TW202207907A - Suppression of cytokine release and cytokine storm - Google Patents

Suppression of cytokine release and cytokine storm Download PDF

Info

Publication number
TW202207907A
TW202207907A TW110125635A TW110125635A TW202207907A TW 202207907 A TW202207907 A TW 202207907A TW 110125635 A TW110125635 A TW 110125635A TW 110125635 A TW110125635 A TW 110125635A TW 202207907 A TW202207907 A TW 202207907A
Authority
TW
Taiwan
Prior art keywords
curcumin
virus
cytokines
disease
cytokine
Prior art date
Application number
TW110125635A
Other languages
Chinese (zh)
Inventor
彼德 P 索迪羅
羅倫斯 海爾森
Original Assignee
美商標徑製藥公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/945,195 external-priority patent/US20200360300A1/en
Application filed by 美商標徑製藥公司 filed Critical 美商標徑製藥公司
Publication of TW202207907A publication Critical patent/TW202207907A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4848Monitoring or testing the effects of treatment, e.g. of medication
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/12Ketones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/20Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/22Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
    • A61K31/23Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin of acids having a carboxyl group bound to a chain of seven or more carbon atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/22Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
    • A61K31/23Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin of acids having a carboxyl group bound to a chain of seven or more carbon atoms
    • A61K31/232Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin of acids having a carboxyl group bound to a chain of seven or more carbon atoms having three or more double bonds, e.g. etretinate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • A61K31/683Diesters of a phosphorus acid with two hydroxy compounds, e.g. phosphatidylinositols
    • A61K31/685Diesters of a phosphorus acid with two hydroxy compounds, e.g. phosphatidylinositols one of the hydroxy compounds having nitrogen atoms, e.g. phosphatidylserine, lecithin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/17Lymphocytes; B-cells; T-cells; Natural killer cells; Interferon-activated or cytokine-activated lymphocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/52Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Cell Biology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Biotechnology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Emergency Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Zoology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Virology (AREA)
  • Medical Informatics (AREA)
  • Toxicology (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)

Abstract

The present invention includes methods and compositions for ameliorating symptoms or treating one or more adverse reactions triggered by infectious diseases or disease conditions that trigger a widespread release of cytokines in a subject comprising the steps of: identifying the subject in need of amelioration of symptoms or treatment of the infectious diseases or disease conditions that trigger a widespread release of cytokines; and administering one or more pharmaceutical compositions comprising a therapeutically effective amount of a curcumin extract, curcuminoids or synthetic curcumin (S-curcumin) and derivatives thereof, and lipids dissolved or dispersed in a suitable aqueous or non-aqueous medium sufficient to reduce the level of cytokines in the host.

Description

細胞素釋放及細胞素風暴之抑制Cytokine release and inhibition of cytokine storm

本發明大體上係關於觸發細胞素級聯的傳染性疾病及疾病病症領域,且更特定言之,關於減少細胞素級聯的組合物之用途。The present invention relates generally to the field of infectious diseases and disease conditions that trigger cytokine cascades, and more particularly, to the use of compositions that reduce cytokine cascades.

在不限制本發明之範疇下,其先前技術描述關於觸發例如過敏性細胞素級聯的傳染性疾病及疾病病症。Without limiting the scope of the present invention, its prior art describes infectious diseases and disease conditions that trigger, for example, the allergic cytokine cascade.

已頒予Har-Noy的題為「T-cell compositions that elicit type I cytokine response」的美國專利第8,354,276號係關於描述一種操作同種異體細胞以用於同種異體細胞療法方案之方法。該方法提供一種高度活化的同種異體T細胞之組合物,其經輸注至免疫活性癌症患者中以激發一種稱為「鏡像效應(Mirror Effect)」的新穎抗腫瘤免疫機制。本發明人認為,與移植物中的T細胞介導有益移植物抗腫瘤(GVT)及有害移植物抗宿主(GVH)效應的當前同種異體細胞療法方案對比,本發明之同種異體細胞刺激T細胞來介導此等效應之「鏡像」。據稱本發明之高度活化的同種異體細胞在尚未曾進行先前骨髓移植或接受化學療法及/或放射調理方案的患者中在完全HLA錯配情境下刺激宿主免疫。US Patent No. 8,354,276 to Har-Noy, entitled "T-cell compositions that elicit type I cytokine response," describes a method of manipulating allogeneic cells for use in an allogeneic cell therapy regimen. This approach provides a composition of highly activated allogeneic T cells infused into immunocompetent cancer patients to elicit a novel anti-tumor immune mechanism known as the "Mirror Effect". The inventors believe that in contrast to current allogeneic cell therapy regimens in which T cells in the graft mediate beneficial graft-versus-tumor (GVT) and detrimental graft-versus-host (GVH) effects, the allogeneic cells of the present invention stimulate T cells to mediate the "mirror" of these effects. The highly activated allogeneic cells of the present invention are said to stimulate host immunity in the context of complete HLA mismatch in patients who have not had prior bone marrow transplantation or received chemotherapy and/or radiation conditioning regimens.

已頒予Li等人的美國專利第8,309,519號題為「Compositions and methods for inhibiting vascular permeability」且係關於用於抑制血管滲透性及病理性血管生成之化合物、組合物及方法。此等發明人教示用於產生及篩選能夠抑制血管滲透性及病理性血管生成之化合物及組合物之方法。據稱所描述的組合物可用於抑制血管滲透性及病理性血管生成之方法,包括抑制由特定血管生成、滲透性及發炎因子(諸如例如VEGF、βFGF及凝血酶)誘導的血管滲透性及病理性血管生成之方法。US Patent No. 8,309,519, issued to Li et al., is entitled "Compositions and methods for inhibiting vascular permeability" and relates to compounds, compositions and methods for inhibiting vascular permeability and pathological angiogenesis. These inventors teach methods for generating and screening compounds and compositions capable of inhibiting vascular permeability and pathological angiogenesis. The described compositions are said to be useful in methods of inhibiting vascular permeability and pathological angiogenesis, including inhibition of vascular permeability and pathology induced by specific angiogenic, permeable, and inflammatory factors such as, for example, VEGF, βFGF, and thrombin Methods of sexual angiogenesis.

已頒予Keller的美國專利第7,479,498號題為「Treatments for viral infections」且係關於用於治療病毒感染及誘導細胞素風暴的其他疾病及病症之改良的方法及組合物。進一步地講,本發明係關於包含槲皮素及抗驚厥劑(諸如苯妥英)與綜合維生素(multivitamins)之組合之新穎組合物作為抗病毒組合物及其使用方法。US Patent No. 7,479,498 to Keller, entitled "Treatments for viral infections," relates to improved methods and compositions for treating viral infections and other diseases and disorders that induce cytokine storms. Further, the present invention relates to novel compositions comprising quercetin and a combination of anticonvulsants such as phenytoin and multivitamins as antiviral compositions and methods of their use.

由O'Toole等人申請的美國專利申請案第20100075329號題為「Methods For Predicting Production Of Activating Signals By Cross-Linked Binding Proteins」且係關於特異性結合至人類介白素-21受體(IL21R)的人類結合蛋白及其抗原結合片段,及其用途。據稱本發明包括預測本發明結合蛋白是否可在體內呈現激動活性且產生細胞素風暴之方法。此外,據稱本發明提供基於幾種IL21反應性基因的鑑定來確定抗IL21R結合蛋白是否為中和抗IL21R結合蛋白之方法。最後,據稱結合蛋白可用作IL21R活性之拮抗劑,由此調節一般的免疫反應,且特定言之彼等由IL21R介導的免疫反應。U.S. Patent Application No. 20100075329, filed by O'Toole et al., is entitled "Methods For Predicting Production Of Activating Signals By Cross-Linked Binding Proteins" and relates to specific binding to the human interleukin-21 receptor (IL21R) Human binding proteins and antigen-binding fragments thereof, and uses thereof. The present invention is said to include methods for predicting whether the binding proteins of the present invention can exhibit agonistic activity and produce a cytokine storm in vivo. Furthermore, the present invention is said to provide methods for determining whether an anti-IL21R binding protein is a neutralizing anti-IL21R binding protein based on the identification of several IL21 responsive genes. Finally, binding proteins are said to act as antagonists of IL21R activity, thereby modulating immune responses in general, and in particular those mediated by IL21R.

在一個實施例中,本發明包括一種改善個體的症狀或治療個體的由細胞素的廣泛釋放觸發的一或多種不良反應之方法,該方法包括以下步驟:鑑定需要改善症狀或治療觸發細胞素的廣泛釋放的一或多種傳染性疾病或疾病病症的個體;及投與一或多種醫藥組合物,其包含治療有效量之脂質經溶解或分散於足以降低個體之細胞素濃度之適宜水性或非水性介質中。在一個態樣中,細胞素的廣泛釋放係由選自病毒性、細菌性、真菌性、蠕蟲性、原生動物性或出血性傳染媒介物(infectious agent)中之至少一者之一或多種傳染性疾病引起。在另一個態樣中,該一或多種傳染性疾病係選自以下感染中之至少一者:鼻病毒、冠狀病毒、副黏液病毒科(Paramyxoviridae)、正黏液病毒科(Orthomyxoviridae)、腺病毒、副流行性感冒病毒、間質肺炎病毒、呼吸道融合病毒、流行性感冒病毒、沙粒病毒科、絲狀病毒科、本雅病毒科(Bunyaviridae)、黃熱病毒科(Flaviviridae)、桿狀病毒科病毒(Rhabdoviridae virus)、伊波拉病毒(Ebola)、馬爾堡病毒(Marburg)、克里米亞-剛果出血熱(Crimean–Congo hemorrhagic fever;CCHF)、南美出血熱(South American hemorrhagic fever)、登革熱、黃熱病、裂谷熱(Rift Valley fever)、鄂木斯克出血熱病毒(Omsk hemorrhagic fever virus)、凱氏森林病(Kyasanur Forest)、胡寧病毒(Junin)、馬秋波病毒(Machupo)、薩比亞病毒(Sabiá)、瓜納瑞托病毒(Guanarito)、加里薩病毒(Garissa)、伊勒夏病毒(Ilesha)或賴薩熱病毒(Lassa fever viruses)。在另一個態樣中,該一或多種疾病病症係選自以下中之至少一者:惡病質、敗血性休克症候群、慢性發炎反應、敗血性休克症候群、創傷性腦損傷、腦細胞素風暴、移植物抗宿主病(GVHD)、自體免疫疾病、多發性硬化症、急性胰臓炎或肝炎。在另一個態樣中,該一或多種疾病病症係由於用抗CD19嵌合抗原受體(CAR) T細胞或抗腫瘤細胞療法、活化的樹突細胞、活化的巨噬細胞或活化的B細胞治療引起的不良反應。在另一個態樣中,該組合物進一步包含薑黃素提取物、薑黃素、類薑黃素配置於脂質中,其中該等類薑黃素係選自以下中之至少一者:芳薑黃酮(Ar-tumerone)、甲基薑黃素、去甲氧基薑黃素、雙去甲氧基薑黃素、薑黃素鈉、二苯甲醯甲烷、乙醯薑黃素、阿魏醯甲烷(feruloyl methane)、四氫薑黃素、1,7-雙(4-羥基-3-甲氧基苯基)-1,6-庚二烯-3,5-二酮(薑黃素1)、1,7-雙(胡椒基(piperonyl))-1,6-庚二烯-3,5-二酮(胡椒基薑黃素)、1,7-雙(2-羥基萘基)-1,6-庚二烯-2,5-二酮(2-羥基萘基薑黃素)及1,1-雙(苯基)-1,3,8,10-十一碳四烯-5,7-二酮。在另一個態樣中,該脂質或磷脂係選自由以下組成之群:二肉荳蔻醯磷脂醯膽鹼(DMPC)、二肉荳蔻醯磷脂醯甘油(DMPG)、二棕櫚醯磷脂醯膽鹼(DPPC)、二硬脂醯磷脂醯甘油(DSPG)、二棕櫚醯磷脂醯甘油(DMPG)、磷脂醯膽鹼、溶血卵磷脂、溶血磷脂醯乙醇胺、lysoDMPC、lysoDMPG、lysoDSPG、lysoDPPC、磷脂醯絲胺酸、磷脂醯肌醇、鞘磷脂、磷脂醯乙醇胺、心磷脂、磷脂酸、腦苷脂、二鯨蠟基磷酸酯、磷脂醯膽鹼、及二棕櫚醯磷脂醯甘油、硬脂胺、十二烷基胺、十六烷基胺、乙醯棕櫚酸酯、甘油蓖麻油酸酯、十六烷基硬脂酸酯、肉荳蔻酸異丙酯、兩性丙烯酸系聚合物、脂肪酸、脂肪酸醯胺、膽固醇、膽固醇酯、二醯基甘油及二醯基甘油琥珀酸酯。在另一個態樣中,該治療有效量包括50 nM/kg、10至100 nM/kg、25至75 nM/kg、10、20、30、40、50、60、70、80、90或100 nM/kg個體體重。在另一個態樣中,該組合物包含活性劑,且具有3:1、1:1、0.3:1及0.1:1之脂質磷脂與活性劑比。在另一個態樣中,該疾病係類風濕性關節炎、牛皮癬、多發性硬化症、復發型多發性硬化症或發炎性腸病。In one embodiment, the present invention includes a method of ameliorating symptoms in a subject or treating one or more adverse reactions in a subject triggered by widespread release of a cytokine, the method comprising the steps of: identifying a condition in need of amelioration of symptoms or treatment of a triggering cytokine Widely released to an individual of one or more infectious diseases or disease conditions; and administration of one or more pharmaceutical compositions comprising a therapeutically effective amount of lipids dissolved or dispersed in a suitable aqueous or non-aqueous amount sufficient to reduce the individual's cytokine concentration in the medium. In one aspect, the broad release of cytokines is by at least one or more selected from viral, bacterial, fungal, helminthic, protozoal, or hemorrhagic infectious agents caused by infectious diseases. In another aspect, the one or more infectious diseases are selected from at least one of the following infections: rhinovirus, coronavirus, Paramyxoviridae, Orthomyxoviridae, adenovirus, Parainfluenza virus, Interstitial pneumonia virus, Respiratory syncytial virus, Influenza virus, Arenaviridae, Filoviridae, Bunyaviridae, Flaviviridae, Baculoviridae Rhabdoviridae virus, Ebola virus (Ebola), Marburg virus (Marburg), Crimean–Congo hemorrhagic fever (CCHF), South American hemorrhagic fever, Dengue fever, Yellow fever, Rift Valley fever, Omsk hemorrhagic fever virus, Kyasanur Forest, Junin, Machupo, Sabi Subvirus (Sabiá), Guanarito virus (Guanarito), Garissa virus (Garissa), Ilesha virus (Ilesha) or Lassa fever virus. In another aspect, the one or more disease conditions are selected from at least one of the following: cachexia, septic shock syndrome, chronic inflammation, septic shock syndrome, traumatic brain injury, cerebral cytokine storm, transplantation Germ-versus-host disease (GVHD), autoimmune disease, multiple sclerosis, acute pancreatitis or hepatitis. In another aspect, the one or more disease conditions are due to therapy with anti-CD19 chimeric antigen receptor (CAR) T cells or anti-tumor cells, activated dendritic cells, activated macrophages, or activated B cells Adverse reactions caused by treatment. In another aspect, the composition further comprises curcumin extract, curcumin, and curcuminoids configured in lipids, wherein the curcuminoids are selected from at least one of the following: aryl curcumin (Ar- tumerone), methyl curcumin, demethoxycurcumin, bisdemethoxycurcumin, sodium curcumin, dibenzoylmethane, acetyl curcumin, feruloyl methane (feruloyl methane), tetrahydroturmeric 1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione (curcumin 1), 1,7-bis(piperonyl ( piperonyl))-1,6-heptadiene-3,5-dione (piperonyl curcumin), 1,7-bis(2-hydroxynaphthyl)-1,6-heptadiene-2,5- Diketone (2-hydroxynaphthylcurcumin) and 1,1-bis(phenyl)-1,3,8,10-undecatetraene-5,7-dione. In another aspect, the lipid or phospholipid is selected from the group consisting of dimyristyl phospholipid choline (DMPC), dimyrist phospholipid glycerol (DMPG), dipalmitoyl phospholipid choline ( DPPC), Distearyl Phosphatidyl Glycerol (DSPG), Dipalmitoyl Phosphatidyl Glycerol (DMPG), Phosphatidyl Choline, Lysolecithin, Lysophosphatidylethanolamine, lysoDMPC, lysoDMPG, lysoDSPG, lysoDPPC, Phosphatidylserine acid, phosphatidylinositol, sphingomyelin, phosphatidylethanolamine, cardiolipin, phosphatidic acid, cerebroside, dicetyl phosphate, phosphatidylcholine, and dipalmitoyl glycerol, stearylamine, dodecyl Alkylamine, Cetylamine, Acetyl Palmitate, Glycerin Ricinoleate, Cetyl Stearate, Isopropyl Myristate, Amphoteric Acrylic Polymer, Fatty Acid, Fatty Acid Amide, Cholesterol, cholesterol esters, diacylglycerol and diacylglycerol succinate. In another aspect, the therapeutically effective amount includes 50 nM/kg, 10 to 100 nM/kg, 25 to 75 nM/kg, 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100 nM/kg individual body weight. In another aspect, the composition comprises an active agent and has lipid phospholipid to active agent ratios of 3:1, 1:1, 0.3:1, and 0.1:1. In another aspect, the disease is rheumatoid arthritis, psoriasis, multiple sclerosis, relapsing multiple sclerosis, or inflammatory bowel disease.

在另一個實施例中,本發明包括一種用於改善個體的症狀或治療個體的由細胞素的廣泛釋放的傳染性疾病或疾病病症所觸發的一或多種不良反應之組合物,其包含治療有效量之脂質或溶血磷脂醯經溶解或分散於適宜水性或非水性介質中。在一個態樣中,該一或多種傳染性疾病係選自病毒性、細菌性、真菌性、蠕蟲性、原生動物性或出血性傳染媒介物中之至少一者。在另一個態樣中,該一或多種傳染性疾病係選自以下感染中之至少一者:鼻病毒、冠狀病毒、副黏液病毒科、正黏液病毒科、腺病毒、副流行性感冒病毒、間質肺炎病毒、呼吸道融合病毒、流行性感冒病毒、沙粒病毒科、絲狀病毒科、本雅病毒科、黃熱病毒科、桿狀病毒科病毒、伊波拉病毒、馬爾堡病毒、克里米亞-剛果出血熱(CCHF)、南美出血熱、登革熱、黃熱病、裂谷熱、鄂木斯克出血熱病毒、凱氏森林病、胡寧病毒、馬秋波病毒、薩比亞病毒、瓜納瑞托病毒、加里薩病毒、伊勒夏病毒或賴薩熱病毒。在另一個態樣中,該一或多種疾病病症係選自以下中之至少一者:惡病質、敗血性休克症候群、慢性發炎反應、敗血性休克症候群、創傷性腦損傷、腦細胞素風暴、移植物抗宿主病(GVHD)、自體免疫疾病、多發性硬化症、急性胰臓炎或肝炎。在另一個態樣中,該薑黃素提取物、類薑黃素或合成薑黃素係配置於脂質中。在另一個態樣中,該脂質或溶血磷脂醯係選自由以下組成之群:二肉荳蔻醯磷脂醯膽鹼(DMPC)、二肉荳蔻醯磷脂醯甘油(DMPG)、二棕櫚醯磷脂醯膽鹼(DPPC)、二硬脂醯磷脂醯甘油(DSPG)、二棕櫚醯磷脂醯甘油(DMPG)、磷脂醯膽鹼、溶血卵磷脂、溶血磷脂醯乙醇胺、lysoDMPC、lysoDMPG、lysoDSPG、lysoDPPC、磷脂醯絲胺酸、磷脂醯肌醇、鞘磷脂、磷脂醯乙醇胺、心磷脂、磷脂酸、腦苷脂、二鯨蠟基磷酸酯、磷脂醯膽鹼、及二棕櫚醯磷脂醯甘油、硬脂胺、十二烷基胺、十六烷基胺、乙醯棕櫚酸酯、甘油蓖麻油酸酯、十六烷基硬脂酸酯、肉荳蔻酸異丙酯、兩性丙烯酸系聚合物、脂肪酸、脂肪酸醯胺、膽固醇、膽固醇酯、二醯基甘油及二醯基甘油琥珀酸酯。在另一個態樣中,該生物可降解之聚合物係選自由以下組成之群:聚酯、聚乳酸、聚甘胺酸交酯、聚己內酯、聚酐、聚醯胺、聚胺甲酸酯、聚酯醯胺、聚二氧雜環己酮、聚縮醛、聚縮酮、聚碳酸酯、聚原碳酸酯、聚原酸酯、聚磷酸酯、聚磷腈、聚羥基丁酸酯、聚羥基戊酸酯、聚伸烷基草酸酯、聚伸烷基琥珀酸酯、聚(蘋果酸)、聚(胺基酸)、共聚物、三元共聚物及其組合或混合物。在另一個態樣中,該組合物適用於靜脈內、皮下、肌肉內或腹膜內注射於個體中。在另一個態樣中,該組合物進一步包含薑黃素或類薑黃素,其係選自以下中之至少一者:芳薑黃酮、甲基薑黃素、去甲氧基薑黃素、雙去甲氧基薑黃素、薑黃素鈉、二苯甲醯甲烷、乙醯薑黃素、阿魏醯甲烷、四氫薑黃素、1,7-雙(4-羥基-3-甲氧基苯基)-1,6-庚二烯-3,5-二酮(薑黃素1)、1,7-雙(胡椒基)-1,6-庚二烯-3,5-二酮(胡椒基薑黃素)、1,7-雙(2-羥基萘基)-1,6-庚二烯-2,5-二酮(2-羥基萘基薑黃素)及1,1-雙(苯基)-1,3,8,10-十一碳四烯-5,7-二酮。在另一個態樣中,該組合物包含活性劑,且具有3:1、1:1、0.3:1及0.1:1之脂質與活性劑比。In another embodiment, the present invention includes a composition for ameliorating symptoms in a subject or treating one or more adverse reactions in a subject triggered by an infectious disease or disease condition of widespread release of cytokines comprising a therapeutically effective The amount of lipid or lysophospholipid is dissolved or dispersed in a suitable aqueous or non-aqueous medium. In one aspect, the one or more infectious diseases are selected from at least one of viral, bacterial, fungal, helminthic, protozoal, or hemorrhagic infectious agents. In another aspect, the one or more infectious diseases are selected from at least one of the following infections: rhinovirus, coronavirus, Paramyxoviridae, Orthomyxoviridae, adenovirus, parainfluenza virus, Interstitial pneumonia virus, respiratory syncytial virus, influenza virus, arenaviridae, filoviridae, Benjaviridae, flaviviridae, baculoviridae, Ebola virus, Marburg virus, Kerry Mia-Congo haemorrhagic fever (CCHF), South American haemorrhagic fever, Dengue fever, Yellow fever, Rift Valley fever, Omsk haemorrhagic fever virus, Kejeldahl disease, Junin virus, Maqiubo virus, Sabia virus, Guana Reto virus, Garissa virus, Ilexia virus or Lyssa virus. In another aspect, the one or more disease conditions are selected from at least one of the following: cachexia, septic shock syndrome, chronic inflammation, septic shock syndrome, traumatic brain injury, cerebral cytokine storm, transplantation Germ-versus-host disease (GVHD), autoimmune disease, multiple sclerosis, acute pancreatitis or hepatitis. In another aspect, the curcumin extract, curcuminoids or synthetic curcuminoids are formulated in lipids. In another aspect, the lipid or lysophospholipid is selected from the group consisting of dimyristophospholipid choline (DMPC), dimyristophospholipid glycerol (DMPG), dipalmitophospholipid choline Alkali (DPPC), Distearyl Phosphatidyl Glycerol (DSPG), Dipalmitoyl Phosphatidyl Glycerol (DMPG), Phosphatidyl Choline, Lysophosphatidylcholine, Lysophosphatidylethanolamine, lysoDMPC, lysoDMPG, lysoDSPG, lysoDPPC, Phosphatidylserine Serine, phosphatidylinositol, sphingomyelin, phosphatidylethanolamine, cardiolipin, phosphatidic acid, cerebroside, bicetyl phosphate, phosphatidylcholine, and dipalmitophosphatidylglycerol, stearylamine, Laurylamine, Cetylamine, Acetyl Palmitate, Glycerin Ricinoleate, Cetyl Stearate, Isopropyl Myristate, Amphoteric Acrylic Polymer, Fatty Acid, Fatty Acid Acrylate Amines, cholesterol, cholesterol esters, diacylglycerol and diacylglycerol succinate. In another aspect, the biodegradable polymer is selected from the group consisting of polyester, polylactic acid, polyglycinide, polycaprolactone, polyanhydride, polyamide, polyurethane Ester, polyesteramide, polydioxanone, polyacetal, polyketal, polycarbonate, polyorthocarbonate, polyorthoester, polyphosphate, polyphosphazene, polyhydroxybutyric acid Esters, polyhydroxyvalerates, polyalkylene oxalates, polyalkylene succinates, poly(malic acids), poly(amino acids), copolymers, terpolymers, and combinations or mixtures thereof. In another aspect, the composition is suitable for intravenous, subcutaneous, intramuscular or intraperitoneal injection into a subject. In another aspect, the composition further comprises a curcumin or curcuminoid selected from at least one of: aryl curcumin, methyl curcumin, demethoxycurcumin, bisdemethoxycurcumin base curcumin, curcumin sodium, dibenzoylmethane, acetyl curcumin, ferulic acid methane, tetrahydrocurcumin, 1,7-bis(4-hydroxy-3-methoxyphenyl)-1, 6-Heptadiene-3,5-dione (Curcumin 1), 1,7-Bis(piperonyl)-1,6-heptadiene-3,5-dione (Piperonyl Curcumin), 1 ,7-bis(2-hydroxynaphthyl)-1,6-heptadiene-2,5-dione (2-hydroxynaphthylcurcumin) and 1,1-bis(phenyl)-1,3, 8,10-undecatetraene-5,7-dione. In another aspect, the composition comprises an active agent and has lipid to active agent ratios of 3:1, 1:1, 0.3:1, and 0.1:1.

在另一個實施例中,本發明包括一種確定候選藥物是否導致個體的症狀的改善或治療個體的由觸發細胞素的廣泛釋放的傳染性疾病或疾病病症所觸發的一或多種不良反應之方法,該方法包括:(a)投與一定量之候選藥物與空微脂體之組合,及對第二子組的患者投與安慰劑,其中該候選藥物係以有效降低或預防個體中細胞素之總體濃度之量提供;(b)測量來自第一組及第二組患者的個體之細胞素濃度;及(c)確定該候選藥物與空微脂體之組合相較於發生在服用安慰劑的患者子組中的任何降低是否在統計學上顯著改善症狀或治療由觸發細胞素的廣泛釋放的傳染性疾病或疾病病症所觸發的一或多種不良反應,其中統計學顯著降低指示該候選藥物可用於治療疾病狀態且同時亦降低或消除個體中細胞素之總體濃度。In another embodiment, the invention includes a method of determining whether a drug candidate results in amelioration of symptoms in a subject or treats one or more adverse reactions in a subject triggered by an infectious disease or disease condition that triggers widespread release of cytokines, The method comprises: (a) administering an amount of a drug candidate in combination with empty liposomes, and administering a placebo to a second subgroup of patients, wherein the drug candidate is effective to reduce or prevent cytokine levels in the individual (b) measuring individual cytokine concentrations from the first and second cohorts of patients; and (c) determining the combination of the drug candidate and empty liposomes compared to that occurring in patients taking placebo. Whether any reduction in a subgroup of patients statistically significantly improves symptoms or treats one or more adverse reactions triggered by an infectious disease or disease condition that triggers widespread release of cytokines, where a statistically significant reduction indicates that the drug candidate is available In treating a disease state while also reducing or eliminating the overall concentration of cytokines in an individual.

