TW202210094A - Purpose of carnosine nanoparticles for use in preparing medicine of controlling intestinal cancer cells achieves the advantage of suppressing the growth of cancer cells to inhibit the cancer - Google Patents

Purpose of carnosine nanoparticles for use in preparing medicine of controlling intestinal cancer cells achieves the advantage of suppressing the growth of cancer cells to inhibit the cancer Download PDF

Info

Publication number
TW202210094A
TW202210094A TW109130491A TW109130491A TW202210094A TW 202210094 A TW202210094 A TW 202210094A TW 109130491 A TW109130491 A TW 109130491A TW 109130491 A TW109130491 A TW 109130491A TW 202210094 A TW202210094 A TW 202210094A
Authority
TW
Taiwan
Prior art keywords
carnosine
nanoparticles
cancer cells
hct
drug
Prior art date
Application number
TW109130491A
Other languages
Chinese (zh)
Inventor
謝淑玲
謝淑貞
吳志忠
李家慧
林佩瑩
陳雅婷
Original Assignee
國立高雄科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立高雄科技大學 filed Critical 國立高雄科技大學
Priority to TW109130491A priority Critical patent/TW202210094A/en
Publication of TW202210094A publication Critical patent/TW202210094A/en

Links

Images

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

A purpose of carnosine nanoparticles for use in preparing medicine of controlling intestinal cancer cells is used for discussing the influences of suppressing the active mechanism of a cell strain HCT-116 of human colorectal cancer through Carnosine nanoparticles, C-NPs at different concentrations of 0.5, 1, 5, 10, 15 mM. It can be known from an experimental result, the Carnosine nanoparticles can, by controlling apoptosis, autophagy and necrosis/necroptosis of the cell strain HCT-116 mechanisms, further achieve the advantage of suppressing the growth of cancer cells to inhibit the cancer.

Description

肌肽奈米粒子用於製備調控腸癌細胞之藥物的用途Use of carnosine nanoparticles for preparing drugs for regulating intestinal cancer cells

本發明係有關於一種肌肽奈米粒子用於製備調控腸癌細胞之藥 物的用途,尤指涉及肌肽奈米粒子(Carnosine nanoparticles, C-NPs)可藉由調控HCT-116細胞株之細胞凋亡(Apoptosis)、細胞自噬(Autophagy)及細胞壞死/程序性壞死(Necrosis/Necroptosis)機轉,達到抑制癌細胞生長以抑制癌症。The present invention relates to a kind of carnosine nanoparticle for preparing medicine for regulating intestinal cancer cells The use of the substance, especially involving carnosine nanoparticles (C-NPs), can regulate the apoptosis (Apoptosis), autophagy (Autophagy) and necrosis/programmed necrosis of HCT-116 cell line ( Necrosis/Necroptosis) mechanism to inhibit the growth of cancer cells to inhibit cancer.

根據世界衛生組織統計,2018年約有960萬人死於癌症,罹癌排 名中結腸癌位於第三名,導致死亡之癌症排名更高居第二位。衛生福利部2019公告台灣2018十大死亡原因,惡性腫瘤(癌症)為死因之首,台灣癌症十大死亡原因,結腸癌位於第三名。由此得知結腸癌對人類健康具有重大威脅,開發預防結腸癌之藥劑成為目前研究趨勢。According to the World Health Organization, about 9.6 million people died of cancer in 2018. Colon cancer ranks third in the list, and the cancer that causes death ranks second. In 2019, the Ministry of Health and Welfare announced the top ten causes of death in Taiwan in 2018. Malignant tumor (cancer) was the top cause of death, and cancer was the top ten cause of death in Taiwan. Colon cancer ranked third. From this, it is known that colon cancer is a major threat to human health, and the development of drugs to prevent colon cancer has become a current research trend.

肌肽(Carnosine)係由β-丙胺酸(β-alanine)與L-組胺酸 (L-histidine)組合而成之雙胜肽,主要存於脊椎動物骨骼肌中,已知其具有防止神經與腦部退化、抗氧化及抗癌等作用。本申請人曾探討肌肽對抑制氧化偶氮甲烷(Azoxymethane, AOM)誘導結腸癌生成之影響,由研究結果發現肌肽可透過降低腸道腫瘤數、異常隱窩(AC)與異常隱窩病灶(ACF)的形成及結腸癌特異性指標末端同源框蛋白2(CDX2)與細胞角蛋白(Krt20)之基因及蛋白的表現,達到抑制結腸癌生成。Carnosine is composed of β-alanine and L-histidine (L-histidine) is a combination of double peptides, mainly found in vertebrate skeletal muscle, known to prevent nerve and brain degeneration, anti-oxidation and anti-cancer effects. The applicant has investigated the effect of carnosine on inhibiting the formation of colon cancer induced by Azoxymethane (AOM), and found that carnosine can reduce the number of intestinal tumors, abnormal crypt (AC) and abnormal crypt foci (ACF) by reducing the number of intestinal tumors. ) and the expression of genes and proteins of terminal homeobox protein 2 (CDX2) and cytokeratin (Krt20), which are specific markers of colon cancer, to inhibit the formation of colon cancer.

鑑於奈米粒子具有獨特的物理特性,因此得到醫學相關領域的專 家關注,常應用於生物醫學診斷造影及藥物開發。職是之故,若能進一步發展一套肌肽奈米粒子可抑制人類結腸癌HCT-116細胞株生長並能改善前述現有技術不足之發明實有必要。Due to the unique physical properties of nanoparticles, they have received special attention in medical-related fields. It is often used in biomedical diagnostic imaging and drug development. For this reason, it is necessary to further develop a set of carnosine nanoparticles that can inhibit the growth of human colon cancer HCT-116 cell line and improve the aforementioned shortcomings of the prior art.

本發明之主要目的係在於,提供一種肌肽奈米粒子可藉由調控 HCT-116細胞株之細胞凋亡、細胞自噬及細胞壞死/程序性壞死機轉達到抑制癌細胞生長以抑制癌症。The main purpose of the present invention is to provide a carnosine nanoparticle that can be controlled by Apoptosis, autophagy and necrosis/programmed necrosis mechanism of HCT-116 cell line can inhibit the growth of cancer cells to inhibit cancer.

為達以上之目的,本發明係一種肌肽奈米粒子用於製備調控腸癌 細胞之藥物的用途,包含給予有效劑量之化合物或其醫藥上可接受鹽類,及至少一種醫藥上可接受載劑;該化合物為肌肽奈米粒子,分子量為453.2,密度為1.019,其結構式如下:

Figure 02_image001
;In order to achieve the above purpose, the present invention relates to the use of carnosine nanoparticles for preparing a drug for regulating intestinal cancer cells, comprising administering an effective dose of a compound or a pharmaceutically acceptable salt thereof, and at least one pharmaceutically acceptable carrier ; The compound is carnosine nanoparticles with a molecular weight of 453.2 and a density of 1.019. Its structural formula is as follows:
Figure 02_image001
;

於本發明上述實施例中,該肌肽奈米粒子所使用之肌肽為 (2S)-2-[(3-Amino-1-oxopropyl)amino]-3-(3H-imidazol-4-yl)propanoic acid,分子量為226.23,密度為1.4。In the above embodiments of the present invention, the carnosine used in the carnosine nanoparticles is (2S)-2-[(3-Amino-1-oxopropyl)amino]-3-(3H-imidazol-4-yl)propanoic acid with a molecular weight of 226.23 and a density of 1.4.

其中,該肌肽奈米粒子給予劑量濃度為0.5至15 mM,該腸癌細胞 為人類結腸癌HCT-116細胞株,該藥物之劑型為溶液,並以與培養基混合方式處 為人類結腸癌HCT-116細胞株,該藥物之劑型為溶液,並以與培養基混合方式處理HCT-116細胞株,細胞處理時間為72或96小時。Wherein, the carnosine nanoparticles were administered at a dose concentration of 0.5 to 15 mM, and the colorectal cancer cells were treated with It is a human colon cancer HCT-116 cell line. The dosage form of the drug is a solution, which is mixed with the culture medium. It is a human colon cancer HCT-116 cell line. The dosage form of the drug is a solution, and the HCT-116 cell line is treated by mixing with the culture medium, and the cell treatment time is 72 or 96 hours.

