TW202208828A - 具有光展量壓縮模組的照明系統及其方法 - Google Patents
具有光展量壓縮模組的照明系統及其方法 Download PDFInfo
- Publication number
- TW202208828A TW202208828A TW110103710A TW110103710A TW202208828A TW 202208828 A TW202208828 A TW 202208828A TW 110103710 A TW110103710 A TW 110103710A TW 110103710 A TW110103710 A TW 110103710A TW 202208828 A TW202208828 A TW 202208828A
- Authority
- TW
- Taiwan
- Prior art keywords
- interference
- beams
- sub
- lens
- optical
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/02—Interferometers
- G01B9/0209—Low-coherence interferometers
- G01B9/02091—Tomographic interferometers, e.g. based on optical coherence
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0062—Arrangements for scanning
- A61B5/0066—Optical coherence imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/44—Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
- A61B5/441—Skin evaluation, e.g. for skin disorder diagnosis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/02—Interferometers
- G01B9/02015—Interferometers characterised by the beam path configuration
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/02—Interferometers
- G01B9/02034—Interferometers characterised by particularly shaped beams or wavefronts
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/02—Interferometers
- G01B9/02055—Reduction or prevention of errors; Testing; Calibration
- G01B9/02056—Passive reduction of errors
- G01B9/02057—Passive reduction of errors by using common path configuration, i.e. reference and object path almost entirely overlapping
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/02—Interferometers
- G01B9/02055—Reduction or prevention of errors; Testing; Calibration
- G01B9/02075—Reduction or prevention of errors; Testing; Calibration of particular errors
- G01B9/02082—Caused by speckles
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/18—Arrangements with more than one light path, e.g. for comparing two specimens
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/48—Laser speckle optics
Landscapes
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Medical Informatics (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Animal Behavior & Ethology (AREA)
- Heart & Thoracic Surgery (AREA)
- Surgery (AREA)
- Molecular Biology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Dermatology (AREA)
- Optics & Photonics (AREA)
