein that is overexpressed. The endogenous acetyl-CoA synthetase can have a modified expression in cells that also express the heterologous acetyl-CoA synthase. In a more preferred embodiment, the cells are modified in the expression or activity of the acetyl-CoA synthase acs (UniProt ID P27550) from E. coli. In another and/or additional preferred embodiment, the cell has at least 80% overall sequence identity with the full length of the polypeptide from Escherichia coli (UniProt ID P27550) and has acetyl-CoA synthetase activity from a Functional homologues, variants or derivatives of E. coli (UniProt ID P27550) modified in performance or activity.

在本發明之方法之替代性及/或額外其他實施方式中,細胞在至少一種如例如來自大腸桿菌、釀酒酵母、智人及褐鼠之丙酮酸脫氫酶的表現或活性方面經修飾。在一較佳實施方式中,細胞已藉由所屬技術領域中具有通常知識者通常已知之方式經修飾以具有至少一種部分或完全剔除或突變之丙酮酸脫氫酶編碼基因,從而產生至少一種丙酮酸脫氫酶活性功能較弱或失能之蛋白質。在一更佳實施方式中,細胞在poxB編碼基因方面具有完全剔除,從而導致細胞缺乏丙酮酸脫氫酶活性。In alternative and/or additional other embodiments of the methods of the invention, the cells are modified in the expression or activity of at least one pyruvate dehydrogenase, such as, for example, from Escherichia coli, Saccharomyces cerevisiae, Homo sapiens, and brown mouse. In a preferred embodiment, the cell has been modified to have at least one partially or completely deleted or mutated gene encoding pyruvate dehydrogenase by means generally known to those of ordinary skill in the art to produce at least one acetone A protein with weak or incapacitated acid dehydrogenase activity. In a more preferred embodiment, the cells have a complete knockout of the gene encoding poxB, resulting in cells lacking pyruvate dehydrogenase activity.

在本發明之方法之替代性及/或額外其他實施方式中,細胞在至少一種如例如來自大腸桿菌、釀酒酵母、智人及褐鼠之乳酸脫氫酶的表現或活性方面經修飾。在一較佳實施方式中,細胞已經修飾以藉由所屬領域中具有通常知識者通常已知之方式具有至少一種部分或完全剔除或突變之乳酸脫氫酶編碼基因,從而產生至少一種功能較小或乳酸脫氫酶活性失能之蛋白質。在一更佳實施方式中,細胞在ldhA編碼基因方面具有完全剔除,從而導致細胞缺乏乳酸脫氫酶活性。In alternative and/or additional other embodiments of the methods of the invention, the cells are modified in the expression or activity of at least one lactate dehydrogenase, such as, for example, from Escherichia coli, Saccharomyces cerevisiae, Homo sapiens, and brown mouse. In a preferred embodiment, the cell has been modified to have at least one partially or fully deleted or mutated lactate dehydrogenase-encoding gene by means generally known to those of ordinary skill in the art to produce at least one functionally less or A protein incapacitated by lactate dehydrogenase activity. In a more preferred embodiment, the cell has a complete knockout of the gene encoding ldhA, resulting in a lack of lactate dehydrogenase activity in the cell.

根據本發明之方法之另一較佳實施方式,與未經修飾之先驅細胞相比,該細胞包含降低或減少表現及/或消除、減弱、降低或延遲活性之包含以下者之蛋白質中之任一或多者:β-半乳糖苷酶、半乳糖苷O-乙醯基轉移酶、N-乙醯基葡萄糖胺-6-磷酸去乙醯酶、葡萄糖胺-6-磷酸脫胺酶、N-乙醯基葡萄糖胺抑制蛋白、核糖核苷酸單磷酸酶、EIICBA-Nag、UDP-葡萄糖:十一異戊烯基-磷酸葡萄糖-1-磷酸轉移酶、L-墨角藻糖激酶(fuculokinase)、L-岩藻糖異構酶、N-乙醯基神經胺酸解離酶、N-乙醯基甘露糖胺激酶、N-乙醯基甘露糖胺-6-磷酸2-表異構酶、EIIAB-Man、EIIC-Man、EIID-Man、ushA、半乳糖-1-磷酸尿苷醯基轉移酶、葡萄糖-1-磷酸腺苷醯基轉移酶、葡萄糖-1-磷酸酶、ATP依賴型6-磷酸果糖激酶同功酶1、ATP依賴型6-磷酸果糖激酶同功酶2、葡萄糖-6-磷酸異構酶、有氧呼吸控制蛋白、轉錄抑制蛋白IclR、lon蛋白酶、葡萄糖特異性移位磷酸轉移酶IIBC組分ptsG、葡萄糖特異性移位磷酸轉移酶(PTS)IIBC組分malX、酶IIA Glc、β-葡萄糖苷特異性PTS酶II、果糖特異性PTS多磷氧基轉移蛋白FruA及FruB、乙醇脫氫酶 醛脫氫酶、丙酮酸-甲酸解離酶、乙酸激酶、磷醯基轉移酶(phosphoacyltransferase)、磷酸乙醯基轉移酶、丙酮酸脫羧酶。 According to another preferred embodiment of the method of the present invention, the cell comprises any of the following proteins comprising reduced or reduced expression and/or abrogated, attenuated, reduced or delayed activity compared to unmodified precursor cells One or more of: β-galactosidase, galactoside O-acetyltransferase, N-acetylglucosamine-6-phosphate deacetylase, glucosamine-6-phosphate deaminase, N -Acetyl glucosamine arrestin, ribonucleotide monophosphatase, EIICBA-Nag, UDP-glucose:undecyl isopentenyl-phosphoglucose-1-phosphotransferase, L-fuculokinase ), L-fucose isomerase, N-acetylneuraminic acid lyase, N-acetylmannosamine kinase, N-acetylmannosamine-6-phosphate 2-epomerase , EIIAB-Man, EIIC-Man, EIID-Man, ushA, galactose-1-phosphate uridine transferase, glucose-1-phosphate adenosyltransferase, glucose-1-phosphatase, ATP-dependent 6-phosphofructokinase isoenzyme 1, ATP-dependent 6-phosphofructokinase isoenzyme 2, glucose-6-phosphate isomerase, aerobic respiration control protein, transcriptional repressor protein IclR, lon protease, glucose-specific shifter Phosphophosphotransferase IIBC component ptsG, glucose-specific translocation phosphotransferase (PTS) IIBC component malX, enzyme IIA Glc , β-glucoside-specific PTS enzyme II, fructose-specific PTS polyphosphooxytransferase FruA And FruB, alcohol dehydrogenase aldehyde dehydrogenase, pyruvate-formate dissociation enzyme, acetate kinase, phosphoacyltransferase (phosphoacyltransferase), phosphoacetyltransferase, pyruvate decarboxylase.

根據本發明之方法之另一較佳實施方式,細胞包含用於所選單醣、雙醣或寡醣之分解代謝路徑,該分解代謝路徑至少部分不活化,該等單醣、雙醣或寡醣參與至少兩種寡醣之該混合物的生產及/或為該生產所需的。According to another preferred embodiment of the method of the present invention, the cell comprises a catabolic pathway for the selected monosaccharide, disaccharide or oligosaccharide, the catabolic pathway being at least partially inactivated, the monosaccharide, disaccharide or oligosaccharide Participate in and/or be required for the production of this mixture of at least two oligosaccharides.

在本發明方法之另一實施方式中,由該細胞製造之混合物中之寡醣中之至少一者為哺乳動物乳寡醣。該細胞可在該製造之至少兩種寡醣之混合物中製造一種哺乳動物乳寡醣。該細胞可在該製造之至少兩種寡醣之混合物中製造多於一種哺乳動物乳寡醣。在一較佳實施方式中,所製造的至少兩種寡醣之混合物中的所有該等寡醣皆為哺乳動物乳寡醣。在整個申請案中,除非另外明確陳述,否則特徵「寡醣(oligosaccharide)」或「寡醣(oligosaccharides)」較佳分別經「哺乳動物乳寡醣(MMO),較佳人乳寡醣(HMO)(mammalian milk oligosaccharide (MMO), preferably human milk oligosaccharide (HMO))」或「哺乳動物乳寡醣(MMO),較佳人乳寡醣(HMO)(mammalian milk oligosaccharides (MMOs), preferably human milk oligosaccharides (HMOs))」替換。In another embodiment of the method of the invention, at least one of the oligosaccharides in the mixture produced by the cell is a mammalian milk oligosaccharide. The cell can produce a mammalian milk oligosaccharide in a mixture of the produced at least two oligosaccharides. The cells can produce more than one mammalian milk oligosaccharide in the mixture of the produced at least two oligosaccharides. In a preferred embodiment, all of the oligosaccharides in the produced mixture of at least two oligosaccharides are mammalian milk oligosaccharides. Throughout the application, unless expressly stated otherwise, the characteristics "oligosaccharide" or "oligosaccharides" are preferably represented by "mammalian milk oligosaccharide (MMO), preferably human milk oligosaccharide (HMO), respectively. (mammalian milk oligosaccharide (MMO), preferably human milk oligosaccharide (HMO))” or “mammalian milk oligosaccharide (MMO), preferably human milk oligosaccharide (HMO) (mammalian milk oligosaccharides (MMOs), preferably human milk oligosaccharides (HMOs)” ))"replace.

因此,根據本發明之較佳方法為一種用於製造包含至少兩種MMO,較佳HMO之混合物的方法,該方法包含如本文所描述之步驟。較佳地,該混合物包含至少三種,更佳至少四種,甚至更佳至少五種,甚至更佳至少六種,甚至更佳至少七種不同MMO(較佳HMO)。Therefore, a preferred method according to the present invention is a method for producing a mixture comprising at least two MMOs, preferably HMOs, the method comprising the steps as described herein. Preferably, the mixture comprises at least three, more preferably at least four, even better at least five, even better at least six, even better at least seven different MMOs (preferably HMOs).

在本發明之方法之另一實施方式中,由該細胞製造之該等寡醣中之任一者為人類ABO血型系統之抗原。在一更佳實施方式中,由該細胞製造之所有該等寡醣皆為人類ABO血系系統之抗原。因此,根據本發明之較佳方法為一種用於製造包含人類ABO血型系統之至少兩種抗原之混合物的方法,該方法包含如本文所描述之步驟。較佳地,該混合物包含人類ABO血型系統之至少三種不同抗原。In another embodiment of the method of the invention, any of the oligosaccharides produced by the cell is an antigen of the human ABO blood group system. In a more preferred embodiment, all of the oligosaccharides produced by the cell are antigens of the human ABO lineage system. Therefore, a preferred method according to the present invention is a method for producing a mixture comprising at least two antigens of the human ABO blood group system, the method comprising the steps as described herein. Preferably, the mixture comprises at least three different antigens of the human ABO blood group system.

本發明之另一實施方式提供一種方法及一種細胞,其中包含至少兩種不同寡醣之混合物係在如本文所描述之真菌、酵母、細菌、昆蟲、動物、植物或原蟲細胞中產生及/或由其產生。細胞係選自包含細菌、酵母菌、原蟲或真菌之清單,或係指植物或動物細胞。後一細菌較佳屬於變形菌(Proteobacteria)門或厚壁菌(Firmicutes)門或藍菌(Cyanobacteria)門或異常球菌-棲熱菌(Deinococcus-Thermus)門。屬於變形菌門之後一細菌較佳屬於腸細菌科,較佳屬於大腸桿菌種。後一細菌較佳係指屬於大腸桿菌種之任何菌株,諸如但不限於大腸桿菌B、大腸桿菌C、大腸桿菌W、大腸桿菌K12、大腸桿菌Nissle。更特定言之,後一術語係關於經培養之大腸桿菌菌株(命名為大腸桿菌K12菌株),其良好適於實驗室環境,且不同於野生型菌株,已損失其在腸中茁壯成長之能力。大腸桿菌K12菌株之熟知實例為K12野生型、W3110、MG1655、M182、MC1000、MC1060、MC1061、MC4100、JM101、NZN111及AA200。因此,本發明特定關於如上文所指示之突變及/或轉型之大腸桿菌細胞或菌株,其中該大腸桿菌菌株為K12菌株。大腸桿菌K12菌株更佳為大腸桿菌MG1655。屬於厚壁菌門之後一細菌較佳屬於桿菌綱(Bacilli),較佳具有諸如乳酸乳桿菌( Lactobacillus lactis)、腸膜明串珠菌( Leuconostoc mesenteroides)之成員的乳桿菌目(Lactobacilliales),或具有諸如來自芽孢桿菌(Bacillus)屬之成員,諸如枯草芽孢桿菌( Bacillus subtilis)或解澱粉芽孢桿菌( B. amyloliquefaciens)的芽孢桿菌目(Bacillales)。屬於放線菌(Actinobacteria)門之後一細菌較佳屬於具有成員麩胺酸棒狀桿菌或非醱酵棒狀桿菌( C. afermentans)之棒狀桿菌(Corynebacteriaceae)科,或屬於具有成員灰色鏈黴菌( Streptomyces griseus)或費氏鏈黴菌( S. fradiae)之鏈黴菌(Streptomycetaceae)科。後一酵母菌較佳屬於子囊菌(Ascomycota)門或擔子菌(Basidiomycota)門或半知菌(Deuteromycota)門或接合菌(Zygomycetes)門。後一酵母菌較佳屬於酵母菌(Saccharomyces)屬(具有如例如釀酒酵母、貝酵母( S. bayanus)、布拉酵母( S. boulardii)之成員)、畢赤酵母(Pichia)屬(具有如例如巴斯德畢赤酵母( Pichia pastoris)、異常畢赤酵母( P. anomala)、克魯維畢赤酵母( P. kluyveri)之成員)、駒形氏酵母屬(Komagataella)、漢遜酵母屬(Hansenula)、克魯維酵母屬(Kluyveromyces)(具有如例如乳酸克魯維酵母菌( Kluyveromyces lactis)、乳酒念珠菌( K. marxianus)、耐熱克魯維酵母( K. thermotolerans)之成員)、德巴利酵母屬(Debaromyces)、亞羅酵母屬(Yarrowia)(如例如解脂耶氏酵母(Yarrowia lipolytica))或斯塔莫酵母屬(Starmerella)(如例如熊蜂生斯塔莫酵母( Starmerella bombicola))。後一酵母菌較佳選自巴斯德畢赤酵母( Pichia pastoris)、解脂耶氏酵母( Yarrowia lipolitica)、釀酒酵母及乳酸克魯維酵母( Kluyveromyces lactis)。後一真菌較佳屬於根黴菌屬( Rhizopus)、網柄菌屬( Dictyostelium)、青黴菌屬( Penicillium)、白黴菌屬( Mucor)或麴菌屬( Aspergillus)。植物細胞包括開花及非開花植物之細胞,以及藻類細胞,例如單胞藻屬(Chlamydomonas)、綠球藻屬(Chlorella)等。較佳地,該植物為菸草、苜蓿、稻、番茄、棉花、菜籽、大豆、玉蜀黍或玉米植物。後一動物細胞較佳衍生自非人類哺乳動物(例如牛、水牛、豬、綿羊、小鼠、大鼠)、鳥類(例如雞、鴨、鴕鳥、火雞、野雞)、魚類(例如劍魚、鮭魚、鮪魚、海鱸、鱒魚、鯰魚)、無脊椎動物(例如龍蝦、蟹、蝦、蚌蛤、牡蠣、貽貝、海膽)、爬行動物(例如蛇、鱷魚、龜)、兩棲動物(例如蛙)或昆蟲(例如蠅、線蟲)或為衍生自排除胚胎幹細胞之人類細胞的經遺傳修飾之細胞系。人類及非人類哺乳動物細胞兩者較佳選自包含以下者之清單:上皮細胞如例如乳腺上皮細胞、胚胎腎細胞(例如HEK293或HEK 293T細胞)、纖維母細胞、COS細胞、中國倉鼠卵巢(Chinese hamster ovary;CHO)細胞、鼠類骨髓瘤細胞如例如N20、SP2/0或YB2/0細胞、NIH-3T3細胞、非乳腺成體幹細胞或其衍生物,諸如WO21067641中所描述。後一昆蟲細胞較佳衍生自:斜紋夜盜蟲( Spodoptera frugiperda)如例如Sf9或Sf21細胞、家蠶( Bombyx mori)、甘藍夜蛾( Mamestra brassicae)、粉紋夜蛾( Trichoplusia ni)如例如BTI-TN-5B1 -4細胞或黑腹果蠅( Drosophila melanogaster)如例如果蠅屬S2細胞。後一原蟲細胞較佳為蜥蜴利什曼原蟲( Leishmania tarentolae)細胞。 Another embodiment of the present invention provides a method and a cell wherein a mixture comprising at least two different oligosaccharides is produced in a fungal, yeast, bacterial, insect, animal, plant or protozoal cell as described herein and/or or resulting from it. The cell line is selected from a list comprising bacteria, yeast, protozoa or fungi, or refers to plant or animal cells. The latter bacterium preferably belongs to the phylum Proteobacteria or Firmicutes or Cyanobacteria or Deinococcus-Thermus. A bacterium belonging to the latter phylum Proteobacteria preferably belongs to the family Enterobacteriaceae, preferably to the species Escherichia coli. The latter bacteria preferably refers to any strain belonging to the species Escherichia coli, such as but not limited to Escherichia coli B, Escherichia coli C, Escherichia coli W, Escherichia coli K12, Escherichia coli Nissle. More specifically, the latter term refers to a cultured E. coli strain (designated E. coli K12 strain) that is well suited to laboratory settings and that, unlike wild-type strains, has lost its ability to thrive in the gut . Well-known examples of E. coli K12 strains are K12 wild type, W3110, MG1655, M182, MC1000, MC1060, MC1061, MC4100, JM101, NZN111 and AA200. Therefore, the present invention specifically relates to a mutated and/or transformed E. coli cell or strain as indicated above, wherein the E. coli strain is the K12 strain. The Escherichia coli K12 strain is more preferably Escherichia coli MG1655. A bacterium belonging to the phylum Firmicutes is preferably of the class Bacilli, preferably of the order Lactobacilliales having a member such as Lactobacillus lactis , Leuconostoc mesenteroides , or having Such as Bacillales from members of the genus Bacillus, such as Bacillus subtilis or B. amyloliquefaciens . A bacterium belonging to the phylum Actinobacteria, preferably belonging to the Corynebacteriaceae family with members Corynebacterium glutamicum or C. afermentans , or belonging to the family Streptomyces griseus ( Streptomyces griseus ) or the Streptomycetaceae family of S. fradiae . The latter yeast preferably belongs to the phylum Ascomycota or Basidiomycota or Deuteromycota or Zygomycetes. The latter yeast preferably belongs to the genus Saccharomyces (with members such as, for example, Saccharomyces cerevisiae, S. bayanus , S. boulardii ), Pichia (with members such as For example, Pichia pastoris ( Pichia pastoris ), Pichia anomala ( P. anomala ), Pichia kluyveri ( P. kluyveri members), Komagataella (Komagataella), Hansenula ( Hansenula), Kluyveromyces (with members such as eg Kluyveromyces lactis , K. marxianus , K. thermotolerans ), Debaromyces, Yarrowia (such as, for example, Yarrowia lipolytica) or Starmerella (such as, for example, Starmerella bombicola )). The latter yeast is preferably selected from Pichia pastoris , Yarrowia lipolytica , Saccharomyces cerevisiae and Kluyveromyces lactis . The latter fungus preferably belongs to the genus Rhizopus , Dictyostelium , Penicillium , Mucor or Aspergillus . Plant cells include cells of flowering and non-flowering plants, as well as algal cells such as Chlamydomonas, Chlorella, and the like. Preferably, the plant is a tobacco, alfalfa, rice, tomato, cotton, rapeseed, soybean, maize or corn plant. The latter animal cells are preferably derived from non-human mammals (eg cattle, buffalo, pigs, sheep, mice, rats), birds (eg chickens, ducks, ostriches, turkeys, pheasants), fish (eg swordfish, salmon, tuna, sea bass, trout, catfish), invertebrates (e.g. lobster, crab, shrimp, clams, oysters, mussels, sea urchins), reptiles (e.g. snakes, crocodiles, turtles), amphibians ( eg frogs) or insects (eg flies, nematodes) or are genetically modified cell lines derived from human cells devoid of embryonic stem cells. Both human and non-human mammalian cells are preferably selected from a list comprising: epithelial cells such as eg mammary epithelial cells, embryonic kidney cells (eg HEK293 or HEK 293T cells), fibroblasts, COS cells, Chinese hamster ovary ( Chinese hamster ovary; CHO) cells, murine myeloma cells such as eg N20, SP2/0 or YB2/0 cells, NIH-3T3 cells, non-mammary adult stem cells or derivatives thereof, such as described in WO21067641. The latter insect cells are preferably derived from: Spodoptera frugiperda such as eg Sf9 or Sf21 cells, Bombyx mori , Mamestra brassicae , Trichoplusia ni such as eg BTI- TN-5B1-4 cells or Drosophila melanogaster such as Drosophila S2 cells. The latter protozoal cell is preferably a Leishmania tarentolae cell.

在本發明之方法的一較佳實施方式中,與未經修飾之先驅細胞相比,該細胞為存活的革蘭氏陰性細菌,該細菌包含減少或消除合成之聚-N-乙醯基-葡萄糖胺(poly-N-acetyl-glucosamine;PNAG)、腸內菌共同抗原(Enterobacterial Common Antigen;ECA)、纖維素、可拉酸、核寡醣、滲透調節周質葡聚糖(Osmoregulated Periplasmic Glucan;OPG)、甘油葡萄糖苷、聚醣及/或繭蜜糖。In a preferred embodiment of the method of the invention, the cells are viable Gram-negative bacteria comprising reduced or eliminated synthetic poly-N-acetyl- Glucosamine (poly-N-acetyl-glucosamine; PNAG), Enterobacterial Common Antigen (ECA), cellulose, kolac acid, nuclear oligosaccharide, Osmoregulated Periplasmic Glucan; OPG), glycerol glucoside, polysaccharide and/or cocoon honey.

在方法之一更佳實施方式中,該減少或消除合成之聚-N-乙醯基-葡萄糖胺(PNAG)、腸內菌共同抗原(ECA)、纖維素、可拉酸、核寡醣、滲透調節周質葡聚糖(OPG)、甘油葡萄糖苷、聚醣及/或繭蜜糖係藉由參與該聚-N-乙醯基-葡萄糖胺(PNAG)、腸內菌共同抗原(ECA)、纖維素、可拉酸、核寡醣、滲透調節周質葡聚糖(OPG)、甘油葡萄糖苷、聚醣及/或繭蜜糖中之任一者的合成中的任一或多種醣基轉移酶之突變提供,其中該突變提供該等醣基轉移酶中之任一者的缺失或更低表現。該等醣基轉移酶包含編碼聚-N-乙醯基-D-葡萄糖胺合酶次單元之醣基轉移酶基因、UDP-N-乙醯基葡萄糖胺-十一異戊烯基-磷酸N-乙醯基葡萄糖胺磷酸轉移酶、Fuc4NAc(4-乙醯胺基-4,6-二去氧-D-半乳糖)轉移酶、UDP-N-乙醯基-D-甘露糖醛酸轉移酶、編碼纖維素合酶催化次單元之醣基轉移酶基因、纖維素生物合成蛋白、可拉酸生物合成葡萄糖醛酸基轉移酶、可拉酸生物合成半乳糖基轉移酶、可拉酸生物合成岩藻糖基轉移酶、UDP-葡萄糖:十一異戊烯基-磷酸葡萄糖-1-磷酸轉移酶、推定可拉生物合成醣基轉移酶、UDP-葡萄糖醛酸:LPS(HepIII)醣基轉移酶、ADP-庚糖-LPS庚糖基轉移酶2、ADP-庚醣:LPS庚糖基轉移酶1、推定ADP-庚醣:LPS庚糖基轉移酶4、脂多醣核心生物合成蛋白、UDP-葡萄糖:(葡萄糖基)LPS α-1,2-葡萄糖基轉移酶、UDP-D-葡萄糖:(葡萄糖基)LPS α-1,3-葡萄糖基轉移酶、UDP-D-半乳糖:(葡萄糖基)脂多糖-1,6-D-半乳糖基轉移酶、脂多醣葡萄糖基轉移酶I、脂多醣核心庚糖基轉移酶3,β-1,6-半乳糖呋喃酮基轉移酶、十一異戊烯基-磷酸4-去氧-4-甲醯胺基-L-阿拉伯糖轉移酶、脂質IVA 4-胺基-4-去氧-L-阿拉伯糖基轉移酶、細菌萜醇葡萄糖基轉移酶、推定家族2醣基轉移酶、滲透調節周質葡聚糖(OPG)生物合成蛋白G、OPG生物合成蛋白質H、葡萄糖基甘油酸酯磷酸化酶、肝糖合酶、1,4-α-葡聚糖分支酶、4-α-葡聚糖轉移酶及繭蜜糖-6-磷酸合酶。在一例示性實施方式中,該細胞在該等醣基轉移酶中之任一或多者方面經突變,該等醣基轉移酶包含pgaC、pgaD、rfe、rffT、rffM、bcsA、bcsB、bcsC、wcaA、wcaC、wcaE、wcaI、wcaJ、wcaL、waaH、waaF、waaC、waaU、waaZ、waaJ、waaO、waaB、waaS、waaG、waaQ、wbbl、arnC、arnT、yfdH、wbbK、opgG、opgH、ycjM、glgA、glgB、malQ、otsA及yaiP,其中該突變提供該等醣基轉移酶中之任一者的缺失或更低表現。In a more preferred embodiment of the method, the reduction or elimination of synthetic poly-N-acetyl-glucosamine (PNAG), enterobacterial common antigen (ECA), cellulose, kolaric acid, ribo-oligosaccharide, Osmotic regulation of periplasmic glucan (OPG), glycerol glucoside, polysaccharide and/or cocoon sugar by participating in the poly-N-acetyl-glucosamine (PNAG), Enterobacterial Common Antigen (ECA) , any one or more sugar groups in the synthesis of any one of cellulose, kolaric acid, ribo-oligosaccharide, osmoregulatory periplasmic glucan (OPG), glycerol glucoside, polysaccharide and/or cocoon Mutations of transferases provide for deletion or lower expression of any of the glycosyltransferases. These glycosyltransferases include the glycosyltransferase gene encoding the poly-N-acetyl-D-glucosamine synthase subunit, UDP-N-acetylglucosamine-undecyl isopentenyl-phosphate N -Acetylglucosamine phosphotransferase, Fuc4NAc (4-acetamido-4,6-dideoxy-D-galactose)transferase, UDP-N-acetyl-D-mannuronic acid transfer Enzymes, glycosyltransferase genes encoding catalytic subunits of cellulose synthase, cellulose biosynthesis proteins, colaric acid biosynthesis glucuronyltransferase, colaric acid biosynthesis galactosyltransferase, colaric acid biosynthesis Synthetic fucosyltransferase, UDP-glucose:undecopentenyl-phosphoglucose-1-phosphotransferase, putative Kola biosynthetic glycosyltransferase, UDP-glucuronic acid:LPS(HepIII) glycosyl Transferase, ADP-heptose-LPS heptosyltransferase 2, ADP-heptose:LPS heptosyltransferase 1, putative ADP-heptose:LPS heptosyltransferase 4, lipopolysaccharide core biosynthesis protein, UDP-glucose:(glucosyl)LPS α-1,2-glucosyltransferase, UDP-D-glucose:(glucosyl)LPS α-1,3-glucosyltransferase, UDP-D-galactose:( Glucosyl) lipopolysaccharide-1,6-D-galactosyltransferase, lipopolysaccharide glucosyltransferase I, lipopolysaccharide core heptosyltransferase 3,β-1,6-galactosylfuranosyltransferase, Undecyl isopentenyl-phosphate 4-deoxy-4-carbamoylamino-L-arabinosyltransferase, lipid IVA 4-amino-4-deoxy-L-arabinosyltransferase, bacterpene alcohol Glucosyltransferase, putative family 2 glycosyltransferase, osmoregulatory periplasmic glucan (OPG) biosynthesis protein G, OPG biosynthesis protein H, glucosylglycerate phosphorylase, hepatic glucose synthase, 1, 4-alpha-glucan branching enzyme, 4-alpha-glucanotransferase and cocoon-6-phosphate synthase. In an exemplary embodiment, the cell is mutated in any one or more of the glycosyltransferases comprising pgaC, pgaD, rfe, rffT, rffM, bcsA, bcsB, bcsC , wcaA, wcaC, wcaE, wcaI, wcaJ, wcaL, waaH, waaF, waaC, waaU, waaZ, waaJ, waaO, waaB, waaS, waaG, waaQ, wbbl, arnC, arnT, yfdH, wbbK, opgG, opgH, ycjM , glgA, glgB, malQ, otsA, and yaiP, wherein the mutation provides deletion or lower expression of any of the glycosyltransferases.

在方法之替代及/或額外較佳實施方式中,聚-N-乙醯基-葡萄糖胺(PNAG)之該減少或消除合成藉由碳儲存調節子編碼基因之過度表現、Na+/H+反向搬運蛋白調節子編碼基因之缺失及/或感測器組胺酸激酶編碼基因之缺失提供。In an alternative and/or additional preferred embodiment of the method, the reduction or elimination of poly-N-acetyl-glucosamine (PNAG) synthesis is by overexpression of carbon storage regulator-encoding genes, Na+/H+ inversion Deletion of the gene encoding the transporter protein regulator and/or deletion of the gene encoding the sensor histidine kinase is provided.

如本文所用之微生物或細胞能夠在單醣、雙醣、寡醣、多醣、多元醇、甘油;包括糖蜜、玉米浸液、蛋白腖、胰腖、酵母萃取物之複合培養基或其混合物(如例如混合原料,較佳混合單醣原料,如例如水解蔗糖)作為主要碳源上生長。術語「複合培養基(complex medium)」意指其中精確構成並未確定之培養基。術語主要意指所關注生物產物、生物質形成、二氧化碳及/或副產物形成(諸如酸及/或醇,諸如乙酸鹽、乳酸鹽及/或乙醇)之最重要碳源,亦即所有所需碳之20%、30%、40%、50%、60%、70%、75%、80%、85%、90%、95%、98%、99%均衍生自以上所指示碳源。在本發明之一個實施方式中,該碳源為該生物體之唯一碳源,亦即所有所需碳之100%衍生自以上指定碳源。常見主要碳源包含(但不限於)葡萄糖、甘油、果糖、麥芽糖、乳糖、阿拉伯糖、麥芽-寡醣、麥芽三糖、山梨醇、木糖、鼠李糖、蔗糖、半乳糖、甘露糖、甲醇、乙醇、繭蜜糖、澱粉、纖維素、半纖維素、糖蜜、玉米浸液、高果糖漿、乙酸鹽、檸檬酸鹽、乳酸鹽及丙酮酸鹽。術語複合培養基意指其中精確構成並未確定之培養基。實例為糖蜜、玉米浸液、蛋白腖、胰腖或酵母萃取物。Microorganisms or cells as used herein can be grown on monosaccharides, disaccharides, oligosaccharides, polysaccharides, polyols, glycerol; complex media including molasses, corn infusion, meringue, pancreas, yeast extract, or mixtures thereof (eg, mixed Feedstocks, preferably mixed monosaccharide feedstocks such as, for example, hydrolyzed sucrose) are grown on as the main carbon source. The term "complex medium" means a medium in which the exact composition is not defined. The term primarily means the most important carbon source for the biological product of interest, biomass formation, carbon dioxide and/or by-product formation (such as acids and/or alcohols, such as acetate, lactate and/or ethanol), i.e. all required 20%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% of the carbon is derived from the carbon sources indicated above. In one embodiment of the present invention, the carbon source is the sole carbon source of the organism, ie 100% of all required carbon is derived from the carbon source specified above. Common major carbon sources include (but are not limited to) glucose, glycerol, fructose, maltose, lactose, arabinose, malto-oligosaccharide, maltotriose, sorbitol, xylose, rhamnose, sucrose, galactose, mannose Sugar, methanol, ethanol, cocoon honey, starch, cellulose, hemicellulose, molasses, corn infusion, high fructose syrup, acetate, citrate, lactate and pyruvate. The term complex medium means a medium in which the exact composition is not defined. Examples are molasses, corn steep liquor, meringue, pancreas or yeast extract.

在另一較佳實施方式中,本文所描述之微生物或細胞使用具有如WO2012/007481中所描述之生產路徑及生物質路徑的分裂代謝,該文獻以引用之方式併入本文中。該生物體可例如經遺傳修飾以藉由改變選自磷酸葡萄糖異構酶基因、磷酸果糖激酶基因、果糖-6-磷酸醛縮酶基因、果糖異構酶基因及/或果糖:PEP磷酸轉移酶基因之基因來積聚果糖-6-磷酸鹽。In another preferred embodiment, the microorganisms or cells described herein use split metabolism with a production pathway and a biomass pathway as described in WO2012/007481, which is incorporated herein by reference. The organism may be genetically modified, for example, by altering a gene selected from the group consisting of a phosphoglucose isomerase gene, a phosphofructokinase gene, a fructose-6-phosphate aldolase gene, a fructose isomerase gene and/or a fructose:PEP phosphotransferase gene for gene to accumulate fructose-6-phosphate.

根據本發明,如本文所描述之方法較佳包含自該培養分離該等寡醣中之至少一者的步驟。According to the present invention, the method as described herein preferably comprises the step of isolating at least one of the oligosaccharides from the culture.

術語「自該培養分離(separating from said cultivation)」意謂自細胞及/或其生長之培養基中收穫、收集或擷取該等寡醣中之任一者,較佳該等寡醣中之全部。The term "separating from said cultivation" means harvesting, collecting or extracting any of the oligosaccharides, preferably all of the oligosaccharides, from the cells and/or the medium in which they are grown .

該等寡醣中之任一者可以習知方式自水性培養基分離,細胞在該水性培養基中生長。在該寡醣仍存在於生產寡醣混合物之細胞中之情況下,可使用用以自細胞中釋放或萃取該寡醣之習知方式,諸如使用以下者進行細胞破壞:高pH、熱衝擊、音波處理、法式壓濾(French press)、均質化、酶促水解、化學水解、溶劑水解、洗滌劑、水解……培養基及/或細胞萃取物一起且分別可接著進一步用於分離該寡醣。此較佳涉及澄清該含有寡醣之混合物以移除懸浮粒子及污染物,尤其細胞、細胞組分、不可溶代謝物及由培養經遺傳修飾之細胞產生之碎片。在此步驟中,可以習知方式澄清該含有寡醣之混合物。較佳地,該含有寡醣之混合物藉由離心、絮凝、傾析及/或過濾澄清。將該寡醣與該含有寡醣之混合物分離之另一步驟較佳涉及將實質上所有蛋白質以及肽、胺基酸、RNA及DNA以及可能干擾後續分離步驟之任何內毒素及糖脂自該含有寡醣之混合物移除,較佳在已使其澄清之後。在此步驟中,蛋白質及相關雜質可以習知方式自該含有寡醣之混合物移除。較佳地,蛋白質、鹽、副產物、染料、內毒素及其他相關雜質自該含有寡醣之混合物藉由超過濾、奈米過濾、二相分配、逆滲透、微過濾、活性炭或碳處理、用非離子界面活性劑處理、酶消化、切向流高效能過濾、切向流超過濾、電泳(例如使用平板(slab)-聚丙烯醯胺或十二烷基硫酸鈉-聚丙烯醯胺凝膠電泳(PAGE))、親和層析(使用親和配位體,包括例如DEAE-瓊脂糖凝膠、聚-L-離胺酸及多黏菌素-B、內毒素-選擇性吸附劑基質)、離子交換層析(諸如(但不限於)陽離子交換、陰離子交換、混合床離子交換、由內而外配位體連接)、疏水性相互作用層析及/或凝膠過濾(亦即粒徑排阻層析),特定言之藉由層析,更特定言之藉由離子交換層析或疏水性相互作用層析或配位體交換層析移除。除粒徑排阻層析之外,藉由層析介質或所選膜保留蛋白質及相關雜質,該寡醣保持在該含有寡醣之混合物中。Any of the oligosaccharides can be isolated from the aqueous medium in which the cells are grown in a known manner. Where the oligosaccharide is still present in the cells producing the oligosaccharide mixture, conventional means for releasing or extracting the oligosaccharide from the cells can be used, such as cell disruption using: high pH, heat shock, Sonication, French press, homogenization, enzymatic hydrolysis, chemical hydrolysis, solvent hydrolysis, detergents, hydrolysis... media and/or cell extracts together and respectively can then be further used to isolate the oligosaccharides. This preferably involves clarifying the oligosaccharide-containing mixture to remove suspended particles and contaminants, especially cells, cellular components, insoluble metabolites, and debris produced by culturing genetically modified cells. In this step, the oligosaccharide-containing mixture can be clarified in a conventional manner. Preferably, the oligosaccharide-containing mixture is clarified by centrifugation, flocculation, decantation and/or filtration. Another step in separating the oligosaccharide from the oligosaccharide-containing mixture preferably involves removing substantially all proteins as well as peptides, amino acids, RNA and DNA, as well as any endotoxins and glycolipids that might interfere with subsequent separation steps, from the oligosaccharide-containing mixture. The mixture of oligosaccharides is removed, preferably after it has been clarified. In this step, proteins and related impurities can be removed from the oligosaccharide-containing mixture in a conventional manner. Preferably, proteins, salts, by-products, dyes, endotoxins and other related impurities are removed from the oligosaccharide-containing mixture by ultrafiltration, nanofiltration, two-phase partition, reverse osmosis, microfiltration, activated carbon or carbon treatment, Treatment with nonionic surfactants, enzymatic digestion, tangential flow high performance filtration, tangential flow ultrafiltration, electrophoresis (e.g. using slab-polyacrylamide or sodium dodecyl sulfate-polyacrylamide coagulation) Gel electrophoresis (PAGE)), affinity chromatography (using affinity ligands including, for example, DEAE-agarose, poly-L-lysine and polymyxin-B, endotoxin-selective sorbent matrices) , ion exchange chromatography (such as (but not limited to) cation exchange, anion exchange, mixed bed ion exchange, inside-out ligand attachment), hydrophobic interaction chromatography and/or gel filtration (i.e. particle size size exclusion chromatography), specifically by chromatography, more specifically by ion exchange chromatography or hydrophobic interaction chromatography or ligand exchange chromatography. In addition to size exclusion chromatography, the oligosaccharide is retained in the oligosaccharide-containing mixture by retention of proteins and related impurities by the chromatography medium or membrane of choice.

在另一較佳實施方式中,如本文所描述之方法亦提供進一步純化來自寡醣混合物之該(等)寡醣中之任一或多者。該(等)寡醣之進一步純化可例如藉由使用(活性)木炭或碳、奈米過濾、超過濾或離子交換以移除任何殘留DNA、蛋白質、LPS、內毒素或其他雜質來實現。亦可使用醇(諸如乙醇)及水醇混合物。另一純化步驟藉由產物之結晶、蒸發或沈澱實現。另一純化步驟為對所製造之寡醣進行乾燥,例如噴霧乾燥、凍乾、噴霧冷凍乾燥、冷凍噴霧乾燥、條帶式乾燥(band dry)、帶式乾燥(belt dry)、真空條帶式乾燥、真空帶式乾燥、轉筒乾燥、滾筒乾燥、真空轉筒乾燥或真空滾筒乾燥。In another preferred embodiment, the methods as described herein also provide for further purification of any one or more of the oligosaccharide(s) from the oligosaccharide mixture. Further purification of the oligosaccharide(s) can be achieved eg by using (activated) charcoal or carbon, nanofiltration, ultrafiltration or ion exchange to remove any residual DNA, protein, LPS, endotoxin or other impurities. Alcohols such as ethanol and hydroalcoholic mixtures can also be used. Another purification step is achieved by crystallization, evaporation or precipitation of the product. Another purification step is drying the produced oligosaccharides, e.g. spray drying, freeze drying, spray freeze drying, freeze spray drying, band dry, belt dry, vacuum belt drying Drying, vacuum belt drying, tumble drying, drum drying, vacuum tumble drying or vacuum tumble drying.

在一例示性實施方式中,所製造之寡醣中之至少一者,較佳全部的分離及純化係在一製程中進行,該製程包含以下按任何次序之步驟: a)使培養物或其澄清形式與截留分子量(molecular weight cut-off;MWCO)為600-3500 Da之奈米過濾膜接觸,確保保留所製造之寡醣且使蛋白質、鹽、副產物、染料及其他相關雜質中之至少一部分通過, b)使用該膜,用無機電解質之水溶液對來自步驟a)之保留物進行透濾製程,繼而視情況用純水進行透濾以移除過量電解質, c)及收集來自該電解質之陽離子的呈鹽形式之該(等)寡醣富集的保留物。 In an exemplary embodiment, isolation and purification of at least one, preferably all, of the oligosaccharides produced is performed in a process comprising the following steps in any order: a) Contacting the culture or its clarified form with a nanofiltration membrane with a molecular weight cut-off (MWCO) of 600-3500 Da, ensuring retention of the oligosaccharides produced and leaving proteins, salts, by-products, dyes and at least a portion of other related impurities passed, b) using the membrane, the retentate from step a) is subjected to a diafiltration process with an aqueous solution of inorganic electrolyte, followed by diafiltration with pure water as appropriate to remove excess electrolyte, c) and collecting the oligosaccharide-enriched retentate(s) in salt form from the cations of the electrolyte.

在一替代性例示性實施方式中,在一製程中進行所製造之寡醣中之至少一者,較佳全部之分離及純化,該製程包含以下按任何次序之步驟:使用不同膜使培養物或其澄清形式經受兩種膜過濾步驟,其中一個膜具有約300至約500道爾頓(Dalton)之間的截留分子量,及另一膜,其截留分子量在約600至約800道爾頓之間。In an alternative exemplary embodiment, the isolation and purification of at least one, preferably all of the oligosaccharides produced is performed in a process comprising the following steps in any order: or its clarified form is subjected to two membrane filtration steps, one membrane having a molecular weight cut-off between about 300 and about 500 Daltons, and another membrane having a molecular weight cut-off between about 600 and about 800 Daltons between.

在一替代性例示性實施方式中,在一製程中進行所製造之寡醣中之至少一者的分離及純化,該製程包含以下按任何次序之步驟,該等步驟包含用呈H+形式之強陽離子交換樹脂及呈自由鹼形式之弱陰離子交換樹脂處理培養物或其澄清形式之步驟。In an alternative exemplary embodiment, the isolation and purification of at least one of the produced oligosaccharides is performed in a process comprising the following steps, in any order, comprising using a strong The step of treating the culture or its clarified form with a cation exchange resin and a weak anion exchange resin in the free base form.

在一替代性例示性實施方式中,以以下方式進行所製造之寡醣中之至少一者,較佳全部之分離及純化。將包含所製造之寡醣、生物質、培養基組分及污染物之培養物施用於以下純化步驟: i)自培養物分離生物質, ii)進行陽離子交換劑處理以用於移除帶正電物質, iii)進行陰離子交換劑處理以用於移除帶負電物質, iv)進行奈米過濾步驟及/或電滲析步驟, 其中提供一種包含所製造之寡醣的純化溶液,其純度大於或等於80%。視情況,純化溶液藉由選自包含以下者之清單的任一或多個乾燥步驟乾燥:噴霧乾燥、凍乾、噴霧冷凍乾燥、冷凍噴霧乾燥、條帶式乾燥、帶式乾燥、真空條帶式乾燥、真空帶式乾燥、轉筒乾燥、滾筒乾燥、真空轉筒乾燥及真空滾筒乾燥。 In an alternative exemplary embodiment, the isolation and purification of at least one, preferably all, of the oligosaccharides produced is performed in the following manner. The cultures containing the produced oligosaccharides, biomass, media components and contaminants were subjected to the following purification steps: i) separation of biomass from the culture, ii) cation exchanger treatment for removal of positively charged species, iii) anion exchanger treatment for removal of negatively charged species, iv) performing a nanofiltration step and/or an electrodialysis step, Therein is provided a purified solution comprising the produced oligosaccharides, the purity of which is greater than or equal to 80%. Optionally, the purified solution is dried by any one or more drying steps selected from the list comprising: spray drying, lyophilization, spray freeze drying, freeze spray drying, ribbon drying, ribbon drying, vacuum ribbon Drying, vacuum belt drying, drum drying, drum drying, vacuum drum drying and vacuum drum drying.

在一替代性例示性實施方式中,在一製程中進行所製造之寡醣中之至少一者,較佳全部之分離及純化,該製程包含以下按任何次序之步驟:對培養物進行酶處理;自培養物移除生物質;超過濾;奈米過濾;及進行管柱層析步驟。較佳地,此類管柱層析為單個管柱或多個管柱。更佳地,管柱層析步驟為模擬移動床層析。此類模擬移動床層析較佳包含i)至少4個管柱,其中至少一個管柱包含弱或強陽離子交換樹脂;及/或ii)具有不同流速之四個區域I、II、III及IV;及/或iii)包含水之溶離劑;及/或iv)15至60攝氏度之操作溫度。In an alternative exemplary embodiment, the isolation and purification of at least one, preferably all of the oligosaccharides produced is performed in a process comprising the following steps, in any order: Enzymatic treatment of the culture ; removing biomass from the culture; ultrafiltration; nanofiltration; and performing column chromatography steps. Preferably, such column chromatography is a single column or multiple columns. More preferably, the column chromatography step is simulated moving bed chromatography. Such simulated moving bed chromatography preferably comprises i) at least 4 columns, at least one of which comprises a weak or strong cation exchange resin; and/or ii) four zones I, II, III and IV with different flow rates ; and/or iii) a dissolving agent comprising water; and/or iv) an operating temperature of 15 to 60 degrees Celsius.

在一特定實施方式中,本發明提供所製造之寡醣或寡醣混合物,其藉由選自包含以下者之清單的任一或多個乾燥步驟乾燥成粉末:噴霧乾燥、凍乾、噴霧冷凍乾燥、冷凍噴霧乾燥、條帶式乾燥、帶式乾燥、真空條帶式乾燥、真空帶式乾燥、轉筒乾燥、滾筒乾燥、真空轉筒乾燥及真空滾筒乾燥,其中乾粉含有<15 -wt.%之水,較佳<10 -wt.%之水,更佳<7 -wt.%之水,最佳<5 -wt.%之水。In a specific embodiment, the present invention provides the oligosaccharide or oligosaccharide mixture produced, which is dried to powder by any one or more drying steps selected from the list comprising: spray drying, lyophilization, spray freezing Drying, freeze spray drying, strip drying, belt drying, vacuum strip drying, vacuum belt drying, tumble drying, drum drying, vacuum tumble drying and vacuum drum drying, where the dry powder contains <15-wt. % water, preferably <10-wt.% water, more preferably <7-wt.% water, most preferably <5-wt.% water.

在第二態樣中,本發明提供如本文所描述之方法之用途,其係用於製造包含至少兩種不同寡醣之混合物。In a second aspect, the present invention provides the use of a method as described herein for the manufacture of a mixture comprising at least two different oligosaccharides.