在另一個實施例中,本發明包括一種改善個體的症狀或治療個體的由治療劑引起的細胞素風暴之方法,該方法包括以下步驟:鑑定需要改善症狀或治療由治療劑引起的細胞素風暴的個體;及投與一或多種醫藥組合物,其包含治療有效量之薑黃素提取物、類薑黃素或合成薑黃素及其衍生物、或空微脂體,經溶解或分散於足以降低個體的細胞素濃度之適宜水性或非水性介質中。In another embodiment, the invention includes a method of ameliorating symptoms or treating a cytokine storm caused by a therapeutic agent in an individual, the method comprising the steps of: identifying a need to improve symptoms or treat a cytokine storm caused by a therapeutic agent and administration of one or more pharmaceutical compositions comprising a therapeutically effective amount of curcumin extract, curcuminoid or synthetic curcumin and derivatives thereof, or empty liposomes, dissolved or dispersed in sufficient amount to reduce the in aqueous or non-aqueous media suitable for the concentration of cytokines.

相關申請案之交叉參考Cross-references to related applications

本申請案係2015年12月30日申請之美國專利申請案序號14/983,844的部分接續申請案,其主張2014年12月31日申請之美國臨時申請案序號62/098,898、2015年5月22日申請之美國臨時申請案序號62/165,567及2015年8月28日申請之美國臨時申請案序號62/211,450之優先權,該等案之全部內容係以引用之方式併入本文中。 聯邦資助研究聲明This application is a continuation-in-part of US Patent Application Serial No. 14/983,844 filed on December 30, 2015, which claims US Provisional Application Serial No. 62/098,898, filed on December 31, 2014, and May 22, 2015 Priority to US Provisional Application Serial No. 62/165,567, filed on August 28, 2015, and US Provisional Application Serial No. 62/211,450, filed on August 28, 2015, the entire contents of which are incorporated herein by reference. Federally Funded Research Statement

本發明係在美國政府支持下由USAMRIID在項目編號1323839下完成。政府對本發明具有某些權力。This invention was made by USAMRIID with US Government support under Project No. 1323839. The government has certain rights in this invention.

儘管下文詳細討論本發明各種實施例的製作及使用,但應瞭解,本發明提供可在各種特定上下文中體現的許多適用發明概念。此處討論的特定實施例僅係說明製作及使用本發明的特定方式且並不限制本發明之範疇。Although the making and using of various embodiments of the invention are discussed in detail below, it should be appreciated that the invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed herein are merely illustrative of specific ways to make and use the invention, and do not limit the scope of the invention.

為了便於理解本發明,下文定義多個術語。此處定義的術語具有如本發明相關領域中之一般技術者所通常理解的含義。術語諸如「一」、「一個」及「該」無意僅指單數實體,而是包括其中一特定實例可用於說明的一般類別。本文中的術語用於描述本發明之特定實施例,其使用並不限制本發明,除非如申請專利範圍中所概述。To facilitate understanding of the present invention, a number of terms are defined below. Terms defined herein have the meanings as commonly understood by those of ordinary skill in the art to which the present invention pertains. Terms such as "a," "an," and "the" are not intended to refer to only singular entities, but rather include the general class in which a particular instance may be used for description. The terminology herein is used to describe specific embodiments of the invention, and its use is not intended to limit the invention, except as outlined in the scope of the claims.

如本文所用,術語「細胞素風暴」係指導致疾病的促發炎細胞素的失調,已被稱為「細胞素風暴」、「細胞素釋放症候群」或「發炎級聯」。通常,細胞素風暴或級聯稱為序列之一部分,因為一種細胞素通常會導致產生多種其他細胞素,該等細胞素可強化且放大免疫反應。一般而言,此等促發炎介質分為兩個子組:早期介質及晚期介質。早期介質(諸如例如腫瘤壞死因子、介白素-1、介白素-6)不是重建穩態平衡的足夠治療標靶,因為其在患者前往診所接受醫療關注的時間框內得到解決。相比之下,所謂的「晚期介質」已成為標靶,因為其正是在此種後期「發炎級聯」期間使得患者意識到其患病。As used herein, the term "cytokine storm" refers to the dysregulation of pro-inflammatory cytokines that lead to disease, and has been referred to as "cytokine storm," "cytokine release syndrome," or "inflammatory cascade." Often, a cytokine storm or cascade is referred to as part of a sequence, as one cytokine often leads to the production of multiple other cytokines, which enhance and amplify the immune response. In general, these pro-inflammatory mediators are divided into two subgroups: early mediators and late mediators. Early mediators (such as eg tumor necrosis factor, interleukin-1, interleukin-6) are not sufficient therapeutic targets to restore homeostatic balance because they resolve within the time frame of the patient's visit to the clinic for medical attention. By contrast, so-called "late mediators" have been targeted because it is during this late "inflammatory cascade" that patients become aware of their disease.

通常與「細胞素風暴」相關之傳染性疾病包括但不限於瘧疾、禽流感、天花、大流行性流行性感冒、成人呼吸窘迫症候群(ARDS)、嚴重急性呼吸道症候群(SARS)。某些特定傳染媒介物包括但不限於:傳染性疾病係選自以下中之至少一者:伊波拉病毒、馬爾堡病毒、克里米亞-剛果出血熱(CCHF)、南美出血熱、登革熱、黃熱病、裂谷熱、鄂木斯克出血熱病毒、凱氏森林病、胡寧病毒、馬秋波病毒、薩比亞病毒、瓜納瑞托病毒、加里薩病毒、伊勒夏病毒或賴薩熱病毒。其他病毒可包括鼻病毒、冠狀病毒、副黏液病毒科、正黏液病毒科、腺病毒、副流行性感冒病毒、間質肺炎病毒、呼吸道融合病毒或流行性感冒病毒。Infectious diseases commonly associated with "cytokine storms" include, but are not limited to, malaria, avian influenza, smallpox, pandemic influenza, adult respiratory distress syndrome (ARDS), severe acute respiratory syndrome (SARS). Certain specific infectious agents include, but are not limited to, infectious diseases selected from at least one of the following: Ebola virus, Marburg virus, Crimean-Congo hemorrhagic fever (CCHF), South American hemorrhagic fever, Dengue fever, Yellow fever, Rift Valley fever, Omsk haemorrhagic fever virus, Kejeldahl disease, Junin virus, Maqiubo virus, Sabia virus, Guanarito virus, Garissa virus, Ilexia virus or Raisa fever Virus. Other viruses may include rhinovirus, coronavirus, paramyxoviridae, orthomyxoviridae, adenovirus, parainfluenza virus, interstitial pneumonia virus, respiratory syncytial virus, or influenza virus.

通常與「細胞素風暴」相關之疾病病症包括但不限於:敗血症、全身發炎反應症候群(SIRS)、惡病質、敗血性休克症候群、創傷性腦損傷(例如腦細胞素風暴)、移植物抗宿主病(GVHD)、或用活化的免疫細胞(例如IL-2活化之T細胞、用抗CD19嵌合抗原受體(CAR) T細胞活化之T細胞)治療的結果。Disease conditions commonly associated with "cytokinin storm" include, but are not limited to: sepsis, systemic inflammatory response syndrome (SIRS), cachexia, septic shock syndrome, traumatic brain injury (eg, brain cytokine storm), graft-versus-host disease (GVHD), or treatment with activated immune cells (eg, IL-2 activated T cells, T cells activated with anti-CD19 chimeric antigen receptor (CAR) T cells).

一般而言,細胞素風暴係強大免疫系統之健康全身表現。本發明可用於減少或消除一些或大部分的由例如導致「細胞素風暴」的釋放的快速增殖且高度活化之T細胞或自然殺手(NK)細胞所引起的過度免疫反應,該細胞素風暴可包括超過150種發炎介質(細胞素、氧自由基及凝血因子)。促發炎細胞素(諸如腫瘤壞死因子-α、介白素-1及介白素-6)及抗發炎細胞素(諸如介白素-10、及介白素-1受體拮抗劑(IL-1RA))均變得在例如血清中大幅度升高。正是發炎介質的此種過度釋放觸發「細胞素風暴」。In general, a cytokine storm is a healthy systemic manifestation of a strong immune system. The present invention can be used to reduce or eliminate some or most of the excessive immune response caused by, for example, rapidly proliferating and highly activated T cells or natural killer (NK) cells leading to the release of a "cytokine storm" that can Includes more than 150 inflammatory mediators (cytokines, oxygen free radicals and coagulation factors). Pro-inflammatory cytokines (such as tumor necrosis factor-alpha, interleukin-1, and interleukin-6) and anti-inflammatory cytokines (such as interleukin-10, and interleukin-1 receptor antagonists (IL- 1RA)) both became substantially elevated eg in serum. It is this excessive release of inflammatory mediators that triggers the "cytokine storm."

在沒有及時干預(諸如本發明提供的干預)的情況下,細胞素風暴可導致永久性肺損傷且在許多情況下可導致死亡。細胞素風暴之末期症狀包括但不限於:低血壓;心搏過速;呼吸困難;發熱;缺血或組織灌注不足;不可控制之出血;嚴重代謝失調;及多系統器官衰竭。傳染性疾病(諸如伊波拉病毒感染)的死亡例並不是由病毒本身引起,而是細胞素風暴導致不可控制之出血;嚴重代謝失調;低血壓;心搏過速;呼吸困難;發熱;缺血或組織灌注不足;及多系統器官衰竭。In the absence of timely intervention, such as that provided by the present invention, cytokine storms can lead to permanent lung damage and, in many cases, death. End-stage symptoms of cytokine storm include, but are not limited to: hypotension; tachycardia; dyspnea; fever; ischemia or tissue hypoperfusion; uncontrolled bleeding; severe metabolic disorders; and multisystem organ failure. Deaths from infectious diseases such as Ebola virus infection are not caused by the virus itself, but by cytokine storms leading to uncontrolled bleeding; severe metabolic disorders; hypotension; tachycardia; dyspnea; fever; ischemia or tissue hypoperfusion; and multisystem organ failure.

如本文所用,術語「薑黃素(二阿魏醯甲烷;1,7-雙(4-羥基-3-甲氧基苯基)-1,6-庚二烯-3,5-二酮)」係一種天然存在之化合物,其主要著色原理參見the rhizomes of the plantCurcuma longa (美國專利第5,679,864號(Krackov等人))。在一個態樣中,該合成薑黃素係85、86、87、88、89、90、91、92、93、94、95或96%純二阿魏醯甲烷。薑黃素及類薑黃素之非限制性實例包括例如芳薑黃酮、甲基薑黃素、去甲氧基薑黃素、雙去甲氧基薑黃素、薑黃素鈉、二苯甲醯甲烷、乙醯薑黃素、阿魏醯甲烷、四氫薑黃素、1,7-雙(4-羥基-3-甲氧基苯基)-1,6-庚二烯-3,5-二酮(薑黃素1)、1,7-雙(胡椒基)-1,6-庚二烯-3,5-二酮(胡椒基薑黃素)、1,7-雙(2-羥基萘基)-1,6-庚二烯-2,5-二酮(2-羥基萘基薑黃素)及1,1-雙(苯基)-1,3,8,10-十一碳四烯-5,7-二酮。As used herein, the term "curcumin (diferuloid methane; 1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione)" is a naturally occurring compound whose principal coloration principle is described in the rhizomes of the plant Curcuma longa (US Pat. No. 5,679,864 (Krackov et al.)). In one aspect, the synthetic curcumin is 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95 or 96% pure diferulomethane. Non-limiting examples of curcuminoids and curcuminoids include, for example, aryl curcumin, methyl curcumin, demethoxy curcumin, bisdemethoxy curcumin, sodium curcumin, dibenzylmethane, acetyl curcumin ferulic acid, ferulic acid methane, tetrahydrocurcumin, 1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione (curcumin 1) , 1,7-bis(piperonyl)-1,6-heptadiene-3,5-dione (piperonyl curcumin), 1,7-bis(2-hydroxynaphthyl)-1,6-heptane Diene-2,5-dione (2-hydroxynaphthylcurcumin) and 1,1-bis(phenyl)-1,3,8,10-undecatetraene-5,7-dione.

術語「微脂體」係指一種膠囊,其中其壁或膜係由脂質(尤其是磷脂)形成,同時視需要添加固醇,尤其是膽固醇。在一個特定非限制性實例中,該等微脂體係空微脂體且可由單一類型之磷脂或磷脂之組合調配。空微脂體或脂質可進一步包括一或多種表面修飾,諸如蛋白質、碳水化合物、醣脂或糖蛋白,且甚至核酸,諸如適體、硫修飾核酸、蛋白質核酸模擬物、蛋白質模擬物、隱形劑(stealthing agent)等。在一個特定非限制性實例中,該組合物亦包含活性劑於微脂體或脂質中或周圍且該組合物具有3:1、1:1、0.3:1及0.1:1之脂質與活性劑比。The term "liposome" refers to a capsule in which the walls or membranes are formed of lipids, especially phospholipids, with the addition of sterols, especially cholesterol, if desired. In one specific non-limiting example, these liposome systems are empty liposomes and can be formulated from a single type of phospholipid or a combination of phospholipids. Empty liposomes or lipids may further comprise one or more surface modifications, such as proteins, carbohydrates, glycolipids or glycoproteins, and even nucleic acids, such as aptamers, sulfur-modified nucleic acids, protein nucleic acid mimetics, protein mimetics, stealth agents (stealthing agent), etc. In a specific non-limiting example, the composition also comprises the active agent in or around the liposomes or lipids and the composition has 3:1, 1:1, 0.3:1 and 0.1:1 lipid to active agent Compare.

如本文所用,術語「脂質」係指可溶於非極性溶劑中的兩親生物分子。脂質能夠形成微脂體、形成囊泡、形成微胞、形成乳液,且當以必要濃度的微脂體投與時係實質上無毒的。本發明之脂質組合物可包括例如二肉荳蔻醯磷脂醯膽鹼(DMPC)、二肉荳蔻醯磷脂醯甘油(DMPG)、二棕櫚醯磷脂醯膽鹼(DPPC)、二硬脂醯磷脂醯甘油(DSPG)、二棕櫚醯磷脂醯甘油(DMPG)、磷脂醯膽鹼、溶血卵磷脂、溶血磷脂醯乙醇胺、磷脂醯絲胺酸、磷脂醯肌醇、鞘磷脂、磷脂醯乙醇胺、心磷脂、磷脂酸、腦苷脂、二鯨蠟基磷酸酯、磷脂醯膽鹼、及二棕櫚醯磷脂醯甘油、硬脂胺、十二烷基胺、十六烷基胺、乙醯棕櫚酸酯、甘油蓖麻油酸酯、十六烷基硬脂酸酯、肉荳蔻酸異丙酯、兩性丙烯酸系聚合物、脂肪酸、脂肪酸醯胺、膽固醇、膽固醇酯、二醯基甘油及二醯基甘油琥珀酸酯。As used herein, the term "lipid" refers to an amphiphilic biomolecule that is soluble in a non-polar solvent. Lipids are capable of forming liposomes, forming vesicles, forming micelles, forming emulsions, and are substantially nontoxic when administered at the necessary concentrations of liposomes. The lipid composition of the present invention may include, for example, dimyristophospholipid choline (DMPC), dimyristophospholipid choline (DMPG), dipalmitophospholipid choline (DPPC), distearyl phospholipid choline (DPPC), distearyl phospholipid choline (DSPG), Dipalmitophosphatidylglycerol (DMPG), Phosphatidylcholine, Lysolecithin, Lysophosphatidylethanolamine, Phosphatidylserine, Phosphatidylinositol, Sphingomyelin, Phosphatidylethanolamine, Cardiolipin, Phosphatidylserine Acid, Cerebroside, Dicetyl Phosphate, Phosphatidyl Choline, and Dipalmitoyl Phosphatidyl Glycerol, Stearylamine, Laurylamine, Cetylamine, Acetyl Palmitate, Glycerin Castor Sesame oleate, cetyl stearate, isopropyl myristate, amphoteric acrylic polymers, fatty acids, fatty acid amides, cholesterol, cholesterol esters, diacylglycerol and diacylglycerol succinate.

如本文所用,術語「體內」係指在身體內。術語「體外」如本申請案中所用應理解為指示在非生命系統中進行的操作。As used herein, the term "in vivo" refers to within the body. The term "in vitro" as used in this application should be understood to refer to operations performed in non-living systems.

如本文所用,術語「治療(treatment)」係指本文提及的病症的治療,特定言之在展現疾病或疾患之症狀的患者中。如本文所用,術語「治療(treating)」係指本發明化合物的任何投與且包括(i)抑制正在經歷或展現患病的病理學或症狀學的動物之疾病(亦即阻止病理學及/或症狀學的進一步發展)或(ii)改善正在經歷或展現患病的病理學或症狀學的動物之疾病(亦即逆轉病理學及/或症狀學)。術語「控制」包括預防治療、根除、改善或以其他方式降低受到控制的病症的嚴重度。As used herein, the term "treatment" refers to the treatment of a disorder referred to herein, particularly in a patient exhibiting symptoms of a disease or disorder. As used herein, the term "treating" refers to any administration of a compound of the invention and includes (i) inhibiting disease in an animal that is experiencing or exhibiting a diseased pathology or symptomatology (ie, preventing the pathology and/or or further development of symptomatology) or (ii) amelioration of disease (ie reversal of pathology and/or symptomology) in animals that are experiencing or exhibiting diseased pathology or symptomology. The term "control" includes prophylactic treatment, eradication, amelioration, or otherwise reducing the severity of a controlled condition.

本文描述的術語「有效量」或「治療有效量」意指將激發研究人員、獸醫、醫生或其他臨床醫生所尋求的組織、系統、動物或人類之生物學或醫學反應的標的化合物之量。在一個實例中,該治療有效量包括50 nM/kg、10至100 nM/kg、25至75 nM/kg、10、20、30、40、50、60、70、80、90或100 nM/kg個體體重。The term "effective amount" or "therapeutically effective amount" as described herein means the amount of the subject compound that will elicit the biological or medical response of a tissue, system, animal or human being sought by a researcher, veterinarian, physician or other clinician. In one example, the therapeutically effective amount includes 50 nM/kg, 10 to 100 nM/kg, 25 to 75 nM/kg, 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100 nM/kg kg body weight.

如本文所用,術語化合物的「投與(administration of)」或「投與(administering a)」化合物應理解為意指對需要治療的個體提供本發明化合物,以可以治療有用形式及治療有用量引入個體身體內的形式,包括但不限於:口服劑型,諸如錠劑、膠囊、糖漿、懸浮液及類似者;可注射劑型,諸如靜脈內(IV)、肌肉內(IM)或腹膜內(IP)及類似者;腸內或非經腸、經皮劑型,包括霜劑、凍膠、粉劑或貼劑;口頰劑型;吸入粉末、噴霧劑、懸浮液及類似者;及直腸栓劑。As used herein, the term "administration of" or "administering a" a compound is to be understood to mean providing a compound of the invention to an individual in need of treatment, introduced in a therapeutically useful form and in a therapeutically useful amount Forms within the body of the individual, including but not limited to: oral dosage forms such as lozenges, capsules, syrups, suspensions and the like; injectable dosage forms such as intravenous (IV), intramuscular (IM) or intraperitoneal (IP) and the like; enteral or parenteral, transdermal dosage forms, including creams, jellies, powders or patches; buccal dosage forms; inhalation powders, sprays, suspensions and the like; and rectal suppositories.

如本文所用,術語「靜脈內投與」包括注射及其他靜脈內投與模式。As used herein, the term "intravenous administration" includes injection and other modes of intravenous administration.

術語「醫藥上可接受」在本文用於描述載劑、稀釋劑或賦形劑時必須與調配物之其他成分相容且對其接受者無害。The term "pharmaceutically acceptable" as used herein to describe a carrier, diluent or excipient must be compatible with the other ingredients of the formulation and not injurious to its recipient.

本發明薑黃素調配物可包含一或多種可選醫藥賦形劑、稀釋劑、延長或控制釋放劑、潤滑劑、防腐劑或其任何組合,且一旦溶解即可添加至可注射之抗糖尿病藥物或按時間表投與,端視薑黃素調配物的釋放動力學而定。大量生物可降解之聚合物可用於本發明之調配物中。此等聚合物之非限制性實例包括聚酯、聚乳酸、聚甘胺酸交酯、聚己內酯、聚酐、聚醯胺、聚胺甲酸酯、聚酯醯胺、聚二氧雜環己酮、聚縮醛、聚縮酮、聚碳酸酯、聚原碳酸酯、聚原酸酯、聚磷酸酯、聚磷腈、聚羥基丁酸酯、聚羥基戊酸酯、聚伸烷基草酸酯、聚伸烷基琥珀酸酯、聚(蘋果酸)、聚(胺基酸)、共聚物、三元共聚物及其組合或混合物。可使用的特定聚合物包括丙烯酸、乙烯基吡咯啶酮、N-異丙基丙烯醯胺或其組合及修飾。所使用的合成薑黃素包括薑黃素、薑黃素類似物、薑黃素衍生物及其任何修飾。The curcumin formulations of the present invention may contain one or more optional pharmaceutical excipients, diluents, prolonged or controlled release agents, lubricants, preservatives, or any combination thereof, and once dissolved, can be added to the injectable antidiabetic drug Or administered on a schedule, depending on the release kinetics of the curcumin formulation. A wide variety of biodegradable polymers can be used in the formulations of the present invention. Non-limiting examples of such polymers include polyester, polylactic acid, polyglycinide, polycaprolactone, polyanhydride, polyamide, polyurethane, polyesteramide, polydioxa Cyclohexanone, polyacetal, polyketal, polycarbonate, polyorthocarbonate, polyorthoester, polyphosphate, polyphosphazene, polyhydroxybutyrate, polyhydroxyvalerate, polyalkylene Oxalates, polyalkylene succinates, poly(malic acids), poly(amino acids), copolymers, terpolymers, and combinations or mixtures thereof. Particular polymers that can be used include acrylic acid, vinylpyrrolidone, N-isopropylacrylamide, or combinations and modifications thereof. The synthetic curcuminoids used include curcumin, curcumin analogs, curcumin derivatives, and any modifications thereof.

傳染性疾病的治療。伊波拉病毒及其他病毒性疾病的末期往往是細胞素風暴(人體免疫系統大量過度產生細胞素)的開始。本發明包括以薑黃素作用抑制細胞素釋放及細胞素風暴來治療觸發細胞素風暴的傳染媒介物,諸如伊波拉病毒。Treatment of infectious diseases. The end stage of Ebola and other viral diseases is often the beginning of a cytokine storm, the massive overproduction of cytokines by the body's immune system. The present invention includes curcumin action to inhibit cytokine release and cytokine storm to treat infectious agents that trigger cytokine storm, such as Ebola virus.

已發現薑黃素阻斷細胞素釋放,最重要的是關鍵促發炎細胞素、介白素-1、介白素-6及腫瘤壞死因子-α。薑黃素對細胞素釋放的抑制與疾病病症之實驗模型的臨床改良相關,其中細胞素風暴在死亡率中起著重要作用。因此,薑黃素可用於治療患有伊波拉病毒的患者之細胞素風暴。在某些實例中,靜脈內調配物允許達成治療血液濃度。Curcumin has been found to block the release of cytokines, most importantly the key pro-inflammatory cytokines, interleukin-1, interleukin-6 and tumor necrosis factor-alpha. Inhibition of cytokine release by curcumin is associated with clinical improvement in experimental models of disease conditions in which cytokine storm plays an important role in mortality. Therefore, curcumin can be used to treat cytokine storm in patients with Ebola virus. In certain instances, intravenous formulations allow therapeutic blood concentrations to be achieved.

感染伊波拉病毒的患者的高致死率被認為部分是由於在感染的晚期階段發生細胞素風暴1-2 。細胞素風暴可在各種傳染性及非傳染性刺激後發生。在細胞素風暴中,大量細胞素(促發炎(IL-1, IL-6, TNF-α)及抗發炎(IL-10)兩者)被釋放,導致低血壓、出血,且最終導致多器官衰竭。術語「細胞素風暴」與1918 H1N1流行性感冒大流行及最近的禽流感H5N1感染3-5 病例最為相關。在此等情況下,具有推測健康的免疫系統的年輕人不相稱地因疾病而死亡,且認為原因是其免疫系統之異常活性。亦已知此種症候群發生在SARS6 、艾伯斯坦-巴爾病毒(Epstein-Barr virus)相關吞噬血球淋巴組織細胞增生症7 、革蘭氏陰性敗血症(gram negative sepsis)8 、瘧疾9 及許多其他傳染性疾病之晚期或末期病例中。細胞素風暴可由非傳染性原因(諸如急性胰臓炎10 、嚴重燒傷或創傷11 或繼發於藥物使用或吸入毒素之急性呼吸道窘迫症候群12 )引起。在最近的1期試驗中,結合至T細胞上的CD28受體的單株抗體TGN1412的注射導致6名接受該藥劑的人類志願者的細胞素風暴及多器官衰竭之嚴重病例。儘管事實上該藥劑之給定劑量比在動物13 中發現的低500倍。其他病毒可包括鼻病毒、冠狀病毒、副黏液病毒科、正黏液病毒科、腺病毒、副流行性感冒病毒、間質肺炎病毒、呼吸道融合病毒或流行性感冒病毒。The high fatality rate in patients infected with Ebola virus is thought to be due in part to the occurrence of cytokine storms in the late stages of infection 1-2 . Cytokine storms can occur following a variety of infectious and non-infectious stimuli. In a cytokine storm, large amounts of cytokines (both pro-inflammatory (IL-1, IL-6, TNF-α) and anti-inflammatory (IL-10)) are released, resulting in hypotension, bleeding, and ultimately multiorgan exhaustion. The term "cytokinin storm" is most associated with the 1918 H1N1 influenza pandemic and the recent 3-5 cases of avian influenza H5N1 infection. In these cases, young people with presumably healthy immune systems die disproportionately from the disease, and the cause is believed to be abnormal activity of their immune systems. This syndrome is also known to occur in SARS 6 , Epstein-Barr virus-associated phagocytic lymphohistiocytosis 7 , gram negative sepsis 8 , malaria 9 and many others. In advanced or terminal cases of infectious disease. Cytokine storms can be caused by non-infectious causes such as acute pancreatitis 10 , severe burns or trauma 11 or acute respiratory distress syndrome 12 secondary to drug use or inhaled toxins. In a recent phase 1 trial, injection of the monoclonal antibody TGN1412, which binds to the CD28 receptor on T cells, resulted in severe cases of cytokine storm and multiple organ failure in six human volunteers who received the agent. This was despite the fact that a given dose of this agent was 500 times lower than that found in animal 13 . Other viruses may include rhinovirus, coronavirus, paramyxoviridae, orthomyxoviridae, adenovirus, parainfluenza virus, interstitial pneumonia virus, respiratory syncytial virus, or influenza virus.

薑黃素對細胞素的抑制。Cytokinin inhibition by curcumin.