- Analytical Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Microscoopes, Condenser (AREA)
Abstract
本文提供的裝置和系統包含:一個光源,其經由一個多模光纖將一光束提供給一個光學模組;一個干涉物鏡模組,用於輸出經該光學模組處理過的光束,並且收集來自於一個樣品的干涉訊號;以及一個檢測器,用於檢測來自於該干涉物鏡模組的干涉訊號,其中該光學模組包含一光展量壓縮元件,其被建構成可將光束切分成至少兩個子光束,並且將該等子光束勻化成一照明場,並且使該照明場的形狀與感興趣的區域相符。
Description
本發明關於具有光展量壓縮模組的照明系統及其方法。
根據世界衛生組織的統計,過去十年來全球皮膚癌逐年增長,這與生活方式、人口老化和全球臭氧層的破壞息息相關。皮膚癌是由皮膚發生的癌症。它們肇因於異常細胞的發展,而這些異常細胞具有侵犯或擴散到身體其他部位的能力。
反射共軛焦顯微術(RCM)等具有細胞級解析度的光學成像技術正在發展中,用於輔助皮膚癌和其他皮膚病的診斷。然而,RCM通常被設計成具有較低的軸向解析度,難以在混濁的組織中獲得有效的穿透深度。相較於RCM,光學同調斷層掃瞄術(OCT)藉由寬帶光源和高NA光學元件提供了更好的軸向解析度,因而是一種用於顯現真皮-表皮交界處附近之截面微結構的有效工具。
最近的報告指出,這種高解析度OCT在皮膚疾病的診斷上具有優勢。藉由物鏡和樣品量間的動態聚焦,可以在B-掃描中穿透>300μm的深度而保持良好的橫向解析度。但是,由於混濁組織中的多次散射,個別OCT影像經常會因同調串擾而受到嚴重污染,使得黑色素團等小胞器難以被辨認出來,尤其是具有空間同調源的OCT更是如此。
本發明關於一種干涉裝置/系統,其使用一光展量壓縮模組來改善干涉影像的品質。本發明亦關於一種用於檢測干涉訊號的方法,其藉由施行光展量壓縮方法來產生樣品的高品質垂直截面(B-掃描)影像和水平截面影像(E-掃描)。
本發明提供一種干涉系統,其包含一個光源,其經由一個多模光纖將一光束提供給一個光學模組;一個干涉物鏡模組,用於輸出經該光學模組處理過的光束,並且收集來自於一個樣品的干涉訊號;以及一個檢測器,用於檢測來自於該干涉物鏡模組的干涉訊號,其中該光學模組包含一光展量壓縮元件,其被建構成可將光束切分成至少兩個子光束,並且將該等子光束勻化成一照明場,並且使該照明場的形狀與感興趣的區域相符。
在另一方面,本案提供一種用於檢測干涉訊號的方法,其包含下列步驟:由一光源提供一光束;藉由第一透鏡組減小來自於該光源之光束的光發散角;藉由一光學分束器將該光束切分成至少兩個子光束;勻化該等子光束,使照明場的形狀與感興趣的區域相符並且投射至一樣品上;以及檢測來自於該樣品的干涉訊號。
具有約1微米空間解析度的生物醫學成像系統可用於解析細胞結構,並且為臨床診斷和治療提供重要訊息。垂直截面成像(B-掃描)具有特殊意義,因為它可以提供細胞層間的相對形態訊息。具有高數值孔徑(NA)的光學成像系統可於活體內達成細胞成像。
一些光學成像系統具有V值約為60左右的小光展量光源,可以達成高效率的水平截面成像和B-掃描成像。但是在B-掃描模式下,大部份的光會因為光源的光展量有限而逸失,因此,B-掃描的速率仍有可能是緩慢的。此外,因為在部份同調線狀場域照明方案中的空間同調區域仍然很大,所以留存著一些同調偽像。依據本發明,其提供了一種簡單且有效的方法來窄化照明線寬(例如,窄化至約5μm),而接近組織學切片的一般厚度。
為了改善干涉影像的品質並且減少干涉影像上的偽影,本發明提供了圖1所示干涉系統的一具體例。在一些具體例中提供了一種干涉系統/裝置,其包含:光源1,經由多模光纖11將光束提供給光學模組2;干涉物鏡模組3,輸出來自於光學模組2的光束,並且在一測量過程中收集干涉訊號;以及檢測器4,其檢測來自於干涉物鏡模組3的干涉訊號,其中光學模組2包含一個光展量壓縮元件21,其被建構成以N值的壓縮比減小來自於光源1的光發散角,其中N至少為2。在某些具體例中,N為2至16、2至14、2至12、2至10,或是2至8,抑或是熟習本領域技術人士所公認可改善干涉影像之影像品質的其他合適範圍。在某些具體例中,N為2至8。在一些具體例中,壓縮比(即N值)被定義為:。因此,為了將來自於數值孔徑為和發射直徑為的多模光纖11之光線有效耦合至具有且照明線寬為的物鏡31中,所需要的壓縮比可被預估為。例如,在一些具體例中,當物鏡31的NA = 0.8時,可以選定壓縮比(根據上述的計算),以獲致約5μm的照明線寬。
為了能夠利用一多模光源達成有效率的B-掃描,需考慮到因為感興趣的區域和照明場之間錯配所造成的額外光學損失。例如,就具有二維檢測手段(如2-D攝像機)的光學同調斷層掃瞄(OCT)裝置而言,一種有效的光斑抑制方法是沿著正交於成像平面的方向將數個緊鄰的B-掃描加以複合。這些B掃描被同步獲取、解調和平均化,以抑制光斑雜訊,因為光斑圖案之間不太具有關聯性。為了使空間解析度的損失(即模糊程度)最小化且具有可接受的光斑對比度,通常將虛擬切片厚度選定為3~6μm,其接近於一般的組織學切片厚度。例如,由纖芯尺寸為106μm且NA = 0.22的多模光纖所發出的光線,即使採用高NA物鏡,照明場的最小線寬(損耗很小)也大約為20~40μm。由於照明場的線寬與目標虛擬切片厚度間存在巨大差異,所以B-掃描模式浪費了許多光子,而且B-掃描的速率受制於光子雜訊。在一些情況下,由多模光纖發射的光線可能會隨機偏極化,而且50%的光子可能會先於通過偏極分光鏡時損耗掉,然後再被線性偏極化。