為鑑別包含如本文所描述之細胞中製造之至少兩種不同寡醣的混合物中之寡醣,單體建構嵌段(例如單醣或聚醣單元組成物)、側鏈之變旋異構組態、取代基之存在及位置、聚合度/分子量及鍵聯模式可藉由所屬技術領域中已知之標準方法鑑別,該等標準方法諸如例如甲基化分析、還原裂解、水解、氣相層析-質譜法(gas chromatography-mass spectrometry;GC-MS)、基質輔助雷射脫附/離子化-質譜法(Matrix-assisted laser desorption/ionization-mass spectrometry;MALDI-MS)、電灑離子化-質譜法(Electrospray ionization-mass spectrometry;ESI-MS)、具有紫外線或折射率偵測之高效液相層析(HPLC)、具有脈衝安培偵測之高效能陰離子交換層析(High-Performance Anion-Exchange chromatography with Pulsed Amperometric Detection;HPAEC-PAD)、毛細管電泳(capillary electrophoresis;CE)、紅外線(infrared;IR)/拉曼光譜法及核磁共掁(Nuclear magnetic resonance;NMR)光譜技術。可使用例如固態NMR、傅立葉變換紅外(Fourier transform infrared;FT-IR)光譜法及廣角X射線散射(wide-angle X-ray scattering;WAXS)來求解晶體結構。聚合度(degree of polymerization;DP)、DP分佈及多分散性可藉由例如黏度測定法及SEC(SEC-HPLC,高效粒徑排阻層析)測定。為鑑別醣之單體組分,可使用方法諸如例如酸催化之水解、高效液相層析(high performance liquid chromatography;HPLC)或氣-液相層析(gas-liquid chromatography;GLC)(在轉化成醛醇乙酸鹽之後)。為確定糖苷鍵,在DMSO中用碘甲烷及強鹼使醣甲基化,進行水解,實現部分甲基化醣醇之還原,進行甲基化醛醇乙酸鹽之乙醯化,且藉由GLC/MS(與質譜法結合之氣-液相層析)進行分析。為測定寡醣序列,使用酸或酶進行部分解聚合以測定結構。為鑑別變旋異構組態,對寡醣進行酶分析,例如使其與對特定類型之鍵聯,例如β-半乳糖苷酶或α-葡萄糖苷酶等具有特異性之酶接觸,且NMR可用於分析產物。 包含寡醣混合物之產物 To identify oligosaccharides in a mixture comprising at least two different oligosaccharides produced in cells as described herein, monomeric building blocks (e.g. monosaccharide or glycan unit composition), mutator groups of side chains State, presence and position of substituents, degree of polymerization/molecular weight, and linkage pattern can be identified by standard methods known in the art, such as, for example, methylation analysis, reductive cleavage, hydrolysis, gas chromatography -Mass chromatography (gas chromatography-mass spectrometry; GC-MS), matrix-assisted laser desorption/ionization-mass spectrometry (Matrix-assisted laser desorption/ionization-mass spectrometry; MALDI-MS), electrospray ionization-mass spectrometry method (Electrospray ionization-mass spectrometry; ESI-MS), high performance liquid chromatography (HPLC) with ultraviolet or refractive index detection, high performance anion exchange chromatography (High-Performance Anion-Exchange chromatography) with pulsed amperometric detection with Pulsed Amperometric Detection; HPAEC-PAD), capillary electrophoresis (CE), infrared (IR)/Raman spectroscopy and nuclear magnetic resonance (NMR) spectroscopy. Crystal structures can be solved using, for example, solid-state NMR, Fourier transform infrared (FT-IR) spectroscopy, and wide-angle X-ray scattering (WAXS). The degree of polymerization (DP), DP distribution and polydispersity can be determined, for example, by viscometry and SEC (SEC-HPLC, high performance size exclusion chromatography). To identify the monomeric components of sugars, methods such as, for example, acid-catalyzed hydrolysis, high performance liquid chromatography (HPLC) or gas-liquid chromatography (GLC) (in conversion after aldol acetate). To determine the glycosidic bond, the sugars were methylated in DMSO with methyl iodide and a strong base, hydrolyzed to achieve reduction of partially methylated sugar alcohols, acetylated of methylated aldol acetates, and acetylated by GLC. /MS (gas-liquid chromatography combined with mass spectrometry) for analysis. To sequence oligosaccharides, partial depolymerization is performed using acids or enzymes to determine structure. To identify the mutator configuration, oligosaccharides are subjected to enzymatic analysis, for example, by contacting them with enzymes specific for a particular type of linkage, such as β-galactosidase or α-glucosidase, and NMR. Can be used to analyze products. Products containing mixtures of oligosaccharides

在一些實施方式中,將如本文所描述產生之寡醣混合物併入至食品(例如人類食品或進食(feed))、膳食補充劑、醫藥成分、化妝品成分或藥品中。在一些實施方式中,寡醣混合物與一或多種適用於食品、進食、膳食補充劑、醫藥成份、化妝品成分或藥品之成分混合。In some embodiments, the oligosaccharide mixture produced as described herein is incorporated into a food product (eg, human food or feed), dietary supplement, pharmaceutical ingredient, cosmetic ingredient, or pharmaceutical product. In some embodiments, the oligosaccharide mixture is mixed with one or more ingredients suitable for use in food, food, dietary supplements, pharmaceutical ingredients, cosmetic ingredients, or pharmaceuticals.

在一些實施方式中,膳食補充劑包含至少一種益菌助生質成分及/或至少一種益生菌成分。In some embodiments, the dietary supplement comprises at least one probiotic ingredient and/or at least one probiotic ingredient.

「益生質(prebiotic)」為促進有益於宿主之微生物,尤其胃腸道中之微生物生長的物質。在一些實施方式中,膳食補充劑提供多種益菌助生質,包括藉由本說明書中所揭示之製程生產及/或純化之寡醣混合物,以促進一或多種有益微生物之生長。膳食補充劑之益菌助生質成分之實例包括其他益菌助生質分子(諸如HMO)及植物多醣(諸如菊糖、果膠、b-葡聚糖及木質寡醣)。「益生菌(probiotic)」產品典型地含有置換或添加至胃腸道微生物群以便接受體受益之活微生物。此類微生物之實例包括乳桿菌屬物種(例如嗜酸乳桿菌( L. acidophilus)及保加利亞乳桿菌( L. bulgaricus))、雙岐桿菌屬物種(例如,動物雙岐桿菌( B. animalis)、長雙岐桿菌( B. longum)及嬰兒雙岐桿菌( B. infantis)(例如Bi-26))及布拉氏酵母菌( Saccharomyces boulardii)。在一些實施方式中,由此說明書之製程生產及/或純化之寡醣混合物與此類微生物組合經口投予。 "Prebiotics" are substances that promote the growth of microorganisms that are beneficial to the host, especially those in the gastrointestinal tract. In some embodiments, the dietary supplement provides a variety of probiotic cobiotics, including oligosaccharide mixtures produced and/or purified by the processes disclosed in this specification, to promote the growth of one or more beneficial microorganisms. Examples of probiotic components of dietary supplements include other probiotic molecules (such as HMO) and plant polysaccharides (such as inulin, pectin, b-glucans and xylo-oligosaccharides). "Probiotic" products typically contain live microorganisms that replace or add to the microbiota of the gastrointestinal tract for the benefit of the recipient. Examples of such microorganisms include Lactobacillus species (eg, L. acidophilus and L. bulgaricus ), Bifidobacterium species (eg, B. animalis ), B. longum and B. infantis (eg Bi-26) and Saccharomyces boulardii . In some embodiments, mixtures of oligosaccharides produced and/or purified by the procedures of this specification are administered orally in combination with such microorganisms.

膳食補充劑之其他成分之實例包括雙醣(諸如乳糖)、單醣(諸如葡萄糖及半乳糖)、增稠劑(諸如阿拉伯膠)、酸性調節劑(諸如檸檬酸三鈉)、水、脫脂乳及調味劑。Examples of other ingredients of dietary supplements include disaccharides (such as lactose), monosaccharides (such as glucose and galactose), thickeners (such as acacia), acidity regulators (such as trisodium citrate), water, skim milk and flavorings.

在一些實施方式中,寡醣混合物併入至人類嬰兒食品(例如嬰兒配方食品)中。嬰兒配方食品通常為用於作為人類母乳之完整或部分替代物向嬰兒餵養之製造食品。在一些實施方式中,嬰兒配方食品以粉末形式出售,且藉由與水混合製備以用於向嬰兒瓶餵或杯餵。嬰兒配方食品之組成物典型地經設計以大致模擬人類母乳。在一些實施方式中,在本說明書中藉由製程產生及/或純化之寡醣混合物包括於嬰兒配方食品中以提供與由人類母乳中之寡醣提供之營養益處類似的營養益處。在一些實施方式中,將寡醣混合物與嬰兒配方食品之一或多種成分混合。嬰兒配方食品成分之實例包括脫脂乳、碳水化合物來源(例如乳糖)、蛋白質來源(例如乳清蛋白濃縮物及酪蛋白)、脂肪來源(例如植物油,諸如棕櫚油、高油酸紅花油、菜籽油、椰子油及/或葵花籽油;及魚油)、維生素(諸如維生素A、Bb、Bi2、C及D)、礦物質(諸如檸檬酸鉀、檸檬酸鈣、氯化鎂、氯化鈉、檸檬酸鈉及磷酸鈣)及可能的人乳寡醣(human milk oligosaccharide;HMO)。此類HMO可包括例如DiFL、乳-N-丙糖II、LNT、LNnT、乳-N-岩藻五糖I、乳-N-新岩藻五糖、乳-N-岩藻五糖II、乳-N-岩藻五糖III、乳-N-岩藻五糖V、乳-N-新岩藻五糖V、乳-N-二岩藻六糖I、乳-N-二岩藻六糖II、6'-半乳糖基乳糖、3'-半乳糖基乳糖、乳-N-六糖及乳-N-新六糖。In some embodiments, the oligosaccharide mixture is incorporated into human infant food (eg, infant formula). Infant formula is generally a manufactured food intended for feeding infants as a complete or partial substitute for human breast milk. In some embodiments, the infant formula is sold in powder form and prepared by mixing with water for bottle feeding or cup feeding to infants. The composition of infant formula is typically designed to approximately mimic human breast milk. In some embodiments, the oligosaccharide mixture produced and/or purified by the process in this specification is included in an infant formula to provide nutritional benefits similar to those provided by oligosaccharides in human breast milk. In some embodiments, the oligosaccharide mixture is mixed with one or more ingredients of the infant formula. Examples of infant formula ingredients include skim milk, carbohydrate sources such as lactose, protein sources such as whey protein concentrate and casein, fat sources such as vegetable oils such as palm oil, high oleic safflower oil, canola oil, coconut oil and/or sunflower oil; and fish oil), vitamins (such as vitamins A, Bb, Bi2, C and D), minerals (such as potassium citrate, calcium citrate, magnesium chloride, sodium chloride, citric acid) sodium and calcium phosphate) and possibly human milk oligosaccharide (HMO). Such HMOs may include, for example, DiFL, lacto-N-triose II, LNT, LNnT, lacto-N-fucopentaose I, lacto-N-neofucopentose, lacto-N-fucopentose II, Lacto-N-fucopentaose III, Lacto-N-fucopentaose V, Lacto-N-neofucopentose V, Lacto-N-difucohexaose I, Lacto-N-difucohexaose Sugar II, 6'-galactosylose, 3'-galactosyllose, lacto-N-hexaose and lacto-N-neohexaose.

在一些實施方式中,一或多種嬰兒配方食品成分包含脫脂乳、碳水化合物來源、蛋白質來源、脂肪來源及/或維生素及礦物質。In some embodiments, the one or more infant formula ingredients comprise skim milk, a carbohydrate source, a protein source, a fat source, and/or vitamins and minerals.

在一些實施方式中,一或多種嬰兒配方食品成分包含乳糖、乳清蛋白濃縮物及/或高油酸紅花油。In some embodiments, the one or more infant formula ingredients comprise lactose, whey protein concentrate, and/or high oleic safflower oil.

在一些實施方式中,嬰兒配方食品中之寡醣混合物之濃度與通常存在於人類母乳中之寡醣之濃度為大致相同濃度。在一些實施方式中,嬰兒配方食品中之寡醣之混合物中的各單一寡醣之濃度與通常存在於人類母乳中之寡醣之濃度為大致相同濃度。In some embodiments, the concentration of the oligosaccharide mixture in the infant formula is about the same concentration as the concentration of oligosaccharides normally present in human breast milk. In some embodiments, the concentration of each single oligosaccharide in the mixture of oligosaccharides in the infant formula is about the same concentration as the concentration of oligosaccharides typically present in human breast milk.

在一些實施方式中,寡醣混合物併入至飼料製劑中,其中該飼料係選自包含寵物食品、動物代乳品、獸醫產品、斷奶後飼料或教槽飼料之清單。In some embodiments, the oligosaccharide mixture is incorporated into a feed formulation, wherein the feed is selected from the list comprising pet food, animal milk replacer, veterinary product, post-weaning feed, or nursery feed.

除非另外明確陳述,否則在本發明之一態樣的上下文中揭示之各實施方式亦揭示於本發明之所有其他態樣的上下文中。Each embodiment disclosed in the context of one aspect of the invention is also disclosed in the context of all other aspects of the invention, unless expressly stated otherwise.

除非另外定義,否則本文中所用之所有技術及科學術語一般具有與本發明所屬技術領域中具有通常知識者通常所理解相同之含義。一般而言,本文所用之命名法及上文及下文所描述之細胞培養中之實驗步驟、分子遺傳學、有機化學及核酸化學及雜合為所屬領域中熟知且常用之命名法、細胞培養中之實驗步驟、分子遺傳學、有機化學及核酸化學及雜合。使用標準技術進行核酸及肽合成。一般而言,純化步驟係根據製造商說明書進行。Unless otherwise defined, all technical and scientific terms used herein generally have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein and the experimental procedures in cell culture, molecular genetics, organic chemistry and nucleic acid chemistry and hybridization described above and below are those well known and commonly used in the art, in cell culture Experimental procedures, molecular genetics, organic chemistry and nucleic acid chemistry and hybridization. Nucleic acid and peptide synthesis is performed using standard techniques. Generally, purification steps are carried out according to the manufacturer's instructions.

其他優勢遵循特定實施方式、實例及隨附圖式。不言而喻,以上提及之特徵及仍有待下文闡述之特徵,在不脫離本發明之範圍之情況下,不僅可以分別指定之組合使用而且可以其他組合或獨立地使用。 本發明係關於以下特定實施方式: 1.   一種藉由細胞製造至少兩種不同寡醣之混合物的方法,該方法包含以下步驟: i.     提供表現一種醣基轉移酶且能夠合成一種核苷酸-糖之細胞,其中該核苷酸-糖為用於該醣基轉移酶之供體,及 ii.    在容許表現該醣基轉移酶及合成該核苷酸-糖之條件下培養該細胞,及 iii.   向該培養中添加至少兩種受體,使得該細胞能夠製造至少兩種寡醣,較佳地,該等受體中之任一者為雙醣或寡醣, iv.   較佳地,自該培養分離該等寡醣中之至少一者,更佳地,自該培養分離該等寡醣中之全部。 2.   如實施方式1之方法,其中該細胞為經至少一種基因表現模組修飾之經代謝工程改造之細胞,其中來自該至少一種表現模組中之任一者的表現為持續型的或藉由天然誘導物產生。 3.   如實施方式1或2中任一項之方法,其中該細胞製造三種或更多種不同寡醣之混合物。 4.   如實施方式1至3中任一項之方法,其中該細胞製造不同寡醣之混合物,其中至少兩種寡醣在聚合度方面不同。 5.   如實施方式1至4中任一項之方法,其中該醣基轉移酶係選自包含以下者之清單:岩藻糖基轉移酶、唾液酸基轉移酶、半乳糖基轉移酶、葡萄糖基轉移酶、甘露糖基轉移酶、N-乙醯基葡萄糖胺基轉移酶、N-乙醯基半乳糖胺基轉移酶、N-乙醯基甘露糖胺基轉移酶、木糖基轉移酶、葡萄糖醛酸苷轉移酶、半乳糖醛酸苷轉移酶、葡萄糖胺基轉移酶、N-羥乙醯基神經胺基轉移酶、鼠李糖基轉移酶。 6.   如實施方式1至5中任一項之方法,其中該細胞在該醣基轉移酶之表現或活性方面經修飾。 7.   如實施方式1至6中任一項之方法,其中該醣基轉移酶為岩藻糖基轉移酶且該供體核苷酸-糖為GDP-岩藻糖(GDP-Fuc)。 8.   如實施方式1至7中任一項之方法,其中醣基轉移酶為唾液酸基轉移酶且該供體核苷酸-糖為CMP-N-乙醯基神經胺酸(CMP-Neu5Ac)。 9.   如實施方式1至8中任一項之方法,其中該醣基轉移酶為N-乙醯基葡萄糖胺基轉移酶且該供體核苷酸-糖為UDP-N-乙醯基葡萄糖胺(UDP-GlcNAc)。 10. 如實施方式1至9中任一項之方法,其中該醣基轉移酶為半乳糖基轉移酶且該供體核苷酸-糖為UDP-半乳糖(UDP-Gal)。 11. 如實施方式1至10中任一項之方法,其中該核苷酸-糖係選自包含以下者之清單:GDP-Fuc、CMP-Neu5Ac、UDP-GlcNAc、UDP-Gal、UDP-N-乙醯基半乳糖胺(UDP-GalNAc)、UDP-N-乙醯基甘露糖胺(UDP-ManNAc)、GDP-甘露糖(GDP-Man)、UDP-葡萄糖(UDP-Glc)、CMP-N-羥乙醯基神經胺酸(CMP-Neu5Gc)、UDP-葡萄糖醛酸酯、UDP-半乳糖醛酸酯、GDP-鼠李糖、UDP-木糖。 12. 如實施方式1至11中任一項之方法,其中該等受體中之任一者的聚合度為3或更多,較佳地其中該等受體中之全部的聚合度為3或更多。 13. 如實施方式1至12中任一項之方法,其中所有該等受體均具有不同聚合度。 14. 如實施方式1至13中任一項之方法,其中該培養補充有至少3種用於製造該寡醣混合物的受體。 15. 如實施方式1至14中任一項之方法,其中該寡醣混合物包含至少一種寡醣,該至少一種寡醣經岩藻糖基化、唾液酸基化、半乳糖基化、葡萄糖基化、木糖基化、甘露糖基化、含有N-乙醯基葡萄糖胺、含有N-乙醯基神經胺酸、含有N-羥乙醯基神經胺酸、含有N-乙醯基半乳糖胺、含有鼠李糖、含有葡萄糖醛酸酯、含有半乳糖醛酸酯及/或含有N-乙醯基甘露糖胺。 16. 如實施方式1至15中任一項之方法,其中該寡醣混合物包含至少一種岩藻糖基化寡醣。 17. 如實施方式1至16中任一項之方法,其中該寡醣混合物包含至少一種唾液酸基化寡醣。 18. 如實施方式1至17中任一項之方法,其中該寡醣混合物包含至少一種寡醣,該至少一種寡醣包含N-乙醯基葡萄糖胺單醣單元。 19. 如實施方式1至18中任一項之方法,其中該寡醣混合物包含至少一種半乳糖基化寡醣。 20. 如實施方式1至16中任一項之方法,其中該混合物中之所有該等寡醣皆為岩藻糖基化寡醣。 21. 如實施方式1至16及20之方法,其中該細胞製造三種岩藻糖基化寡醣。 22. 如實施方式1至21中任一項之方法,其中該等受體藉由包含自天然來源萃取、生物技術製程、物理製程、化學製程及其等之組合之方法製造。 23. 如實施方式1至22中任一項之方法,其中該等受體中之任一者經完全轉化為該等寡醣中之任一者。 24. 如實施方式1至23中任一項之方法,其中該細胞經進一步代謝工程改造以用於 i)內源膜蛋白之經修飾表現,及/或 ii)內源膜蛋白之經修飾活性,及/或 iii)同源膜蛋白之表現,及/或 iv)異源膜蛋白之表現, 其中該膜蛋白參與自該細胞分泌該等寡醣中之任一者,較佳地其中該膜蛋白參與自該細胞分泌該等寡醣中之全部。 25. 如實施方式1至24中任一項之方法,其中該細胞經進一步代謝工程改造以用於 i)內源膜蛋白之經修飾表現,及/或 ii)內源膜蛋白之經修飾活性,及/或 iii)同源膜蛋白之表現,及/或 iv)異源膜蛋白之表現, 其中該膜蛋白參與吸收用於合成該混合物中之該等寡醣中之任一者的前驅物,較佳地其中該膜蛋白參與吸收所有所需前驅物,更佳地其中該膜蛋白參與吸收所有該等受體。 26. 如實施方式1至25中任一項之方法,其中該等寡醣中之任一者為哺乳動物乳寡醣,較佳地其中所有該等寡醣皆為哺乳動物乳寡醣。 27. 如實施方式1至25中任一項之方法,其中該寡醣中之任一者為人類ABO血型系統之抗原,較佳地其中所有該等寡醣皆為人類ABO血型系統之抗原。 28. 如實施方式1至27中任一項之方法,其中該細胞係選自由微生物、植物或動物細胞組成之群,較佳該微生物為細菌、真菌或酵母菌,較佳該植物為稻、棉花、菜籽、大豆、玉蜀黍或玉米植物,較佳該動物為昆蟲、魚類、鳥或非人類哺乳動物,較佳該動物細胞為哺乳動物細胞系。 29. 如實施方式1至28中任一項之方法,其中該細胞為細菌,較佳大腸桿菌菌株,更佳為K-12菌株之大腸桿菌菌株之細胞,甚至更佳大腸桿菌K-12菌株為大腸桿菌MG1655。 30. 如實施方式1至28中任一項之方法,其中該細胞為酵母細胞。 31. 如實施方式1至30中任一項之方法,其中該分離包含以下步驟中之至少一者:澄清、超過濾、奈米過濾、逆滲透、微過濾、活性炭或碳處理、切向流高效能過濾、切向流超過濾、親和層析、離子交換層析、疏水性相互作用層析及/或凝膠過濾、配位體交換層析。 32. 如實施方式1至31中任一項之方法,其進一步包含自該細胞純化該等寡醣中之任一者。 33. 如實施方式1至32中任一項之方法,其中該純化包含以下步驟中之至少一者:使用活性炭或碳;使用木炭、奈米過濾、超過濾或離子交換;使用醇;使用水醇混合物;結晶;蒸發;沈澱;乾燥,噴霧乾燥或凍乾。 34. 一種如實施方式1至33中任一項之方法之用途,其用於製造至少兩種不同寡醣之混合物。 此外,本發明係關於以下較佳特定實施方式: 1.   一種藉由細胞,較佳單一細胞製造至少兩種不同寡醣之混合物的方法,該方法包含以下步驟: i.     提供能夠表現醣基轉移酶且能夠合成核苷酸-糖之細胞,較佳單一細胞,其中該核苷酸-糖為用於該醣基轉移酶之供體,及 ii.    在容許表現該醣基轉移酶及合成該核苷酸-糖之條件下培養該細胞,及 iii.   向該培養中添加至少兩種受體,使得該細胞能夠製造至少兩種寡醣,較佳地,該等受體中之任一者為雙醣或寡醣, iv.   較佳地,自該培養分離該等寡醣中之至少一者,更佳地,自該培養分離該等寡醣中之全部。 2.   如較佳實施方式1之方法,其中該等受體中之任一者為雙醣或哺乳動物乳寡醣(mammalian milk oligosaccharide;MMO),較佳地,該等受體中之任一者為哺乳動物乳寡醣。 3.   如較佳實施方式1或2中任一項之方法,其中該細胞為經代謝工程改造以製造該混合物之細胞及/或經至少一種基因表現模組修飾,其中來自該至少一種表現模組中之任一者的表現為持續型的或藉由天然誘導物產生。 4.   如較佳實施方式1至3中任一項之方法,其中該細胞包含編碼一種蛋白質之同一編碼DNA序列之多個複本。 5.   如較佳實施方式1至4中任一項之方法,其中該細胞製造三種或更多種不同寡醣之混合物。 6.   如較佳實施方式1至5中任一項之方法,其中該細胞製造不同寡醣之混合物,其中至少兩種寡醣在聚合度方面不同。 7.   如較佳實施方式1至6中任一項之方法,其中該醣基轉移酶係選自包含以下者之清單:岩藻糖基轉移酶、唾液酸基轉移酶、半乳糖基轉移酶、葡萄糖基轉移酶、甘露糖基轉移酶、N-乙醯基葡萄糖胺基轉移酶、N-乙醯基半乳糖胺基轉移酶、N-乙醯基甘露糖胺基轉移酶、木糖基轉移酶、葡萄糖醛酸苷轉移酶、半乳糖醛酸苷轉移酶、葡萄糖胺基轉移酶、N-羥乙醯基神經胺基轉移酶、鼠李糖基轉移酶、N-乙醯基鼠李糖基轉移酶、UDP-4-胺基-4,6-二去氧-N-乙醯基-β-L-阿卓糖胺(altrosamine)轉胺酶、UDP-N-乙醯基葡萄糖胺烯醇丙酮醯基轉移酶及岩藻糖胺基轉移酶, -較佳地,該岩藻糖基轉移酶係選自包含以下者之清單:α-1,2-岩藻糖基轉移酶、α-1,3-岩藻糖基轉移酶、α-1,4-岩藻糖基轉移酶及α-1,6-岩藻糖基轉移酶, -較佳地,該唾液酸基轉移酶係選自包含以下者之清單:α-2,3-唾液酸基轉移酶、α-2,6-唾液酸基轉移酶及α-2,8-唾液酸基轉移酶, -較佳地,該半乳糖基轉移酶係選自包含以下者之清單:β-1,3-半乳糖基轉移酶、N-乙醯基葡萄糖胺β-1,3-半乳糖基轉移酶、β-1,4-半乳糖基轉移酶、N-乙醯基葡萄糖胺β-1,4-半乳糖基轉移酶、α-1,3-半乳糖基轉移酶及α-1,4-半乳糖基轉移酶, -較佳地,該葡萄糖基轉移酶係選自包含以下者之清單:α-葡萄糖基轉移酶、β-1,2-葡萄糖基轉移酶、β-1,3-葡萄糖基轉移酶及β-1,4-葡萄糖基轉移酶, -較佳地,該甘露糖基轉移酶係選自包含以下者之清單:α-1,2-甘露糖基轉移酶、α-1,3-甘露糖基轉移酶及α-1,6-甘露糖基轉移酶, -較佳地,該N-乙醯基葡萄糖胺基轉移酶係選自包含以下者之清單:半乳糖苷β-1,3-N-乙醯基葡萄糖胺基轉移酶及β-1,6-N-乙醯基葡萄糖胺基轉移酶, -較佳地,該N-乙醯基半乳糖胺基轉移酶係α-1,3-N-乙醯基半乳糖胺基轉移酶。 8.   如較佳實施方式1至7中任一項之方法,其中該細胞在該醣基轉移酶之表現或活性方面經修飾。 9.   如較佳實施方式1至8中任一項之方法,其中該醣基轉移酶為岩藻糖基轉移酶且該供體核苷酸-糖為GDP-岩藻糖(GDP-Fuc)。 10. 如較佳實施方式1至9中任一項之方法,其中醣基轉移酶為唾液酸基轉移酶且該供體核苷酸-糖為CMP-N-乙醯基神經胺酸(CMP-Neu5Ac)。 11. 如較佳實施方式1至10中任一項之方法,其中該醣基轉移酶為N-乙醯基葡萄糖胺基轉移酶且該供體核苷酸-糖為UDP-N-乙醯基葡萄糖胺(UDP-GlcNAc)。 12. 如較佳實施方式1至11中任一項之方法,其中該醣基轉移酶為半乳糖基轉移酶且該供體核苷酸-糖為UDP-半乳糖(UDP-Gal)。 13. 如較佳實施方式1至12中任一項之方法,其中該醣基轉移酶為N-乙醯基半乳糖胺基轉移酶且該供體核苷酸-糖為UDP-N-乙醯基半乳糖胺(UDP-GalNAc)。 14. 如較佳實施方式1至13中任一項之方法,其中該醣基轉移酶為N-乙醯基甘露糖胺基轉移酶且該供體核苷酸-糖為UDP-N-乙醯基甘露糖胺(UDP-ManNAc)。 15. 如較佳實施方式1至14中任一項之方法,其中該核苷酸-糖係選自包含以下者之清單:GDP-Fuc、CMP-Neu5Ac、UDP-GlcNAc、UDP-Gal、UDP-N-乙醯基半乳糖胺(UDP-GalNAc)、UDP-N-乙醯基甘露糖胺(UDP-ManNAc)、GDP-甘露糖(GDP-Man)、UDP-葡萄糖(UDP-Glc)、UDP-2-乙醯胺基-2,6-二去氧--L-阿拉伯糖-4-己酮糖、UDP-2-乙醯胺基-2,6-二去氧--L-來蘇糖-4-己酮糖、UDP-N-乙醯基-L-鼠李糖胺(UDP-L-RhaNAc或UDP-2-乙醯胺基-2,6-二去氧-L-甘露糖)、dTDP-N-乙醯基岩藻糖胺、UDP-N-乙醯基岩藻糖胺(UDP-L-FucNAc或UDP-2-乙醯胺基-2,6-二去氧-L-半乳糖)、UDP-N-乙醯基-L-紐莫糖胺(UDP-L-PneNAC或UDP-2-乙醯胺基-2,6-二去氧-L-塔羅糖)、UDP-N-乙醯基胞壁酸、UDP-N-乙醯基-L-異鼠李糖胺(UDP-L-QuiNAc或UDP-2-乙醯胺基-2,6-二去氧-L-葡萄糖)、GDP-L-異鼠李糖、CMP-N-羥乙醯基神經胺酸(CMP-Neu5Gc)、CMP-Neu4Ac、CMP-Neu5Ac9N 3、CMP-Neu4,5Ac 2、CMP-Neu5,7Ac 2、CMP-Neu5,9Ac 2、CMP-Neu5,7(8,9)Ac 2、UDP-葡萄糖醛酸酯、UDP-半乳糖醛酸酯、GDP-鼠李糖、UDP-木糖。 16. 如較佳實施方式1至15中任一項之方法,其中該等受體中之任一者的聚合度為3或更多,較佳地其中該等受體中之全部的聚合度為3或更多。 17. 如較佳實施方式1至16中任一項之方法,其中所有該等受體均具有不同聚合度。 18. 如較佳實施方式1至17中任一項之方法,其中該培養補充有至少3種用於製造該寡醣混合物的受體,較佳補充有至少4種受體,更佳補充有至少5種受體。 19. 如較佳實施方式1至18中任一項之方法,其中該寡醣混合物包含至少一種寡醣,該至少一種寡醣經岩藻糖基化、唾液酸基化、半乳糖基化、葡萄糖基化、木糖基化、甘露糖基化、含有N-乙醯基葡萄糖胺、含有N-乙醯基神經胺酸、含有N-羥乙醯基神經胺酸、含有N-乙醯基半乳糖胺、含有鼠李糖、含有葡萄糖醛酸酯、含有半乳糖醛酸酯及/或含有N-乙醯基甘露糖胺。 20. 如較佳實施方式1至19中任一項之方法,其中該寡醣混合物包含帶電及/或中性寡醣,較佳地其中該等帶電寡醣中之至少一者為唾液酸基化寡醣。 21. 如較佳實施方式1至19中任一項之方法,其中該寡醣混合物包含岩藻糖基化及/或未岩藻糖基化中性寡醣。 22. 如較佳實施方式1至21中任一項之方法,其中該寡醣混合物包含至少一種岩藻糖基化寡醣。 23. 如較佳實施方式1至20中任一項之方法,其中該寡醣混合物包含至少一種唾液酸基化寡醣。 24. 如較佳實施方式1至23中任一項之方法,其中該寡醣混合物包含至少一種寡醣,該至少一種寡醣包含N-乙醯基葡萄糖胺單醣單元。 25. 如較佳實施方式1至24中任一項之方法,其中該寡醣混合物包含至少一種半乳糖基化寡醣。 26. 如較佳實施方式21之方法,其中該混合物中之所有該等寡醣皆為岩藻糖基化寡醣。 27. 如較佳實施方式1至26之方法,其中該細胞製造三種岩藻糖基化寡醣。 28. 如較佳實施方式1至27中任一項之方法,其中該等受體藉由包含自天然來源萃取、生物技術製程、物理製程、化學製程及其等之組合之方法製造。 29. 如較佳實施方式1至28中任一項之方法,其中該等受體中之任一者經完全轉化為該等寡醣中之任一者。 30. 如較佳實施方式1至29中任一項之方法,其中該細胞胞內製造至少兩種寡醣之該混合物,且其中該等所製造之寡醣之一部分或實質上全部保留在胞內及/或經由被動或主動運輸排出到該細胞外。 31. 如較佳實施方式1至30中任一項之方法,其中該細胞經進一步代謝工程改造以用於 i)內源膜蛋白之經修飾表現,及/或 ii)內源膜蛋白之經修飾活性,及/或 iii)同源膜蛋白之表現,及/或 iv)異源膜蛋白之表現, 其中該膜蛋白參與自該細胞分泌該等寡醣中之任一者,較佳地其中該膜蛋白參與自該細胞分泌該等寡醣中之全部。 32. 如較佳實施方式1至31中任一項之方法,其中該細胞經進一步代謝工程改造以用於 i)內源膜蛋白之經修飾表現,及/或 ii)內源膜蛋白之經修飾活性,及/或 iii)同源膜蛋白之表現,及/或 iv)異源膜蛋白之表現, 其中該膜蛋白參與吸收用於合成該混合物中之該等寡醣中之任一者的前驅物,較佳地其中該膜蛋白參與吸收所有所需前驅物,更佳地其中該膜蛋白參與吸收所有該等受體。 33. 如較佳實施方式31或32中任一項之方法,其中該膜蛋白係選自包含以下者之清單:搬運蛋白、P-P-鍵水解驅動之運輸蛋白、β-桶狀孔蛋白、輔助運輸蛋白、推定運輸蛋白及磷酸轉移驅動之基團移位蛋白, 較佳地,該等搬運蛋白包含MFS運輸蛋白、糖流出運輸蛋白及螯鐵蛋白輸出蛋白, 較佳地,該等P-P-鍵水解驅動之運輸蛋白包含ABC運輸蛋白及螯鐵蛋白輸出蛋白。 34. 如較佳實施方式31至33中任一項之方法,其中該膜蛋白提供至少兩種寡醣之該混合物的改善之製造及/或能夠實現及/或增強至少兩種寡醣之該混合物之流出。 35. 如較佳實施方式1至34中任一項之方法,其中該細胞在乳糖與一或多種其他碳源合併之環境中生長時抵抗乳糖殺滅現象。 36. 如較佳實施方式1至35中任一項之方法,其中與未經修飾之先驅細胞相比,該細胞包含用於減少乙酸鹽之產生的修飾。 37. 如較佳實施方式36之方法,其中與未經修飾之先驅細胞相比,該細胞包含降低或減少表現及/或消除、減弱、降低或延遲活性之包含以下者之蛋白質中之任一或多者:β-半乳糖苷酶、半乳糖苷O-乙醯基轉移酶、N-乙醯基葡萄糖胺-6-磷酸去乙醯酶、葡萄糖胺-6-磷酸脫胺酶、N-乙醯基葡萄糖胺抑制蛋白、核糖核苷酸單磷酸酶、EIICBA-Nag、UDP-葡萄糖:十一異戊烯基-磷酸葡萄糖-1-磷酸轉移酶、L-墨角藻糖激酶、L-岩藻糖異構酶、N-乙醯基神經胺酸解離酶、N-乙醯基甘露糖胺激酶、N-乙醯基甘露糖胺-6-磷酸2-表異構酶、EIIAB-Man、EIIC-Man、EIID-Man、ushA、半乳糖-1-磷酸尿苷醯基轉移酶、葡萄糖-1-磷酸腺苷醯基轉移酶、葡萄糖-1-磷酸酶、ATP依賴型6-磷酸果糖激酶同功酶1、ATP依賴型6-磷酸果糖激酶同功酶2、葡萄糖-6-磷酸異構酶、有氧呼吸控制蛋白、轉錄抑制蛋白IclR、lon蛋白酶、葡萄糖特異性移位磷酸轉移酶IIBC組分ptsG、葡萄糖特異性移位磷酸轉移酶(PTS)IIBC組分malX、酶IIA Glc、β-葡萄糖苷特異性PTS酶II、果糖特異性PTS多磷氧基轉移蛋白FruA及FruB、乙醇脫氫酶 醛脫氫酶、丙酮酸-甲酸解離酶、乙酸激酶、磷醯基轉移酶、磷酸乙醯基轉移酶、丙酮酸脫羧酶。 38. 如較佳實施方式1至37中任一項之方法,其中該細胞能夠製造磷酸烯醇丙酮酸鹽(phosphoenolpyruvate;PEP)。 39. 如較佳實施方式1至38中任一項之方法,其中與未經修飾之先驅細胞相比,該細胞經修飾用於增強磷酸烯醇丙酮酸鹽(PEP)之製造及/或供應。 40. 如較佳實施方式1至39中任一項之方法,其中該等寡醣中之任一者為哺乳動物乳寡醣,較佳地,其中所有該等寡醣皆為哺乳動物乳寡醣。 41. 如較佳實施方式1至40中任一項之方法,其中該寡醣中之任一者為人類ABO血型系統之抗原,較佳地其中所有該等寡醣皆為人類ABO血型系統之抗原。 42. 如較佳實施方式1至41中任一項之方法,其中該細胞為細菌、真菌、酵母菌、植物細胞、動物細胞或原蟲細胞, -較佳地,該細菌為大腸桿菌( Escherichia coli)菌株,更佳為K-12菌株之大腸桿菌菌株,甚至更佳大腸桿菌K-12菌株為大腸桿菌MG1655, -較佳地,該真菌屬於選自包含以下者之群的屬:根黴菌屬( Rhizopus)、網柄菌屬( Dictyostelium)、青黴菌屬( Penicillium)、白黴菌屬( Mucor)或麴菌屬( Aspergillus), -較佳地,該酵母菌屬於選自包含以下者之群的屬:酵母菌屬( Saccharomyces)、接合酵母屬( Zygosaccharomyces)、畢赤酵母屬( Pichia)、駒形氏酵母屬( Komagataella)、漢森酵母屬( Hansenula)、亞羅酵母屬( Yarrowia)、斯塔莫酵母屬( Starmerella)、克魯維酵母屬( Kluyveromyces)或德巴利酵母屬( Debaromyces), -較佳地,該植物細胞為藻類細胞或衍生自菸草、苜蓿、稻、番茄、棉花、菜籽、大豆、玉蜀黍或玉米植物, -較佳地,該動物細胞衍生自非人類哺乳動物、鳥類、魚類、無脊椎動物、爬行動物、兩棲動物或昆蟲,或為衍生自不包括胚胎幹細胞之人類細胞的經遺傳修飾之細胞系,更佳地該人類及非人類哺乳動物細胞為上皮細胞、胚胎腎細胞、纖維母細胞、COS細胞、中國倉鼠卵巢(Chinese hamster ovary;CHO)細胞、鼠類骨髓瘤細胞、NIH-3T3細胞、非乳腺成體幹細胞或其衍生物,更佳地該昆蟲細胞衍生自斜紋夜盜蟲( Spodoptera frugiperda)、家蠶( Bombyx mori)、甘藍夜蛾( Mamestra brassicae)、粉紋夜蛾( Trichoplusia ni)或黑腹果蠅( Drosophila melanogaster), -較佳地,該原蟲細胞為蜥蜴利什曼原蟲( Leishmania tarentolae)細胞。 43. 如較佳實施方式42之方法,其中與未經修飾之先驅細胞相比,該細胞為存活的革蘭氏陰性細菌(Gram-negative bacterium),該細菌包含減少或消除合成之聚-N-乙醯基-葡萄糖胺(poly-N-acetyl-glucosamine;PNAG)、腸內菌共同抗原(Enterobacterial Common Antigen;ECA)、纖維素、可拉酸、核寡醣、滲透調節周質葡聚糖(Osmoregulated Periplasmic Glucan;OPG)、甘油葡萄糖苷、聚醣及/或繭蜜糖。 44. 如較佳實施方式1至43中任一項之方法,其中該分離包含以下步驟中之至少一者:澄清、超過濾、奈米過濾、二相分配、逆滲透、微過濾、活性炭或碳處理、用非離子界面活性劑處理、酶消化、切向流高效能過濾、切向流超過濾、親和層析、離子交換層析、疏水性相互作用層析及/或凝膠過濾、配位體交換層析。 45. 如較佳實施方式1至44中任一項之方法,其進一步包含自該細胞純化該等寡醣中之任一者。 46. 如較佳實施方式45之方法,其中該純化包含以下步驟中之至少一者:使用活性炭或碳;使用木炭、奈米過濾、超過濾、電泳、酶處理或離子交換;使用醇;使用水醇混合物;結晶;蒸發;沈澱;乾燥,噴霧乾燥、凍乾、噴霧冷凍乾燥、冷凍噴霧乾燥、條帶式乾燥(band drying)、帶式乾燥(belt drying)、真空條帶式乾燥、真空帶式乾燥、轉筒乾燥、滾筒乾燥、真空轉筒乾燥或真空滾筒乾燥。 47. 一種如較佳實施方式1至46中任一項之方法之用途,其用於製造至少兩種不同寡醣之混合物。 Other advantages follow specific implementations, examples and accompanying drawings. It goes without saying that the features mentioned above and those still to be explained below can be used not only in the respectively specified combination but also in other combinations or independently without departing from the scope of the present invention. The present invention relates to the following specific embodiments: 1. A method for producing a mixture of at least two different oligosaccharides by cells, the method comprising the steps of: i. providing a glycosyltransferase expressing a glycosyltransferase capable of synthesizing a nucleotide- A cell of sugar, wherein the nucleotide-sugar is a donor for the glycosyltransferase, and ii. culturing the cell under conditions that allow expression of the glycosyltransferase and synthesis of the nucleotide-sugar, and iii. adding at least two receptors to the culture so that the cells can produce at least two oligosaccharides, preferably, any one of these receptors is a disaccharide or an oligosaccharide, iv. preferably, At least one of the oligosaccharides is isolated from the culture, more preferably, all of the oligosaccharides are isolated from the culture. 2. The method of embodiment 1, wherein the cell is a metabolically engineered cell modified with at least one gene expression module, wherein the expression from any one of the at least one expression module is persistent or borrowed. Produced by natural inducers. 3. The method of any one of embodiments 1 or 2, wherein the cell produces a mixture of three or more different oligosaccharides. 4. The method of any one of embodiments 1 to 3, wherein the cell produces a mixture of different oligosaccharides, wherein at least two of the oligosaccharides differ in degree of polymerization. 5. The method of any one of embodiments 1 to 4, wherein the glycosyltransferase is selected from a list comprising: fucosyltransferase, sialyltransferase, galactosyltransferase, glucose Syltransferase, Mannosyltransferase, N-Acetylglucosaminyltransferase, N-Acetylgalactosaminyltransferase, N-Acetylmannosyltransferase, Xylosyltransferase , glucuronidyl transferase, galacturonyl transferase, glucosamine transferase, N-hydroxyacetyl neuroaminotransferase, rhamnosyl transferase. 6. The method of any one of embodiments 1 to 5, wherein the cell is modified in the expression or activity of the glycosyltransferase. 7. The method of any one of embodiments 1 to 6, wherein the glycosyltransferase is a fucosyltransferase and the donor nucleotide-sugar is GDP-fucose (GDP-Fuc). 8. The method of any one of embodiments 1 to 7, wherein the glycosyltransferase is a sialyltransferase and the donor nucleotide-sugar is CMP-N-acetylneuraminic acid (CMP-Neu5Ac ). 9. The method of any one of embodiments 1 to 8, wherein the glycosyltransferase is N-acetylglucosaminyltransferase and the donor nucleotide-sugar is UDP-N-acetylglucosamine Amine (UDP-GlcNAc). 10. The method of any one of embodiments 1 to 9, wherein the glycosyltransferase is a galactosyltransferase and the donor nucleotide-sugar is UDP-galactose (UDP-Gal). 11. The method of any one of embodiments 1 to 10, wherein the nucleotide-sugar is selected from a list comprising GDP-Fuc, CMP-Neu5Ac, UDP-GlcNAc, UDP-Gal, UDP-N -Acetylgalactosamine (UDP-GalNAc), UDP-N-acetylmannosamine (UDP-ManNAc), GDP-mannose (GDP-Man), UDP-glucose (UDP-Glc), CMP- N-hydroxyacetylneuraminic acid (CMP-Neu5Gc), UDP-glucuronate, UDP-galacturonate, GDP-rhamnose, UDP-xylose. 12. The method of any one of embodiments 1 to 11, wherein the degree of polymerization of any of the receptors is 3 or more, preferably all of the receptors have a degree of polymerization of 3 Or more. 13. The method of any one of embodiments 1 to 12, wherein all of the receptors have different degrees of polymerization. 14. The method of any one of embodiments 1 to 13, wherein the culture is supplemented with at least 3 receptors for making the oligosaccharide mixture. 15. The method of any one of embodiments 1 to 14, wherein the oligosaccharide mixture comprises at least one oligosaccharide that is fucosylated, sialylated, galactosylated, glucosyl Glucosylation, Xylosylation, Mannosylation, with N-acetylglucosamine, with N-acetylneuraminic acid, with N-hydroxyacetylneuraminic acid, with N-acetylgalactose Amine, containing rhamnose, containing glucuronide, containing galacturonate, and/or containing N-acetylmannosamine. 16. The method of any one of embodiments 1 to 15, wherein the oligosaccharide mixture comprises at least one fucosylated oligosaccharide. 17. The method of any one of embodiments 1 to 16, wherein the oligosaccharide mixture comprises at least one sialylated oligosaccharide. 18. The method of any one of embodiments 1 to 17, wherein the oligosaccharide mixture comprises at least one oligosaccharide comprising N-acetylglucosamine monosaccharide units. 19. The method of any one of embodiments 1 to 18, wherein the oligosaccharide mixture comprises at least one galactosylated oligosaccharide. 20. The method of any one of embodiments 1 to 16, wherein all of the oligosaccharides in the mixture are fucosylated oligosaccharides. 21. The method of embodiments 1 to 16 and 20, wherein the cell produces three fucosylated oligosaccharides. 22. The method of any one of embodiments 1-21, wherein the receptors are manufactured by a method comprising extraction from natural sources, biotechnological processes, physical processes, chemical processes, and combinations thereof. 23. The method of any one of embodiments 1-22, wherein any of the receptors is fully converted to any of the oligosaccharides. 24. The method of any one of embodiments 1 to 23, wherein the cell is further metabolically engineered for i) modified expression of endogenous membrane proteins, and/or ii) modified activity of endogenous membrane proteins , and/or iii) the expression of a homologous membrane protein, and/or iv) the expression of a heterologous membrane protein, wherein the membrane protein is involved in the secretion of any of the oligosaccharides from the cell, preferably wherein the membrane The protein is involved in the secretion of all of the oligosaccharides from the cell. 25. The method of any one of embodiments 1 to 24, wherein the cell is further metabolically engineered for i) modified expression of endogenous membrane proteins, and/or ii) modified activity of endogenous membrane proteins , and/or iii) the expression of a homologous membrane protein, and/or iv) the expression of a heterologous membrane protein, wherein the membrane protein is involved in the uptake of precursors for the synthesis of any of the oligosaccharides in the mixture , preferably wherein the membrane protein is involved in the absorption of all desired precursors, more preferably wherein the membrane protein is involved in the absorption of all the receptors. 26. The method of any one of embodiments 1 to 25, wherein any of the oligosaccharides is a mammalian milk oligosaccharide, preferably wherein all of the oligosaccharides are mammalian milk oligosaccharides. 27. The method of any one of embodiments 1 to 25, wherein any one of the oligosaccharides is an antigen of the human ABO blood group system, preferably wherein all of the oligosaccharides are antigens of the human ABO blood group system. 28. The method of any one of embodiments 1 to 27, wherein the cell line is selected from the group consisting of microorganisms, plants or animal cells, preferably the microorganisms are bacteria, fungi or yeasts, preferably the plants are rice, Cotton, rapeseed, soybean, maize or corn plants, preferably the animal is an insect, fish, bird or non-human mammal, preferably the animal cell is a mammalian cell line. 29. The method of any one of embodiments 1 to 28, wherein the cell is a bacterium, preferably a strain of Escherichia coli, more preferably a cell of a strain of Escherichia coli of strain K-12, even more preferably strain of Escherichia coli K-12 For Escherichia coli MG1655. 30. The method of any one of embodiments 1 to 28, wherein the cell is a yeast cell. 31. The method of any one of embodiments 1 to 30, wherein the separation comprises at least one of the following steps: clarification, ultrafiltration, nanofiltration, reverse osmosis, microfiltration, activated carbon or carbon treatment, tangential flow High performance filtration, tangential flow ultrafiltration, affinity chromatography, ion exchange chromatography, hydrophobic interaction chromatography and/or gel filtration, ligand exchange chromatography. 32. The method of any one of embodiments 1 to 31, further comprising purifying any of the oligosaccharides from the cell. 33. The method of any one of embodiments 1 to 32, wherein the purification comprises at least one of the following steps: using activated carbon or carbon; using charcoal, nanofiltration, ultrafiltration or ion exchange; using alcohol; using water Alcohol mixture; crystallization; evaporation; precipitation; drying, spray drying or lyophilization. 34. Use of the method of any one of embodiments 1 to 33 for the manufacture of a mixture of at least two different oligosaccharides. Furthermore, the present invention relates to the following preferred specific embodiments: 1. A method for producing a mixture of at least two different oligosaccharides by a cell, preferably a single cell, the method comprising the steps of: i. providing a method capable of expressing transglycosylation Enzymes and cells capable of synthesizing a nucleotide-sugar, preferably a single cell, wherein the nucleotide-sugar is a donor for the glycosyltransferase, and ii. in allowing expression of the glycosyltransferase and synthesis of the culturing the cell under nucleotide-sugar conditions, and iii. adding at least two receptors to the culture such that the cell is capable of producing at least two oligosaccharides, preferably any of the receptors Is a disaccharide or an oligosaccharide, iv. Preferably, at least one of the oligosaccharides is isolated from the culture, more preferably, all of the oligosaccharides are isolated from the culture. 2. as the method of preferred embodiment 1, wherein any one of these receptors is a disaccharide or mammalian milk oligosaccharide (mammalian milk oligosaccharide; MMO), preferably, any one of these receptors The one is mammalian milk oligosaccharide. 3. The method of any one of preferred embodiments 1 or 2, wherein the cell is a cell that has been metabolically engineered to produce the mixture and/or is modified with at least one gene expression module from which the at least one expression model is derived. The performance of any of the groups is either persistent or produced by natural inducers. 4. The method of any one of preferred embodiments 1 to 3, wherein the cell comprises multiple copies of the same coding DNA sequence encoding a protein. 5. The method of any one of preferred embodiments 1 to 4, wherein the cell produces a mixture of three or more different oligosaccharides. 6. The method of any one of preferred embodiments 1 to 5, wherein the cell produces a mixture of different oligosaccharides, wherein at least two oligosaccharides differ in degree of polymerization. 7. The method of any one of preferred embodiments 1 to 6, wherein the glycosyltransferase is selected from a list comprising: fucosyltransferase, sialyltransferase, galactosyltransferase , Glucosyltransferase, Mannosyltransferase, N-Acetylglucosaminyltransferase, N-Acetylgalactosaminyltransferase, N-Acetylmannosyltransferase, Xylosyl Transferase, glucuronyltransferase, galacturonyltransferase, glucosaminyltransferase, N-hydroxyacetylneuramidotransferase, rhamnosyltransferase, N-acetyl rhamnosyl Glycosyltransferase, UDP-4-amino-4,6-dideoxy-N-acetyl-β-L-altrosamine transaminase, UDP-N-acetylglucosamine Enolacetonyltransferase and fucosyltransferase, - preferably, the fucosyltransferase is selected from the list comprising: α-1,2-fucosyltransferase, α-1,3-fucosyltransferase, α-1,4-fucosyltransferase and α-1,6-fucosyltransferase, - preferably, the sialyltransferase is selected from the list comprising α-2,3-sialyltransferase, α-2,6-sialyltransferase and α-2,8-sialyltransferase, - preferably, The galactosyltransferase is selected from the list comprising: β-1,3-galactosyltransferase, N-acetylglucosamine β-1,3-galactosyltransferase, β-1,3-galactosyltransferase 4-Galactosyltransferase, N-acetylglucosamine β-1,4-galactosyltransferase, α-1,3-galactosyltransferase and α-1,4-galactosyltransferase , - preferably, the glucosyltransferase is selected from the list comprising: α-glucosyltransferase, β-1,2-glucosyltransferase, β-1,3-glucosyltransferase and β-glucosyltransferase - 1,4-glucosyltransferase, - preferably, the mannosyltransferase is selected from the list comprising: α-1,2-mannosyltransferase, α-1,3-mannose Syltransferase and α-1,6-mannosyltransferase, - preferably, the N-acetylglucosaminyltransferase is selected from the list comprising: galactoside β-1,3- N-acetylglucosaminyltransferase and β-1,6-N-acetylglucosaminyltransferase, - preferably, the N-acetylgalactosaminyltransferase is α-1, 3-N-Acetylgalactosaminyltransferase. 8. The method of any one of preferred embodiments 1 to 7, wherein the cell is modified in the expression or activity of the glycosyltransferase. 9. The method of any one of preferred embodiments 1 to 8, wherein the glycosyltransferase is a fucosyltransferase and the donor nucleotide-sugar is GDP-fucose (GDP-Fuc) . 10. The method of any one of the preferred embodiments 1 to 9, wherein the glycosyltransferase is a sialyltransferase and the donor nucleotide-sugar is CMP-N-acetylneuraminic acid (CMP). -Neu5Ac). 11. The method of any one of preferred embodiments 1 to 10, wherein the glycosyltransferase is N-acetylglucosaminyltransferase and the donor nucleotide-sugar is UDP-N-acetyl Glucosamine (UDP-GlcNAc). 12. The method of any one of preferred embodiments 1 to 11, wherein the glycosyltransferase is a galactosyltransferase and the donor nucleotide-sugar is UDP-galactose (UDP-Gal). 13. The method of any one of preferred embodiments 1 to 12, wherein the glycosyltransferase is N-acetylgalactosamine transferase and the donor nucleotide-sugar is UDP-N-ethyl Acylgalactosamine (UDP-GalNAc). 14. The method of any one of preferred embodiments 1 to 13, wherein the glycosyltransferase is N-acetylmannosylaminotransferase and the donor nucleotide-sugar is UDP-N-ethyl Acylmannosamine (UDP-ManNAc). 15. The method of any one of preferred embodiments 1 to 14, wherein the nucleotide-sugar is selected from a list comprising the following: GDP-Fuc, CMP-Neu5Ac, UDP-GlcNAc, UDP-Gal, UDP -N-Acetylgalactosamine (UDP-GalNAc), UDP-N-Acetylmannosamine (UDP-ManNAc), GDP-Mannose (GDP-Man), UDP-Glucose (UDP-Glc), UDP-2-acetamido-2,6-dideoxy--L-arabinose-4-hexulose, UDP-2-acetamido-2,6-dideoxy--L-to Throse-4-hexulose, UDP-N-acetyl-L-rhamnosamine (UDP-L-RhaNAc or UDP-2-acetylamino-2,6-dideoxy-L-mannan sugar), dTDP-N-acetylfucosamine, UDP-N-acetylfucosamine (UDP-L-FucNAc or UDP-2-acetamido-2,6-dideoxy- L-galactose), UDP-N-acetyl-L-neumosamine (UDP-L-PneNAC or UDP-2-acetylamino-2,6-dideoxy-L-talose) , UDP-N-Acetylmuramic acid, UDP-N-Acetyl-L-Isorhamnosamine (UDP-L-QuiNAc or UDP-2-Acetylamino-2,6-dideoxy -L-glucose), GDP-L-isorhamnose, CMP-N-hydroxyacetylneuraminic acid (CMP-Neu5Gc), CMP-Neu4Ac, CMP-Neu5Ac9N 3 , CMP-Neu4,5Ac 2 , CMP- Neu5,7Ac 2 , CMP-Neu5,9Ac 2 , CMP-Neu5,7(8,9)Ac 2 , UDP-glucuronate, UDP-galacturonate, GDP-rhamnose, UDP-xylose . 16. The method of any one of preferred embodiments 1 to 15, wherein the degree of polymerization of any one of these acceptors is 3 or more, preferably wherein the degree of polymerization of all of these acceptors for 3 or more. 17. The method of any one of preferred embodiments 1 to 16, wherein all the receptors have different degrees of polymerization. 18. The method of any one of preferred embodiments 1 to 17, wherein the culture is supplemented with at least 3 receptors for the manufacture of the oligosaccharide mixture, preferably with at least 4 receptors, more preferably with At least 5 receptors. 19. The method of any one of preferred embodiments 1 to 18, wherein the oligosaccharide mixture comprises at least one oligosaccharide that is fucosylated, sialylated, galactosylated, Glycosylation, Xylosylation, Mannosylation, with N-acetylglucosamine, with N-acetylneuraminic acid, with N-hydroxyacetylneuraminic acid, with N-acetylneuraminic acid Galactosamine, containing rhamnose, containing glucuronic acid ester, containing galacturonic acid ester, and/or containing N-acetylmannosamine. 20. The method of any one of preferred embodiments 1 to 19, wherein the oligosaccharide mixture comprises charged and/or neutral oligosaccharides, preferably wherein at least one of these charged oligosaccharides is a sialic acid group Oligosaccharides. 21. The method of any one of preferred embodiments 1 to 19, wherein the oligosaccharide mixture comprises fucosylated and/or unfucosylated neutral oligosaccharides. 22. The method of any one of preferred embodiments 1 to 21, wherein the oligosaccharide mixture comprises at least one fucosylated oligosaccharide. 23. The method of any one of preferred embodiments 1 to 20, wherein the oligosaccharide mixture comprises at least one sialylated oligosaccharide. 24. The method of any one of preferred embodiments 1 to 23, wherein the oligosaccharide mixture comprises at least one oligosaccharide comprising N-acetylglucosamine monosaccharide units. 25. The method of any one of preferred embodiments 1 to 24, wherein the oligosaccharide mixture comprises at least one galactosylated oligosaccharide. 26. The method of preferred embodiment 21, wherein all the oligosaccharides in the mixture are fucosylated oligosaccharides. 27. The method of preferred embodiments 1 to 26, wherein the cell produces three fucosylated oligosaccharides. 28. The method of any one of preferred embodiments 1 to 27, wherein the receptors are manufactured by a method comprising extraction from natural sources, biotechnological processes, physical processes, chemical processes, and combinations thereof. 29. The method of any one of preferred embodiments 1 to 28, wherein any of the receptors is fully converted to any of the oligosaccharides. 30. The method of any one of preferred embodiments 1 to 29, wherein the cell intracellularly manufactures the mixture of at least two oligosaccharides, and wherein a part or substantially all of the manufactured oligosaccharides remain in the cell. are excreted inside and/or outside the cell via passive or active transport. 31. The method of any one of preferred embodiments 1 to 30, wherein the cell is further metabolically engineered for i) modified expression of endogenous membrane proteins, and/or ii) modified expression of endogenous membrane proteins. modification activity, and/or iii) expression of homologous membrane proteins, and/or iv) expression of heterologous membrane proteins, wherein the membrane proteins are involved in the secretion of any of the oligosaccharides from the cell, preferably wherein The membrane protein is involved in the secretion of all of the oligosaccharides from the cell. 32. The method of any one of preferred embodiments 1 to 31, wherein the cell is further metabolically engineered for i) modified expression of endogenous membrane proteins, and/or ii) modified expression of endogenous membrane proteins. Modification activity, and/or iii) expression of homologous membrane proteins, and/or iv) expression of heterologous membrane proteins, wherein the membrane proteins are involved in uptake of any of the oligosaccharides used in the synthesis of the mixture Precursors, preferably wherein the membrane protein is involved in the absorption of all desired precursors, more preferably wherein the membrane protein is involved in the absorption of all the receptors. 33. The method of any one of preferred embodiments 31 or 32, wherein the membrane protein is selected from the list comprising: transporter protein, PP-bond hydrolysis-driven transporter protein, β-barrel porin, auxin Transport proteins, putative transport proteins and phosphate transfer driven group translocation proteins, preferably, these transport proteins include MFS transport proteins, sugar efflux transport proteins and chelatin export proteins, preferably, these PP-bonds Hydrolysis-driven transport proteins include ABC transport proteins and chelatin export proteins. 34. The method of any one of preferred embodiments 31 to 33, wherein the membrane protein provides an improved manufacture of the mixture of at least two oligosaccharides and/or can achieve and/or enhance this mixture of at least two oligosaccharides. outflow of the mixture. 35. The method of any one of preferred embodiments 1 to 34, wherein the cells are resistant to lactose killing when grown in an environment where lactose is combined with one or more other carbon sources. 36. The method of any one of preferred embodiments 1 to 35, wherein the cell comprises a modification for reducing acetate production compared to an unmodified precursor cell. 37. The method of preferred embodiment 36, wherein the cell comprises any one of the following proteins comprising reduced or reduced expression and/or eliminated, attenuated, reduced or delayed activity compared to unmodified precursor cells or more: β-galactosidase, galactoside O-acetyltransferase, N-acetylglucosamine-6-phosphate deacetylase, glucosamine-6-phosphate deaminase, N- Acetyl glucosamine arrestin, ribonucleotide monophosphatase, EIICBA-Nag, UDP-glucose:undecyl isopentenyl-phosphoglucose-1-phosphotransferase, L-fucokinase, L- Fucose Isomerase, N-Acetyl Neuraminidase Lysase, N-Acetyl Mannosamine Kinase, N-Acetyl Mannosamine-6-Phosphate 2-Epimerase, EIIAB-Man , EIIC-Man, EIID-Man, ushA, galactose-1-phosphate uridine transferase, glucose-1-phosphate adenosyltransferase, glucose-1-phosphatase, ATP-dependent fructose-6-phosphate Kinase isoenzyme 1, ATP-dependent 6-phosphofructokinase isoenzyme 2, glucose-6-phosphate isomerase, aerobic respiration control protein, transcriptional repressor protein IclR, lon protease, glucose-specific translocation phosphotransferase IIBC component ptsG, glucose-specific translocation phosphotransferase (PTS) IIBC component malX, enzyme IIA Glc , β-glucoside-specific PTS enzyme II, fructose-specific PTS polyphosphooxytransferase FruA and FruB, ethanol Dehydrogenase Aldehyde dehydrogenase, pyruvate-formate lyase, acetate kinase, phosphoacetyltransferase, phosphoacetyltransferase, pyruvate decarboxylase. 38. The method of any one of preferred embodiments 1 to 37, wherein the cell is capable of producing phosphoenolpyruvate (phosphoenolpyruvate; PEP). 39. The method of any one of preferred embodiments 1 to 38, wherein the cell is modified for enhanced production and/or supply of phosphoenolpyruvate (PEP) compared to unmodified precursor cells . 40. The method of any one of preferred embodiments 1 to 39, wherein any one of these oligosaccharides is a mammalian milk oligosaccharide, preferably, wherein all of these oligosaccharides are mammalian milk oligosaccharides sugar. 41. The method of any one of preferred embodiments 1 to 40, wherein any one of the oligosaccharides is an antigen of the human ABO blood group system, preferably wherein all of the oligosaccharides are of the human ABO blood group system. antigen. 42. The method of any one of preferred embodiments 1 to 41, wherein the cell is a bacterium, a fungus, a yeast, a plant cell, an animal cell or a protozoan cell, - preferably, the bacterium is Escherichia coli ( Escherichia coli ) strain, more preferably an E. coli strain of the K-12 strain, even more preferably the E. coli K-12 strain is E. coli MG1655, - preferably, the fungus belongs to a genus selected from the group comprising: Rhizopus Genus Rhizopus , Dictyostelium , Penicillium , Mucor or Aspergillus , - preferably, the yeast belongs to the group selected from the group consisting of Genera: Saccharomyces , Zygosaccharomyces , Pichia , Komagataella , Hansenula , Yarrowia , St. Starmerella ( Starmerella ), Kluyveromyces ( Kluyveromyces ) or Debaromyces ( Debaromyces ), - preferably, the plant cell is an algal cell or is derived from tobacco, alfalfa, rice, tomato, cotton, rapeseed, soybean, maize or corn plants, - preferably, the animal cells are derived from non-human mammals, birds, fish, invertebrates, reptiles, amphibians or insects, or are derived from excluding embryonic stem cells Genetically modified cell lines of human cells, preferably the human and non-human mammalian cells are epithelial cells, embryonic kidney cells, fibroblasts, COS cells, Chinese hamster ovary (CHO) cells, murine Myeloma cells, NIH-3T3 cells, non-mammary adult stem cells or derivatives thereof, more preferably the insect cells are derived from Spodoptera frugiperda , Bombyx mori , Mamestra brassicae , Trichoplusia ni or Drosophila melanogaster , - preferably, the protozoal cell is a Leishmania tarentolae cell. 43. The method of preferred embodiment 42, wherein the cell is a viable Gram-negative bacterium comprising reduced or eliminated synthetic poly-N compared to unmodified precursor cells -Acetyl-glucosamine (poly-N-acetyl-glucosamine; PNAG), Enterobacterial Common Antigen (ECA), cellulose, kolaric acid, ribo-oligosaccharide, osmoregulatory periplasmic glucan (Osmoregulated Periplasmic Glucan; OPG), glycerol glucoside, polysaccharide and/or cocoon sugar. 44. The method of any one of preferred embodiments 1 to 43, wherein the separation comprises at least one of the following steps: clarification, ultrafiltration, nanofiltration, two-phase partition, reverse osmosis, microfiltration, activated carbon or Carbon treatment, treatment with nonionic surfactants, enzymatic digestion, tangential flow high performance filtration, tangential flow ultrafiltration, affinity chromatography, ion exchange chromatography, hydrophobic interaction chromatography and/or gel filtration, Bit Exchange Chromatography. 45. The method of any one of preferred embodiments 1 to 44, further comprising purifying any of the oligosaccharides from the cell. 46. The method of preferred embodiment 45, wherein the purification comprises at least one of the following steps: using activated carbon or carbon; using charcoal, nanofiltration, ultrafiltration, electrophoresis, enzymatic treatment or ion exchange; using alcohol; using Hydroalcoholic Mixtures; Crystallization; Evaporation; Precipitation; Drying, Spray Drying, Freeze Drying, Spray Freeze Drying, Freeze Spray Drying, Band Drying, Belt Drying, Vacuum Belt Drying, Vacuum Belt drying, tumble drying, tumble drying, vacuum tumble drying or vacuum tumble drying. 47. Use of the method of any one of preferred embodiments 1 to 46 for the manufacture of a mixture of at least two different oligosaccharides.