請參閱『第1圖~第7C圖』所示,係分別為本發明的肌肽奈米 粒子對抑制人類結腸癌HCT-116細胞株作用機制之探討實驗架構示意圖、本發明的肌肽奈米粒子處理HCT-116細胞株72或96小時之細胞形態圖、本發明的肌肽奈米粒子對HCT-116細胞株細胞生存力之變化示意圖、本發明的肌肽奈米粒子對HCT-116細胞株細胞凋亡之變化示意圖、本發明的肌肽奈米粒子對HCT-116細胞株Bax基因表現量之變化示意圖、本發明的肌肽奈米粒子對HCT-116細胞株Bcl 2基因表現量之變化示意圖、本發明的肌肽奈米粒子對HCT-116細胞株Caspase 9基 因表現量之變化示意圖、本發明的肌肽奈米粒子對HCT-116細胞株Caspase 3基因表現量之變化示意圖、本發明的肌肽奈米粒子對HCT-116細胞株Caspase 8基因表現量之變化示意圖、本發明的肌肽奈米粒子對HCT-116細胞株PARP基因表現量之變化示意圖、本發明的肌肽奈米粒子對HCT-116細胞株細胞自噬之變化示意圖、本發明的肌肽奈米粒子對HCT-116細胞株Beclin 1基因表現量之變化示意圖、本發明的肌肽奈米粒子對HCT-116細胞株PI3K III基因表現量之變化示意圖、本發明的肌肽奈米粒子對HCT-116細胞株LC 3基因表現量之變化示意圖、本發明的肌肽奈米粒子對HCT-116細胞株ROS含量之變化示意圖、本發明的肌肽奈米粒子對HCT-116細胞株ATP含量之變化示意圖、以及本發明的肌肽奈米粒子對HCT-116細胞株MLKL基因表現量之變化示意圖。Please refer to "Figure 1 to Figure 7C", which are respectively the carnosine nanoparticles of the present invention Schematic diagram of the experimental structure for the study of the mechanism of the particles on the inhibition of human colon cancer HCT-116 cell line, the cell morphology of the carnosine nanoparticles of the present invention treated HCT-116 cell line for 72 or 96 hours, the carnosine nanoparticles of the present invention on HCT Schematic diagram of changes in cell viability of -116 cell line, schematic diagram of changes of carnosine nanoparticles of the present invention on apoptosis of HCT-116 cell line, changes of Bax gene expression of HCT-116 cell line by carnosine nanoparticles of the present invention Schematic diagram, the change diagram of carnosine nanoparticles of the present invention on the expression level of Bcl 2 gene in HCT-116 cell line, the carnosine nanoparticles of the present invention on the Caspase 9 gene of HCT-116 cell line Schematic diagram of the change of expression amount, the change diagram of carnosine nanoparticles of the present invention to the expression of Caspase 3 gene in HCT-116 cell line, and the schematic diagram of the change of the expression amount of carnosine nanoparticles of the present invention to Caspase 8 gene of HCT-116 cell line , Schematic diagram of the change of carnosine nanoparticles of the present invention on the expression of PARP gene in HCT-116 cell line, schematic diagram of the change of carnosine nanoparticles of the present invention on autophagy of HCT-116 cell line cells, and carnosine nanoparticles of the present invention. Schematic diagram of the change of the expression level of Beclin 1 gene in HCT-116 cell line, schematic diagram of the change of the expression level of PI3K III gene of HCT-116 cell line by carnosine nanoparticles of the present invention, and the change of carnosine nanoparticles of the present invention on HCT-116 cell line LC 3. Schematic diagram of changes in gene expression, schematic diagrams of changes in ROS content of HCT-116 cell lines by carnosine nanoparticles of the present invention, schematic diagrams of changes in ATP content of HCT-116 cell lines by carnosine nanoparticles of the present invention, and Schematic diagram of the changes of carnosine nanoparticles on the expression of MLKL gene in HCT-116 cell line.

如圖所示:本發明係利用肌肽奈米粒子為實驗材料,並利用人類 結腸癌HCT-116細胞株以0.5、1、5、10、15 mM肌肽奈米粒子處理72或96小時,滅菌水作為控制組,進行細胞形態觀察、細胞生存率試驗,瞭解肌肽奈米粒子對細胞生存力之影響。而後選擇96小時進行後續實驗,分析細胞凋亡進行膜聯蛋白V(Annexin V)/碘化丙啶(Propidium Iodide, PI)染色及其相關指標Bcl 2相關蛋白(Bcl 2 associated X, Bax)、B細胞淋巴瘤(B cell lymphoma, Bcl 2)、半胱胺酸蛋白酶3、8、9(Caspase 3, 8, 9)、與ADP核醣聚合酶(Poly (ADP-ribose)polymerase, PARP)基因表現量;細胞自噬進行細胞自噬試驗及其相關指標磷酸肌醇3激酶III(Phosphoinositide 3 kinase, PI3K III)、自噬因子(Beclin 1)與自噬微管相關蛋白1B輕鏈3(Microtubule-associated protein 1B light chain 3, LC3)基因表現量;以及細胞壞死/程序性壞死進行活性氧化物(Reactive oxygen species, ROS)及三磷酸腺苷(Adenosine triphosphate, ATP)含量分析與混合譜系激酶類蛋白(Mixed lineage kinase domain like protein, MLKL)基因表現量,藉由上述實驗探討肌肽奈米粒子之抗癌機轉,實驗架構如第1圖所示。以此評估肌肽奈米粒子是否會抑制人類結腸癌HCT-116細胞株生長,並進一步探討其抑制機轉是否透過細胞凋亡、細胞自噬及細胞壞死/程序性壞死調控。As shown in the figure: the present invention uses carnosine nanoparticles as experimental materials, and uses human Colon cancer HCT-116 cell line was treated with 0.5, 1, 5, 10, 15 mM carnosine nanoparticles for 72 or 96 hours, and sterilized water was used as a control group. effects on cell viability. Then 96 hours were selected for follow-up experiments, and apoptosis was analyzed by Annexin V (Annexin V)/Propidium Iodide (PI) staining and its related indicators Bcl 2 associated protein (Bcl 2 associated X, Bax), B cell lymphoma (Bcl 2), cysteine protease 3, 8, 9 (Caspase 3, 8, 9), and ADP-ribose polymerase (Poly (ADP-ribose) polymerase, PARP) gene expression The amount of autophagy; autophagy test and related indicators phosphoinositide 3 kinase III (Phosphoinositide 3 kinase, PI3K III), autophagy factor (Beclin 1) and autophagy microtubule-related protein 1B light chain 3 (Microtubule- associated protein 1B light chain 3, LC3) gene expression; and cell necrosis/programmed necrosis by reactive oxygen species (ROS) and adenosine triphosphate (ATP) content analysis and mixed lineage kinase protein (Mixed lineage) kinase domain like protein, MLKL) gene expression, and the anti-cancer mechanism of carnosine nanoparticles was explored through the above experiments. The experimental structure is shown in Figure 1. To evaluate whether carnosine nanoparticles can inhibit the growth of human colon cancer HCT-116 cell line, and further explore whether the inhibition mechanism is regulated by apoptosis, autophagy and necrosis/programmed necrosis.

本發明係一種肌肽奈米粒子用於製備調控腸癌細胞之藥物的用 途,提供之化合物或其醫藥上可接受鹽類係可利用本發明所屬技術領域具有通常知識者所詳知的技術,將本案所提供之化合物或其醫藥上可接受鹽類、與至少一醫藥上可接受載劑,製備一適用本發明藥物之劑型,該藥物可以靜脈注射、皮下注射、口服、或塗抹方式給予個體。以下實施例僅舉例以供了解本發明之細節與內涵,但不用於限制本發明之申請專利範圍。The invention relates to the use of carnosine nanoparticle for preparing a drug for regulating intestinal cancer cells In this way, the provided compounds or their pharmaceutically acceptable salts can be combined with the compounds provided in this case or their pharmaceutically acceptable salts, and at least one medicinal The above acceptable carrier is used to prepare a dosage form suitable for the medicament of the present invention, and the medicament can be administered to a subject by intravenous injection, subcutaneous injection, oral administration, or application. The following examples are only examples for understanding the details and connotations of the present invention, but are not intended to limit the scope of the patent application of the present invention.

上述所提載劑包含但不限於賦形劑、稀釋劑、增稠劑、填充劑、 黏結劑、崩解劑、潤滑劑、油性或非油性的基質、表面活性劑、懸浮劑、膠凝劑、佐劑、防腐劑、抗氧化劑、穩定劑、色素、或香料。The above mentioned carriers include but are not limited to excipients, diluents, thickeners, fillers, Binder, disintegrant, lubricant, oily or non-oily base, surfactant, suspending agent, gelling agent, adjuvant, preservative, antioxidant, stabilizer, color, or flavor.

上述所提劑型包含但不限於溶液、乳劑、懸浮液、粉末、錠劑、 油劑、軟膏、口含錠、或膠囊以及其他類似或適用本發明之劑型。The above mentioned dosage forms include but are not limited to solutions, emulsions, suspensions, powders, lozenges, Oils, ointments, lozenges, or capsules and other similar or suitable dosage forms of the present invention.

[實施例一]實驗材料 肌肽與肌肽奈米粒子來源 本實驗所使用之肌肽((2S)-2-[(3-Amino-1-oxopropyl)amino]-3-(3H-imidazol-4-yl) propanoic acid, Carnosine),係購自Sigma公司(Sigma-Aldrich Co. USA);肌肽奈米粒子由國立中山大學氣膠科學研究中心謝淑貞老師提供。該肌肽分子量為226.23,密度為1.4;該肌肽奈米粒子分子量為453.2,密度為1.019,該肌肽奈米粒子結構式如下:

Figure 02_image001
[Example 1] Experiment material carnosine and carnosine nanoparticle sources Carnosine ((2S)-2-[(3-Amino-1-oxopropyl)amino]-3-(3H-imidazol-4-yl ) propanoic acid, Carnosine), purchased from Sigma Company (Sigma-Aldrich Co. USA); carnosine nanoparticles were provided by Professor Xie Shuzhen, Aerosol Science Research Center, National Sun Yat-Sen University. The molecular weight of the carnosine is 226.23, and the density is 1.4; the molecular weight of the carnosine nanoparticle is 453.2, and the density is 1.019. The structural formula of the carnosine nanoparticle is as follows:
Figure 02_image001

[實施例二]實驗方法 1. 人類結腸癌HCT-116細胞株培養 本實驗使用之人類結腸癌HCT-116細胞株購自食品工業發展研究所,並培養於含有1%青黴素/鏈黴素(Penicillin/Streptomycin)100 U/mL、2.2 g/L碳酸氫鈉(Sodium bicarbonate)、及10%胎牛血清(Fetal bovine serum, FBS)之McCoy’s 5A培養基中,放置在含有5%二氧化碳(CO2 )之37°C恆溫培養箱中。[Example 2] Experimental method 1. Culture of human colon cancer HCT-116 cell line Penicillin/Streptomycin) 100 U/mL, 2.2 g/L sodium bicarbonate (Sodium bicarbonate), and 10% Fetal bovine serum (FBS) in McCoy's 5A medium, placed in 5% carbon dioxide (CO 2 ) in a constant temperature incubator at 37°C.