在一些具體例中提供了一種干涉裝置(或是包含該裝置的系統),其包含一光源,其經由一多模光纖向一光學模組提供一光束;一干涉物鏡模組,其輸出經該光學模組處理過的光束,並且收集來自於一樣品的干涉訊號;以及一檢測器,其檢測來自於該干涉物鏡模組的干涉訊號,其中該光學模組包含一光展量壓縮元件,其被建構成可以將該等光束切分成至少兩個子光束,並且將該等子光束勻化至一照明場,並且使該照明場的形狀與有興趣的區域相符。
如圖1所示,光展量壓縮元件21包含一第一透鏡組211,其被建構成用於減小來自於光源1之光束的光發散角,以提供一照明點511。在某些情況下,第一透鏡組211包含變體光學元件;而且沿著第一方向的光點尺寸比沿著垂直於該第一方向的第二方向者更大。例如,由多模光纖11發射的光線先被第一透鏡組211所準直,然後被導引到壓縮光學元件上。在一些具體例中,第一透鏡組包含一投射透鏡、一個準直鏡、一個變體準直鏡、一個圓形對稱透鏡,或其組合。
在一些具體例中,該光展量壓縮元件包含一第一透鏡組,其被建構成用於減小來自於該光源之光束的光發散角並且投射到一光學分束器,其中該光學分束器將處理過的光束切分成至少兩個子光束,而該至少兩個子光束被一第二透鏡組進一步處理,再經由一偏極分光鏡進入該干涉物鏡模組。在一些具體例中,第二透鏡組包含一個縮束光學元件。在一些具體例中,子光束的數量取決於壓縮比N(由N值來決定)。在某些具體例中,壓縮比N是2至16、2至14、2至10,或是2至8。
光學壓縮元件21還包含一光學分束器212,其被建構成將被第一透鏡組211所處理的光束切分成至少兩個子光束,其中子光束的數量取決於壓縮比N。在某些具體例中,壓縮比N為4。在一些具體例中,光學分束器212選自於由反射鏡、稜鏡、楔形鏡及彼等之組合所組成的群組。熟習本領域技術人士將可容易選擇適當且合用的分束器,以達成相同的光學切分功能。在一些具體例中,光學分束器212包含兩個平行的反射鏡212a和212b,它們各具有一個銳緣。光束經由第一反射鏡212a的銳緣進入光學分束器212。經過幾次反射後(例如每兩次反射後),光束即稍微橫向偏移。第二反射鏡212b被設定成使一部份的光束被第二反射鏡212b的銳緣所截除。藉由仔細選擇反射鏡212a和212b的間距和傾斜角度,可將光束切分成任意數量的子光束,而這些子光束被水平排列如例示的照明點521。
在一些具體例中,第一透鏡組包含一投射透鏡、一準直鏡、一變體準直鏡、一圓形對稱透鏡,或是彼等之組合。在一些具體例中,光學分束器選自於由反射鏡、稜鏡、楔形鏡及彼等之組合所組成的群組。
光束被光學分束器212切分之後,可以選擇性地縮小這些子光束的照明面積,並且藉由一個第二透鏡組(例如縮束光學元件214)加以勻化,以及使其進入一干涉物鏡模組3中。該第二透鏡組調整了照明光束的空間和方向分佈。其目的在於將該照明場勻化於本發明裝置/系統所感興趣的區域內,並且使照明場的形狀與該裝置/系統所感興趣的區域相符,例如,產生更均勻的窄條狀照明場。在一些具體例中,一偏極分光鏡22和四分之一波片23被放置在第二透鏡組(例如縮束光學元件214)與干涉物鏡模組3之間。在某些具體例中,縮束光學元件214包含第一減束透鏡214a,其被建構成用於聚焦被光學分束器212所切分的子光束;以及第二減束透鏡214b,其被建構成用於使被第一減束透鏡214a所聚焦的子光束彼此重疊,並且將所得到的子光束聚焦至物鏡31的共用平面上(例如,設定為孔徑平面或是後焦平面)。在一些實例中,第一減束透鏡214a和第二減束透鏡214b是標準透鏡或場透鏡。子光束將被重組成照明點531,其匯集在垂直於第一方向的第二方向上。
在一些具體例中,光學分束器包含兩個平行的反射鏡,它們各具有一個銳緣。在一些具體例中,該縮束光學元件被建構成藉由第一減束透鏡來聚焦被光學分束器所切分的子光束,並且藉由第二減束透鏡使子光束彼此重疊,以將所得到的子光束聚焦至干涉物鏡模組中之物鏡的共用平面上。
干涉物鏡模組3被建構成用於將子光束重疊成均勻的輸出光束,以照射在樣品上。干涉物鏡模組3含有一個干涉元件32。從樣品收集背向散射光時,即經由干涉元件32產生干涉訊號。在干涉訊號通過四分之一波片23和偏極分光鏡33,由投射透鏡24進行投射,並且進一步被反射鏡25所反射之後,這些干涉訊號將被檢測器24所檢測並且轉變成為干涉影像,以顯現樣品的結構。在一些實例中,該檢測器可為二維(2D)的攝像機/檢測器,以使得本案干涉系統適用於線性(B-掃描)或廣域性(E-掃描)干涉掃描。
為了進一步增進被投射至樣品上的照明強度,在一些具體例中,光展量壓縮元件21還包含一擴束器215,如圖2所示在第一維度上拉伸/擴展子光束和照明點532。在一些實例中,擴束器215是一個凹透鏡或類似元件。照明強度取決於壓縮比N。擴束器215最好符合兩個條件:(1)子光束521的主要光線(大致上)彼此重疊於縮束光學元件214之後;(2)將各個子光束聚焦在一共用平面上,而且該平面被設定為干涉物鏡模組3之物鏡31的孔徑平面(aperture plane)或後焦平面。
在一些具體例中,光展量壓縮元件還包含一擴束器,其被建構成用於擴展被第一減束透鏡處理過的子光束。在某些具體例中,該擴束器是一凹透鏡。
在一些具體例中,光學模組2還包含一個開關(未圖示),用於將被投射在樣品上的輸出照明場由一線狀照明場(用於B-掃描)改變成為一面狀照明場(用於E-掃描)。可以將開關設置在擴束器215和第二縮束光學元件214b之間。也可以將開關設置在第二縮束光學元件214b和偏極分光鏡22之間。在某些具體例中,擴束器215作用為一開關,藉由將其位置移向第一縮束光學元件214a而使照明場在線狀照明場與面狀照明場之間變化。依據本發明,熟習於本領域技術者可以容易地選定適用的開關,以達成照明場切換於線與面之間,以便切換B-掃描和E-掃描的模式來進行照明測量。