本發明將在實施例中更詳細地描述。以下實施例將充當本發明之進一步說明及闡明,且並不意欲為限制性的。 實施例 實施例 1. 大腸桿菌之材料及方法 培養基 The invention will be described in more detail in the examples. The following examples serve to further illustrate and illustrate the invention and are not intended to be limiting. EXAMPLES Example 1. Materials and Methods of Escherichia coli Culture Medium

魯利亞培養液(Luria Broth;LB)培養基係由1%胰腖(Difco,比利時埃倫博德海姆(Erembodegem, Belgium))、0.5%酵母萃取物(Difco)及0.5%氯化鈉(VWR,比利時魯汶(Leuven, Belgium))組成。培養實驗中在96孔盤或搖瓶中使用之基本培養基含有2.00 g/L NH4Cl、5.00 g/L (NH4)2SO4、2.993 g/L KH2PO4、7.315 g/L K2HPO4、8.372 g/L MOPS、0.5 g/L NaCl、0.5 g/L MgSO4.7H2O、30 g/L蔗糖或30 g/L甘油、1 ml/L維生素溶液、100 µl/L鉬酸鹽溶液及1 mL/L硒溶液。如各別實施例中所指定,將20 g/L乳糖、20 g/L 2'FL、20 g/L 3-FL、20 g/L 3'SL、20 g/L 6'SL、20 g/L LacNAc及/或20 g/L LNB作為受體另外添加至培養基中。使用1M KOH將基本培養基設定為pH 7。維生素溶液係由3.6 g/L FeCl2.4H2O、5 g/L CaCl2.2H2O、1.3 g/L MnCl2.2H2O、0.38 g/L CuCl2.2H2O、0.5 g/L CoCl2.6H2O、0.94 g/L ZnCl2、0.0311 g/L H3BO4、0.4 g/L Na2EDTA.2H2O及1.01 g/L硫胺.HCl組成。鉬酸鹽溶液含有0.967 g/L NaMoO4.2H2O。硒溶液含有42 g/L Seo2。Luria Broth (LB) medium was composed of 1% pancreas (Difco, Erembodegem, Belgium), 0.5% yeast extract (Difco) and 0.5% sodium chloride ( VWR, Leuven, Belgium). The minimal medium used in 96-well plates or shake flasks in culture experiments contains 2.00 g/L NH4Cl, 5.00 g/L (NH4)2SO4, 2.993 g/L KH2PO4, 7.315 g/L K2HPO4, 8.372 g/L MOPS, 0.5 g/L NaCl, 0.5 g/L MgSO4.7H2O, 30 g/L sucrose or 30 g/L glycerol, 1 ml/L vitamin solution, 100 µl/L molybdate solution and 1 mL/L selenium solution. As specified in the respective examples, 20 g/L Lactose, 20 g/L 2'FL, 20 g/L 3-FL, 20 g/L 3'SL, 20 g/L 6'SL, 20 g/L /L LacNAc and/or 20 g/L LNB were additionally added to the medium as acceptors. Minimal medium was set to pH 7 using 1M KOH. The vitamin solution is composed of 3.6 g/L FeCl2.4H2O, 5 g/L CaCl2.2H2O, 1.3 g/L MnCl2.2H2O, 0.38 g/L CuCl2.2H2O, 0.5 g/L CoCl2.6H2O, 0.94 g/L ZnCl2, 0.0311 g/L H3BO4, 0.4 g/L Na2EDTA.2H2O and 1.01 g/L thiamine.HCl. The molybdate solution contained 0.967 g/L NaMoO4.2H2O. The selenium solution contained 42 g/L Seo2.

用於醱酵之基本培養基含有6.75 g/L NH4Cl、1.25 g/L (NH4)2SO4、2.93 g/L KH2PO4及7.31 g/L KH2PO4、0.5 g/L NaCl、0.5 g/L MgSO4.7H2O、30 g/L蔗糖或30 g/L甘油、1 mL/L維生素溶液、100 µL/L鉬酸鹽溶液及1 mL/L硒溶液,其組成與上文所描述相同。如各別實施例中所指定,將20 g/L乳糖、20 g/L 2'FL、20 g/L 3-FL、20 g/L 3'SL、20 g/L LacNAc及/或20 g/L LNB作為受體另外添加至培養基中。The basic medium for fermentation contains 6.75 g/L NH4Cl, 1.25 g/L (NH4)2SO4, 2.93 g/L KH2PO4 and 7.31 g/L KH2PO4, 0.5 g/L NaCl, 0.5 g/L MgSO4.7H2O, 30 g/L sucrose or 30 g/L glycerol, 1 mL/L vitamin solution, 100 µL/L molybdate solution, and 1 mL/L selenium solution with the same composition as described above. 20 g/L Lactose, 20 g/L 2'FL, 20 g/L 3-FL, 20 g/L 3'SL, 20 g/L LacNAc and/or 20 g as specified in the respective Examples /L LNB was additionally added to the medium as acceptor.

藉由高壓處理(121℃,21 min)對複合培養基進行滅菌及藉由過濾(0.22 µm Sartorius)對基本培養基進行滅菌。必要時,藉由添加抗生素使培養基具有選擇性:例如氯黴素(20 mg/L)、卡本西林(100 mg/L)、觀黴素(40 mg/L)及/或康黴素(50 mg/L)。 質體 The complex medium was sterilized by autoclaving (121°C, 21 min) and the minimal medium by filtration (0.22 µm Sartorius). If necessary, make the medium selective by adding antibiotics such as chloramphenicol (20 mg/L), carbencillin (100 mg/L), spectinomycin (40 mg/L) and/or kanamycin ( 50 mg/L). plastid

pKD46(Red輔助質體,安比西林抗性)、pKD3(含有FRT側接氯黴素抗性(cat)基因)、pKD4(含有FRT側接康黴素抗性(kan)基因)及pCP20(表現FLP重組酶活性)質體獲自R. Cunin教授(比利時布魯塞爾自由大學(Vrije Universiteit Brussel, Belgium),2007)。將質體保持在購自Invitrogen之宿主大腸桿菌DH5α(F -、phi80d lacZΔM15、Δ( lacZYA- argF) U169、 deoRrecA1endA1、hsdR17(rk -, mk +)、 phoAsupE44、λ -thi-1、 gyrA96relA1)中。 菌株及突變 pKD46 (Red helper plastid, ampicillin resistance), pKD3 (contains FRT flanked by chloramphenicol resistance (cat) gene), pKD4 (contains FRT flanked by kanamycin resistance (kan) gene) and pCP20 (expressed FLP recombinase activity) plastids were obtained from Prof. R. Cunin (Vrije Universiteit Brussel, Belgium, 2007). Plastids were maintained in host E. coli DH5α (F , phi80d lacZΔM15 , Δ( lacZYAargF ) U169, deoR , recA1 , endA1 , hsdR17(rk , mk + ), phoA , supE44 , λ , purchased from Invitrogen , thi -1, gyrA96 , rel A1). Strains and Mutations

大腸桿菌K12 MG1655[λ -、F -、rph-1]係於2007年3月獲自大腸桿菌基因儲備中心(美國),CGSC菌株編號:7740。基因破壞、基因引入及基因置換係使用Datsenko及Wanner(PNAS 97 (2000), 6640-6645)公開之技術進行。此技術基於藉由λ Red重組酶進行同源重組之後的抗生素選擇。翻轉酶重組酶之後續催化確保在最終產生菌株中移除抗生素選擇卡匣。攜帶Red輔助質體pKD46之轉型體在30℃下在10 mL含安比西林(100 mg/L)及L-阿拉伯糖(10 mM)之LB培養基中生長至OD 600nm為0.6。藉由第一次用50 mL冰冷水且第二次用1 mL冰冷水洗滌細胞使其為電感受態。接著,將細胞再懸浮於50 µL冰冷水中。用50 µL細胞及10-100 ng線性雙股DNA產物,藉由使用Gene Pulser™(BioRad)(600 Ω,25 µFD及250伏)進行電穿孔。在電穿孔之後,將細胞添加至1 mL之在37℃下培育1 h之LB培養基中,且最後擴散至含有25 mg/L氯黴素或50 mg/L康黴素之LB瓊脂上以選擇抗生素抗性轉型體。藉由PCR用在經修飾區上游及下游之引子驗證所選突變體,且在42℃下使其生長於LB瓊脂中以使輔助質體損失。測試突變體之安比西林敏感性。藉由PCR使用pKD3、pKD4及其衍生物作為模板獲得線性ds-DNA擴增子。所用引子具有與模板互補之序列的一部分且與染色體DNA上必須發生重組之側互補之另一部分。對於基因體剔除,同源區經設計在所關注基因之起始及終止密碼子上游50-nt及下游50-nt。對於基因體嵌入,必須考慮轉錄起始點(+1)。將PCR產物進行PCR純化,用Dpnl消化,自瓊脂糖凝膠再純化,且懸浮於溶離緩衝液(5 mM Tris,pH 8.0)中。用pCP20質體轉型所選突變體,該質體為顯示溫度敏感性複製及FLP合成之熱誘導的安比西林及氯黴素抗性質體。在30℃下選擇安比西林抗性轉型體,其後將一些轉型體在42℃下在LB中群落純化,且接著測試所有抗生素抗性及FLP輔助質體之損失。用對照引子檢查基因剔除及基因嵌入。 Escherichia coli K12 MG1655 [λ - , F - , rph-1] was obtained from Escherichia coli Gene Reserve Center (USA) in March 2007, CGSC strain number: 7740. Gene disruption, gene introduction and gene replacement were performed using techniques disclosed by Datsenko and Wanner (PNAS 97 (2000), 6640-6645). This technique is based on antibiotic selection following homologous recombination by λ Red recombinase. Subsequent catalysis by flippase recombinase ensures removal of the antibiotic selection cassette in the final producing strain. Transformants carrying the Red helper plastid pKD46 were grown at 30°C in 10 mL of LB medium containing ampicillin (100 mg/L) and L-arabinose (10 mM) to an OD 600 nm of 0.6. Cells were made electrocompetent by washing with 50 mL of ice-cold water a first time and 1 mL of ice-cold water a second time. Next, cells were resuspended in 50 µL of ice-cold water. 50 µL of cells and 10-100 ng of linear double-stranded DNA product were electroporated by using a Gene Pulser™ (BioRad) (600 Ω, 25 µFD and 250 volts). After electroporation, cells were added to 1 mL of LB medium incubated at 37°C for 1 h and finally spread onto LB agar containing 25 mg/L chloramphenicol or 50 mg/L kanamycin for selection Antibiotic-resistant transformants. Selected mutants were verified by PCR with primers upstream and downstream of the modified region, and grown in LB agar at 42°C for loss of helper plastids. Mutants were tested for ampicillin sensitivity. Linear ds-DNA amplicons were obtained by PCR using pKD3, pKD4 and their derivatives as templates. The primers used have a part of the sequence complementary to the template and another part complementary to the side of the chromosomal DNA on which recombination must occur. For gene body knockouts, homology regions were designed 50-nt upstream and 50-nt downstream of the start and stop codons of the gene of interest. For gene body embedding, the transcription start point (+1) must be considered. PCR products were PCR purified, digested with Dpnl, repurified from agarose gels, and suspended in elution buffer (5 mM Tris, pH 8.0). Selected mutants were transformed with pCP20 plastids, which are heat-induced ampicillin and chloramphenicol-resistant plastids showing temperature-sensitive replication and FLP synthesis. Ampicillin resistant transformants were selected at 30°C, after which some transformants were colonized in LB at 42°C and then tested for all antibiotic resistance and loss of FLP helper plastids. Gene knockout and gene insertion were checked with control primers.

在GDP-岩藻糖生產之一實施例中,突變菌株來源於包含大腸桿菌 wcaJthyA基因之基因剔除及持續型轉錄單元之基因體基因嵌入的大腸桿菌K12 MG1655,該等單元含有如例如來自大腸桿菌W(UniProt ID E0IXR1)之CscB的蔗糖運輸蛋白、如例如源自運動醱酵單胞菌( Zymomonas mobilis)(UniProt ID Q03417)之Frk的果糖激酶及如源自青春雙歧桿菌( Bifidobacterium adolescentis)(UniProt ID A0ZZH6)之BaSP的蔗糖磷酸化酶。為生產岩藻糖基化寡醣,突變GDP-岩藻糖生產菌株另外經包含持續型轉錄單元之表現質體修飾,該等持續型轉錄單元用於α-1,2-岩藻糖基轉移酶,如例如來自幽門螺旋桿菌之HpFutC(GenBank: AAD29863.1)及/或用於α-1,3-岩藻糖基轉移酶,如例如來自幽門螺旋桿菌之HpFucT(UniProt ID O30511),且經用於如例如大腸桿菌thyA(UniProt ID P0A884)之選擇標記的持續型轉錄單元修飾。岩藻糖基轉移酶基因之持續型轉錄單元亦可經由基因體嵌入存在於突變大腸桿菌菌株中。如WO2016075243及WO2012007481中所描述,GDP-岩藻糖生產可進一步藉由包含 glgCagppfkApfkBpgiarcAiclRpgilon之大腸桿菌基因的基因體剔除在突變大腸桿菌菌株中最佳化。GDP-岩藻糖生產可另外經最佳化,包含甘露糖-6-磷酸異構酶(如例如來自大腸桿菌之manA(UniProt ID P00946))、磷酸甘露糖變位酶(如例如來自大腸桿菌之manB(UniProt ID P24175))、甘露糖-1-磷酸鳥苷醯基轉移酶(如例如來自大腸桿菌之manC(UniProt ID P24174))、GDP-甘露糖4,6-脫水酶(如例如來自大腸桿菌之gmd(UniProt ID P0AC88))及GDP-L-岩藻糖合酶(如例如來自大腸桿菌之fcl(UniProt ID P32055))的持續型轉錄單元之基因體嵌入。GDP-岩藻糖生產亦可藉由大腸桿菌 fucKfucI基因之基因體剔除及持續型轉錄單元之基因體嵌入獲得,該等持續型轉錄單元含有岩藻糖透過酶,如例如來自大腸桿菌之fucP(UniProt ID P11551),及雙功能性岩藻糖激酶/岩藻糖-1-磷酸鳥苷醯基轉移酶,如例如來自脆弱類桿菌之fkp(UniProt ID SUV40286.1)。若生產GDP-岩藻糖之突變型菌株意欲製得包含2'FL、3-FL及DiFL之岩藻糖基化乳糖結構,菌株另外經大腸桿菌 LacZLacYLacA基因之基因體基因剔除及經持續型轉錄單元之基因體基因嵌入修飾,該持續型轉錄單元用於如例如大腸桿菌LacY(UniProt ID P02920)之乳糖透過酶。或者及/或另外,生產GDP-岩藻糖及/或岩藻糖基化結構可進一步經持續型轉錄單元的基因體嵌入在突變大腸桿菌菌株中經最佳化,該持續型轉錄單元包含膜運輸蛋白,如例如來自莫金斯克羅諾桿菌之MdfA(UniProt ID A0A2T7ANQ9)、來自楊氏檸檬酸桿菌之MdfA(UniProt ID D4BC23)、來自大腸桿菌之MdfA(UniProt ID P0AEY8)、來自雷金斯堡約克氏菌之MdfA(UniProt ID G9Z5F4)、來自大腸桿菌之iceT(UniProt ID A0A024L207)或來自楊氏檸檬酸桿菌之iceT(UniProt ID D4B8A6)。 In one example of GDP-fucose production, the mutant strain is derived from E. coli K12 MG1655 comprising knockout of the E. coli wcaJ and thyA genes and insertion of the gene body gene of the persistent transcription unit, the units containing, for example, from Sucrose transporter of CscB of Escherichia coli W (UniProt ID E0IXR1), fructokinase such as Frk derived from Zymomonas mobilis (UniProt ID Q03417), and fructokinase such as derived from Bifidobacterium adolescentis ) (UniProt ID A0ZZH6) the sucrose phosphorylase of BaSP. To produce fucosylated oligosaccharides, mutant GDP-fucose-producing strains were additionally modified with expressing plastids comprising persistent transcription units for alpha-1,2-fucosylation Enzymes, such as, for example, HpFutC from Helicobacter pylori (GenBank: AAD29863.1) and/or for alpha-1,3-fucosyltransferases, such as, for example, HpFucT from Helicobacter pylori (UniProt ID 030511), and Modified with a persistent transcription unit for a selection marker such as E. coli thyA (UniProt ID P0A884). The persistent transcription unit of the fucosyltransferase gene can also be present in mutant E. coli strains via gene body insertion. As described in WO2016075243 and WO2012007481, GDP-fucose production can be further knocked out in mutant E. coli strains by genomic deletion of the E. coli genes comprising glgC , agp , pfkA , pfkB , pgi , arcA , iclR , pgi and lon optimization. GDP-fucose production can additionally be optimized comprising mannose-6-phosphate isomerase (as eg, manA from E. coli (UniProt ID P00946)), phosphomannose mutase (as eg from E. coli manB (UniProt ID P24175)), mannose-1-phosphate guanosyltransferase (as e.g. manC from E. coli (UniProt ID P24174)), GDP-mannose 4,6-dehydratase (as e.g. from Gene body insertion of a persistent transcription unit of gmd from E. coli (UniProt ID P0AC88)) and GDP-L-fucose synthase such as eg fcl from E. coli (UniProt ID P32055). GDP-fucose production can also be obtained by gene body deletion of the E. coli fucK and fucI genes and gene body insertion of persistent transcription units containing a fucose permease, such as for example from E. coli fucP (UniProt ID P11551), and bifunctional fucosokinase/fucose-1-phosphate guanosyltransferase, such as eg fkp (UniProt ID SUV40286.1) from Bacteroides fragilis. If a mutant strain producing GDP-fucose is intended to produce a fucosylated lactose structure comprising 2'FL, 3-FL and DiFL, the strain is additionally gene-knocked out of the E. coli LacZ , LacY and LacA genes and Modified by gene body gene insertion of a persistent transcription unit for use in eg a lactose permease such as Escherichia coli LacY (UniProt ID P02920). Alternatively and/or additionally, the production of GDP-fucose and/or fucosylated structures can be further optimized in mutant E. coli strains by gene body insertion of a persistent transcription unit comprising a membrane Transport proteins such as, for example, MdfA from S. mogeni (UniProt ID A0A2T7ANQ9), MdfA from Citrobacter johnsonii (UniProt ID D4BC23), MdfA from Escherichia coli (UniProt ID P0AEY8), from Regensburg MdfA from Yorkia (UniProt ID G9Z5F4), iceT from Escherichia coli (UniProt ID A0A024L207) or iceT from Citrobacter japonicus (UniProt ID D4B8A6).

在唾液酸生產之一實施例中,突變菌株衍生自大腸桿菌K12 MG1655,其包含持續型轉錄單元之基因體嵌入,該等持續型轉錄單元含有以下者之一或多個複本:葡萄糖胺6-磷酸N-乙醯基轉移酶,如例如來自釀酒酵母的GNA1(UniProt ID P43577);N-乙醯基葡萄糖胺2-表異構酶,如例如來自卵形擬桿菌的AGE(UniProt ID A7LVG6);及N-乙醯基神經胺酸合酶,如例如來自腦膜炎奈瑟氏菌(UniProt ID E0NCD4)或空腸彎曲桿菌(UniProt ID Q93MP9)。In one embodiment of sialic acid production, the mutant strain is derived from E. coli K12 MG1655 comprising gene body insertions of persistent transcription units containing one or more copies of: glucosamine 6- Phosphate N-acetyltransferase, such as eg GNA1 from Saccharomyces cerevisiae (UniProt ID P43577); N-acetylglucosamine 2-epimerase, such as eg AGE from Bacteroides ovale (UniProt ID A7LVG6) and N-Acetylneuraminic acid synthase, as eg from Neisseria meningitidis (UniProt ID E0NCD4) or Campylobacter jejuni (UniProt ID Q93MP9).

或者及/或另外,唾液酸生產可藉由持續型轉錄單元之基因體基因嵌入獲得,該等持續型轉錄單元含有UDP-N-乙醯基葡萄糖胺2-表異構酶,如例如來自空腸彎曲桿菌之NeuC(UniProt ID Q93MP8),及N-乙醯基神經胺酸合酶,如例如腦膜炎奈瑟氏菌(UniProt ID E0NCD4)或空腸彎曲桿菌(UniProt ID Q93MP9)。Alternatively and/or additionally, sialic acid production can be obtained by gene body gene insertion of persistent transcription units containing UDP-N-acetylglucosamine 2-epimerase, such as for example from the jejunum NeuC of Campylobacter (UniProt ID Q93MP8), and N-acetylneuraminic acid synthase, such as eg Neisseria meningitidis (UniProt ID E0NCD4) or Campylobacter jejuni (UniProt ID Q93MP9).

或者及/或另外,唾液酸生產可藉由持續型轉錄單元之基因體基因嵌入獲得,該等持續型轉錄單元含有如例如來自大腸桿菌(UniProt ID P31120)之glmM的磷酸葡萄糖胺變位酶、如例如來自大腸桿菌之glmU(UniProt ID P0ACC7)的N-乙醯基葡萄糖胺-1-磷酸尿苷醯基轉移酶/葡萄糖胺-1-磷酸乙醯基轉移酶、如例如來自空腸彎曲桿菌之NeuC(UniProt ID Q93MP8)的UDP-N-乙醯基葡萄糖胺2-表異構酶及如例如來自腦膜炎奈瑟氏菌(UniProt ID E0NCD4)或空腸彎曲桿菌(UniProt ID Q93MP9)之N-乙醯基神經胺酸合酶。Alternatively and/or additionally, sialic acid production can be obtained by gene body gene insertion of a persistent transcription unit containing, for example, phosphoglucosamine mutase, phosphoglucosamine mutase, glmM from Escherichia coli (UniProt ID P31120). N-acetylglucosamine-1-phosphate uridine transferase/glucosamine-1-phosphate acetyltransferase such as eg glmU (UniProt ID P0ACC7) from Escherichia coli, such as eg from Campylobacter jejuni UDP-N-acetylglucosamine 2-epimerase of NeuC (UniProt ID Q93MP8) and N-β-Epimerase such as eg from Neisseria meningitidis (UniProt ID E0NCD4) or Campylobacter jejuni (UniProt ID Q93MP9) Acyl neuraminic acid synthase.

或者及/或另外,唾液酸生產可藉由持續型轉錄單元之基因體嵌入獲得,該等持續型轉錄單元含有如例如來自小家鼠(菌株C57BL/6J)之雙功能性UDP-GlcNAc 2-表異構酶/N-乙醯基甘露糖胺激酶(UniProt ID Q91WG8)、如例如來自假單胞菌屬UW4之N-醯基神經胺酸-9-磷酸合酶(UniProt ID K9NPH9)及如例如來自候選種趨磁菌屬( Candidatus Magnetomorum)HK-1(UniProt ID KPA15328.1)或來自多形類桿菌( Bacteroides thetaiotaomicron)(UniProt ID Q8A712)之N-醯基神經胺酸-9-磷酸酶。 Alternatively and/or additionally, sialic acid production can be obtained by gene body insertion of persistent transcription units containing, for example, bifunctional UDP-GlcNAc 2- from Mus musculus (strain C57BL/6J). Epimerase/N-Acetylmannosamine Kinase (UniProt ID Q91WG8), such as for example N-Acetylneuraminic acid-9-phosphate synthase (UniProt ID K9NPH9) from Pseudomonas sp. UW4 and such as For example N-acylneuraminic acid-9-phosphatase from candidate species Candidatus Magnetomorum HK-1 (UniProt ID KPA15328.1) or from Bacteroides thetaiotaomicron (UniProt ID Q8A712) .

或者及/或另外,唾液酸產生可藉由持續型轉錄單元之基因體嵌入獲得,該等持續型轉錄單元含有如例如來自大腸桿菌之glmM的磷酸葡萄糖胺變位酶(UniProt ID P31120)、如例如來自大腸桿菌之glmU的N-乙醯基葡萄糖胺-1-磷酸尿苷醯基轉移酶/葡萄糖胺-1-磷酸乙醯基轉移酶(UniProt ID P0ACC7)、如例如來自小家鼠(菌株C57BL/6J)之雙功能性UDP-GlcNAc 2-表異構酶/N-乙醯基甘露糖胺激酶(UniProt ID Q91WG8)、如例如來自假單胞菌屬UW4之N-醯基神經胺酸-9-磷酸合酶(UniProt ID K9NPH9)及如例如來自候選種趨磁菌屬HK-1(UniProt ID KPA15328.1)或來自多形類桿菌(UniProt ID Q8A712)之N-醯基神經胺酸-9-磷酸酶。Alternatively and/or additionally, sialic acid production can be obtained by gene body insertion of a persistent transcription unit containing, for example, glmM phosphoglucosamine mutase from E. coli (UniProt ID P31120), such as N-acetylglucosamine-1-phosphate uridine transferase/glucosamine-1-phosphate acetyltransferase (UniProt ID P0ACC7) such as glmU from Escherichia coli, such as for example from Mus musculus (strain C57BL/6J) bifunctional UDP-GlcNAc 2-epimerase/N-acetylmannosamine kinase (UniProt ID Q91WG8), such as for example N-acetylneuraminic acid from Pseudomonas sp. UW4 -9-phosphate synthase (UniProt ID K9NPH9) and N-acyl neuraminic acid such as eg from the candidate species Magnetotropism HK-1 (UniProt ID KPA15328.1) or from Bacillus polymorpha (UniProt ID Q8A712) -9-phosphatase.

唾液酸生產可進一步用以下者在突變大腸桿菌菌株中經最佳化:包含 nagAnagBnagCnagDnagEnanAnanEnanKmanXmanYmanZ中之任一或多者之大腸桿菌基因之基因體剔除(如WO18122225中所描述);及/或包含 nanTpoxB ldhA adhE aldB pflA pflC ybiY ackA及/或 pta中之任一或多者的大腸桿菌基因之基因體剔除;及持續型轉錄單元之基因體嵌入,該等持續型轉錄單元包含以下者之一或多個複本:L-麩醯胺酸-D-果糖-6-磷酸胺基轉移酶,如例如來自大腸桿菌之突變型glmS*54(藉由A39T、R250C及G472S突變而不同於野生型大腸桿菌glmS,具有UniProt ID P17169,如藉由Deng等人(Biochimie 88, 419-29 (2006))所描述);較佳磷酸酶,如例如包含aphA、Cof、HisB、OtsB、SurE、Yaed、YcjU、YedP、YfbT、YidA、YigB、YihX、YniC、YqaB、YrbL、AppA、Gph、SerB、YbhA、YbiV、YbjL、Yfb、YieH、YjgL、YjjG、YrfG及YbiU之大腸桿菌基因或來自戀臭假單胞菌之PsMupP、來自釀酒酵母之ScDOG1或來自枯草芽孢桿菌之BsAraL(如WO18122225中所描述);及如例如來自大腸桿菌之acs(UniProt ID P27550)的乙醯基-CoA合酶。 Sialic acid production can be further optimized in mutant E. coli strains with a large intestine comprising any one or more of nagA , nagB , nagC , nagD , nagE , nanA , nanE , nanK , manX , manY and manZ Genome knockout of Bacillus genes (as described in WO18122225); and/or E. coli genes comprising any one or more of nanT , poxB , ldhA , adhE , aldB , pflA , pflC , ybiY , ackA and/or pta gene body deletion; and gene body insertion of persistent transcription units comprising one or more copies of L-glutamic acid-D-fructose-6-phosphate aminotransferase, As eg mutant glmS*54 from E. coli (different from wild-type E. coli glmS by A39T, R250C and G472S mutations, with UniProt ID P17169, as by Deng et al. (Biochimie 88, 419-29 (2006)) ); preferred phosphatases, such as for example comprising aphA, Cof, HisB, OtsB, SurE, Yaed, YcjU, YedP, YfbT, YidA, YigB, YihX, YniC, YqaB, YrbL, AppA, Gph, SerB, YbhA , YbiV, YbjL, Yfb, YieH, YjgL, YjjG, YrfG and YbiU E. coli genes or PsMupP from Pseudomonas sputum, ScDOG1 from Saccharomyces cerevisiae or BsAraL from Bacillus subtilis (as described in WO18122225) and acetyl-CoA synthase such as eg acs from Escherichia coli (UniProt ID P27550).

為唾液酸基化寡醣生產,生產該唾液酸之菌株進一步經修飾以表現:N-醯基神經胺酸胞苷醯基轉移酶,如例如來自空腸彎曲桿菌之NeuA酶(UniProt ID Q93MP7)、來自流感嗜血桿菌之NeuA酶(GenBank NO. AGV11798.1)或來自敗血性巴氏桿菌之NeuA酶(GenBank NO. AMK07891.1);及表現以下者之一或多個複本:β-半乳糖苷α-2,3-唾液酸基轉移酶,如例如來自敗血性巴氏桿菌之PmultST3(UniProt ID Q9CLP3)或由UniProt ID Q9CLP3之胺基酸殘基1至268組成之具有β-半乳糖苷α-2,3-唾液酸基轉移酶活性的PmultST3樣多肽,來自腦膜炎奈瑟氏菌之NmeniST3(GenBank NO. ARC07984.1)或來自敗血性巴氏桿菌敗血性亞種菌株Pm70之PmultST2(GenBank NO. AAK02592.1);β-半乳糖苷α-2,6-唾液酸基轉移酶,如例如來自美人魚發光菌之PdST6(UniProt ID O66375)或由UniProt ID O66375的胺基酸殘基108至497組成之具有β-半乳糖苷α-2,6-唾液酸基轉移酶活性的PdST6樣多肽或來自發光菌屬JT-ISH-224之P-JT-ISH-224-ST6(UniProt ID A8QYL1)或由UniProt ID A8QYL1的胺基酸殘基18至514組成之具有β-半乳糖苷α-2,6-唾液酸基轉移酶活性之P-JT-ISH-224-ST6樣多肽及/或如例如來自小家鼠之α-2,8-唾液酸基轉移酶(UniProt ID Q64689)。N-醯基神經胺酸胞苷醯基轉移酶及唾液酸基轉移酶之持續型轉錄單元可經由基因體嵌入或經由表現質體遞送至突變型菌株。若生產唾液酸及CMP-唾液酸之突變型菌株意欲製得唾液酸基化乳糖結構,菌株另外經大腸桿菌 LacZLacYLacA基因之基因體基因剔除及經持續型轉錄單元之基因體基因嵌入修飾,該持續型轉錄單元用於如例如大腸桿菌LacY(UniProt ID P02920)之乳糖透過酶。 For sialylated oligosaccharide production, the sialic acid-producing strain is further modified to express: N-acylneuraminic acid cytidine acyltransferase, such as, for example, the NeuA enzyme from Campylobacter jejuni (UniProt ID Q93MP7), NeuA enzyme from Haemophilus influenzae (GenBank NO. AGV11798.1) or NeuA enzyme from Pasteurella septicemia (GenBank NO. AMK07891.1); and one or more copies of the following: Glycoside alpha-2,3-sialyltransferase, such as for example PmultST3 from Pasteurella septicemia (UniProt ID Q9CLP3) or a β-galactoside consisting of amino acid residues 1 to 268 of UniProt ID Q9CLP3 PmultST3-like polypeptide with α-2,3-sialyltransferase activity, NmeniST3 from Neisseria meningitidis (GenBank NO. ARC07984.1) or PmultST2 from Pasteurella septicaemia subsp. septicemia strain Pm70 ( GenBank NO. AAK02592.1); β-galactoside α-2,6-sialyltransferase, such as, for example, PdST6 (UniProt ID 066375) from P. mermaidii or amino acid residue 108 from UniProt ID 066375 PdST6-like polypeptide with β-galactoside α-2,6-sialyltransferase activity composed of to 497 or P-JT-ISH-224-ST6 (UniProt ID A8QYL1 from Photophora JT-ISH-224) ) or a P-JT-ISH-224-ST6-like polypeptide with β-galactoside α-2,6-sialyltransferase activity consisting of amino acid residues 18 to 514 of UniProt ID A8QYL1 and/or As eg alpha-2,8-sialyltransferase from Mus musculus (UniProt ID Q64689). The continuous transcription units of N-acyl neuraminidyltransferase and sialyltransferase can be delivered to mutant strains via gene body insertion or via expression plastids. If mutant strains producing sialic acid and CMP-sialic acid are intended to produce sialylated lactose structures, the strains are additionally gene-knocked out of the E. coli LacZ , LacY and LacA genes and gene-inserted via the persistent transcription unit. Modified, this persistent transcription unit is used in lactose permease such as eg Escherichia coli LacY (UniProt ID P02920).