2. 細胞形態觀察 將3×105 cell/mL HCT-116細胞株種於3.5公分培養皿中,於5% CO2 之37°C恆溫培養箱培養至隔天,待細胞貼盤後分別給予0.5、1、5、10或15 mM 肌肽奈米粒子溶液,並以含有滅菌水之培養基作為控制組,培養72或96小時後,利用倒立式相位差顯微鏡進行觀察並記錄細胞形態之變化。2. Observation of cell morphology 3×10 5 cell/mL HCT-116 cell line was planted in a 3.5 cm petri dish, and cultured in a 37°C incubator with 5% CO 2 until the next day. 0.5, 1, 5, 10 or 15 mM carnosine nanoparticle solution, and the medium containing sterilized water was used as the control group. After culturing for 72 or 96 hours, an inverted phase contrast microscope was used to observe and record the changes in cell morphology.

3. 細胞存活率試驗 本實驗採用細胞存活率(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide, MTT)試驗,作為檢測HCT-116細胞株存活率之方法。 HCT-116細胞株經樣品處理後,以磷酸緩衝液(Phosphate buffered saline, PBS)清洗兩次,加入含有0.5 mg/mL MTT之McCoy’s 5A,放置於含有5% CO2 之37°C恆溫培養箱培養3小時後,去除培養基,加入1 mL Isopropanol溶解Formazan,震盪15分鐘搖勻後取入1.5 mL微量離心管,並以4°C、9,560×g條件離心10分鐘,取200 μL上清液至96孔盤,以波長570 nm檢測其吸光值。3. Cell viability test In this experiment, the cell viability test (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide, MTT) was used as the method to detect the viability of HCT-116 cell line . After the HCT-116 cell line was sampled, washed twice with Phosphate buffered saline (PBS), added McCoy's 5A containing 0.5 mg/mL MTT, and placed in a 37°C incubator containing 5% CO 2 After culturing for 3 hours, the medium was removed, 1 mL of Isopropanol was added to dissolve Formazan, shaken for 15 minutes, shaken, and then taken into a 1.5 mL microcentrifuge tube, and centrifuged at 4°C and 9,560 × g for 10 minutes, and 200 μL of the supernatant was taken to 96-well plate, and its absorbance was detected at a wavelength of 570 nm.

4. 細胞週期試驗 本實驗利用多光源微量細胞自動分析儀(NC-3000 Image cytometry)進行檢測。當細胞在進行細胞週期時,去氧核醣核酸(Deoxyribonucleic acid, DNA)含量會隨著不同週期而有增減,利用量化4',6-二脒基-2-苯基吲哚(4',6-diamidino-2-phenylindole, DAPI)(Solution 12)與雙股DNA結合所產生之螢光強度,判斷樣品細胞液細胞週期各時期的百分比。 HCT-116細胞經樣品處理後,以PBS清洗兩次,加入100 μL 0.25%胰蛋白酶(Trypsin),放置於含有5% CO2 之37°C恆溫培養箱培養3分鐘後,使用1 mL培養基將細胞收於1.5 mL微量離心管,於25°C、95×g條件離心5分鐘,並去除上清液。加入1 mL PBS與細胞混勻,於25°C、95×g條件離心5分鐘,去除上清液後,將沉澱的細胞回溶於300 μL PBS。取出約1×106個細胞,與100 μL Solution 10、2 μL Solution 12混勻,於37°C乾浴5分鐘,加入100 μL Solution 11終止反應,裝入Slide-A8,利用NC-3000以Cell cycle模式進行分析。4. Cell cycle test In this experiment, a multi-light source micro cell automatic analyzer (NC-3000 Image cytometry) was used for detection. When cells are in the cell cycle, the content of deoxyribonucleic acid (DNA) will increase or decrease with different cycles. Using quantitative 4',6-diamidino-2-phenylindole (4', 6-diamidino-2-phenylindole, DAPI) (Solution 12) combined with double-stranded DNA and the fluorescence intensity generated, to determine the percentage of each phase of the cell cycle of the sample cell fluid. After sample treatment, HCT-116 cells were washed twice with PBS, added with 100 μL of 0.25% trypsin (Trypsin), placed in a constant temperature incubator containing 5% CO 2 at 37°C for 3 minutes, and then incubated with 1 mL of medium. Cells were collected in 1.5 mL microcentrifuge tubes, centrifuged at 25°C, 95 x g for 5 minutes, and the supernatant was removed. Add 1 mL of PBS to mix with the cells, centrifuge at 25°C and 95×g for 5 minutes, remove the supernatant, and redissolve the precipitated cells in 300 μL of PBS. About 1×106 cells were taken out, mixed with 100 μL of Solution 10 and 2 μL of Solution 12, dried at 37°C for 5 minutes, added 100 μL of Solution 11 to stop the reaction, loaded into Slide-A8, and used NC-3000 Cycle mode for analysis.

5. Annexin V/PI染色試驗 本實驗利用多光源微量細胞自動分析儀進行檢測,Annexin V為一種鈣離子依賴 本實驗利用多光源微量細胞自動分析儀進行檢測,Annexin V為一種鈣離子依賴性的磷脂結合蛋白,會與早期凋亡細胞上的膜磷脂醯絲氨酸(Phosphatidylserine, PS)結合。PI則會與晚期凋亡和死亡的細胞進行作用。藉由量化Annexin V及PI雙染劑所產生的螢光,計算出凋亡細胞的百分比。 HCT-116細胞經樣品處理後,以PBS清洗兩次,加入100 μL 0.25% Trypsin,放置於含有5% CO2 之37°C恆溫培養箱培養3分鐘後,使用1 mL培養基將細胞收於1.5 mL微量離心管,於25°C、95×g條件離心5分鐘,並去除上清液。加入100 μL PBS與細胞混勻,於25°C、95×g條件離心5分鐘,去除上清液。加入100 μL染劑混合液(含100 μL Apoptosis結合緩衝液(Apoptosis binding buffer) + 1 μL Annexin V + 1 μL PI),避光反應15分鐘,於25°C、95×g條件離心5分鐘,去除染劑。加入100 μL PBS、2 μL Solution 15與細胞混勻,在37°C乾浴5分鐘,於25°C、95×g離心5分鐘,去除上清液。再以300 μL PBS清洗兩次,將沉澱的細胞回溶於300 μL PBS,裝入Slide-A2,利用NC-3000以Annexin V試驗(assay)模式進行分析。5. Annexin V/PI staining test This experiment uses a multi-light source trace cell automatic analyzer for detection, Annexin V is a calcium ion-dependent automatic analyzer for detection in this experiment, and Annexin V is a calcium ion-dependent Phospholipid-binding protein that binds to the membrane phospholipid phosphatidylserine (PS) on early apoptotic cells. PI interacts with late apoptotic and dying cells. The percentage of apoptotic cells was calculated by quantifying the fluorescence produced by Annexin V and PI double stain. After sample treatment, HCT-116 cells were washed twice with PBS, added with 100 μL of 0.25% Trypsin, placed in a 37°C incubator containing 5% CO 2 for 3 minutes, and then harvested with 1 mL of medium at 1.5 mL microcentrifuge tubes, centrifuge at 25°C, 95 x g for 5 minutes, and remove the supernatant. Add 100 μL of PBS and mix with the cells, centrifuge at 25°C and 95×g for 5 minutes, and remove the supernatant. Add 100 μL of dye mixture (containing 100 μL Apoptosis binding buffer + 1 μL Annexin V + 1 μL PI), react in the dark for 15 minutes, centrifuge at 25°C, 95×g for 5 minutes, Remove dye. Add 100 μL of PBS and 2 μL of Solution 15 to mix with the cells, dry bath at 37°C for 5 minutes, centrifuge at 25°C for 5 minutes at 95×g, and remove the supernatant. After washing twice with 300 μL PBS, the pelleted cells were redissolved in 300 μL PBS, loaded into Slide-A2, and analyzed using NC-3000 in Annexin V assay (assay) mode.

6. 細胞自噬測定 本實驗採用購自Enzo公司之CYTO-ID®細胞自噬商業套組2.0(ENZ-51031, USA),並利用多光源微量細胞自動分析儀進行檢測。 HCT-116細胞經樣品處理後,以含2% FBS之PBS清洗兩次,加入100 μL 0.25% Trypsin,放置於5% CO2 之37°C恆溫培養箱培養3分鐘後,使用1 mL 含2% FBS之PBS將細胞收於1.5 mL 微量離心管,於25°C、860×g條件離心5分鐘,並去除上清液,將細胞回溶於200 μL含2% FBS之PBS。加入0.4 μL Cyto-ID綠色染色液(Green stain solution),並於37°C避光乾浴15分鐘後,加入0.2 μL赫斯特螢光染料333(Hoechst 33342),在37°C避光乾浴15分鐘。以25°C、860×g離心5分鐘,去除上清液,再以100 μL含2% FBS之PBS清洗兩次,將沉澱細胞回溶於100 μL含2% FBS之PBS,裝入Slide-A2,利用NC-3000以Autophagy assay-10000模式進行分析。6. Autophagy Assay In this experiment, the CYTO-ID® Autophagy Commercial Kit 2.0 (ENZ-51031, USA) purchased from Enzo Company was used, and the multi-light source micro-cell automatic analyzer was used for detection. After sample treatment, HCT-116 cells were washed twice with PBS containing 2% FBS, added with 100 μL of 0.25% Trypsin, placed in a 5% CO 2 incubator at 37°C for 3 minutes, and then used 1 mL containing 2 Cells were collected in 1.5 mL microcentrifuge tubes in PBS with % FBS, centrifuged at 25°C, 860 × g for 5 minutes, the supernatant was removed, and the cells were redissolved in 200 μL of PBS containing 2% FBS. Add 0.4 μL Cyto-ID green stain solution (Green stain solution), dry bath at 37°C for 15 minutes in the dark, add 0.2 μL Hoechst Fluorescent Dye 333 (Hoechst 33342), dry at 37°C in the dark Bath for 15 minutes. Centrifuge at 25°C, 860 × g for 5 minutes, remove the supernatant, wash twice with 100 μL of PBS containing 2% FBS, redissolve the pelleted cells in 100 μL of PBS containing 2% FBS, and load into Slide- A2, Analysis was performed in Autophagy assay-10000 mode using NC-3000.