在一些具體例中,光展量壓縮元件還包含一個開關,用於將被投射在樣品上的輸出照明場由一線狀照明場改變成為一面狀照明場。在某些具體例中,該開關被放置在擴束器和第二縮束光學元件之間,抑或是在第二縮束光學元件和偏極分光鏡之間。在某些具體例中,該開關為擴束器,其被建構成用於將其位置由擴束器的位置朝著第一擴束光學元件的位置移動。
在一些具體例中,干涉物鏡模組3包含一物鏡31以及一被建構成用於在測量期間產生干涉訊號的干涉元件32。如本案所揭露的圖式所示,在一些具體例中,干涉元件32包含一個塗覆有一反射鏡324的第一玻片321、一個第二玻片322和一個第三玻片323,其中塗覆反射鏡324是用於產生一參考臂,並且對於樣品的背向散射光產生干涉。在一個實例中,反射鏡324具有一與光線541成線性平行的構形,抑或是具有一圓形構形。反射鏡324亦可以包含一位於第一玻片之反側對應於反射鏡324之位置處的黑點。在一些實例中,第二玻片322具有約5%至30%的折射率,較佳為10%至20%的折射率,或是視情況所需的任何其他合適比率。第三玻片323是完全透明的,用於搭配樣品,以容許照明光線投射在樣品上。
在一些具體例中,光源1為放大式自發發射光源、超輻射發光二極體(SLD)、發光二極體(LED)、寬頻超連續譜光源、鎖模雷射器、可調諧雷射器、傅立葉域鎖模光源、光參量振盪器(OPO)、鹵素燈、Ce3+
:YAG晶體光纖光源、Ti3
+:Al2
O3
晶體光纖光源、Cr4+
:YAG晶體光纖光源,或是它們的組合等。在某些具體例中,光源1是Ce3+
:YAG晶體光纖光源、Ti3
+:Al2
O3
晶體光纖光源、Cr4+
:YAG晶體光纖光源,或是它們的組合。在某些具體例中,光源1是Ti3
+:Al2
O3
晶體光纖光源。在一些實例中,光源1可以是一個V值約60的小光展量光源。藉由本案干涉系統,干涉影像的掃描速率會增加,同時可改善影像品質,如圖3所示。圖3(a)和(b)是正常人類皮膚的B-掃描干涉影像,其壓縮比為6(N=6)。據此,舉例而言,可以容易地鑑定出乳突狀和網狀真皮中膠原纖維的精細結構、角質細胞的截面走向、基底細胞的某些排列狀況以及交界處附近的黑色素分佈。
在一般的照明系統中,若採用傳統的科勒氏(Kohler)照明系統,則大部份的光線將被參考鏡所阻擋。依據本發明,本發明的干涉系統可以選擇性地使照射在樣品上的光束偏移,以避免光線被參考鏡所阻擋,從而防止干涉影像上出現線狀偽影。
在一些具體例中,該干涉物鏡模組是一個米勞型(Mirau type)干涉物鏡模組、一個邁克遜型(Michelson type)干涉模組,或是一個馬赫-曾德爾(Mach-Zehnder)干涉物鏡模組。在某些具體例中,干涉物鏡模組是一個米勞型干涉物鏡模組。
在圖4和圖5所例示的一些具體例中,第一透鏡組411是一個變體準直鏡(例如凸透鏡或柱狀透鏡),使沿著第一方向的光點尺寸比垂直於第一方向的第二方向者更大。在一些具體例中,第一透鏡組411是由圓形對稱透鏡組成,以使照明場512成為圓形。當圓形光束進入光學分束器212時,將會使子光束生成元件符號522所顯示的形狀。
在圖4所示的本發明另一具體例中,在系統/裝置中使用一光束轉向元件,其照明場呈圓形。在一些具體例中,光展量壓縮元件21包含一個第二透鏡組,其包含一擴束器、一場透鏡以及一光束轉向元件,以勻化子光束。照明光束的空間和方向分佈是藉由第二透鏡組來調整。其目的在於將該照明場勻化於感興趣的區域內,並且使照明場的形狀與該裝置/系統所感興趣的區域相符。例如,產生更均勻的窄條狀照明場。在某具體例中,光展量壓縮元件21是由一個第二透鏡組所組成,該第二透鏡組包含一擴束器、一場透鏡和一個光束轉向元件,以勻化照明場。擴束器216被建構成沿第一方向拉伸/擴展子光束522,以提供子光束533。在一些具體例中,擴束器216是一個負焦距柱狀透鏡。熟習本領域技術人士可以選擇合適的光學透鏡來達成相同的功能。在一些具體例中,並非是將照明場直接投射到樣品上,而是將一光束轉向元件218放置在一場透鏡217和一個偏極分光鏡22之間,以產生兩個照明場。光束轉向元件218被建構成用於調整一部份子光束521的照射角度,以將子光束522分離成為至少兩個照明場。在一些具體例中,光束轉向元件218選自於由楔形鏡、稜鏡及彼等之組合所組成的群組;抑或是類似的元件。此一配置之目的在於避免反射鏡324的中央遮擋現象,以及同時以對稱的方式來照射樣品。各個照明場是由多個子光束所形成(例如圖4中顯示兩個子光束),且照明場並非均一。為了增進照明場的均一性,使兩個照明場551在靠近323處重疊且些微橫向偏移,以產生更均勻的照明場542。兩個照明場551與所得到之均勻照明場542的空間關係顯示於543中。在此配置中,光束轉向元件218的光束轉向角可以小於整組光束的匯聚角之一半。因此,穿過光束轉向元件218的光束不平行於未穿過光束轉向元件218的光束。
在一些具體例中,光展量壓縮元件包含一第一透鏡組,其被建構成用於減小來自於光源的光發散角並且投射至一光學分束器,其中該光學分束器將處理過的光束切分成至少兩個子光束,而該至少兩個子光束被一第二透鏡組進一步處理,再經由一偏極分光鏡進入該干涉物鏡模組。在某些具體例中,該第二透鏡組包含一擴束器、一場透鏡和一光束轉向元件,以勻化子光束。在某些具體例中,擴束器擴展了子光束並且投射到一場透鏡,隨後由光束轉向元件進行處理。在某些具體例中,第一透鏡組為一變體準直鏡,使照明場呈圓形。在某具體例中,擴束器是一個負焦距柱狀透鏡。在一些實施例中,光束轉向元件被建構成用於調整一部份子光束的照明角度,以將子光束分離成為至少兩個照明場。在某些具體例中,光束轉向元件(218)選自於由楔形鏡、稜鏡及彼等之組合所組成的群組。在某些具體例中,光束轉向元件(218)被放置在場透鏡和一偏極分光鏡之間。