已顯示薑黃素抑制多種細胞素的釋放。Abe等人顯示薑黃素抑制單核細胞及巨噬細胞的IL-1β、IL-8、TNF-α、單核細胞趨化蛋白-1 (MCP-1)及巨噬細胞發炎蛋白-1α (MIP-1α)釋放14 。Jain等人顯示薑黃素顯著減少高葡萄糖環境中培養的單核細胞的IL-6、IL-8、TNF-α及MCP-1釋放15 。此等相同研究人員研究了鏈佐黴素誘導之血漿血糖濃度升高及IL-6、TNF-α及MCP-1濃度顯著升高之大鼠;薑黃素顯著降低此等濃度15 。據報導,薑黃素阻斷類風濕性滑膜纖維母細胞的IL-6釋放16 、人類食道上皮細胞17 及肺泡上皮細胞18 的IL-8釋放及骨髓基質細胞19 、結腸上皮細胞20 及人類關節軟骨細胞21 的IL-1釋放。薑黃素亦阻止IL-222 、IL-1222-23 、干擾素-γ22-23 及許多其他關鍵細胞素24-26 的釋放(表1及2)。Curcumin has been shown to inhibit the release of various cytokines. Abe et al. showed that curcumin inhibited IL-1β, IL-8, TNF-α, monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1α (MIP) in monocytes and macrophages -1α) releases 14 . Jain et al. showed that curcumin significantly reduced IL-6, IL-8, TNF-α and MCP-1 release from monocytes cultured in a high glucose environment 15 . These same investigators studied streptozotocin-induced increases in plasma blood glucose concentrations and in rats with markedly elevated concentrations of IL-6, TNF-α, and MCP-1; curcumin significantly decreased these concentrations 15 . Curcumin has been reported to block IL-6 release from rheumatoid synovial fibroblasts, 16 IL-8 release from human esophageal epithelial cells, 17 and alveolar epithelial cells, 18 and bone marrow stromal cells, 19 colonic epithelial cells20 and human joints. IL-1 release from chondrocytes 21 . Curcumin also prevented the release of IL- 222, IL-1222-23, interferon-gamma 22-23 , and many other key cytokines 24-26 (Tables 1 and 2).

實例1:薑黃素細胞素抑制與細胞素風暴相關病症的臨床改良相關。Example 1: Curcumin Cytokinin inhibition is associated with clinical improvement in cytokine storm-related disorders.

薑黃素對患者及動物系統之多種疾病病症具有積極效應。Avasarala等人報導在病毒誘導之急性呼吸道窘迫症候群之小鼠模型中,薑黃素對細胞素表現及疾病進展之效應。薑黃素降低關鍵細胞素IL-6、IL-10、干擾素γ及MCP-1的表現,且此與發炎顯著減少及纖維化減少相關27 。Yu等人顯示在急性胰臓炎小鼠模型中,薑黃素對TNF-α濃度之抑制與胰臓損傷的減少相關28 。Cheppudira等人報導在大鼠模型中,薑黃素對IL-8及GRO-α及最終對NF-κB之抑制與熱損傷的減少相關29 。薑黃素對細胞素之抑制亦與嚴重病毒感染模型中之臨床改良相關。Song等人顯示薑黃素投與減少IL-1β、IL-6及TNF-α及最終NF-κB之表現,且保護受感染的小鼠免受柯薩奇病毒誘導之嚴重心肌損傷30 。已顯示薑黃素具有對抗多種病毒,包括冠狀病毒、HIV-1、HIV-2、HSV、HPV、HTLV-1、HBV、HCV及日本腦炎病毒(Japanese encephalitis virus)之活性31 。該病毒可包括鼻病毒、冠狀病毒、副黏液病毒科、正黏液病毒科、腺病毒、副流行性感冒病毒、間質肺炎病毒、呼吸道融合病毒或流行性感冒病毒。此外,已顯示薑黃素具有對抗培養物中H1N1病毒之特異性活性32-33 ,儘管在此兩項研究中未測量細胞素濃度。最重要的是,已顯示薑黃素刺激SOCS蛋白34 。已顯示此等蛋白質在保護感染流行性感冒病毒的小鼠免受嚴重細胞素風暴中至關重要35Curcumin has positive effects on a variety of disease states in patients and animal systems. Avasarala et al. report the effect of curcumin on cytokine expression and disease progression in a mouse model of virus-induced acute respiratory distress syndrome. Curcumin decreased the expression of key cytokines IL-6, IL-10, interferon gamma and MCP-1 and this was associated with a significant reduction in inflammation and reduced fibrosis 27 . Yu et al. showed that inhibition of TNF-α concentrations by curcumin correlated with a reduction in pancreatic damage in a mouse model of acute pancreatitis 28 . Cheppudira et al. reported that curcumin inhibition of IL-8 and GRO-α and ultimately NF-κB was associated with a reduction in thermal injury in a rat model 29 . Cytokinin inhibition by curcumin was also associated with clinical improvement in a model of severe viral infection. Song et al. show that curcumin administration reduces the expression of IL-1β, IL-6 and TNF-α and ultimately NF-κB, and protects infected mice from coxsackievirus-induced severe myocardial injury 30 . Curcumin has been shown to have activity against a variety of viruses, including coronavirus, HIV-1, HIV-2, HSV, HPV, HTLV-1, HBV, HCV and Japanese encephalitis virus31 . The virus may include a rhinovirus, coronavirus, paramyxoviridae, orthomyxoviridae, adenovirus, parainfluenza virus, interstitial pneumonia virus, respiratory syncytial virus, or influenza virus. In addition, curcumin has been shown to have specific activity against H1N1 virus in culture 32-33 , although cytokine concentrations were not measured in these two studies. Most importantly, curcumin has been shown to stimulate SOCS protein 34 . These proteins have been shown to be critical in protecting influenza virus-infected mice from severe cytokine storms 35 .

薑黃素於抑制多種細胞素中之活性及其於與細胞素風暴相關之疾病及病症之實驗模型中之活性表明其可用於治療具有伊波拉病毒及細胞素風暴的患者。薑黃素很難自腸道吸收;然而,靜脈內調配物可使診斷為患有細胞素風暴的患者達成治療性薑黃素血液濃度。當用薑黃素治療患者時,應仔細監測重要細胞素(諸如IL-1β、IL-6及TNF-α)之臨床狀態及濃度。The activity of curcumin in inhibiting various cytokines and its activity in experimental models of diseases and disorders associated with cytokine storm suggests that it may be useful in the treatment of patients with Ebola virus and cytokine storm. Curcumin is poorly absorbed from the gut; however, intravenous formulations can achieve therapeutic curcumin blood concentrations in patients diagnosed with cytokine storm. When treating patients with curcumin, the clinical status and concentrations of important cytokines such as IL-1β, IL-6 and TNF-α should be carefully monitored.

表1:薑黃素於介白素之效應 生物分子 關鍵功能 ↓ IL-1 主要促發炎細胞素、造血(hematopoesis)、CNS發育 ↓ IL-2 T細胞淋巴細胞分化 ↓ ↑ IL-4 B細胞增殖 ↓ IL-5 免疫球蛋白分泌、嗜酸性球功能、過敏 ↓ IL-6 主要促發炎細胞素、B細胞分化、神經細胞分化 ↓ IL-8 嗜中性白血球趨化性、血管生成 ↑ IL-10 抗發炎細胞素,亦具有T細胞刺激效應 ↓ IL-11 誘導急性期蛋白、抗原-抗體反應、骨重塑 ↓ IL-12 防禦細胞內病原體 ↓ IL-13 誘導基質金屬蛋白酶,誘導IgE ↓ IL-17 促發炎細胞素 Table 1: The effect of curcumin on interleukin Biomolecules key function ↓ IL-1 Major pro-inflammatory cytokines, hematopoesis, CNS development ↓ IL-2 T cell lymphocyte differentiation ↓ ↑ IL-4 B cell proliferation ↓ IL-5 Immunoglobulin secretion, eosinophil function, allergy ↓ IL-6 Major pro-inflammatory cytokines, B cell differentiation, neural cell differentiation ↓ IL-8 Neutrophil chemotaxis, angiogenesis ↑ IL-10 Anti-inflammatory cytokine, also has T cell stimulating effect ↓ IL-11 Induction of acute phase proteins, antigen-antibody response, bone remodeling ↓ IL-12 Defense against intracellular pathogens ↓ IL-13 Induction of matrix metalloproteinases, induction of IgE ↓ IL-17 pro-inflammatory cytokines

表2:薑黃素對其他關鍵細胞素的抑制 生物分子 關鍵功能 ↓ TNF-α 主要促發炎細胞素,胰島素抗性,誘導促皮質素釋放激素的分泌 ↓ 干擾素γ 巨噬細胞活化,T及B細胞活化及分化 ↓ MCP-1 (CCL2) 神經發炎、單核細胞及嗜鹼性球趨化性 ↓ MIP-1α (CCL3) 活化粒細胞,誘導促發炎細胞素的合成 ↓ GROα (CXCL1) 嗜中性白血球趨化因子、血管生成、傷口癒合 ↓ GROβ (CXCL2) 嗜中性白血球及單核細胞趨化因子 ↓ IP-10 (CXCL10) 單核細胞及巨噬細胞趨化因子、NK細胞趨化因子、血管生成 ↓ SDF-1 (CXCL12) 淋巴細胞趨化因子,血管生成,抑制蝕骨細胞生成 Table 2: Inhibition of other key cytokines by curcumin Biomolecules key function ↓ TNF-α Major pro-inflammatory cytokine, insulin resistance, induces secretion of corticotropin-releasing hormone ↓ Interferon gamma Macrophage activation, T and B cell activation and differentiation ↓ MCP-1 (CCL2) Neuroinflammation, monocyte and basophil chemotaxis ↓ MIP-1α (CCL3) Activates granulocytes, induces the synthesis of pro-inflammatory cytokines ↓ GROα (CXCL1) Neutrophil chemokines, angiogenesis, wound healing ↓ GROβ (CXCL2) Neutrophil and Monocyte Chemokines ↓ IP-10 (CXCL10) Monocyte and macrophage chemokines, NK cell chemokines, angiogenesis ↓ SDF-1 (CXCL12) Lymphocyte chemokine, angiogenesis, inhibition of osteoclastogenesis

測試結果。第一項研究。Test Results. The first study.

將微脂體及微脂體-薑黃素製備為6 mg/ml溶液。將薑黃素(固體)以6 mg/ml溶解於DMSO中。所有三種化合物均在EBOV感染檢定中用兩種細胞系Hela及HFF-1進行測試。研究使用兩組以不同稀釋策略來進行。Liposomes and liposome-curcumin were prepared as 6 mg/ml solutions. Curcumin (solid) was dissolved in DMSO at 6 mg/ml. All three compounds were tested in the EBOV infection assay with two cell lines, Hela and HFF-1. The study was conducted using two groups with different dilution strategies.

Hela細胞系係用於兩個獨立實驗(重複1及重複2)及HFF-1係用於一個獨立實驗。感染前2小時將微脂體及薑黃素-微脂體在培養基中自600 ug/ml之最高濃度(檢定中之最終濃度)稀釋,以2倍步進稀釋為劑量反應曲線產生10個點。藉由PE Janus 384-吸頭分配器將5 ul各劑量分配至具有細胞之檢定孔中。藉由HP D300將薑黃素(固體)直接自100% DMSO儲液分配至具有細胞之檢定孔中。所有孔中將DMSO標準化為最終1%。各劑量在板上測試4次,n=4。The Hela cell line was used in two independent experiments (replicate 1 and replicate 2) and the HFF-1 line was used in one independent experiment. Liposomes and curcumin-liposomes were diluted in medium 2 hours prior to infection from the highest concentration (final concentration in the assay) of 600 ug/ml in 2-fold step dilutions to generate 10 points for a dose-response curve. 5 ul of each dose was dispensed into assay wells with cells by a PE Janus 384-tip dispenser. Curcumin (solid) was dispensed directly from a 100% DMSO stock solution into assay wells with cells by HP D300. DMSO was normalized to a final 1% in all wells. Each dose was tested 4 times on the plate, n=4.

測試結果。第二項研究。Test Results. Second study.

在一項研究中使用兩種細胞系(重複1)。感染前2小時將薑黃素-微脂體及微脂體在培養基中自60 ug/ml之最高濃度(檢定中之最終濃度)稀釋,以2倍步進稀釋為劑量反應曲線產生10個點。在此情況下,滴定係藉由手動混合及針對各新劑量改變吸頭來完成的。在DMSO中手動滴定薑黃素(固體)且然後等量的各劑量在培養基中1/10混合稀釋。藉由PE Janus 384-吸頭分配器將5 ul各劑量分配至具有細胞之檢定孔中。各劑量在板上測試4次,n=4。對於此兩項研究:用EBOV(Zaire)對於Hela細胞以MOI=0.5及對於HFF-1以MOI=3感染細胞且在48小時內藉由將細胞固定於福爾馬林溶液中來停止感染。為了偵測受感染的細胞,使用抗GP抗體進行免疫染色。圖像由PE Opera共聚焦平臺以10x物鏡拍攝,使用Acapella軟體進行分析。Two cell lines were used in one study (replicate 1). Curcumin-liposomes and liposomes were diluted in medium 2 hours before infection from the highest concentration (final concentration in the assay) of 60 ug/ml in 2-fold step dilutions to generate 10 points for the dose-response curve. In this case, the titration is done by manual mixing and changing the tip for each new dose. Curcumin (solid) was manually titrated in DMSO and then equal amounts of each dose were mixed 1/10 diluted in medium. 5 ul of each dose was dispensed into assay wells with cells by a PE Janus 384-tip dispenser. Each dose was tested 4 times on the plate, n=4. For both studies: cells were infected with EBOV (Zaire) at MOI=0.5 for Hela cells and at MOI=3 for HFF-1 and the infection was stopped within 48 hours by fixing cells in formalin solution. To detect infected cells, immunostaining was performed using anti-GP antibody. Images were taken on a PE Opera confocal platform with a 10x objective and analyzed using Acapella software.

GP染色信號轉化為感染%。使用每孔的細胞核數量確定細胞的存活率%(與受感染但未處理的對照孔相比,n=16)。使用GeneData軟體分析資料及使用板對照將感染%轉換為抑制% (%INH)。GP staining signal was converted to % infection. The % viability of cells was determined using the number of nuclei per well (n=16 compared to infected but untreated control wells). Data were analyzed using GeneData software and % infection was converted to % inhibition (%INH) using plate controls.

圖1A及1B分別顯示以微脂體薑黃素在HeLa細胞中達成的抑制百分比及存活率百分比。圖2A及2B分別顯示在HeLa細胞中使用固體S-薑黃素達成的抑制百分比及存活率百分比。使用HFF-1細胞的相同研究獲得類似結果。Figures 1A and 1B show the percent inhibition and percent survival, respectively, achieved with liposomal curcumin in HeLa cells. Figures 2A and 2B show the percent inhibition and percent survival, respectively, achieved using solid S-curcumin in HeLa cells. Similar results were obtained from the same study using HFF-1 cells.

圖3A及3B分別顯示比較微脂體薑黃素及固體薑黃素在HeLa細胞中的抑制百分比及存活率百分比。使用HFF-1細胞的相同研究獲得類似結果。Figures 3A and 3B show the comparative liposomal curcumin and solid curcumin in the percentage of inhibition and the percentage of survival, respectively, in HeLa cells. Similar results were obtained from the same study using HFF-1 cells.

在Hela細胞中測定抗EBOV活性且其與「細胞毒性」相關。簡言之,結果如下:(1)薑黃素-微脂體EC50 =2.5 ± 0.2 ug/ml,安全性指數 = 2。微脂體EC50 =3.9± 0.2 ug/ml,安全性指數 = 4。薑黃素EC50 =6.5 ±0.5 ug/ml,安全性指數 = 1。因此,微脂體顯示EC50 =0.6 ± 2 ug/ml,具有極好安全性指數約50。Anti-EBOV activity was determined in Hela cells and correlated with "cytotoxicity". Briefly, the results are as follows: (1) Curcumin-Liposome EC 50 = 2.5 ± 0.2 ug/ml, Safety Index = 2. Liposome EC 50 = 3.9 ± 0.2 ug/ml, safety index = 4. Curcumin EC 50 = 6.5 ± 0.5 ug/ml, safety index = 1. Thus, liposomes showed EC50 = 0.6 ± 2 ug/ml, with an excellent safety index of about 50.

導致QT間隔延長的促發炎細胞素:腦醯胺及神經鞘胺醇-1磷酸路徑之作用。越來越多的證據表明,過度濃度之促發炎細胞素在QT症候群延長的發病機制中起著主要作用。在抗癌試驗中,QT延長被認為是細胞素、乾擾素γ之副作用,且在用介白素-18治療後看到QT延長。患有發炎疾病(諸如類風濕性關節炎、牛皮癬及發炎性腸病)的患者具有QT延長之高發生率,且繼發於此種併發症的死亡更頻繁。已顯示QT延長之程度與關鍵促發炎細胞素TNF-α、IL-1β及IL-6的升高程度直接相關。在對正常人群的大規模研究中,已發現此等細胞素的無症狀升高與QT延長相關。在患有類風濕性關節炎的患者的托珠單抗(tocilizumab) (一種IL-6阻斷劑)的試驗中,注意到先前延長的QT間隔的持續時間縮短,且QT縮短的程度與血清發炎標誌物的減少相關。在動物模型及培養的心肌細胞中的研究已顯示TNF-α抑制IKr、IK及Ito。此被認為是由於反應性氧物質(ROS)的刺激所致。已顯示TNF-α及其他細胞素會導致ROS的產生增加。TNF-α之效應可藉由投與抗TNF-α抗體或藉由抗氧化劑來阻斷。已顯示IL-1β及IL-6增加L型Ca(2+ )電流(ICaL),且此種效應可藉由阿司匹靈(aspirin)或吲哚美灑辛(indomethacin)阻斷。磷脂症(phospholipidosis)與延長的QT之間的密切聯繫提供此等細胞素重要性的另一個提示。77%的可引起磷脂症的藥劑亦係hERG通道阻斷劑。已顯示磷脂細胞在LPS刺激後分泌大量TNF-α及IL-6。亦推測得藥物誘導之磷脂症的損傷機制係腦醯胺的積聚。大量研究顯示細胞素(諸如干擾素γ、IL-1β及TNF-α)會增加神經磷脂酶活化,且增加腦醯胺的產生,已知腦醯胺抑制hERG電流。亦已知神經脂質介導ROS信號傳導。腦醯胺經代謝為神經鞘胺醇及脂肪酸,且神經鞘胺醇經神經鞘胺醇激酶磷酸化形成神經鞘胺醇-1磷酸。腦醯胺及神經鞘胺醇-1磷酸具有相反效應,腦醯胺引起細胞凋亡及神經鞘胺醇-1磷酸促進細胞存活。芬戈莫德(Fingolimod) (一種神經鞘胺醇類似物(其於神經鞘胺醇-1磷酸-1受體上同時具有促效劑及拮抗劑效應))用於治療患有復發型多發性硬化症的患者,透過抑制hERG電流引起QT延長,以及致命室性心律失常。此外,在流行性感冒誘導之細胞素風暴小鼠模型中的研究已顯示神經鞘胺醇-1磷酸-1信號傳導係活化細胞素風暴的主要途徑。細胞素風暴經神經鞘胺醇類似物透過細胞素的反饋抑制逆轉,且看到TNF-α、IL-1α、IL-6、MCP-1、干擾素α及MIP-1α的顯著降低、及臨床改良。與用抗病毒療法相比,神經鞘胺醇類似物使本研究中小鼠之存活期長得多。亦應注意,臨床上發現為QT延長之抑制劑的藥劑助孕素、斯他汀、微脂體薑黃素、白藜蘆醇、抗氧化劑亦係此等發炎細胞素之強抑制劑。甚至β-阻斷劑(即用於具有延長的QT的患者之標準治療)似乎對細胞素具有抑制作用,此係其在治療此等患者中之作用機制的一部分。所有此等藥劑均將平衡自腦醯胺途徑朝著神經鞘胺醇-1磷酸途徑移位。因此,過度濃度之促發炎細胞素於延長的QT症候群的病因中起著主要作用,可能係透過對ROS之刺激及腦醯胺途徑。Pro-inflammatory cytokines leading to prolongation of the QT interval: role of ceramide and sphingosine-1 phosphate pathways. There is increasing evidence that excessive concentrations of pro-inflammatory cytokines play a major role in the pathogenesis of prolonged QT syndrome. In anticancer trials, QT prolongation was seen as a side effect of cytokines, interferon gamma, and QT prolongation was seen after treatment with interleukin-18. Patients with inflammatory diseases such as rheumatoid arthritis, psoriasis and inflammatory bowel disease have a high incidence of QT prolongation, and deaths secondary to this complication are more frequent. The degree of QT prolongation has been shown to be directly related to the degree of elevation of the key pro-inflammatory cytokines TNF-α, IL-1β and IL-6. In large studies in normal populations, asymptomatic elevations of these cytokines have been found to be associated with QT prolongation. In a trial of tocilizumab, an IL-6 blocker, in patients with rheumatoid arthritis, a reduction in the duration of the previously prolonged QT interval was noted, and the magnitude of the QT shortening was comparable to serum associated with a reduction in inflammatory markers. Studies in animal models and cultured cardiomyocytes have shown that TNF-α inhibits IKr, IK and Ito. This is thought to be due to the stimulation of reactive oxygen species (ROS). TNF-α and other cytokines have been shown to lead to increased production of ROS. The effects of TNF-alpha can be blocked by administration of anti-TNF-alpha antibodies or by antioxidants. IL-1β and IL-6 have been shown to increase L-type Ca( 2+ ) currents (ICaL), and this effect can be blocked by aspirin or indomethacin. The close link between phospholipidosis and prolonged QT provides another hint of the importance of these cytokines. 77% of the agents that can cause phospholipidemia are also hERG channel blockers. Phospholipid cells have been shown to secrete large amounts of TNF-[alpha] and IL-6 following LPS stimulation. It is also speculated that the damage mechanism of drug-induced phospholipidemia is the accumulation of ceramide. Numerous studies have shown that cytokines such as interferon gamma, IL-1 beta and TNF-alpha increase sphingomyelinase activation and increase the production of ceramide, which is known to inhibit hERG currents. Neurolipids are also known to mediate ROS signaling. Cerebrolysine is metabolized to sphingosine and fatty acids, and sphingosine is phosphorylated by sphingosine kinase to form sphingosine-1 phosphate. Cerebrolysine and sphingosine-1 phosphate have opposite effects, cerebrolysine induces apoptosis and sphingosine-1 phosphate promotes cell survival. Fingolimod, a sphingosine analog (which has both agonist and antagonist effects at the sphingosine-1 phosphate-1 receptor) for the treatment of patients with relapsing polyps In patients with sclerosis, inhibition of hERG currents causes QT prolongation and fatal ventricular arrhythmias. Furthermore, studies in a mouse model of influenza-induced cytokine storm have shown that sphingosine-1 phosphate-1 signaling is a major pathway for activation of cytokine storm. Cytokine storm was reversed by feedback inhibition of sphingosine analogs through cytokines, and significant reductions in TNF-α, IL-1α, IL-6, MCP-1, IFN-α, and MIP-1α were seen, and clinical Improve. The sphingosine analogs enabled the mice in this study to survive much longer than with antiviral therapy. It should also be noted that progestogens, statins, liposomal curcumin, resveratrol, and antioxidants, which are clinically found to be inhibitors of QT prolongation, are also strong inhibitors of these inflammatory cytokines. Even beta-blockers, the standard of care for patients with prolonged QT, appear to have inhibitory effects on cytokines as part of their mechanism of action in the treatment of these patients. All of these agents shift the balance from the ceramide pathway towards the sphingosine-1 phosphate pathway. Therefore, excessive concentrations of pro-inflammatory cytokines play a major role in the etiology of prolonged QT syndrome, possibly through stimulation of ROS and the ceramide pathway.

作為解釋而絕非限制本發明,描述藉由微脂體薑黃素及EU8120校正先前延長的QT間隔的提議機制。來自促發炎細胞素的早期2期抗癌試驗及來自患有類風濕性關節炎、牛皮癬及發炎性腸病的患者之最新研究之大量證據表明促發炎細胞素濃度升高導致QT間隔的延長。此等患者具有顯著增加之延長QT之發生率。此外,在患有類風濕性關節炎的患者的抗IL-6抗體的試驗中,注意到延長的QT縮短,此與細胞素的減少相關。在正常人群的大規模研究中亦發現細胞素濃度升高與無症狀QT延長的相關性。在動物模型及心室肌細胞中,TNF-α投與導致延遲整流鉀電流的快速分量(IKr)、延遲整流電流的緩慢分量(IKs)及瞬時外向電流(Ito)的減少。此等效應被認為是由於反應性氧物質(ROS)的刺激所致且可藉由投與抗TNF-α抗體或藉由抗氧化劑來阻斷。從其他研究中已知,TNF-α及其他促發炎細胞素刺激ROS產生。IL-1β及IL-6在此等模型中亦具有QT延長效應。從其他疾病的研究中亦已知,ROS增加腦醯胺產生,因此將該平衡自神經鞘胺醇-1-磷酸(S1P)途徑(保護性)移至腦醯胺途徑(破壞性)。實驗模型中的多項研究已顯示,腦醯胺導致hERG電流之抑制。已提出,降低促發炎細胞素濃度且導致延長的QT縮短的斯他汀類(statins)可將刺激此種保護性S1P途徑作為其潛在機制。將延長的QT縮短的其他藥劑(包括抗氧化劑,諸如維生素E)降低促發炎細胞素及ROS之濃度,且刺激S1P。最後,本發明人已認知,導致細胞素抑制及先前延長的QT間隔縮短的藥劑清單顯著地類似於已顯示在動物模型中降低細胞素濃度及繼發性腦發炎且亦減少腦損傷程度的藥劑清單。因此,本發明可用於靶向該等增加腦醯胺產生的疾病,因此將該平衡自神經鞘胺醇-1-磷酸(S1P)途徑(保護性)移至腦醯胺途徑(破壞性)。By way of explanation and in no way limiting the invention, a proposed mechanism for the correction of the previously prolonged QT interval by liposomal curcumin and EU8120 is described. Substantial evidence from early phase 2 anticancer trials of pro-inflammatory cytokines and recent studies in patients with rheumatoid arthritis, psoriasis and inflammatory bowel disease suggest that elevated concentrations of pro-inflammatory cytokines lead to prolongation of the QT interval. These patients have a significantly increased incidence of prolonged QT. Furthermore, in a trial of anti-IL-6 antibodies in patients with rheumatoid arthritis, prolonged QT shortening was noted, which was associated with a decrease in cytokines. An association between elevated cytokine concentrations and asymptomatic QT prolongation has also been found in a large-scale study of normal populations. In animal models and ventricular myocytes, TNF-α administration resulted in a decrease in the fast component of delayed rectifier potassium current (IKr), the slow component of delayed rectifier current (IKs), and the transient outward current (Ito). These effects are believed to be due to stimulation of reactive oxygen species (ROS) and can be blocked by administration of anti-TNF-alpha antibodies or by antioxidants. It is known from other studies that TNF-α and other pro-inflammatory cytokines stimulate ROS production. IL-1β and IL-6 also have QT prolonging effects in these models. It is also known from studies of other diseases that ROS increases brain amide production, thus shifting the balance from the sphingosine-1-phosphate (S1P) pathway (protective) to the brain amide pathway (destructive). Several studies in experimental models have shown that ceramide leads to inhibition of hERG currents. Statins that reduce pro-inflammatory cytokine concentrations and lead to prolonged QT shortening have been proposed to stimulate this protective S1P pathway as their underlying mechanism. Other agents that shorten the prolonged QT, including antioxidants such as vitamin E, reduce the concentrations of pro-inflammatory cytokines and ROS, and stimulate S1P. Finally, the inventors have recognized that the list of agents that lead to cytokine inhibition and previously prolonged shortening of the QT interval is remarkably similar to agents that have been shown to reduce cytokine concentrations and secondary brain inflammation in animal models and also reduce the extent of brain damage list. Thus, the present invention can be used to target such diseases that increase ceramide production, thereby shifting the balance from the sphingosine-1-phosphate (S1P) pathway (protective) to the ceramide pathway (destructive).