7. ROS含量測定 本實驗利用多光源微量細胞自動分析儀進行檢測,利用2, 7-二氯二氫螢光素二乙酸脂(Dichlorofluorescin diacetate, DCFH-DA)穿透細胞膜與細胞內的ROS反應,產生具有螢光性質的2, 7-二氯螢光素(Dichlorofluorescein, DCF),藉由量化DCF螢光,計算細胞內ROS含量。 HCT-116細胞經樣品處理後,以PBS清洗兩次,加入1 mL 10 μM DCFH-DA溶液,放置於含有5% CO2 之37°C恆溫培養箱反應30分鐘。以PBS清洗兩次,加入100 μL 0.25% Trypsin,放置於含有5% CO2 之37°C恆溫培養箱培養3分鐘後,使用1 mL培養基將細胞收於1.5 mL微量離心管,於25°C、95×g條件離心5分鐘,並去除上清液。加入1 mL PBS與細胞混勻,於25°C、95×g條件離心5分鐘,去除上清液後,將沉澱的細胞回溶於300 μL PBS。取出約1×106個細胞,與2 μL Solution 15混勻,37°C乾浴5分鐘,於25°C、95×g離心5分鐘,去除上清液。再以300 μL PBS清洗兩次,將沉澱的細胞回溶於100 μL PBS,裝入Slide-A2,利用NC-3000以ROS-DCF assay模式進行分析。7. Determination of ROS content In this experiment, a multi-light source microcell automatic analyzer was used for detection, and 2,7-dichlorofluorescin diacetate (DCFH-DA) was used to penetrate the cell membrane and react with intracellular ROS. , to produce 2,7-dichlorofluorescein (DCF) with fluorescent properties, and by quantifying DCF fluorescence, intracellular ROS content was calculated. After HCT-116 cells were sampled, washed twice with PBS, added 1 mL of 10 μM DCFH-DA solution, and placed in a 37°C incubator containing 5% CO 2 to react for 30 minutes. Washed twice with PBS, added 100 μL of 0.25% Trypsin, placed in a 37°C constant temperature incubator with 5% CO 2 for 3 minutes, and collected the cells in a 1.5 mL microcentrifuge tube with 1 mL of medium at 25°C. , 95 × g for 5 minutes, and remove the supernatant. Add 1 mL of PBS to mix with the cells, centrifuge at 25°C and 95×g for 5 minutes, remove the supernatant, and redissolve the precipitated cells in 300 μL of PBS. About 1×106 cells were taken out, mixed with 2 μL of Solution 15, dried at 37°C for 5 minutes, centrifuged at 25°C, 95×g for 5 minutes, and the supernatant was removed. After washing twice with 300 μL PBS, the precipitated cells were redissolved in 100 μL PBS, loaded into Slide-A2, and analyzed in ROS-DCF assay mode using NC-3000.

8. ATP含量測定 本實驗採用購自BioVision公司之脫蛋白商業套組(Deproteinizing sample preparation kit. 型號:K808, USA)及ATP含量商業套組(ATP colorimetric/fluorometric assay kit. 型號:K354, USA)進行。 HCT-116細胞經樣品處理後,以PBS清洗兩次,利用100 μL ATP緩衝液(ATP assay buffer)將細胞輕輕刮下收於1.5 mL微量離心管,進行細胞破碎30秒後,於4°C、16,200×g離心3分鐘,取80 μL上清液加入16 μL過氯酸(Perchloric acid, PCA)混合,置於冰上5分鐘,於4°C、16,200×g離心2分鐘。取76.8 μL上清液至另一個微量離心管,並加入3.2 μL中和溶液(Neutralization solution),置於冰上5分鐘,將多餘的PCA沉澱,再於4°C、16,200×g離心2分鐘,上清液即為脫蛋白後的細胞樣品液。分別取出0、2、4、6、8、10 μL 1 mM ATP標準品(ATP standard)及15 μL樣品液至96孔盤,以ATP緩衝液將每孔溶液體積定量至50 mL後,於每孔加入含有44 μL ATP緩衝液、2 μL ATP探針(ATP probe)、2 μL ATP轉換器(ATP converter)及2 μL 顯影混和液(Developer mix)之反應試劑後,避光室溫反應30分鐘,利用酵素免疫分析儀(Enzyme-linked Immuno-sorbent Assay reader, ELISA reader)檢測其在波長570 nm之吸光值。8. ATP Content Determination Deproteinizing sample preparation kit (Deproteinizing sample preparation kit. Model: K808, USA) and ATP content commercial kit (ATP) were used in this experiment. colorimetric/fluorometric assay kit. Model: K354, USA). After the HCT-116 cells were sampled, they were washed twice with PBS, and the cells were gently scraped with 100 μL ATP assay buffer and collected in a 1.5 mL microcentrifuge tube. C. Centrifuge at 16,200×g for 3 minutes, take 80 μL of supernatant and add 16 μL of perchloric acid (PCA) to mix, put on ice for 5 minutes, and centrifuge at 4°C, 16,200×g for 2 minutes. Take 76.8 μL of the supernatant to another microcentrifuge tube, add 3.2 μL of Neutralization solution, put it on ice for 5 minutes, precipitate the excess PCA, and then centrifuge at 4°C, 16,200×g for 2 minutes , and the supernatant is the deproteinized cell sample solution. Take out 0, 2, 4, 6, 8, 10 μL of 1 mM ATP standard (ATP standard) and 15 μL of sample solution to a 96-well plate respectively, and quantify the volume of each well solution to 50 mL with ATP buffer. After adding the reaction reagents containing 44 μL ATP buffer, 2 μL ATP probe (ATP probe), 2 μL ATP converter (ATP converter) and 2 μL developer mix (Developer mix), the reaction was performed at room temperature for 30 minutes in the dark. , using an enzyme immunoassay analyzer (Enzyme-linked Immuno-sorbent Assay reader, ELISA reader) to detect its absorbance at a wavelength of 570 nm.

9. 核糖核酸(Ribonucleic acid, RNA)萃取 將所有器具進行高溫高壓滅菌,以去除殘存的核糖核酸酶(Ribonuclease, RNase)。HCT-116細胞經樣品處理後,利用1 mL TRIzol試劑(TRIzol reagent)將細胞收集至1.5 mL微量離心管,充分混合震盪後,加入200 μL 氯仿(Chloroform)上下輕搖混合,冰浴5分鐘,於4°C、16,200×g離心15分鐘,取上清液至另一微量離心管並加入等量(1:1)之異丙醇,震盪混勻後,冰浴5分鐘以沉澱RNA,再於4°C、16,200×g離心15分鐘,去除上清液,沉澱物為RNA。加入1 mL 75%酒精,以4°C、16,200×g離心10分鐘,去除上層酒精,再以4°C、16,200×g離心1分鐘,將剩餘酒精去除後,在室溫下自然風乾15分鐘,最後回溶於焦碳酸二乙酯去離子水(Diethyl pyrocarbonate water, DEPC-H2 O),定量後於-20°C保存備用。9. Ribonucleic acid (RNA) extraction Sterilize all utensils at high temperature and autoclave to remove residual ribonuclease (RNase). After HCT-116 cells were sampled, 1 mL of TRIzol reagent (TRIzol reagent) was used to collect the cells into a 1.5 mL microcentrifuge tube. After thorough mixing and shaking, 200 μL of chloroform (Chloroform) was added and shaken up and down to mix, and ice bathed for 5 minutes. Centrifuge at 16,200×g for 15 minutes at 4°C. Transfer the supernatant to another microcentrifuge tube and add an equal amount (1:1) of isopropanol. After shaking and mixing, ice bath for 5 minutes to precipitate RNA. Centrifuge at 16,200 × g for 15 minutes at 4°C, remove the supernatant, and precipitate as RNA. Add 1 mL of 75% alcohol, centrifuge at 4°C, 16,200×g for 10 minutes, remove the upper layer of alcohol, and then centrifuge at 4°C, 16,200×g for 1 minute, remove the remaining alcohol, and air dry at room temperature for 15 minutes , and finally redissolved in diethyl pyrocarbonate deionized water (Diethyl pyrocarbonate water, DEPC-H 2 O), and stored at -20°C for later use after quantification.

10. 核糖核酸定量(Quantitative ribonucleic acid) 採用核酸蛋白分析系統進行RNA定量,測定前須取2 µL DEPC-H2 O於樣品放置槽內進行空白(Blank)校正。以75%酒精擦拭乾淨後,再將各樣品取2 µL於樣品放置槽進行檢測,重複上述動作直到樣品檢測完畢,測定完成後須用75%酒精擦拭乾淨,藉由電腦軟體(Gen 5)計算樣品RNA濃度及RNA品質(OD260 /OD280 )。10. Quantitative ribonucleic acid The nucleic acid protein analysis system is used for RNA quantification. Before the measurement, 2 µL of DEPC-H 2 O must be taken in the sample holding tank for blank correction. After wiping with 75% alcohol, take 2 µL of each sample into the sample holding tank for testing. Repeat the above actions until the sample testing is completed. After the measurement is completed, it must be wiped with 75% alcohol and calculated by computer software (Gen 5). Sample RNA concentration and RNA quality (OD 260 /OD 280 ).