在如圖5所示的另一個具體例中提供了一個實例,顯示如何經由本發明系統/裝置來進行E-掃描干涉測量。光展量壓縮元件21包含一擴束器216,其被建構成沿著第一維度拉伸/擴展子光束522,以提供子光束533。在一些具體例中,擴束器216是一負焦距柱狀透鏡。熟習本領域技術人士可以選擇合適的光學透鏡來達成相同的功能。
在一些具體例中,並非是將照明場直接投射到樣品上,而是將光束轉向元件218放置於場透鏡217後方,以產生兩個照明場。正焦距柱狀透鏡219被放置於一光束轉向元件218前方,將照明場輸入干涉物鏡模組3中,以將線狀照明場改變為面狀照明場,如圖5所示。可以將正焦距柱狀透鏡219定位於擴束器216和場透鏡217之間。當放置有正焦距柱狀透鏡219時,穿過光束轉向元件218(例如楔形鏡)的子光束成為兩個圓點552,而一照明場(輸出光點543)將會照射在樣品上,以進行E-掃描干涉測量。
在一些具體例中,光展量壓縮元件還包含一被放置在擴束器和場透鏡之間的正焦距柱狀透鏡。在某些具體例中,該正焦距柱狀透鏡將穿過光束轉向元件的子光束輸入至兩個圓點,使線狀照明場改變成為面狀照明場。
藉著使一多模光纖所發射出的光線聚焦於一條狹窄直線,以增加照明強度,並且降低照明的空間同調。在一些具體例中,當檢測器是一具有200,000個電子之滿井容量且於近紅外區具有低量子效率(<20%)的二維攝像機(例如PhotonFocus MV1-D1024E-160-CL)時,該攝像機在10-mW光功率位準下於0.02毫秒達到飽和,且在1024 ×3像素格式下可達成>20 kHz的攝像機框率,其接近於攝像機像素時脈的上限。
根據本發明,一具有光展量壓縮照明功能的例示系統提供約1μm2
的空間同調面積,其約略等於本案干涉系統的空間解析度。因此,大部份的同調串擾被排除,且B-掃描影像品質明顯提高,如圖6所示。圖6A顯示以高空間同調照明得到的B-掃描影像。圖6B顯示以低空間同調照明得到的B-掃描影像。其清楚顯示,細胞核、黑色素團、真皮-表皮之交界處和上層真皮之乳頭狀結構的可見度均顯著提高。
圖6C顯示以低空間同調照明所獲得之具有~5μm虛擬切片厚度的B-掃描影像,其更接近組織切片,且更進一步降低了光斑對比度。圖6D顯示以廣域照明所獲得的三維影像,其中使用元件219以進行體積成像。
在圖5所顯示的一些具體例中,正焦距柱狀透鏡219被定位以供用作為一用於切換B-掃描和E-掃描的開關。當開關219啟動時(亦即,位於擴束器216和場透鏡217之間),穿過光束轉向元件218的子光束變成552中所示的兩個圓點,且一照明場(輸出光點543)將會照射在樣品上,以進行E-掃描干涉測量。
在一些具體例中,藉由使用本案干涉系統,將可使具有~5μm虛擬切片厚度的B-掃描接近於一組織切片。再者,光斑對比度將會進一步降低。藉由插入開關219(例如正焦距柱狀透鏡),可以產生廣域照明並且可以進行體積成像,如圖6(d)所示。
本發明還提供一種用於檢測干涉訊號的方法,以改善干涉影像的品質,其包含:由一光源提供一光束;藉由第一透鏡組減小來自於該光源的該光束的光發散角;藉由一光學分束器將該光束切分成至少兩個子光束;勻化該等子光束,使照明場的形狀與感興趣的區域相符,並且投射至一樣品上;以及檢測由該樣品背向散射的干涉訊號。
在一些具體例中提供了一種用於檢測干涉訊號的方法,此方法包含:由一光源提供一光束;藉由第一透鏡組減小來自於該光源的該光束的光發散角;藉由一光學分束器將該光束切分成至少兩個子光束;勻化該等子光束,並且藉由聚焦被該光學分束器所切分的子光束以及重疊所得到之子光束的照明場,並且投射至一樣品上,以勻化子光束並且使照明場的形狀與感興趣的區域相符;以及檢測由該樣品背向散射的干涉訊號。
在某些具體例中,該照明場為一線狀照明場或是一面狀照明場。在某些具體例中,該方法還包含藉由一開關將該線狀照明場切換成為該面狀照明場。在某些具體例中,該開關裝置為一正焦距柱狀透鏡。
因為本發明的方法和裝置採用光展量壓縮方法/手段,將光切分成子光束,並且將它們重疊成為一照明場,所以只有很少的光子會被浪費掉。緣此,可以增加樣品上的照明光束強度、提高掃描速率,並且改善影像品質。此外,藉由均勻重疊子光束的照明場,均勻的照射將會改善干涉影像的品質,使皮膚的影像呈現更多的結構細節,僅具有極少的偽像或光斑。
雖然本文已出示並且闡述了本發明的較佳具體例,但對於熟習本領域技術人士而言,這些具體例顯然僅供例示。熟習本領域技術人士可以完成許多更改、變化和取代,而不會悖離本發明。應當理解的是,本文所敘述之本發明具體例的各種替代方案均可供用於實施本發明。本案意欲以下列請求項來界定本發明的範圍,並且藉此涵蓋落入這些請求項之範圍內的方法和結構以及其均等物。
1:光源
11:多模光纖
2:光學模組
21:光展量壓縮元件
211:第一透鏡組
212:光學分束器
212a:第一反射鏡
212b:第二反射鏡
214:縮束光學元件
214a:第一減束透鏡
214b:第二減束透鏡
215:擴束器
216:擴束器
217:場透鏡
218:光束轉向元件
219:正焦距柱狀透鏡、開關
22:偏極分光鏡
23:四分之一波片
24:投射透鏡、檢測器
25:反射鏡
3:干涉物鏡模組
31:物鏡
32:干涉元件
321:第一玻片
322:第二玻片
323:第三玻片
324:反射鏡