本發明人已在體外及體內模型中均顯示微脂體薑黃素及EU8120降低IL-1β、IL-6、TNF-α、MCP-1、MIP-1及Rantes。在其他模型中,亦已顯示微脂體競爭酵素神經磷脂酶且降低腦醯胺濃度,因此亦將腦醯胺/S1P平衡朝著S1P移位。The inventors have shown that liposomal curcumin and EU8120 reduce IL-1β, IL-6, TNF-α, MCP-1, MIP-1 and Rantes in both in vitro and in vivo models. In other models, liposomes have also been shown to compete for the enzyme sphingomyelinase and reduce ceramide concentrations, thus shifting the ceramide/S1P balance towards S1P as well.

LPS誘導之細胞素風暴產生QTc延長,該延長係藉由抗發炎脂質阻止。越來越多的證據表明,過度濃度之促發炎細胞素在QT症候群延長的發病機制中起著主要作用。相反地,阻斷劑(諸如托珠單抗(IL-6)或抗細胞素抗體(TNFα))有助於縮短先前延長的QT間隔。LPS-induced cytokine storm produces QTc prolongation that is prevented by anti-inflammatory lipids. There is increasing evidence that excessive concentrations of pro-inflammatory cytokines play a major role in the pathogenesis of prolonged QT syndrome. Conversely, blocking agents such as tocilizumab (IL-6) or anti-cytokinin antibodies (TNFα) help to shorten the previously prolonged QT interval.

在本研究中,使用LPS及Kdo2-脂質-A以誘導天竺鼠中的細胞素釋放且同時進行ECG監測及抽血,接著進行細胞素產生的Q-ELISA測定。選擇天竺鼠是因為其由於促心律失常激發而產生可靠QTc延長,於ECG上具有始終可見之T波。雄性成年天竺鼠在時間0時接受300 µg/kg LPS,且在LPS後1小時、2小時及4小時分析ECG,且同時抽血。接受LPS的動物僅展現在LPS後1小時QTc增加8毫秒,此時TNFα濃度最高為前LPS值的5.5倍。在LPS後2小時的29毫秒QTc延長分別與IL-1β及IL-6增加7倍及9倍相關。當將動物安樂死時,在LPS後4小時後,仍然存在QTc延長(27毫秒)。在LPS誘導前1小時給予9 mg/kg EU8120 (一種脂質摻合物,顯示可防止IKr通道被各種hERG阻斷劑的阻斷)時,QTc延長在2小時後被限制在5毫秒,且在LPS後1小時及4小時得以完全阻止。在投與EU8120之動物中,TNFα、IL1β及IL-6之血漿濃度顯著降低。本實例證實EU8120經由抗發炎細胞素效應而不是藉由與活性劑(LPS)之任何相互作用來抑制QTc延長。In this study, LPS and Kdo2-lipid-A were used to induce cytokine release in guinea pigs with simultaneous ECG monitoring and blood draw followed by Q-ELISA assay of cytokine production. The guinea pig was chosen for its reliable QTc prolongation due to proarrhythmic excitation, with consistently visible T waves on the ECG. Male adult guinea pigs received 300 µg/kg LPS at time 0, and ECGs were analyzed 1, 2, and 4 hours after LPS, and blood was drawn concurrently. Animals receiving LPS exhibited an 8 msec increase in QTc only 1 hour after LPS, when TNFα concentrations were up to 5.5 times pre-LPS values. A 29-millisecond QTc prolongation at 2 hours after LPS was associated with a 7- and 9-fold increase in IL-1β and IL-6, respectively. When animals were euthanized, QTc prolongation (27 ms) was still present 4 hours after LPS. When 9 mg/kg EU8120 (a lipid blend shown to prevent blockade of IKr channels by various hERG blockers) was administered 1 hr before LPS induction, QTc prolongation was limited to 5 ms after 2 hr, and at Complete arrest was achieved 1 hour and 4 hours after LPS. Plasma concentrations of TNFα, IL1β and IL-6 were significantly reduced in animals administered EU8120. This example demonstrates that EU8120 inhibits QTc prolongation through an anti-inflammatory cytokine effect and not through any interaction with the active agent (LPS).

合成薑黃素。Synthetic curcumin.

本發明可使用組合物以使用合成薑黃素(S-薑黃素)來治療細胞素風暴疾患。Compositions can be used in the present invention to treat cytokine storm disorders using synthetic curcumin (S-curcumin).

薑黃素係薑黃植物之活性成分,其已合成為接近純度(99.2%)。其經與微脂體、聚合物或PLGM一起調配使其能夠呈推注或呈與其他活性劑組合在1至72小時內連續輸注形式靜脈內投與。薑黃素具有抗氧化及抗發炎活性,且可阻斷對細胞外生長因子、細胞之不受控制之增殖及纖維化相關及組織退化性病症異常反應之自主細胞內信號傳導路徑。具體而言,薑黃素對控制增殖、代謝、存活及死亡的關鍵信號傳導路徑之成分起負面反應。Curcumin, the active ingredient of the turmeric plant, has been synthesized to near-purity (99.2%). It is formulated with liposomes, polymers or PLGM to enable intravenous administration as a bolus injection or as a continuous infusion in combination with other active agents over 1 to 72 hours. Curcumin possesses antioxidant and anti-inflammatory activities, and blocks autonomous intracellular signaling pathways in response to extracellular growth factors, uncontrolled proliferation of cells, and abnormal responses to fibrosis-related and tissue degenerative disorders. Specifically, curcumin negatively responds to components of key signaling pathways that control proliferation, metabolism, survival, and death.

薑黃植物提取物的口服及局部投與已在傳統醫學中使用兩千多年。雖然經口投與沒有全身毒性,但亦沒有全身治療活性。此係由於血液不溶性、及腸壁及肝失活,亦即經口途徑對於全身性疾病的生物利用度可忽略不計。為了克服此等限制,具有微脂體、聚合物(n-異丙基丙烯醯胺、N-乙烯基吡咯啶酮及丙烯酸)及聚乳酸乙醇酸共聚物之非經腸靜脈內薑黃素調配物進入臨床前藥物開發。4 Oral and topical administration of turmeric plant extracts has been used in traditional medicine for over two thousand years. Although oral administration has no systemic toxicity, it also has no systemic therapeutic activity. This is due to blood insolubility, and inactivation of the intestinal wall and liver, ie the oral route has negligible bioavailability for systemic disease. To overcome these limitations, parenteral intravenous curcumin formulations with liposomes, polymers (n-isopropylacrylamide, N-vinylpyrrolidone and acrylic acid) and polylactic acid glycolic acid copolymers Enter preclinical drug development. 4

薑黃素作為薑黃根提取物可作為三種類薑黃素之混合物供研究人員使用及可根據FDA作為食品補充劑或香料供公眾使用。提取物為79.2%薑黃素(二阿魏醯甲烷)、18.27%去甲氧基薑黃素及2.53%雙去甲氧基薑黃素。Curcumin is available as a turmeric root extract for use by researchers as a mixture of three curcuminoids and by the public as a food supplement or flavor according to the FDA. The extract was 79.2% curcumin (diferulomethane), 18.27% demethoxycurcumin and 2.53% bisdemethoxycurcumin.

合成的薑黃素係GMP級99.2%純二阿魏醯甲烷,其係製備用於非人體實驗研究及未來的I期臨床試驗。C3三組分提取物與單組分合成S-薑黃素之間存在明顯差異,該等差異延伸至可辨別之分析、物理化學及生物學特性。在某些態樣中,該二阿魏醯甲烷係85、86、87、88、89、90、91、92、93、94、95或96%純二阿魏醯甲烷。The synthetic curcumin is GMP grade 99.2% pure diferulomethane, which is prepared for non-human experimental research and future Phase I clinical trials. There are significant differences between the C3 three-component extract and the single-component synthetic S-curcumin, and these differences extend to discernible analytical, physicochemical, and biological properties. In certain aspects, the diferulomethane is 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95 or 96% pure diferulomethane.

本發明係關於合成薑黃素(S-薑黃素)且比較S-薑黃素與微脂體薑黃素Nanocurc® 及PLGA-薑黃素(下文稱為C3-複合物)之性質及活性。The present invention relates to the synthesis of curcumin (S-curcumin) and the comparison of the properties and activities of S-curcumin with liposomal curcumin Nanocurc® and PLGA-curcumin (hereinafter referred to as C3-complex).

微脂體薑黃素:微脂體薑黃素之初步研究係使用以複合物購買的材料進行的6-7 。S-薑黃素的研究係Mach CM等人(2009)8 及Mach CM等人(2010)9Liposome Curcumin: A preliminary study of liposomal curcumin was performed using materials purchased as complexes 6-7 . S-curcumin was studied by Mach CM et al. (2009) 8 and Mach CM et al. (2010) 9 .

Nanocurc® :Nanocurc®的初步研究係使用以複合物購買的產品進行。Savita Bisht等人(2007)10 使用非sabinsa來源。從那時起,Nanocurc®公開案的剩餘部分中使用S-薑黃素的研究。11-13 Nanocurc ® : Preliminary studies of Nanocurc ® were conducted using the product purchased as a compound. Savita Bisht et al. (2007) 10 used non-sabinsa sources. Since then, the remainder of Nanocurc® has published research using S-curcumin. 11-13

PLGA-薑黃素:PLGA-薑黃素的初步研究係使用製備為C3-複合物的產品進行。14-18 研究包括於大鼠腦中之PLGA-薑黃素C3複合物及PLGA-S-薑黃素藥物動力學研究。PLGA-Curcumin: A preliminary study of PLGA-Curcumin was carried out using the product prepared as a C3-complex. 14-18 Studies include PLGA-curcumin C3 complex and PLGA-S-curcumin pharmacokinetic studies in rat brain.

PLGA C3-複合薑黃素與PLGA S-薑黃素之比較指示以下差異。99.2% S-薑黃素在所有四種溶劑(乙醇、乙酸乙酯、丙酮及乙腈)中之溶解度與含有76%薑黃素之C3複合物顯著不同。當標準化為相等濃度時,純材料具有更大溶解度。此賦予改良之製造能力,且歸因於體內情境中之不同藥物動力學及藥效動力學(表3)。Comparison of PLGA C3-complex curcumin and PLGA S-curcumin indicates the following differences. The solubility of 99.2% S-curcumin in all four solvents (ethanol, ethyl acetate, acetone and acetonitrile) was significantly different from the C3 complex containing 76% curcumin. Pure materials have greater solubility when normalized to equal concentrations. This confers improved manufacturing capability and is attributable to different pharmacokinetics and pharmacodynamics in the in vivo context (Table 3).

表3:S-薑黃素及C3-複合薑黃素在不同有機溶劑中的溶解度。 溶劑 薑黃素的重量 (mg) 溶劑的體積 (μL) 濃度 (mg/mL) 物理表觀溶解度 1 g溶劑溶解於溶劑中(mL)   批次-C100609,薑黃素=99.2% 乙酸乙酯 20.8 2000 10.4 部分 96.2   乙醇 17.5 4600 3.804 部分 263   丙酮 46.5 1100 42.3 完全 23.6   乙腈 17.4 3200 5.44 部分 184   批次-C3複合物,薑黃素=76% 乙酸乙酯 21.5 1800 11.9 完全 83.7   乙醇 28.4 6500 4.37 完全 229   丙酮 39.8 700 56.9 完全 17.6   乙腈 18.2 2900 6.28 完全 159   *稱重樣品且轉移至閃爍小瓶中。添加小體積溶劑且充分振盪,每次添加重複直至該溶解度。Table 3: Solubility of S-curcumin and C3-complex curcumin in different organic solvents. solvent Weight of Curcumin (mg) Volume of solvent (μL) Concentration (mg/mL) Physical apparent solubility 1 g solvent dissolved in solvent (mL) Lot - C100609, Curcumin = 99.2% Ethyl acetate 20.8 2000 10.4 part 96.2 Ethanol 17.5 4600 3.804 part 263 acetone 46.5 1100 42.3 completely 23.6 Acetonitrile 17.4 3200 5.44 part 184 Batch-C3 Complex, Curcumin = 76% Ethyl acetate 21.5 1800 11.9 completely 83.7 Ethanol 28.4 6500 4.37 completely 229 acetone 39.8 700 56.9 completely 17.6 Acetonitrile 18.2 2900 6.28 completely 159 * Samples were weighed and transferred to scintillation vials. Add a small volume of solvent and shake well, repeating each addition until this solubility.

表4:S-薑黃素與C3-複合薑黃素之間的差異比較。    C3-薑黃素 S-薑黃素 熾灼殘渣 0.03% 0.4% 乾燥失重 0.98% 0.24% 熔化範圍 172至175 C 179.8至181.9 C 敲實裝填密度 0.61 g/ml 0.26 g/ml 鬆散裝填密度 0.37g/ml 0.18g/ml 篩測試       -40篩目 100% 64.71% -80篩目 98.27% 64.0% HPLC薑黃素含量 79.2% 99.2% 總類薑黃素 96.21% 99.2% 雙去甲氧基薑黃素 2.53% 0 去甲氧基薑黃素 18.27 0 重金屬       0.91ppm(ug/g) <0.2ppm 0.54ppm(ug/g) <0.2ppm <0.2ppm(ug/g) - <0.02ppm(ug/g) - 殘餘溶劑 符合 符合 微型–全板計數 <100cfug 10cfu/g 酵母及黴菌計數 <10cfu/g 15cfu/g 大腸桿菌 neg/10g neg/10g 沙門氏桿菌(Salmonella) neg/10g neg/10g 金黃色葡萄球菌(Staph. aureus) neg/10g neg/10g 銅綠假單胞菌 neg/10g neg/10g Table 4: Difference comparison between S-curcumin and C3-complex curcumin. C3-Curcumin S-Curcumin Residue on ignition 0.03% 0.4% loss on drying 0.98% 0.24% melting range 172 to 175C 179.8 to 181.9 C Knocking Packing Density 0.61 g/ml 0.26g/ml loose packing density 0.37g/ml 0.18g/ml Sieve test -40 mesh 100% 64.71% -80 mesh 98.27% 64.0% HPLC curcumin content 79.2% 99.2% total curcuminoids 96.21% 99.2% bisdemethoxycurcumin 2.53% 0 Demethoxycurcumin 18.27 0 heavy metal lead 0.91ppm(ug/g) <0.2ppm arsenic 0.54ppm(ug/g) <0.2ppm cadmium <0.2ppm (ug/g) - HG <0.02ppm (ug/g) - residual solvent meets the meets the Micro – Full Plate Counting <100cfug 10cfu/g Yeast and Mold Count <10cfu/g 15cfu/g Escherichia coli neg/10g neg/10g Salmonella neg/10g neg/10g Staph. aureus neg/10g neg/10g Pseudomonas aeruginosa neg/10g neg/10g

圖4A係顯示小鼠模型系統中敗血症期間微脂體薑黃素於肝功能(包括天冬胺酸轉胺酶(AST)及丙胺酸轉胺酶(AST)濃度)之效應的圖。該等結果顯示微脂體薑黃素相較於年齡匹配對照組的敗血症的照護標準之有效性。對於AST及ALT,微脂體薑黃素顯示相較於照護標準之更高有效性。Figure 4A is a graph showing the effect of liposomal curcumin on liver function, including aspartate transaminase (AST) and alanine transaminase (AST) concentrations, during sepsis in a mouse model system. These results demonstrate the effectiveness of liposomal curcumin compared to the standard of care for sepsis in age-matched controls. For AST and ALT, liposomal curcumin showed higher efficacy compared to standard of care.

圖4B至4D係分別顯示敗血症期間微脂體薑黃素於腎功能之腎小球濾過率(GFR)之效應的圖,其藉由測定肌酸、衡量慢性腎病進展的嗜中性白血球明膠酶相關脂質運載蛋白(NGAL)及衡量腎臟的自血液移除尿素之能力的血尿素氮(NGAL)。特定言之且重要地,就衡量慢性腎病進展的NGAL而言,微脂體薑黃素顯示相較於標準照護的在保護腎功能中之更高有效性。Figures 4B to 4D are graphs showing the effects of liposomal curcumin on glomerular filtration rate (GFR) on renal function during sepsis, respectively, by measuring creatine, neutrophil gelatinase, a measure of chronic kidney disease progression. Lipocalin (NGAL) and blood urea nitrogen (NGAL) which measures the ability of the kidneys to remove urea from the blood. Specifically and importantly, with respect to NGAL, a measure of chronic kidney disease progression, liposomal curcumin showed higher efficacy in protecting kidney function than standard care.

圖4E及4F係顯示敗血症期間微脂體薑黃素於心臟功能的c-肌鈣蛋白及射血分數百分比之效應的圖,該c-肌鈣蛋白衡量賁門組織損傷,射血分數百分比衡量每一次心跳左心室(或右心室)泵血的效力。微脂體薑黃素顯示相較於照護標準之心臟損傷減少且在射血分數百分比上與照護標準相等。Figures 4E and 4F are graphs showing the effect of liposomal curcumin on cardiac function, c-troponin, a measure of cardiac tissue damage, and percent ejection fraction, a measure of cardiac tissue damage, and percent ejection fraction, a measure of cardiac function during sepsis. The effectiveness of the heartbeat left ventricle (or right ventricle) pumping blood. Liposome curcumin showed reduced cardiac damage compared to standard of care and was equal to standard of care in percent ejection fraction.

圖4G係顯示敗血症期間微脂體薑黃素於總存活期之效應的圖。與照護標準治療相比,微脂體薑黃素顯示更長存活時間。Figure 4G is a graph showing the effect of liposomal curcumin on overall survival during sepsis. Liposome curcumin showed longer survival compared to standard of care treatment.

當相較於Yang等人,Protective effect of curcumin against cardiac dysfunction in sepsis rats,Pharmaceutical Biology,2013;51(4): 482至487之教示時,本發明顯示在沒有與姜黃素相關之心臟毒性下的結果顯著改良。When compared to the teachings of Yang et al., Protective effect of curcumin against cardiac dysfunction in sepsis rats, Pharmaceutical Biology, 2013; 51(4): 482 to 487, the present invention shows that there is no cardiac toxicity associated with curcumin. The results were significantly improved.

14:0溶血磷脂醯甘油(Lyso PG)

Figure 02_image001
14:0 Lysophospholipid glycerol (Lyso PG)
Figure 02_image001

肉荳蔻醯單甘油酯

Figure 02_image003
Myristate Monoglyceride
Figure 02_image003

肉荳蔻酸,一種游離脂肪酸

Figure 02_image005
myristic acid, a free fatty acid
Figure 02_image005

實例2Example 2

創傷性腦損傷(TBI)後的腦損傷(TBI)係一個兩階段過程:由最初傷害引起的損傷及接著發炎階段,在發炎階段可發生大量另外損傷。此種發炎在初始傷害的幾分鐘內開始且可持續數月或數年,且由涉及細胞素(特定言之促發炎細胞素、介白素-1β、介白素-6及腫瘤壞死因子-α)的顯著增加的一系列複雜代謝過程引起。此等細胞素之濃度可比血清中之相應濃度增加數千倍。討論控制此等促發炎細胞素之濃度及減少細胞素誘導之腦損傷之策略。來自動物模型實驗的大量證據表明,抑制細胞素有效地改善TBI後的神經損傷。然而,此種方法之效力仍有待在患者試驗中證明。Brain injury (TBI) following traumatic brain injury (TBI) is a two-stage process: injury resulting from the initial injury followed by an inflammatory phase in which numerous additional injuries can occur. This inflammation begins within minutes of initial injury and can last for months or years, and is caused by the involvement of cytokines (specifically pro-inflammatory cytokines, interleukin-1β, interleukin-6, and tumor necrosis factor- α) is caused by a series of complex metabolic processes. The concentrations of these cytokines can be increased thousands of times over the corresponding concentrations in serum. Strategies to control the concentration of these pro-inflammatory cytokines and reduce cytokine-induced brain damage are discussed. Substantial evidence from experiments in animal models suggests that inhibition of cytokines is effective in ameliorating nerve damage after TBI. However, the efficacy of this approach remains to be demonstrated in patient trials.

越來越認識到,異常免疫系統及促發炎細胞素的大量過度產生(「細胞素風暴」)係疾病進展及多種疾病死亡率的主要因素。細胞素風暴(亦稱為「細胞素釋放症候群」)可在感染瘧疾[1]、SARS [2]、登革熱[3]、鉤端螺旋體病[4]、賴薩熱[5]、革蘭氏陰性敗血症[6]以及感染許多其他傳染性疾病(7-10]後發生。細胞素風暴係患有伊波拉病毒的患者死亡的主要原因[11-13]。患有細胞素風暴的患者可經歷增加之血管滲透性、嚴重出血及多器官衰竭,此可最終導致致命結果[8,13,14]。看到促發炎及抗發炎細胞素之全身細胞素濃度均顯著增加。據認為,健康免疫系統的細胞素的此種過度產生係對於1918年H1N1大流行[15,16]期間20至40歲的個體為何比老年人更有可能死亡的解釋。細胞素風暴可發生於嚴重燒傷或創傷[17]、急性胰臓炎[18]或繼發於藥物使用或吸入毒素之ARDS[19]之後。嚴重急性移植物抗宿主病可被視為細胞素風暴[20,21]。細胞素風暴亦係用常用抗腫瘤藥劑利妥昔單抗(rituximab) [22]治療以及用單株抗體托西莫單抗(tositumomab)、阿倫珠單抗(alemtuzumab)、莫羅莫那(muromonab)及布林木單抗(blinatumomab) [23]治療之公認併發症。發現細胞素濃度升高且被認為是在許多神經系統病症(包括阿茲海默氏症(Alzheimer’s disease) [24]、帕金森氏症(Parkinson’s disease) [25]、自閉症[26]及多發性硬化症[27])中以及在吉蘭-巴雷症候群(Guillian-Barre syndrome) [28,29]之急性期中之病理學的重要原因。細胞素濃度升高與精神疾病[30,31]及狼瘡性腦病變[32,33]之惡化有關。It is increasingly recognized that an abnormal immune system and massive overproduction of pro-inflammatory cytokines ("cytokine storm") are major factors in disease progression and mortality from many diseases. Cytokine storm (also known as "cytokine release syndrome") can be associated with malaria[1], SARS[2], dengue[3], leptospirosis[4], Raisa fever[5], Gram Negative sepsis [6] and after infection with many other infectious diseases (7-10). Cytokine storms are a major cause of death in patients with Ebola virus [11-13]. Patients with cytokine storms can experience Increased vascular permeability, severe bleeding, and multiple organ failure, which can ultimately lead to fatal outcomes [8,13,14]. Significant increases in systemic cytokine concentrations, both pro- and anti-inflammatory cytokines, are seen. It is thought that healthy immune This overproduction of systemic cytokines explains why individuals between the ages of 20 and 40 were more likely to die than older adults during the H1N1 pandemic of 1918 [15,16]. Cytokine storms can occur in severe burns or trauma [ 17], acute pancreatitis [18] or after ARDS [19] secondary to drug use or inhaled toxins. Severe acute graft-versus-host disease can be considered as a cytokine storm [20,21]. Cytokine storm is also It is treated with the commonly used antineoplastic agent rituximab [22] and the monoclonal antibodies tositumomab, alemtuzumab, muromonab and A recognized complication of blinatumomab [23] treatment. Elevated levels of cytokines have been found and are thought to be (Parkinson's disease) [25], autism [26] and multiple sclerosis [27]) and in the acute phase of Guillian-Barre syndrome [28,29] Important cause. Elevated levels of cytokines are associated with worsening of psychiatric disorders [30,31] and lupus encephalopathy [32,33].

TBI在美國代表一大主要健康問題,每年有170萬例病例、275 000例住院治療及52 000例死亡[34],且神經精神後遺症很常見,尤其是在嚴重損傷後[35]。現瞭解到,創傷性腦損傷後的腦損傷發生在兩個階段:初始階段,其中由於外部機械力而發生損傷,及繼發性發炎階段,其中可能由於一連串涉及細胞素(諸如介白素(IL)-1β、IL-6及腫瘤壞死因子(TNF)-α [36])之過程而發生損傷。腦中細胞素濃度的增加可為巨大的,尤其是在嚴重TBI之後。IL-6通常無法在CSF中偵測到,或僅以極低濃度(1至23 pg/ml)偵測到[37,38]。在一項研究中,在嚴重TBI後,看到高達35 500 pg/ml的CSF IL-6濃度[38,39]。此等IL-6濃度比此等患者血清中的相應濃度高40至100x [40]。Kushi等人報導22名患者在入院時在嚴重TBI後24小時、72小時及168小時時測定的IL-6及IL-8的大幅增加。在九例致死病例中,CSF中在此等時間下的平均IL-6值為15 241、97 384、548 225及336 500 pg/ml,與血液中的102、176、873、3 059 pg/ml相比,為一場主要定位大腦的細胞素之「風暴」。對於13名存活者,平均IL-6 CSF值較低,但與血液中的181、105、37及26 pg/ml相比,仍遠高於周邊血液:5 376、3 565、328及764 pg/ml [41]。對於IL-8亦看到類似差異。雖然CSF中的IL-8濃度通常極低(5至72 pg/ml) [37],但Kushi等人報導,CSF IL-8濃度始終比正常濃度或周邊血液中的可相比擬濃度高數千倍[41]。此等研究人員亦指出,72小時後IL-6及IL-8血液濃度仍顯著升高,此與較差預後及高致死率相關。Helmy等人發現在12名患者的嚴重TBI後的腦細胞外流體中多種細胞素顯著升高,包括IL-1α、IL-1β、IL-6、IL-8、IL-10、單核細胞趨化蛋白(MCP-1)及巨噬細胞發炎蛋白-1α (MIP-1α)。與相應血液濃度相比,此等濃度亦顯著升高[42]。其他研究人員報導類似結果,且指出極高細胞素濃度與不良預後相關[43,44]。例如,Arand等人指出死亡的患者中的IL-6濃度相較於存活的患者高8倍。此外,只有死亡的患者顯示另一種促發炎細胞素IL-12濃度升高[43]。此等資料進一步支持細胞素風暴造成TBI後神經損傷增加的假設。許多研究表明,此等相同細胞素中的一些可對腦具有有益以及有害效應[45-47]。然而,許多研究顯示,至少在動物模型中,阻斷此等細胞素可減少TBI後的腦損傷。表5中給出TBI後腦及CSF中升高的關鍵細胞素清單。TBI represents a major health problem in the United States, with 1.7 million cases, 275 000 hospitalizations, and 52 000 deaths annually [34], and neuropsychiatric sequelae are common, especially after severe injury [35]. It is now known that brain injury after traumatic brain injury occurs in two stages: an initial stage, in which damage occurs due to external mechanical forces, and a secondary inflammatory stage, in which a series of cytokines (such as interleukins ( IL)-1β, IL-6 and tumor necrosis factor (TNF)-α [36]). The increase in the concentration of cytokines in the brain can be enormous, especially after severe TBI. IL-6 is generally not detectable in CSF, or is detected only at very low concentrations (1 to 23 pg/ml) [37,38]. In one study, CSF IL-6 concentrations as high as 35 500 pg/ml were seen following severe TBI [38,39]. These IL-6 concentrations were 40 to 100x higher than the corresponding concentrations in the serum of these patients [40]. Kushi et al. reported substantial increases in IL-6 and IL-8 measured at 24 hours, 72 hours, and 168 hours after severe TBI in 22 patients on admission. In the nine fatal cases, mean IL-6 values in CSF at these times were 15 241, 97 384, 548 225 and 336 500 pg/ml, compared with 102, 176, 873, 3 059 pg/ml in blood Compared with ml, it is a "storm" of cytokines that mainly localize the brain. For the 13 survivors, mean IL-6 CSF values were lower but still much higher than peripheral blood compared with 181, 105, 37 and 26 pg/ml in blood: 5 376, 3 565, 328 and 764 pg /ml [41]. Similar differences were seen for IL-8. Although IL-8 concentrations in CSF are typically extremely low (5 to 72 pg/ml) [37], Kushi et al. reported that CSF IL-8 concentrations were consistently thousands of higher than normal or comparable concentrations in peripheral blood times [41]. The researchers also noted that IL-6 and IL-8 blood levels remained significantly elevated after 72 hours, which was associated with poorer prognosis and higher mortality. Helmy et al found that multiple cytokines, including IL-1α, IL-1β, IL-6, IL-8, IL-10, monocyte chemotaxis, were significantly elevated in brain extracellular fluid after severe TBI in 12 patients. inflammatory protein (MCP-1) and macrophage inflammatory protein-1α (MIP-1α). These concentrations were also significantly elevated compared to corresponding blood concentrations [42]. Similar results have been reported by other investigators and noted that extremely high cytokine concentrations are associated with poor prognosis [43,44]. For example, Arand et al. indicated that IL-6 concentrations were 8-fold higher in patients who died compared to patients who survived. In addition, only patients who died showed elevated concentrations of another pro-inflammatory cytokine, IL-12 [43]. These data further support the hypothesis that cytokine storm causes increased neurological damage after TBI. Numerous studies have shown that some of these same cytokines can have beneficial as well as detrimental effects on the brain [45-47]. However, many studies have shown that blocking these cytokines reduces brain damage after TBI, at least in animal models. A list of key cytokines elevated in brain and CSF after TBI is given in Table 5.