11. 核糖核酸反轉錄成互補去氧核醣核酸(Complementary Deoxyribonucleic acid, cDNA) 本實驗參考Promega廠商之方法進行,於1.5 mL微量離心管加入0.125 μg/μL寡脫氧胸苷酸(Oligo Dt)0.5 μL、10 mM去氧核苷三磷酸(dNTP)1 μL及RNA 1 μg樣品,再以滅菌水將體積補足20 μL,於65°C乾浴5分鐘,再置於冰上5分鐘。再依序加入1 μL M-MLV 反轉錄酶(M-MLV Reverse transcriptase)、1 μL RNA酶抑制劑(RNasin)及5 μL M-MLV RT 5X buffer,將所有試劑震盪混合後,於37°C乾浴1小時,即得cDNA溶液,存放於-20°C備用。11. Reverse transcription of ribonucleic acid into complementary deoxyribonucleic acid (Complementary Deoxyribonucleic acid, cDNA) This experiment was carried out according to the method of the Promega manufacturer. In a 1.5 mL microcentrifuge tube, 0.125 μg/μL oligodeoxythymidylate (Oligo Dt) 0.5 μL, 10 mM deoxynucleoside triphosphate (dNTP) 1 μL and RNA 1 μg sample were added , then make up the volume to 20 μL with sterile water, dry bath at 65°C for 5 minutes, and place on ice for 5 minutes. Then add 1 μL M-MLV Reverse transcriptase (M-MLV Reverse transcriptase), 1 μL RNase inhibitor (RNasin) and 5 μL M-MLV RT 5X buffer in sequence, mix all the reagents by shaking, and store at 37°C. Dry bath for 1 hour to obtain cDNA solution and store at -20°C for later use.

12. 即時聚合酶連鎖反應 即時螢光定量檢測系統(Real-time Quantitative PCR Detecting System, Real-time PCR)中,藉由SYBR green I染劑與樣品的雙股DNA結合,在鹵素燈激發螢光,當循環反應增加目標基因(Target gene)合成時,SYBR green I染劑與雙股DNA結合量也會增加。因此,隨著目標基因過擴增,可偵測到的SYBR green I螢光也越多。Real-time PCR主要利用各目標基因在樣品中有不同濃度,在相同PCR反應條件下,較高含量的目標基因模板的反應會較快達幾何相位(Geometric phase),這時DNA合成會以兩倍來倍增。定義中達Geometric phase中臨界循環數稱為循環數閥值(Cycle threshold, CT)。為確認操作手法及反應過程中有/無汙染,因此加入一組不含基因的陰性對照組(Non-template control, NTC)。而為了將每次定量結果相互比較,避免PCR反應效力差異導致偏差,因此每次定量分析中皆會加入一組以上的內部控制組(Internal control),利用專一性引子與內部控制組反應所換算之濃度,確認每次定量的準確度。 操作Real-time PCR定量分析前,須於PCR專用之96孔盤依序加入2.5 μL雙蒸水(ddH2 O)、5 μL 2X SYBR Fast MM、0.5 μL 20X目標引子Target primer)、及2 μL cDNA(10 ng),最終體積為10 μL。放入Real-time PCR(LightCycler® 96 Real-Time PCR System, Roche Life Science, Basel, Switzerland)反應,Real-time PCR設定條件,如表一所示。 表一 程序 1 95°C     120 sec × 1 循環 程序 2 95°C       5 sec × 40 循環 60°C      30 sec 程序 3 95°C      10 sec × 1 循環  65°C      60 sec  97°C       1 sec 由於相對定量時需選用人類所具有之恆定表現特性基因作為正常化之必要計算值,因此本實驗選用人類β-肌動蛋白(β-actin)來當作對照組,Real-time PCR 各基因特異性引子,如表二所示 表二 基因 引子序列 (5-3) 參考 (NCBI GenBank) β-actin F-ATGTGCAAGGCCGGCTTC   NM001101.3 R-GAATCCTTCTGACCCATGCC Bax F-TGTTTTCTGACGGCAACTTCA NM001291428.1 R-AGCCCATGATGGTTCTGATCA Bcl-2 F-CCTGTGGATGACTGAGTACCTGAAC NM000633.2 R-CAGCCAGGAGAAATCAAACAGA Caspase 3 F-TGGATTATCCTGAGATGGGTTTATG NM004346.3 R-GCTGCATCGACAYCTGTACCA Caspase 8 F-TCCAAATGCAAACTGGATGATG NM001080124.1 R-TTTTCAGGATGTCCAACTTTCCTT Caspase 9 F-AGCTGGACGCCATATCTAGTTTG NM001229.4 R-AACGTACCAGGAGCCACTCTTG PARP F-TGGTCAAGACACAGACACCCA NM001618.4 R-ACGGAGGCGCTGGTTTCT MLKL F-CCTGGGCACAGGAAGATCAG NM001142497.2 R-TTTCTAATCGTCTCAGTGAAGCTTCT PI3K III F-TTGGAGACAGGCACCTGGAT NM001308020.1 R-CCATTTCTTTATTCAGCTTCATTGG Beclin-1 F-CTGGACACGAGTTTCAAGATCCT NM001313998.1 R-GTTAGTCTCTTCCTCCTGGGTCTCT 基因 引子序列 (5-3) 參考 (NCBI GenBank) LC3 F-TCCTGGACAAGACCAAGTTTTTG NM032514.3 R-ACCATGCTGTGCTGGTTCAC iNOS F-GTGACCCTGAGCTCTTCGAAA NM000625.4 R-GCGTACCACTTTAGCTCCAGTTC COX 2 F-TGTTTGCATTCTTTGCCCAG NM000963.4 R-TTACGCTGTCTAGCCAGAGTTTCA PCNA F-GCGCTAGTATTTGAAGCACCAA NM002592.2 R-GTTCAACATCTAAATCCATCAACTTCAT Cyclin D1 F-TGAACACTTCCTCTCCAAAATGC NM053056.2 R-GCGGATTGGAAATGAACTTCAC β-catenin F-TGCTTGTTCGTGCACATCAG NM001098209.1 R-TGTGAAGGGCTCCGGTACA VEGF F-CGAGGGCCTGGAGTGTGT NM001025366.2 R-TGGTGAGGTTTGATCCGCATA EGFR F-GGCGTCCGCAAGTGTAAGAA NM005228.5 R-TCGTAGCATTTATGGAGAGTGAGTCT HIF-1α F-TAACTTTGCTGGCCCCAGC NM001243084.1 R-ACTTCCTCAAGTTGCTGGTCATC 12. In the real-time polymerase chain reaction real-time fluorescence quantitative detection system (Real-time Quantitative PCR Detecting System, Real-time PCR), the SYBR green I dye is combined with the double-stranded DNA of the sample, and the fluorescence is excited under a halogen lamp. , when the cycling reaction increases target gene synthesis, the amount of SYBR green I dye binding to double-stranded DNA also increases. Therefore, as the target gene is amplified, more SYBR green I fluorescence can be detected. Real-time PCR mainly uses the different concentrations of each target gene in the sample. Under the same PCR reaction conditions, the reaction of the target gene template with higher content will reach the geometric phase faster, and the DNA synthesis will be twice as fast. to multiply. The critical cycle number in the Geometric phase is defined as the cycle threshold (Cycle threshold, CT). In order to confirm the operation method and the presence/absence of contamination in the reaction process, a group of negative control group (Non-template control, NTC) without gene was added. In order to compare each quantitative result with each other and avoid the deviation caused by the difference of PCR reaction efficiency, more than one internal control group (Internal control) will be added to each quantitative analysis, using specific primers and internal control group reactions to convert the concentration to confirm the accuracy of each quantification. Before performing Real-time PCR quantitative analysis, 2.5 μL of double-distilled water (ddH 2 O), 5 μL of 2X SYBR Fast MM, 0.5 μL of 20X target primer, and 2 μL of 20X target primer should be added in sequence to a 96-well plate dedicated to PCR. cDNA (10 ng) in a final volume of 10 μL. Put into Real-time PCR (LightCycler® 96 Real-Time PCR System, Roche Life Science, Basel, Switzerland) reaction, Real-time PCR set conditions, as shown in Table 1. Table I program 1 95°C 120 sec × 1 cycle program 2 95°C 5 sec × 40 cycles 60°C 30 sec Procedure 3 95°C 10 sec × 1 cycle 65°C 60 sec 97°C 1 sec Since the relative quantification needs to select genes with constant expression characteristics of humans as the necessary calculation values for normalization, human β-actin (β-actin) is selected as the control group in this experiment, and each gene of Real-time PCR is specific. Sexual primers, as shown in Table 2Table 2 Gene Primer sequence (5-3) Reference (NCBI GenBank) β-actin F-ATGTGCAAGGCCGGCTTC NM001101.3 R-GAATCCTTCTGACCCATGCC Bax F-TGTTTTCTGACGGCAACTTCA NM001291428.1 R-AGCCCATGATGGTTCTGATCA Bcl-2 F-CCTGTGGATGACTGAGTACCTGAAC NM000633.2 R-CAGCCAGGAGAAATCAAACAGA Caspase 3 F-TGGATTATCCTGAGATGGGTTTATG NM004346.3 R-GCTGCATCGACAYCTGTACCA Caspase 8 F-TCCAAATGCAAACTGGATGATG NM001080124.1 R-TTTTCAGGATGCCAACTTTCCTT Caspase 9 F-AGCTGGACGCCATATCTAGTTTG NM001229.4 R-AACGTACCAGGAGCCACTCTTG PARP F-TGGTCAAGACACAGACACCCA NM001618.4 R-ACGGAGGCGCTGGTTTCT MLKL F-CCTGGGCACAGGAAGATCAG NM001142497.2 R-TTTCTAATCGTCTCAGTGAAGCTTCT PI3K III F-TTGGAGACAGGCACCTGGAT NM001308020.1 R-CCATTTCTTTATTCAGCTTCATTGG Beclin-1 F-CTGGACACGAGTTTCAAGATCCT NM001313998.1 R-GTTAGTCTCTTCCTCCTGGGTCTCT Gene Primer sequence (5-3) Reference (NCBI GenBank) LC3 F-TCCTGGACAAGACCAAGTTTTTG NM032514.3 R-ACCATGCTGTGCTGGTTCAC iNOS F-GTGACCCTGAGCTCTTCGAAA NM000625.4 R-GCGTACCACTTTAGCTCCAGTTC COX 2 F-TGTTTGCATTCTTTTGCCCAG NM000963.4 R-TTACGCTGTCTAGCCAGAGTTTTCA PCNA F-GCGCTAGTATTTGAAGCACCAA NM002592.2 R-GTTCAACATCTAAATCCATCAACTTCAT Cyclin D1 F-TGAACACTTCCTCTCCAAAATGC NM053056.2 R-GCGGATTGGAAATGAACTTCAC β-catenin F-TGCTTGTTCGTGCACATCAG NM001098209.1 R-TGTGAAGGGCTCCGGTACA VEGF F-CGAGGGCCTGGAGTGTGT NM001025366.2 R-TGGTGAGGTTTGATCCGCATA EGFR F-GGCGTCCGCAAGTGTAAGAA NM005228.5 R-TCGTAGCATTTATGGAGAGTGAGTCT HIF-1α F-TAACTTTGCTGGCCCCAGC NM001243084.1 R-ACTTCCTCAAGTTGCTGGTCATC