33:偏極分光鏡
4:檢測器
411:第一透鏡組
511:照明點
512:照明場
521:照明點、子光束
522:子光束
531:照明點
533:子光束
541:光線
542:照明場
543:輸出光點
551:照明場
552:圓點
藉由參考闡述了使用本發明原理的例示性具體例的以下詳細說明和下列附圖,更能夠理解本發明的特徵和優點:
圖1顯示本發明干涉裝置/系統的具體例。
圖2顯示本發明干涉裝置/系統的具體例。
圖3(a)~(b)顯示來自於本發明干涉裝置的人體皮膚干涉影像。
圖4顯示本發明裝置/系統的一個具體例,其具有線狀的照明場。
圖5顯示本發明裝置/系統的一個具體例,其具有面狀的照明場。
圖6(a)~(d)顯示來自於本發明干涉裝置/系統的人體皮膚干涉影像。
無
1:光源
11:多模光纖
2:光學模組
21:光展量壓縮元件
211:第一透鏡組
212:光學分束器
212a:第一反射鏡
212b:第二反射鏡
214:縮束光學元件
214a:第一減束透鏡
214b:第二減束透鏡
22:偏極分光鏡
23:四分之一波片
24:投射透鏡、檢測器
25:反射鏡
3:干涉物鏡模組
31:物鏡
32:干涉元件
321:第一玻片
322:第二玻片
323:第三玻片
324:反射鏡
4:檢測器
411:第一透鏡組
511:照明點
521:照明點、子光束
531:照明點
541:光線
Claims (34)
- 一種干涉裝置,其包含: 一個光源,其經由一個多模光纖將一光束提供給一個光學模組; 一個干涉物鏡模組,用於輸出經該光學模組處理過的光束,並且收集來自於一樣品的干涉訊號;以及 一個檢測器,用於檢測來自於該干涉物鏡模組的干涉訊號, 其中該光學模組包含一光展量壓縮元件,其被建構成用於將該等光束切分成至少兩個子光束,並且將該等子光束勻化成一照明場,並且使該照明場的形狀與感興趣的區域相符。
- 如請求項1所述的干涉裝置,其中該光展量壓縮元件包含一第一透鏡組,其減小來自於該光源之光束的光發散角並且投射到一光學分束器,其中該光學分束器將處理過的光束切分成至少兩個子光束,而該至少兩個子光束被一第二透鏡組進一步處理,再經由一偏極分光鏡進入該干涉物鏡模組。
- 如請求項2所述的干涉裝置,其中該第二透鏡組包含一縮束光學元件。
- 如請求項3所述的干涉裝置,其中子光束的數量由壓縮比N來決定。
- 如請求項4所述的干涉裝置,其中該壓縮比N為2至16、2至14、2至10,或是2至8。
- 如請求項2所述的干涉裝置,其中該第一透鏡組包含一投射透鏡、一準直鏡、一變體準直鏡、一圓形對稱透鏡,或是彼等之組合。
- 如請求項2所述的干涉裝置,其中該光學分束器選自於由反射鏡、稜鏡、楔形鏡及彼等之組合所組成的群組。
- 如請求項7所述的干涉裝置,其中該光學分束器包含兩個平行的反射鏡,它們各具有一銳緣。
- 如請求項3所述的干涉裝置,其中該縮束光學元件被建構成藉由第一減束透鏡來聚焦被該光學分束器所切分的子光束,並且藉由第二減束透鏡使該等子光束彼此平行,從而將所得到的子光束聚焦至該干涉物鏡模組中之物鏡的共用平面上。
- 如請求項9所述的干涉裝置,其中該光展量壓縮元件還包含一擴束器,其被建構成用於擴展被該第一減束透鏡所處理的子光束。
- 如請求項10所述的干涉裝置,其中該光束擴展器是一凹透鏡。
- 如請求項1所述的干涉裝置,其中該光展量壓縮元件包含一第一透鏡組,其被建構成用於減小該光源的光發散角並且投射到一光學分束器,其中該光學分束器將處理過的光束切分成至少兩個子光束,而該至少兩個子光束被一第二透鏡組進一步處理,再經由一偏極分光鏡進入該干涉物鏡模組。
- 如請求項12所述的干涉裝置,其中該第二透鏡組包含一擴束器、一場透鏡和一光束轉向元件,以勻化該等子光束。
- 如請求項13所述的干涉裝置,其中該擴束器擴展該等子光束並且投射至一場透鏡,隨後由一光束轉向元件進行處理。
- 如請求項12所述的干涉裝置,其中該第一透鏡組為一變體準直鏡,使該照明場呈圓形。
- 如請求項14所述的干涉裝置,其中該光束擴展器為一負焦距柱狀透鏡。
- 如請求項14所述的干涉裝置,其中該光束轉向元件被建構成用於調整一部份子光束的照明角度,以將該等子光束分離成為至少兩個照明場。
- 在如請求項14所述的干涉裝置,其中該光束轉向元件選自於由楔形鏡、稜鏡及彼等之組合所組成的群組。
- 如請求項14所述的干涉裝置,其中該光束轉向元件被放置在該場透鏡和一偏極分光鏡之間。
- 如請求項14所述的干涉裝置,其中該光展量壓縮元件還包含被放置在該擴束器和該場透鏡之間的一正焦距柱狀透鏡。
- 如請求項20所述的干涉裝置,其中該正焦距柱狀透鏡將穿過該光束轉向元件的子光束輸入成兩個圓點,從而將一線狀照明場改變成為一面狀照明場。
- 如請求項10所述的干涉裝置,其中該光展量壓縮元件還包含一開關,用於使被投射在該樣品上的輸出照明場由一線狀照明場改變成為一面狀照明場。
- 如請求項22所述的干涉裝置,其中該開關被放置在該擴束器和該第二縮束光學元件之間,或是在該第二縮束光學元件和該偏極分光鏡之間。
- 如請求項23所述的干涉裝置,其中該開關為該擴束器,其被建構成用於將其位置由該擴束器的位置朝向該第一擴束光學元件的位置移動。
- 如請求項3所述的干涉裝置,其中該干涉物鏡模組被建構成用將該等子光束的照明場重疊成一輸出照明場。
- 如請求項1所述的干涉裝置,其中該檢測器是2D檢測器。
- 如請求項1所述的干涉裝置,其中該光源為放大式自發發射光源、超輻射發光二極體(SLD)、發光二極體(LED)、寬頻超連續譜光源、鎖模雷射器、可調諧雷射器、傅立葉域鎖模光源、光參量振盪器(OPO)、鹵素燈、Ce3+ :YAG晶體光纖光源、Ti3 +:Al2 O3 晶體光纖光源、Cr4+ :YAG晶體光纖光源,或是它們的組合。