或者及/或另外,唾液酸及/或唾液酸基化寡醣產生可進一步用持續型轉錄單元之基因體嵌入在突變大腸桿菌菌株中經最佳化,該持續型轉錄單元包含膜運輸蛋白,如例如唾液酸運輸蛋白,如例如來自大腸桿菌K-12 MG1655之nanT(UniProt ID P41036)、來自大腸桿菌O6:H1之nanT(UniProt ID Q8FD59)、來自大腸桿菌O157:H7之nanT(UniProt ID Q8X9G8)或來自阿爾伯特氏大腸桿菌( E. albertii)之nanT(UniProt ID B1EFH1);或搬運蛋白,如例如來自大腸桿菌之EntS(UniProt ID P24077)、來自抗壞血酸克呂沃爾氏菌( Kluyvera ascorbata)之EntS(UniProt ID A0A378GQ13)或來自腸沙門氏菌亞利桑那亞種( Salmonella enterica subsp. arizonae)之EntS(UniProt ID A0A6Y2K4E8)、來自莫金斯克羅諾桿菌之MdfA(UniProt ID A0A2T7ANQ9)、來自楊氏檸檬酸桿菌之MdfA(UniProt ID D4BC23)、來自大腸桿菌之MdfA(UniProt ID P0AEY8)、來自雷金斯堡約克氏菌之MdfA(UniProt ID G9Z5F4)、來自大腸桿菌之iceT(UniProt ID A0A024L207)、來自楊氏檸檬酸桿菌之iceT(UniProt ID D4B8A6)、來自大腸桿菌之SetA(UniProt ID P31675)、來自大腸桿菌之SetB(UniProt ID P33026)或來自大腸桿菌之SetC(UniProt ID P31436);或ABC運輸蛋白,如例如來自大腸桿菌之oppF(UniProt ID P77737)、來自乳酸乳球菌乳酸亞種二乙醯基乳酸變種之lmrA(UniProt ID A0A1V0NEL4)或來自長雙歧桿菌嬰兒亞種之Blon_2475(UniProt ID B7GPD4)。 Alternatively and/or additionally, sialic acid and/or sialylated oligosaccharide production can be further optimized in mutant E. coli strains with gene body insertion of a persistent transcription unit comprising a membrane trafficking protein, Such as e.g. sialic acid transporters such as e.g. nanT from E. coli K-12 MG1655 (UniProt ID P41036), nanT from E. coli O6:H1 (UniProt ID Q8FD59), nanT from E. coli O157:H7 (UniProt ID Q8X9G8 ) or nanT (UniProt ID B1EFH1) from E. albertii ; or transporter proteins such as, for example, EntS (UniProt ID P24077) from E. coli, Kluyvera ascorbata ) EntS (UniProt ID A0A378GQ13) or EntS (UniProt ID A0A6Y2K4E8) from Salmonella enterica subsp. arizonae , MdfA (UniProt ID A0A2T7ANQ9) from S. MdfA from Escherichia coli (UniProt ID D4BC23), MdfA from Escherichia coli (UniProt ID P0AEY8), MdfA from Yorkia reginsburg (UniProt ID G9Z5F4), iceT from Escherichia coli (UniProt ID A0A024L207), from Young's iceT from Citrobacter (UniProt ID D4B8A6), SetA from Escherichia coli (UniProt ID P31675), SetB from Escherichia coli (UniProt ID P33026) or SetC from Escherichia coli (UniProt ID P31436); or ABC transporters such as For example oppF from Escherichia coli (UniProt ID P77737), lmrA from Lactococcus lactis subsp. lactis var. diacetoxylactate (UniProt ID A0A1V0NEL4) or Blon_2475 from Bifidobacterium longum subsp. infantis (UniProt ID B7GPD4).

所有生產唾液酸、CMP-唾液酸及/或唾液酸基化寡醣之突變型菌株可視情況適用於經由持續型轉錄單元之基因體嵌入在蔗糖上生長,該等持續型轉錄單元含有如例如來自大腸桿菌W之CscB的蔗糖運輸蛋白(UniProt ID E0IXR1)、如例如源自運動醱酵單胞菌之Frk的果糖激酶(UniProt ID Q03417)及如例如源自青春雙歧桿菌之BaSP的蔗糖磷酸化酶(UniProt ID A0ZZH6)。All mutant strains producing sialic acid, CMP-sialic acid and/or sialylated oligosaccharides are optionally suitable for growth on sucrose via gene body intercalation of persistent transcription units containing, for example, derived from Sucrose transport protein of CscB of E. coli W (UniProt ID E0IXR1 ), fructokinase (UniProt ID Q03417) such as Frk derived from Z. mobilis and sucrose phosphorylation as eg of BaSP derived from Bifidobacterium adolescentis Enzyme (UniProt ID A0ZZH6).

在生產乳-N-丙糖(LNT-II、LN3、GlcNAc-b1,3-Gal-b1,4-Glc)之一實施例中,突變型菌株衍生自大腸桿菌K12 MG1655且經大腸桿菌 LacZ LacY LacAnagB基因之剔除及經持續型轉錄單元之基因體嵌入修飾,該等持續型轉錄單元用於如例如來自大腸桿菌之LacY的乳糖透過酶(UniProt ID P02920)及如例如來自腦膜炎奈瑟氏菌之LgtA的半乳糖苷β-1,3-N-乙醯基葡萄糖胺基轉移酶(GenBank: AAM33849.1)。為生產乳- N-四糖(LNT、Gal-b1,3-GlcNAc-b1,3-Gal-b1,4-Glc),生產LN3之菌株進一步經可經由基因體嵌入或自表現質體遞送至菌株之持續型轉錄單元修飾,該持續型轉錄單元用於如例如來自大腸桿菌O55:H7之WbgO的N-乙醯基葡萄糖胺β-1,3-半乳糖基轉移酶(UniProt ID D3QY14)。為生產乳- N-新四糖(LNnT、Gal-b1,4-GlcNAc-b1,3- Gal-b1,4-Glc),生產LN3之菌株進一步經持續型轉錄單元修飾,該持續型轉錄單元用於如例如來自腦膜炎奈瑟氏菌之LgtB的N-乙醯基葡萄糖胺β-1,4-半乳糖基轉移酶(UniProt ID Q51116)。視情況,可將 LgtAwbgO及/或 LgtB基因之多個複本添加至突變型大腸桿菌菌株中。此外,LNT及/或LNnT生產可藉由用持續型轉錄單元之一或多個基因體嵌入對菌株進行修飾改善UDP-GlcNAc生產來增強,該持續型轉錄單元用於如例如來自大腸桿菌之突變型glmS*54的L-麩醯胺酸-D-果糖-6-磷酸胺基轉移酶(藉由A39T、R250C及G472S突變不同於野生型大腸桿菌glmS蛋白質,具有UniProt ID P17169,如由Deng等人(Biochimie 2006, 88: 419-429)所描述)。另外,菌株可視情況經修飾以藉由大腸桿菌 ushAgalTldhAagp基因之基因體剔除增強UDP-半乳糖產生。突變型大腸桿菌菌株亦可視情況經調適具有持續型轉錄單元之基因體嵌入,該持續型轉錄單元用於以下者:如例如來自大腸桿菌之galE的UDP-葡萄糖-4-表異構酶(UniProt ID P09147)、如例如來自大腸桿菌之glmM的磷酸葡萄糖胺變位酶(UniProt ID P31120)及如例如來自大腸桿菌之glmU的N-乙醯基葡萄糖胺-1-磷酸尿苷醯基轉移酶/葡萄糖胺-1-磷酸乙醯基轉移酶(UniProt ID P0ACC7)。突變型菌株亦可視情況適用於經由持續型轉錄單元之基因體嵌入在蔗糖上生長,該等持續型轉錄單元含有如例如來自大腸桿菌W之CscB的蔗糖運輸蛋白(UniProt ID E0IXR1)、如例如源自運動醱酵單胞菌之Frk的果糖激酶(UniProt ID Q03417)及如例如來自青春雙歧桿菌之BaSP的蔗糖磷酸化酶(UniProt ID A0ZZH6)。或者及/或另外,產生LN3、LNT、LNnT及其衍生之寡醣可進一步經持續型轉錄單元的基因體嵌入在突變大腸桿菌菌株中經最佳化,該持續型轉錄單元包含膜運輸蛋白,如例如來自莫金斯克羅諾桿菌之MdfA(UniProt ID A0A2T7ANQ9)、來自楊氏檸檬酸桿菌之MdfA(UniProt ID D4BC23)、來自大腸桿菌之MdfA(UniProt ID P0AEY8)、來自雷金斯堡約克氏菌之MdfA(UniProt ID G9Z5F4)、來自大腸桿菌之iceT(UniProt ID A0A024L207)或來自楊氏檸檬酸桿菌之iceT(UniProt ID D4B8A6)。 In one embodiment of the production of lacto-N-triose (LNT-II, LN3, GlcNAc-b1,3-Gal-b1,4-Glc), the mutant strain was derived from E. coli K12 MG1655 and subjected to E. coli LacZ , Knockout of LacY , LacA and nagB genes and gene body insertion modification with persistent transcription units for lactose permease such as LacY from E. coli (UniProt ID P02920) and as eg from meningitis Galactoside β-1,3-N-acetylglucosaminyltransferase of LgtA from Neisseria (GenBank: AAM33849.1). For the production of lacto- N -tetrasaccharides (LNT, Gal-b1,3-GlcNAc-b1,3-Gal-b1,4-Glc), the LN3-producing strains were further transported via gene body insertion or self-expressing plastids to Modification of the persistent transcription unit of the strain, for example, N-acetylglucosamine beta-1,3-galactosyltransferase (UniProt ID D3QY14) from WbgO of E. coli O55:H7. For the production of lacto- N -neotetrasaccharides (LNnT, Gal-b1,4-GlcNAc-b1,3-Gal-b1,4-Glc), the LN3-producing strain was further modified with a persistent transcription unit that N-Acetylglucosamine beta-1,4-galactosyltransferase (UniProt ID Q51116) for eg LgtB from Neisseria meningitidis. Optionally, multiple copies of the LgtA , wbgO and/or LgtB genes can be added to mutant E. coli strains. In addition, LNT and/or LNnT production can be enhanced by modifying the strain to improve UDP-GlcNAc production by inserting one or more gene bodies of a persistent transcription unit for mutations such as for example from E. coli L-glutamic acid-D-fructose-6-phosphate aminotransferase of type glmS*54 (different from wild-type E. coli glmS protein by A39T, R250C and G472S mutations, with UniProt ID P17169, as described by Deng et al. human (Biochimie 2006, 88: 419-429)). Additionally, the strain may optionally be modified to enhance UDP-galactose production by genomic deletion of the E. coli ushA , galT , ldhA and agp genes. Mutant E. coli strains may also optionally be adapted to have gene body insertions of a persistent transcription unit for use in, for example, UDP-glucose-4-epimerase (UniProt galE from E. coli). ID P09147), phosphoglucosamine mutase (UniProt ID P31120) as eg glmM from Escherichia coli and N-acetylglucosamine-1-phosphate uridine syltransferase as eg eg glmU from Escherichia coli/ Glucosamine-1-phosphate acetyltransferase (UniProt ID P0ACC7). Mutant strains are also optionally suitable for growth on sucrose via gene body intercalation of persistent transcription units containing, for example, the sucrose transport protein of CscB from E. coli W (UniProt ID E0IXR1 ), such as for example the source. The fructokinase from Frk of Z. mobilis (UniProt ID Q03417) and the sucrose phosphorylase (UniProt ID A0ZZH6) as eg from BaSP of Bifidobacterium adolescentis. Alternatively and/or additionally, the production of LN3, LNT, LNnT and their derived oligosaccharides may be further optimized in mutant E. coli strains by gene body insertion of a persistent transcription unit comprising a membrane trafficking protein, Such as, for example, MdfA from S. mogeni (UniProt ID A0A2T7ANQ9), MdfA from Citrobacter johnsonii (UniProt ID D4BC23), MdfA from Escherichia coli (UniProt ID P0AEY8), from Yorkia reginsburg MdfA from Escherichia coli (UniProt ID G9Z5F4), iceT from Escherichia coli (UniProt ID A0A024L207) or iceT from Citrobacter japonicus (UniProt ID D4B8A6).

較佳但未必,醣基轉移酶、參與核苷酸活化糖合成之蛋白質及/或膜運輸蛋白中之任一或多者經N端及/或C端融合至如例如以下者之可溶性強化子標籤:SUMO標籤、MBP標籤、His、FLAG、Strep-II、Halo-標籤、NusA、硫氧還原蛋白、GST及/或Fh8標籤以增強其可溶性(Cost等人, Front. Microbiol. 2014, https://doi.org/10.3389/fmicb.2014.00063;Fox等人, Protein Sci. 2001, 10(3), 622-630;Jia及Jeaon, Open Biol. 2016, 6: 160196)。視情況,突變大腸桿菌菌株經編碼伴隨蛋白,如例如DnaK、DnaJ、GrpE或GroEL/ES伴隨蛋白系統之持續型轉錄單元的基因體嵌入修飾(Baneyx F.、Palumbo J.L. (2003) Improving Heterologous Protein Folding via Molecular Chaperone and Foldase Co-Expression. In: Vaillancourt P.E.(編) E. coliGene Expression Protocols. Methods in Molecular Biology™, 第205卷. Humana Press)。Preferably, but not necessarily, any one or more of glycosyltransferases, proteins involved in nucleotide-activated sugar synthesis, and/or membrane transport proteins are N-terminally and/or C-terminally fused to a soluble enhancer such as, for example, the following Tags: SUMO tag, MBP tag, His, FLAG, Strep-II, Halo-tag, NusA, thioredoxin, GST and/or Fh8 tag to enhance solubility (Cost et al., Front. Microbiol. 2014, https: //doi.org/10.3389/fmicb.2014.00063; Fox et al, Protein Sci. 2001, 10(3), 622-630; Jia and Jeaon, Open Biol. 2016, 6: 160196). Optionally, mutant E. coli strains are modified with gene body insertions encoding chaperone proteins, such as, for example, DnaK, DnaJ, GrpE or the persistent transcription unit of the GroEL/ES chaperone system (Baneyx F., Palumbo J.L. (2003) Improving Heterologous Protein Folding via Molecular Chaperone and Foldase Co-Expression. In: Vaillancourt P.E. (ed.) E. coliGene Expression Protocols. Methods in Molecular Biology™, Vol. 205. Humana Press).

視情況,突變大腸桿菌菌株經修飾以產生糖基最小化之大腸桿菌菌株,其包含非必需醣基轉移酶基因中之任一或多者的基因體剔除,該等非必需醣基轉移酶基因包含pgaC、pgaD、rfe、rffT、rffM、bcsA、bcsB、bcsC、wcaA、wcaC、wcaE、wcaI、wcaJ、wcaL、waaH、waaF、waaC、waaU、waaZ、waaJ、waaO、waaB、waaS、waaG、waaQ、wbbl、arnC、arnT、yfdH、wbbK、opgG、opgH、ycjM、glgA、glgB、malQ、otsA及yaiP。Optionally, the mutant E. coli strain is modified to produce a glycosyl-minimized E. coli strain comprising a gene body deletion of any one or more of the non-essential glycosyltransferase genes, the non-essential glycosyltransferase genes Contains pgaC, pgaD, rfe, rffT, rffM, bcsA, bcsB, bcsC, wcaA, wcaC, wcaE, wcaI, wcaJ, wcaL, waaH, waaF, waaC, waaU, waaZ, waaJ, waaO, waaB, waaS, waaG, waaQ , wbbl, arnC, arnT, yfdH, wbbK, opgG, opgH, ycjM, glgA, glgB, malQ, otsA, and yaiP.

所有持續型啟動子、UTR及終止子序列源自由Cambray等人(Nucleic Acids Res. 2013, 41(9), 5139-5148)、De Mey等人(BMC Biotechnol. 2007, 4(34), 1-14)、Dunn等人(Nucleic Acids Res. 1980, 8(10), 2119-2132)、Kim及Lee(FEBS Letters 1997, 407(3), 353-356)及Mutalik等人(Nat. Methods 2013,第10期, 354-360)所描述之文庫。All persistent promoter, UTR and terminator sequences were derived from Cambray et al. (Nucleic Acids Res. 2013, 41(9), 5139-5148), De Mey et al. (BMC Biotechnol. 2007, 4(34), 1- 14), Dunn et al (Nucleic Acids Res. 1980, 8(10), 2119-2132), Kim and Lee (FEBS Letters 1997, 407(3), 353-356) and Mutalik et al (Nat. Methods 2013, 10, 354-360).

所有基因在Twist Bioscience(twistbioscience.com)或IDT(eu.idtdna.com)處合成訂購,且使用供應商之工具調適密碼子使用。All genes were ordered synthetically at Twist Bioscience (twistbioscience.com) or IDT (eu.idtdna.com) and codon usage was adapted using the supplier's tools.

所有菌株在-80℃下儲存於冷凍小瓶中(隔夜LB培養物以1:1比率與70%甘油混合)。 培養條件 All strains were stored in cryovials (overnight LB cultures mixed with 70% glycerol at a 1:1 ratio) at -80°C. Culture conditions

96孔微量滴定盤實驗之預培養始於冷凍小瓶,於150 µL LB中進行,且在37℃下在定軌振盪器上以800 rpm培育隔夜。此培養物用作96孔正方形微量滴定盤之接種物,用400 µL基本培養基藉由稀釋400倍。此等最終96孔培養盤接著在37℃下在定軌振盪器上以800 rpm培育72h或更短或更長。為量測培養實驗結束時之糖濃度,藉由使培養液在60℃下沸騰15 min,之後使細胞短暫離心而自各孔獲取整個培養液樣品(=胞內及胞外糖濃度之平均值)。Pre-incubation of the 96-well microtiter plate experiments started in frozen vials in 150 µL LB and incubated overnight at 37°C on an orbital shaker at 800 rpm. This culture was used as an inoculum in a 96-well square microtiter plate by diluting 400-fold with 400 µL of minimal medium. These final 96-well plates were then incubated at 37°C on an orbital shaker at 800 rpm for 72 h or less or longer. To measure the sugar concentration at the end of the culture experiment, a sample of the whole culture fluid (= average of intracellular and extracellular sugar concentrations) was obtained from each well by boiling the culture fluid at 60°C for 15 min, after which the cells were briefly centrifuged .

生物反應器之預培養始於某一菌株之整個1 mL冷凍小瓶,在1 L或2.5 L搖瓶中之250 mL或500 mL基本培養基中接種,且在37℃下在定軌振盪器上以200 rpm培育24小時。接著接種5 L生物反應器(250 mL接種物於2 L批料培養基中);該過程由MFCS控制軟體(Sartorius Stedim Biotech, Melsungen, Germany)控制。培養條件設定為37℃及最大攪拌;壓力氣體流動速率視菌株及生物反應器而定。使用0.5 M H2S04及20% NH4OH將pH控制在6.8。冷卻廢氣。在醱酵期間起泡產生時,添加10%聚矽氧消泡劑溶液。 光密度 Bioreactor pre-cultivation begins with an entire 1 mL frozen vial of a strain, inoculated in 250 mL or 500 mL of minimal medium in a 1 L or 2.5 L shake flask, and inoculated on an orbital shaker at 37°C. Incubate at 200 rpm for 24 hours. A 5 L bioreactor (250 mL inoculum in 2 L batch medium) was then inoculated; the process was controlled by MFCS control software (Sartorius Stedim Biotech, Melsungen, Germany). Cultivation conditions were set at 37°C and maximum agitation; pressure gas flow rates were strain and bioreactor dependent. The pH was controlled at 6.8 using 0.5 M H2S04 and 20% NH4OH. Cool the exhaust gas. When foaming occurs during fermentation, add 10% polysiloxane defoamer solution. Optical density

培養物之細胞密度通常藉由量測600 nm下之光密度(Implen Nanophotometer NP80, Westburg, Belgium,或用Spark 10M微量盤讀取器,Tecan, Switzerland)來監測。 解析型分析 The cell density of the cultures was usually monitored by measuring the optical density at 600 nm (Implen Nanophotometer NP80, Westburg, Belgium, or with a Spark 10M microplate reader, Tecan, Switzerland). Analytical Analysis

標準品,諸如(但不限於)蔗糖、乳糖、LacNAc、乳-N-二糖(LNB)、岩藻糖基化LacNAc(2'FLacNAc、3-FLacNAc)、唾液酸基化LacNAc、(3'SLacNAc, 6'SLacNAc)、岩藻糖基化LNB(2'FLNB、4'FLNB)、乳-N-丙糖II(LN3)、乳-N-四糖(LNT)、乳-N-新-四糖(LNnT)、LNFP-I、LNFP-II、LNFP-III、LNFP-V、LNFP-VI、LSTa及LSTc係購自Carbosynth(英國)、Elicityl(法國(France))及IsoSep(瑞典(Sweden))。用內部製造之標準品分析其他化合物。Standards such as (but not limited to) sucrose, lactose, LacNAc, lacto-N-disaccharide (LNB), fucosylated LacNAc (2'FLacNAc, 3-FLacNAc), sialylated LacNAc, (3' SLacNAc, 6'SLacNAc), fucosylated LNB (2'FLNB, 4'FLNB), lacto-N-triose II (LN3), lacto-N-tetraose (LNT), lacto-N-neo- Tetrasaccharides (LNnT), LNFP-I, LNFP-II, LNFP-III, LNFP-V, LNFP-VI, LSTa and LSTc were purchased from Carbosynth (UK), Elicityl (France) and IsoSep (Sweden) )). Other compounds were analyzed with in-house manufactured standards.

在Waters Acquity H級UPLC上用蒸發光散射偵測器(Evaporative Light Scattering Detector;ELSD)或折射率(RI)偵測分析中性寡醣。在Waters Acquity UPLC BEH Amide管柱(2.1×100 mm;130 Å;1.7 µm)管柱及Acquity UPLC BEH Amide VanGuard管柱(130 Å,2.1×5 mm)上注射0.7 µL體積之樣品。管柱溫度為50℃。移動相由其中添加0.2%三乙胺之¼水及¾乙腈溶液組成。該方法以0.130 mL/min之流速等度。ELS偵測器之漂移管溫度為50℃,且N2氣體壓力為50 psi,增益為200且資料速率為10 pps。RI偵測器之溫度設定為35℃。Neutral oligosaccharides were analyzed on a Waters Acquity H-stage UPLC with Evaporative Light Scattering Detector (ELSD) or refractive index (RI) detection. A volume of 0.7 µL was injected on a Waters Acquity UPLC BEH Amide column (2.1 × 100 mm; 130 Å; 1.7 µm) and an Acquity UPLC BEH Amide VanGuard column (130 Å, 2.1 × 5 mm). The column temperature was 50°C. The mobile phase consisted of a solution of 1/4 water and 2/4 acetonitrile to which 0.2% triethylamine was added. The method is isocratic at a flow rate of 0.130 mL/min. The drift tube temperature of the ELS detector was 50°C, and the N2 gas pressure was 50 psi, the gain was 200, and the data rate was 10 pps. The temperature of the RI detector was set to 35°C.

在Waters Acquity H級UPLC上在折射率(RI)偵測下分析唾液酸基化寡醣。在Waters Acquity UPLC BEH Amide管柱(2.1×100 mm;130 Å;1.7 µm)上注射0.5 µL體積之樣品。管柱溫度為50℃。移動相由其中添加0.05%吡咯啶之70%乙腈、26%乙酸銨緩衝液(150 mM)及4%甲醇之混合物組成。該方法以0.150 mL/min之流速等度。RI偵測器之溫度設定為35℃。Sialyl oligosaccharides were analyzed on a Waters Acquity H-stage UPLC with refractive index (RI) detection. A volume of 0.5 µL was injected on a Waters Acquity UPLC BEH Amide column (2.1 x 100 mm; 130 Å; 1.7 µm). The column temperature was 50°C. The mobile phase consisted of a mixture of 0.05% pyrrolidine in 70% acetonitrile, 26% ammonium acetate buffer (150 mM) and 4% methanol. The method is isocratic at a flow rate of 0.150 mL/min. The temperature of the RI detector was set to 35°C.

在Waters Acquity H級UPLC上在折射率(RI)偵測下分析中性及唾液酸基化糖。在Waters Acquity UPLC BEH Amide管柱(2.1×100 mm;130 Å;1.7 µm)上注射0.5 µL體積之樣品。管柱溫度為50℃。移動相由其中添加0.1%三乙胺之72%乙腈與28%乙酸銨緩衝液(100 mM)之混合物組成。該方法以0.260 mL/min之流速等度。RI偵測器之溫度設定為35℃。Neutral and sialylated sugars were analyzed on a Waters Acquity H-stage UPLC with refractive index (RI) detection. A volume of 0.5 µL was injected on a Waters Acquity UPLC BEH Amide column (2.1 x 100 mm; 130 Å; 1.7 µm). The column temperature was 50°C. The mobile phase consisted of a mixture of 72% acetonitrile and 28% ammonium acetate buffer (100 mM) to which 0.1% triethylamine was added. The method is isocratic at a flow rate of 0.260 mL/min. The temperature of the RI detector was set to 35°C.

對於質譜儀上之分析,使用具有電灑離子化(ESI)之Waters Xevo TQ-MS,去溶劑化溫度為450℃,氮氣去溶劑化氣體流速為650 L/h且錐電壓為20 V。對於所有寡醣,MS在選定離子監測(selected ion monitoring;SIM)中在負模式下操作。在具有Thermo Hypercarb管柱(2.1×100 mm;3 µm)之Waters Acquity UPLC上在35℃下進行分離。使用一定梯度,其中溶離劑A為超純水及0.1%甲酸且其中溶離劑B為乙腈及0.1%甲酸。寡醣在55 min內使用以下梯度分離:在21 min內自2%至12%溶離劑B初始增加,在11 min內自12%至40%溶離劑B第二次增加,且在5 min內自40%至100%溶離劑B第三次增加。作為洗滌步驟,使用100%溶離劑B持續5 min。對於管柱平衡,在1 min內恢復2%溶離劑B之初始條件且維持12 min。For analysis on the mass spectrometer, a Waters Xevo TQ-MS with Electrospray Ionization (ESI) was used, the desolvation temperature was 450°C, the nitrogen desolvation gas flow rate was 650 L/h and the cone voltage was 20 V. For all oligosaccharides, the MS was operated in negative mode in selected ion monitoring (SIM). The separation was performed on a Waters Acquity UPLC with a Thermo Hypercarb column (2.1 x 100 mm; 3 µm) at 35°C. A gradient was used where eluent A was ultrapure water and 0.1% formic acid and where elution solvent B was acetonitrile and 0.1% formic acid. Oligosaccharides were separated using the following gradient over 55 minutes: an initial increase from 2% to 12% Solvent B in 21 minutes, a second increase from 12% to 40% Solvent B in 11 minutes, and a second increase in 5 minutes Third increase from 40% to 100% Solvent B. As a washing step, 100% Solvent B was used for 5 min. For column equilibration, initial conditions of 2% Eluent B were restored within 1 min and maintained for 12 min.

在Dionex HPAEC系統上用脈衝型電流偵測(pulsed amperometric detection;PAD)分析低濃度(低於50 mg/L)下之中性及唾液酸基化糖。在Dionex CarboPac PA200管柱4×250 mm及Dionex CarboPac PA200保護管柱4×50 mm上注射5 µL體積之樣品。管柱溫度設定成30℃。使用一梯度,其中溶離劑A為去離子水,其中溶離劑B為200 mM氫氧化鈉且其中溶離劑C為500 mM乙酸鈉。寡醣在60 min內分離,同時使用以下梯度維持25%之溶離劑B的恆定比率:75%溶離劑A之初始等度步驟維持10 min,0%至4%溶離劑C在8 min內之初始增加,71%溶離劑A及4%溶離劑C之第二等度步驟維持6 min,4%至12%溶離劑C在2.6 min內之第二增加,63%溶離劑A及12%溶離劑C之第三等度步驟維持3.4 min,及12%至48%溶離劑C在5 min內之第三增加。作為洗滌步驟,使用48%溶離劑C持續3 min。對於管柱平衡,在1 min內恢復75%溶離劑A及0%溶離劑C之初始條件且維持11 min。應用之流速為0.5 mL/min。 實施例 2. 釀酒酵母之材料及方法 培養基 Neutral and sialylated sugars were analyzed at low concentrations (below 50 mg/L) using pulsed amperometric detection (PAD) on the Dionex HPAEC system. A volume of 5 µL was injected on a Dionex CarboPac PA200 column 4 x 250 mm and a Dionex CarboPac PA200 guard column 4 x 50 mm. The column temperature was set to 30°C. A gradient was used where eluting agent A was deionized water, where eluting agent B was 200 mM sodium hydroxide and where eluting agent C was 500 mM sodium acetate. Oligosaccharides were separated in 60 min while maintaining a constant ratio of 25% Eluent B using the following gradient: 75% Eluent A initial isocratic step for 10 min, 0% to 4% Eluent C in 8 min Initial increase, second isocratic step with 71% Eluent A and 4% Eluent C maintained for 6 min, second increase in 2.6 min from 4% to 12% Eluent C, 63% Eluent A and 12% Eluent The third isocratic step of Reagent C was maintained for 3.4 min, and the third increase of 12% to 48% Eluent C in 5 min. As a washing step, 48% Solvent C was used for 3 min. For column equilibration, the initial conditions of 75% Eluent A and 0% Eluent C were restored within 1 min and maintained for 11 min. The flow rate applied was 0.5 mL/min. Example 2. Materials and methods of Saccharomyces cerevisiae

在具有完整補充混合物(SD CSM)或CSM省卻(drop-out)(SD CSM-Ura,SD CSM-Trp,SD CSM-His)之合成限定酵母培養基上生長菌株,該培養基含有6.7 g/L之不含胺基酸的酵母氮源基礎(不含AA之YNB,Difco)、20 g/L瓊脂(Difco)(固體培養物)、22 g/L葡萄糖單水合物或20 g/L乳糖、20 g/L 2'FL、20 g/L3-FL、20 g/L 3'SL、20 g/L 6'SL、20 g/L LacNAc及/或20 g/L LNB及0.79 g/L CSM或0.77 g/L CSM-Ura、0.77 g/L CSM-Trp或0.77 g/L CSM-His(MP Biomedicals)。 菌株 Grow strains on synthetic defined yeast medium with complete supplement mix (SD CSM) or CSM drop-out (SD CSM-Ura, SD CSM-Trp, SD CSM-His) containing 6.7 g/L of Yeast nitrogen base without amino acids (YNB without AA, Difco), 20 g/L agar (Difco) (solid culture), 22 g/L glucose monohydrate or 20 g/L lactose, 20 g/L 2'FL, 20 g/L3-FL, 20 g/L 3'SL, 20 g/L 6'SL, 20 g/L LacNAc and/or 20 g/L LNB and 0.79 g/L CSM or 0.77 g/L CSM-Ura, 0.77 g/L CSM-Trp, or 0.77 g/L CSM-His (MP Biomedicals). strain

使用由Brachmann等人(Yeast (1998) 14:115-32)產生之釀酒酵母BY4742,可獲自Euroscarf培養物收集。所有突變型菌株藉由使用Gietz方法(Yeast 11:355-360, 1995)之同源重組或質體轉型產生。 質體 Saccharomyces cerevisiae BY4742 produced by Brachmann et al. (Yeast (1998) 14:115-32), available from Euroscarf culture collections, was used. All mutant strains were generated by homologous recombination or plastid transformation using the Gietz method (Yeast 11:355-360, 1995). plastid

在生產GDP-岩藻糖之一實施例中,酵母表現質體如例如p2a_2µ_Fuc(Chan 2013, Plasmid 70, 2-17)用於釀酒酵母中之外來基因之表現。此質體含有安比西林抗性基因及細菌複製起點以允許在大腸桿菌中進行選擇及維持,且含有2µ酵母ori及Ura3選擇標記用於在酵母中進行選擇及維持。此質體另外含有用於以下者之持續型轉錄單元:如例如來自乳酸克魯維酵母之LAC12的乳糖透過酶(UniProt ID P07921)、如例如來自大腸桿菌之gmd的GDP-甘露糖4,6-脫水酶(UniProt ID P0AC88)及如例如來自大腸桿菌之fcl的GDP-L-岩藻糖合酶(UniProt ID P32055)。酵母表現質體p2a_2µ_Fuc2用作p2a_2µ_Fuc質體之替代表現質體,該質體包含緊接於安比西林抗性基因、細菌ori、2µ酵母ori及Ura3選擇標記之用於以下者之持續型轉錄單元:如例如來自乳酸克魯維酵母之LAC12的乳糖透過酶(UniProt ID P07921)、如例如來自大腸桿菌之fucP的岩藻糖透過酶(UniProt ID P11551)及如例如來自脆弱類桿菌之fkp的雙功能性岩藻糖激酶/岩藻糖-1-磷酸鳥苷醯基轉移酶(UniProt ID SUV40286.1)。為進一步生產岩藻糖基化寡醣,p2a_2µ_Fuc及其變異體p2a_2µ_Fuc2另外含有用於如例如來自幽門螺旋桿菌之HpFutC(GenBank: AAD29863.1)之α-1,2-岩藻糖基轉移酶的持續型轉錄單元。In one example of the production of GDP-fucose, yeast expressed plastids such as eg p2a_2µ_Fuc (Chan 2013, Plasmid 70, 2-17) were used for the expression of foreign genes in Saccharomyces cerevisiae. This plastid contains an ampicillin resistance gene and a bacterial origin of replication to allow selection and maintenance in E. coli, and a 2µ yeast ori and Ura3 selectable marker for selection and maintenance in yeast. This plastid additionally contains a persistent transcription unit for, eg, lactose permease from Kluyveromyces lactis LAC12 (UniProt ID P07921), eg, GDP-mannose from gmd of E. coli4,6 - Dehydratase (UniProt ID P0AC88) and GDP-L-fucose synthase such as eg fcl from E. coli (UniProt ID P32055). The yeast expression plastid p2a_2µ_Fuc2 was used as a surrogate expression plastid for the p2a_2µ_Fuc plastid containing a persistent transcription unit next to the ampicillin resistance gene, bacterial ori, 2µ yeast ori and the Ura3 selectable marker for: Bifunctional as eg LAC12 from Kluyveromyces lactis (UniProt ID P07921), as eg fucP from Escherichia coli (UniProt ID P11551) and bifunctional as eg from Bacillus fragilis fkp Sex-fucokinase/fucose-1-phosphate guanosyltransferase (UniProt ID SUV40286.1). For further production of fucosylated oligosaccharides, p2a_2µ_Fuc and its variant p2a_2µ_Fuc2 additionally contain alpha-1,2-fucosyltransferase enzymes such as HpFutC (GenBank: AAD29863.1) from Helicobacter pylori. persistent transcription unit.

在生產UDP-半乳糖之實施例中,酵母表現質體衍生自含有HIS3選擇標記及如例如來自大腸桿菌之galE(UniProt ID P09147)的UDP-葡萄糖-4-表異構酶之持續型轉錄單元的pRS420-質體系列(Christianson等人, 1992, Gene 110: 119-122)。為生產LN3及LNT,此質體進一步經用於以下者之持續型轉錄單元修飾:如例如來自乳酸克魯維酵母之LAC12的乳糖透過酶(UniProt ID P07921)、如例如來自腦膜炎奈瑟氏菌之lgtA的半乳糖苷β-1,3-N-乙醯基葡萄糖胺基轉移酶(GenBank: AAM33849.1)及如例如來自大腸桿菌O55:H7之WbgO的N-乙醯基葡萄糖胺β-1,3-半乳糖基轉移酶(UniProt ID D3QY14)。為生產UDP-GalNAc,質體另外經用於如例如來自綠膿假單胞菌之WbpP的4-表異構酶(UniProt ID Q8KN66)的持續型轉錄單元修飾,之後視情況針對如例如來自大腸桿菌之glmM的磷酸葡萄糖胺變位酶(UniProt P31120)及如例如來自大腸桿菌之glmU的N-乙醯基葡萄糖胺-1-磷酸尿苷醯基轉移酶/葡萄糖胺-1-磷酸乙醯基轉移酶(UniProt ID P0ACC7)的基因嵌入修飾。In an example of the production of UDP-galactose, the yeast showed that the plastid was derived from a continuous transcription unit containing a HIS3 selectable marker and a UDP-glucose-4-epimerase such as, for example, galE from E. coli (UniProt ID P09147). of the pRS420-plastid series (Christianson et al., 1992, Gene 110: 119-122). For the production of LN3 and LNT, this plastid is further modified with a persistent transcription unit for, for example, the lactose permease from LAC12 of Kluyveromyces lactis (UniProt ID P07921), as for example from Neisseria meningitidis Galactoside β-1,3-N-acetylglucosaminyltransferase of IgtA from bacteria (GenBank: AAM33849.1) and N-acetylglucosamine β such as, for example, WbgO from Escherichia coli O55:H7 -1,3-Galactosyltransferase (UniProt ID D3QY14). For the production of UDP-GalNAc, the plastids are additionally modified with a persistent transcription unit for 4-epimerase (UniProt ID Q8KN66) for e.g. WbpP from Pseudomonas aeruginosa, then optionally directed against e.g. Phosphoglucosamine mutase (UniProt P31120) of glmM of Bacillus and N-acetylglucosamine-1-phosphate uridine transferase/glucosamine-1-phosphate acetyltransferase such as glmU from Escherichia coli Gene insertion modification of a transferase (UniProt ID P0ACC7).

在生產唾液酸及CMP-唾液酸之一實施例中,酵母表現質體可源自pRS420質體系列(Christianson等人, 1992, Gene 110: 119-122),該等質體系列含有TRP1選擇標記及持續型轉錄單元,該等持續型轉錄單元用於以下者之一或多個複本:L-麩醯胺酸-D-果糖-6-磷酸胺基轉移酶,如例如來自大腸桿菌之突變型glmS*54(藉由A39T、R250C及G472S突變而不同於野生型大腸桿菌glmS,具有UniProt ID P17169,如藉由Deng等人(Biochimie 88, 419-29 (2006))所描述);磷酸酶,如例如包含aphA、Cof、HisB、OtsB、SurE、Yaed、YcjU、YedP、YfbT、YidA、YigB、YihX、YniC、YqaB、YrbL、AppA、Gph、SerB、YbhA、YbiV、YbjL、Yfb、YieH、YjgL、YjjG、YrfG及YbiU之大腸桿菌基因或來自戀臭假單胞菌之PsMupP、來自釀酒酵母之ScDOG1或來自枯草芽孢桿菌之BsAraL(如WO18122225中所描述);如例如來自卵形類桿菌之AGE的N-乙醯基葡萄糖胺2-表異構酶(UniProt ID A7LVG6)、如例如來自腦膜炎奈瑟氏菌(UniProt ID E0NCD4)或空腸彎曲桿菌(UniProt ID Q93MP9)之N-乙醯基神經胺酸合酶及如例如來自空腸彎曲桿菌之NeuA(UniProt ID Q93MP7)、來自流感嗜血桿菌之NeuA(Genbank No. AGV11798.1)或來自敗血性巴氏桿菌之NeuA(GenBank No. AMK07891.1)的N-醯基神經胺酸胞苷醯基轉移酶。視情況,亦添加包含葡萄糖胺6-磷酸N-乙醯基轉移酶,如例如來自釀酒酵母之GNA1(UniProt ID P43577)之一或多個複本的持續型轉錄單元。為生產唾液酸基化寡醣,質體另外包含用於以下者之持續型轉錄單元:如例如來自乳酸克魯維酵母之LAC12的乳糖透過酶(UniProt ID P07921);及以下者之一或多個複本:如例如來自敗血性巴氏桿菌之PmultST3的β-半乳糖苷α-2,3-唾液酸基轉移酶(UniProt ID Q9CLP3)或由UniProt ID Q9CLP3之胺基酸殘基1至268組成之具有β-半乳糖苷α-2,3-唾液酸基轉移酶活性的PmultST3樣多肽、來自腦膜炎奈瑟氏菌之NmeniST3(GenBank No. ARC07984.1)或來自敗血性巴氏桿菌敗血性亞種菌株Pm70之PmultST2(GenBank NO. AAK02592.1)、如例如來自美人魚發光菌之PdST6的β-半乳糖苷α-2,6-唾液酸基轉移酶(UniProt ID O66375)或由UniProt ID O66375的胺基酸殘基108至497組成之具有β-半乳糖苷α-2,6-唾液酸基轉移酶活性的PdST6樣多肽或來自發光菌屬JT-ISH-224之P-JT-ISH-224-ST6(UniProt ID A8QYL1)或由UniProt ID A8QYL1的胺基酸殘基18至514組成之具有β-半乳糖苷α-2,6-唾液酸基轉移酶活性之P-JT-ISH-224-ST6樣多肽及/或如例如來自小家鼠之α-2,8-唾液酸基轉移酶(UniProt ID Q64689)。In one embodiment of the production of sialic acid and CMP-sialic acid, yeast expressed plastids can be derived from the pRS420 plastid series (Christianson et al., 1992, Gene 110: 119-122), which contains the TRP1 selection marker and persistent transcription units for one or more copies of L-glutamic acid-D-fructose-6-phosphate aminotransferase, such as, for example, mutants from Escherichia coli glmS*54 (different from wild-type E. coli glmS by A39T, R250C and G472S mutations, with UniProt ID P17169, as described by Deng et al. (Biochimie 88, 419-29 (2006))); Phosphatase, For example, aphA, Cof, HisB, OtsB, SurE, Yaed, YcjU, YedP, YfbT, YidA, YigB, YihX, YniC, YqaB, YrbL, AppA, Gph, SerB, YbhA, YbiV, YbjL, Yfb, YieH, YjgL , YjjG, YrfG and YbiU E. coli genes or PsMupP from Pseudomonas sputum, ScDOG1 from Saccharomyces cerevisiae or BsAraL from Bacillus subtilis (as described in WO18122225); as eg AGE from Bacillus ovale N-acetylglucosamine 2-epimerase (UniProt ID A7LVG6), such as for example from Neisseria meningitidis (UniProt ID E0NCD4) or Campylobacter jejuni (UniProt ID Q93MP9) Amino acid synthase and eg NeuA from Campylobacter jejuni (UniProt ID Q93MP7), NeuA from Haemophilus influenzae (Genbank No. AGV11798.1) or NeuA from Pasteurella septicaemia (GenBank No. AMK07891.1 ) of N-acylneuraminic acid cytidine acyltransferase. Optionally, a persistent transcription unit comprising one or more copies of a glucosamine 6-phosphate N-acetyltransferase, such as eg GNA1 (UniProt ID P43577) from Saccharomyces cerevisiae, is also added. For the production of sialylated oligosaccharides, the plastids additionally comprise a continuous transcription unit for: such as, for example, the lactose permease from LAC12 of Kluyveromyces lactis (UniProt ID P07921); and one or more of the following A duplicate: as for example β-galactoside α-2,3-sialyltransferase from PmultST3 of Pasteurella septicemia (UniProt ID Q9CLP3) or consisting of amino acid residues 1 to 268 of UniProt ID Q9CLP3 PmultST3-like polypeptide with β-galactoside α-2,3-sialyltransferase activity, NmeniST3 from Neisseria meningitidis (GenBank No. ARC07984.1) or from Pasteurella septicaemia PmultST2 of subsp. strain Pm70 (GenBank NO. AAK02592.1), β-galactoside α-2,6-sialyltransferase (UniProt ID 066375) such as, for example, PdST6 from P. mermaidii (UniProt ID 066375) A PdST6-like polypeptide with β-galactoside α-2,6-sialyltransferase activity consisting of amino acid residues 108 to 497 of P-JT-ISH- 224-ST6 (UniProt ID A8QYL1) or P-JT-ISH-224 with β-galactoside α-2,6-sialyltransferase activity consisting of amino acid residues 18 to 514 of UniProt ID A8QYL1 - ST6-like polypeptide and/or as eg alpha-2,8-sialyltransferase from Mus musculus (UniProt ID Q64689).

較佳但未必,醣基轉移酶、參與核苷酸活化糖合成之蛋白質及/或膜運輸蛋白中之任一或多者經N端及/或C端融合至SUMOstar標籤(例如獲自pYSUMOstar, Life Sensors, Malvern, PA)以增強其可溶性。Preferably, but not necessarily, any one or more of glycosyltransferases, proteins involved in nucleotide-activated sugar synthesis, and/or membrane transport proteins are N-terminally and/or C-terminally fused to a SUMOstar tag (eg, obtained from pYSUMOstar, Life Sensors, Malvern, PA) to enhance its solubility.

視情況,突變酵母菌菌株用編碼伴隨蛋白之持續型轉錄單元之基因體嵌入修飾,該伴隨蛋白如例如Hsp31、Hsp32、Hsp33、Sno4、Kar2、Ssb1、Sse1、Sse2、Ssa1、Ssa2、Ssa3、Ssa4、Ssb2、Ecm10、Ssc1、Ssq1、Ssz1、Lhs1、Hsp82、Hsc82、Hsp78、Hsp104、Tcp1、Cct4、Cct8、Cct2、Cct3、Cct5、Cct6或Cct7(Gong等人, 2009, Mol. Syst. Biol. 5: 275)。Optionally, mutant yeast strains are modified with gene body insertions encoding persistent transcription units for chaperone proteins such as, for example, Hsp31, Hsp32, Hsp33, Sno4, Kar2, Ssb1, Sse1, Sse2, Ssa1, Ssa2, Ssa3, Ssa4 , Ssb2, Ecm10, Ssc1, Ssq1, Ssz1, Lhs1, Hsp82, Hsc82, Hsp78, Hsp104, Tcp1, Cct4, Cct8, Cct2, Cct3, Cct5, Cct6 or Cct7 (Gong et al., 2009, Mol. Syst. Biol. 5 : 275).