13. 統計結果 實驗結果以電腦統計分析軟體 SPSS12.0(SPSS, USA)單因子變異數分析(One-way ANOVA)程式進行組內分析比較後,以杜凱式顯著性檢定(Tukey’s test)進行比較,顯著差異程度定為P<0.05。13. Statistical Results The experimental results were analyzed and compared within the group by the computer statistical analysis software SPSS12.0 (SPSS, USA) program One-way ANOVA, and then compared by Tukey's test, there were significant differences. The degree was set as P<0.05.

[實施例三]實驗結果 (1) 肌肽奈米粒子對HCT-116細胞株細胞生存力之變化 肌肽奈米粒子對HCT-116細胞株細胞生存力之變化,如第2A及2B圖所示。從第2A圖的72或96小時細胞形態觀察結果,發現10及15 mM肌肽奈米粒子會使癌細胞絲狀物變多。由第2B圖的細胞存活率結果顯示,1、5、10、15 mM肌肽奈米粒子處理HCT-116細胞株72及96小時,細胞存活率顯著低於控制組,表示1、5、10、15 mM肌肽奈米粒子能抑制HCT-116細胞株生存能力,且具有劑量依賴性。其中數據係使用獨立實驗的平均值±SD表示,並通過Tukey檢驗統計分析評估不同劑量活性差異的顯著性。第2B圖中不同的上標字母a,b,c及d表示細胞生存力具有顯著差異(P<0.05)。並以0.5、1、5、10、15 mM肌肽奈米粒子處理HCT-116細胞株96小時作為後續實驗條件。[Example 3] Experimental results (1) Changes of carnosine nanoparticles on cell viability of HCT-116 cell line The changes of carnosine nanoparticles on cell viability of HCT-116 cell line are shown in Figures 2A and 2B. From the observation of cell morphology at 72 or 96 hours in Figure 2A, it was found that 10 and 15 mM carnosine nanoparticles increased cancer cell filaments. The cell viability results in Figure 2B showed that the cell viability of HCT-116 cell line was significantly lower than that of the control group after 1, 5, 10, 15 mM carnosine nanoparticles were treated for 72 and 96 hours, indicating that 1, 5, 10, 15 mM carnosine nanoparticles inhibited the viability of HCT-116 cell line in a dose-dependent manner. The data were expressed as the mean ± SD of independent experiments, and the significance of differences in activity at different doses was assessed by Tukey's test statistical analysis. Different superscript letters a, b, c and d in Figure 2B indicate significant differences in cell viability (P<0.05). The HCT-116 cell line was treated with 0.5, 1, 5, 10, and 15 mM carnosine nanoparticles for 96 hours as the subsequent experimental conditions.

(2) 肌肽奈米粒子對HCT-116細胞株細胞凋亡之變化 肌肽奈米粒子對HCT-116細胞株細胞凋亡比例及相關指標基因表現量之變化,結果如第3及第4A~4F圖所示。從第3圖的細胞凋亡分析,顯示5、10、15 mM肌肽奈米粒子處理HCT-116細胞株96小時,凋亡比例顯著高於控制組。而由第4A~4F圖的凋亡相關指標基因表現量分析結果,發現5、10、15 mM肌肽奈米粒子會使Caspase 8、9及PARP基因表現量顯著高於控制組;10、15 mM肌肽奈米粒子會使Caspase 3基因表現量顯著高於控制組;15 mM肌肽奈米粒子則會使Bax基因表現量顯著高於控制組;不同劑量肌肽奈米粒子在Bcl 2基因表現量與控制組相比無顯著差異。綜合上述實驗結果,5、10、15 mM肌肽奈米粒子會藉由增加Bax、Caspase 3、8、9或PARP基因表現量促使結腸癌細胞凋亡。其中數據係使用獨立實驗的平均值±SD表示,並由Tukey檢驗統計分析評估細胞凋亡比例及Bax、Bcl 2、Caspase 9、3、8或PARP基因表現量的差異,圖中不同統計字母a,b及c,表示在統計學上存在差異(P<0.05)。(2) Changes of carnosine nanoparticles on apoptosis of HCT-116 cell line The changes of the apoptosis ratio of HCT-116 cell line and the expression of related index genes by carnosine nanoparticles were shown in Figures 3 and 4A to 4F. From the cell apoptosis analysis in Figure 3, it was shown that 5, 10 and 15 mM carnosine nanoparticles treated the HCT-116 cell line for 96 hours, and the apoptotic ratio was significantly higher than that of the control group. From the analysis results of apoptosis-related index gene expression in Figures 4A to 4F, it was found that 5, 10, and 15 mM carnosine nanoparticles can significantly increase the expression of Caspase 8, 9 and PARP genes compared with the control group; 10, 15 mM Carnosine nanoparticles can significantly increase the expression of Caspase 3 gene compared with the control group; 15 mM carnosine nanoparticles can significantly increase the expression of Bax gene compared with the control group; the expression of Bcl 2 gene in different doses of carnosine nanoparticles is significantly different from that of the control group. There was no significant difference between groups. Based on the above experimental results, 5, 10, and 15 mM carnosine nanoparticles can induce apoptosis of colon cancer cells by increasing the expression of Bax, Caspase 3, 8, 9 or PARP genes. The data are expressed as the mean ± SD of independent experiments, and the ratio of apoptosis and the expression of Bax, Bcl 2, Caspase 9, 3, 8 or PARP genes were evaluated by Tukey test statistical analysis. , b and c, indicate statistically significant differences (P < 0.05).

(3) 肌肽奈米粒子對HCT-116細胞株細胞自噬之變化 肌肽奈米粒子對HCT-116細胞株細胞自噬比例及相關指標基因表現量之變化,結果如第5及第6A~6C圖所示。從第5圖的細胞自噬分析結果,發現10、15 mM肌肽奈米粒子處理HCT-116細胞株96小時會使細胞自噬比例顯著高於控制組。而由第6A~6C圖的相關指標基因表現量分析結果顯示,5、10、15 mM肌肽奈米粒子會使Beclin 1基因表現量顯著高於控制組;10、15 mM肌肽奈米粒子會使PI3K III基因表現量顯著高於控制組;而1、5、10、15 mM肌肽奈米粒子則會使LC 3基因表現量顯著低於控制組。綜合上述結果,10、15 mM肌肽奈米粒子會藉由增加Beclin 1、PI3K III基因表現量,但不會調控LC 3基因表現量來促使結腸癌細胞自噬作用。其中數據係使用獨立實驗的平均值±SD表示,並由Tukey檢驗統計分析評估細胞自噬比例及Beclin 1、PI3K III或LC 3基因表現量的差異,圖中不同統計字母a,b及c,表示在統計學上存在差異(P<0.05)。(3) Changes in autophagy of HCT-116 cell line by carnosine nanoparticles The changes of autophagy ratio and related index gene expression in HCT-116 cell line by carnosine nanoparticles, the results are shown in Figures 5 and 6A-6C. From the results of autophagy analysis in Figure 5, it was found that 10, 15 mM carnosine nanoparticles treated HCT-116 cell line for 96 hours, the proportion of autophagy was significantly higher than that of the control group. The analysis results of related index gene expression in Figures 6A to 6C showed that the expression of Beclin 1 gene was significantly higher in 5, 10, and 15 mM carnosine nanoparticles than in the control group; The expression level of PI3K III gene was significantly higher than that in the control group; while 1, 5, 10, and 15 mM carnosine nanoparticles made the expression level of LC 3 gene significantly lower than that in the control group. Based on the above results, 10 and 15 mM carnosine nanoparticles can promote autophagy in colon cancer cells by increasing the expression of Beclin 1 and PI3K III genes, but not regulating the expression of LC 3 gene. The data are expressed as the mean ± SD of independent experiments, and the differences in the proportion of autophagy and the expression of Beclin 1, PI3K III or LC 3 genes were evaluated by Tukey's test statistical analysis. Indicates that there is a statistical difference (P < 0.05).