表5:關鍵細胞素顯示於TBI後腦及CSF中顯著增加 細胞素 功能 TNF-α 主要促發炎細胞素,胰島素抗性,刺激細胞凋亡,亦可具有神經保護功能 IL-1α 促發炎細胞素,刺激從內皮細胞釋放TNF-α IL-1β 主要促發炎細胞素,調節IL-2、IL-6、IL-8及干擾素-γ的產生,刺激吞噬作用及程序式細胞死亡、早期CNS發育 IL-2 促發炎細胞素,T細胞淋巴細胞分化 IL-4 抗發炎細胞素,亦刺激B細胞增殖 IL-6 主要促發炎細胞素,B細胞分化,神經生成,肌細胞素(myokine),亦具有抗發炎功能(抑制IL-1及TNF-α) IL-8 (CXCL8) 主要促發炎細胞素(趨化素),嗜中性白血球趨化性 IL-10 主要抗發炎細胞素,亦具有T細胞刺激功能 IL-12 促發炎細胞素,T細胞分化 干擾素-γ 促發炎細胞素,T及B細胞淋巴細胞及巨噬細胞活化 MCP-1 (CCL2) 促發炎細胞素,單核細胞及嗜鹼性球趨化性 MIP-1α (CCL3) 促發炎細胞素,誘導促發炎細胞素的合成,活化嗜中性白血球 TGF- β 抗發炎細胞素,亦具有促發炎功能,可具有長期有害效應 Table 5: Key cytokines showed significant increase in brain and CSF after TBI Cytokines Features TNF-α Mainly pro-inflammatory cytokine, insulin resistance, stimulates apoptosis, also has neuroprotective function IL-1α Pro-inflammatory cytokines that stimulate the release of TNF-α from endothelial cells IL-1β Mainly pro-inflammatory cytokines, regulate the production of IL-2, IL-6, IL-8 and interferon-γ, stimulate phagocytosis and programmed cell death, early CNS development IL-2 Pro-inflammatory cytokines, T cell lymphocyte differentiation IL-4 Anti-inflammatory cytokine, also stimulates B cell proliferation IL-6 Mainly pro-inflammatory cytokines, B cell differentiation, neurogenesis, myokine, also has anti-inflammatory functions (inhibits IL-1 and TNF-α) IL-8 (CXCL8) Major pro-inflammatory cytokines (chemokines), neutrophil chemotaxis IL-10 Mainly anti-inflammatory cytokine, also has T cell stimulating function IL-12 Pro-inflammatory cytokines, T cell differentiation Interferon-gamma Pro-inflammatory cytokines, T and B cell lymphocyte and macrophage activation MCP-1 (CCL2) Pro-inflammatory cytokines, monocyte and basophil chemotaxis MIP-1α (CCL3) Pro-inflammatory cytokines, induces the synthesis of pro-inflammatory cytokines, activates neutrophils TGF-beta Anti-inflammatory cytokines, also have pro-inflammatory properties, may have long-term deleterious effects

介白素-1。IL-1家族為一組11種細胞素,其密切參與身體對損傷或感染的反應[48,49],且其亦在腫瘤血管生成[50]及刺激癌症幹細胞[51]中起著關鍵作用。IL-1組的最重要的細胞素係IL-1β、IL-1α及IL-1受體拮抗劑IL-1RA,但IL-1組亦包括促發炎細胞素IL-18、IL-33及IL-36以及一些研究較少的細胞素。關鍵細胞素IL-1β係由活化的巨噬細胞產生的蛋白質。其中最重要的功能是嗜中性白血球活化,調節其他細胞素(IL-2、IL-6、IL-8、干擾素-γ)的產生,調節有絲分裂,刺激吞噬作用,誘導發熱,血管生成及誘導程序式細胞死亡[48,49]。發現患有TBI的患者的CSF中IL-1β濃度升高,且可在急性損傷後幾分鐘內偵測到[38,52,53]。TBI患者的CSF中極高濃度與逐漸惡化之預後相關[54,55]。Interleukin-1. The IL-1 family is a group of 11 cytokines that are closely involved in the body's response to injury or infection [48,49], and it also plays a key role in tumor angiogenesis [50] and stimulation of cancer stem cells [51] . The most important cytokines in the IL-1 group are IL-1β, IL-1α and the IL-1 receptor antagonist IL-1RA, but the IL-1 group also includes the pro-inflammatory cytokines IL-18, IL-33 and IL -36 and some less studied cytokines. The key cytokine IL-1β is a protein produced by activated macrophages. Among the most important functions are neutrophil activation, regulation of production of other cytokines (IL-2, IL-6, IL-8, interferon-γ), regulation of mitosis, stimulation of phagocytosis, induction of fever, angiogenesis and Induces programmed cell death [48,49]. Elevated IL-1β concentrations were found in the CSF of patients with TBI and were detectable within minutes of acute injury [38,52,53]. Very high concentrations in the CSF of TBI patients are associated with progressively worse prognosis [54,55].

動物模型中的研究亦給出類似結果[56-60]。Kamm等人顯示TBI後的大鼠腦中於第一小時內出現IL-1β濃度且在8小時時達到峰值,血液或肝臟中的IL-1β濃度沒有可偵測到的變化[56]。在動物模型中亦顯示,室內投與IL-1β顯著惡化腦損傷[61]。最重要的是,投與IL-1β拮抗劑可防止此種細胞素在實驗模型中造成的損傷。已顯示向囓齒動物投與IL-1RA減少TBI後的腦損傷。例如,Yang等人顯示,在彼等先前轉染腺病毒載體以誘導IL-1RA過度表現的動物中,小鼠的中腦動脈閉塞引起的腦損傷減少[62]。Jones等人顯示,在TBI之時投與小鼠單次腦室內劑量之IL-1RA減少病灶體積,導致功能改良且導致病灶中一氧化氮合成酶-2-陽性細胞的顯著減少[63-Jones]。Sanderson等人研究全身投與的IL-1RA對TBI後的斯潑雷格多雷(Sprague Dawley)大鼠之效應。低劑量下未見效應。高劑量投與後,研究人員觀測到動物的神經元損失減少及記憶及認知功能增加。然而,運動功能未見改良[64]。Hasturk等人顯示IL-1RA降低組織IL-1β濃度且增加TBI後的大鼠的抗氧化劑酵素觸酶、超氧化物歧化酶及麩胱甘肽過氧化物酶之濃度[65]。其他組已報導類似結果[66,67]。此外,Basu等人報導,缺乏IL-1受體的小鼠經歷創傷性傷害後腦損傷較少[68]。研究人員發現IL-1、IL-6及COX-2之基礎濃度降低,以及變形蟲狀微膠質細胞/巨噬細胞減少,表明在該關鍵步驟阻止腦發炎循環。此外,Tehranian等人已顯示,在星形膠質細胞中過度表現人類IL-1RA的轉基因小鼠具有相較於野生型小鼠降低之IL-1β、IL-6及TNF-α濃度,且具有更佳之頭部損傷後的神經恢復[69]。Studies in animal models have also given similar results [56-60]. Kamm et al. showed IL-1β concentrations in rat brain after TBI within the first hour and peaked at 8 hours, with no detectable changes in blood or liver IL-1β concentrations [56]. It has also been shown in animal models that intraventricular administration of IL-1β significantly worsens brain injury [61]. Most importantly, administration of an IL-1β antagonist prevented the damage caused by this cytokine in experimental models. Administration of IL-1RA to rodents has been shown to reduce brain damage following TBI. For example, Yang et al. showed that brain damage caused by middle cerebral artery occlusion was reduced in mice in animals previously transfected with adenoviral vectors to induce IL-1RA overexpression [62]. Jones et al showed that a single intraventricular dose of IL-1RA administered to mice at the time of TBI reduced lesion volume, resulted in functional improvement and resulted in a significant reduction in nitric oxide synthase-2-positive cells in the lesion [63-Jones] ]. Sanderson et al. studied the effect of systemically administered IL-1RA on Sprague Dawley rats after TBI. No effect was seen at low doses. Following high doses, the researchers observed reduced neuronal loss and increased memory and cognitive function in the animals. However, motor function was not improved [64]. Hasturk et al. showed that IL-1RA decreased tissue IL-1β concentrations and increased concentrations of the antioxidant enzymes catalase, superoxide dismutase, and glutathione peroxidase in rats after TBI [65]. Similar results have been reported by other groups [66,67]. Furthermore, Basu et al. reported that mice lacking the IL-1 receptor experienced less brain damage after traumatic injury [68]. The researchers found decreased basal concentrations of IL-1, IL-6, and COX-2, as well as decreased amoeba-like microglia/macrophages, suggesting that the brain inflammatory cycle is blocked at this critical step. Furthermore, Tehranian et al. have shown that transgenic mice overexpressing human IL-1RA in astrocytes have reduced concentrations of IL-1β, IL-6 and TNF-α compared to wild-type mice, and have more Nerve recovery after Jiazhi head injury [69].

此等資料表明使用IL-1RA可能是患有TBI的患者的有效策略。幾年來,人類重組IL-1RA一直是用於患有類風濕性關節炎的患者之標準藥物,且其使用已在其中細胞素的增加在破壞過程中發揮作用的許多疾病中進行研究,包括糖尿病[70]、心臟衰竭[71]、多發性骨髓瘤[72]及敗血症[73]。在患有急性中風的患者的隨機化II期試驗中,與對照組相比,經IL-1RA治療的患者之認知功能損失較少[74]。Helmy等人在20名患有重度TBI的患者中進行該藥劑的II期對照試驗,且能夠得出的結論是IL-1RA確實穿過血腦障壁且在該人群中係安全的[75]。其無法得出結論的是,IL-1RA投與在此等患者中導致治療益處[75]。雖然此等結果中的許多看起來很有前景,然而,IL-1RA之效力可能有限,因為其僅直接阻斷參與發炎的重要細胞素中之一者(IL-1RA可間接阻斷其他細胞素,因為IL-1可導致增加其他細胞素的表現),且此可為該藥劑針對類風濕性關節炎未能取得更大成功的部分解釋。此外,IL-1RA與TNF-α阻斷劑之組合之使用係禁忌的,因為其同時使用可導致重度副作用[76]。These data suggest that the use of IL-1RA may be an effective strategy for patients with TBI. Human recombinant IL-1RA has been the standard of care for patients with rheumatoid arthritis for several years, and its use has been studied in many diseases in which increased cytokines play a role in the destruction process, including diabetes [70], heart failure [71], multiple myeloma [72] and sepsis [73]. In a randomized phase II trial in patients with acute stroke, IL-1RA-treated patients experienced less loss of cognitive function than controls [74]. Helmy et al. conducted a phase II controlled trial of this agent in 20 patients with severe TBI and were able to conclude that IL-1RA does cross the blood-brain barrier and is safe in this population [75]. It cannot be concluded that IL-1RA administration results in a therapeutic benefit in these patients [75]. While many of these results look promising, IL-1RA may have limited efficacy because it directly blocks only one of the important cytokines involved in inflammation (IL-1RA can indirectly block other cytokines , because IL-1 can lead to increased expression of other cytokines), and this may partly explain the agent's lack of greater success against rheumatoid arthritis. In addition, the use of a combination of IL-1RA and a TNF-α blocker is contraindicated because their concomitant use can lead to severe side effects [76].

腫瘤壞死因子-α。  第二關鍵促發炎細胞素係TNF-α。此種細胞素在身體對感染及癌症之反應中具有重要作用。自從Helson等人在1975年報導TNF-α [77],已報導在許多疾病中的異常TNF-α功能,包括多種病症諸如糖尿病[78]、心血管疾病[79]、發炎性腸病[80]及阿茲海默氏症[81]。TNF阻斷劑,諸如英夫利昔單抗(infliximab)、依那西普(etanercept)及阿達木單抗(adalimumab),係用於患有類風濕性關節炎、僵直性脊椎炎及牛皮癬的患者的標準療法。如所述,TNF-α被認為在患有TBI的患者中具有有益效應及有害效應兩者[46]。然而,實驗模型的結果表明,此等效應大多是有害的,尤其是當產生過量濃度之此種細胞素時。Knoblach等人報導,在實驗性TBI後的大鼠中的TNF濃度與腦損傷及神經受損程度之相關性,具有最重度腦損傷的大鼠中於損傷後1至4小時具有最高TNF濃度[82]。此外,TNF阻斷劑依那西普的研究已一致顯示,在投與該藥劑後,此等動物的腦損傷減少。Chio等人報導,依那西普在投與TBI後的大鼠時減少缺血,增加麩胺酸濃度,減少神經元及神經膠質細胞凋亡及微膠質細胞活化,同時亦降低TNF-α升高的濃度[83]。在一份後來的報導中,此等研究人員結論,依那西普藉由降低微膠質細胞的TNF-α的早期表現來改善腦損傷[84]。Ekici等人顯示在TBI後一小時投與依那西普及氯化鋰之組合減少腦水腫、組織損傷及TNF濃度[85]。Cheong等人顯示在TBI後立即投與大鼠依那西普導致受損傷的腦中5-溴脫氧尿苷及雙皮質素(doublecortin)標誌物增加,表明腦中增加的TNF-α濃度可對神經幹細胞具有毒性,因此干擾神經生成[86]。Wang等人報導,損傷後早期使用該藥劑促進移植的神經幹細胞存活且有利於神經再生[87]。其他組已報導使用依那西普或其他TNF阻斷劑的類似結果[88-91]。Tumor necrosis factor-alpha. The second key pro-inflammatory cytokine is TNF-α. This cytokine plays an important role in the body's response to infection and cancer. Since Helson et al. reported TNF-α in 1975 [77], aberrant TNF-α function has been reported in many diseases, including various conditions such as diabetes [78], cardiovascular disease [79], inflammatory bowel disease [80 ] and Alzheimer's disease [81]. TNF blockers, such as infliximab, etanercept, and adalimumab, are used in patients with rheumatoid arthritis, ankylosing spondylitis, and psoriasis standard therapy. As noted, TNF-α is thought to have both beneficial and detrimental effects in patients with TBI [46]. However, results from experimental models suggest that most of these effects are detrimental, especially when excess concentrations of this cytokine are produced. Knoblach et al. reported the correlation of TNF concentrations with the degree of brain injury and neurological impairment in rats following experimental TBI, with the highest TNF concentrations 1 to 4 hours after injury in rats with the most severe brain injury [ 82]. In addition, studies with the TNF blocker etanercept have consistently shown reduced brain damage in these animals following administration of this agent. Chio et al. reported that etanercept decreased ischemia, increased glutamic acid concentration, decreased neuronal and glial apoptosis and microglial activation, and also decreased TNF-α levels when administered to rats after TBI. high concentrations [83]. In a later report, these researchers concluded that etanercept ameliorated brain injury by reducing the early expression of TNF-α in microglia [84]. Ekici et al. showed that administration of a combination of etanercept and lithium chloride one hour after TBI reduced brain edema, tissue damage, and TNF concentrations [85]. Cheong et al. showed that administration of etanercept to rats immediately after TBI resulted in an increase in 5-bromodeoxyuridine and doublecortin markers in the injured brain, suggesting that increased TNF-α concentrations in the brain may affect the Neural stem cells are toxic and thus interfere with neurogenesis [86]. Wang et al. reported that the use of this agent early after injury promoted the survival of transplanted neural stem cells and facilitated nerve regeneration [87]. Other groups have reported similar results with etanercept or other TNF blockers [88-91].

儘管已在動物模型中廣泛研究TNF阻斷劑,但很少做工作來評估此等藥劑在患有TBI的患者中之潛在效力[92]。Tobinick等人回顧已經依那西普治療的617名患有中風的患者及12名患有TBI的患者的醫療記錄。觀測到神經功能的顯著改良,甚至是在初始傷害後治療超過10年的患者。研究人員得出的結論是,此支持以下觀點:可能持續多年的長期發炎係此等患者的神經受損的主要原因[93]。然而,TBI組患者數量少且缺乏對照組,使得本報導中的資料難以解釋,因為尚不清楚TNF阻斷是否造成所觀測到的改良。需要隨機化試驗來證明在TBI患者中的益處,且TNF阻斷劑可具有實質毒性。此外,由於TNF阻斷劑僅靶向單一細胞素,且由於此等藥劑與IL-1拮抗劑組合使用係矛盾的,故使用此等阻斷劑可能不是治療此等患者的最有效策略。Although TNF blockers have been extensively studied in animal models, little work has been done to assess the potential efficacy of these agents in patients with TBI [92]. Tobinick et al reviewed the medical records of 617 patients with stroke and 12 patients with TBI who had been treated with etanercept. Significant improvements in neurological function were observed, even in patients treated for more than 10 years after initial injury. The researchers concluded that this supports the idea that chronic inflammation, which may persist for many years, is a major cause of nerve damage in these patients [93]. However, the small number of patients in the TBI group and the lack of a control group make the data in this report difficult to interpret, as it is unclear whether TNF blockade caused the observed improvement. Randomized trials are needed to demonstrate benefit in TBI patients, and TNF blockers can have substantial toxicity. Furthermore, since TNF blockers target only a single cytokine, and since the use of these agents in combination with IL-1 antagonists is contradictory, the use of such blockers may not be the most effective strategy for treating these patients.

介白素-6。第三種主要促發炎細胞素係IL-6。與TNF-α一樣,IL-6濃度升高被認為在許多疾病的病因中起著作用,且與TNF-α一樣,IL-6被認為在TBI後具有有益及有害效應[94]。事實上,IL-6在許多神經病症中似乎具有有益作用及有害作用兩者[95]。IL-6在星形膠質細胞誘導神經生長因子中,且因此在受損傷的腦的修復中起著關鍵作用[39]。Ley等人報導,與正常小鼠相比,IL-6基因剔除小鼠在TBI後證實神經功能降低,再次表明IL-6係神經元恢復所必需的。然而,IL-6基因剔除小鼠確實顯示顯著升高的IL-1β濃度[96]。對重度TBI後的患者中的額葉實質IL-6濃度的研究亦表明IL-6的神經保護作用。與彼等死亡者相比,在存活者中發現IL-6濃度顯著升高,而IL-1β濃度沒有差異[97]。然而,本研究中的數字很小。Interleukin-6. The third major pro-inflammatory cytokine is IL-6. Like TNF-α, elevated concentrations of IL-6 are thought to play a role in the etiology of many diseases, and, like TNF-α, IL-6 is thought to have beneficial and detrimental effects after TBI [94]. In fact, IL-6 appears to have both beneficial and detrimental effects in a number of neurological disorders [95]. IL-6 plays a key role in the induction of nerve growth factor by astrocytes and thus in the repair of the injured brain [39]. Ley et al. reported that IL-6 knockout mice demonstrated reduced neurological function after TBI compared to normal mice, again indicating that IL-6 is required for neuronal recovery. However, IL-6 knockout mice did show significantly elevated IL-1β concentrations [96]. Studies of IL-6 concentrations in the frontal parenchyma in patients following severe TBI also suggest a neuroprotective effect of IL-6. Significantly higher concentrations of IL-6 were found in survivors compared to those who died, while no differences in IL-1β concentrations were found [97]. However, the numbers in this study were small.

另一方面,大量研究已表明IL-6在TBI後具有有害效應。Conroy等人顯示IL-6對培養下的囓齒動物小腦顆粒神經元具有毒性[98]。在另一項研究中,發現向大鼠鼻內投與IL-6會增加癲癇發作之強度,以及增加死亡率[99]。在具有神經膠質纖維酸性蛋白啟動子驅動之星形膠質細胞IL-6產生的轉基因小鼠中可見類似結果[100]。Yang等人顯示輕度TBI後的小鼠的運動協調缺陷可藉由IL-6阻斷來糾正[101]。在實驗性脊髓損傷中報導類似結果。Okada等人顯示抗IL-6受體小鼠單株抗體可增加損傷後的小鼠的功能性脊髓恢復[102]。Nakamura等人報導,IL-6R的抗體減少神經膠質瘢痕形成且增加脊髓損傷後的恢復[103]。Crack等人報導,抗溶血磷脂酸抗體顯著減少實驗性TBI後的小鼠的腦損傷。研究人員將此歸因於IL-6誘導之繼發性發炎的顯著減少。該等抗體於IL-1β或TNF-α濃度沒有效應[104]。Suzuki等人提出,此等研究中看到的不同結果可解釋為是因為IL-6的發炎效應似乎在TBI後的急性期占主導地位,而其於神經生成之效應可能在後續很重要[105]。在患有TBI的患者中研究IL-6阻斷劑的工作很少。抗IL-6抗體托珠單抗係可用的,且用於治療患有類風濕性關節炎[106]的患者,但尚未在該人群中研究該藥劑。On the other hand, numerous studies have shown that IL-6 has deleterious effects after TBI. Conroy et al. showed that IL-6 was toxic to rodent cerebellar granule neurons in culture [98]. In another study, intranasal administration of IL-6 to rats was found to increase the intensity of seizures, as well as increase mortality [99]. Similar results were seen in transgenic mice with glial fibrillary acidic protein promoter-driven astrocyte IL-6 production [100]. Yang et al. showed that motor coordination deficits in mice following mild TBI were corrected by IL-6 blockade [101]. Similar results were reported in experimental spinal cord injury. Okada et al. showed that anti-IL-6 receptor mouse monoclonal antibody increased functional spinal cord recovery in mice after injury [102]. Nakamura et al. reported that antibodies to IL-6R reduced glial scarring and increased recovery after spinal cord injury [103]. Crack et al. reported that anti-lysophosphatidic acid antibodies significantly reduced brain damage in mice following experimental TBI. The researchers attribute this to a significant reduction in IL-6-induced secondary inflammation. These antibodies had no effect on IL-1β or TNF-α concentrations [104]. Suzuki et al. suggested that the different results seen in these studies could be explained because the inflammatory effects of IL-6 appear to be dominant in the acute phase after TBI, while its neurogenesis effect may be important later [105] ]. Little work has been done on IL-6 blockers in patients with TBI. The anti-IL-6 antibody tocilizumab is available and used to treat patients with rheumatoid arthritis [106], but this agent has not been studied in this population.

抗發炎細胞素。抗發炎細胞素,諸如IL-4、IL-10、IL-11、IL-13及轉化生長因子(TGF)-β,在發炎病症下亦會顯著升高。此等細胞素的主要功能之一係抑制促發炎細胞素的合成[107]。IL-10係最重要的抗發炎細胞素,及IL-10濃度在TBI後的腦及CSF中顯著升高[54,108]。雖然已知IL-10亦具有促發炎功能[107],但其在TBI後的主要效應似乎主要是保護免遭發炎損傷。Kumar等人在十二個月時間內研究87名患有重度TBI的患者的細胞素濃度且發現六個月時IL-6/IL-10比升高的患者具有不良預後[109]。細胞培養及動物模型的研究似乎證實IL-10的保護作用。Bachis等人顯示IL-10阻斷凋亡蛋白酶-3且減少培養下的大鼠小腦顆粒細胞暴露於毒性劑量之麩胺酸後的神經元死亡[110]。Knoblach等人顯示在大鼠實驗性TBI後靜脈內或皮下投與IL-10可減少IL-1的合成且增強動物的神經恢復。然而,腦室內投與無效[111]。Chen等人顯示缺乏IL-10的小鼠對TBI後高壓氧治療的有益效應沒有反應(112- X. Chen 2013)。Bethea等人顯示IL-10減少大鼠的脊髓損傷後TNF-α的產生且改良運動功能[113]。在其他實驗性脊髓損傷研究中亦可見IL-10的類似神經保護效應[114,115]。此表明治療患者的TBI的另一方法可為投與抗發炎細胞素如IL-10。已在多種疾病中進行重組人類IL-10(伊洛卡金(ilodecakin))的試驗。然而,迄今為止,結果一直係令人失望的[116]。Anti-inflammatory cytokines. Anti-inflammatory cytokines, such as IL-4, IL-10, IL-11, IL-13 and transforming growth factor (TGF)-beta, are also significantly elevated in inflammatory conditions. One of the main functions of these cytokines is to inhibit the synthesis of pro-inflammatory cytokines [107]. IL-10 is the most important anti-inflammatory cytokine, and IL-10 concentrations are significantly elevated in brain and CSF after TBI [54,108]. Although IL-10 is also known to have pro-inflammatory functions [107], its main effect after TBI appears to be primarily protection from inflammatory injury. Kumar et al studied cytokine concentrations in 87 patients with severe TBI over a twelve-month period and found that patients with an elevated IL-6/IL-10 ratio at six months had a poor prognosis [109]. Studies in cell cultures and animal models appear to confirm the protective effect of IL-10. Bachis et al. showed that IL-10 blocks caspase-3 and reduces neuronal death in cultured rat cerebellar granulosa cells exposed to toxic doses of glutamic acid [110]. Knoblach et al. showed that intravenous or subcutaneous administration of IL-10 reduced IL-1 synthesis and enhanced neurological recovery in rats following experimental TBI in rats. However, intraventricular administration was ineffective [111]. Chen et al. showed that mice lacking IL-10 did not respond to the beneficial effects of hyperbaric oxygen therapy after TBI (112-X. Chen 2013). Bethea et al. showed that IL-10 reduced TNF-α production and improved motor function after spinal cord injury in rats [113]. Similar neuroprotective effects of IL-10 have been seen in other experimental SCI studies [114,115]. This suggests that another method of treating TBI in a patient may be the administration of anti-inflammatory cytokines such as IL-10. Recombinant human IL-10 (ilodecakin) has been tested in various diseases. However, the results so far have been disappointing [116].

靶向多種細胞素。Targets multiple cytokines.