將質體保持在購自Invitrogen之宿主大腸桿菌DH5α(F -、phi80d lacZdeltaM15、delta( lacZYA- argF)U169、 deoRrecA1endA1、hsdR17(rk -、mk +)、 phoAsupE44、lambda -thi-1、 gyrA96relA1)中。 異源及同源表現 Plastids were maintained in host E. coli DH5α (F , phi80d lacZ deltaM15, delta( lacZYAargF ) U169, deoR , recA1 , endA1 , hsdR17(rk , mk + ), phoA , supE44 , lambda purchased from Invitrogen , thi -1, gyrA96 , rel A1). Heterologous and Homologous Expression

需要表現之基因,無論其來自質體或來自基因體,均以合成方式經以下公司中之一者合成:DNA2.0、Gen9、IDT或Twist Bioscience。可藉由使密碼子使用最佳化為表現宿主之密碼子使用來進一步促進表現。使用供應商之工具使基因最佳化。 培養條件 Genes to be expressed, whether from plastids or gene bodies, are synthesized synthetically by one of the following companies: DNA2.0, Gen9, IDT or Twist Bioscience. Expression can be further facilitated by optimizing codon usage to that of the expression host. Genetic optimization using vendor tools. Culture conditions

一般而言,酵母菌株最初在SD CSM盤上生長以獲得單一菌落。使此等盤在30℃下生長2-3天。始於單一菌落,使預培養物在30℃下在5 mL下生長隔夜,在200 rpm下振盪。後續之125 mL搖瓶實驗在25 mL培養基中以此預培養物之2%接種。在30℃下在200 rpm之定軌振盪下培育此等搖瓶。 基因表現啟動子 Generally, yeast strains are initially grown on SD CSM disks to obtain single colonies. The plates were grown at 30°C for 2-3 days. Starting with a single colony, the preculture was grown overnight at 30 °C in 5 mL with shaking at 200 rpm. Subsequent 125 mL shake flask experiments were seeded with 2% of this preculture in 25 mL of medium. The flasks were incubated at 30°C with orbital shaking at 200 rpm. gene expression promoter

使用合成持續型啟動子表現基因,如藉由Blazeck所描述(Biotechnology and Bioengineering,第109卷,第11號, 2012)。 實施例 3. 使用乳糖及 3-FL 作為受體 用經修飾之大腸桿菌宿主生產包含 2'FL DiFL 之寡醣混合物 The gene was expressed using a synthetic persistent promoter, as described by Blazeck (Biotechnology and Bioengineering, Vol. 109, No. 11, 2012). Example 3. Production of an oligosaccharide mixture comprising 2'FL and DiFL with a modified E. coli host using lactose and 3-FL as acceptors

如實施例1中所描述經修飾用於GDP-岩藻糖生產之大腸桿菌K12菌株經表現持續型轉錄單元之質體轉型,該持續型轉錄單元用於幽門螺旋桿菌α-1,2-岩藻糖基轉移酶HpFutC(GenBank: AAD29863.1)。根據實施例1中所提供之培養條件在生長實驗中評估新穎菌株,其中培養基含有蔗糖作為碳源以及乳糖及3-FL作為受體。各菌株在96孔盤中以四個生物複製物生長。培育72h之後,收集培養液,且在UPLC上分析糖混合物。實驗證明,新穎菌株在全培養液樣品中產生包含2'FL及2',-3-岩藻糖基乳糖(DiFL)之寡醣混合物。 實施例 4. 使用乳糖及 LacNAc 作為受體 用經修飾之大腸桿菌宿主生產包含 2'FL DiFL 2'FLacNAc 之寡醣混合物 E. coli K12 strain modified for GDP-fucose production as described in Example 1 undergoes plastid transformation to express a persistent transcription unit for H. pylori alpha-1,2-rock Fluorosyltransferase HpFutC (GenBank: AAD29863.1). The novel strains were evaluated in growth experiments according to the culture conditions provided in Example 1, wherein the medium contained sucrose as carbon source and lactose and 3-FL as acceptors. Each strain was grown in four biological replicates in 96-well plates. After 72 h of incubation, the broth was collected and the sugar mixture was analyzed on UPLC. Experiments demonstrated that the novel strain produced an oligosaccharide mixture comprising 2'FL and 2',-3-fucosyllactose (DiFL) in whole broth samples. Example 4. Production of an oligosaccharide mixture comprising 2'FL , DiFL and 2'FLacNAc with a modified E. coli host using lactose and LacNAc as acceptors

如實施例1中所描述經修飾用於GDP-岩藻糖生產之大腸桿菌K12菌株經表現持續型轉錄單元之質體轉型,該持續型轉錄單元用於幽門螺旋桿菌α-1,2-岩藻糖基轉移酶HpFutC(GenBank: AAD29863.1)。當在生長實驗中根據實施例1中所提供之培養條件評估時,新穎菌株在全培養液樣品中產生包含2'FL、DiFL及2'-岩藻糖基化N-乙醯基乳糖胺(2'FLacNAc)之寡醣混合物,其中培養基含有蔗糖作為碳源以及乳糖及N-乙醯基乳糖胺(Gal-b1,4-GlcNAc,LacNAc)作為受體。 實施例 5. 使用乳糖及 LacNAc 作為受體 用經修飾之大腸桿菌宿主生產包含 2'FL 3-FL DiFL 2'FLacNAc 3-FLacNAc DiFLacNAc 之寡醣混合物 E. coli K12 strain modified for GDP-fucose production as described in Example 1 undergoes plastid transformation to express a persistent transcription unit for H. pylori alpha-1,2-rock Fluorosyltransferase HpFutC (GenBank: AAD29863.1). When evaluated in growth experiments according to the culture conditions provided in Example 1, the novel strain produced in a whole broth sample a mixture of 2'FL, DiFL and 2'-fucosylated N-acetyllactosamine ( 2'FLacNAc) in an oligosaccharide mixture containing sucrose as a carbon source and lactose and N-acetyllactosamine (Gal-b1,4-GlcNAc, LacNAc) as acceptors. Example 5. Production of an oligosaccharide mixture comprising 2'FL , 3-FL , DiFL , 2'FLacNAc , 3-FLacNAc and DiFLacNAc with a modified E. coli host using lactose and LacNAc as acceptors

如實施例1中所描述經修飾用於GDP-岩藻糖生產之大腸桿菌K12菌株經表現持續型轉錄單元之質體轉型,該等持續型轉錄單元用於幽門螺旋桿菌α-1,2-岩藻糖基轉移酶HpFutC(GenBank: AAD29863.1)及幽門螺旋桿菌α-1,3-岩藻糖基轉移酶HpFucT(UniProt ID O30511)。當在生長實驗中根據實施例1中所提供之培養條件評估時,新穎菌株在全培養液樣品中產生包含2'FL、3-FL及岩藻糖基化LacNAc(亦即2'FLacNAc及3-FLacNAc)之寡醣混合物,其中培養基含有蔗糖作為碳源以及乳糖及LacNAc作為受體。由於酶HpFutC(GenBank: AAD29863.1)亦顯示2'FL上之岩藻糖基轉移酶活性且酶HpFucT(UniProt ID O30511)亦顯示2'FLacNAc上之岩藻糖基轉移酶活性,因此新穎菌株亦產生該寡醣混合物中之DiFL及Di-FLacNAc。 實施例 6. 使用乳糖及 LacNAc 作為受體 用經修飾之大腸桿菌宿主生產包含 3-FL 3-FLacNAc 之寡醣混合物 E. coli K12 strain modified for GDP-fucose production as described in Example 1 undergoes plastid transformation expressing persistent transcription units for H. pylori alpha-1,2- Fucosyltransferase HpFutC (GenBank: AAD29863.1) and Helicobacter pylori α-1,3-fucosyltransferase HpFucT (UniProt ID O30511). When evaluated in growth experiments according to the culture conditions provided in Example 1, the novel strains produced 2'FL, 3-FL and fucosylated LacNAc (i.e. 2'FLacNAc and 3'FLacNAc and 3-FL) in whole broth samples -FLacNAc) oligosaccharide mixture, wherein the medium contains sucrose as carbon source and lactose and LacNAc as acceptors. Since the enzyme HpFutC (GenBank: AAD29863.1) also showed fucosyltransferase activity on 2'FL and the enzyme HpFucT (UniProt ID O30511) also showed fucosyltransferase activity on 2'FLacNAc, the novel strain DiFL and Di-FLacNAc in the oligosaccharide mixture were also produced. Example 6. Production of an oligosaccharide mixture comprising 3-FL and 3-FLacNAc with a modified E. coli host using lactose and LacNAc as acceptors

如實施例1中所描述經修飾用於GDP-岩藻糖生產之大腸桿菌K12菌株經表現持續型轉錄單元之質體轉型,該持續型轉錄單元用於幽門螺旋桿菌α-1,3-岩藻糖基轉移酶HpFutC(UniProt ID O30511)。當在生長實驗中根據實施例1中所提供之培養條件評估時,新穎菌株在全培養液樣品中產生包含3-FL及3-岩藻糖基化N-乙醯基乳糖胺(3'FLacNAc)之寡醣混合物,其中培養基含有蔗糖作為碳源以及乳糖及LacNAc作為受體。 實施例 7. 使用乳糖及 LNB 作為受體 用經修飾之大腸桿菌宿主生產包含 2'FL DiFL 2'FLNB 之寡醣混合物 E. coli K12 strain modified for GDP-fucose production as described in Example 1 undergoes plastid transformation expressing a persistent transcription unit for H. pylori alpha-1,3-rock Fluorosyltransferase HpFutC (UniProt ID O30511). When evaluated in growth experiments according to the culture conditions provided in Example 1, the novel strain produced a sample of whole broth containing 3-FL and 3-fucosylated N-acetyllactosamine (3'FLacNAc ) in an oligosaccharide mixture containing sucrose as carbon source and lactose and LacNAc as acceptors. Example 7. Production of an oligosaccharide mixture comprising 2'FL , DiFL and 2'FLNB with a modified E. coli host using lactose and LNB as acceptors

如實施例1中所描述經修飾用於GDP-岩藻糖生產之大腸桿菌K12菌株經表現持續型轉錄單元之質體轉型,該持續型轉錄單元用於幽門螺旋桿菌α-1,2-岩藻糖基轉移酶HpFutC(GenBank: AAD29863.1)。當在生長實驗中根據實施例1中所提供之培養條件評估時,新穎菌株在全培養液樣品中產生包含2'FL、DiFL及2'-岩藻糖基化乳-N-二糖(2'FLNB)之寡醣混合物,其中培養基含有蔗糖作為碳源以及乳糖及乳-N-二糖(Gal-b1,3-GlcNAc,LNB)作為受體。 實施例 8. 使用乳糖及 LNB 作為受體 用經修飾之大腸桿菌宿主生產包含 2'FL 3-FL DiFL 2'FLNB 4-FLNB DiFLNB 之寡醣混合物 E. coli K12 strain modified for GDP-fucose production as described in Example 1 undergoes plastid transformation to express a persistent transcription unit for H. pylori alpha-1,2-rock Fluorosyltransferase HpFutC (GenBank: AAD29863.1). When evaluated in growth experiments according to the culture conditions provided in Example 1, the novel strain produced in a whole broth sample a sample containing 2'FL, DiFL and 2'-fucosylated lacto-N-disaccharide (2 'FLNB) oligosaccharide mixture in which the medium contains sucrose as a carbon source and lactose and lacto-N-disaccharide (Gal-b1,3-GlcNAc, LNB) as acceptors. Example 8. Production of an oligosaccharide mixture comprising 2'FL , 3-FL , DiFL , 2'FLNB , 4-FLNB and DiFLNB with a modified E. coli host using lactose and LNB as acceptors

如實施例1中所描述經修飾用於GDP-岩藻糖生產之大腸桿菌K12菌株經表現持續型轉錄單元之質體轉型,該等持續型轉錄單元用於幽門螺旋桿菌α-1,2-岩藻糖基轉移酶HpFutC(GenBank: AAD29863.1)及幽門螺旋桿菌α-1,3-岩藻糖基轉移酶HpFucT(UniProt ID O30511)。由於乳糖及LNB為幽門螺旋桿菌岩藻糖基轉移酶兩者之適合受體,因此當在生長實驗中根據實施例1中提供之培養條件評估時,新穎菌株在全培養液樣品中產生包含2'FL、3-FL及岩藻糖基化LNB(亦即2'FLNB及4-FLNB)之寡醣混合物,其中培養基含有蔗糖作為碳源以及乳糖及LNB作為受體。由於酶HpFutC(GenBank: AAD29863.1)亦顯示2'FL上之岩藻糖基轉移酶活性且酶HpFucT(UniProt ID O30511)亦顯示2'FLacNAc上之岩藻糖基轉移酶活性,因此新穎菌株亦產生該寡醣混合物中之DiFL及二岩藻糖基化LNB(DiFLNB)。 實施例 9. 使用乳糖及 LNB 作為受體 用經修飾之大腸桿菌宿主生產包含 3-FL 4-FLNB 之寡醣混合物 E. coli K12 strain modified for GDP-fucose production as described in Example 1 undergoes plastid transformation expressing persistent transcription units for H. pylori alpha-1,2- Fucosyltransferase HpFutC (GenBank: AAD29863.1) and Helicobacter pylori α-1,3-fucosyltransferase HpFucT (UniProt ID O30511). Since lactose and LNB are suitable receptors for both H. pylori fucosyltransferases, the novel strain produced in a whole broth sample containing 2 when evaluated in growth experiments according to the culture conditions provided in Example 1 Oligosaccharide mixture of 'FL, 3-FL and fucosylated LNB (ie 2' FLNB and 4-FLNB) in which the medium contained sucrose as carbon source and lactose and LNB as acceptors. Since the enzyme HpFutC (GenBank: AAD29863.1) also showed fucosyltransferase activity on 2'FL and the enzyme HpFucT (UniProt ID O30511) also showed fucosyltransferase activity on 2'FLacNAc, the novel strain DiFL and difucosylated LNB (DiFLNB) in the oligosaccharide mixture were also produced. Example 9. Production of an oligosaccharide mixture comprising 3-FL and 4-FLNB with a modified E. coli host using lactose and LNB as acceptors

如實施例1中所描述經修飾用於GDP-岩藻糖生產之大腸桿菌K12菌株經表現持續型轉錄單元之質體轉型,該持續型轉錄單元用於幽門螺旋桿菌α-1,3-岩藻糖基轉移酶HpFutC(UniProt ID O30511)。當在生長實驗中根據實施例1中所提供之培養條件評估時,新穎菌株在全培養液樣品中產生包含3-FL及4-岩藻糖基化乳-N-二糖(4-FLNB)之寡醣混合物,其中培養基含有蔗糖作為碳源以及乳糖及LNB作為受體。 實施例 10. 使用 LacNAc LNB 作為受體 用經修飾之大腸桿菌宿主生產包含 2'FLacNAc 2'FLNB 之寡醣混合物 E. coli K12 strain modified for GDP-fucose production as described in Example 1 undergoes plastid transformation expressing a persistent transcription unit for H. pylori alpha-1,3-rock Fluorosyltransferase HpFutC (UniProt ID O30511). The novel strains produced 3-FL and 4-fucosylated lacto-N-disaccharide (4-FLNB) in whole broth samples when evaluated in growth experiments according to the culture conditions provided in Example 1 The oligosaccharide mixture in which the medium contains sucrose as carbon source and lactose and LNB as acceptors. Example 10. Production of an oligosaccharide mixture comprising 2'FLacNAc and 2'FLNB with a modified E. coli host using LacNAc and LNB as acceptors

如實施例1中所描述經修飾用於GDP-岩藻糖生產之大腸桿菌K12菌株經表現持續型轉錄單元之質體轉型,該持續型轉錄單元用於幽門螺旋桿菌α-1,2-岩藻糖基轉移酶HpFutC(GenBank: AAD29863.1)。當在生長實驗中根據實施例1中所提供之培養條件評估時,新穎菌株在全培養液樣品中產生包含2'FLacNAc及2'FLNB之寡醣混合物,其中培養基含有蔗糖作為碳源以及LacNAc及LNB作為受體。 實施例 11. 使用 LacNAc LNB 作為受體 用經修飾之大腸桿菌宿主生產包含 3'FLacNAc 4-FLNB 之寡醣混合物 E. coli K12 strain modified for GDP-fucose production as described in Example 1 undergoes plastid transformation to express a persistent transcription unit for H. pylori alpha-1,2-rock Fluorosyltransferase HpFutC (GenBank: AAD29863.1). When evaluated in growth experiments according to the culture conditions provided in Example 1, the novel strain produced an oligosaccharide mixture comprising 2'FLacNAc and 2'FLNB in a whole broth sample, where the medium contained sucrose as a carbon source and LacNAc and LNB acts as a receptor. Example 11. Production of an oligosaccharide mixture comprising 3'FLacNAc and 4-FLNB with a modified E. coli host using LacNAc and LNB as acceptors

如實施例1中所描述經修飾用於GDP-岩藻糖生產之大腸桿菌K12菌株經表現持續型轉錄單元之質體轉型,該持續型轉錄單元用於幽門螺旋桿菌α-1,3-岩藻糖基轉移酶HpFutC(UniProt ID O30511)。當在生長實驗中根據實施例1中所提供之培養條件評估時,新穎菌株在全培養液樣品中產生包含3-FLacNAc及4-FLNB之寡醣混合物,其中培養基含有蔗糖作為碳源以及LacNAc及LNB作為受體。 實施例 12. 使用 LacNAc LNB 作為受體 用經修飾之大腸桿菌宿主生產包含 2'FLacNAc 3-FLacNAc DiFLacNAc 2'FLNB 4-FLNB DiFLNB 之寡醣混合物 E. coli K12 strain modified for GDP-fucose production as described in Example 1 undergoes plastid transformation expressing a persistent transcription unit for H. pylori alpha-1,3-rock Fluorosyltransferase HpFutC (UniProt ID O30511). The novel strain produced an oligosaccharide mixture comprising 3-FLacNAc and 4-FLNB in a whole broth sample when assessed in growth experiments according to the culture conditions provided in Example 1, where the medium contained sucrose as a carbon source and LacNAc and LNB acts as a receptor. Example 12. Production of a mixture of oligosaccharides comprising 2'FLacNAc , 3-FLacNAc , DiFLacNAc , 2'FLNB , 4-FLNB and DiFLNB with modified E. coli hosts using LacNAc and LNB as acceptors

如實施例1中所描述經修飾用於GDP-岩藻糖生產之大腸桿菌K12菌株經表現持續型轉錄單元之質體轉型,該等持續型轉錄單元用於幽門螺旋桿菌α-1,2-岩藻糖基轉移酶HpFutC(GenBank: AAD29863.1)及幽門螺旋桿菌α-1,3-岩藻糖基轉移酶HpFucT(UniProt ID O30511)。當在生長實驗中根據實施例1中所提供之培養條件評估時,新穎菌株在全培養液樣品中產生包含2'FLacNAc、3-FLacNAc、DiFLacNAc、2'FLNB、4-FLNB及DiFLNB之寡醣混合物,其中培養基含有蔗糖作為碳源以及LacNAc及LNB作為受體。 實施例 13. 使用乳糖、 LacNAc LNB 作為受體 用經修飾之大腸桿菌宿主生產包含 2'FL DiFL 2'FLacNAc 2'FLNB 之寡醣混合物 E. coli K12 strain modified for GDP-fucose production as described in Example 1 undergoes plastid transformation expressing persistent transcription units for H. pylori alpha-1,2- Fucosyltransferase HpFutC (GenBank: AAD29863.1) and Helicobacter pylori α-1,3-fucosyltransferase HpFucT (UniProt ID O30511). The novel strain produced oligosaccharides comprising 2'FLacNAc, 3-FLacNAc, DiFLacNAc, 2'FLNB, 4-FLNB and DiFLNB in whole broth samples when evaluated in growth experiments according to the culture conditions provided in Example 1 Mixtures in which the medium contained sucrose as carbon source and LacNAc and LNB as acceptors. Example 13. Production of an oligosaccharide mixture comprising 2'FL , DiFL , 2'FLacNAc and 2'FLNB with a modified E. coli host using lactose, LacNAc and LNB as acceptors

如實施例1中所描述經修飾用於GDP-岩藻糖生產之大腸桿菌K12菌株經表現持續型轉錄單元之質體轉型,該持續型轉錄單元用於幽門螺旋桿菌α-1,2-岩藻糖基轉移酶HpFutC(GenBank: AAD29863.1)。當在生長實驗中根據實施例1中所提供之培養條件評估時,新穎菌株在全培養液樣品中產生包含2'FL、DiFL、2'FLacNAc及2'FLNB之寡醣混合物,其中培養基含有蔗糖作為碳源以及乳糖、LacNAc及LNB作為受體。 實施例 14. 使用乳糖、 LacNAc LNB 作為受體 用經修飾之大腸桿菌宿主生產包含 3-FL 3'FLacNAc 4-FLNB 之寡醣混合物 E. coli K12 strain modified for GDP-fucose production as described in Example 1 undergoes plastid transformation to express a persistent transcription unit for H. pylori alpha-1,2-rock Fluorosyltransferase HpFutC (GenBank: AAD29863.1). The novel strain produced an oligosaccharide mixture comprising 2'FL, DiFL, 2'FLacNAc, and 2'FLNB in a whole broth sample when assessed in growth experiments according to the culture conditions provided in Example 1, where the medium contained sucrose as carbon source and lactose, LacNAc and LNB as acceptors. Example 14. Production of an oligosaccharide mixture comprising 3-FL , 3'FLacNAc and 4-FLNB with a modified E. coli host using lactose, LacNAc and LNB as acceptors

如實施例1中所描述經修飾用於GDP-岩藻糖生產之大腸桿菌K12菌株經表現持續型轉錄單元之質體轉型,該持續型轉錄單元用於幽門螺旋桿菌α-1,3-岩藻糖基轉移酶HpFutC(UniProt ID O30511)。當在生長實驗中根據實施例1中所提供之培養條件評估時,新穎菌株在全培養液樣品中產生包含3-FL、3-FLacNAc及4-FLNB之寡醣混合物,其中培養基含有蔗糖作為碳源以及乳糖、LacNAc及LNB作為受體。 實施例 15. 使用乳糖、 LacNAc LNB 作為受體 用經修飾之大腸桿菌宿主生產包含 2'FL 3-FL DiFL 2'FLacNAc 3-FLacNAc DiFLacNAc 2'FLNB 4-FLNB DiFLNB 之寡醣混合物 E. coli K12 strain modified for GDP-fucose production as described in Example 1 undergoes plastid transformation expressing a persistent transcription unit for H. pylori alpha-1,3-rock Fluorosyltransferase HpFutC (UniProt ID O30511). The novel strain produced an oligosaccharide mixture comprising 3-FL, 3-FLacNAc and 4-FLNB in a whole broth sample when assessed in growth experiments according to the culture conditions provided in Example 1, where the medium contained sucrose as carbon source and lactose, LacNAc and LNB as acceptors. Example 15. Production of 2'FL , 3-FL , DiFL , 2'FLacNAc , 3-FLacNAc , DiFLacNAc , 2'FLNB , 4-FLNB with a modified E. coli host using lactose, LacNAc and LNB as acceptors and DiFLNB oligosaccharide mixture

如實施例1中所描述經修飾用於GDP-岩藻糖生產之大腸桿菌K12菌株經表現持續型轉錄單元之質體轉型,該等持續型轉錄單元用於幽門螺旋桿菌α-1,2-岩藻糖基轉移酶HpFutC(GenBank: AAD29863.1)及幽門螺旋桿菌α-1,3-岩藻糖基轉移酶HpFucT(UniProt ID O30511)。當在生長實驗中根據實施例1中所提供之培養條件評估時,新穎菌株在全培養液樣品中產生包含2'FL、3-FL、DiFL、2'FLacNAc、3-FLacNAc、DiFLacNAc、2'FLNB、4-FLNB及DiFLNB之寡醣混合物,其中培養基含有蔗糖作為碳源以及乳糖、LacNAc及LNB作為受體。 實施例 16. 使用乳糖及 LacNAc 作為受體 用經修飾之大腸桿菌宿主生產包含 3'SL 3'SLacNAc 之寡醣混合物 E. coli K12 strain modified for GDP-fucose production as described in Example 1 undergoes plastid transformation expressing persistent transcription units for H. pylori alpha-1,2- Fucosyltransferase HpFutC (GenBank: AAD29863.1) and Helicobacter pylori α-1,3-fucosyltransferase HpFucT (UniProt ID O30511). When evaluated in growth experiments according to the culture conditions provided in Example 1, the novel strains produced 2'FL, 3-FL, DiFL, 2'FLacNAc, 3-FLacNAc, DiFLacNAc, 2'FLacNAc, 2'FLacNAc, 2'FLacNAc, 2'FLacNAc, 2'FLacNAc, 2'FLacNAc Oligosaccharide mixture of FLNB, 4-FLNB and DiFLNB in which the medium contained sucrose as carbon source and lactose, LacNAc and LNB as acceptors. Example 16. Production of an Oligosaccharide Mixture Containing 3'SL and 3'SLacNAc with a Modified E. coli Host Using Lactose and LacNAc as Acceptors

如實施例1中所描述經修飾用於唾液酸生產之大腸桿菌K12菌株經表現持續型轉錄單元之質體轉型,該等持續型轉錄單元用於由UniProt ID Q9CLP3之胺基酸殘基1至268組成之具有β-半乳糖苷α-2,3-唾液酸基轉移酶活性的PmultST3樣多肽及來自敗血性巴氏桿菌之N-醯基神經胺酸胞苷醯基轉移酶(NeuA)(GenBank: AMK07891.1)。當在生長實驗中根據實施例1中所提供之培養條件評估時,新穎菌株在全培養液樣品中產生包含3'SL及唾液酸基化LacNAc(3'SLacNAc)之寡醣混合物,其中培養基含有甘油作為碳源以及乳糖及LacNAc作為受體。 實施例 17. 使用乳糖及 LacNAc 作為受體 用經修飾之大腸桿菌宿主生產包含 3'SL 6'SL 3'SLacNAc 6'SLacNAc 之寡醣混合物 E. coli K12 strains modified for sialic acid production as described in Example 1 undergo plastid transformation expressing persistent transcription units for amino acid residues 1 to 1 of UniProt ID Q9CLP3 268 PmultST3-like polypeptide with β-galactoside α-2,3-sialyltransferase activity and N-acylneuraminic acid cytidine syltransferase (NeuA) from Pasteurella septicemia (NeuA) ( GenBank: AMK07891.1). When evaluated in growth experiments according to the culture conditions provided in Example 1, the novel strain produced a mixture of oligosaccharides comprising 3'SL and sialylated LacNAc (3'SLacNAc) in samples of whole culture broth, wherein the medium contained Glycerol as carbon source and lactose and LacNAc as acceptors. Example 17. Production of an oligosaccharide mixture comprising 3'SL , 6'SL , 3'SLacNAc and 6'SLacNAc with modified E. coli hosts using lactose and LacNAc as acceptors

如實施例1中所描述經修飾用於唾液酸生產之大腸桿菌K12菌株經表現持續型轉錄單元之質體轉型,該等持續型轉錄單元用於由UniProt ID Q9CLP3之胺基酸殘基1至268組成之具有β-半乳糖苷α-2,3-唾液酸基轉移酶活性的PmultST3樣多肽、由UniProt ID O66375之胺基酸殘基108至497組成之具有β-半乳糖苷α-2,6-唾液酸基轉移酶活性的PdST6樣多肽及來自敗血性巴氏桿菌之N-醯基神經胺酸胞苷醯基轉移酶(NeuA)(GenBank: AMK07891.1)。當在生長實驗中根據實施例1中所提供之培養條件評估時,新穎菌株在全培養液樣品中產生包含3'SL、6'SL及唾液酸基化LacNAc(亦即3'SLacNAc及6'SLacNAc)之寡醣混合物,其中培養基含有甘油作為碳源以及乳糖及LacNAc作為受體。 實施例 18. 使用乳糖及 LacNAc 作為受體 用經修飾之大腸桿菌宿主生產包含 6'SL 6'SLacNAc 之寡醣混合物 E. coli K12 strains modified for sialic acid production as described in Example 1 undergo plastid transformation expressing persistent transcription units for amino acid residues 1 to 1 of UniProt ID Q9CLP3 PmultST3-like polypeptide with β-galactoside α-2,3-sialyltransferase activity composed of 268, with β-galactoside α-2 composed of amino acid residues 108 to 497 of UniProt ID 066375 , PdST6-like polypeptide with 6-sialyltransferase activity and N-acylneuraminic acid cytidine syltransferase (NeuA) from Pasteurella septicemia (GenBank: AMK07891.1). When evaluated in growth experiments according to the culture conditions provided in Example 1, the novel strains produced 3'SL, 6'SL and sialylated LacNAc (i.e. 3'SLacNAc and 6'SLacNAc) in whole broth samples SLacNAc) oligosaccharide mixture in which the medium contains glycerol as carbon source and lactose and LacNAc as acceptors. Example 18. Production of an oligosaccharide mixture comprising 6'SL and 6'SLacNAc with a modified E. coli host using lactose and LacNAc as acceptors

如實施例1中所描述經修飾用於唾液酸生產之大腸桿菌K12菌株經表現持續型轉錄單元之質體轉型,該等持續型轉錄單元用於由UniProt ID O66375之胺基酸殘基108至497組成之具有β-半乳糖苷α-2,6-唾液酸基轉移酶活性的PdST6樣多肽及來自敗血性巴氏桿菌之NeuA(GenBank: AMK07891.1)。當在生長實驗中根據實施例1中所提供之培養條件評估時,新穎菌株在全培養液樣品中產生包含6'SL及唾液酸基化LacNAc(6'SLacNAc)之寡醣混合物,其中培養基含有甘油作為碳源以及乳糖及LacNAc作為受體。 實施例 19. 使用乳糖及 LNB 作為受體 用經修飾之大腸桿菌宿主生產包含 3'SL 3'SLNB 之寡醣混合物 E. coli K12 strains modified for sialic acid production as described in Example 1 undergo plastid transformation expressing persistent transcription units for amino acid residues 108 to 108 of UniProt ID 066375 PdST6-like polypeptide with β-galactoside α-2,6-sialyltransferase activity composed of 497 and NeuA from Pasteurella septicemia (GenBank: AMK07891.1). When evaluated in growth experiments according to the culture conditions provided in Example 1, the novel strain produced a mixture of oligosaccharides comprising 6'SL and sialylated LacNAc (6'SLacNAc) in samples of whole culture broth, wherein the medium contained Glycerol as carbon source and lactose and LacNAc as acceptors. Example 19. Production of oligosaccharide mixtures comprising 3'SL and 3'SLNB with modified E. coli hosts using lactose and LNB as acceptors

如實施例1中所描述經修飾用於唾液酸生產之大腸桿菌K12菌株經表現持續型轉錄單元之質體轉型,該等持續型轉錄單元用於由UniProt ID Q9CLP3之胺基酸殘基1至268組成之具有β-半乳糖苷α-2,3-唾液酸基轉移酶活性的PmultST3樣多肽及來自敗血性巴氏桿菌之NeuA(GenBank: AMK07891.1)。當在生長實驗中根據實施例1中所提供之培養條件評估時,新穎菌株在全培養液樣品中產生包含3'SL及唾液酸基化LNB(3'SLNB)之寡醣混合物,其中培養基含有甘油作為碳源以及乳糖及LNB作為受體。 實施例 20. 使用乳糖及 LNB 作為受體 用經修飾之大腸桿菌宿主生產包含 3'SL 6'SL 3'SLNB 6'SLNB 之寡醣混合物 E. coli K12 strains modified for sialic acid production as described in Example 1 undergo plastid transformation expressing persistent transcription units for amino acid residues 1 to 1 of UniProt ID Q9CLP3 268 PmultST3-like polypeptide with β-galactoside α-2,3-sialyltransferase activity and NeuA from Pasteurella septicemia (GenBank: AMK07891.1). When evaluated in growth experiments according to the culture conditions provided in Example 1, the novel strain produced an oligosaccharide mixture comprising 3'SL and sialylated LNB (3'SLNB) in a sample of whole broth, wherein the medium contained Glycerol as carbon source and lactose and LNB as acceptors. Example 20. Production of an oligosaccharide mixture comprising 3'SL , 6'SL , 3'SLNB and 6'SLNB with modified E. coli hosts using lactose and LNB as acceptors

如實施例1中所描述經修飾用於唾液酸生產之大腸桿菌K12菌株經表現持續型轉錄單元之質體轉型,該等持續型轉錄單元用於由UniProt ID Q9CLP3之胺基酸殘基1至268組成之具有β-半乳糖苷α-2,3-唾液酸基轉移酶活性的PmultST3樣多肽、由UniProt ID O66375之胺基酸殘基108至497組成之具有β-半乳糖苷α-2,6-唾液酸基轉移酶活性的PdST6樣多肽及來自敗血性巴氏桿菌之NeuA(GenBank: AMK07891.1)。當在生長實驗中根據實施例1中所提供之培養條件評估時,新穎菌株在全培養液樣品中產生包含3'SL、6'SL及唾液酸基化LNB(亦即3'SLNB及6'SLNB)之寡醣混合物,其中培養基含有甘油作為碳源以及乳糖及LNB作為受體。 實施例 21. 使用乳糖及 LNB 作為受體 用經修飾之大腸桿菌宿主生產包含 6'SL 6'SLNB 之寡醣混合物 E. coli K12 strains modified for sialic acid production as described in Example 1 undergo plastid transformation expressing persistent transcription units for amino acid residues 1 to 1 of UniProt ID Q9CLP3 PmultST3-like polypeptide with β-galactoside α-2,3-sialyltransferase activity composed of 268, with β-galactoside α-2 composed of amino acid residues 108 to 497 of UniProt ID 066375 , PdST6-like polypeptide with 6-sialyltransferase activity and NeuA from Pasteurella septicemia (GenBank: AMK07891.1). When evaluated in growth experiments according to the culture conditions provided in Example 1, the novel strain produced in whole broth samples a mixture of 3'SL, 6'SL, and sialylated LNB (ie, 3'SLNB and 6'SLNB and 6'SLNB) SLNB) oligosaccharide mixture, wherein the medium contains glycerol as carbon source and lactose and LNB as acceptors. Example 21. Production of oligosaccharide mixtures comprising 6'SL and 6'SLNB with modified E. coli hosts using lactose and LNB as acceptors

如實施例1中所描述經修飾用於唾液酸生產之大腸桿菌K12菌株經表現持續型轉錄單元之質體轉型,該等持續型轉錄單元用於由UniProt ID O66375之胺基酸殘基108至497組成之具有β-半乳糖苷α-2,6-唾液酸基轉移酶活性的PdST6樣多肽及來自敗血性巴氏桿菌之NeuA(GenBank: AMK07891.1)。當在生長實驗中根據實施例1中所提供之培養條件評估時,新穎菌株在全培養液樣品中產生包含6'SL及唾液酸基化LNB(6'SLNB)之寡醣混合物,其中培養基含有甘油作為碳源以及乳糖及LNB作為受體。 實施例 22. 使用 LacNAc LNB 作為受體 用經修飾之大腸桿菌宿主生產包含 3'SLacNAc 3'SLNB 之寡醣混合物 E. coli K12 strains modified for sialic acid production as described in Example 1 undergo plastid transformation expressing persistent transcription units for amino acid residues 108 to 108 of UniProt ID 066375 497 PdST6-like polypeptide with β-galactoside α-2,6-sialyltransferase activity and NeuA from Pasteurella septicemia (GenBank: AMK07891.1). When evaluated in growth experiments according to the culture conditions provided in Example 1, the novel strain produced an oligosaccharide mixture comprising 6'SL and sialylated LNB (6'SLNB) in a sample of whole broth, wherein the medium contained Glycerol as carbon source and lactose and LNB as acceptors. Example 22. Production of an oligosaccharide mixture comprising 3'SLacNAc and 3'SLNB with a modified E. coli host using LacNAc and LNB as acceptors

如實施例1中所描述經修飾用於唾液酸生產之大腸桿菌K12菌株經表現持續型轉錄單元之質體轉型,該等持續型轉錄單元用於由UniProt ID Q9CLP3之胺基酸殘基1至268組成之具有β-半乳糖苷α-2,3-唾液酸基轉移酶活性的PmultST3樣多肽及來自敗血性巴氏桿菌之NeuA(GenBank: AMK07891.1)。當在生長實驗中根據實施例1中所提供之培養條件評估時,新穎菌株在全培養液樣品中產生包含3'SLacNAc及3'SLNB之寡醣混合物,其中培養基含有甘油作為碳源以及LacNAc及LNB作為受體。 實施例 23. 使用 LacNAc LNB 作為受體 用經修飾之大腸桿菌宿主生產包含 6'SLacNAc 6'SLNB 之寡醣混合物 E. coli K12 strains modified for sialic acid production as described in Example 1 undergo plastid transformation expressing persistent transcription units for amino acid residues 1 to 1 of UniProt ID Q9CLP3 268 PmultST3-like polypeptide with β-galactoside α-2,3-sialyltransferase activity and NeuA from Pasteurella septicemia (GenBank: AMK07891.1). The novel strain produced an oligosaccharide mixture comprising 3'SLacNAc and 3'SLNB in a whole broth sample when assessed in growth experiments according to the culture conditions provided in Example 1, where the medium contained glycerol as a carbon source and LacNAc and LNB acts as a receptor. Example 23. Production of an oligosaccharide mixture comprising 6'SLacNAc and 6'SLNB with a modified E. coli host using LacNAc and LNB as acceptors

如實施例1中所描述經修飾用於唾液酸生產之大腸桿菌K12菌株經表現持續型轉錄單元之質體轉型,該等持續型轉錄單元用於由UniProt ID O66375之胺基酸殘基108至497組成之具有β-半乳糖苷α-2,6-唾液酸基轉移酶活性的PdST6樣多肽及來自敗血性巴氏桿菌之NeuA(GenBank: AMK07891.1)。當在生長實驗中根據實施例1中所提供之培養條件評估時,新穎菌株在全培養液樣品中產生包含6'SLacNAc及6'SLNB之寡醣混合物,其中培養基含有甘油作為碳源以及LacNAc及LNB作為受體。 實施例 24. 使用 LacNAc LNB 作為受體 用經修飾之大腸桿菌宿主生產包含 3'SLacNAc 6'SLacNAc 3'SLNB 6'SLNB 之寡醣混合物 E. coli K12 strains modified for sialic acid production as described in Example 1 undergo plastid transformation expressing persistent transcription units for amino acid residues 108 to 108 of UniProt ID 066375 PdST6-like polypeptide with β-galactoside α-2,6-sialyltransferase activity composed of 497 and NeuA from Pasteurella septicemia (GenBank: AMK07891.1). The novel strain produced an oligosaccharide mixture comprising 6'SLacNAc and 6'SLNB in whole broth samples when assessed in growth experiments according to the culture conditions provided in Example 1, where the medium contained glycerol as a carbon source and LacNAc and LNB acts as a receptor. Example 24. Production of an oligosaccharide mixture comprising 3'SLacNAc , 6'SLacNAc , 3'SLNB and 6'SLNB using a modified E. coli host using LacNAc and LNB as acceptors

如實施例1中所描述經修飾用於唾液酸生產之大腸桿菌K12菌株經表現持續型轉錄單元之質體轉型,該等持續型轉錄單元用於由UniProt ID Q9CLP3之胺基酸殘基1至268組成之具有β-半乳糖苷α-2,3-唾液酸基轉移酶活性的PmultST3樣多肽、由UniProt ID O66375之胺基酸殘基108至497組成之具有β-半乳糖苷α-2,6-唾液酸基轉移酶活性的PdST6樣多肽及來自敗血性巴氏桿菌之NeuA(GenBank: AMK07891.1)。當在生長實驗中根據實施例1中所提供之培養條件評估時,新穎菌株在全培養液樣品中產生包含3'SLacNAc、6'SLacNAc、3'SLNB及6'SLNB之寡醣混合物,其中培養基含有甘油作為碳源以及LacNAc及LNB作為受體。 實施例 25. 使用乳糖、 LacNAc LNB 作為受體 用經修飾之大腸桿菌宿主生產包含 3'SL 3'SLacNAc 3'SLNB 之寡醣混合物 E. coli K12 strains modified for sialic acid production as described in Example 1 undergo plastid transformation expressing persistent transcription units for amino acid residues 1 to 1 of UniProt ID Q9CLP3 PmultST3-like polypeptide with β-galactoside α-2,3-sialyltransferase activity composed of 268, with β-galactoside α-2 composed of amino acid residues 108 to 497 of UniProt ID 066375 , PdST6-like polypeptide with 6-sialyltransferase activity and NeuA from Pasteurella septicemia (GenBank: AMK07891.1). When evaluated in growth experiments according to the culture conditions provided in Example 1, the novel strain produced an oligosaccharide mixture comprising 3'SLacNAc, 6'SLacNAc, 3'SLNB and 6'SLNB in a whole broth sample, wherein the medium Contains glycerol as carbon source and LacNAc and LNB as acceptors. Example 25. Production of an oligosaccharide mixture comprising 3'SL , 3'SLacNAc and 3'SLNB using a modified E. coli host using lactose, LacNAc and LNB as acceptors

如實施例1中所描述經修飾用於唾液酸生產之大腸桿菌K12菌株經表現持續型轉錄單元之質體轉型,該等持續型轉錄單元用於由UniProt ID Q9CLP3之胺基酸殘基1至268組成之具有β-半乳糖苷α-2,3-唾液酸基轉移酶活性的PmultST3樣多肽及來自敗血性巴氏桿菌之NeuA(GenBank: AMK07891.1)。當在生長實驗中根據實施例1中所提供之培養條件評估時,新穎菌株在全培養液樣品中產生包含3'SL、3'SLacNAc及3'SLNB之寡醣混合物,其中培養基含有甘油作為碳源以及乳糖、LacNAc及LNB作為受體。 實施例 26. 使用乳糖、 LacNAc LNB 作為受體 用經修飾之大腸桿菌宿主生產包含 6'SL 6'SLacNAc 6'SLNB 之寡醣混合物 E. coli K12 strains modified for sialic acid production as described in Example 1 undergo plastid transformation expressing persistent transcription units for amino acid residues 1 to 1 of UniProt ID Q9CLP3 268 PmultST3-like polypeptide with β-galactoside α-2,3-sialyltransferase activity and NeuA from Pasteurella septicemia (GenBank: AMK07891.1). When evaluated in growth experiments according to the culture conditions provided in Example 1, the novel strain produced an oligosaccharide mixture comprising 3'SL, 3'SLacNAc and 3'SLNB in a whole broth sample, wherein the medium contained glycerol as carbon source and lactose, LacNAc and LNB as acceptors. Example 26. Production of an oligosaccharide mixture comprising 6'SL , 6'SLacNAc and 6'SLNB with a modified E. coli host using lactose, LacNAc and LNB as acceptors

如實施例1中所描述經修飾用於唾液酸生產之大腸桿菌K12菌株經表現持續型轉錄單元之質體轉型,該等持續型轉錄單元用於由UniProt ID O66375之胺基酸殘基108至497組成之具有β-半乳糖苷α-2,6-唾液酸基轉移酶活性的PdST6樣多肽及來自敗血性巴氏桿菌之NeuA(GenBank: AMK07891.1)。當在生長實驗中根據實施例1中所提供之培養條件評估時,新穎菌株在全培養液樣品中產生包含6'SL、6'SLacNAc及6'SLNB之寡醣混合物,其中培養基含有甘油作為碳源以及乳糖、LacNAc及LNB作為受體。 實施例 27. 使用乳糖、 LacNAc LNB 作為受體 用經修飾之大腸桿菌宿主生產包含 3 ' SL 6 ' SL 3 ' SLacNAc 6 ' SLacNAc 3 ' SLNB 6 ' SLNB 之寡醣混合物 E. coli K12 strains modified for sialic acid production as described in Example 1 undergo plastid transformation expressing persistent transcription units for amino acid residues 108 to 108 of UniProt ID 066375 497 PdST6-like polypeptide with β-galactoside α-2,6-sialyltransferase activity and NeuA from Pasteurella septicemia (GenBank: AMK07891.1). The novel strain produced an oligosaccharide mixture comprising 6'SL, 6'SLacNAc and 6'SLNB in a whole broth sample when assessed in growth experiments according to the culture conditions provided in Example 1, where the medium contained glycerol as carbon source and lactose, LacNAc and LNB as acceptors. Example 27. Production of oligosaccharide mixture comprising 3'SL , 6'SL , 3'SLacNAc , 6'SLacNAc , 3'SLNB and 6'SLNB with modified E. coli hosts using lactose , LacNAc and LNB as acceptors _ _

如實施例1中所描述經修飾用於唾液酸生產之大腸桿菌K12菌株經表現持續型轉錄單元之質體轉型,該等持續型轉錄單元用於由UniProt ID Q9CLP3之胺基酸殘基1至268組成之具有β-半乳糖苷α-2,3-唾液酸基轉移酶活性的PmultST3樣多肽、由UniProt ID O66375之胺基酸殘基108至497組成之具有β-半乳糖苷α-2,6-唾液酸基轉移酶活性的PdST6樣多肽及來自敗血性巴氏桿菌之NeuA(GenBank: AMK07891.1)。當在生長實驗中根據實施例1中所提供之培養條件評估時,新穎菌株在全培養液樣品中產生包含3'SL、6'SL、3'SLacNAc、6'SLacNAc、3'SLNB及6'SLNB之寡醣混合物,其中培養基含有甘油作為碳源以及乳糖、LacNAc及LNB作為受體。 實施例 28. 使用經修飾之大腸桿菌宿主生產包含 2 ' FL DiFL 2 ' FLacNAc LN3 LNT LNFP-I 之寡醣混合物 E. coli K12 strains modified for sialic acid production as described in Example 1 undergo plastid transformation expressing persistent transcription units for amino acid residues 1 to 1 of UniProt ID Q9CLP3 PmultST3-like polypeptide with β-galactoside α-2,3-sialyltransferase activity composed of 268, with β-galactoside α-2 composed of amino acid residues 108 to 497 of UniProt ID 066375 , PdST6-like polypeptide with 6-sialyltransferase activity and NeuA from Pasteurella septicemia (GenBank: AMK07891.1). When evaluated in growth experiments according to the culture conditions provided in Example 1, the novel strains produced 3'SL, 6'SL, 3'SLacNAc, 6'SLacNAc, 3'SLNB and 6' in whole broth samples Oligosaccharide mixture of SLNB in which the medium contains glycerol as carbon source and lactose, LacNAc and LNB as acceptors. Example 28. Production of an oligosaccharide mixture comprising 2'FL, DiFL , 2'FLacNAc , LN3 , LNT and LNFP - I using a modified E. coli host

如實施例1中所描述經修飾用於GDP-岩藻糖生產之大腸桿菌菌株進一步藉由持續型轉錄單元之基因體嵌入進行調適以用於乳-N-丙糖(LN3、LNT-II、GlcNAc-b1,3-Gal-b1,4-Glc)及LNT(Gal-b1,3-GlcNAc-b1,3-Gal-b1,4-Glc)生產,該等持續型轉錄單元用於來自大腸桿菌之突變型glmS*54(藉由A39T、R250C及G472S突變而不同於野生型大腸桿菌glmS,具有UniProt ID P17169)、來自腦膜炎奈瑟氏菌之半乳糖苷β-1,3-N-乙醯基葡萄糖胺基轉移酶(LgtA)(UniProt ID Q9JXQ6)及來自大腸桿菌O55:H7之N-乙醯基葡萄糖胺β-1,3-半乳糖基轉移酶(WbgO)(UniProt ID D3QY14)。在下一步驟中,新穎菌株進一步用含有持續型轉錄單元之表現質體轉型,該持續型轉錄單元用於來自幽門螺旋桿菌HpFutC之a-1,2-岩藻糖基轉移酶(GenBank: AAD29863.1)。當在生長實驗中根據實施例1中所提供之培養條件評估時,新穎菌株在全培養液樣品中產生包含2'FL、DiFL、2'FLacNAc、LN3、LNT及乳-N-岩藻五糖I(LNFP-I,Fuc-a1,2-Gal-b1,3-GlcNAc-b1,3-Gal-b1,4-Glc)之寡醣混合物,其中培養基含有蔗糖作為碳源以及乳糖及LacNAc作為受體。 實施例 29. 使用經修飾之大腸桿菌宿主生產包含 2 ' FL DiFL 2 ' FLacNAc LN3 LNT LNFP-I LNFP-II 之寡醣混合物 E. coli strains modified for GDP-fucose production as described in Example 1 were further adapted by gene body insertion of persistent transcription units for lacto-N-triose (LN3, LNT-II, GlcNAc-b1,3-Gal-b1,4-Glc) and LNT (Gal-b1,3-GlcNAc-b1,3-Gal-b1,4-Glc) production, these persistent transcription units are used in E. coli The mutant glmS*54 (different from wild-type E. coli glmS by A39T, R250C and G472S mutations, with UniProt ID P17169), galactoside β-1,3-N-β-galactoside from Neisseria meningitidis Acetylglucosaminyltransferase (LgtA) (UniProt ID Q9JXQ6) and N-acetylglucosamine beta-1,3-galactosyltransferase (WbgO) from Escherichia coli O55:H7 (UniProt ID D3QY14). In the next step, the novel strain was further transformed with an expressive plastid containing a persistent transcription unit for the α-1,2-fucosyltransferase (GenBank: AAD29863. 1). The novel strains produced 2'FL, DiFL, 2'FLacNAc, LN3, LNT and lacto-N-fucopentose in whole broth samples when evaluated in growth experiments according to the culture conditions provided in Example 1 Oligosaccharide mixture of I (LNFP-I, Fuc-a1,2-Gal-b1,3-GlcNAc-b1,3-Gal-b1,4-Glc), wherein the medium contains sucrose as carbon source and lactose and LacNAc as receptors body. Example 29. Production of oligosaccharide mixtures comprising 2'FL, DiFL , 2'FLacNAc , LN3 , LNT , LNFP - I and LNFP - II using modified E. coli hosts