- 如請求項27所述的干涉系統,其中該光源是Ce3+ :YAG晶體光纖光源、Ti3 +:Al2 O3 晶體光纖光源、Cr4+ :YAG晶體光纖光源,或是它們的組合。
- 如請求項1所述的干涉裝置,其中該干涉物鏡模組包含一干涉元件,其被建構成在測量期間產生干涉訊號。
- 如請求項1所述的干涉系統,其中該干涉物鏡模組為米勞型(Mirau type)干涉物鏡模組、邁克遜型(Michelson type)干涉模組,或是馬赫-曾德爾(Mach Zehnder)干涉物鏡模組。
- 一種用於檢測干涉訊號的方法,其包含: 由一光源提供一光束; 藉由第一透鏡組減小來自於該光源之光束的光發散角; 藉由一光學分束器將該光束切分成至少兩個子光束; 勻化該等子光束,並且使該照明場的形狀與感興趣的區域相符,並且投射至一樣品上;以及 檢測由該樣品背向散射的干涉訊號。
- 如請求項31所述的方法,其中該照明場為一線狀照明場或是一面狀照明場。
- 如請求項32所述的方法,其中該方法還包含藉由一開關將該線狀照明場切換成為該面狀照明場。
- 如請求項33所述的方法,其中該開關為一正焦距柱狀透鏡。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202062968170P | 2020-01-31 | 2020-01-31 | |
US62/968,170 | 2020-01-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202208828A true TW202208828A (zh) | 2022-03-01 |
Family
ID=77078481
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110103710A TW202208828A (zh) | 2020-01-31 | 2021-02-01 | 具有光展量壓縮模組的照明系統及其方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230078844A1 (zh) |
CN (1) | CN115039011A (zh) |
TW (1) | TW202208828A (zh) |
WO (1) | WO2021155381A1 (zh) |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5473426A (en) * | 1993-03-05 | 1995-12-05 | Nikon Corporation | Defect inspection apparatus |
US6252715B1 (en) * | 1997-03-13 | 2001-06-26 | T. Squared G, Inc. | Beam pattern contractor and focus element, method and apparatus |
US6753161B2 (en) * | 1997-03-27 | 2004-06-22 | Oncosis Llc | Optoinjection methods |
AU2001249237A1 (en) * | 2000-03-16 | 2001-09-24 | Spectrumedix Corporation | Multi-wavelength array reader for biological assay |
CN101099104B (zh) * | 2004-11-24 | 2010-10-27 | 巴特尔纪念研究所 | 用于细胞成像的光学系统 |
WO2006111201A1 (en) * | 2005-04-18 | 2006-10-26 | Pantec Biosolutions Ag | Laser microporator |
JP4958714B2 (ja) * | 2007-10-09 | 2012-06-20 | キヤノン株式会社 | 走査光学装置及びそれを用いた画像形成装置 |
US8115904B2 (en) * | 2008-05-30 | 2012-02-14 | Corning Incorporated | Illumination system for sizing focused spots of a patterning system for maskless lithography |
US8102592B2 (en) * | 2010-03-24 | 2012-01-24 | Unipel Technologies, LLC | Reflective display using calibration data for electrostatically maintaining parallel relationship of adjustable-depth cavity component |
DE102011011734B4 (de) * | 2011-02-10 | 2014-12-24 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Vorrichtung, Anordnung und Verfahren zur Interferenzstrukturierung von flächigen Proben |