(4) 肌肽奈米粒子對HCT-116細胞株細胞壞死/程序性壞死之變化 肌肽奈米粒子對HCT-116細胞株細胞壞死/程序性壞死相關指標含量或基因表現量之變化,結果如第7A~7C圖所示。由第7A~7C圖顯示5、10、15 mM肌肽奈米粒子處理HCT-116細胞株96小時,ATP含量會顯著低於控制組,MLKL基因表現量會顯著高於控制組;15 mM肌肽奈米粒子則會使ROS含量顯著高於控制組。綜合上述結果,5、10、15 mM肌肽奈米粒子會藉由提升細胞內ROS及MLKL基因表現量並降低細胞內ATP含量促使結腸癌細胞壞死及程序性壞死作用。其中數據係使用獨立實驗的平均值±SD表示,並由Tukey檢驗統計分析評估ROS、ATP含量或MLKL基因表現量的差異,圖中不同統計字母a,b及c,表示在統計學上存在差異(P<0.05)。(4) Changes of carnosine nanoparticles on cell necrosis/programmed necrosis of HCT-116 cell line Changes in the contents of necrosis/programmed necrosis-related indexes or gene expression of HCT-116 cell line by carnosine nanoparticles, the results are shown in Figures 7A to 7C. Figures 7A to 7C show that 5, 10, 15 mM carnosine nanoparticles treated HCT-116 cell line for 96 hours, the ATP content was significantly lower than the control group, and the MLKL gene expression level was significantly higher than the control group; 15 mM carnosine nanoparticle Rice particles made the ROS content significantly higher than that of the control group. Based on the above results, 5, 10 and 15 mM carnosine nanoparticles can promote necrosis and programmed necrosis of colon cancer cells by increasing the expression of intracellular ROS and MLKL gene and reducing the content of intracellular ATP. The data are expressed as the mean ± SD of independent experiments, and the differences in ROS, ATP content or MLKL gene expression are evaluated by Tukey's test statistical analysis. Different statistical letters a, b and c in the figure indicate statistical differences (P<0.05).

藉此,本發明探討以0.5、1、5、10、15 mM不同濃度肌肽奈米粒 子對抑制人類結腸癌HCT-116細胞株作用機制之影響。由實驗結果得知,以5、10或15 mM肌肽奈米粒子處理72及96小時能使HCT-116細胞存活率顯著下降。進一步以0.5、1、5、10或15 mM肌肽奈米粒子處理HCT-116細胞株96小時進行後續試驗,發現肌肽奈米粒子會提升癌細胞Bax、Caspase 8、3、9及PARP基因表現量促進癌細胞凋亡作用;提升PI3K III、Beclin 1與LC 3基因表現促進癌細胞自噬作用;提升癌細胞內ROS含量及MLKL基因表現量,及降低ATP含量促進癌細胞壞死/程序性壞死。綜合上述結果可知,肌肽奈米粒子能藉由調控HCT-116細胞株細胞凋亡、細胞自噬、及細胞壞死/程序性壞死機轉,達到抑制癌細胞生長,進而抑制癌症。In this way, the present invention explores carnosine nanoparticles with different concentrations of 0.5, 1, 5, 10, and 15 mM. The effect of sub-inhibition on the mechanism of action of human colon cancer HCT-116 cell line. The experimental results showed that the viability of HCT-116 cells was significantly decreased after treatment with 5, 10 or 15 mM carnosine nanoparticles for 72 and 96 hours. The HCT-116 cell line was further treated with 0.5, 1, 5, 10 or 15 mM carnosine nanoparticles for 96 hours for follow-up experiments, and it was found that carnosine nanoparticles could increase the expression of Bax, Caspase 8, 3, 9 and PARP genes in cancer cells Promote apoptosis of cancer cells; increase the expression of PI3K III, Beclin 1 and LC 3 genes to promote autophagy in cancer cells; increase the content of ROS and MLKL gene expression in cancer cells, and reduce ATP content to promote cancer cell necrosis/programmed necrosis. Based on the above results, it can be seen that carnosine nanoparticles can inhibit the growth of cancer cells by regulating the apoptosis, autophagy, and necrosis/programmed necrosis mechanism of HCT-116 cell line, thereby inhibiting cancer.

綜上所述,本發明係一種肌肽奈米粒子用於製備調控腸癌細胞之 藥物的用途,可有效改善習用之種種缺點,所提肌肽奈米粒子(Carnosine nanoparticles, C-NPs)可藉由調控HCT-116細胞株細胞凋亡(Apoptosis)、細胞自噬(Autophagy)及細胞壞死/程序性壞死(Necrosis/Necroptosis)機轉抑制癌細胞生長以抑制癌症作用,進而使本發明之產生能更進步、更實用、更符合使用者之所須,確已符合發明專利申請之要件,爰依法提出專利申請。To sum up, the present invention relates to a carnosine nanoparticle used to prepare and regulate colorectal cancer cells. The use of drugs can effectively improve various shortcomings of conventional methods. The proposed Carnosine nanoparticles (C-NPs) can regulate HCT-116 cell line apoptosis (Apoptosis), cell autophagy (Autophagy) and cellular Necrosis/Necroptosis mechanism inhibits the growth of cancer cells to inhibit the effect of cancer, thereby making the invention more advanced, more practical, and more in line with the needs of users, which has indeed met the requirements of the invention patent application , to file a patent application in accordance with the law.

惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定 本發明實施之範圍;故,凡依本發明申請專利範圍及發明說明書內容所作之簡單的等效變化與修飾,皆應仍屬本發明專利涵蓋之範圍內。However, the above are only preferred embodiments of the present invention, and should not be limited to this The scope of implementation of the present invention; therefore, all simple equivalent changes and modifications made according to the scope of the patent application of the present invention and the contents of the description of the invention should still fall within the scope of the patent of the present invention.

without

第1圖,係本發明的肌肽奈米粒子對抑制人類結腸癌HCT-116細胞株作用機制之探討實驗架構示意圖。 第2A圖,係本發明的肌肽奈米粒子處理HCT-116細胞株72或96小時之細胞形態圖。 第2B圖,係本發明的肌肽奈米粒子對HCT-116細胞株細胞生存力之變化示意圖。 第3圖,係本發明的肌肽奈米粒子對HCT-116細胞株細胞凋亡之變化示意圖。 第4A圖,係本發明的肌肽奈米粒子對HCT-116細胞株Bax基因表現量之變化示意圖。 第4B圖,係本發明的肌肽奈米粒子對HCT-116細胞株Bcl 2基因表現量之變化示意圖。 第4C圖,係本發明的肌肽奈米粒子對HCT-116細胞株Caspase 9基因表現量之變化示意圖。 第4D圖,係本發明的肌肽奈米粒子對HCT-116細胞株Caspase 3基因表現量之變化示意圖。 第4E圖,係本發明的肌肽奈米粒子對HCT-116細胞株Caspase 8基因表現量之變化示意圖。 第4F圖,係本發明的肌肽奈米粒子對HCT-116細胞株PARP基因表現量之變化示意圖。 第5圖,係本發明的肌肽奈米粒子對HCT-116細胞株細胞自噬之變化示意圖。 第6A圖,係本發明的肌肽奈米粒子對HCT-116細胞株Beclin 1基因表現量之變化示意圖。 第6B圖,係本發明的肌肽奈米粒子對HCT-116細胞株PI3K III基因表現量之變化示意圖。 第6C圖,係本發明的肌肽奈米粒子對HCT-116細胞株LC 3基因表現量之變化示意圖。 第7A圖,係本發明的肌肽奈米粒子對HCT-116細胞株ROS含量之變化示意圖。 第7B圖,係本發明的肌肽奈米粒子對HCT-116細胞株ATP含量之變化示意圖。 第7C圖,係本發明的肌肽奈米粒子對HCT-116細胞株MLKL基因表現量之變化示意圖。Figure 1 is a schematic diagram of the experimental framework for the study of the mechanism of the carnosine nanoparticles of the present invention on inhibiting the human colon cancer HCT-116 cell line. Figure 2A shows the cell morphology of HCT-116 cell line treated with carnosine nanoparticles of the present invention for 72 or 96 hours. Figure 2B is a schematic diagram showing the change of the carnosine nanoparticles of the present invention on the cell viability of the HCT-116 cell line. Figure 3 is a schematic diagram showing the changes of the carnosine nanoparticles of the present invention on the apoptosis of HCT-116 cell line. Figure 4A is a schematic diagram showing the change of Bax gene expression in HCT-116 cell line by carnosine nanoparticles of the present invention. Figure 4B is a schematic diagram showing the change in the expression of the Bcl 2 gene of HCT-116 cell line by the carnosine nanoparticles of the present invention. Figure 4C is a schematic diagram of the change in the expression level of the Caspase 9 gene of the HCT-116 cell line by the carnosine nanoparticles of the present invention. Figure 4D is a schematic diagram of the change in the expression of the Caspase 3 gene of the HCT-116 cell line by the carnosine nanoparticles of the present invention. Figure 4E is a schematic diagram showing the change in the expression of the Caspase 8 gene of the HCT-116 cell line by the carnosine nanoparticles of the present invention. Figure 4F is a schematic diagram showing the change in the expression level of the PARP gene of the HCT-116 cell line by the carnosine nanoparticles of the present invention. Fig. 5 is a schematic diagram showing the change of autophagy of HCT-116 cell line by carnosine nanoparticles of the present invention. Figure 6A is a schematic diagram showing the change of the carnosine nanoparticles of the present invention on the expression of Beclin 1 gene in HCT-116 cell line. Figure 6B is a schematic diagram of the change in the expression level of the PI3K III gene of the HCT-116 cell line by the carnosine nanoparticles of the present invention. Figure 6C is a schematic diagram of the change in the expression of the LC 3 gene of the HCT-116 cell line by the carnosine nanoparticles of the present invention. Figure 7A is a schematic diagram showing the change of ROS content in HCT-116 cell line by carnosine nanoparticles of the present invention. Figure 7B is a schematic diagram showing the change of ATP content of HCT-116 cell line by carnosine nanoparticles of the present invention. Fig. 7C is a schematic diagram showing the change of MLKL gene expression in HCT-116 cell line by carnosine nanoparticles of the present invention.