助孕素。從動物系統的研究熟知助孕素可減少TBI後的神經元損傷[117-121]。就助孕素而言所見的神經保護作用的一個主要機制係此等藥劑抑制促發炎細胞素之能力。Cutler等人顯示給予TBI後的老年雄性大鼠助孕酮降低24、48及72小時時的腦IL-6濃度。亦可見NF-κB及COX-2濃度降低,且大鼠證實運動技能改良,腦水腫減少及死亡率降低(122-Cutler)。He等人報導,腹腔內投與助孕酮可在損傷後3小時降低IL-1β及TNF-α。在投與另一種助孕素別孕烯醇酮(allopregnanolone) [123]後可見類似結果。Chen等人報導,給予TBI後的大鼠助孕酮降低腦中的IL-1β、IL-6及TNF-α濃度,以及減少腦組織的凋亡[124]。Pan等人顯示腹膜內投與助孕酮降低實驗性TBI後的大鼠的腦TNF-α及NF-κB濃度。經治療之大鼠亦具有神經嚴重度分數測試的更佳結果[125]。不幸的是,此等結果尚未在患者試驗中得到證實。Xiao等人在TBI的8小時內給予助孕酮的隨機化試驗中確實報導陽性結果[126]。然而,大型多中心試驗尚未證實此點。由於缺乏效力,故提前停止神經急症治療試驗網絡(The Neurologic Emergencies Treatment Trials Network)進行的助孕酮在患有TBI的患者中的大型III期試驗[127]。第二項主要試驗SYNAPSE (一項助孕酮在1195名患有重度TBI的患者中的多國、安慰劑對照試驗)亦顯示無效力。在助孕酮組中,與接受安慰劑的患者中的50.5%相比,僅50.4%顯示基於格拉斯哥結果量表(Glasgow outcome scale)的有利結果[128,129]。Progesterone. Progestins are well known from studies in animal systems to reduce neuronal damage following TBI [117-121]. A major mechanism of neuroprotection seen with progestogens is the ability of these agents to inhibit pro-inflammatory cytokines. Cutler et al. showed that administration of progesterone in aged male rats after TBI decreased brain IL-6 concentrations at 24, 48 and 72 hours. Decreased concentrations of NF-κB and COX-2 were also seen, and rats demonstrated improved motor skills, reduced cerebral edema, and reduced mortality (122-Cutler). He et al. reported that intraperitoneal administration of progesterone reduced IL-1β and TNF-α 3 hours after injury. Similar results were seen following administration of another progestin, allopregnanolone [123]. Chen et al. reported that administration of progesterone in rats after TBI reduced IL-1β, IL-6, and TNF-α concentrations in the brain, as well as decreased brain apoptosis [124]. Pan et al. showed that intraperitoneal administration of progesterone decreased brain TNF-α and NF-κB concentrations in rats after experimental TBI. Treated rats also had better results on the Neurological Severity Score test [125]. Unfortunately, these results have not been confirmed in patient trials. Xiao et al did report positive results in a randomized trial of progesterone administered within 8 hours of TBI [126]. However, large multicenter trials have not confirmed this. The large phase III trial of progesterone in patients with TBI by The Neurologic Emergencies Treatment Trials Network was prematurely stopped due to lack of efficacy [127]. The second main trial, SYNAPSE, a multinational, placebo-controlled trial of progesterone in 1195 patients with severe TBI, also showed no efficacy. In the progesterone group, only 50.4 percent showed a favorable outcome based on the Glasgow outcome scale, compared with 50.5 percent of patients receiving placebo [128,129].

斯他汀。此等係3-羥基-3-甲基戊二醯輔酶A還原酶抑制劑,其用於抑制肝臟中膽固醇的產生。此等藥物在臨床上廣泛用於患有高膽固醇血症的患者。亦已知斯他汀具有顯著抗發炎效應。Chen等人顯示向患有實驗性TBI的大鼠預投與洛伐斯他汀(lovastatin)導致腦損傷區域中在損傷後6小時及96小時的IL-1β及TNF-α顯著降低。經治療之大鼠具有顯著減少之FJB陽性退化神經元及更佳之功能恢復[130]。顯示辛伐斯他汀(Simvastatin)降低腦IL-1β濃度且減少TBI後的大鼠的微膠質細胞及星形膠質細胞活化,且基於NCS分數的功能改良。然而,沒有註意到IL-6或TNF-α濃度變化[131]。發現阿托伐斯他汀(Atorvastatin)降低TBI後的小鼠的IL-6及TNF-α。與對照組相比,在經治療之動物中,海馬體變性及功能性神經缺損有所減少[132]。亦有證據證明,患者中停用此等斯他汀可導致促發炎細胞素(包括IL-6)增加[133-135]及在TBI後停用此等藥物似乎會導致更差的預後[136]。此外,一項回溯性研究表明,損傷前斯他汀的使用與較佳結果相關[137]。此導致建議在患有TBI的患者中研究此等藥劑。僅報導一些小型試驗。Tapia-Perez等人研究瑞舒伐斯他汀(rosuvastatin)在患有重度TBI的患者中之效應及報導經治療之患者健忘時間減少[138]。然而,3個月時的殘疾沒有差異。此外,該試驗僅包括8名瑞舒伐斯他汀患者及13名對照,而該43名評估的TBI患者中的21名被認為不符合條件。在另一項小型研究中,在19名接受10天的瑞舒伐斯他汀的患者及17名對照中,Sanchez-Aquilar等人報導,與安慰劑相比瑞舒伐斯他汀患者具有血漿TNF-α濃度的顯著降低及殘疾分數的改良。對IL-1β、IL-6或IL-10未見效應[139]。Rasras等人在66名患有重度TBI的患者的隨機化試驗中研究類似藥劑辛伐斯他汀(simuvastatin)之效應;然而,治療組與對照組之間沒有發現差異[140]。statin. These are 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, which are used to inhibit the production of cholesterol in the liver. These drugs are widely used clinically in patients with hypercholesterolemia. It is also known that statins have significant anti-inflammatory effects. Chen et al. showed that pre-administration of lovastatin to rats with experimental TBI resulted in significant reductions in IL-1β and TNF-α in areas of brain injury at 6 and 96 hours post-injury. Treated rats had significantly reduced FJB-positive degenerating neurons and better functional recovery [130]. Simvastatin was shown to reduce brain IL-1β concentrations and reduce microglia and astrocyte activation in rats after TBI, with functional improvement based on NCS scores. However, no changes in IL-6 or TNF-α concentrations were noted [131]. Atorvastatin was found to reduce IL-6 and TNF-[alpha] in mice after TBI. Hippocampal degeneration and functional neurological deficits were reduced in treated animals compared with controls [132]. There is also evidence that discontinuation of these statins in patients results in increased pro-inflammatory cytokines, including IL-6 [133-135], and discontinuation of these agents after TBI appears to result in worse outcomes [136] . In addition, a retrospective study showed that preinjury statin use was associated with better outcomes [137]. This has led to the recommendation to study these agents in patients with TBI. Only a few small trials are reported. Tapia-Perez et al. studied the effect of rosuvastatin in patients with severe TBI and reported a reduction in forgetfulness in treated patients [138]. However, there was no difference in disability at 3 months. In addition, the trial included only 8 rosuvastatin patients and 13 controls, and 21 of the 43 TBI patients evaluated were deemed ineligible. In another small study, in 19 patients receiving 10 days of rosuvastatin and 17 controls, Sanchez-Aquilar et al reported that rosuvastatin patients had plasma TNF- Significant reduction in alpha concentrations and improvement in disability scores. No effect was seen on IL-1β, IL-6 or IL-10 [139]. Rasras et al studied the effects of a similar agent, simuvastatin, in a randomized trial of 66 patients with severe TBI; however, no differences were found between treatment and control groups [140].

四環素。在動物模型中,已顯示四環素抑制發炎且在幾種神經病症中獲得較佳結果。Bye等人顯示,米諾四環素(minocycline)可降低TBI後小鼠的IL-1β及IL-6表現及微膠質細胞及巨噬細胞活化。經治療之小鼠在第1天的神經功能化較佳,然而在第4天時經治療之小鼠與對照組之間沒有差異[141]。然而,該相同組後來的研究確實顯示,米諾四環素組到6週時相對改良[142]。Shanchez Mejia等人報導,給予TBI後的小鼠米諾四環素藉由抑制凋亡蛋白酶-1活化而減少IL-1β,導致經治療之動物中之神經功能改良及病灶體積減少[143]。Lee等人顯示給予脊髓損傷後的大鼠米諾四環素降低TNF-α,增加IL-10,減少神經元細胞死亡及改良運動功能[144]。Yrjanheikki報導,去氧羥四環素或米諾四環素均可降少IL-1β轉化酵素的mRNA誘導且保護免遭缺血性中風後的神經元死亡[145]。其他研究人員亦已報導TBI動物模型中四環素的陽性結果[146-148]。然而,Turtzo等人可證實在TBI後經米諾四環素治療的大鼠中沒有益處[149]。此外,在另一項研究中,發現米諾四環素導致新生小鼠的缺血性腦損傷的增加[150,151]。tetracycline. In animal models, tetracycline has been shown to inhibit inflammation and achieve better results in several neurological disorders. Bye et al. showed that minocycline reduced IL-1β and IL-6 expression and microglia and macrophage activation in mice after TBI. Treated mice had better neural function on day 1, however there was no difference between treated and control mice on day 4 [141]. However, a later study in this same group did show relative improvement in the minocycline group by 6 weeks [142]. Shanchez Mejia et al. reported that administration of minocycline in mice after TBI reduced IL-1β by inhibiting caspase-1 activation, resulting in improved neurological function and reduced lesion volume in treated animals [143]. Lee et al. showed that administration of minocycline to rats following spinal cord injury decreased TNF-α, increased IL-10, decreased neuronal cell death, and improved motor function [144]. Yrjanheikki reported that either deoxytetracycline or minocycline reduced IL-1β convertase mRNA induction and protected against neuronal death after ischemic stroke [145]. Other researchers have also reported positive results for tetracycline in animal models of TBI [146-148]. However, Turtzo et al. could demonstrate no benefit in minocycline-treated rats after TBI [149]. Furthermore, in another study, minocycline was found to cause an increase in ischemic brain damage in neonatal mice [150,151].

其他抗發炎劑。許多其他藥劑已在TBI動物模型中顯示抗發炎活性。據報導,褪黑激素降低TBI後的小鼠的TNF-α及IL-1β且增加存活神經元數量。研究人員認為此種效應是繼發於m-TOR路徑的去磷酸化[152]。其他研究人員亦已報導褪黑激素在動物模型中的陽性結果[153-156]。other anti-inflammatory agents. Many other agents have shown anti-inflammatory activity in animal models of TBI. Melatonin has been reported to decrease TNF-α and IL-1β and increase the number of surviving neurons in mice after TBI. Researchers believe this effect is secondary to dephosphorylation of the m-TOR pathway [152]. Other researchers have also reported positive results for melatonin in animal models [153-156].

Zhu等人報導,在TBI後15分鐘給予小鼠的薑黃素的腹膜內投與顯著降低IL-1β、IL-6及MCP-1之濃度且減少TLR4陽性微膠質細胞/巨噬細胞數量,導致神經元凋亡減少[157]。其他研究人員亦已報導薑黃素在TBI動物模型中之神經保護效應[158-161]。Zhu et al. reported that intraperitoneal administration of curcumin administered to mice 15 minutes after TBI significantly reduced IL-1β, IL-6 and MCP-1 concentrations and decreased TLR4-positive microglia/macrophage numbers, resulting in Neuronal apoptosis is reduced [157]. Other researchers have also reported neuroprotective effects of curcumin in animal models of TBI [158-161].

環孢素係一種有效免疫抑制劑。由於其於細胞素之寬廣範圍效應[162-165]及在動物模型中之活性[166],已在患有TBI的患者的實驗中進行研究。然而,該藥劑在患有TBI的患者中之隨機化、安慰劑對照試驗顯示沒有活性[167]。環孢素(歐司他(neurostat))調配物繼續在患有TBI的患者及其他神經病症中進行研究,然而最近的報導顯示歐司他在急性缺血性中風中沒有神經保護活性[168]。Cyclosporine is an effective immunosuppressant. Due to its broad range of effects on cytokines [162-165] and activity in animal models [166], it has been studied in experiments in patients with TBI. However, randomized, placebo-controlled trials of this agent in patients with TBI showed no activity [167]. Ciclosporine (neurostat) formulations continue to be studied in patients with TBI and other neurological disorders, however recent reports suggest that urelostat has no neuroprotective activity in acute ischemic stroke [168] .

許多抑制促發炎細胞素的其他藥劑亦已在動物模型中進行研究。卡洛芬(Carprofen) (一種COX-2抑制,其目前用於治療狗及其他動物之關節炎)發現顯著降低IL-1β及IL-6,且改良TBI後的小鼠之神經功能化[169]。雷公藤內酯(Triptolide) (一種二萜環氧化物,其在動物模型中具有抗癌活性)發現可抑制IL-1β、IL-6及TNF-α,增加IL-10濃度及減少實驗性TBI後的斯潑雷格-多雷大鼠的神經元凋亡[170]。TSG-6 (TNF-α刺激基因/蛋白6)係一種抗發炎劑,其可抑制IL-1β、IL-6及其他促發炎細胞素(MIP-1α、MCP-1),且刺激抗發炎細胞素如IL-4的產生[171]。Watanabe等人顯示對TBI後的小鼠投與該藥物減小病灶大小且改良神經恢復[172]。另一藥劑CNS穿透性小分子MW151(已知其抑制IL-1β及TNF-α,但不影響抗發炎細胞素如IL-10)已在TBI後的小鼠中進行測試。該藥劑將異常細胞素濃度恢復至正常,減少神經膠質活化且導致經治療之動物的神經功能化的改良[173]。然而,此等藥物均未曾在患者試驗中進行測試。Many other agents that inhibit pro-inflammatory cytokines have also been studied in animal models. Carprofen, a COX-2 inhibitor currently used to treat arthritis in dogs and other animals, was found to significantly reduce IL-1β and IL-6, and improve neuronal function in mice after TBI [169 ]. Triptolide, a diterpene epoxide with anticancer activity in animal models, was found to inhibit IL-1β, IL-6, and TNF-α, increase IL-10 concentrations, and reduce experimental TBI Neuronal apoptosis in Sprague-Dawley rats after [170]. TSG-6 (TNF-α-stimulated gene/protein 6) is an anti-inflammatory agent that inhibits IL-1β, IL-6 and other pro-inflammatory cytokines (MIP-1α, MCP-1) and stimulates anti-inflammatory cells production of hormones such as IL-4 [171]. Watanabe et al showed that administration of the drug to mice after TBI reduced lesion size and improved neurological recovery [172]. Another agent, the CNS penetrating small molecule MW151, which is known to inhibit IL-1β and TNF-α, but not anti-inflammatory cytokines such as IL-10, has been tested in mice after TBI. This agent restores abnormal cytokine concentrations to normal, reduces glial activation and results in improved neural function in treated animals [173]. However, none of these drugs have been tested in patient trials.

在後續腦發炎階段期間,TBI後的腦損傷可能會顯著惡化。在此階段期間,關鍵細胞素(特定言之IL-1β、IL-6及TNF-α)之濃度發生大幅增加,為一種「腦細胞素風暴」,該濃度相較於其相應血清濃度可增加數千倍。儘管此等細胞素(諸如IL-6及TNF-α)中的一些可具有有益作用,但證據表明過高濃度係有害的,因為在動物模型中的大量研究顯示阻斷此等細胞素可減少腦損傷。因此,促發炎細胞素的抑制可限制TBI後神經發炎引起的繼發性損傷。Brain damage after TBI may worsen significantly during the subsequent phase of brain inflammation. During this phase, concentrations of key cytokines (specifically IL-1β, IL-6, and TNF-α) increase substantially in a "brain cytokine storm" that can increase relative to their corresponding serum concentrations thousands of times. Although some of these cytokines, such as IL-6 and TNF-alpha, may have beneficial effects, evidence suggests that high concentrations are detrimental, as numerous studies in animal models have shown that blocking these cytokines reduces Brain Injury. Therefore, inhibition of pro-inflammatory cytokines may limit the secondary damage caused by neuroinflammation after TBI.

經考慮,本說明書中討論的任何實施例可關於本發明之任何方法、套組、試劑或組合物實施,且反之亦然。此外,本發明之組合物可用於達成本發明之方法。It is contemplated that any embodiment discussed in this specification may be practiced with respect to any method, kit, reagent or composition of the invention, and vice versa. Furthermore, the compositions of the present invention can be used to achieve the methods of the present invention.

應理解,本文描述的特定實施例係以說明之方式而不是作為對本發明之限制而顯示。本發明之主要特徵可在不脫離本發明之範疇情況下用於各種實施例中。熟習此項技術者將認識到或能夠僅使用常規實驗來確定本文描述的特定程序之許多等效物。此類等效物被視為在本發明之範疇內且被申請專利範圍所涵蓋。It should be understood that the specific embodiments described herein are presented by way of illustration and not limitation of the invention. The principal features of this invention may be employed in various embodiments without departing from the scope of the invention. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific procedures described herein. Such equivalents are deemed to be within the scope of this invention and are covered by the scope of the patent application.

本說明書中提及的所有公開案及專利申請案指示熟習本發明所屬技術者的技術水平。所有公開案及專利申請案均以引用之方式併入本文中,其程度就如同個別公開案或專利申請案被明確地且單獨地指示為以引用之方式併入一般。All publications and patent applications mentioned in this specification are indicative of the level of skill of those skilled in the art to which this invention pertains. All publications and patent applications are incorporated herein by reference to the same extent as if individual publications or patent applications were specifically and individually indicated to be incorporated by reference.

單詞「一」或「一個」的使用當與申請專利範圍及/或本說明書中的術語「包含」結合使用時可意指「一個」,但其亦與「一或多個」、「至少一個」、「一個或超過一個」之含義一致。術語「或」在申請專利範圍中的使用用於意指「及/或」,除非明確指出僅指替代物或該等替代物係相互排斥的,儘管本發明支持僅指「替代物」及「及/或」的定義。在本申請案通篇中,術語「約」用於指示一個值包括裝置誤差的固有變化、用於確定該值之方法、或研究個體之間存在的變化。The use of the word "a" or "an" may mean "an" when used in conjunction with the term "comprising" in the scope of the claims and/or in this specification, but it is also used in conjunction with "one or more", "at least one". ” and “one or more than one” have the same meaning. The use of the term "or" in the scope of the claims is intended to mean "and/or" unless it is expressly stated that only alternatives are meant or that such alternatives are mutually exclusive, although the present invention supports only "alternatives" and " and/or" definition. Throughout this application, the term "about" is used to indicate that a value includes inherent variation in device error, the method used to determine the value, or variation that exists between individuals studied.

如在本說明書及申請專利範圍中所使用,單詞「包含(comprising)」 (及包含之任何形式,諸如「包含(comprise)」及「包含(comprises)」)、「具有(having)」 (及具有之任何形式,諸如「具有(have)」及「具有(has)」)、「包括(including)」 (及包括之任何形式,諸如「包括(includes)」及「包括(include)」)或「含有(containing)」 (及含有之任何形式,諸如「含有(contains)」及「含有(contain)」)係包容性或開放式的且不排除附加、未列舉的要素或方法步驟。在本文提供的任何組合物及方法之實施例中,「包含」可替換為「基本上由......組成」或「由......組成」。如本文所用,片語「基本上由......組成」需要指定的整數或步驟以及不會實質性影響所主張發明之特徵或功能的彼等。如本文所用,術語「組成」用於指示僅存在所列舉的整數(例如特徵、要素、特性、性質、方法/製程步驟或限制)或整數組(例如特徵、要素、特性、性質、方法/製程步驟或限制)。As used in this specification and in the scope of the claims, the word "comprising" (and any form of including, such as "comprise" and "comprises"), "having" (and any form of having, such as "have" and "has"), "including" (and any form of including, such as "includes" and "includes") or "Containing" (and any form of containing, such as "contains" and "contain") is inclusive or open-ended and does not exclude additional, unrecited elements or method steps. In any of the composition and method examples provided herein, "comprising" may be replaced by "consisting essentially of" or "consisting of." As used herein, the phrase "consisting essentially of" requires the specified integer or steps and those that do not materially affect the character or function of the claimed invention. As used herein, the term "composition" is used to indicate the presence of only the recited integer (eg, feature, element, characteristic, property, method/process step or limitation) or group of integers (eg, feature, element, characteristic, property, method/process) steps or restrictions).

如本文所用,術語「或其組合」係指該術語之前所列項目之所有排列及組合。例如,「A、B、C或其組合」意欲包括以下中之至少一者:A、B、C、AB、AC、BC或ABC,且若順序在特定上下文中很重要,則亦有BA、CA、CB、CBA、BCA、ACB、BAC或CAB。繼續該實例,明確包括含有一或多個項目或術語的重複的組合,諸如BB、AAA、AB、BBC、AAABCCCC、CBBAAA、CABABB等等。熟練技術者將理解,除非於內文中另外顯示,否則通常對任何組合中的項目或術語的數量沒有限制。As used herein, the term "or combinations thereof" refers to all permutations and combinations of the listed items preceding that term. For example, "A, B, C, or a combination thereof" is intended to include at least one of the following: A, B, C, AB, AC, BC, or ABC, and also BA, CA, CB, CBA, BCA, ACB, BAC or CAB. Continuing with the example, combinations containing repetitions of one or more items or terms, such as BB, AAA, AB, BBC, AAABCCCC, CBBAAA, CABABB, etc., are expressly included. Skilled artisans will understand that, unless the context indicates otherwise, there is generally no limit to the number of items or terms in any combination.

如本文所用,近似詞諸如但不限於「約」、「實質性」或「實質上」係指當如此修飾時的條件應理解為不一定是絕對或完美的,但將被視為足夠接近以使一般技術者保證指定該條件存在。該說明可變化的程度將取決於可進行多大的改變且熟習此項技術者仍認識到經修飾的特徵仍具有未修飾的特徵之所需特徵及能力。一般而言,但受限於前面的討論,本文中由近似詞(諸如「約」)修飾的數值可與規定值相差至少±1、2、3、4、5、6、7、10、12或15%。As used herein, approximate terms such as, but not limited to, "about," "substantially," or "substantially" mean that conditions when so modified are to be understood as not necessarily absolute or perfect, but are to be considered close enough to Make sure that the general skilled person specifies that the condition exists. The extent to which this description can vary will depend on how much changes can be made and those skilled in the art still recognize that a modified feature still has the desired characteristics and capabilities of an unmodified feature. In general, but limited by the foregoing discussion, numerical values modified by approximations (such as "about") herein may differ from the stated values by at least ±1, 2, 3, 4, 5, 6, 7, 10, 12 or 15%.

此外,提供此處的章節標題係為了與37 CFR 1.77下的建議相一致或以其他方式提供組織線索。此等標題不應限制或表徵可由本揭示內容發布的任何請求項中闡述的本發明。具體地且以實例說明之,雖然該等標題係指「發明領域」,但此等請求項不應受該標題下描述所謂的技術領域的語言的限制。此外,「先前技術」章節中的技術描述不應被解釋為承認該技術係本揭示內容中的任何本發明之先前技術。「發明內容」亦不應被視為對已發布的請求項中闡述的本發明的表徵。此外,本揭示內容中對「本發明」的任何單數引用不應用來論證本揭示內容中只有一個新穎性點。多個本發明可根據由本揭示內容發布的多個請求項的限制來闡述,且此等請求項因此定義由其保護的本發明及其等效物。在所有情況下,此請求項之範疇應根據本揭示內容基於其自身的優點來考慮,但不應受本文所列標題的限制。Additionally, the section headings here are provided to be consistent with recommendations under 37 CFR 1.77 or to otherwise provide organizational cues. These headings shall not limit or characterize the invention set forth in any claims that may be issued by this disclosure. Specifically and by way of example, although these headings refer to the "Field of Invention," these claims should not be limited by the language under which such headings describe the so-called technical field. Furthermore, descriptions of techniques in the "Prior Art" section should not be construed as an admission that the techniques are prior art to any of the inventions in this disclosure. Nor should the "Summary" be taken as a representation of the invention set forth in the issued claims. Furthermore, any reference to "the invention" in this disclosure in the singular should not be used to demonstrate that there is only one point of novelty in this disclosure. The various inventions may be set forth in light of the limitations of the various claims issued by this disclosure, and such claims thus define the inventions protected by them and their equivalents. In all cases, the scope of this claim should be considered on its own merits in light of this disclosure and should not be limited by the headings listed herein.

根據本發明,本文揭示且主張的所有組合物及/或方法可在沒有過度實驗下製備及執行。雖然本發明之組合物及方法已根據較佳實施例進行描述,但熟習此項技術者當明瞭,在不脫離本發明之概念、精神及範疇下,可對組合物及/或方法及在步驟中或在本文描述的步驟之順序中應用變化。熟習此項技術者明瞭的所有此類類似替代及修改均被認為在如隨附申請專利範圍所定義的發明之精神、範疇及概念內。參考文獻 實例 1 In accordance with the present invention, all compositions and/or methods disclosed and claimed herein can be made and performed without undue experimentation. Although the compositions and methods of the present invention have been described in terms of preferred embodiments, it will be apparent to those skilled in the art that the compositions and/or methods and in steps may be modified without departing from the concept, spirit and scope of the present invention. Variations are applied in or in the order of the steps described herein. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims. References Example 1

1) Wauquier N、Becquart P、Padilla C、Baize S、Leroy EM。Human fatal Zaire Ebola virus infection is associated with an aberrant innate immunity and with massive lymphocyte apoptosis。PloS Neglected Tropical Diseases http;//dx.doi 10.1371/journal.pntd. 2010.0000837。1) Wauquier N, Becquart P, Padilla C, Baize S, Leroy EM. Human fatal Zaire Ebola virus infection is associated with an aberrant innate immunity and with massive lymphocyte apoptosis. PloS Neglected Tropical Diseases http;//dx.doi 10.1371/journal.pntd. 2010.0000837.

2) Villinger F、Rollin PE、Brar SS、Chikkala NF、Winter J、Sundstrom JB、Zaki SR、Swanepoel R、Ansari AA、Peters CJ。Markedly elevated levels of interferon (IFN)-γ, IFN-α, interleukin (IL) -2, IL-10 and tumor necrosis factor-α associated with fatal Ebola virus infection。J Infect Dis. 1999;179:S188-S191。2) Villinger F, Rollin PE, Brar SS, Chikkala NF, Winter J, Sundstrom JB, Zaki SR, Swanepoel R, Ansari AA, Peters CJ. Markedly elevated levels of interferon (IFN)-γ, IFN-α, interleukin (IL)-2, IL-10 and tumor necrosis factor-α associated with fatal Ebola virus infection. J Infect Dis. 1999;179:S188-S191.

3) Yuen KY、Wong SS。Human infection by avian influenza H5N1。Hong Kong Med J 2005;11:189-199。3) Yuen KY, Wong SS. Human infection by avian influenza H5N1. Hong Kong Med J 2005;11:189-199.

4) Haque A、Hober D、Kasper LH:Confronting potential influenza A (H5N1) pandemic with better vaccines。Emerging Infectious Diseases 2007;13:1512-1518。4) Haque A, Hober D, Kasper LH: Confronting potential influenza A (H5N1) pandemic with better vaccines. Emerging Infectious Diseases 2007;13:1512-1518.

5) Teijaro JR、Walsh KB、Rice S、Rosen H、Oldstone MBA。Mapping the innate signaling cascade essential for cytokine storm during influenza virus infection。Proc Nall Acad Sciences 2014;111:3799-3804。5) Teijaro JR, Walsh KB, Rice S, Rosen H, Oldstone MBA. Mapping the innate signaling cascade essential for cytokine storm during influenza virus infection. Proc Nall Acad Sciences 2014;111:3799-3804.

6) Huang KJ、Siu IJ、Theron M、Wu YC、Liu CC、Lei HY。An interferon-gamma related cytokine storm in SARS patients。Journal of Medical Virology 2005;75:185-194。6) Huang KJ, Siu IJ, Theron M, Wu YC, Liu CC, Lei HY. An interferon-gamma related cytokine storm in SARS patients. Journal of Medical Virology 2005;75:185-194.

7) Imashuku S。Clinical features and treatment strategies of Epstein-Barr virus-associated hemophagochytic lymphohistiocytosis。Crit. Rev. Oncol. Hematol 2002,44:259-272。7) Imashuku S. Clinical features and treatment strategies of Epstein-Barr virus-associated hemophagochytic lymphohistiocytosis. Crit. Rev. Oncol. Hematol 2002, 44:259-272.

8) Harrison C。Sepsis: Calming the cytokine storm。Nature Reviews Drug Discovery 2010;9:360-361。8) Harrison C. Sepsis: Calming the cytokine storm. Nature Reviews Drug Discovery 2010;9:360-361.