如實施例28中所描述經調適用於LN3(GlcNAc-b1,3-Gal- b1,4-Glc)及LNT(Gal-b1,3-GlcNAc-b1,3-Gal-b1,4-Glc)生產之大腸桿菌菌株進一步經含有持續型轉錄單元之表現質體轉型,該持續型轉錄單元用於來自長雙歧桿菌嬰兒亞種ATCC 15697之突變型a1,3/4岩藻糖苷酶(US8361756中之SEQ ID:18)。當在生長實驗中根據實施例1中所提供之培養條件評估時,新穎菌株在全培養液樣品中產生包含2'FL、DiFL、2'FLacNAc、LN3、LNT、LNFP-I及乳-N-岩藻五糖II(LNFP-II,Gal-b1,3-(Fuc-a1,4)-GlcNAc-b1,3-Gal-b1,4-Glc)之寡醣混合物,其中培養基含有蔗糖作為碳源以及乳糖及LacNAc作為受體。 實施例 30. 使用經修飾之大腸桿菌宿主生產包含 3-FL 3-FLacNAc LN3 LNnT LNFP-III LNFP-VI 之寡醣混合物 Adapted as described in Example 28 for LN3 (GlcNAc-b1,3-Gal-b1,4-Glc) and LNT (Gal-b1,3-GlcNAc-b1,3-Gal-b1,4-Glc) The produced E. coli strain was further transformed with an expressing plastid containing a persistent transcription unit for a mutant al,3/4 fucosidase from Bifidobacterium longum infantum subsp. ATCC 15697 (US8361756 in of SEQ ID: 18). When evaluated in growth experiments according to the culture conditions provided in Example 1, the novel strains produced 2'FL, DiFL, 2'FLacNAc, LN3, LNT, LNFP-I and milk-N- Oligosaccharide mixture of Fucopentaose II (LNFP-II, Gal-b1,3-(Fuc-a1,4)-GlcNAc-b1,3-Gal-b1,4-Glc), wherein the medium contains sucrose as a carbon source As well as lactose and LacNAc as receptors. Example 30. Production of Oligosaccharide Mixtures Comprising 3-FL , 3-FLacNAc , LN3 , LNnT , LNFP-III , and LNFP-VI Using Modified E. coli Hosts

如實施例1中所描述經修飾用於GDP-岩藻糖生產之大腸桿菌菌株進一步藉由持續型轉錄單元之基因體嵌入進行調適以用於LN3及LNnT生產,該等持續型轉錄單元用於來自大腸桿菌之突變型glmS*54(藉由A39T、R250C及G472S突變而不同於野生型大腸桿菌glmS,具有UniProt ID P17169)、來自腦膜炎奈瑟氏菌之LgtA(UniProt ID Q9JXQ6)及來自腦膜炎奈瑟氏菌之LgtB(UniProt ID Q51116)。在下一步驟中,新穎菌株進一步用含有持續型轉錄單元之表現質體轉型,該等持續型轉錄單元用於幽門螺旋桿菌a-1,3-岩藻糖基轉移酶HpFucT(UniProt ID O30511)及在其C端處缺失66個胺基酸殘基之其經截短變異體,如Bai等人(2019, Carb. Res. 480, 1-6)所描述。在生長實驗中根據實施例1中所提供之培養條件評估時,新穎菌株在全培養液樣品中產生包含3-FL、3-FLacNAc、LN3及LNnT、乳-N-岩藻五糖III(LNFP-III,Gal- b1,4-(Fuc-a1,3)- GlcNAc-b1,3-Gal-b1,4-Glc)及乳-N-岩藻五糖VI(LNFP-VI,Gal-b1,4- GlcNAc-b1,3-Gal-b1,4-(Fuc-a1,3-)Glc)之寡醣混合物,其中培養基含有蔗糖作為碳源以及乳糖及LacNAc作為受體。 實施例 31. 用經修飾之大腸桿菌宿主生產包含 LN3 、唾液酸基化 LN3 LNT 3'SL 3'SLacNAc LSTa 之寡醣混合物 E. coli strains modified for GDP-fucose production as described in Example 1 were further adapted for LN3 and LNnT production by gene body insertion of persistent transcription units for Mutant glmS*54 from E. coli (different from wild-type E. coli glmS by A39T, R250C and G472S mutations, with UniProt ID P17169), LgtA from Neisseria meningitidis (UniProt ID Q9JXQ6) and from meninges LgtB of Neisseria spp. (UniProt ID Q51116). In the next step, the novel strain was further transformed with expressing plastids containing persistent transcription units for the H. pylori alpha-1,3-fucosyltransferase HpFucT (UniProt ID O30511) and Its truncated variant with 66 amino acid residues deleted at its C-terminus is described by Bai et al. (2019, Carb. Res. 480, 1-6). The novel strains produced 3-FL, 3-FLacNAc, LN3 and LNnT, lacto-N-fucopentaose III (LNFP) in whole broth samples when assessed in growth experiments according to the culture conditions provided in Example 1 -III, Gal-b1,4-(Fuc-a1,3)-GlcNAc-b1,3-Gal-b1,4-Glc) and lacto-N-fucopentaose VI (LNFP-VI, Gal-b1, 4-GlcNAc-b1,3-Gal-b1,4-(Fuc-a1,3-)Glc) oligosaccharide mixture, wherein the medium contains sucrose as carbon source and lactose and LacNAc as acceptors. Example 31. Production of an oligosaccharide mixture comprising LN3 , sialylated LN3 , LNT , 3'SL , 3'SLacNAc and LSTa using a modified E. coli host

如實施例1中所描述經修飾以產生唾液酸之大腸桿菌菌株進一步經持續型轉錄單元之基因體嵌入修飾以允許乳-N-四糖(LNT,Gal-b1,3-GlcNAc-b1,3-Gal-b1,4-Glc)之生產,該等持續型轉錄單元用於來自腦膜炎奈瑟氏菌之半乳糖苷β-1,3-N-乙醯基葡萄糖胺基轉移酶(LgtA)(UniProt ID Q9JXQ6)及用於來自大腸桿菌O55:H7之N-乙醯基葡萄糖胺β-1,3-半乳糖基轉移酶(WbgO)(UniProt ID D3QY14)。在下一步驟中,新穎菌株進一步經大腸桿菌 lacZ基因之基因體剔除修飾且經具有持續型轉錄單元之表現質體轉型,該等持續型轉錄單元用於來自敗血性巴氏桿菌之NeuA(GenBank: AMK07891.1)及由UniProt ID Q9CLP3之胺基酸殘基1至268組成之具有β-半乳糖苷α-2,3-唾液酸基轉移酶活性的PmultST3樣多肽。當在生長實驗中根據實施例1中所提供之培養條件評估時,新穎菌株產生包含LN3、3'-唾液酸基化LN3(Neu5Ac-a2,3-GlcNAc-b1,3-Gal-b1,4-Glc)、LNT、3'SL、3'SLacNAc及LSTa(Neu5Ac-a2,3-Gal-b1,3-GlcNAc-b1,3-Gal-b1,4-Glc)之寡醣混合物,其中培養基含有甘油作為碳源以及乳糖及LacNAc作為受體。 實施例 32. 使用經修飾之大腸桿菌宿主生產包含 LN3 唾液酸基化 LN3 LNnT 6 ' SL 6 ' SLacNAc LSTc 之寡醣混合物 E. coli strains modified to produce sialic acid as described in Example 1 were further modified with gene body insertion of the persistent transcription unit to allow lacto-N-tetrasaccharide (LNT, Gal-b1,3-GlcNAc-b1,3 - production of Gal-b1,4-Glc), these persistent transcription units for galactoside beta-1,3-N-acetylglucosaminyltransferase (LgtA) from Neisseria meningitidis (UniProt ID Q9JXQ6) and for N-acetylglucosamine beta-1,3-galactosyltransferase (WbgO) (UniProt ID D3QY14) from E. coli O55:H7. In the next step, the novel strain was further modified with gene body deletion of the E. coli lacZ gene and transformed with an expressive plastid with persistent transcription units for NeuA from Pasteurella septicemia (GenBank: AMK07891.1) and a PmultST3-like polypeptide with β-galactoside α-2,3-sialyltransferase activity consisting of amino acid residues 1 to 268 of UniProt ID Q9CLP3. The novel strain produced LN3, 3'-sialylated LN3 (Neu5Ac-a2,3-GlcNAc-b1,3-Gal-b1,4) when evaluated in growth experiments according to the culture conditions provided in Example 1 -Glc), LNT, 3'SL, 3'SLacNAc and LSTa (Neu5Ac-a2,3-Gal-b1,3-GlcNAc-b1,3-Gal-b1,4-Glc) oligosaccharide mixture, wherein the medium contains Glycerol as carbon source and lactose and LacNAc as acceptors. Example 32. Production of an oligosaccharide mixture comprising LN3 , sialylated LN3 , LNnT , 6'SL , 6'SLacNAc and LSTc using a modified E. coli host

如實施例1中所描述經修飾以產生唾液酸之大腸桿菌菌株進一步經持續型轉錄單元之基因體嵌入修飾以允許乳- N-新四糖(LNnT,Gal-b1,4-GlcNAc-b1,3-Gal-b1,4-Glc)之生產,該等持續型轉錄單元用於來自腦膜炎奈瑟氏菌之LgtA(UniProt ID Q9JXQ6)及用於來自腦膜炎奈瑟氏菌之LgtB(UniProt ID Q51116)。在下一步驟中,新穎菌株進一步經大腸桿菌 lacZ基因之基因體剔除修飾且經具有持續型轉錄單元之表現質體轉型,該等持續型轉錄單元用於來自敗血性巴氏桿菌之NeuA(GenBank: AMK07891.1)及由UniProt ID O66375之胺基酸殘基108至497組成之具有β-半乳糖苷α-2,6-唾液酸基轉移酶活性的PdST6樣多肽。當在生長實驗中根據實施例1中所提供之培養條件評估時,新穎菌株產生包含LN3、6'-唾液酸基化LN3(Neu5Ac- a2,6-(GlcNAc- b1,3)-Gal-b1,4-Glc)、6'SL、6'SLacNAc、LNnT及LSTc(Neu5Ac-a2,6- Gal-b1,4- GlcNAc-b1,3-Gal-b1,4-Glc)之寡醣混合物,其中培養基含有甘油作為碳源以及乳糖及LacNAc作為受體。 實施例 33. 使用乳糖及 3-FL 作為受體 用經修飾之釀酒酵母宿主生產包含 2'FL DiFL 之寡醣混合物 E. coli strains modified to produce sialic acid as described in Example 1 were further modified by gene body insertion of the persistent transcription unit to allow lacto- N -neotetrasaccharides (LNnT, Gal-b1, 4-GlcNAc-b1, 3-Gal-b1,4-Glc), the persistent transcription units for LgtA from Neisseria meningitidis (UniProt ID Q9JXQ6) and for LgtB from Neisseria meningitidis (UniProt ID Q51116). In the next step, the novel strain was further modified with gene body deletion of the E. coli lacZ gene and transformed with an expressive plastid with persistent transcription units for NeuA from Pasteurella septicemia (GenBank: AMK07891.1) and a PdST6-like polypeptide with β-galactoside α-2,6-sialyltransferase activity consisting of amino acid residues 108 to 497 of UniProt ID 066375. The novel strain produced LN3, 6'-sialylated LN3 (Neu5Ac-a2,6-(GlcNAc-b1,3)-Gal-b1 ) when evaluated in growth experiments according to the culture conditions provided in Example 1 ,4-Glc), 6'SL, 6'SLacNAc, LNnT and LSTc (Neu5Ac-a2,6-Gal-b1,4-GlcNAc-b1,3-Gal-b1,4-Glc) oligosaccharide mixture, wherein The medium contained glycerol as carbon source and lactose and LacNAc as acceptors. Example 33. Production of Oligosaccharide Mixtures Containing 2'FL and DiFL with a Modified Saccharomyces cerevisiae Host Using Lactose and 3-FL as Acceptors

如實施例2中所描述用酵母表現質體(p2a_2µ_Fuc之變異體)調適釀酒酵母菌株以用於GDP-岩藻糖生產及岩藻糖基轉移酶表現,該表現質體包含用於以下者之持續型轉錄單元:來自乳酸克魯維酵母之乳糖透過酶(LAC12)(UniProt ID P07921)、來自大腸桿菌之GDP-甘露糖4,6-脫水酶(gmd)(UniProt ID P0AC88)、來自大腸桿菌之GDP-L-岩藻糖合酶(fcl)(UniProt ID P32055)及來自幽門螺旋桿菌HpFutC之α-1,2-岩藻糖基轉移酶(GenBank: AAD29863.1)。當在包含乳糖及3-FL作為受體之SD CSM-Ura省卻培養基上進行評估時,突變型酵母菌株產生包含2'FL及DiFL之寡醣混合物。 實施例 34. 使用乳糖及 LacNAc 作為受體 用經修飾之釀酒酵母宿主生產包含 2'FL 3-FL DiFL 2'FLacNAc 3-FLacNAc DiFLacNAc 之寡醣混合物 Saccharomyces cerevisiae strains were adapted for GDP-fucose production and fucosyltransferase expression with a yeast expression plastid (a variant of p2a_2µ_Fuc) as described in Example 2, the expression plastid comprising: Persistent transcription units: lactose permease (LAC12) from Kluyveromyces lactis (UniProt ID P07921), GDP-mannose 4,6-dehydratase (gmd) from Escherichia coli (UniProt ID P0AC88), from Escherichia coli GDP-L-fucose synthase (fcl) (UniProt ID P32055) and α-1,2-fucosyltransferase (GenBank: AAD29863.1) from Helicobacter pylori HpFutC. The mutant yeast strains produced oligosaccharide mixtures containing 2'FL and DiFL when evaluated on SD CSM-Ura omission medium containing lactose and 3-FL as acceptors. Example 34. Production of a mixture of oligosaccharides comprising 2'FL , 3-FL , DiFL , 2'FLacNAc , 3-FLacNAc and DiFLacNAc with a modified S. cerevisiae host using lactose and LacNAc as acceptors

如實施例2中所描述用酵母表現質體(p2a_2µ_Fuc之變異體)調適釀酒酵母菌株以用於GDP-岩藻糖生產及岩藻糖基轉移酶表現,該表現質體包含用於以下者之持續型轉錄單元:來自乳酸克魯維酵母之乳糖透過酶(LAC12)(UniProt ID P07921)、來自大腸桿菌之GDP-甘露糖4,6-脫水酶(gmd)(UniProt ID P0AC88)、來自大腸桿菌之GDP-L-岩藻糖合酶(fcl)(UniProt ID P32055)、來自幽門螺旋桿菌HpFutC之α-1,2-岩藻糖基轉移酶(GenBank: AAD29863.1)及來自幽門螺旋桿菌HpFucT之α-1,3-岩藻糖基轉移酶(UniProt ID O30511)。當在包含乳糖及LacNAc作為受體之SD CSM-Ura省卻培養基上進行評估時,突變型酵母菌株產生包含2'FL、3-FL、DiFL、2'FLacNAc、3-FLacNAc及DiFLacNAc之寡醣混合物。 實施例 35. 使用乳糖及 LacNAc 作為受體 用經修飾之釀酒酵母宿主生產包含 3'SL 6'SL 3'SLacNAc 6'SLacNAc 之寡醣混合物 Saccharomyces cerevisiae strains were adapted for GDP-fucose production and fucosyltransferase expression with a yeast expression plastid (a variant of p2a_2µ_Fuc) as described in Example 2, the expression plastid comprising: Persistent transcription units: lactose permease (LAC12) from Kluyveromyces lactis (UniProt ID P07921), GDP-mannose 4,6-dehydratase (gmd) from Escherichia coli (UniProt ID P0AC88), from Escherichia coli GDP-L-fucose synthase (fcl) (UniProt ID P32055), α-1,2-fucosyltransferase (GenBank: AAD29863.1) from Helicobacter pylori HpFutC and HpFucT from Helicobacter pylori α-1,3-fucosyltransferase (UniProt ID O30511). The mutant yeast strain produced a mixture of oligosaccharides containing 2'FL, 3-FL, DiFL, 2'FLacNAc, 3-FLacNAc, and DiFLacNAc when evaluated on SD CSM-Ura omission medium containing lactose and LacNAc as acceptors . Example 35. Production of an oligosaccharide mixture comprising 3'SL , 6'SL , 3'SLacNAc and 6'SLacNAc with a modified S. cerevisiae host using lactose and LacNAc as acceptors

如實施例2中所描述用酵母表現質體(pRS420質體變異體)調適釀酒酵母菌株以用於CMP-唾液酸之生產及兩種唾液酸基轉移酶之表現,該表現質體包含用於以下者之持續型轉錄單元:來自大腸桿菌之突變型glmS*54(藉由A39T、R250C及G472S突變而不同於野生型大腸桿菌glmS,具有UniProt ID P17169)、來自大腸桿菌之磷酸酶yqaB(GenBank NO. NP_417175.1)、來自卵形類桿菌之AGE(UniProt ID A7LVG6)、來自腦膜炎奈瑟氏菌之neuB(UniProt ID E0NCD4)、來自敗血性巴氏桿菌之neuA(GenBank: AMK07891.1)、由UniProt ID Q9CLP3之胺基酸殘基1至268組成之具有β-半乳糖苷α-2,3-唾液酸基轉移酶活性的PmultST3樣多肽及由具有UniProt ID O66375之胺基酸殘基108至497組成之β-半乳糖苷α-2,6-唾液酸基轉移酶活性的PdST6樣多肽。當在包含乳糖及LacNAc作為受體之SD CSM-Trp省卻培養基上進行評估時,突變型酵母菌株產生包含3'SL、6'SL、3'SLacNAc及6'SLacNAc之寡醣混合物。 實施例 36 . 評估分批補料醱酵中之突變大腸桿菌菌株 S. cerevisiae strains were adapted for CMP-sialic acid production and expression of two sialyltransferases as described in Example 2 with a yeast expression plastid (pRS420 plastid variant) containing Persistent transcription units of: mutant glmS*54 from E. coli (different from wild-type E. coli glmS by A39T, R250C and G472S mutations, with UniProt ID P17169), phosphatase yqaB from E. coli (GenBank NO. NP_417175.1), AGE from Bacteroides ovale (UniProt ID A7LVG6), neuB from Neisseria meningitidis (UniProt ID E0NCD4), neuA from Pasteurella septicemia (GenBank: AMK07891.1) , a PmultST3-like polypeptide with β-galactoside α-2,3-sialyltransferase activity consisting of amino acid residues 1 to 268 of UniProt ID Q9CLP3 and an amino acid residue with UniProt ID 066375 A PdST6-like polypeptide with β-galactoside α-2,6-sialyltransferase activity consisting of 108 to 497. The mutant yeast strains produced a mixture of oligosaccharides comprising 3'SL, 6'SL, 3'SLacNAc and 6'SLacNAc when evaluated on SD CSM-Trp omitted medium containing lactose and LacNAc as acceptors. Example 36. Evaluation of mutant E. coli strains in fed-batch fermentation

在分批補料醱酵過程中評估如實施例4及5中所描述之突變大腸桿菌菌株。如實施例1中所描述,在生物反應器規模下進行分批補料醱酵。蔗糖用作碳源且乳糖及LacNAc作為受體添加至分批培養基中。與本文所描述且其中僅最終樣品在培養結束時(亦即如本文所描述之72小時)獲取之培養實驗相比,在醱酵過程期間之若干時間點獲取常規培養液樣品且分別針對實施例4或5中所描述之菌株評估其生產包含2'FL、DiFL及2'FLacNAc之寡醣混合物或包含2'FL、3-FL、DiFL、2'FLacNAc、3-FLacNAc及DiFLacNAc之寡醣混合物。 實施例 37 . 評估分批補料醱酵中之突變大腸桿菌菌株 Mutant E. coli strains as described in Examples 4 and 5 were evaluated in a fed-batch fermentation process. Fed-batch fermentation was performed as described in Example 1 at the bioreactor scale. Sucrose was used as carbon source and lactose and LacNAc were added to the batch medium as acceptors. Conventional broth samples were obtained at several time points during the fermenting process and for the Examples respectively, compared to the culture experiments described herein and in which only the final samples were obtained at the end of the culture (ie, 72 hours as described herein). The strains described in 4 or 5 were evaluated for the production of oligosaccharide mixtures comprising 2'FL, DiFL and 2'FLacNAc or oligosaccharide mixtures comprising 2'FL, 3-FL, DiFL, 2'FLacNAc, 3-FLacNAc and DiFLacNAc . Example 37. Evaluation of mutant E. coli strains in fed-batch fermentation

在分批補料醱酵過程中評估如實施例27中所描述之突變大腸桿菌菌株。如實施例1中所描述,在生物反應器規模下進行分批補料醱酵。蔗糖用作碳源且乳糖、LacNAc及LNB作為受體添加至分批培養基中。與本文所描述且其中僅最終樣品在培養結束時(亦即如本文所描述之72小時)獲取之培養實驗相比,在醱酵過程期間之若干時間點獲取常規培養液樣品且評估其生產包含3'SL、6'SL、3'SLacNAc、6'SLacNAc、3'SLNB及6'SLNB之寡醣混合物。 實施例 38 . 枯草芽孢桿菌之材料及方法 培養基 Mutant E. coli strains as described in Example 27 were evaluated in a fed-batch fermentation process. Fed-batch fermentation was performed as described in Example 1 at the bioreactor scale. Sucrose was used as the carbon source and lactose, LacNAc and LNB were added to the batch medium as acceptors. Conventional broth samples were taken at several time points during the fermentation process and assessed for production comprising Oligosaccharide mixture of 3'SL, 6'SL, 3'SLacNAc, 6'SLacNAc, 3'SLNB and 6'SLNB. Example 38. Materials and Methods for Bacillus subtilis Medium

使用兩種不同培養基,亦即富集的魯利亞培養液(LB)及搖瓶用基本培養基(minimal medium for shake flask;MMsf)。基本培養基使用痕量元素混合物。Two different media were used, namely enriched Luria broth (LB) and minimal medium for shake flasks (MMsf). Minimal medium uses a trace element mixture.

痕量元素混合物由0.735 g/L CaCl2.2H2O、0.1 g/L MnCl2.2H2O、0.033 g/L CuCl2.2H2O、0.06 g/L CoCl2.6H2O、0.17 g/L ZnCl2、0.0311 g/L H3BO4、0.4 g/L Na2EDTA.2H2O及0.06 g/L Na2MoO4組成。檸檬酸鐵溶液含有0.135 g/L FeCl3.6H2O、1 g/L檸檬酸鈉(Hoch 1973 PMC1212887)。The trace element mixture consisted of 0.735 g/L CaCl2.2H2O, 0.1 g/L MnCl2.2H2O, 0.033 g/L CuCl2.2H2O, 0.06 g/L CoCl2.6H2O, 0.17 g/L ZnCl2, 0.0311 g/L H3BO4, 0.4 It is composed of g/L Na2EDTA.2H2O and 0.06 g/L Na2MoO4. The ferric citrate solution contained 0.135 g/L FeCl3.6H2O, 1 g/L sodium citrate (Hoch 1973 PMC1212887).

魯利亞培養液(Luria Broth;LB)培養基係由1%胰腖(Difco,比利時埃倫博德海姆(Erembodegem, Belgium))、0.5%酵母萃取物(Difco)及0.5%氯化鈉(VWR,比利時魯汶(Leuven, Belgium))組成。魯利亞培養液瓊脂(Luria Broth agar;LBA)盤係由LB培養基組成,其中添加12 g/L瓊脂(Difco,比利時埃倫博德海姆(Erembodegem, Belgium))。Luria Broth (LB) medium was composed of 1% pancreas (Difco, Erembodegem, Belgium), 0.5% yeast extract (Difco) and 0.5% sodium chloride ( VWR, Leuven, Belgium). Luria Broth agar (LBA) plates consisted of LB medium supplemented with 12 g/L agar (Difco, Erembodegem, Belgium).

搖瓶用基本培養基(MMsf)實驗含有2.00 g/L (NH4)2SO4、7.5 g/L KH2PO4、17.5 g/L K2HPO4、1.25 g/L檸檬酸鈉、0.25 g/L MgSO4.7H2O、0.05 g/L色胺酸、10多至30 g/L葡萄糖或另一碳源(包括(但不限於)實施例中指定之果糖、麥芽糖、蔗糖、甘油及麥芽三糖)、10 ml/L痕量元素混合物及10 ml/L檸檬酸鐵溶液。用1M KOH將培養基設定為pH 7。視實驗而定,可添加乳糖、2'FL、3-FL、3'SL、LNB或LacNAc作為受體。Minimal medium for shake flask (MMsf) experiments containing 2.00 g/L (NH4)2SO4, 7.5 g/L KH2PO4, 17.5 g/L K2HPO4, 1.25 g/L sodium citrate, 0.25 g/L MgSO4.7H2O, 0.05 g/L L tryptophan, 10 to 30 g/L glucose or another carbon source (including (but not limited to) fructose, maltose, sucrose, glycerol and maltotriose as specified in the examples), 10 ml/L trace Elemental mixture and 10 ml/L ferric citrate solution. The medium was set to pH 7 with 1M KOH. Depending on the experiment, lactose, 2'FL, 3-FL, 3'SL, LNB or LacNAc can be added as acceptors.

藉由高壓處理(121℃,21')對複合培養基(例如LB)進行滅菌及藉由過濾(0.22 µm Sartorius)對基本培養基進行滅菌。必要時,藉由添加抗生素(例如吉歐黴素(zeocin)(20 mg/L))使培養基具有選擇性。 菌株、質體及突變 Sterilize complex media (eg LB) by autoclaving (121°C, 21') and sterilize minimal media by filtration (0.22 µm Sartorius). When necessary, the medium was made selective by adding antibiotics such as zeocin (20 mg/L). Strains, plastids and mutations

枯草芽孢桿菌168,可獲自於芽孢桿菌基因儲備中心(美國俄亥俄州(Ohio, USA))。Bacillus subtilis 168, available from the Bacillus Gene Reserve (Ohio, USA).

經由Cre/lox之基因缺失的質體如由Yan等人(Appl. & Environm. Microbial., 2008年9月, 第5556-5562頁)所描述進行構築。基因破壞經由與線性DNA同源重組及經由電穿孔轉型進行,如Xue等人(J. Microb. Meth. 34 (1999) 183-191)所描述。基因剔除之方法由Liu等人(Metab. Engine. 24 (2014) 61-69)描述。此方法使用目標基因之上游及下游的1000bp同源性。Genetically deleted plastids via Cre/lox were constructed as described by Yan et al. (Appl. & Environm. Microbial., September 2008, pp. 5556-5562). Gene disruption occurs via homologous recombination with linear DNA and transformation via electroporation, as described by Xue et al. (J. Microb. Meth. 34 (1999) 183-191). The method of gene knockout is described by Liu et al. (Metab. Engine. 24 (2014) 61-69). This method uses 1000 bp of homology upstream and downstream of the gene of interest.

如由Popp等人(Sci. Rep., 2017, 7, 15158)所描述之整合載體用作表現載體且必要時可進一步用於基因體整合。適用於表現之啟動子可衍生自部分儲存庫(iGem):序列id:Bba_K143012、Bba_K823000、Bba_K823002或Bba_K823003。選殖可使用吉布森組裝(Gibson Assembly)、金門組裝(Golden Gate assembly)、Cliva組裝、LCR或限制接合來進行。Integration vectors as described by Popp et al. (Sci. Rep., 2017, 7, 15158) are used as expression vectors and can be further used for genome integration if necessary. Promoters suitable for expression can be derived from partial repositories (iGems): sequence id: Bba_K143012, Bba_K823000, Bba_K823002 or Bba_K823003. Colonization can be performed using Gibson Assembly, Golden Gate assembly, Cliva assembly, LCR or restriction ligation.

在生產基於乳糖之寡醣之一實施例中,產生枯草芽孢桿菌突變型菌株以含有編碼乳糖輸入體(importer)(諸如例如具有UniProt ID P02920之大腸桿菌lacY)之基因。對於2'FL、3FL及diFL生產,將α-1,2-及/或α-1,3-岩藻糖基轉移酶表現構築體另外添加至菌株。In one embodiment of the production of lactose-based oligosaccharides, mutant strains of B. subtilis are generated to contain a gene encoding a lactose importer such as, for example, E. coli lacY with UniProt ID P02920. For 2'FL, 3FL and diFL production, α-1,2- and/or α-1,3-fucosyltransferase expression constructs were additionally added to the strains.

在生產乳-N-丙糖(LNT-II、LN3、GlcNAc-b1,3-Gal-b1,4-Glc)之一實施例中,枯草芽孢桿菌菌株經包含乳糖輸入體(諸如例如具有UniProt ID P02920之大腸桿菌lacY)及半乳糖苷β-1,3-N-乙醯基葡萄糖胺基轉移酶(如例如來自腦膜炎奈瑟氏菌之LgtA(GenBank: AAM33849.1))之持續型表現單元之基因體嵌入修飾。對於LNT生產,生產LN3之菌株進一步經用於N-乙醯基葡萄糖胺β-1,3-半乳糖基轉移酶(如例如來自大腸桿菌O55:H7之WbgO(UniProt ID D3QY14))的持續型轉錄單元修飾。為生產乳- N-新四糖(LNnT、Gal-b1,4-GlcNAc-b1,3-Gal-b1,4-Glc),生產LN3之菌株進一步經持續型轉錄單元修飾,該持續型轉錄單元用於如例如來自腦膜炎奈瑟氏菌之LgtB的N-乙醯基葡萄糖胺β-1,4-半乳糖基轉移酶(UniProt ID Q51116)。N-乙醯基葡萄糖胺β-1,3-半乳糖基轉移酶及N-乙醯基葡萄糖胺β-1,4-半乳糖基轉移酶兩者可經由基因體嵌入或自表現質體遞送至菌株。為生產LNFP-I及LNT及/或LNnT之其他岩藻糖基化衍生物,產生LNT及LNnT之菌株可進一步經α-1,2-岩藻糖基轉移酶及/或α-1,3-岩藻糖基轉移酶表現構築體修飾。 In one embodiment of the production of lactose-N-triose (LNT-II, LN3, GlcNAc-b1,3-Gal-b1,4-Glc), the Bacillus subtilis strain is via a lactose importer (such as, for example, with a UniProt ID) Persistent expression of E. coli lacY from P02920 and galactoside β-1,3-N-acetylglucosaminyltransferase such as, for example, LgtA from Neisseria meningitidis (GenBank: AAM33849.1) Gene body insertion modification of the unit. For LNT production, the LN3-producing strain was further subjected to a persistent form of N-acetylglucosamine β-1,3-galactosyltransferase such as, for example, WbgO from E. coli O55:H7 (UniProt ID D3QY14) Transcription unit modification. In order to produce lacto- N -neotetrasaccharides (LNnT, Gal-b1,4-GlcNAc-b1,3-Gal-b1,4-Glc), the LN3-producing strain was further modified with a persistent transcription unit that N-Acetylglucosamine beta-1,4-galactosyltransferase (UniProt ID Q51116) for eg LgtB from Neisseria meningitidis. Both N-acetylglucosamine β-1,3-galactosyltransferase and N-acetylglucosamine β-1,4-galactosyltransferase can be delivered via gene body insertion or self-expressing plastids to the strain. To produce LNFP-I and other fucosylated derivatives of LNT and/or LNnT, the LNT and LNnT-producing strains can be further treated with α-1,2-fucosyltransferase and/or α-1,3 - Fucosyltransferase expresses construct modification.

在唾液酸生產之一實施例中,突變型枯草芽孢桿菌菌株藉由過度表現果糖-6-P-胺基轉移酶(UniProt ID P0CI73)以增強胞內葡萄糖胺-6-磷酸鹽池來產生。另外,基因nagA、nagB及gamA之酶活性藉由基因剔除破壞且來自釀酒酵母之葡萄糖胺-6-P-胺基轉移酶(UniProt ID P43577)、來自卵形類桿菌之N-乙醯基葡萄糖胺-2-表異構酶(UniProt ID A7LVG6)及來自空腸彎曲桿菌之N-乙醯基神經胺酸合酶(UniProt ID Q93MP9)過度表現於基因體上。為允許唾液酸基化寡醣生產,生產唾液酸之菌株進一步經包含以下者之表現構築體修飾:來自空腸彎曲桿菌之N-醯基神經胺酸胞苷醯基轉移酶NeuA(UniProt ID Q93MP7);及以下者之一或多個複本:如例如來自敗血性巴氏桿菌之PmultST3的β-半乳糖苷α-2,3-唾液酸基轉移酶(UniProt ID Q9CLP3)或由UniProt ID Q9CLP3之胺基酸殘基1至268組成之具有β-半乳糖苷α-2,3-唾液酸基轉移酶活性的PmultST3樣多肽、來自腦膜炎奈瑟氏菌之NmeniST3(GenBank No. ARC07984.1)或來自敗血性巴氏桿菌敗血性亞種菌株Pm70之PmultST2(GenBank NO. AAK02592.1)、如例如來自美人魚發光菌之PdST6的β-半乳糖苷α-2,6-唾液酸基轉移酶(UniProt ID O66375)或由UniProt ID O66375的胺基酸殘基108至497組成之具有β-半乳糖苷α-2,6-唾液酸基轉移酶活性的PdST6樣多肽或來自發光菌屬JT-ISH-224之P-JT-ISH-224-ST6(UniProt ID A8QYL1)或由UniProt ID A8QYL1的胺基酸殘基18至514組成之具有β-半乳糖苷α-2,6-唾液酸基轉移酶活性的P-JT-ISH-224-ST6樣多肽及/或如例如來自小家鼠之α-2,8-唾液酸基轉移酶(UniProt ID Q64689)。 異源及同源表現 In one example of sialic acid production, mutant B. subtilis strains were produced by overexpressing fructose-6-P-aminotransferase (UniProt ID P0CI73) to enhance the intracellular glucosamine-6-phosphate pool. In addition, the enzymatic activities of genes nagA, nagB and gamA were disrupted by gene knockout and glucosamine-6-P-aminotransferase (UniProt ID P43577) from Saccharomyces cerevisiae, N-acetylglucose from Bacillus ovale Amine-2-epimerase (UniProt ID A7LVG6) and N-acetylneuraminic acid synthase (UniProt ID Q93MP9) from Campylobacter jejuni were overexpressed on the gene body. To allow sialylated oligosaccharide production, the sialic acid-producing strain was further modified with an expression construct comprising: N-acylneuraminic acid cytidine acyltransferase NeuA (UniProt ID Q93MP7) from Campylobacter jejuni ; and one or more copies of: such as, for example, β-galactoside α-2,3-sialyltransferase from PmultST3 of Pasteurella septicemia (UniProt ID Q9CLP3) or an amine from UniProt ID Q9CLP3 A PmultST3-like polypeptide with β-galactoside α-2,3-sialyltransferase activity consisting of amino acid residues 1 to 268, NmeniST3 from Neisseria meningitidis (GenBank No. ARC07984.1) or PmultST2 from Pasteurella septicemia subsp. septicemia strain Pm70 (GenBank NO. AAK02592.1), such as, for example, β-galactoside α-2,6-sialyltransferase (UniProt ID O66375) or a PdST6-like polypeptide with β-galactoside α-2,6-sialyltransferase activity consisting of amino acid residues 108 to 497 of UniProt ID O66375 or from Photophora JT-ISH- 224 of P-JT-ISH-224-ST6 (UniProt ID A8QYL1) or composed of amino acid residues 18 to 514 of UniProt ID A8QYL1 with β-galactoside α-2,6-sialyltransferase activity P-JT-ISH-224-ST6-like polypeptide and/or α-2,8-sialyltransferase such as eg from Mus musculus (UniProt ID Q64689). Heterologous and Homologous Expression

需要表現之基因,無論其來自質體或來自基因體,均以合成方式經以下公司中之一者合成:DNA2.0、Gen9、Twist Biosciences或IDT。Genes to be expressed, whether from plastids or gene bodies, are synthesized synthetically by one of the following companies: DNA2.0, Gen9, Twist Biosciences or IDT.

可藉由使密碼子使用最佳化為表現宿主之密碼子使用來進一步促進表現。使用供應商之工具使基因最佳化。 培養條件 Expression can be further facilitated by optimizing codon usage to that of the expression host. Genetic optimization using vendor tools. Culture conditions

96孔微量滴定盤實驗之預培養始於冷凍小瓶或始於LB盤之單一菌落,於150 µL LB中進行,且在37℃下在定軌振盪器上以800 rpm培育隔夜。此培養物用作96孔正方形微量滴定盤之接種物,用400 µL MMsf培養基藉由稀釋400倍。使各菌株在96孔盤之多個孔中生長作為生物複製物。此等最終96孔培養盤接著在37℃下在定軌振盪器上以800 rpm培育72h或更短或更長。在培養實驗結束時,自各孔獲取樣品以量測上清液濃度(胞外糖濃度,在短暫離心細胞5 min後),或在短暫離心細胞前藉由使培養液在90℃下沸騰15 min或在60℃下沸騰60 min量測(=全培養液濃度,胞內及胞外糖濃度,如本文所定義)。Pre-incubation of 96-well microtiter plate experiments was performed starting from a frozen vial or from a single colony in an LB plate, in 150 µL of LB, and incubated overnight at 37°C on an orbital shaker at 800 rpm. This culture was used as an inoculum in a 96-well square microtiter plate by diluting 400-fold with 400 µL of MMsf medium. Each strain was grown in multiple wells of a 96-well plate as biological replicates. These final 96-well plates were then incubated at 37°C on an orbital shaker at 800 rpm for 72 h or less or longer. At the end of the culture experiment, samples were taken from each well to measure the supernatant concentration (extracellular sugar concentration, after briefly centrifuging cells for 5 min), or by boiling the culture at 90°C for 15 min before briefly centrifuging cells Or measure by boiling at 60°C for 60 min (= concentration of whole culture medium, concentration of intracellular and extracellular sugars, as defined herein).

此外,對培養物進行稀釋以量測600 nm下之光學密度。藉由寡醣濃度除以生物質(以與參考菌株相比之相對百分比)來確定細胞效能指數或CPI。憑經驗確定生物質在600 nm下量測之光學密度之大致1/3。 實施例 39. 使用經修飾之枯草芽孢桿菌宿主生產包含 2'FL LN3 LNT LNFP-I 2'FLNB 之寡醣混合物 In addition, cultures were diluted to measure optical density at 600 nm. The Cell Potency Index or CPI was determined by dividing the oligosaccharide concentration by the biomass (as a relative percentage compared to the reference strain). It is empirically determined that biomass is approximately 1/3 the optical density measured at 600 nm. Example 39. Production of an oligosaccharide mixture comprising 2'FL , LN3 , LNT , LNFP-I and 2'FLNB using a modified Bacillus subtilis host

枯草芽孢桿菌菌株首先藉由 nagBglmSgamA基因之基因體剔除及包含基因之持續型轉錄單元之基因體嵌入修飾以用於LN3生產及在蔗糖上之生長,該等基因編碼來自大腸桿菌之乳糖透過酶(LacY)(UniProt ID P02920)、天然果糖-6-P-胺基轉移酶(UniProt ID P0CI73)、來自腦膜炎奈瑟氏菌之半乳糖苷β-1,3-N-乙醯基葡萄糖胺基轉移酶LgtA(GenBank: AAM33849.1)、來自大腸桿菌W之蔗糖運輸蛋白(CscB)(UniProt ID E0IXR1)、來自運動醱酵單胞菌之果糖激酶(Frk)(UniProt ID Q03417)及來自青春雙歧桿菌之蔗糖磷酸化酶(BaSP)(UniProt ID A0ZZH6)。在下一步驟中,突變型菌株進一步經包含來自大腸桿菌O55:H7之N-乙醯基葡萄糖胺β-1,3-半乳糖基轉移酶WbgO(UniProt ID D3QY14)的持續型轉錄單元之基因體嵌入修飾以產生LNT。在後續步驟中,產生LNT之菌株用包含用於來自幽門螺旋桿菌之α-1,2-岩藻糖基轉移酶HpFutC(GenBank: AAD29863.1)之持續型轉錄單元的表現質體轉型。在生長實驗中在包含乳糖及LNB作為受體之MMsf培養基上根據實施例38中所提供之培養條件,針對生產包含2'FL、LN3、LNT、LNFP-I(Fuc-a1,2- Gal-b1,3- GlcNAc-b1,3-Gal-b1,4-Glc)及2'FLNB(Fuc-a1,2- Gal-b1,3- GlcNAc)之寡醣混合物評估新穎菌株。培育72h之後,收集培養液,且在UPLC上分析糖。 實施例 40. 使用經修飾之枯草芽孢桿菌宿主生產包含 2 ' FL LN3 LNT 、唾液酸基化 LN3 LSTa LNFP-I 2 ' FLNB 3'-SL 及唾液酸基化 LNB 之寡醣混合物 Bacillus subtilis strains were first modified for LN3 production and growth on sucrose by gene body deletion of the nagB , glmS and gamA genes, and gene body insertion comprising the persistent transcription unit of the genes encoding the Lactose permease (LacY) (UniProt ID P02920), native fructose-6-P-aminotransferase (UniProt ID P0CI73), β-1,3-N-acetyl galactoside from Neisseria meningitidis Glucosaminotransferase LgtA (GenBank: AAM33849.1), sucrose transporter protein (CscB) from Escherichia coli W (UniProt ID E0IXR1), fructokinase (Frk) from Zymomonas mobilis (UniProt ID Q03417) and sucrose phosphorylase (BaSP) from Bifidobacterium adolescentis (UniProt ID A0ZZH6). In the next step, the mutant strain was further transformed with a gene body comprising a continuous transcription unit of N-acetylglucosamine β-1,3-galactosyltransferase WbgO (UniProt ID D3QY14) from E. coli O55:H7 Embedding modifications to generate LNTs. In a subsequent step, the LNT-producing strain was transformed with an expressive plastid comprising a persistent transcription unit for the α-1,2-fucosyltransferase HpFutC (GenBank: AAD29863.1) from H. pylori. In growth experiments on MMsf medium containing lactose and LNB as acceptors according to the culture conditions provided in Example 38, for the production of 2'FL, LN3, LNT, LNFP-I (Fuc-a1,2-Gal- A mixture of oligosaccharides of b1,3-GlcNAc-b1,3-Gal-b1,4-Glc) and 2'FLNB (Fuc-a1,2-Gal-b1,3-GlcNAc) was evaluated for novel strains. After 72 h of incubation, the broth was collected and analyzed for sugars on UPLC. Example 40. Production of oligos comprising 2'FL , LN3 , LNT , sialylated LN3 , LSTa , LNFP - I , 2'FLNB , 3' -SL and sialylated LNB using a modified Bacillus subtilis host sugar mixture

如實施例39中所描述能夠生產 2 ' FL LN3 LNT LNFP-I Fuc-a1,2- Gal-b1,3-GlcNAc-b1,3-Gal-b1,4-Glc 2 ' FLNB Fuc-a1,2- Gal-b1,3- GlcNAc 之突變型枯草芽孢桿菌菌株進一步經nagA基因之基因體剔除及包含TRP1選擇標記及持續型轉錄單元之第二相容表現質體修飾,該等持續型轉錄單元用於以下者之兩個複本:來自大腸桿菌之突變型L-麩醯胺酸-D-果糖-6-磷酸胺基轉移酶(glmS*54)(藉由A39T、R250C及G472S突變而不同於野生型大腸桿菌glmS,具有UniProt ID P17169);磷酸酶,選自包含aphA、Cof、HisB、OtsB、SurE、Yaed、YcjU、YedP、YfbT、YidA、YigB、YihX、YniC、YqaB、YrbL、AppA、Gph、SerB、YbhA、YbiV、YbjL、Yfb、YieH、YjgL、YjjG、YrfG及YbiU之大腸桿菌基因或來自戀臭假單胞菌之PsMupP、來自釀酒酵母之ScDOG1或來自枯草芽孢桿菌之BsAraL(如WO18122225中所描述);來自卵形類桿菌之N-乙醯基葡萄糖胺2-表異構酶(AGE)(UniProt ID A7LVG6)、來自腦膜炎奈瑟氏菌之N-乙醯基神經胺酸合酶(NeuB)(UniProt ID E0NCD4)、來自流感嗜血桿菌之N-醯基神經胺酸胞苷醯基轉移酶NeuA(Genbank No. AGV11798.1);及來自敗血性巴氏桿菌之PmultST3多肽(UniProt ID Q9CLP3)之三個複本。 2'FL , LN3 , LNT , LNFP-I ( Fuc-a1,2-Gal-b1,3-GlcNAc-b1,3-Gal- b1,4 - Glc ) and 2 ' can be produced as described in Example 39 A mutant B. subtilis strain of FLNB ( Fuc-a1,2-Gal-b1,3-GlcNAc ) was further genetically knocked out of the nagA gene and modified with a second compatible expression plastid containing a TRP1 selectable marker and a persistent transcription unit , these persistent transcription units are used in two copies of: mutant L-glutamic acid-D-fructose-6-phosphate aminotransferase (glmS*54) from E. coli (via A39T, R250C and G472S mutated to differ from wild-type E. coli glmS, with UniProt ID P17169); phosphatase, selected from the group consisting of aphA, Cof, HisB, OtsB, SurE, Yaed, YcjU, YedP, YfbT, YidA, YigB, YihX, YniC , YqaB, YrbL, AppA, Gph, SerB, YbhA, YbiV, YbjL, Yfb, YieH, YjgL, YjjG, YrfG and YbiU genes or PsMupP from Pseudomonas putida, ScDOG1 from Saccharomyces cerevisiae or from BsAraL from Bacillus subtilis (as described in WO18122225); N-Acetylglucosamine 2-Epimerase (AGE) from Bacillus ovale (UniProt ID A7LVG6), N from Neisseria meningitidis - Acetylneuraminic acid synthase (NeuB) (UniProt ID E0NCD4), N-acetylneuraminic acid cytidine syltransferase NeuA (Genbank No. AGV11798.1) from Haemophilus influenzae; and Three copies of the PmultST3 polypeptide (UniProt ID Q9CLP3) of Pasteurella haemorrhagic.

在生長實驗中在包含乳糖及LNB作為受體之MMsf培養基上根據實施例38中所提供之培養條件,針對生產包含2'FL、LN3、LNT、LNFP-I(Fuc-a1,2-Gal-b1,3-GlcNAc-b1,3-Gal-b1,4-Glc)、2'FLNB(Fuc-a1,2- Gal-b1,3- GlcNAc)、3'-SL、唾液酸基化LN3、唾液酸基化LNB及LSTa(Neu5Ac- a2,3-Gal-b1,3- GlcNAc-b1,3-Gal-b1,4-Glc)之混合物評估新穎菌株。培育72h之後,收集培養液,且在UPLC上分析糖。 實施例 41 . 麩胺酸棒狀桿菌之材料及方法 培養基 In growth experiments on MMsf medium containing lactose and LNB as acceptors according to the culture conditions provided in Example 38, for the production of 2'FL, LN3, LNT, LNFP-I (Fuc-a1,2-Gal- b1,3-GlcNAc-b1,3-Gal-b1,4-Glc), 2'FLNB (Fuc-a1,2-Gal-b1,3-GlcNAc), 3'-SL, sialylated LN3, saliva A mixture of acidylated LNB and LSTa (Neu5Ac-a2,3-Gal-b1,3-GlcNAc-b1,3-Gal-b1,4-Glc) was evaluated for novel strains. After 72 h of incubation, the broth was collected and analyzed for sugars on UPLC. Example 41. Materials and methods of Corynebacterium glutamicum culture medium

使用兩種不同培養基,亦即富集的胰腖-酵母萃取物(tryptone-yeast;TY)培養基及搖瓶用基本培養基(minimal medium for shake flask;MMsf)。基本培養基使用1000x儲備痕量元素混合物。Two different media were used, namely enriched tryptone-yeast (TY) medium and minimal medium for shake flask (MMsf). Minimal medium uses 1000x stock trace element mix.

痕量元素混合物由10 g/L CaCl2、10 g/L FeSO4.7H2O、10 g/L MnSO4.H2O、1 g/L ZnSO4.7H2O、0.2 g/L CuSO4、0.02 g/L NiCl2.6H2O、0.2 g/L生物素(pH 7.0)及0.03 g/L原兒茶酸組成。The trace element mixture consists of 10 g/L CaCl2, 10 g/L FeSO4.7H2O, 10 g/L MnSO4.H2O, 1 g/L ZnSO4.7H2O, 0.2 g/L CuSO4, 0.02 g/L NiCl2.6H2O, 0.2 g/L g/L biotin (pH 7.0) and 0.03 g/L protocatechuic acid.