Claims (7)

一種肌肽奈米粒子用於製備調控腸癌細胞之藥物的用途,包含給予有效劑量之化合物或其醫藥上可接受鹽類,及至少一種醫藥上可接受載劑;該化合物為肌肽奈米粒子(Carnosine nanoparticles, C-NPs),分子量為453.2,密度為1.019,其結構式如下:
Figure 03_image001
; 其中,該肌肽奈米粒子給予劑量濃度為0.5至15 mM,該腸癌細胞為人類結腸癌HCT-116細胞株。
Use of a carnosine nanoparticle for preparing a drug for regulating intestinal cancer cells, comprising administering an effective dose of a compound or a pharmaceutically acceptable salt thereof, and at least one pharmaceutically acceptable carrier; the compound is a carnosine nanoparticle ( Carnosine nanoparticles, C-NPs) with a molecular weight of 453.2 and a density of 1.019, its structural formula is as follows:
Figure 03_image001
; wherein, the carnosine nanoparticle is administered at a dose concentration of 0.5 to 15 mM, and the colorectal cancer cells are human colon cancer HCT-116 cell lines.
依申請專利範圍第1項所述之肌肽奈米粒子用於製備調控腸癌細胞之藥物的用途,其中,該藥物係藉由調控HCT-116細胞株細胞凋亡(Apoptosis)、細胞自噬(Autophagy)及細胞壞死/程序性壞死(Necrosis/Necroptosis)機轉抑制癌細胞生長,達到抑制癌症生成。According to the use of the carnosine nanoparticle described in the first item of the application scope for preparing a drug for regulating intestinal cancer cells, the drug is used for regulating HCT-116 cell line apoptosis (Apoptosis), cell autophagy ( Autophagy) and cell necrosis/necroptosis (Necrosis/Necroptosis) mechanism inhibits the growth of cancer cells and inhibits the formation of cancer. 依申請專利範圍第1項所述之肌肽奈米粒子用於製備調控腸癌細胞之藥物的用途,其中,該藥物係以與培養基混合方式處理HCT-116細胞株。According to the use of the carnosine nanoparticle described in item 1 of the application scope for preparing a drug for regulating intestinal cancer cells, the drug is mixed with a culture medium to treat HCT-116 cell line. 依申請專利範圍第1項所述之肌肽奈米粒子用於製備調控腸癌細胞之藥物的用途,其中,該載劑包含賦形劑、稀釋劑、增稠劑、填充劑、 黏結劑、崩解劑、潤滑劑、油性或非油性的基質、表面活性劑、懸浮劑、膠凝 劑、佐劑、防腐劑、抗氧化劑、穩定劑、色素、或香料。According to the use of the carnosine nanoparticles described in item 1 of the claimed scope for preparing a drug for regulating intestinal cancer cells, the carrier comprises excipients, diluents, thickeners, fillers, Binder, disintegrant, lubricant, oily or non-oily base, surfactant, suspending agent, gelling agents, adjuvants, preservatives, antioxidants, stabilizers, colors, or flavors. 依申請專利範圍第1項所述之肌肽奈米粒子用於製備調控腸癌細胞之藥物的用途,其中,該藥物之劑型為溶液。According to the use of the carnosine nanoparticle described in item 1 of the scope of application for preparing a medicine for regulating intestinal cancer cells, the dosage form of the medicine is a solution. 依申請專利範圍第1項所述之肌肽奈米粒子用於製備調控腸癌細胞之藥物的用途,其中,該肌肽奈米粒子所使用之肌肽(Carnosine)為(2S)-2-[(3-Amino-1-oxopropyl)amino]-3-(3H-imidazol-4-yl)propanoic acid,分子量為226.23,密度為1.4。Use of the carnosine nanoparticle described in item 1 of the application scope for preparing a drug for regulating intestinal cancer cells, wherein the carnosine used in the carnosine nanoparticle is (2S)-2-[(3 -Amino-1-oxopropyl)amino]-3-(3H-imidazol-4-yl)propanoic acid with a molecular weight of 226.23 and a density of 1.4. 依申請專利範圍第1項所述之肌肽奈米粒子用於製備調控腸 癌細胞之藥物的用途,其中,該藥物係投予該肌肽奈米粒子歷經72或96小時之 處理時間。The carnosine nanoparticles described in the first item of the patent scope of the application are used to prepare the regulation of intestinal Use of a drug for cancer cells, wherein the drug is administered to the carnosine nanoparticle for 72 or 96 hours processing time.
TW109130491A 2020-09-04 2020-09-04 Purpose of carnosine nanoparticles for use in preparing medicine of controlling intestinal cancer cells achieves the advantage of suppressing the growth of cancer cells to inhibit the cancer TW202210094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109130491A TW202210094A (en) 2020-09-04 2020-09-04 Purpose of carnosine nanoparticles for use in preparing medicine of controlling intestinal cancer cells achieves the advantage of suppressing the growth of cancer cells to inhibit the cancer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109130491A TW202210094A (en) 2020-09-04 2020-09-04 Purpose of carnosine nanoparticles for use in preparing medicine of controlling intestinal cancer cells achieves the advantage of suppressing the growth of cancer cells to inhibit the cancer

Publications (1)

Publication Number Publication Date
TW202210094A true TW202210094A (en) 2022-03-16

Family

ID=81746748

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109130491A TW202210094A (en) 2020-09-04 2020-09-04 Purpose of carnosine nanoparticles for use in preparing medicine of controlling intestinal cancer cells achieves the advantage of suppressing the growth of cancer cells to inhibit the cancer

Country Status (1)

Country Link
TW (1) TW202210094A (en)

Similar Documents

Publication Publication Date Title
Arnedos et al. Modulation of Rb phosphorylation and antiproliferative response to palbociclib: the preoperative-palbociclib (POP) randomized clinical trial
CN104520441A (en) Method for determining complete response to anticancer therapy
US9333194B2 (en) Use of ansamycin antibiotics and method of screening novel angiogenesis inhibitor
Wu et al. Effects of tetrandrine on glioma cell malignant phenotype via inhibition of ADAM17
Zhang et al. TMEM175 mediates Lysosomal function and participates in neuronal injury induced by cerebral ischemia-reperfusion
TW202023541A (en) Application of chiglitazar and its related compounds
Su et al. Metformin induces mitochondrial fission and reduces energy metabolism by targeting respiratory chain complex I in hepatic stellate cells to reverse liver fibrosis
Lee et al. Antiosteoporosis effects of a marine antimicrobial peptide pardaxin via regulation of the osteogenesis pathway
Ma et al. KCNMA1-AS1 attenuates apoptosis of epithelial ovarian cancer cells and serves as a risk factor for poor prognosis of epithelial ovarian cancer.
US20160369281A1 (en) Target point, preparation and method for treating human ADSL deficiency
Yang et al. Targeting cuproptosis by zinc pyrithione in triple-negative breast cancer
TW202210094A (en) Purpose of carnosine nanoparticles for use in preparing medicine of controlling intestinal cancer cells achieves the advantage of suppressing the growth of cancer cells to inhibit the cancer
CN104958306B (en) Platinum medicine is preparing the application in treating ovarian cancer to compound Hu 17 alone or in combination
CN106420791A (en) Application of miR-145-3p in preparing medicines for preventing or treating multiple myeloma disease
CA3200256A1 (en) Methods and systems of stratifying inflammatory disease patients
JP5742050B2 (en) NK cell activator and NK cell activation method
CN114907337A (en) Covalent inhibitors targeting CDK4 or CDK6 and uses thereof
CN111575232A (en) Application of JQ1 in inhibiting expression of T lymphocyte PD-1 and/or Tim-3
EP3258923A1 (en) Methods and materials for assessing chemotherapy responsiveness and treating cancer
US20190240207A1 (en) Method for treating cancer with dihydropyridine calcium antagonist
Li et al. Propranolol Inhibits the Growth of Cervical Cancer Cells by Inhibiting Cyclic Guanosine Monophosphate/Protein Kinase G (cGMP/PKG) Pathway
Yan et al. Diisopropylamine dichloroacetate alleviates liver fibrosis through inhibiting activation and proliferation of hepatic stellate cells
CN113413386B (en) Application of vanillin derivative in preparation of medicine for treating colorectal cancer combined with fusobacterium nucleatum infection
TWI648051B (en) Use of a compound for the preparation of a medicament for regulating metastasis of intestinal cancer cells
TW202220686A (en) Use of carnosine for preparing drug for colon cancer metastasis wherein carnosine can reduce the production of aberrant crypt (AC) and aberrant crypt foci (ACF) in the colorectal tissue and the expression of caudal type homeobox 2 (CDX2) and cytokeratin-20 (Krt20), thereby inhibiting colon cancer metastasis