9) Clark IA、Alleva LM、Budd AC、Cowden WB。Understanding the role of inflammatory cytokines in malaria and related diseases。Travel Med Infect Dis 2008,6:67-81。9) Clark IA, Alleva LM, Budd AC, Cowden WB. Understanding the role of inflammatory cytokines in malaria and related diseases. Travel Med Infect Dis 2008, 6:67-81.

10)    Makhija R、Kingsnorth AN。Cytokine storm in acute pancreatitis。J. Hepatobiliary Pancreat Surg  2002;9:401-410。10) Makhija R, Kingsnorth AN. Cytokine storm in acute pancreatitis. J. Hepatobiliary Pancreat Surg 2002;9:401-410.

11)    Aikawa N。Cytokine storm in the pathogenesis of multiple organ dysfunction syndrome associated with surgical insults。Nihon Geka Gakkei Zasshi 1996;97:771-777。11) Aikawa N. Cytokine storm in the pathogenesis of multiple organ dysfunction syndrome associated with surgical insults. Nihon Geka Gakkei Zasshi 1996;97:771-777.

12)    Park WY、Goodman RB、Steinberg KP、Ruzinsky JT、Rudella F、Park DR、Pugin J、Skeritt SJ、Hudson LD、Martin TR。Cytokine balance in the lungs of patients with acute respiratory distress syndrome。Amer J Resp Crit Care Med 2001;164:1896-1903。12) Park WY, Goodman RB, Steinberg KP, Ruzinsky JT, Rudella F, Park DR, Pugin J, Skeritt SJ, Hudson LD, Martin TR. Cytokine balance in the lungs of patients with acute respiratory distress syndrome. Amer J Resp Crit Care Med 2001;164:1896-1903.

13)    St. Clair EW。The calm after the cytokine storm:  Lessons from the TGN1412 trial。2008;118:1344-1347。13) St. Clair EW. The calm after the cytokine storm: Lessons from the TGN1412 trial. 2008;118:1344-1347.

14)    Abe Y.、Hashimoto S.、Horie T:Curcumin inhibition of inflammatory cytokine production by human peripheral blood monocytes and alveolar macrophages。Pharmacological Research 1999;39:41-47。14) Abe Y., Hashimoto S., Horie T: Curcumin inhibition of inflammatory cytokine production by human peripheral blood monocytes and alveolar macrophages. Pharmacological Research 1999;39:41-47.

15)    Jain SK.、Rains J.、Croad J.、Larson B.、Jones K:Curcumin supplementation lowers TNF-α, IL-6, IL-8, and MCP-1 secretion in high glucose-treated cultured monocytes and blood levels of TNF-α, IL-6, MCP-1, glucose, and glycosylated hemoglobin in diabetic rats。Antioxid Redox Signal 2009;11: 241-249。15) Jain SK., Rains J., Croad J., Larson B., Jones K: Curcumin supplementation lowers TNF-α, IL-6, IL-8, and MCP-1 secretion in high glucose-treated cultured monocytes and blood levels of TNF-α, IL-6, MCP-1, glucose, and glycosylated hemoglobin in diabetic rats. Antioxid Redox Signal 2009;11:241-249.

16)    Kloesch B.、Becker T.、Dietersdorfer E.、Kiener H.、Steiner G:Anti-inflammatory and apoptotic effects of the polyphenol curcumin on human fibroblast-like synoviocytes。Int Immunopharmacol 2013;15:400-405。16) Kloesch B., Becker T., Dietersdorfer E., Kiener H., Steiner G: Anti-inflammatory and apoptotic effects of the polyphenol curcumin on human fibroblast-like synoviocytes. Int Immunopharmacol 2013;15:400-405.

17)    Raflee P.、Nelson VM.、Manley S.、Wellner M.、Floer M.、Binion DG.、Shaker R:Effect of curcumin on acidic pH-induced expression of IL-6 and IL-8 in human esophageal epithelial cells (HET-1A): Role of PKC, MAPKs, and NF-κB。American Journal of Physiology-Gastrointestinal and Liver Physiology 2009;296:G388-G398。17) Raflee P., Nelson VM., Manley S., Wellner M., Floer M., Binion DG., Shaker R: Effect of curcumin on acidic pH-induced expression of IL-6 and IL-8 in human esophageal epithelial cells (HET-1A): Role of PKC, MAPKs, and NF-κB. American Journal of Physiology-Gastrointestinal and Liver Physiology 2009;296:G388-G398.

18)    Biswas SK.、McClure D.、Jimenez LA.、Megson IL.、Rahman I:Curcumin induces glutathione biosynthesis and inhibits NF-κB activation and interleukin-8 release in alveolar epithelial cells : Mechanism of free radical scavenging activity。Antioxid Redox Signal 2005;7:32-41。18) Biswas SK., McClure D., Jimenez LA., Megson IL., Rahman I: Curcumin induces glutathione biosynthesis and inhibits NF-κB activation and interleukin-8 release in alveolar epithelial cells: Mechanism of free radical scavenging activity. Antioxid Redox Signal 2005;7:32-41.

19)    Xu YX.、Pindolia KR.、Janakiraman N.、Chapman RA.、Gautam SC:Curcumin inhibits IL-1α and TNF-α induction of AP-1 and NF-κB DNA-binding activity in bone marrow stromal cells。Hematopathol Mol Hematol 1997-1998;11:49-62。19) YX., Pindolia KR., Janakiraman N., Chapman RA., Gautam SC: Curcumin inhibits IL-1α and TNF-α induction of AP-1 and NF-κB DNA-binding activity in bone marrow stromal cells. Hematopathol Mol Hematol 1997-1998;11:49-62.

20)    Jobin C.、Bradham CA.、Russo MP.、Juma B.、Narula AS.、Brenner DA.、Sartor RB:Curcumin blocks cytokine-mediated NF-κβ activation and proinflammatory gene expression by inhibiting inhibitory factor I-κβ kinase activity。J Immunol 1999;163:3474-3483。20) Jobin C., Bradham CA., Russo MP., Juma B., Narula AS., Brenner DA., Sartor RB: Curcumin blocks cytokine-mediated NF-κβ activation and proinflammatory gene expression by inhibiting inhibitory factor I-κβ kinase activity. J Immunol 1999;163:3474-3483.

21)    Henrotin Y.、Clutterbuck AL.、Allaway D.、Lodwig EM.、Harris P.等人:Biological actions of curcumin on articular chondrocytes. Osteoarthritis Cartilage 2010;18:141-149。21) Henrotin Y., Clutterbuck AL., Allaway D., Lodwig EM., Harris P. et al.: Biological actions of curcumin on articular chondrocytes. Osteoarthritis Cartilage 2010;18:141-149.

22)    Gao X.、Kuo J.、Jiang H.、Deeb D.、Liu Y.、Divine G.、Chapman RA.、Dulchavsky SA.、Gautam SC:Immunomodulatory activity of curcumin: Suppression of lymphocyte proliferation, development of cell-mediated cytotoxity, and cytokine production in vitro。Biochem Pharmacol 2004;68:51-61。22) Gao X., Kuo J., Jiang H., Deeb D., Liu Y., Divine G., Chapman RA., Dulchavsky SA., Gautam SC: Immunomodulatory activity of curcumin: Suppression of lymphocyte proliferation, development of cell -mediated cytotoxity, and cytokine production in vitro. Biochem Pharmacol 2004;68:51-61.

23)    Fahey AJ.、Robins RA.、Constantinescu CS:Curcumin modulation of IFN-β and IL-12 signaling and cytokine induction in human T cells。J Cell Mol Med 2007;11:1129-1137。23) Fahey AJ., Robins RA., Constantinescu CS: Curcumin modulation of IFN-β and IL-12 signaling and cytokine induction in human T cells. J Cell Mol Med 2007;11:1129-1137.

24)    Bachmeier BE.、Mohrenz IV.、Mirisola V.、Schleicher E.、Romeo F.、Hohneke C.、Jochum M.、Nerlich AG.、Pfeffer U:Curcumin downregulates the inflammatory cytokines CXCL1 and -2 in breast cancer cells via NFkappaB。Carcinogenesis 2008;29:779-789。24) Bachmeier BE., Mohrenz IV., Mirisola V., Schleicher E., Romeo F., Hohneke C., Jochum M., Nerlich AG., Pfeffer U: Curcumin downregulates the inflammatory cytokines CXCL1 and -2 in breast cancer cells via NFkappaB. Carcinogenesis 2008;29:779-789.

25)    Xiaoling MU.、Jing Z.、Fang X.、Liangdan T:Curcumin inhibits invasion and metastasis in the human ovarian cancer cells SKOV3 by CXCL12-CXCR4 axis。African Journal of Biotechnology 2010;9:8230-8234。25) Xiaoling MU., Jing Z., Fang X., Liangdan T: Curcumin inhibits invasion and metastasis in the human ovarian cancer cells SKOV3 by CXCL12-CXCR4 axis. African Journal of Biotechnology 2010;9:8230-8234.

26)    Xu YX.、Pindolia KR.、Janakiraman N.、Noth CJ.、Chapman RA.、Gautam SC:Curcumin, a compound with anti-inflammatory and anti-oxidant properties, down regulates chemokine expression in bone marrow stromal cells。Exp Hematol 1997;25:413-422。26) Xu YX., Pindolia KR., Janakiraman N., Noth CJ., Chapman RA., Gautam SC: Curcumin, a compound with anti-inflammatory and anti-oxidant properties, down regulates chemokine expression in bone marrow stromal cells. Exp Hematol 1997;25:413-422.

27)    Avasarala S、Zhang F、Liu G、Wang R、London SD、London L。Curcumin modulates the inflammatory response and inhibits subsequent fibrosis in a mouse model of viral-induced acute respiratory distress syndrome。PLoS ONE http://dx.doi.org/10.1371/journal.pone. 2013.0057285。27) Avasarala S, Zhang F, Liu G, Wang R, London SD, London L. Curcumin modulates the inflammatory response and inhibits subsequent fibrosis in a mouse model of viral-induced acute respiratory distress syndrome. PLoS ONE http://dx.doi.org/10.1371/journal.pone. 2013.0057285.

28)    Yu WG、Xu G、Ren GJ、Xu X、Yuan HQ、Qi XL、Tian KL。Preventive action of curcumin in experimental acute pancreatitis in mouse。Indian J Med Res 2011;134:717-724。28) Yu WG, Xu G, Ren GJ, Xu X, Yuan HQ, Qi XL, Tian KL. Preventive action of curcumin in experimental acute pancreatitis in mouse. Indian J Med Res 2011;134:717-724.

29)    Cheppudira B、Greer A、Mares A、Fowler M、Garza T、Petz L、Loyd D、Clifford J。The anti-inflammatory and analgesic activity of curcumin in a rat model of full thickness thermal injury。The Journal of Pain 2013;14:552。29) Cheppudira B, Greer A, Mares A, Fowler M, Garza T, Petz L, Loyd D, Clifford J. The anti-inflammatory and analgesic activity of curcumin in a rat model of full thickness thermal injury. The Journal of Pain 2013;14:552.

30)    Song Y、Ge W、Cai H、Zwang H。Curcumin protects mice from coxsackie virus B3-induced myocarditis by inhibiting the phosphatidylinositol 3 kinase/Akt/nuclear factor-κB pathway。J Cardiovasc Pharmacol Ther 2013;18:560-569。30) Song Y, Ge W, Cai H, Zwang H. Curcumin protects mice from coxsackie virus B3-induced myocarditis by inhibiting the phosphatidylinositol 3 kinase/Akt/nuclear factor-κB pathway. J Cardiovasc Pharmacol Ther 2013;18:560-569.

31)    Moghadamtousi SZ、Kadir HA、Hassandarvish P、Tajik H、Abubakar S、Zandi K。A review on antibacterial, antiviral, and antifungal activity of curcumin BioMed Research International http://dx.doi.org/10.1155/2014/186864。31) Moghadamtousi SZ, Kadir HA, Hassandarvish P, Tajik H, Abubakar S, Zandi K. A review on antibacterial, antiviral, and antifungal activity of curcumin BioMed Research International http://dx.doi.org/10.1155/2014/186864.

32)    Chen DY、Shien JH、Tiley L、Chiou SS、Wang SY、Chang TJ、Lee YJ、Chan KW、Hsu WL。Curcumin inhibits influenza virus infection and haemagglutination activity。Food Chemistry 2010;119(4):1346-1351。32) Chen DY, Shien JH, Tiley L, Chiou SS, Wang SY, Chang TJ, Lee YJ, Chan KW, Hsu WL. Curcumin inhibits influenza virus infection and haemagglutination activity. Food Chemistry 2010;119(4):1346-1351.

33)    Ou JL、Mizushina Y、Wang SY、Chuang DY、Nadar M、Hsu WL。Structure-activity relationship analysis of curcumin analogues on anti-influenza virus activity。FEBS J. 2013;280:5829-5840。33) Ou JL, Mizushina Y, Wang SY, Chuang DY, Nadar M, Hsu WL. Structure-activity relationship analysis of curcumin analogues on anti-influenza virus activity. FEBS J. 2013;280:5829-5840.

34)    Chen CQ.、Yu K.、Yan QX.、Xing CY.、Chen Y.、Yan Z.、Shi YF.、Zhao KW.、Gao SM:Pure curcumin increases the expression of SOCS1 and SOCS3  in myeloproliferative neoplasms through suppressing class I histone deacetylases。Carcinogenesis 2013;34:1442-1449。34) Chen CQ., Yu K., Yan QX., Xing CY., Chen Y., Yan Z., Shi YF., Zhao KW., Gao SM: Pure curcumin increases the expression of SOCS1 and SOCS3 in myeloproliferative neoplasms through suppressing class I histone deacetylases. Carcinogenesis 2013;34:1442-1449.

35)    Kedzierski L、Linossi EM、Kolesnik TB、Day EB、Bird NL、Kile BT、Belz GT、Metcalf D、Nicola NA、Kedzierska K、Nicholson SE。Suppressor of cytokine signaling 4 (SOCS4) protects against severe cytokine storm and enhances viral clearance during influenza infection。Plos Pathogens http://dx.doi.org10:1371/journal.ppat.2014/1004134。35) Kedzierski L, Linossi EM, Kolesnik TB, Day EB, Bird NL, Kile BT, Belz GT, Metcalf D, Nicola NA, Kedzierska K, Nicholson SE. Suppressor of cytokine signaling 4 (SOCS4) protects against severe cytokine storm and enhances viral clearance during influenza infection. Plos Pathogens http://dx.doi.org10:1371/journal.ppat.2014/1004134.

36)    Ganjali S、Sahebkar A、Mahdipour E、Jamialahmadi K、Torabi S、Akhlaghi S、Ferns G、Parizadeh SMR、Ghayour-Mobarhan M。Investigation of the effects of curcumin on serum cytokines in obese individuals: A randomized controlled study。The Science World J http://dx.doi.org/10.1155/2014/898361。36) Ganjali S, Sahebkar A, Mahdipour E, Jamialahmadi K, Torabi S, Akhlaghi S, Ferns G, Parizadeh SMR, Ghayour-Mobarhan M. Investigation of the effects of curcumin on serum cytokines in obese individuals: A randomized controlled study. The Science World J http://dx.doi.org/10.1155/2014/898361.

37)    Kobayashi T、Hashimoto S、Horie T。Curcumin inhibition of Dermatophagoides farinea-induced interleukin-5 (IL-5) and granulocyte macrophage-colony stimulating factor (GM-CSF) production by lymphocytes from bronchial asthmatics。Biochemical Pharmacology 1997;54:819-824。37) Kobayashi T, Hashimoto S, Horie T. Curcumin inhibition of Dermatophagoides farinea-induced interleukin-5 (IL-5) and granulocyte macrophage-colony stimulating factor (GM-CSF) production by lymphocytes from bronchial asthmatics. Biochemical Pharmacology 1997;54:819-824.

38)    Okamoto Y、Tanaka M、Fukui T、Masuzawa T。Inhibition of interleukin 17 production by curcumin in mice with collagen-induced arthritis。Biomedical Research 2011;22:299-304。38) Okamoto Y, Tanaka M, Fukui T, Masuzawa T. Inhibition of interleukin 17 production by curcumin in mice with collagen-induced arthritis. Biomedical Research 2011;22:299-304.

39)    Wang W、Zhu R、Xie Q、Li A、Xaio Y、Li K、Liu H、Cui D、Chen Y、Wang S。Enhanced bioavailability and efficiency of curcumin for the treatment of asthma by its formulation in solid lipid nanoparticles。Int J Nanomedicine 2012;7:3667-3677。39) Wang W, Zhu R, Xie Q, Li A, Xaio Y, Li K, Liu H, Cui D, Chen Y, Wang S. Enhanced bioavailability and efficiency of curcumin for the treatment of asthma by its formulation in solid lipid nanoparticles. Int J Nanomedicine 2012;7:3667-3677.

40)    Kondo A、Mogi M、Koshihara Y、Togani A。Signal transduction system for interleukin-6 and interleukin-11 synthesis stimulated by epinephrine in human osteoblasts and human osteogenic sarcoma cells。Biochemical Pharmacology 2001;61:319-326。參考文獻實例 2 40) Kondo A, Mogi M, Koshihara Y, Togani A. Signal transduction system for interleukin-6 and interleukin-11 synthesis stimulated by epinephrine in human osteoblasts and human osteogenic sarcoma cells. Biochemical Pharmacology 2001;61:319-326. Reference Example 2

[1] Clark IA、Alleva LM、Budd AC、Cowden WB。Understanding the role of inflammatory cytokines in malaria and related diseases。Travel Med Infect Dis 2008;6:67-81。[1] Clark IA, Alleva LM, Budd AC, Cowden WB. Understanding the role of inflammatory cytokines in malaria and related diseases. Travel Med Infect Dis 2008;6:67-81.

[2] Huang KJ、Siu IJ、Theron M、Wu YC、Liu CC、Lei HY。An interferon-gamma related cytokine storm in SARS patients。J Med Virol 2005;75:185-194。[2] Huang KJ, Siu IJ, Theron M, Wu YC, Liu CC, Lei HY. An interferon-gamma related cytokine storm in SARS patients. J Med Virol 2005;75:185-194.

[3] Espada-Murao LA、Morita K。Dengue and soluble mediators of the innate immune system。Trop Med Health 2011;39:53-62。[3] Espada-Murao LA, Morita K. Dengue and soluble mediators of the innate immune system. Trop Med Health 2011;39:53-62.

[4] Reis EAG、Hagan JE、Ribeiro GS、Teixeira-Carvalho A、Martins-Filho OA、Montgomery RR等人。Cytokine response signatures in disease progression and development of severe clinical outcomes for leptospirosis。PLoS Negl Trop Dis. 2013;7(9):e2457。[4] Reis EAG, Hagan JE, Ribeiro GS, Teixeira-Carvalho A, Martins-Filho OA, Montgomery RR, et al. Cytokine response signatures in disease progression and development of severe clinical outcomes for leptospirosis. PLoS Negl Trop Dis. 2013;7(9):e2457.

[5] Branco LM、Grove JN、Boisen ML、Shaffer JG、Goba A、Fullah M、Momob M、Grant DS、Garry RF:Emerging trends in Lassa fever. Redefining the role of immunoglobulin M and inflammation in diagnosing acute infection。Virol J 2011;8:478。[5] Branco LM, Grove JN, Boisen ML, Shaffer JG, Goba A, Fullah M, Momob M, Grant DS, Garry RF: Emerging trends in Lassa fever. Redefining the role of immunoglobulin M and inflammation in diagnosing acute infection. Virol J 2011;8:478.

[6] Harrison C。Sepsis: calming the cytokine storm。Nat Rev Drug Discov 2010;9:360-361。[6] Harrison C. Sepsis: calming the cytokine storm. Nat Rev Drug Discov 2010;9:360-361.

[7] Clark IA。The advent of the cytokine storm。Immunol Cell Biol 2007;85:271-273。[7] Clark IA. The advent of the cytokine storm. Immunol Cell Biol 2007;85:271-273.

[8] D’Elia RV、Harrison K、Oyston PC、Lukaszewski RA、Clark GC。Targeting the 'cytokine storm ' for therapeutic benefit。Clin Vaccine Immunol 2013;20: 319-327。[8] D’Elia RV, Harrison K, Oyston PC, Lukaszewski RA, Clark GC. Targeting the 'cytokine storm' for therapeutic benefit. Clin Vaccine Immunol 2013;20:319-327.

[9] Sun Y、Jin C、Zhan F、Wang X、Liang M、Zhang Q、Ding S、Guan X、Huo X、Li C、Qu J、Wang Q、Zhang S、Zhang Y、Wang S、Xu A、Bi Z、Li D。Host cytokine storm is associated with disease severity of severe fever with thrombocytopenia syndrome。J Infect Dis 2012;206:1085-1094。[9] Sun Y, Jin C, Zhan F, Wang X, Liang M, Zhang Q, Ding S, Guan X, Huo X, Li C, Qu J, Wang Q, Zhang S, Zhang Y, Wang S, Xu A , BiZ, LiD. Host cytokine storm is associated with disease severity of severe fever with thrombocytopenia syndrome. J Infect Dis 2012;206:1085-1094.

[10]   Johnston SC、Johnson JC、Stonier SW、Lin KL、Kisalu NK、Hensley LE、Rimoin AW。Cytokine modulation correlates with severity of monkeypox disease in humans。J Clin Virol 2015;63:42-45。[10] Johnston SC, Johnson JC, Stonier SW, Lin KL, Kisalu NK, Hensley LE, Rimoin AW. Cytokine modulation correlates with severity of monkeypox disease in humans. J Clin Virol 2015;63:42-45.

[11]   Wauquier N、Becquart P、Padilla C、Baize S、Leroy EM。Human fatal Zaire Ebola virus infection is associated with an aberrant innate immunity and with massive lymphocyte apoptosis。PLoS Negl Trop Dis 2010;4(10):e837。[11] Wauquier N, Becquart P, Padilla C, Baize S, Leroy EM. Human fatal Zaire Ebola virus infection is associated with an aberrant innate immunity and with massive lymphocyte apoptosis. PLoS Negl Trop Dis 2010;4(10):e837.

[12]   Sordillo PP、Helson L。Curcumin suppression of cytokine release and cytokine storm.A potential therapy for patients with Ebola and other severe viral infections。In Vivo. 2015;29: 1-4。[12] Sordillo PP, Helson L. Curcumin suppression of cytokine release and cytokine storm. A potential therapy for patients with Ebola and other severe viral infections. In Vivo. 2015;29:1-4.

[13]   Mohamadzadeh M、Chen L、Schmaljohn AL。How Ebola and Marburg viruses battle the immune system。Nat Rev Immunol 2007;7:556-567。[13] Mohamadzadeh M, Chen L, Schmaljohn AL. How Ebola and Marburg viruses battle the immune system. Nat Rev Immunol 2007;7:556-567.

[14]   Tisonick JR、Korth MJ、Simmons CP、Farrar J、Martin TR、Katze MG。Into the eye of the cytokine storm。Microbiol Mol Biol Rev 2012;76:16-32。[14] Tisonick JR, Korth MJ, Simmons CP, Farrar J, Martin TR, Katze MG. Into the eye of the cytokine storm. Microbiol Mol Biol Rev 2012;76:16-32.

[15]   Teijaro JR、Walsh KB、Rice S、Rosen H、Oldstone MBA。Mapping the innate signaling cascade essential for cytokine storm during influenza virus infection。Proc Natl Acad Sci 2014;111:3799-3804。[15] Teijaro JR, Walsh KB, Rice S, Rosen H, Oldstone MBA. Mapping the innate signaling cascade essential for cytokine storm during influenza virus infection. Proc Natl Acad Sci 2014;111:3799-3804.

[16]   Goa R、Bhatnagar J、Blau DM、Greer P、Rollin DC、Denison AM、Deleon-Carnes M、Shieh WJ、Sambhara S、Tumpey TM、Patel M、Liu L、Paddock C、Drew C、Shu Y、Katz JM、Zaki SR。Cytokine and chemokine profiles in lung tissue from fatal cases of 2009 pandemic influenza A (H1N1): Role of the host immune response in pathogenesis。Am J Pathol 2013;183: 1258-1268。[16] Goa R, Bhatnagar J, Blau DM, Greer P, Rollin DC, Denison AM, Deleon-Carnes M, Shieh WJ, Sambhara S, Tumpey TM, Patel M, Liu L, Paddock C, Drew C, Shu Y, Katz JM, Zaki SR. Cytokine and chemokine profiles in lung tissue from fatal cases of 2009 pandemic influenza A (H1N1): Role of the host immune response in pathogenesis. Am J Pathol 2013;183:1258-1268.

[17]   Aikawa N。Cytokine storm in the pathogenesis of multiple organ dysfunction syndrome associated with surgical insults。Nihon Geka Gakkei Zasshi 1996;97:771-777。[17] Aikawa N. Cytokine storm in the pathogenesis of multiple organ dysfunction syndrome associated with surgical insults. Nihon Geka Gakkei Zasshi 1996;97:771-777.

[18]   Makhija R、Kingsnorth AN。Cytokine storm in acute pancreatitis。J Hepatobiliary Pancreat Surg 2002;9:401-410。[18] Makhija R, Kingsnorth AN. Cytokine storm in acute pancreatitis. J Hepatobiliary Pancreat Surg 2002;9:401-410.

[19]   Park WY、Goodman RB、Steinberg KP、Ruzinsky JT、Rudella F、Park DR、Pugin J、Skeritt SJ、Hudson LD及Martin TR。Cytokine balance in the lungs of patients with acute respiratory distress syndrome。Amer J Resp Crit Care Med 2001;164:1896-1903。[19] Park WY, Goodman RB, Steinberg KP, Ruzinsky JT, Rudella F, Park DR, Pugin J, Skeritt SJ, Hudson LD and Martin TR. Cytokine balance in the lungs of patients with acute respiratory distress syndrome. Amer J Resp Crit Care Med 2001;164:1896-1903.

[20]   Ferrara JL、Abhyankar S、Gilliland DG。Cytokine storm of graft-versus-host disease: a critical effector role for interleukin-1。Transplant Proc 1993;25:1216-1217。[20] Ferrara JL, Abhyankar S, Gilliland DG. Cytokine storm of graft-versus-host disease: a critical effector role for interleukin-1. Transplant Proc 1993;25:1216-1217.

[21]   Mohty M、Blaise D、Faucher C、Vey N、Bouabdallah R, Stoppa AM、Viret F、Gravis G、Olive D、Gaugler B。Inflammatory cytokines and acute graft-versus-host disease after reduced-intensity conditioning allogeneic stem cell transplantation。Blood 2005;106: 4407-4411。[21] Mohty M, Blaise D, Faucher C, Vey N, Bouabdallah R, Stoppa AM, Viret F, Gravis G, Olive D, Gaugler B. Inflammatory cytokines and acute graft-versus-host disease after reduced-intensity conditioning allogeneic stem cell transplantation. Blood 2005;106:4407-4411.

[22]   Kanaris C、Wynn RF、Konstantinidis A。G408(P) cytokine storm associated multi-organ failure with poor neurological outcome during rituximab administration in a child with relapsed acute lymphoblastic leukaemia and ebv related lymphoproliferative disease。Arch Dis Child 2015;100:A168。[22] Kanaris C, Wynn RF, Konstantinidis A. G408(P) cytokine storm associated multi-organ failure with poor neurological outcome during rituximab administration in a child with relapsed acute lymphoblastic leukaemia and ebv related lymphoproliferative disease. Arch Dis Child 2015;100:A168.

[23]   Bugelski PJ、Achuthanandam R、Capocasale RJ、Treacy G、Bournan-Thio E。Monoclonal antibody-induced cytokine-release syndrome。Expert Rev Clin Immunol 2009;5:499-521。[23] Bugelski PJ, Achuthanandam R, Capocasale RJ, Treacy G, Bournan-Thio E. Monoclonal antibody-induced cytokine-release syndrome. Expert Rev Clin Immunol 2009;5:499-521.