KR101675039B1 (ko) * | 2012-04-12 | 2016-11-10 | 에이에스엠엘 네델란즈 비.브이. | 위치 측정 방법, 위치 측정 장치, 리소그래피 장치 및 디바이스 제조 방법, 광학 요소 |
CA2882784C (en) * | 2014-11-05 | 2021-02-02 | National Taiwan University | Three-dimensional optical coherence tomography apparatus and its application |
JP6245590B1 (ja) * | 2016-06-20 | 2017-12-13 | 公立大学法人大阪市立大学 | 皮膚診断装置、皮膚状態出力方法、プログラムおよび記録媒体 |
WO2018203174A1 (en) * | 2017-05-02 | 2018-11-08 | Novartis Ag | Reconfigurable optical coherence tomography (oct) system |
FR3081738B1 (fr) * | 2018-06-05 | 2020-09-04 | Imagine Optic | Procedes et systemes pour la generation d'impulsions laser de forte puissance crete |
-
2021
- 2021-02-01 CN CN202180012110.8A patent/CN115039011A/zh active Pending
- 2021-02-01 US US17/796,275 patent/US20230078844A1/en active Pending
- 2021-02-01 WO PCT/US2021/016107 patent/WO2021155381A1/en active Application Filing
- 2021-02-01 TW TW110103710A patent/TW202208828A/zh unknown
Also Published As
Publication number | Publication date |
---|---|
CN115039011A (zh) | 2022-09-09 |
US20230078844A1 (en) | 2023-03-16 |
WO2021155381A1 (en) | 2021-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6118441B2 (ja) | 適応光学網膜結像装置及び方法 | |
US4838679A (en) | Apparatus for, and method of, examining eyes | |
US10398306B2 (en) | Optical imaging device and method for imaging a sample | |
US8789950B2 (en) | Confocal line-scanning ophthalmoscope | |
US8446595B2 (en) | Method and apparatus for detecting contour data and/or optical characteristics of a three-dimensional semitransparent object | |
JP7414807B2 (ja) | ハイパースペクトル装置及び方法 | |
KR102044198B1 (ko) | 촬상 장치 | |
JP6701322B2 (ja) | 点像分布関数の測定装置、測定方法、画像取得装置および画像取得方法 | |
WO2021082120A1 (zh) | 一种高速立体三维多模态成像系统和方法 | |
JP6431400B2 (ja) | 眼科撮影装置および眼科装置 | |
TW202208828A (zh) | 具有光展量壓縮模組的照明系統及其方法 | |
JP2017196210A (ja) | 眼科撮影装置 | |
KR101791920B1 (ko) | 단일검출기 기반의 다초점 광 단층 영상 시스템 | |
KR20190028270A (ko) | 동시 직각 스캐닝 듀얼 빔 광 결맞음 영상시스템 | |
JP7389487B2 (ja) | 干渉撮像装置およびその用途 | |
CN113873933A (zh) | 光学系统及其检测方法 | |
TWI855069B (zh) | 光學系統及其檢測方法 | |
Yoon | Gabor-Domain Optical Coherence Microscopy Combined with Fluorescence Microscopy | |
CN111474141A (zh) | 一种干涉显微成像方法及干涉显微镜 | |
Han et al. | High speed slit-scanning confocal laser microscopy with an acousto-optic beam deflector and a line scan camera | |
KR20170005625A (ko) | 다크필드 조명기반 편광민감성 광간섭 단층영상 시스템 및 그 방법 | |
KR20180073253A (ko) | 영상 진단 장치 |