搖瓶用基本培養基(MMsf)實驗含有20 g/L (NH4)2SO4、5 g/L尿素、1 g/L KH2PO4、1 g/L K2HPO4、0.25 g/L MgSO4.7H2O、42 g/L MOPS、10多至30 g/L葡萄糖或另一碳源(包括(但不限於)實施例中指定之果糖、麥芽糖、蔗糖、甘油及麥芽三糖)及1 ml/L痕量元素混合物。視實驗而定,可添加乳糖、LNB及/或LacNAc作為受體。Minimal medium for shake flask (MMsf) experiments containing 20 g/L (NH4)2SO4, 5 g/L urea, 1 g/L KH2PO4, 1 g/L K2HPO4, 0.25 g/L MgSO4.7H2O, 42 g/L MOPS , 10 to 30 g/L glucose or another carbon source (including (but not limited to) fructose, maltose, sucrose, glycerol and maltotriose as specified in the examples) and 1 ml/L trace element mixture. Depending on the experiment, lactose, LNB and/or LacNAc can be added as acceptors.

TY培養基由1.6%胰腖(Difco,比利時埃倫博德海姆)、1%酵母萃取物(Difco)及0.5%氯化鈉(VWR,比利時魯汶)組成。TY瓊脂(TYA)盤係由TY培養基組成,其中添加12 g/L瓊脂(Difco,比利時埃倫博德海姆)。TY medium consisted of 1.6% pancreas (Difco, Ellen Bodheim, Belgium), 1% yeast extract (Difco) and 0.5% sodium chloride (VWR, Leuven, Belgium). The TY agar (TYA) plate system consisted of TY medium supplemented with 12 g/L agar (Difco, Ellen Bodheim, Belgium).

藉由高壓處理(121℃,21')對複合培養基(例如TY)進行滅菌及藉由過濾(0.22 µm Sartorius)對基本培養基進行滅菌。必要時,藉由添加抗生素(例如康黴素(kanamycin)、安比西林(ampicillin))使培養基具有選擇性。 菌株及突變 Sterilize complex media (eg TY) by autoclaving (121°C, 21') and sterilize minimal media by filtration (0.22 µm Sartorius). When necessary, the medium is made selective by the addition of antibiotics (eg kanamycin, ampicillin). Strains and Mutations

麩胺酸棒狀桿菌ATCC 13032可獲自於美國典型培養物保藏中心(American Type Culture Collection)。Corynebacterium glutamicum ATCC 13032 is available from the American Type Culture Collection.

如藉由Suzuki等人(Appl. Microbiol. Biotechnol., 2005年4月, 67(2):225-33)所描述基於Cre/loxP技術之整合質體載體及如藉由Okibe等人(Journal of Microbiological Methods 85, 2011, 155-163)所描述之溫度敏感穿梭載體經構築用於基因缺失、突變及插入。用於(異源)基因表現之適合啟動子可衍生自Yim等人(Biotechnol. Bioeng., 2013年11月, 110(11):2959-69)。選殖可使用吉布森組裝(Gibson Assembly)、金門組裝(Golden Gate assembly)、Cliva組裝、LCR或限制接合來進行。Integrating plastid vectors based on Cre/loxP technology as described by Suzuki et al. (Appl. Microbiol. Biotechnol., April 2005, 67(2):225-33) and as described by Okibe et al. (Journal of The temperature-sensitive shuttle vectors described in Microbiological Methods 85, 2011, 155-163) were constructed for gene deletion, mutation and insertion. Suitable promoters for (heterologous) gene expression can be derived from Yim et al. (Biotechnol. Bioeng., 2013 Nov, 110(11):2959-69). Colonization can be performed using Gibson Assembly, Golden Gate assembly, Cliva assembly, LCR or restriction ligation.

在生產基於乳糖之寡醣之一實施例中,產生麩胺酸棒狀桿菌突變型菌株以含有編碼乳糖輸入體(importer)(諸如例如具有UniProt ID P02920之大腸桿菌lacY)之基因。對於2'FL、3FL及diFL生產,將α-1,2-及/或α-1,3-岩藻糖基轉移酶表現構築體另外添加至菌株。In one embodiment of the production of lactose-based oligosaccharides, a mutant strain of Corynebacterium glutamicum is produced to contain a gene encoding a lactose importer such as, for example, E. coli lacY with UniProt ID P02920. For 2'FL, 3FL and diFL production, α-1,2- and/or α-1,3-fucosyltransferase expression constructs were additionally added to the strains.

在生產乳-N-丙糖(LNT-II、LN3、GlcNAc-b1,3-Gal-b1,4-Glc)之一實施例中,麩胺酸棒狀桿菌菌株經包含乳糖輸入體(諸如例如具有UniProt ID P02920之大腸桿菌lacY)及半乳糖苷β-1,3-N-乙醯基葡萄糖胺基轉移酶(如例如來自腦膜炎奈瑟氏菌之LgtA)(GenBank: AAM33849.1)之持續型表現單元之基因體嵌入修飾。對於LNT生產,生產LN3之菌株進一步經用於N-乙醯基葡萄糖胺β-1,3-半乳糖基轉移酶(如例如來自大腸桿菌O55:H7之WbgO(UniProt ID D3QY14))的持續型轉錄單元修飾。為生產乳-N-新四糖(LNnT、Gal-b1,4-GlcNAc-b1,3-Gal-b1,4-Glc),生產LN3之菌株進一步經持續型轉錄單元修飾,該持續型轉錄單元用於如例如來自腦膜炎奈瑟氏菌之LgtB的N-乙醯基葡萄糖胺β-1,4-半乳糖基轉移酶(UniProt ID Q51116)。N-乙醯基葡萄糖胺β-1,3-半乳糖基轉移酶及N-乙醯基葡萄糖胺β-1,4-半乳糖基轉移酶兩者可經由基因體嵌入或自表現質體遞送至菌株。對於生產LNFP-I,生產LNT之菌株可進一步經α-1,2-岩藻糖基轉移酶表現構築體修飾。In one embodiment of the production of lacto-N-triose (LNT-II, LN3, GlcNAc-b1,3-Gal-b1,4-Glc), the Corynebacterium glutamicum strain is via a lactose importer (such as, for example, Escherichia coli lacY with UniProt ID P02920) and galactoside β-1,3-N-acetylglucosaminyltransferase (eg, LgtA from Neisseria meningitidis) (GenBank: AAM33849.1) Gene body insertion modification of persistent expression units. For LNT production, the LN3-producing strain was further subjected to a persistent form of N-acetylglucosamine β-1,3-galactosyltransferase such as, for example, WbgO from E. coli O55:H7 (UniProt ID D3QY14) Transcription unit modification. In order to produce lacto-N-neotetraose (LNnT, Gal-b1,4-GlcNAc-b1,3-Gal-b1,4-Glc), the LN3-producing strain was further modified with a persistent transcription unit that N-Acetylglucosamine β-1,4-galactosyltransferase (UniProt ID Q51116) for eg LgtB from Neisseria meningitidis. Both N-acetylglucosamine β-1,3-galactosyltransferase and N-acetylglucosamine β-1,4-galactosyltransferase can be delivered via gene body insertion or self-expressing plastids to the strain. For the production of LNFP-I, the LNT-producing strain can be further modified with an alpha-1,2-fucosyltransferase expressing construct.

在唾液酸生產之一實施例中,突變型麩胺酸棒狀桿菌菌株藉由過度表現果糖-6-P-胺基轉移酶(UniProt ID Q8NND3)以增強胞內葡萄糖胺-6-磷酸鹽池來產生。另外,基因nagA、nagB及gamA之酶活性藉由基因剔除破壞且來自釀酒酵母之葡萄糖胺-6-P-胺基轉移酶(UniProt ID P43577)、來自卵形類桿菌之N-乙醯基葡萄糖胺-2-表異構酶(UniProt ID A7LVG6)及來自空腸彎曲桿菌之N-乙醯基神經胺酸合酶(UniProt ID Q93MP9)過度表現於基因體上。為允許唾液酸基化寡醣生產,生產唾液酸之菌株進一步經包含以下者之表現構築體修飾:N-醯基神經胺酸胞苷醯基轉移酶,如例如來自空腸彎曲桿菌之NeuA酶(UniProt ID Q93MP7)、來自流感嗜血桿菌之NeuA酶(GenBank NO. AGV11798.1)或來自敗血性巴氏桿菌之NeuA酶(GenBank NO. AMK07891.1);及以下者之一或多個複本:β-半乳糖苷α-2,3-唾液酸基轉移酶,如例如來自敗血性巴氏桿菌之PmultST3(UniProt ID Q9CLP3)或由UniProt ID Q9CLP3之胺基酸殘基1至268組成之具有β-半乳糖苷α-2,3-唾液酸基轉移酶活性的PmultST3樣多肽、來自腦膜炎奈瑟氏菌之NmeniST3(GenBank NO. ARC07984.1)或來自敗血性巴氏桿菌敗血性亞種菌株Pm70之PmultST2(GenBank NO. AAK02592.1);β-半乳糖苷α-2,6-唾液酸基轉移酶,如例如來自美人魚發光菌之PdST6(UniProt ID O66375)或由UniProt ID O66375的胺基酸殘基108至497組成之具有β-半乳糖苷α-2,6-唾液酸基轉移酶活性的PdST6樣多肽或來自發光菌屬JT-ISH-224之P-JT-ISH-224-ST6(UniProt ID A8QYL1)或由UniProt ID A8QYL1的胺基酸殘基18至514組成之具有β-半乳糖苷α-2,6-唾液酸基轉移酶活性之P-JT-ISH-224-ST6樣多肽及/或如例如來自小家鼠之α-2,8-唾液酸基轉移酶(UniProt ID Q64689)。 異源及同源表現 In one example of sialic acid production, mutant Corynebacterium glutamicum strains enhance intracellular glucosamine-6-phosphate pools by overexpressing fructose-6-P-aminotransferase (UniProt ID Q8NND3) produce. In addition, the enzymatic activities of genes nagA, nagB and gamA were disrupted by gene knockout and glucosamine-6-P-aminotransferase (UniProt ID P43577) from Saccharomyces cerevisiae, N-acetylglucose from Bacillus ovale Amine-2-epimerase (UniProt ID A7LVG6) and N-acetylneuraminic acid synthase (UniProt ID Q93MP9) from Campylobacter jejuni were overexpressed on the gene body. To allow sialylated oligosaccharide production, the sialic acid-producing strain is further modified with an expression construct comprising an N-acylneuraminic acid cytidine saccharide transferase, such as, for example, the NeuA enzyme from Campylobacter jejuni ( UniProt ID Q93MP7), NeuA enzyme from Haemophilus influenzae (GenBank NO. AGV11798.1) or NeuA enzyme from Pasteurella septicemia (GenBank NO. AMK07891.1); and one or more copies of: β-Galactoside α-2,3-sialyltransferase, such as for example PmultST3 from Pasteurella septicemia (UniProt ID Q9CLP3) or one consisting of amino acid residues 1 to 268 of UniProt ID Q9CLP3 with β - PmultST3-like polypeptide with galactoside alpha-2,3-sialyltransferase activity, NmeniST3 from Neisseria meningitidis (GenBank NO. ARC07984.1) or from a strain of Pasteurella septicaemia subsp. PmultST2 of Pm70 (GenBank NO. AAK02592.1); β-galactoside α-2,6-sialyltransferase, such as PdST6 (UniProt ID 066375) from P. mermaidii or the amine group from UniProt ID 066375 A PdST6-like polypeptide with β-galactoside α-2,6-sialyltransferase activity consisting of acid residues 108 to 497 or P-JT-ISH-224-ST6 from Photophora JT-ISH-224 (UniProt ID A8QYL1) or P-JT-ISH-224-ST6-like with β-galactoside α-2,6-sialyltransferase activity consisting of amino acid residues 18 to 514 of UniProt ID A8QYL1 Polypeptides and/or alpha-2,8-sialyltransferase such as eg from Mus musculus (UniProt ID Q64689). Heterologous and Homologous Expression

需要表現之基因,無論其來自質體或來自基因體,均以合成方式經以下公司中之一者合成:DNA2.0、Gen9、Twist Biosciences或IDT。Genes to be expressed, whether from plastids or gene bodies, are synthesized synthetically by one of the following companies: DNA2.0, Gen9, Twist Biosciences or IDT.

可藉由使密碼子使用最佳化為表現宿主之密碼子使用來進一步促進表現。使用供應商之工具使基因最佳化。 培養條件 Expression can be further facilitated by optimizing codon usage to that of the expression host. Genetic optimization using vendor tools. Culture conditions

96孔微量滴定盤實驗之預培養始於冷凍小瓶或始於TY盤之單一菌落,於150 µL TY中進行,且在37℃下在定軌振盪器上以800 rpm培育隔夜。此培養物用作96孔正方形微量滴定盤之接種物,用400 µL MMsf培養基藉由稀釋400倍。使各菌株在96孔盤之多個孔中生長作為生物複製物。此等最終96孔培養盤接著在37℃下在定軌振盪器上以800 rpm培育72h或更短或更長。在培養實驗結束時,自各孔獲取樣品以量測上清液濃度(胞外糖濃度,在短暫離心細胞5 min後),或在短暫離心細胞前藉由使培養液在60℃下沸騰15 min量測(=全培養液濃度,胞內及胞外糖濃度,如本文所定義)。Pre-incubation of 96-well microtiter plate experiments was performed starting from a frozen vial or from a single colony in a TY plate, in 150 µL of TY, and incubated overnight at 37°C on an orbital shaker at 800 rpm. This culture was used as an inoculum in a 96-well square microtiter plate by diluting 400-fold with 400 µL of MMsf medium. Each strain was grown in multiple wells of a 96-well plate as biological replicates. These final 96-well plates were then incubated at 37°C on an orbital shaker at 800 rpm for 72 h or less or longer. At the end of the incubation experiment, samples were taken from each well to measure the supernatant concentration (extracellular sugar concentration, after briefly centrifuging cells for 5 min), or by boiling the culture at 60°C for 15 min before briefly centrifuging cells Measurements (= concentration of whole broth, concentration of intracellular and extracellular sugars, as defined herein).

此外,對培養物進行稀釋以量測600 nm下之光學密度。藉由完全培養液中量測之寡醣濃度,例如唾液酸乳糖濃度,除以生物質(以與參考菌株相比之相對百分比)來確定細胞效能指數或CPI。憑經驗確定生物質在600 nm下量測之光學密度之大致1/3。 實施例 42. 使用經修飾之麩胺酸棒狀桿菌宿主生產包含 LN3 LNT LNFP-I 2'-FL 2'FLNB 之寡醣混合物 In addition, cultures were diluted to measure optical density at 600 nm. The Cell Potency Index or CPI is determined by dividing the measured oligosaccharide concentration, eg, sialyllactose concentration, in the complete broth by the biomass (as a relative percentage compared to a reference strain). It is empirically determined that biomass is approximately 1/3 the optical density measured at 600 nm. Example 42. Production of an oligosaccharide mixture comprising LN3 , LNT , LNFP-I , 2'-FL and 2'FLNB using a modified Corynebacterium glutamicum host

麩胺酸棒狀桿菌菌株首先藉由 ldhcgl2645nagB基因之基因體剔除及包含基因之持續型轉錄單元之基因體嵌入修飾以用於LN3生產及在蔗糖上之生長,該等基因編碼來自大腸桿菌之乳糖透過酶(LacY)(UniProt ID P02920)、天然果糖-6-P-胺基轉移酶(UniProt ID Q8NND3)、來自腦膜炎奈瑟氏菌之半乳糖苷β-1,3-N-乙醯基葡萄糖胺基轉移酶LgtA(GenBank: AAM33849.1)、來自大腸桿菌W之蔗糖運輸蛋白(CscB)(UniProt ID E0IXR1)、來自運動醱酵單胞菌之果糖激酶(Frk)(UniProt ID Q03417)及來自青春雙歧桿菌之蔗糖磷酸化酶(BaSP)(UniProt ID A0ZZH6)。在下一步驟中,突變型菌株進一步經包含來自大腸桿菌O55:H7之N-乙醯基葡萄糖胺β-1,3-半乳糖基轉移酶WbgO(UniProt ID D3QY14)的持續型轉錄單元之基因體嵌入修飾以產生LNT。在後續步驟中,產生LNT之菌株用包含用於來自幽門螺旋桿菌之α-1,2-岩藻糖基轉移酶HpFutC(GenBank: AAD29863.1)之持續型轉錄單元的表現質體轉型。在生長實驗中在包含乳糖及LNB作為受體之MMsf培養基上根據實施例41中所提供之培養條件,針對生產包含LN3、LNT、LNFP-I、2'-FL及2'FLNB之寡醣混合物評估新穎菌株。培育72h之後,收集培養液,且在UPLC上分析糖。 實施例 43. 使用經修飾之麩胺酸棒狀桿菌宿主生產包含 LN3 、唾液酸基化 LN3 LNnT 6'SL 6'SLacNAc LSTc 之寡醣混合物 Corynebacterium glutamicum strains were first modified for LN3 production and growth on sucrose by gene body deletion of the ldh , cgl2645 and nagB genes and gene body insertion comprising the persistent transcription unit of the genes encoding from Lactose permease (LacY) from Escherichia coli (UniProt ID P02920), native fructose-6-P-aminotransferase (UniProt ID Q8NND3), β-1,3-N galactoside from Neisseria meningitidis - Acetylglucosamine transferase LgtA (GenBank: AAM33849.1), sucrose transporter protein (CscB) from Escherichia coli W (UniProt ID E0IXR1), fructokinase (Frk) from Zymomonas mobilis (UniProt ID Q03417) and sucrose phosphorylase (BaSP) from Bifidobacterium adolescentis (UniProt ID A0ZZH6). In the next step, the mutant strain was further transformed with a gene body comprising a continuous transcription unit of N-acetylglucosamine β-1,3-galactosyltransferase WbgO (UniProt ID D3QY14) from E. coli O55:H7 Embedding modifications to generate LNTs. In a subsequent step, the LNT-producing strain was transformed with an expressive plastid comprising a persistent transcription unit for the α-1,2-fucosyltransferase HpFutC (GenBank: AAD29863.1) from H. pylori. In growth experiments on MMsf medium containing lactose and LNB as acceptors according to the culture conditions provided in Example 41 for the production of oligosaccharide mixtures comprising LN3, LNT, LNFP-I, 2'-FL and 2'FLNB Evaluate novel strains. After 72 h of incubation, the broth was collected and analyzed for sugars on UPLC. Example 43. Production of oligosaccharide mixture comprising LN3 , sialylated LN3 , LNnT , 6'SL , 6'SLacNAc and LSTc using a modified Corynebacterium glutamicum host

麩胺酸棒狀桿菌菌株首先藉由 ldhcgl2645nagAnagB基因之基因體剔除以及持續型轉錄單元之基因體嵌入修飾以產生唾液酸,該等持續型轉錄單元包含天然果糖-6-P-胺基轉移酶(UniProt ID Q8NND3)、來自釀酒酵母之葡萄糖胺-6-P-胺基轉移酶(UniProt ID P43577)、來自卵形類桿菌之N-乙醯基葡萄糖胺-2-表異構酶(UniProt ID A7LVG6)及來自空腸彎曲桿菌之N-乙醯基神經胺酸合酶(UniProt ID Q93MP9)。麩胺酸棒狀桿菌菌株進一步經持續型轉錄單元之基因體嵌入修飾以允許生產LN3及乳-N-新四糖(LNnT,Gal-b1,4-GlcNAc-b1,3-Gal-b1,4-Glc),該等持續型轉錄單元用於來自大腸桿菌之乳糖透過酶LacY(UniProt ID P02920)、來自腦膜炎奈瑟氏菌之LgtA(UniProt ID Q9JXQ6)及用於來自腦膜炎奈瑟氏菌之LgtB(UniProt ID Q51116)。在下一步驟中,突變型菌株經具有持續型轉錄單元之表現質體轉型,該等持續型轉錄單元用於來自敗血性巴氏桿菌之NeuA(GenBank: AMK07891.1)及由UniProt ID O66375之胺基酸殘基108至497組成之具有β-半乳糖苷α-2,6-唾液酸基轉移酶活性的PdST6樣多肽。在生長實驗中在包含乳糖及LacNAc作為受體之MMsf培養基上根據實施例41中所提供之培養條件,針對生產包含LN3、6'-唾液酸基化LN3(Neu5Ac-a2,6-(GlcNAc-b1,3)-Gal-b1,4-Glc)、6'SL、6'SLacNAc、LNnT及LSTc(Neu5Ac-a2,6-Gal-b1,4-GlcNAc-b1,3-Gal-b1,4-Glc)之寡醣混合物評估新穎菌株。培育72h之後,收集培養液,且在UPLC上分析糖。 實施例 44 . 萊茵衣藻 Chlamydomonas reinhardtii 之材料及方法 培養基 The strain of corynebacterium glutamicum was first modified to produce sialic acid by gene body deletion of ldh , cgl2645 , nagA and nagB genes and gene body insertion of persistent transcription units containing native fructose-6-P - aminotransferase (UniProt ID Q8NND3), glucosamine-6-P-aminotransferase from Saccharomyces cerevisiae (UniProt ID P43577), N-acetylglucosamine-2-episolone from Bacillus ovale Constructing enzyme (UniProt ID A7LVG6) and N-acetylneuraminic acid synthase (UniProt ID Q93MP9) from Campylobacter jejuni. The Corynebacterium glutamicum strain was further modified by gene body insertion of a persistent transcription unit to allow the production of LN3 and lacto-N-neotetraose (LNnT, Gal-b1,4-GlcNAc-b1,3-Gal-b1,4 -Glc), these persistent transcription units are used for lactose permease LacY from E. coli (UniProt ID P02920), LgtA from Neisseria meningitidis (UniProt ID Q9JXQ6) and for Neisseria meningitidis LgtB (UniProt ID Q51116). In the next step, mutant strains were transformed with expressing plastids with persistent transcription units for NeuA from Pasteurella septicemia (GenBank: AMK07891.1) and amine from UniProt ID 066375 A PdST6-like polypeptide with β-galactoside α-2,6-sialyltransferase activity consisting of amino acid residues 108 to 497. In growth experiments on MMsf medium containing lactose and LacNAc as acceptors according to the culture conditions provided in Example 41, for the production of LN3, 6'-sialylated LN3 (Neu5Ac-a2,6-(GlcNAc- b1,3)-Gal-b1,4-Glc), 6'SL, 6'SLacNAc, LNnT and LSTc (Neu5Ac-a2,6-Gal-b1,4-GlcNAc-b1,3-Gal-b1,4- Glc) oligosaccharide mixture to evaluate novel strains. After 72 h of incubation, the broth was collected and analyzed for sugars on UPLC. Example 44. Materials and Methods of Chlamydomonas reinhardtii Medium

將萊茵衣藻細胞在Tris-乙酸-磷酸(Tris-acetate-phosphate;TAP)培養基(pH 7.0)中培養。TAP培養基使用1000×儲備赫特納氏(Hutner's)痕量元素混合物。赫特納氏痕量元素混合物由50 g/L Na2EDTA.H2O(Titriplex III)、22 g/L ZnSO4.7H2O、11.4 g/L H3BO3、5 g/L MnCl2.4H2O、5 g/L FeSO4.7H2O、1.6 g/L CoCl2.6H2O、1.6 g/L CuSO4.5H2O及1.1 g/L (NH4)6MoO3組成。Chlamydomonas reinhardtii cells were cultured in Tris-acetate-phosphate (TAP) medium (pH 7.0). TAP medium used 1000X stock Hutner's trace element mix. Hertner's trace element mixture consisted of 50 g/L Na2EDTA.H2O (Titriplex III), 22 g/L ZnSO4.7H2O, 11.4 g/L H3BO3, 5 g/L MnCl2.4H2O, 5 g/L FeSO4.7H2O , 1.6 g/L CoCl2.6H2O, 1.6 g/L CuSO4.5H2O and 1.1 g/L (NH4)6MoO3.

TAP培養基含有2.42 g/L Tris(參(羥甲基)胺基甲烷)、25 mg/L鹽儲備溶液、0.108 g/L K2HPO4、0.054 g/L KH2PO4及1.0 mL/L冰乙酸。鹽儲備溶液由15 g/L NH4CL、4 g/L MgSO4.7H2O及2 g/L CaCl2.2H2O組成。作為用於醣合成之前驅物及/或受體,可添加前驅物及/或受體,如例如半乳糖、葡萄糖、果糖、岩藻糖、GlcNAc、LNB及/或LacNAc。藉由高壓處理(121℃,21')來對培養基進行滅菌。對於斜面瓊脂上之儲備培養物,使用含有1%瓊脂(具有經純化高強度,1000 g/cm2)之TAP培養基。 菌株、質體及突變 TAP medium contains 2.42 g/L Tris (para(hydroxymethyl)aminomethane), 25 mg/L salt stock solution, 0.108 g/L K2HPO4, 0.054 g/L KH2PO4, and 1.0 mL/L glacial acetic acid. The salt stock solution consisted of 15 g/L NH4CL, 4 g/L MgSO4.7H2O, and 2 g/L CaCl2.2H2O. As precursors and/or acceptors for sugar synthesis, precursors and/or acceptors such as, for example, galactose, glucose, fructose, fucose, GlcNAc, LNB and/or LacNAc can be added. The medium was sterilized by autoclaving (121°C, 21'). For stock cultures on slanted agar, use TAP medium containing 1% agar (with purified high strength, 1000 g/cm2). Strains, plastids and mutations

萊茵衣藻野生型菌株21gr(CC-1690,野生型,mt+)、6145C(CC-1691,野生型,mt−)、CC-125(137c,野生型,mt+)、CC-124(137c,野生型,mt−)可購自美國明尼蘇達大學(University of Minnesota, U.S.A.)之衣藻屬資源中心(Chlamydomonas Resource Center)(https://www.chlamycollection.org)。Chlamydomonas reinhardtii wild type strains 21gr (CC-1690, wild type, mt+), 6145C (CC-1691, wild type, mt−), CC-125 (137c, wild type, mt+), CC-124 (137c, wild type, mt+) type, mt−) can be purchased from the Chlamydomonas Resource Center (https://www.chlamycollection.org) at the University of Minnesota, U.S.A., USA.

表現質體源自pSI103,如可購自衣藻屬資源中心。選殖可使用吉布森組裝(Gibson Assembly)、金門組裝(Golden Gate assembly)、Cliva組裝、LCR或限制接合來進行。用於(異源)基因表現之適合啟動子可衍生自例如Scranton等人(Algal Res. 2016, 15: 135-142)。靶向基因修飾(如基因剔除或基因置換)可使用如例如藉由Jiang等人(Eukaryotic Cell 2014, 13(11): 1465-1469)所描述之Crispr-Cas技術進行。Expression plastids were derived from pSI103, eg, available from the Chlamydomonas Resource Center. Colonization can be performed using Gibson Assembly, Golden Gate assembly, Cliva assembly, LCR or restriction ligation. Suitable promoters for (heterologous) gene expression can be derived, for example, from Scranton et al. (Algal Res. 2016, 15: 135-142). Targeted genetic modification, such as gene knockout or gene replacement, can be performed using the Crispr-Cas technology as described, for example, by Jiang et al. (Eukaryotic Cell 2014, 13(11): 1465-1469).

經由電穿孔之轉型係如藉由Wang等人(Biosci. Rep. 2019, 39: BSR2018210)所描述進行。在恆定通氣及光強度為8000 Lx之連續光照下,使細胞在液體TAP培養基中生長,直至細胞密度達到1.0-2.0×107個細胞/毫升。接著,將細胞以1.0×106個細胞/毫升之濃度接種至新製液體TAP培養基中且在連續光照下生長18-20 h,直至細胞密度達到4.0×106個細胞/毫升。接下來,將細胞藉由在室溫下以1250 g離心5 min收集,洗滌且用含有60 mM山梨醇之預冷卻液體TAP培養基(Sigma,美國)再懸浮且冰凍10 min。接著,將250 µL細胞懸浮液(對應於5.0×107個細胞)置放於具有100 ng質體DNA之預冷卻0.4 cm電穿孔比色管(400 ng/mL)中。使用BTX ECM830電穿孔裝置(1575 Ω,50 μFD)用6個500 V脈衝進行電穿孔,各脈衝具有4 ms之脈衝長度及100 ms之脈衝間隔時間。在電穿孔之後,立即將比色管置放於冰上10分鐘。最後,將細胞懸浮液轉移至含有10 mL含60 mM山梨糖醇之新鮮液體TAP培養基的50 ml錐形離心管中,以便在暗光下藉由緩慢振盪隔夜恢復。在隔夜恢復之後,將細胞再收集且用澱粉包埋方法接種至含有安比西林(100 mg/L)或氯黴素(100 mg/L)之選擇性1.5%(w/v)瓊脂-TAP盤上。接著在23+-0.5℃下在光強度為8000 Lx之連續照明下培育盤。5-7天後分析細胞。Transformation via electroporation was performed as described by Wang et al. (Biosci. Rep. 2019, 39: BSR2018210). Cells were grown in liquid TAP medium under constant aeration and continuous light at a light intensity of 8000 Lx until the cell density reached 1.0-2.0 x 107 cells/ml. Next, cells were seeded into freshly prepared liquid TAP medium at a concentration of 1.0×10 6 cells/ml and grown under continuous light for 18-20 h until the cell density reached 4.0×10 6 cells/ml. Next, cells were harvested by centrifugation at 1250 g for 5 min at room temperature, washed and resuspended with pre-cooled liquid TAP medium (Sigma, USA) containing 60 mM sorbitol and frozen for 10 min. Next, 250 µL of the cell suspension (corresponding to 5.0 x 107 cells) was placed in a pre-chilled 0.4 cm electroporation cuvette (400 ng/mL) with 100 ng of plastid DNA. Electroporation was performed using a BTX ECM830 electroporation device (1575 Ω, 50 μFD) with 6 pulses of 500 V, each with a pulse length of 4 ms and a pulse interval of 100 ms. Immediately after electroporation, the cuvette was placed on ice for 10 minutes. Finally, the cell suspension was transferred to a 50 ml conical centrifuge tube containing 10 mL of fresh liquid TAP medium containing 60 mM sorbitol for overnight recovery with slow shaking in the dark. After overnight recovery, cells were re-harvested and seeded by starch embedding onto selective 1.5% (w/v) agar-TAP dishes containing ampicillin (100 mg/L) or chloramphenicol (100 mg/L). superior. The disks were then incubated at 23+-0.5°C under continuous illumination with a light intensity of 8000 Lx. Cells were analyzed after 5-7 days.

在生產GDP-岩藻糖之一實施例中,萊茵衣藻細胞經用於來自阿拉伯芥之GDP-岩藻糖合酶(GER1,UniProt ID O49213)之轉錄單元修飾。In one example of producing GDP-fucose, C. reinhardtii cells were modified with a transcription unit for GDP-fucose synthase from Arabidopsis (GER1, UniProt ID 049213).

在生產UDP-半乳糖之一實施例中,萊茵衣藻細胞經包含基因之轉錄單元修飾,該等基因編碼來自阿拉伯芥之半乳糖激酶(KIN,UniProt ID Q9SEE5)及來自阿拉伯芥( A. thaliana)之UDP-糖焦磷酸化酶(USP)(UniProt ID Q9C5I1)。 In one embodiment of the production of UDP-galactose, C. reinhardtii cells are modified with transcription units comprising genes encoding galactokinase from Arabidopsis (KIN, UniProt ID Q9SEE5) and from A. thaliana ) of UDP-sugar pyrophosphorylase (USP) (UniProt ID Q9C5I1).

在生產UDP-N-乙醯基半乳糖胺之一實施例中,萊茵衣藻細胞經包含來自綠膿假單胞菌血清型O6之UDP-N-乙醯基葡萄糖胺4-表異構酶wbpP(UniProt ID Q8KN66)之轉錄單元修飾。In one embodiment of the production of UDP-N-acetylgalactosamine, the Chlamydomonas reinhardtii cells are treated with UDP-N-acetylglucosamine 4-epimerase from Pseudomonas aeruginosa serotype O6 Transcription unit modification of wbpP (UniProt ID Q8KN66).

在生產LNB之一實施例中,經修飾用於UDP-半乳糖生產之萊茵衣藻細胞進一步經包含轉錄單元的表現質體修飾,該轉錄單元用於來自大腸桿菌O55:H7之N-乙醯基葡萄糖胺β-1,3-半乳糖基轉移酶WbgO(UniProt ID D3QY14)。在生產LacNAc之一實施例中,經修飾用於UDP-半乳糖生產之萊茵衣藻細胞進一步經包含轉錄單元的表現質體修飾,該轉錄單元用於來自腦膜炎奈瑟氏菌之N-乙醯基葡萄糖胺β-1,4-半乳糖基轉移酶LgtB(UniProt ID Q51116)。In one embodiment of the production of LNB, the C. reinhardtii cells modified for UDP-galactose production are further modified with an expression plastid comprising a transcription unit for N-acetyl from E. coli O55:H7 Glucosamine beta-1,3-galactosyltransferase WbgO (UniProt ID D3QY14). In one embodiment of the production of LacNAc, the C. reinhardtii cells modified for UDP-galactose production are further modified with an expression plastid comprising a transcription unit for N-beta Acylglucosamine beta-1,4-galactosyltransferase LgtB (UniProt ID Q51116).

在CMP-唾液酸合成之一實施例中,萊茵衣藻細胞經持續型轉錄單元修飾,該等持續型轉錄單元用於如例如來自智人之GNE的UDP-N-乙醯基葡萄糖胺-2-表異構酶/N-乙醯基甘露糖胺激酶(UniProt ID Q9Y223)或包含R263L突變之人類GNE多肽之突變型形式、如例如來自智人之NANS的N-醯基神經胺酸-9-磷酸合酶(UniProt ID Q9NR45)及如例如來自智人之CMAS的N-醯基神經胺酸胞苷醯基轉移酶(UniProt ID Q8NFW8)。在生產唾液酸基化寡醣之一實施例中,萊茵衣藻細胞經CMP-唾液酸運輸蛋白修飾,該運輸蛋白如例如來自小家鼠之CST(UniProt ID Q61420)及選自物種如例如智人、小家鼠、褐鼠之高爾基體定位之唾液酸基轉移酶。 異源及同源表現 In one embodiment of CMP-sialic acid synthesis, C. reinhardtii cells are modified with persistent transcription units for use in eg UDP-N-acetylglucosamine-2 from GNE of Homo sapiens - Epimerase/N-Acetylmannosamine Kinase (UniProt ID Q9Y223) or a mutant form of a human GNE polypeptide comprising the R263L mutation, such as eg N-Acetylneuraminic acid-9 from NANS of Homo sapiens - Phosphate synthase (UniProt ID Q9NR45) and N-acylneuraminic acid cytidine syltransferase (UniProt ID Q8NFW8) as eg from CMAS of Homo sapiens. In one embodiment of the production of sialylated oligosaccharides, C. reinhardtii cells are modified with CMP-sialic acid transporter proteins such as eg CST from Mus musculus (UniProt ID Q61420) and selected from species such as eg Chi Golgi-localized sialyltransferase in human, Mus musculus, and brown mouse. Heterologous and Homologous Expression

需要表現之基因,無論其來自質體或來自基因體,均以合成方式經以下公司中之一者合成:DNA2.0、Gen9、Twist Biosciences或IDT。Genes to be expressed, whether from plastids or gene bodies, are synthesized synthetically by one of the following companies: DNA2.0, Gen9, Twist Biosciences or IDT.

可藉由使密碼子使用最佳化為表現宿主之密碼子使用來進一步促進表現。使用供應商之工具使基因最佳化。 培養條件 Expression can be further facilitated by optimizing codon usage to that of the expression host. Genetic optimization using vendor tools. Culture conditions

在23 +/- 0.5℃下,在14/10 h光/暗循環下以8000 Lx之光強度,在選擇性TAP-瓊脂盤中培養萊茵衣藻細胞。在培養5至7天之後分析細胞。Chlamydomonas reinhardtii cells were cultured in selective TAP-agar dishes at 23 +/- 0.5°C with a light intensity of 8000 Lx on a 14/10 h light/dark cycle. Cells were analyzed after 5 to 7 days in culture.

對於高密度培養,細胞可在封閉系統中培養,封閉系統如例如Chen等人(Bioresour. Technol. 2011, 102: 71-81)及Johnson等人(Biotechnol. Prog. 2018, 34: 811-827)所描述之豎直或水平管光生物反應器、攪拌槽光生物反應器或平板光生物反應器。 實施例 45. 在突變型萊茵衣藻細胞中生產包含 2'FLNB 2'FLacNAc 之寡醣混合物 For high-density culture, cells can be cultured in closed systems such as, for example, Chen et al. (Bioresour. Technol. 2011, 102: 71-81) and Johnson et al. (Biotechnol. Prog. 2018, 34: 811-827) Vertical or horizontal tube photobioreactors, stirred tank photobioreactors or flat plate photobioreactors as described. Example 45. Production of an oligosaccharide mixture comprising 2'FLNB and 2'FLacNAc in mutant Chlamydomonas reinhardtii cells

如實施例44中所描述用持續型轉錄單元之基因體嵌入對萊茵衣藻細胞進行工程改造以用於生產GDP-岩藻糖,該持續型轉錄單元包含來自阿拉伯芥之GDP-岩藻糖合酶基因(GER1,UniProt ID O49213)。在下一步驟中,突變型細胞經包含持續型轉錄單元之表現質體轉型,該持續型轉錄單元用於來自幽門螺旋桿菌之a-1,2-岩藻糖基轉移酶HpFutC(GenBank: AAD29863.1)。根據實施例44中所提供之培養條件,在生長實驗中在包含LNB及LacNAc作為受體之TAP瓊脂盤上評估新穎菌株。培育5天之後,收集細胞,且在UPLC上分析2'FLNB及2'FLacNAc之生產。 實施例 46. 動物細胞之材料及方法 自不同哺乳動物之脂肪組織分離間葉幹細胞 Chlamydomonas reinhardtii cells were engineered for GDP-fucose production with gene body insertion of a persistent transcription unit comprising a GDP-fucose synthase from Arabidopsis as described in Example 44 Enzyme gene (GER1, UniProt ID O49213). In the next step, the mutant cells were transformed with an expressing plastid containing a persistent transcription unit for the alpha-1,2-fucosyltransferase HpFutC (GenBank: AAD29863. 1). According to the culture conditions provided in Example 44, novel strains were evaluated in growth experiments on TAP agar plates containing LNB and LacNAc as receptors. After 5 days of incubation, cells were harvested and analyzed on UPLC for 2'FLNB and 2'FLacNAc production. Example 46. Materials and Methods for Animal Cells Isolation of Mesenchymal Stem Cells from Adipose Tissue of Different Mammals

新鮮脂肪組織係獲自屠宰場(例如,牛、豬、綿羊、雞、鴨、鯰魚、蛇、蛙)或抽脂手術(例如,在人類之情況下,在簽署知情同意書之後)且保持在補充有抗生素之磷酸鹽緩衝鹽水中。進行脂肪組織之酶消化,之後進行離心以分離間葉幹細胞。將經分離之間葉幹細胞轉移至細胞培養燒瓶中且在標準生長條件(例如37℃,5% CO2)下生長。初始培養基包括DMEM-F12、RPMI及Alpha-MEM培養基(補充有15%胎牛血清)及1%抗生素。隨後在第一次通過之後,培養基用補充有10% FBS(胎牛血清)之培養基置換。舉例而言,Ahmad及Shakoori(2013, Stem Cell Regen Med. 9(2): 29- 36),出於所有目的將其以全文引用之方式併入本文中,描述此實施例中所描述之方法之某些變化形式。 自乳汁分離間葉幹細胞 Fresh adipose tissue is obtained from slaughterhouses (eg, cattle, swine, sheep, chickens, ducks, catfish, snakes, frogs) or liposuction (eg, in the case of humans, after signed informed consent) and maintained at in phosphate buffered saline supplemented with antibiotics. Enzymatic digestion of adipose tissue followed by centrifugation to isolate mesenchymal stem cells. The isolated interleaf stem cells are transferred to cell culture flasks and grown under standard growth conditions (eg, 37°C, 5% CO2). Initial media included DMEM-F12, RPMI and Alpha-MEM media (supplemented with 15% fetal bovine serum) and 1% antibiotics. Then after the first pass, the medium was replaced with medium supplemented with 10% FBS (fetal bovine serum). For example, Ahmad and Shakoori (2013, Stem Cell Regen Med. 9(2): 29-36), herein incorporated by reference in its entirety for all purposes, describe the methods described in this example some variations of it. Isolation of mesenchymal stem cells from milk

此實施例說明自在無菌條件下自人類或任何其他哺乳動物(諸如本文所描述)收集之乳汁分離間葉幹細胞。將相等體積之磷酸鹽緩衝鹽水添加至經稀釋乳汁中,之後離心20 min。將細胞沈澱用磷酸鹽緩衝生理食鹽水洗滌三次,且在標準培養條件下將細胞接種於細胞培養燒瓶中補充有10%胎牛血清及1%抗生素之DMEM-F12、RPMI及Alpha-MEM培養基中。舉例而言,Hassiotou等人(2012, Stem Cells. 30(10): 2164-2174),出於所有目的將其以全文引用之方式併入本文中,描述此實施例中所描述之方法之某些變化形式。 使用 2D 3D 培養系統分化幹細胞 This example illustrates the isolation of mesenchymal stem cells from milk collected under sterile conditions from a human or any other mammal, such as those described herein. An equal volume of phosphate buffered saline was added to the diluted milk, followed by centrifugation for 20 min. Cell pellets were washed three times with phosphate buffered saline, and cells were seeded in cell culture flasks in DMEM-F12, RPMI and Alpha-MEM medium supplemented with 10% fetal bovine serum and 1% antibiotics under standard culture conditions . For example, Hassiotou et al. (2012, Stem Cells. 30(10): 2164-2174), which is incorporated herein by reference in its entirety for all purposes, describe some of the methods described in this example. some variations. Differentiate stem cells using 2D and 3D culture systems

經分離之間葉細胞可在2D及3D培養系統中分化成乳腺樣上皮細胞及腔細胞。參見例如Huynh等人. 1991. Exp Cell Res. 197(2): 191 -199;Gibson等人. 1991, In Vitro Cell Dev Biol Anim. 27(7): 585-594;Blatchford. 1999; Animal Cell Technology': Basic & Applied Aspects, Springer, Dordrecht. 141-145;Williams等人. 2009, Breast Cancer Res 11(3): 26-43;及Arevalo等人. 2015, Am J Physiol Cell Physiol. 310(5): C348 - C356;其中之各者出於所有目的以全文引用之方式併入本文中。The isolated mesenchymal cells can be differentiated into mammary-like epithelial cells and luminal cells in 2D and 3D culture systems. See, eg, Huynh et al. 1991. Exp Cell Res. 197(2): 191-199; Gibson et al. 1991, In Vitro Cell Dev Biol Anim. 27(7): 585-594; Blatchford. 1999; Animal Cell Technology ': Basic & Applied Aspects, Springer, Dordrecht. 141-145; Williams et al. 2009, Breast Cancer Res 11(3): 26-43; and Arevalo et al. 2015, Am J Physiol Cell Physiol. 310(5) : C348-C356; each of which is incorporated herein by reference in its entirety for all purposes.

對於2D培養,經分離細胞最初接種於培養盤中補充有10 ng/ml上皮生長因子及5 pg/ml胰島素之生長培養基中。在匯合時,將細胞用補充有2%胎牛血清、1%青黴素-鏈黴素(100 U/ml青黴素,100 μg/ml鏈黴素)及5 pg/ml胰島素之生長培養基餵飼48小時。為誘導分化,將細胞用含有5 pg/ml胰島素、1 pg/ml皮質醇、0.65 ng/ml三碘甲狀腺素、100 nM地塞米松及1 pg/ml促乳素之完整生長培養基餵飼。24h後,自完全誘導培養基移除血清。For 2D cultures, isolated cells were initially seeded in culture plates in growth medium supplemented with 10 ng/ml epithelial growth factor and 5 pg/ml insulin. At confluence, cells were fed growth medium supplemented with 2% fetal bovine serum, 1% penicillin-streptomycin (100 U/ml penicillin, 100 μg/ml streptomycin) and 5 pg/ml insulin for 48 hours . To induce differentiation, cells were fed complete growth medium containing 5 pg/ml insulin, 1 pg/ml cortisol, 0.65 ng/ml triiodothyronine, 100 nM dexamethasone and 1 pg/ml prolactin. After 24 h, serum was removed from the complete induction medium.

對於3D培養,將經分離細胞用胰蛋白酶消化且在基質膠、玻尿酸或超低附著表面培養盤中培養六天,且藉由添加補充有10 ng/ml上皮生長因子及5 pg/ml胰島素之生長培養基誘導以分化及泌乳。在匯合時,將細胞用補充有2%胎牛血清、1%青黴素-鏈黴素(100 U/ml青黴素,100 μg/ml鏈黴素)及5 pg/ml胰島素之生長培養基餵飼48小時。為誘導分化,將細胞用含有5 pg/ml胰島素、1 pg/ml皮質醇、0.65 ng/ml三碘甲狀腺素、100 nM地塞米松及1 pg/ml促乳素之完整生長培養基餵飼。24h後,自完全誘導培養基移除血清。 製造乳腺樣細胞之方法 For 3D cultures, detached cells were trypsinized and cultured for six days in Matrigel, hyaluronic acid, or ultra-low attachment surface culture dishes, and by adding 10 ng/ml epithelial growth factor and 5 pg/ml insulin supplemented with Growth medium induction for differentiation and lactation. At confluence, cells were fed growth medium supplemented with 2% fetal bovine serum, 1% penicillin-streptomycin (100 U/ml penicillin, 100 μg/ml streptomycin) and 5 pg/ml insulin for 48 hours . To induce differentiation, cells were fed complete growth medium containing 5 pg/ml insulin, 1 pg/ml cortisol, 0.65 ng/ml triiodothyronine, 100 nM dexamethasone and 1 pg/ml prolactin. After 24 h, serum was removed from the complete induction medium. Method of making mammary gland-like cells

哺乳動物細胞藉由用編碼Oct4、Sox2、Klf4及c-Myc之病毒載體再程式化來誘導多能性。接著將所得再程式化細胞在Mammocult培養基(可獲自Stem Cell Technologies)或乳腺細胞富集培養基(DMEM、3% FBS、雌激素、孕酮、肝素、皮質醇、胰島素、EGF)中培養以使其類乳腺,可自其誘導所選乳組分之表現。或者,表觀遺傳重塑係使用諸如CRISPR/Cas9之重塑系統執行,以活化所關注之選擇基因,諸如酪蛋白、待持續型a-乳白蛋白,以允許其各自蛋白質之表現,及/或下調及/或剔除所選內源性基因,如例如WO21067641中所描述,出於所有目的將該文獻以全文引用之方式併入本文中。 培養 Mammalian cells were induced to pluripotency by reprogramming with viral vectors encoding Oct4, Sox2, Klf4 and c-Myc. The resulting reprogrammed cells were then cultured in Mammocult medium (available from Stem Cell Technologies) or breast cell enrichment medium (DMEM, 3% FBS, estrogen, progesterone, heparin, cortisol, insulin, EGF) to allow It is mammary gland-like, from which the performance of selected milk components can be induced. Alternatively, epigenetic remodeling is performed using a remodeling system such as CRISPR/Cas9 to activate selected genes of interest, such as casein, alpha-lactalbumin to be persisted, to allow expression of their respective proteins, and/or Selected endogenous genes are down-regulated and/or knocked out as described, for example, in WO21067641, which is incorporated herein by reference in its entirety for all purposes. nourish

完全生長培養基包括高葡萄糖DMEM/F12、10% FBS、1% NEAA、1%青黴素-鏈黴素、1% ITS-X、1% F-Glu、10 ng/ml EGF及5 pg/ml皮質醇。完全泌乳培養基包括高葡萄糖DMEM/F12、1% NEAA、1%青黴素-鏈黴素、1% ITS-X、1% F-Glu、10 ng/ml EGF、5 pg/ml皮質醇及1 pg/ml促乳素(5 μg/ml,在Hyunh 1991中)。細胞以20,000個細胞/平方公分之密度接種於完整生長培養基中之經膠原蛋白塗佈之培養瓶上,且在完整生長培養基中靜置以黏附及擴增48小時,其後將該培養基換為完整泌乳培養基。在暴露於泌乳培養基後,細胞開始分化且停止生長。在約一週內,細胞開始分泌泌乳產物,諸如乳脂質、乳糖、酪蛋白及乳清至培養基中。可藉由超過濾藉由濃縮或稀釋來達成所需濃度之泌乳培養基。可藉由透析,例如以自培養基移除非所需代謝產物來達成泌乳培養基之所需鹽平衡。可藉由樹脂純化,例如使用鎳樹脂以移除HIS標記之生長因子來選擇性萃取激素及所使用之其他生長因子,以進一步減少泌乳產物中之污染物含量。 實施例 47. 在非乳腺成體幹細胞中製造包含 2 ' FLNB 2 ' FLacNAc 2 ' -FL 、唾液酸基化 LNB 、唾液酸基化 LacNAc 3 ' -SL 之寡醣混合物 Complete growth medium including high glucose DMEM/F12, 10% FBS, 1% NEAA, 1% Penicillin-Streptomycin, 1% ITS-X, 1% F-Glu, 10 ng/ml EGF, and 5 pg/ml Cortisol . Complete lactation medium includes high glucose DMEM/F12, 1% NEAA, 1% penicillin-streptomycin, 1% ITS-X, 1% F-Glu, 10 ng/ml EGF, 5 pg/ml cortisol and 1 pg/ml ml prolactin (5 μg/ml, in Hyunh 1991). Cells were seeded on collagen-coated flasks in complete growth medium at a density of 20,000 cells/cm 2 and left to adhere and expand in complete growth medium for 48 hours, after which the medium was changed to Complete lactation medium. After exposure to lactation medium, cells begin to differentiate and stop growing. Within about a week, cells begin to secrete lactation products, such as milk lipids, lactose, casein, and whey, into the medium. The lactation medium of the desired concentration can be achieved by concentration or dilution by ultrafiltration. The desired salt balance of the lactation medium can be achieved by dialysis, eg, to remove undesired metabolites from the medium. The selective extraction of hormones and other growth factors used can be performed by resin purification, such as the use of nickel resins to remove HIS-tagged growth factors, to further reduce contaminant levels in the lactation product. Example 47. Production of an oligosaccharide mixture comprising 2'FLNB, 2'FLacNAc , 2' - FL , sialylated LNB , sialylated LacNAc and 3' - SL in non - mammary adult stem cells

如實施例46中所描述之經分離間葉細胞及經再程式化成乳腺樣細胞經由CRISPR-CAS修飾以過度表現來自智人之GDP-岩藻糖合酶GFUS(UniProt ID Q13630)、人類半乳糖苷α-1,2-岩藻糖基轉移酶FUT1(UniProt ID P19526)、來自小家鼠之N-醯基神經胺酸胞苷醯基轉移酶(UniProt ID Q99KK2)及來自智人之CMP-N-乙醯基神經胺酸-β-1,4-半乳糖苷α-2,3-唾液酸基轉移酶ST3GAL3(UniProt ID Q11203)。細胞以20,000個細胞/平方公分之密度接種於完整生長培養基中之經膠原蛋白塗佈之培養瓶上,且在完整生長培養基中靜置以黏附及擴增48小時,其後將該培養基換為包含乳糖、LacNAc及LNB作為前驅物之完整泌乳培養基,持續約7天。如實施例46中所描述培養之後,細胞經受UPLC以分析2'-FL、3'-SL、2'FLNB、2'FLacNAc、唾液酸基化LNB及唾液酸基化LacNAc之生產。 實施例 48. 評估非乳腺成體幹細胞中之 LacNAc 、唾液酸基化 LacNAc 、唾液酸基 - 路易斯 x 、岩藻糖基化 LacNAc 3-FL 3'-SL 生產 Isolated mesenchymal cells and reprogrammed into mammary gland-like cells as described in Example 46 were modified by CRISPR-CAS to overexpress GDP-fucose synthase GFUS from Homo sapiens (UniProt ID Q13630), human galacto- Glycoside alpha-1,2-fucosyltransferase FUT1 (UniProt ID P19526), N-acylneuraminic acid cytidine acyltransferase (UniProt ID Q99KK2) from Mus musculus and CMP- N-Acetylneuraminic acid-β-1,4-galactoside α-2,3-sialyltransferase ST3GAL3 (UniProt ID Q11203). Cells were seeded on collagen-coated flasks in complete growth medium at a density of 20,000 cells/cm 2 and left to adhere and expand in complete growth medium for 48 hours, after which the medium was changed to Complete lactation medium containing lactose, LacNAc and LNB as precursors for about 7 days. After culturing as described in Example 46, cells were subjected to UPLC to analyze the production of 2'-FL, 3'-SL, 2'FLNB, 2'FLacNAc, sialylated LNB and sialylated LacNAc. Example 48. Assessment of LacNAc , Sialyl- LacNAc , Sialyl- Lewisx , Fucosylated LacNAc , 3 -FL and 3'-SL Production in Non-Breast Adult Stem Cells

如實施例46中所描述之經分離間葉細胞及經再程式化至乳房樣細胞中的細胞經由CRISPR-CAS修飾以過度表現來自智人之β-1,4-半乳糖基轉移酶4 B4GalT4(UniProt ID O60513)、來自智人之GDP-岩藻糖合酶GFUS(UniProt ID Q13630)、來自智人之半乳糖苷α-1,3-岩藻糖基轉移酶FUT3(UniProt ID P21217)、來自小家鼠之N-醯基神經胺酸胞苷醯基轉移酶(UniProt ID Q99KK2)及來自智人之CMP-N-乙醯基神經胺酸-β-1,4-半乳糖苷α-2,3-唾液酸基轉移酶ST3GAL3(UniProt ID Q11203)。引入細胞中之所有基因針對宿主經密碼子最佳化。細胞以20,000個細胞/平方公分之密度接種於完整生長培養基中之經膠原蛋白塗佈之培養瓶上,且在完整生長培養基中靜置以黏附及擴增48小時,其後將該培養基換為包含LacNAc及乳糖作為受體之完整泌乳培養基,持續約7天。在如實施例46中所描述培養之後,對細胞進行UPLC以分析LacNAc、唾液酸基化LacNAc、唾液酸基-路易斯x、岩藻糖基化LacNAc、3-FL及3'-SL之生產。 實施例 49. 評估經修飾之大腸桿菌宿主中之膜運輸蛋白之表現 Isolated mesenchymal cells and cells reprogrammed into mammary-like cells as described in Example 46 were modified by CRISPR-CAS to overexpress β-1,4-galactosyltransferase 4 B4GalT4 from Homo sapiens (UniProt ID O60513), GDP-fucose synthase GFUS from Homo sapiens (UniProt ID Q13630), Galactoside alpha-1,3-fucosyltransferase FUT3 from Homo sapiens (UniProt ID P21217), N-Acetylneuraminic acid cytidine syltransferase (UniProt ID Q99KK2) from Mus musculus and CMP-N-acetylneuraminic acid-β-1,4-galactoside α- from Homo sapiens 2,3-Sialyltransferase ST3GAL3 (UniProt ID Q11203). All genes introduced into cells are codon-optimized for the host. Cells were seeded on collagen-coated flasks in complete growth medium at a density of 20,000 cells/cm 2 and left to adhere and expand in complete growth medium for 48 hours, after which the medium was changed to Complete lactation medium containing LacNAc and lactose as acceptors for about 7 days. After culturing as described in Example 46, cells were subjected to UPLC to analyze the production of LacNAc, sialyl-LacNAc, sialyl-Lewis x, fucosylated LacNAc, 3-FL and 3'-SL. Example 49. Evaluation of membrane transport protein performance in modified E. coli hosts

實施例29、30、31及32中描述之經修飾之大腸桿菌宿主進一步經藉由用於一種膜運輸蛋白之持續型轉錄單元的基因體嵌入修飾,該膜運輸蛋白選自包含以下者之清單:來自莫金斯克羅諾桿菌之MdfA(UniProt ID A0A2T7ANQ9)、來自楊氏檸檬酸桿菌之MdfA(UniProt ID D4BC23)、來自大腸桿菌之MdfA(UniProt ID P0AEY8)、來自雷金斯堡約克氏菌之MdfA(UniProt ID G9Z5F4)、來自大腸桿菌之iceT(UniProt ID A0A024L207)、來自楊氏檸檬酸桿菌之iceT(UniProt ID D4B8A6)、來自大腸桿菌O6:H1之nanT(UniProt ID Q8FD59)、來自大腸桿菌O157:H7之nanT(UniProt ID Q8X9G8)、來自阿爾伯特氏大腸桿菌之nanT(UniProt ID B1EFH1)、來自大腸桿菌之EntS(UniProt ID P24077)、來自壞血酸克呂沃爾氏菌之EntS(UniProt ID A0A378GQ13)、來自腸沙門氏菌亞利桑那亞種之EntS(UniProt ID A0A6Y2K4E8)、來自大腸桿菌之SetA(UniProt ID P31675)、來自大腸桿菌之SetB(UniProt ID P33026)、來自大腸桿菌之SetC(UniProt ID P31436)、來自大腸桿菌之oppF(UniProt ID P77737)、來自乳酸乳球菌乳酸亞種二乙醯基乳酸變種之lmrA(UniProt ID A0A1V0NEL4)及來自長雙歧桿菌嬰兒亞種之Blon_2475(UniProt ID B7GPD4)。在生長實驗中根據實施例1中所提供之培養條件評估各自表現該等膜運輸蛋白中之一者的新穎菌株,其中培養基含有蔗糖作為碳源以及乳糖及LacNAc作為受體。各菌株在96孔盤中以四個生物複製物生長。培育72h之後,收集培養液(亦即胞外及胞內部分)以及單獨地胞外部分及胞內部分,且在UPLC上分析糖。The modified E. coli hosts described in Examples 29, 30, 31 and 32 were further modified by gene body insertion of a persistent transcription unit for a membrane transporter selected from a list comprising : MdfA from S. mogeni (UniProt ID A0A2T7ANQ9), MdfA from Citrobacter johnsonii (UniProt ID D4BC23), MdfA from Escherichia coli (UniProt ID P0AEY8), from Yorkia reginsburg MdfA (UniProt ID G9Z5F4), iceT from E. coli (UniProt ID A0A024L207), iceT from Citrobacter johnsonii (UniProt ID D4B8A6), nanT from E. coli O6:H1 (UniProt ID Q8FD59), from E. coli O157 : nanT from H7 (UniProt ID Q8X9G8), nanT from Escherichia coli (UniProt ID B1EFH1), EntS from Escherichia coli (UniProt ID P24077), EntS from Kluyveer ascorbate (UniProt ID A0A378GQ13), EntS from Salmonella enterica subsp. arizona (UniProt ID A0A6Y2K4E8), SetA from E. coli (UniProt ID P31675), SetB from E. coli (UniProt ID P33026), SetC from E. coli (UniProt ID P31436) , oppF (UniProt ID P77737) from Escherichia coli, lmrA (UniProt ID A0A1V0NEL4) from Lactococcus lactis subsp. lactis var. lactis and Blon_2475 (UniProt ID B7GPD4) from Bifidobacterium longum infantum. Novel strains each expressing one of these membrane transport proteins were evaluated in growth experiments according to the culture conditions provided in Example 1, wherein the medium contained sucrose as carbon source and lactose and LacNAc as acceptors. Each strain was grown in four biological replicates in 96-well plates. After 72 h of incubation, the broth (ie, the extracellular and intracellular fractions) and the extracellular and intracellular fractions individually were collected and analyzed for sugars on UPLC.

none

none

Claims (47)

一種藉由細胞且較佳為單一細胞製造至少兩種不同寡醣之混合物的方法,該方法包含以下步驟: i.     提供能夠表現醣基轉移酶且能夠合成核苷酸-糖之細胞,較佳單一細胞,其中該核苷酸-糖為用於該醣基轉移酶之供體,及 ii.    在容許表現該醣基轉移酶及合成該核苷酸-糖之條件下培養該細胞,及 iii.   向該培養中添加至少兩種受體,使得該細胞能夠製造至少兩種寡醣,較佳地,該等受體中之任一者為雙醣或寡醣, iv.   較佳地,自該培養分離該等寡醣中之至少一者,更佳地,自該培養分離該等寡醣中之全部。 A method for producing a mixture of at least two different oligosaccharides by cells, preferably a single cell, the method comprising the steps of: i. Provide a cell, preferably a single cell, capable of expressing a glycosyltransferase and capable of synthesizing a nucleotide-sugar, wherein the nucleotide-sugar is a donor for the glycosyltransferase, and ii. culturing the cell under conditions that allow expression of the glycosyltransferase and synthesis of the nucleotide-sugar, and iii. adding at least two receptors to the culture such that the cells are capable of producing at least two oligosaccharides, preferably any one of these receptors is a disaccharide or an oligosaccharide, iv. Preferably, at least one of the oligosaccharides is isolated from the culture, more preferably, all of the oligosaccharides are isolated from the culture. 如請求項1之方法,其中該等受體中之任一者為雙醣或哺乳動物乳寡醣(mammalian milk oligosaccharide;MMO),較佳地,該等受體中之任一者為哺乳動物乳寡醣。The method of claim 1, wherein any of the receptors is a disaccharide or mammalian milk oligosaccharide (MMO), preferably, any of the receptors is a mammal Lacto-oligosaccharides. 如請求項1或2中任一項之方法,其中該細胞為經代謝工程改造以製造該混合物之細胞及/或經至少一種基因表現模組修飾,其中來自該至少一種表現模組中之任一者的表現為持續型的或藉由天然誘導物產生。The method of any one of claims 1 or 2, wherein the cell is metabolically engineered to make the mixture and/or modified with at least one gene expression module from any of the at least one expression module One appears to be persistent or produced by natural inducers. 如請求項1至3中任一項之方法,其中該細胞包含編碼一種蛋白質之同一編碼DNA序列之多個複本。The method of any one of claims 1 to 3, wherein the cell comprises multiple copies of the same coding DNA sequence encoding a protein. 如請求項1至4中任一項之方法,其中該細胞製造三種或更多種不同寡醣之混合物。The method of any one of claims 1 to 4, wherein the cell produces a mixture of three or more different oligosaccharides. 如請求項1至5中任一項之方法,其中該細胞製造不同寡醣之混合物,其中至少兩種寡醣在聚合度方面不同。The method of any one of claims 1 to 5, wherein the cell produces a mixture of different oligosaccharides, wherein at least two of the oligosaccharides differ in degree of polymerization. 如請求項1至6中任一項之方法,其中該醣基轉移酶係選自包含以下者之清單:岩藻糖基轉移酶、唾液酸基轉移酶、半乳糖基轉移酶、葡萄糖基轉移酶、甘露糖基轉移酶、N-乙醯基葡萄糖胺基轉移酶、N-乙醯基半乳糖胺基轉移酶、N-乙醯基甘露糖胺基轉移酶、木糖基轉移酶、葡萄糖醛酸苷轉移酶、半乳糖醛酸苷轉移酶、葡萄糖胺基轉移酶、N-羥乙醯基神經胺基轉移酶、鼠李糖基轉移酶、N-乙醯基鼠李糖基轉移酶、UDP-4-胺基-4,6-二去氧-N-乙醯基-β-L-阿卓糖胺(altrosamine)轉胺酶、UDP-N-乙醯基葡萄糖胺烯醇丙酮醯基(enolpyruvyl)轉移酶及岩藻糖胺基轉移酶, -較佳地,該岩藻糖基轉移酶係選自包含以下者之清單:α-1,2-岩藻糖基轉移酶、α-1,3-岩藻糖基轉移酶、α-1,4-岩藻糖基轉移酶及α-1,6-岩藻糖基轉移酶, -較佳地,該唾液酸基轉移酶係選自包含以下者之清單:α-2,3-唾液酸基轉移酶、α-2,6-唾液酸基轉移酶及α-2,8-唾液酸基轉移酶, -較佳地,該半乳糖基轉移酶係選自包含以下者之清單:β-1,3-半乳糖基轉移酶、N-乙醯基葡萄糖胺β-1,3-半乳糖基轉移酶、β-1,4-半乳糖基轉移酶、N-乙醯基葡萄糖胺β-1,4-半乳糖基轉移酶、α-1,3-半乳糖基轉移酶及α-1,4-半乳糖基轉移酶, -較佳地,該葡萄糖基轉移酶係選自包含以下者之清單:α-葡萄糖基轉移酶、β-1,2-葡萄糖基轉移酶、β-1,3-葡萄糖基轉移酶及β-1,4-葡萄糖基轉移酶, -較佳地,該甘露糖基轉移酶係選自包含以下者之清單:α-1,2-甘露糖基轉移酶、α-1,3-甘露糖基轉移酶及α-1,6-甘露糖基轉移酶, -較佳地,該N-乙醯基葡萄糖胺基轉移酶係選自包含以下者之清單:半乳糖苷β-1,3-N-乙醯基葡萄糖胺基轉移酶及β-1,6-N-乙醯基葡萄糖胺基轉移酶, -較佳地,該N-乙醯基半乳糖胺基轉移酶係α-1,3-N-乙醯基半乳糖胺基轉移酶。 The method of any one of claims 1 to 6, wherein the glycosyltransferase is selected from the list comprising: fucosyltransferase, sialyltransferase, galactosyltransferase, transglucosyltransferase Enzymes, Mannosyltransferase, N-Acetylglucosaminyltransferase, N-Acetylgalactosaminyltransferase, N-Acetylmannosyltransferase, Xylosyltransferase, Glucose Aldolase, galacturonyltransferase, glucosaminyltransferase, N-hydroxyacetylneuraminosyltransferase, rhamnosyltransferase, N-acetylrhamnosyltransferase , UDP-4-amino-4,6-dideoxy-N-acetyl-β-L-altrosamine (altrosamine) transaminase, UDP-N-acetylglucosamine enol acetone Enolpyruvyl transferase and fucosaminotransferase, - preferably, the fucosyltransferase is selected from the list comprising: α-1,2-fucosyltransferase, α-1,3-fucosyltransferase, α-1 ,4-fucosyltransferase and α-1,6-fucosyltransferase, - preferably, the sialyltransferase is selected from the list comprising: α-2,3-sialyltransferase, α-2,6-sialyltransferase and α-2,8- sialyltransferase, - preferably, the galactosyltransferase is selected from the list comprising: β-1,3-galactosyltransferase, N-acetylglucosamine β-1,3-galactosyltransferase , β-1,4-galactosyltransferase, N-acetylglucosamine β-1,4-galactosyltransferase, α-1,3-galactosyltransferase and α-1,4- Galactosyltransferase, - preferably, the glucosyltransferase is selected from the list comprising α-glucosyltransferase, β-1,2-glucosyltransferase, β-1,3-glucosyltransferase and β-glucosyltransferase 1,4-glucosyltransferase, - preferably, the mannosyltransferase is selected from the list comprising α-1,2-mannosyltransferase, α-1,3-mannosyltransferase and α-1,6- Mannosyltransferase, - preferably, the N-acetylglucosaminyltransferase is selected from the list comprising: galactoside β-1,3-N-acetylglucosaminyltransferase and β-1,6 -N-acetylglucosaminyltransferase, - Preferably, the N-acetylgalactosaminyltransferase is α-1,3-N-acetylgalactosaminyltransferase. 如請求項1至7中任一項之方法,其中該細胞在該醣基轉移酶之表現或活性方面經修飾。The method of any one of claims 1 to 7, wherein the cell is modified in the expression or activity of the glycosyltransferase. 如請求項1至8中任一項之方法,其中該醣基轉移酶為岩藻糖基轉移酶且該供體核苷酸-糖為GDP-岩藻糖(GDP-Fuc)。The method of any one of claims 1 to 8, wherein the glycosyltransferase is a fucosyltransferase and the donor nucleotide-sugar is GDP-fucose (GDP-Fuc). 如請求項1至9中任一項之方法,其中醣基轉移酶為唾液酸基轉移酶且該供體核苷酸-糖為CMP-N-乙醯基神經胺酸(CMP-Neu5Ac)。The method of any one of claims 1 to 9, wherein the glycosyltransferase is a sialyltransferase and the donor nucleotide-sugar is CMP-N-acetylneuraminic acid (CMP-Neu5Ac). 如請求項1至10中任一項之方法,其中該醣基轉移酶為N-乙醯基葡萄糖胺基轉移酶且該供體核苷酸-糖為UDP-N-乙醯基葡萄糖胺(UDP-GlcNAc)。The method of any one of claims 1 to 10, wherein the glycosyltransferase is N-acetylglucosaminyltransferase and the donor nucleotide-sugar is UDP-N-acetylglucosamine ( UDP-GlcNAc). 如請求項1至11中任一項之方法,其中該醣基轉移酶為半乳糖基轉移酶且該供體核苷酸-糖為UDP-半乳糖(UDP-Gal)。The method of any one of claims 1 to 11, wherein the glycosyltransferase is a galactosyltransferase and the donor nucleotide-sugar is UDP-galactose (UDP-Gal). 如請求項1至12中任一項之方法,其中該醣基轉移酶為N-乙醯基半乳糖胺基轉移酶且該供體核苷酸-糖為UDP-N-乙醯基半乳糖胺(UDP-GalNAc)。The method of any one of claims 1 to 12, wherein the glycosyltransferase is N-acetylgalactosaminyltransferase and the donor nucleotide-sugar is UDP-N-acetylgalactose Amine (UDP-GalNAc). 如請求項1至13中任一項之方法,其中該醣基轉移酶為N-乙醯基甘露糖胺基轉移酶且該供體核苷酸-糖為UDP-N-乙醯基甘露糖胺(UDP-ManNAc)。The method of any one of claims 1 to 13, wherein the glycosyltransferase is N-acetylmannosylaminotransferase and the donor nucleotide-sugar is UDP-N-acetylmannose Amine (UDP-ManNAc). 如請求項1至14中任一項之方法,其中該核苷酸-糖係選自包含以下者之清單:GDP-Fuc、CMP-Neu5Ac、UDP-GlcNAc、UDP-Gal、UDP-N-乙醯基半乳糖胺(UDP-GalNAc)、UDP-N-乙醯基甘露糖胺(UDP-ManNAc)、GDP-甘露糖(GDP-Man)、UDP-葡萄糖(UDP-Glc)、UDP-2-乙醯胺基-2,6-二去氧--L-阿拉伯糖(arabino)-4-己酮糖、UDP-2-乙醯胺基-2,6-二去氧--L-來蘇糖-4-己酮糖、UDP-N-乙醯基-L-鼠李糖胺(UDP-L-RhaNAc或UDP-2-乙醯胺基-2,6-二去氧-L-甘露糖)、dTDP-N-乙醯基岩藻糖胺、UDP-N-乙醯基岩藻糖胺(UDP-L-FucNAc或UDP-2-乙醯胺基-2,6-二去氧-L-半乳糖)、UDP-N-乙醯基-L-紐莫糖胺(pneumosamine)(UDP-L-PneNAC或UDP-2-乙醯胺基-2,6-二去氧-L-塔羅糖)、UDP-N-乙醯基胞壁酸、UDP-N-乙醯基-L-異鼠李糖胺(UDP-L-QuiNAc或UDP-2-乙醯胺基-2,6-二去氧-L-葡萄糖)、GDP-L-異鼠李糖、CMP-N-羥乙醯基神經胺酸(CMP-Neu5Gc)、CMP-Neu4Ac、CMP-Neu5Ac9N 3、CMP-Neu4,5Ac 2、CMP-Neu5,7Ac 2、CMP-Neu5,9Ac 2、CMP-Neu5,7(8,9)Ac 2、UDP-葡萄糖醛酸酯、UDP-半乳糖醛酸酯、GDP-鼠李糖、UDP-木糖。 The method of any one of claims 1 to 14, wherein the nucleotide-sugar is selected from the list comprising GDP-Fuc, CMP-Neu5Ac, UDP-GlcNAc, UDP-Gal, UDP-N-B Acylgalactosamine (UDP-GalNAc), UDP-N-Acetylmannosamine (UDP-ManNAc), GDP-Mannose (GDP-Man), UDP-Glucose (UDP-Glc), UDP-2- Acetamido-2,6-dideoxy--L-arabino-4-hexulose, UDP-2-acetamido-2,6-dideoxy--L-lysole Sugar-4-hexulose, UDP-N-acetyl-L-rhamnosamine (UDP-L-RhaNAc or UDP-2-acetylamino-2,6-dideoxy-L-mannose ), dTDP-N-acetylfucosamine, UDP-N-acetylfucosamine (UDP-L-FucNAc or UDP-2-acetamido-2,6-dideoxy-L -Galactose), UDP-N-Acetyl-L-Pneumosamine (UDP-L-PneNAC or UDP-2-Acetylamino-2,6-dideoxy-L-Tarot) sugar), UDP-N-Acetylmuramic acid, UDP-N-Acetyl-L-isorhamnosamine (UDP-L-QuiNAc or UDP-2-Acetylamino-2,6-di deoxy-L-glucose), GDP-L-isorhamnose, CMP-N-hydroxyacetylneuraminic acid (CMP-Neu5Gc), CMP-Neu4Ac, CMP-Neu5Ac9N 3 , CMP-Neu4,5Ac 2 , CMP-Neu5,7Ac 2 , CMP-Neu5,9Ac 2 , CMP-Neu5,7(8,9)Ac 2 , UDP-glucuronate, UDP-galacturonate, GDP-rhamnose, UDP- Xylose. 如請求項1至15中任一項之方法,其中該等受體中之任一者的聚合度為3或更多,較佳地其中該等受體中之全部的聚合度為3或更多。The method of any one of claims 1 to 15, wherein any of the acceptors has a degree of polymerization of 3 or more, preferably wherein all of the acceptors have a degree of polymerization of 3 or more many. 如請求項1至16中任一項之方法,其中所有該等受體均具有不同聚合度。The method of any one of claims 1 to 16, wherein all the receptors have different degrees of polymerization. 如請求項1至17中任一項之方法,其中該培養補充有至少3種用於製造該寡醣混合物的受體,較佳補充有至少4種受體,更佳補充有至少5種受體。The method of any one of claims 1 to 17, wherein the culture is supplemented with at least 3 receptors for making the oligosaccharide mixture, preferably at least 4 receptors, more preferably at least 5 receptors body. 如請求項1至18中任一項之方法,其中該寡醣混合物包含至少一種寡醣,該至少一種寡醣經岩藻糖基化、唾液酸基化、半乳糖基化、葡萄糖基化、木糖基化、甘露糖基化、含有N-乙醯基葡萄糖胺、含有N-乙醯基神經胺酸、含有N-羥乙醯基神經胺酸、含有N-乙醯基半乳糖胺、含有鼠李糖、含有葡萄糖醛酸酯、含有半乳糖醛酸酯及/或含有N-乙醯基甘露糖胺。The method of any one of claims 1 to 18, wherein the oligosaccharide mixture comprises at least one oligosaccharide that is fucosylated, sialylated, galactosylated, glycosylated, Xylosylation, Mannosylation, with N-acetylglucosamine, with N-acetylneuraminic acid, with N-hydroxyacetylneuraminic acid, with N-acetylgalactosamine, Contains rhamnose, contains glucuronide, contains galacturonate, and/or contains N-acetylmannosamine. 如請求項1至19中任一項之方法,其中該寡醣混合物包含帶電及/或中性寡醣,較佳地其中該等帶電寡醣中之至少一者為唾液酸基化寡醣。The method of any one of claims 1 to 19, wherein the oligosaccharide mixture comprises charged and/or neutral oligosaccharides, preferably wherein at least one of the charged oligosaccharides is a sialylated oligosaccharide. 如請求項1至19中任一項之方法,其中該寡醣混合物包含岩藻糖基化及/或未岩藻糖基化中性寡醣。The method of any one of claims 1 to 19, wherein the oligosaccharide mixture comprises fucosylated and/or unfucosylated neutral oligosaccharides. 如請求項1至21中任一項之方法,其中該寡醣混合物包含至少一種岩藻糖基化寡醣。The method of any one of claims 1 to 21, wherein the oligosaccharide mixture comprises at least one fucosylated oligosaccharide. 如請求項1至20中任一項之方法,其中該寡醣混合物包含至少一種唾液酸基化寡醣。The method of any one of claims 1 to 20, wherein the oligosaccharide mixture comprises at least one sialylated oligosaccharide. 如請求項1至23中任一項之方法,其中該寡醣混合物包含至少一種寡醣,該至少一種寡醣包含N-乙醯基葡萄糖胺單醣單元。The method of any one of claims 1 to 23, wherein the oligosaccharide mixture comprises at least one oligosaccharide comprising N-acetylglucosamine monosaccharide units. 如請求項1至24中任一項之方法,其中該寡醣混合物包含至少一種半乳糖基化寡醣。The method of any one of claims 1 to 24, wherein the oligosaccharide mixture comprises at least one galactosylated oligosaccharide. 如請求項21之方法,其中該混合物中之所有該等寡醣皆為岩藻糖基化寡醣。The method of claim 21, wherein all of the oligosaccharides in the mixture are fucosylated oligosaccharides. 如請求項1至26之方法,其中該細胞製造三種岩藻糖基化寡醣。The method of claims 1 to 26, wherein the cell produces three fucosylated oligosaccharides. 如請求項1至27中任一項之方法,其中該等受體藉由包含自天然來源萃取、生物技術製程、物理製程、化學製程及其等之組合之方法製造。The method of any one of claims 1 to 27, wherein the receptors are manufactured by a method comprising extraction from natural sources, biotechnological processes, physical processes, chemical processes, and combinations thereof. 如請求項1至28中任一項之方法,其中該等受體中之任一者經完全轉化為該等寡醣中之任一者。The method of any one of claims 1 to 28, wherein any of the acceptors is fully converted to any of the oligosaccharides. 如請求項1至29中任一項之方法,其中該細胞胞內製造至少兩種寡醣之該混合物,且其中該等所製造之寡醣之一部分或實質上全部保留在胞內及/或經由被動或主動運輸排出到該細胞外。The method of any one of claims 1 to 29, wherein the cell manufactures the mixture of at least two oligosaccharides intracellularly, and wherein a portion or substantially all of the manufactured oligosaccharides remain intracellularly and/or Excreted from the cell via passive or active transport. 如請求項1至30中任一項之方法,其中該細胞經進一步代謝工程改造以用於 i)內源膜蛋白之經修飾表現,及/或 ii)內源膜蛋白之經修飾活性,及/或 iii)同源膜蛋白之表現,及/或 iv)異源膜蛋白之表現, 其中該膜蛋白參與自該細胞分泌該等寡醣中之任一者,較佳地其中該膜蛋白參與自該細胞分泌該等寡醣中之全部。 The method of any one of claims 1 to 30, wherein the cell is further metabolically engineered for use in i) Modified expression of endogenous membrane proteins, and/or ii) the modified activity of endogenous membrane proteins, and/or iii) Representation of homologous membrane proteins, and/or iv) performance of heterologous membrane proteins, wherein the membrane protein is involved in the secretion of any of the oligosaccharides from the cell, preferably wherein the membrane protein is involved in the secretion of all of the oligosaccharides from the cell. 如請求項1至31中任一項之方法,其中該細胞經進一步代謝工程改造以用於 i)內源膜蛋白之經修飾表現,及/或 ii)內源膜蛋白之經修飾活性,及/或 iii)同源膜蛋白之表現,及/或 iv)異源膜蛋白之表現, 其中該膜蛋白參與吸收用於合成該混合物中之該等寡醣中之任一者的前驅物,較佳地其中該膜蛋白參與吸收所有所需前驅物,更佳地其中該膜蛋白參與吸收所有該等受體。 The method of any one of claims 1 to 31, wherein the cell is further metabolically engineered for use in i) Modified expression of endogenous membrane proteins, and/or ii) the modified activity of endogenous membrane proteins, and/or iii) Representation of homologous membrane proteins, and/or iv) performance of heterologous membrane proteins, wherein the membrane protein is involved in the uptake of precursors for the synthesis of any of the oligosaccharides in the mixture, preferably wherein the membrane protein is involved in the uptake of all desired precursors, more preferably wherein the membrane protein is involved in uptake all such receptors. 如請求項31或32中任一項之方法,其中該膜蛋白係選自包含以下者之清單:搬運蛋白(porter)、P-P-鍵水解驅動之運輸蛋白、β-桶狀孔蛋白(β-Barrel Porin)、輔助運輸蛋白、推定運輸蛋白及磷酸轉移驅動之基團移位蛋白, 較佳地,該等搬運蛋白包含MFS運輸蛋白、糖流出運輸蛋白及螯鐵蛋白輸出蛋白, 較佳地,該等P-P-鍵水解驅動之運輸蛋白包含ABC運輸蛋白及螯鐵蛋白輸出蛋白。 The method of any one of claims 31 or 32, wherein the membrane protein is selected from the list comprising: porter, P-P-bond hydrolysis-driven transporter, β-barrel porin (β-barrel porin) Barrel Porin), accessory transporters, putative transporters, and phosphotransfer-driven group translocation proteins, Preferably, these transport proteins comprise MFS transport proteins, carbohydrate efflux transport proteins and chelatin export proteins, Preferably, the P-P-bond hydrolysis-driven transport proteins comprise ABC transport proteins and chelatin export proteins. 如請求項31至33中任一項之方法,其中該膜蛋白提供至少兩種寡醣之該混合物的改善之製造及/或能夠實現及/或增強至少兩種寡醣之該混合物之流出。The method of any one of claims 31 to 33, wherein the membrane protein provides for improved manufacture of the mixture of at least two oligosaccharides and/or enables and/or enhances the efflux of the mixture of at least two oligosaccharides. 如請求項1至34中任一項之方法,其中該細胞在乳糖與一或多種其他碳源合併之環境中生長時抵抗乳糖殺滅現象。The method of any one of claims 1 to 34, wherein the cells are resistant to lactose killing when grown in an environment where lactose is combined with one or more other carbon sources. 如請求項1至35中任一項之方法,其中與未經修飾之先驅細胞相比,該細胞包含用於減少乙酸鹽之產生的修飾。The method of any one of claims 1 to 35, wherein the cell comprises a modification for reducing acetate production compared to an unmodified precursor cell. 如請求項36之方法,其中與未經修飾之先驅細胞相比,該細胞包含降低或減少表現及/或消除、減弱、降低或延遲活性之包含以下者之蛋白質中之任一或多者:β-半乳糖苷酶、半乳糖苷O-乙醯基轉移酶、N-乙醯基葡萄糖胺-6-磷酸去乙醯酶、葡萄糖胺-6-磷酸脫胺酶、N-乙醯基葡萄糖胺抑制蛋白、核糖核苷酸單磷酸酶、EIICBA-Nag、UDP-葡萄糖:十一異戊烯基(undecaprenyl)-磷酸葡萄糖-1-磷酸轉移酶、L-墨角藻糖激酶(fuculokinase)、L-岩藻糖異構酶、N-乙醯基神經胺酸解離酶、N-乙醯基甘露糖胺激酶、N-乙醯基甘露糖胺-6-磷酸2-表異構酶、EIIAB-Man、EIIC-Man、EIID-Man、ushA、半乳糖-1-磷酸尿苷醯基轉移酶、葡萄糖-1-磷酸腺苷醯基轉移酶、葡萄糖-1-磷酸酶、ATP依賴型6-磷酸果糖激酶同功酶1、ATP依賴型6-磷酸果糖激酶同功酶2、葡萄糖-6-磷酸異構酶、有氧呼吸控制蛋白、轉錄抑制蛋白IclR、lon蛋白酶、葡萄糖特異性移位磷酸轉移酶IIBC組分ptsG、葡萄糖特異性移位磷酸轉移酶(PTS)IIBC組分malX、酶IIA Glc、β-葡萄糖苷特異性PTS酶II、果糖特異性PTS多磷氧基轉移蛋白FruA及FruB、乙醇脫氫酶 醛脫氫酶、丙酮酸-甲酸解離酶、乙酸激酶、磷醯基轉移酶(phosphoacyltransferase)、磷酸乙醯基轉移酶、丙酮酸脫羧酶。 The method of claim 36, wherein the cell comprises any one or more of proteins comprising reduced or reduced expression and/or abrogated, attenuated, reduced or delayed activity compared to an unmodified precursor cell: β-Galactosidase, Galactoside O-Acetyl Transferase, N-Acetyl Glucosamine-6-Phosphate Deacetylase, Glucosamine-6-Phosphate Deaminase, N-Acetyl Glucose Amine arrestin, ribonucleotide monophosphatase, EIICBA-Nag, UDP-glucose:undecaprenyl-phosphoglucose-1-phosphotransferase, L-fuculokinase, L-fucose isomerase, N-acetylneuraminic acid lyase, N-acetylmannosamine kinase, N-acetylmannosamine-6-phosphate 2-epimerase, EIIAB -Man, EIIC-Man, EIID-Man, ushA, galactose-1-phosphate uridine syltransferase, glucose-1-phosphate adenosyltransferase, glucose-1-phosphatase, ATP-dependent 6- Phosphofructokinase isoenzyme 1, ATP-dependent 6-phosphofructokinase isoenzyme 2, glucose-6-phosphate isomerase, aerobic respiration control protein, transcriptional repressor protein IclR, lon protease, glucose-specific translocation phosphate Transferase IIBC component ptsG, glucose specific translocation phosphotransferase (PTS) IIBC component malX, enzyme IIA Glc , β-glucoside specific PTS enzyme II, fructose specific PTS polyphosphooxytransferase FruA and FruB , alcohol dehydrogenase, aldehyde dehydrogenase, pyruvate-formate lyase, acetate kinase, phosphoacyltransferase (phosphoacyltransferase), phosphoacetyltransferase, pyruvate decarboxylase. 如請求項1至37中任一項之方法,其中該細胞能夠製造磷酸烯醇丙酮酸鹽(phosphoenolpyruvate;PEP)。The method of any one of claims 1 to 37, wherein the cell is capable of producing phosphoenolpyruvate (phosphoenolpyruvate; PEP). 如請求項1至38中任一項之方法,其中與未經修飾之先驅細胞相比,該細胞經修飾用於增強磷酸烯醇丙酮酸鹽(PEP)之製造及/或供應。The method of any one of claims 1 to 38, wherein the cells are modified for enhanced production and/or supply of phosphoenolpyruvate (PEP) compared to unmodified precursor cells. 如請求項1至39中任一項之方法,其中該等寡醣中之任一者為哺乳動物乳寡醣,較佳地,其中所有該等寡醣皆為哺乳動物乳寡醣。The method of any one of claims 1 to 39, wherein any of the oligosaccharides is a mammalian milk oligosaccharide, preferably, wherein all of the oligosaccharides are mammalian milk oligosaccharides. 如請求項1至40中任一項之方法,其中該寡醣中之任一者為人類ABO血型系統之抗原,較佳地其中所有該等寡醣皆為人類ABO血型系統之抗原。The method of any one of claims 1 to 40, wherein any of the oligosaccharides is an antigen of the human ABO blood group system, preferably wherein all of the oligosaccharides are antigens of the human ABO blood group system. 如請求項1至41中任一項之方法,其中該細胞為細菌、真菌、酵母菌、植物細胞、動物細胞或原蟲細胞, -較佳地,該細菌為大腸桿菌( Escherichia coli)菌株,更佳為K-12菌株之大腸桿菌菌株,甚至更佳大腸桿菌K-12菌株為大腸桿菌MG1655, -較佳地,該真菌屬於選自包含以下者之群的屬:根黴菌屬( Rhizopus)、網柄菌屬( Dictyostelium)、青黴菌屬( Penicillium)、白黴菌屬( Mucor)或麴菌屬( Aspergillus), -較佳地,該酵母菌屬於選自包含以下者之群的屬:酵母菌屬( Saccharomyces)、接合酵母屬( Zygosaccharomyces)、畢赤酵母屬( Pichia)、駒形氏酵母屬( Komagataella)、漢森酵母屬( Hansenula)、亞羅酵母屬( Yarrowia)、斯塔莫酵母屬( Starmerella)、克魯維酵母屬( Kluyveromyces)或德巴利酵母屬( Debaromyces), -較佳地,該植物細胞為藻類細胞或衍生自菸草、苜蓿、稻、番茄、棉花、菜籽、大豆、玉蜀黍或玉米植物, -較佳地,該動物細胞衍生自非人類哺乳動物、鳥類、魚類、無脊椎動物、爬行動物、兩棲動物或昆蟲,或為衍生自不包括胚胎幹細胞之人類細胞的經遺傳修飾之細胞系,更佳地該人類及非人類哺乳動物細胞為上皮細胞、胚胎腎細胞、纖維母細胞、COS細胞、中國倉鼠卵巢(Chinese hamster ovary;CHO)細胞、鼠類骨髓瘤細胞、NIH-3T3細胞、非乳腺成體幹細胞或其衍生物,更佳地該昆蟲細胞衍生自斜紋夜盜蟲( Spodoptera frugiperda)、家蠶( Bombyx mori)、甘藍夜蛾( Mamestra brassicae)、粉紋夜蛾( Trichoplusia ni)或黑腹果蠅( Drosophila melanogaster), -較佳地,該原蟲細胞為蜥蜴利什曼原蟲( Leishmania tarentolae)細胞。 The method of any one of claims 1 to 41, wherein the cells are bacteria, fungi, yeast, plant cells, animal cells or protozoal cells, - preferably, the bacteria are Escherichia coli strains, More preferably an Escherichia coli strain of the K-12 strain, even more preferably the Escherichia coli K-12 strain is Escherichia coli MG1655, - preferably, the fungus belongs to a genus selected from the group comprising: Rhizopus , Dictyostelium , Penicillium , Mucor or Aspergillus , - preferably, the yeast belongs to a genus selected from the group consisting of: Yeast Saccharomyces , Zygosaccharomyces , Pichia , Komagataella , Hansenula , Yarrowia , Stamos ( Starmerella ), Kluyveromyces ( Kluyveromyces ) or Debaromyces ( Debaromyces ), - preferably, the plant cells are algal cells or derived from tobacco, alfalfa, rice, tomato, cotton, rapeseed, soybean , maize or maize plants, - preferably, the animal cells are derived from non-human mammals, birds, fish, invertebrates, reptiles, amphibians or insects, or are derived from human cells excluding embryonic stem cells Genetically modified cell lines, more preferably the human and non-human mammalian cells are epithelial cells, embryonic kidney cells, fibroblasts, COS cells, Chinese hamster ovary (CHO) cells, murine myeloma cells, NIH-3T3 cells, non-mammary adult stem cells or derivatives thereof, more preferably the insect cells are derived from Spodoptera frugiperda , Bombyx mori , Mamestra brassicae , Spodoptera frugiperda ( Trichoplusia ni ) or Drosophila melanogaster , - preferably, the protozoal cell is a Leishmania tarentolae cell. 如請求項42之方法,其中與未經修飾之先驅細胞相比,該細胞為存活的革蘭氏陰性細菌(Gram-negative bacterium),該細菌包含減少或消除合成之聚-N-乙醯基-葡萄糖胺(poly-N-acetyl-glucosamine;PNAG)、腸內菌共同抗原(Enterobacterial Common Antigen;ECA)、纖維素、可拉酸(colanic acid)、核寡醣、滲透調節周質葡聚糖(Osmoregulated Periplasmic Glucan;OPG)、甘油葡萄糖苷、聚醣及/或繭蜜糖。The method of claim 42, wherein the cell is a viable Gram-negative bacterium comprising a reduced or eliminated synthetic poly-N-acetyl group compared to an unmodified precursor cell - Glucosamine (poly-N-acetyl-glucosamine; PNAG), Enterobacterial Common Antigen (ECA), cellulose, colanic acid, ribo-oligosaccharide, osmoregulatory periplasmic glucan (Osmoregulated Periplasmic Glucan; OPG), glycerol glucoside, polysaccharide and/or cocoon sugar. 如請求項1至43中任一項之方法,其中該分離包含以下步驟中之至少一者:澄清、超過濾、奈米過濾、二相分配、逆滲透、微過濾、活性炭或碳處理、用非離子界面活性劑處理、酶消化、切向流高效能過濾、切向流超過濾、親和層析、離子交換層析、疏水性相互作用層析及/或凝膠過濾、配位體交換層析。The method of any one of claims 1 to 43, wherein the separation comprises at least one of the following steps: clarification, ultrafiltration, nanofiltration, two-phase partition, reverse osmosis, microfiltration, activated carbon or carbon treatment, treatment with Nonionic surfactant treatment, enzymatic digestion, tangential flow high performance filtration, tangential flow ultrafiltration, affinity chromatography, ion exchange chromatography, hydrophobic interaction chromatography and/or gel filtration, ligand exchange layer analysis. 如請求項1至44中任一項之方法,其進一步包含自該細胞純化該等寡醣中之任一者。The method of any one of claims 1 to 44, further comprising purifying any of the oligosaccharides from the cell. 如請求項45之方法,其中該純化包含以下步驟中之至少一者:使用活性炭或碳、使用木炭、奈米過濾、超過濾、電泳、酶處理或離子交換、使用醇、使用水醇混合物、結晶、蒸發、沈澱、乾燥,噴霧乾燥、凍乾、噴霧冷凍乾燥、冷凍噴霧乾燥、條帶式乾燥(band drying)、帶式乾燥(belt drying)、真空條帶式乾燥、真空帶式乾燥、轉筒乾燥、滾筒乾燥、真空轉筒乾燥或真空滾筒乾燥。The method of claim 45, wherein the purification comprises at least one of the following steps: using activated charcoal or carbon, using charcoal, nanofiltration, ultrafiltration, electrophoresis, enzymatic treatment or ion exchange, using alcohol, using a hydroalcoholic mixture, Crystallization, evaporation, precipitation, drying, spray drying, freeze drying, spray freeze drying, freeze spray drying, band drying, belt drying, vacuum belt drying, vacuum belt drying, Tumble drying, tumble drying, vacuum tumble drying or vacuum tumble drying. 一種如請求項1至46中任一項之方法之用途,其用於製造至少兩種不同寡醣之混合物。Use of a method as claimed in any one of claims 1 to 46 for the manufacture of a mixture of at least two different oligosaccharides.
TW110129387A 2020-08-10 2021-08-10 Production of oligosaccharide mixtures by a cell TW202212574A (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
EP20190200 2020-08-10
EP20190198 2020-08-10
EP20190198.0 2020-08-10
EP20190205.3A EP3954769A1 (en) 2020-08-10 2020-08-10 Production of oligosaccharide mixtures by a cell
EP20190204 2020-08-10
EP20190205.3 2020-08-10
EP20190200.4 2020-08-10
EP20190204.6 2020-08-10

Publications (1)

Publication Number Publication Date
TW202212574A true TW202212574A (en) 2022-04-01

Family

ID=82197315

Family Applications (3)

Application Number Title Priority Date Filing Date
TW110129386A TW202221131A (en) 2020-08-10 2021-08-10 Production of an oligosaccharide mixture by a cell
TW110129389A TW202221132A (en) 2020-08-10 2021-08-10 Production of a mixture of mammalian milk oligosaccharides by a cell
TW110129387A TW202212574A (en) 2020-08-10 2021-08-10 Production of oligosaccharide mixtures by a cell

Family Applications Before (2)

Application Number Title Priority Date Filing Date
TW110129386A TW202221131A (en) 2020-08-10 2021-08-10 Production of an oligosaccharide mixture by a cell
TW110129389A TW202221132A (en) 2020-08-10 2021-08-10 Production of a mixture of mammalian milk oligosaccharides by a cell

Country Status (1)

Country Link
TW (3) TW202221131A (en)

Also Published As

Publication number Publication date
TW202221131A (en) 2022-06-01
TW202221132A (en) 2022-06-01

Similar Documents

Publication Publication Date Title
US20230287470A1 (en) Production of oligosaccharide mixtures by a cell
TW202221130A (en) Cellular production of sialylated di- and/or oligosaccharides
CN116323927A (en) Cell production of di-and/or oligosaccharides
CN117157396A (en) Cell production of sialylated di-and/or oligosaccharides
TW202219275A (en) Production of glcnac containing bioproducts in a cell
TW202212574A (en) Production of oligosaccharide mixtures by a cell
TW202221138A (en) Production of a sialylated oligosaccharide mixture by a cell
TW202221133A (en) Production of a mixture of neutral non-fucosylated oligosaccharides by a cell
TW202212572A (en) Production of a mixture of neutral fucosylated oligosaccharides by a cell
AU2022312712A1 (en) Lacto-n-biose converting fucosyltransferases
CN116472346A (en) Production of sialylated oligosaccharide mixtures by cells
TW202221135A (en) Production of alpha-1,3 glycosylated form of fuc-a1,2-gal-r
CN117957316A (en) Fucosyltransferase for converting lactose-N-disaccharide
TW202221134A (en) Production of galactosylated di- and oligosaccharides
KR20240008322A (en) fermentation production