[24]   Swardfager W、Lanctot K、Rothenburg L、Wong A、Cappell J、Hermann N。A meta-analysis of cytokines in Alzheimer’s disease。Biol Psychiatry 2010;68:930-941。[24] Swardfager W, Lanctot K, Rothenburg L, Wong A, Cappell J, Hermann N. A meta-analysis of cytokines in Alzheimer’s disease. Biol Psychiatry 2010;68:930-941.

[25]   Nagatsu T、Mogi M、Ichinose H、Togari A。Cytokines in Parkinson’s disease。J Neural Transm Suppl 2000;58:143-51。[25] Nagatsu T, Mogi M, Ichinose H, Togari A. Cytokines in Parkinson’s disease. J Neural Transm Suppl 2000;58:143-51.

[26]   Xu N、Li X、Zhong Y。Inflammatory cytokines: Potential biomarkers of immunologic dysfunction in autism spectrum disorders。Mediat Inflamm,2015;531518。[26] Xu N, Li X, Zhong Y. Inflammatory cytokines: Potential biomarkers of immunologic dysfunction in autism spectrum disorders. Mediat Inflamm, 2015;531518.

[27]   Navikas V,Link H。Review: Cytokines and the pathogenesis of multiple sclerosis。J Neurosci Res 1996;45:322-333。[27] Navikas V, Link H. Review: Cytokines and the pathogenesis of multiple sclerosis. J Neurosci Res 1996;45:322-333.

[28]   Nyati KK、Prasad KN。Role of cytokines and toll-like receptors in the immunopathogenesis of Guillain-Barre syndrome。Mediat Inflamm,2014:758639。[28] Nyati KK, Prasad KN. Role of cytokines and toll-like receptors in the immunopathogenesis of Guillain-Barre syndrome. Mediat Inflamm, 2014:758639.

[29]   Lu MO、Zhu J:The role of cytokines in Guillain-Barre syndrome。J Neurol 2011;258: 533-548。[29] Lu MO, Zhu J: The role of cytokines in Guillain-Barre syndrome. J Neurol 2011;258:533-548.

[30]   Najjar S、Pearlman DM、Alper K、Najjar A、Devinsky O。Neuroinflammation and psychiatric illness。J Neuroinflamm 2013;10:43-66。[30] Najjar S, Pearlman DM, Alper K, Najjar A, Devinsky O. Neuroinflammation and psychiatric illness. J Neuroinflamm 2013;10:43-66.

[31]   Girgis RR、Kumar SS、Brown AS。The cytokine model of schizophrenia: Emerging therapeutic strategies。Biol Psychiatry 2014;75:292-299。[31] Girgis RR, Kumar SS, Brown AS. The cytokine model of schizophrenia: Emerging therapeutic strategies. Biol Psychiatry 2014;75:292-299.

[32]   Trysberg E、Carlsten H、Tarkowski A。Intrathecal cytokines in systemic lupus erythematosus with central nervous system involvement。Lupus 2000;9:498-503。[32] Trysberg E, Carlsten H, Tarkowski A. Intrathecal cytokines in systemic lupus erythematosus with central nervous system involvement. Lupus 2000;9:498-503.

[33]   Okamoto H、Kobayashi A、Yamanaka H。Cytokines and chemokines in neuropsychiatric syndromes of systemic lupus erythematosus。J Biomed Biotechnol 2010;268436:1-8。[33] Okamoto H, Kobayashi A, Yamanaka H. Cytokines and chemokines in neuropsychiatric syndromes of systemic lupus erythematosus. J Biomed Biotechnol 2010;268436:1-8.

[34]   Roozenbeck B,Maas AIR,Menon DK。Changing patterns in the epidemiology of traumatic brain injury。Nat Rev Neurol 2013;9:231-236。[34] Roozenbeck B, Maas AIR, Menon DK. Changing patterns in the epidemiology of traumatic brain injury. Nat Rev Neurol 2013;9:231-236.

[35]   Fork M、Bartels C、Ebert AD、Grubich C、Synowitz H、Wallesch CW。Neuropsychological sequelae of diffuse traumatic brain injury。Brain Inj 2005;19:101-108。[35] Fork M, Bartels C, Ebert AD, Grubich C, Synowitz H, Wallesch CW. Neuropsychological sequelae of diffuse traumatic brain injury. Brain Inj 2005;19:101-108.

[36]   Dardiotis E、Karanikas V、Paterakis K、Fountas K、Hadjigeorgiou GM。Traumatic brain injury and inflammation: emerging role of innate and adaptive immunity。在:Agrawal A編Brain Injury- Pathogenesis, Monitoring, Recovery and Management中。Croatia: In Tech,2012。[36] Dardiotis E, Karanikas V, Paterakis K, Fountas K, Hadjigeorgiou GM. Traumatic brain injury and inflammation: emerging role of innate and adaptive immunity. In: Agrawal A ed. Brain Injury- Pathogenesis, Monitoring, Recovery and Management. Croatia: In Tech, 2012.

[37]   Maier B、Laurer HL、Rose S、Buurman WA、Marzi I。Physiological levels of pro- and anti-inflammatory mediators in cerebrospinal fluid and plasma: a normative study。J Neurotrauma 2005;22:822-835。[37] Maier B, Laurer HL, Rose S, Buurman WA, Marzi I. Physiological levels of pro- and anti-inflammatory mediators in cerebrospinal fluid and plasma: a normative study. J Neurotrauma 2005;22:822-835.

[38]   Woodcock T、Morganti-Kossmann MC。The role of markers of inflammation in traumatic brain injury。Front Neurol 2013;4:1-18。[38] Woodcock T, Morganti-Kossmann MC. The role of markers of inflammation in traumatic brain injury. Front Neurol 2013;4:1-18.

[39]   Kossmann T、Hans V、Imhof HG、Trentz O、Morganti-Kossman MC。Interleukin-6 released in human cerebrospinal fluid following traumatic brain injury may trigger nerve growth factor production in astrocytes。Brain Res 1996;713:143-152。[39] Kossmann T, Hans V, Imhof HG, Trentz O, Morganti-Kossman MC. Interleukin-6 released in human cerebrospinal fluid following traumatic brain injury may trigger nerve growth factor production in astrocytes. Brain Res 1996;713:143-152.

[40]   Kossmann T、Hans VH、Imhof HG、Stocker R、Grob P、Trentz O、Morganti-Kossman C。Intrathecal and serum interleukin-6 and the acute-phase response in patients with severe traumatic brain injuries。Shock 1995;4(5):311-317。[40] Kossmann T, Hans VH, Imhof HG, Stocker R, Grob P, Trentz O, Morganti-Kossman C. Intrathecal and serum interleukin-6 and the acute-phase response in patients with severe traumatic brain injuries. Shock 1995;4(5):311-317.

[41]   Kushi H、Saito T、Makino K、Hayashi N。IL-8 is a key mediator of inflammation in severe traumatic brain injuries。Acta Neurochir Suppl 2003;86:347-350。[41] Kushi H, Saito T, Makino K, Hayashi N. IL-8 is a key mediator of inflammation in severe traumatic brain injuries. Acta Neurochir Suppl 2003;86:347-350.

[42]   Helmy A、Carpenter KLH、Menon DK、Pickard JD、Hutchinson PJA。The cytokine response to human traumatic brain injury: temporal profiles and evidence for cerebral parenchymal production。J Cereb Blood Flow Metab 2011;31:658-670。[42] Helmy A, Carpenter KLH, Menon DK, Pickard JD, Hutchinson PJA. The cytokine response to human traumatic brain injury: temporal profiles and evidence for cerebral parenchymal production. J Cereb Blood Flow Metab 2011;31:658-670.

[43]   Arand M、Melzner H、Kinzl L、Bruckner UB、Gebhard F。Early inflammatory mediator response following isolated traumatic brain injury and other major trauma in humans。Langenbecks Arch Surg 2001;386:241-248。[43] Arand M, Melzner H, Kinzl L, Bruckner UB, Gebhard F. Early inflammatory mediator response following isolated traumatic brain injury and other major trauma in humans. Langenbecks Arch Surg 2001;386:241-248.

[44]   Woiciechowsky C、Schoning B、Cobanov J、Lanksch WR、Volk HD、Docke WD。Early IL-6 plasma concentrations correlate with severity of brain injury and pneumonia in brain-injured patients。J Trauma 2002;52:339-345。[44] Woiciechowsky C, Schoning B, Cobanov J, Lanksch WR, Volk HD, Docke WD. Early IL-6 plasma concentrations correlate with severity of brain injury and pneumonia in brain-injured patients. J Trauma 2002;52:339-345.

[45]   Lenzlinger PM、Morganti-Kossmann MC、Laurer HL、McIntosh TK。The duality of the inflammatory response to traumatic brain injury。Mol Neurobiol 2001;24:169-181。[45] Lenzlinger PM, Morganti-Kossmann MC, Laurer HL, McIntosh TK. The duality of the inflammatory response to traumatic brain injury. Mol Neurobiol 2001;24:169-181.

[46]   Figiel I。Pro-inflammatory cytokine TNF-α as a neuroprotective agent in the brain。Acta Neurobiol Exp (Wars) 2008;68:526-534。[46] Figiel I. Pro-inflammatory cytokine TNF-α as a neuroprotective agent in the brain. Acta Neurobiol Exp (Wars) 2008;68:526-534.

[47]   Morganti-Kossmann MC、Lenzlinger PM、Hans V、Stahel P、Csuka E、Ammann E、Stocker R、Trentz O、Kossmann T。Production of cytokines following brain injury: beneficial and deleterious for the damaged tissue。Mol Psychiatry 1997;2:133-136。[47] Morganti-Kossmann MC, Lenzlinger PM, Hans V, Stahel P, Csuka E, Ammann E, Stocker R, Trentz O, Kossmann T. Production of cytokines following brain injury: beneficial and deleterious for the damaged tissue. Mol Psychiatry 1997;2:133-136.

[48]   Dinarello CA。Interleukin-1 in the pathogenesis and treatment of inflammatory diseases。Blood 2011;117:3720-3732。[48] Dinarello CA. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood 2011;117:3720-3732.

[49]   Weber A、Wasiliew P、Kracht M。Interleukin-1 (IL-1) pathway。Sci Signal 2010;3(105):cm1。[49] Weber A, Wasiliew P, Kracht M. Interleukin-1 (IL-1) pathway. Sci Signal 2010;3(105):cm1.

[50]   Voronov E、Shouval DS、Krelin Y、Cagnano E、Benharroch D、Iwakura Y、Dinarello CA、Apte RN。IL-1 is required for tumor invasiveness and angiogenesis。Proc Natl Acad Sci USA 2003;100:2645-2650。[50] Voronov E, Shouval DS, Krelin Y, Cagnano E, Benharroch D, Iwakura Y, Dinarello CA, Apte RN. IL-1 is required for tumor invasiveness and angiogenesis. Proc Natl Acad Sci USA 2003;100:2645-2650.

[51]   Sordillo PP、Helson L。Curcumin and cancer stem cells: curcumin has asymmetrical effects on cancer and normal stem cells。Anticancer Res 2015;35:599-614。[51] Sordillo PP, Helson L. Curcumin and cancer stem cells: curcumin has asymmetrical effects on cancer and normal stem cells. Anticancer Res 2015;35:599-614.

[52]   Singhal A、Baker AJ、Hare GM、Reinders FX、Schlichter LC、Moulton RJ。Association between cerebrospinal fluid interleukin-6 concentrations and outcome after severe human traumatic brain injury。J Neurotauma 2002;19:929-939。[52] Singhal A, Baker AJ, Hare GM, Reinders FX, Schlichter LC, Moulton RJ. Association between cerebrospinal fluid interleukin-6 concentrations and outcome after severe human traumatic brain injury. J Neurotauma 2002;19:929-939.

[53]   Frugier T、Morganti-Kossmann MC、O’Reilly D、McLean CA。In situ detection of inflammatory mediators in post mortem human brain tissue after traumatic injury。J Neurotrauma 2010;27:497-507。[53] Frugier T, Morganti-Kossmann MC, O’Reilly D, McLean CA. In situ detection of inflammatory mediators in post mortem human brain tissue after traumatic injury. J Neurotrauma 2010;27:497-507.

[54]   Shiozaki T、Hayakata T、Tasaki O、Hosotubo H、Fuijita K、Mouri T等人。Cerebrospinal fluid concentrations of anti-inflammatory mediators in early-phase severe traumatic brain injury。Shock 2005;23:406-410。[54] Shiozaki T, Hayakata T, Tasaki O, Hosotubo H, Fuijita K, Mouri T, et al. Cerebrospinal fluid concentrations of anti-inflammatory mediators in early-phase severe traumatic brain injury. Shock 2005;23:406-410.

[55]   Hayakata T、Shiozaki T、Tasaki O、Ikegawa H、Inoue Y、Toshiyuki F等人。Changes in CSF S-100B and cytokine concentrations in early-phase severe traumatic brain injury。Shock 2004;22:102-107。[55] Hayakata T, Shiozaki T, Tasaki O, Ikegawa H, Inoue Y, Toshiyuki F, et al. Changes in CSF S-100B and cytokine concentrations in early-phase severe traumatic brain injury. Shock 2004;22:102-107.

[56]   Kamm K、Vanderkolk W、Lawrence C、Jonker M、Davis AT。The effect of traumatic brain injury upon concentration and expression of interleukin-1beta and interleukin-10 in the rat。J Trauma 2006;60:152-157。[56] Kamm K, Vanderkolk W, Lawrence C, Jonker M, Davis AT. The effect of traumatic brain injury upon concentration and expression of interleukin-1beta and interleukin-10 in the rat. J Trauma 2006;60:152-157.

[57]   Shojo H、Kaunko Y、Mabuchi T、Kibayashi K、Adachi N、Borlongan CV。Genetic and histologic evidence implicates role of inflammation in traumatic brain injury-induced apoptosis in the cerebral cortex following moderate fluid percussion injury。Neuroscience 2010;171:1273-1282。[57] Shojo H, Kaunko Y, Mabuchi T, Kibayashi K, Adachi N, Borlongan CV. Genetic and histologic evidence implicates role of inflammation in traumatic brain injury-induced apoptosis in the cerebral cortex following moderate fluid percussion injury. Neuroscience 2010;171:1273-1282.

[58]   Maegele M、Saneriand S、Bouillon B、Schafer U、Trubel H、Riess P等人。Differential immunoresponses following experimental traumatic brain injury, bone fracture and 'two-hit' -combined neurotrauma。Inflamm Res 2007;56:318-323。[58] Maegele M, Saneriand S, Bouillon B, Schafer U, Trubel H, Riess P, et al. Differential immunoresponses following experimental traumatic brain injury, bone fracture and 'two-hit' -combined neurotrauma. Inflamm Res 2007;56:318-323.

[59]   Semple BD、Bye N、Rancan M、Ziebell JM、Morganti-Kossmann MC。Role of CCL2 (MCP-1) in traumatic brain injury (TBI): evidence from severe TBI patients and CCL2-/- mice。J Cereb Blood Flow Metab 2010;30:769-782。[59] Semple BD, Bye N, Rancan M, Ziebell JM, Morganti-Kossmann MC. Role of CCL2 (MCP-1) in traumatic brain injury (TBI): evidence from severe TBI patients and CCL2-/- mice. J Cereb Blood Flow Metab 2010;30:769-782.

[60]   Lu K、Wang YW、Wo YY、Yang YL。Extracellular signal-regulated kinase-mediated IL-1-induced cortical neuron damage during traumatic brain injury。Neurosci Lett 2005;386:40-45。[60] Lu K, Wang YW, Wo YY, Yang YL. Extracellular signal-regulated kinase-mediated IL-1-induced cortical neuron damage during traumatic brain injury. Neurosci Lett 2005;386:40-45.

[61]   Patel HC、Boutin H、Allan SM:Interleukin-1 in the brain. Mechanisms of action in acute neurodegeneration。Ann NY Acad Sci 2003;992:39-47。[61] Patel HC, Boutin H, Allan SM: Interleukin-1 in the brain. Mechanisms of action in acute neurodegeneration. Ann NY Acad Sci 2003;992:39-47.

[62]   Yang GY、Liu XH、Kadoya C、Zhao YJ、Mao Y、Davidson BL等人。Attenuation of ischemic inflammatory response in mouse brain using an adenoviral vector to induce overexpression of interleukin-1 receptor antagonist。J Cereb Blood Flow Metab 1998;18:840-847。[62] Yang GY, Liu XH, Kadoya C, Zhao YJ, Mao Y, Davidson BL, et al. Attenuation of ischemic inflammatory response in mouse brain using an adenoviral vector to induce overexpression of interleukin-1 receptor antagonist. J Cereb Blood Flow Metab 1998;18:840-847.

[63]   Jones NC、Prior MJ、Burden-Teh E、Marsden CA、Morris PG、Murphy S。Antagonism of the interleukin-1 receptor following traumatic brain injury in the mouse reduces the number of nitric oxide synthase-2-positive cells and improves anatomical and functional outcomes。Eur J Neurosci 2005;22:72-78。[63] Jones NC, Prior MJ, Burden-Teh E, Marsden CA, Morris PG, Murphy S. Antagonism of the interleukin-1 receptor following traumatic brain injury in the mouse reduces the number of nitric oxide synthase-2-positive cells and improves anatomical and functional outcomes. Eur J Neurosci 2005;22:72-78.

[64]   Sanderson KL、Raghupathi R、Saatman KE、Martin D、Miller G、McIntosh TK。Interleukin-1 receptor antagonist attenuates regional neuronal cell death and cognitive dysfunction after experimental brain injury。J Cereb Blood Flow Metab 1999;19:1118-1125。[64] Sanderson KL, Raghupathi R, Saatman KE, Martin D, Miller G, McIntosh TK. Interleukin-1 receptor antagonist attenuates regional neuronal cell death and cognitive dysfunction after experimental brain injury. J Cereb Blood Flow Metab 1999;19:1118-1125.

[65]   Hasturk AE、Yilmaz ER、Turkoglu E、Kertmen H、Horasanli B、Hayirli N、Erguder IB、Evirgen O。Therapeutic evaluation of interleukin 1-beta antagonist Anakinra against traumatic brain injury in rats。Ulus Travma Acil Cerrahi Derg 2015;21:1-8。[65] Hasturk AE, Yilmaz ER, Turkoglu E, Kertmen H, Horasanli B, Hayirli N, Erguder IB, Evirgen O. Therapeutic evaluation of interleukin 1-beta antagonist Anakinra against traumatic brain injury in rats. Ulus Travma Acil Cerrahi Derg 2015;21:1-8.

[66]   Relton JK、Rothwell NJ。Interleukin-1 receptor antagonist inhibits ischaemic and excitotoxic neuronal damage in the rat。Brain Res Bull 1992;29:243-246。[66] Relton JK, Rothwell NJ. Interleukin-1 receptor antagonist inhibits ischaemic and excitotoxic neuronal damage in the rat. Brain Res Bull 1992;29:243-246.

[67]   Toulmond S、Rochwell NJ。Interleukin-1 receptor antagonist inhibits neuronal damage caused by fluid percussion injury in the rat。Brain Res 1995;671:261-266。[67] Toulmond S, Rochwell NJ. Interleukin-1 receptor antagonist inhibits neuronal damage caused by fluid percussion injury in the rat. Brain Res 1995;671:261-266.

[68]   Basu A、Krady JK、O’Malley M、Styren SD、Dekosky ST、Levison SW。The type 1 interleukin-1 receptor is essential for the efficient activation of microglia and the induction of multiple pro-inflammatory mediators in response to brain injury。J Neurosci 2002;22:6071-6082。[68] Basu A, Krady JK, O’Malley M, Styren SD, Dekosky ST, Levison SW. The type 1 interleukin-1 receptor is essential for the efficient activation of microglia and the induction of multiple pro-inflammatory mediators in response to brain injury. J Neurosci 2002;22:6071-6082.

[69]   Tehranian R、Andell-Jonsson S、Beni SM、Yatsiv I、Shohami E、Bartfai T、Lundkvist J、Iverfeldt K。Improved recovery and delayed cytokine induction after closed head injury in mice with central overexpression of the secreted isoform of the interleukin-1 receptor antagonist。J Neurotrauma 2002;19:939-951。[69] Tehranian R, Andell-Jonsson S, Beni SM, Yatsiv I, Shohami E, Bartfai T, Lundkvist J, Iverfeldt K. Improved recovery and delayed cytokine induction after closed head injury in mice with central overexpression of the secreted isoform of the interleukin-1 receptor antagonist. J Neurotrauma 2002;19:939-951.

[70]   Larsen CM、Faulenbach M、Vaag A、Valund A、Ehses JA、Seifiri B、Mandrup-Poulsen T、Donath MY。Interleukin-1-receptor antagonist in type 2 diabetes mellitus。N Engl J Med 2007;356:1517-1526。[70] Larsen CM, Faulenbach M, Vaag A, Valund A, Ehses JA, Seifiri B, Mandrup-Poulsen T, Donath MY. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med 2007;356:1517-1526.

[71]   Van Tasell BW、Toldo S、Mezzaroma E、Abbate A。Contemporary reviews in cardiovascular medicine: targeting interleukin-1 in heart disease。Circulation 2013;128:1910-1923。[71] Van Tasell BW, Toldo S, Mezzaroma E, Abbate A. Contemporary reviews in cardiovascular medicine: targeting interleukin-1 in heart disease. Circulation 2013;128:1910-1923.

[72]   Lust JA、Lacy MQ、Zeldenrust SR等人。Induction of a chronic disease state in patients with smoldering or indolent multiple myeloma by targeting interleukin-1 beta induced interleukin-6 production and the myeloma proliferative component Mayo Clin Proc 2009;84:114-122。[72] Lust JA, Lacy MQ, Zeldenrust SR, et al. Induction of a chronic disease state in patients with smoldering or indolent multiple myeloma by targeting interleukin-1 beta induced interleukin-6 production and the myeloma proliferative component Mayo Clin Proc 2009;84:114-122.

[73]   Eichacker PQ、Parent C、Kalil A等人。Risk and the efficacy of anti-inflammatory agents: Retrospective and confirmatory studies of sepsis。Am J Respir Crit Care Med 2002;166:1197-1205。[73] Eichacker PQ, Parent C, Kalil A, et al. Risk and the efficacy of anti-inflammatory agents: Retrospective and confirmatory studies of sepsis. Am J Respir Crit Care Med 2002;166:1197-1205.

[74]   Emsley HC、Smith CJ、Georgiou RF等人。A randomized phase II study of interleukin-1 receptor antagonist in acute stroke patients。J Neurol Neurosurg Psychiatry 2005;76:1366-1372。[74] Emsley HC, Smith CJ, Georgiou RF, et al. A randomized phase II study of interleukin-1 receptor antagonist in acute stroke patients. J Neurol Neurosurg Psychiatry 2005;76:1366-1372.

[75]   Helmy A、Guilfoyle MR、Carpenter KLH、Pickard JD、Menon DK、Hutchinson PJ。Recombinant human interleukin-1 receptor antagonist in severe traumatic brain injury: a phase II randomized control trial。J Cereb Blood Flow Metab 2014;34:845-851。[75] Helmy A, Guilfoyle MR, Carpenter KLH, Pickard JD, Menon DK, Hutchinson PJ. Recombinant human interleukin-1 receptor antagonist in severe traumatic brain injury: a phase II randomized control trial. J Cereb Blood Flow Metab 2014;34:845-851.

[76]   Genovese MC、Cohen S、Moreland L、Lium D、Robbins S、Newmark R、Bekker P。Combination therapy with etanercept and anakinra in the treatment of patients with rheumatoid arthritis who have been treated unsuccessfully with methotrexate。Arthritis Rheum 2014;50:1412-1419。[76] Genovese MC, Cohen S, Moreland L, Lium D, Robbins S, Newmark R, Bekker P. Combination therapy with etanercept and anakinra in the treatment of patients with rheumatoid arthritis who have been treated unsuccessfully with methotrexate. Arthritis Rheum 2014;50:1412-1419.

[77]   Helson L、Green S、Carswell E、Old LJ。Effect of tumor necrosis factor on cultured human melanoma cells。Nature 1975;258:731-732。[77] Helson L, Green S, Carswell E, Old LJ. Effect of tumor necrosis factor on cultured human melanoma cells. Nature 1975;258:731-732.

[78]   Mirza S、Hossain M、Mathews C、Martinez P、Pino P、Gay JL、Rentfro A、McCormick JB、Fisher-Hoch SP。Type-2 diabetes is associated with elevated levels of TNF-alpha, IL-6 and adiponectin and low levels of leptin in a population of Mexican Americans: a cross-sectional study。Cytokine 2012;57:136-142。[78] Mirza S, Hossain M, Mathews C, Martinez P, Pino P, Gay JL, Rentfro A, McCormick JB, Fisher-Hoch SP. Type-2 diabetes is associated with elevated levels of TNF-alpha, IL-6 and adiponectin and low levels of leptin in a population of Mexican Americans: a cross-sectional study. Cytokine 2012;57:136-142.

[79]   Ferrari R。The role of TNF in cardiovascular disease。Pharmacol Res 1999;40:97-105。[79] Ferrari R. The role of TNF in cardiovascular disease. Pharmacol Res 1999;40:97-105.

[80]   Nielsen OH、Ainsworth MA。Tumor necrosis factor inhibitors for inflammatory bowel disease。N Engl J Med 2013;360:754-762。[80] Nielsen OH, Ainsworth MA. Tumor necrosis factor inhibitors for inflammatory bowel disease. N Engl J Med 2013;360:754-762.

[81]   Swardfager W、Lanctot K、Rothenburg L、Wong A、Cappell J、Herrmann N。A meta-analysis of cytokines in Alzheimer’s disease。Biol Psychiatry 2010;68:930-941。[81] Swardfager W, Lanctot K, Rothenburg L, Wong A, Cappell J, Herrmann N. A meta-analysis of cytokines in Alzheimer’s disease. Biol Psychiatry 2010;68:930-941.

[82]   Knoblach SM、Fan L、Faden AI。Early neuronal expression of tumor necrosis factor-alpha after experimental brain injury contributes to neurological impairment。J Neuroimmunol 1999;95:115-125。[82] Knoblach SM, Fan L, Faden AI. Early neuronal expression of tumor necrosis factor-alpha after experimental brain injury contributes to neurological impairment. J Neuroimmunol 1999;95:115-125.

[83]   Chio CC、Lin JW、Chang MW、Wang CC、Kuo JR、Yang CZ、Chang CP。Therapeutic evaluation of etanercept in a model of traumatic brain injury。J Neurochem 2010;115:921-929。[83] Chio CC, Lin JW, Chang MW, Wang CC, Kuo JR, Yang CZ, Chang CP. Therapeutic evaluation of etanercept in a model of traumatic brain injury. J Neurochem 2010;115:921-929.

[84]   Chio CC、Chang CH、Wang CC、Cheong CU、Chao CM、Cheng BC、Yang CZ、Chang CP。Etanercept attenuates traumatic brain injury in rats by reducing early microglial expression of tumor necrosis factor-α。BMC Neurosci 2013;14:33。[84] Chio CC, Chang CH, Wang CC, Cheong CU, Chao CM, Cheng BC, Yang CZ, Chang CP. Etanercept attenuates traumatic brain injury in rats by reducing early microglial expression of tumor necrosis factor-α. BMC Neurosci 2013;14:33.

[85]   Ekici MA、Uysal O、Cikriklar HI、Ozbek Z、Turgut-Cosan D、Baydemir C、Kazanci B、Hafizoglu D。Effect of etanercept and lithium chloride on preventing secondary tissue damage in rats with experimental diffuse severe brain injury。Eur Rev Med Pharmacol Sci 2014;18:10-27。[85] Ekici MA, Uysal O, Cikriklar HI, Ozbek Z, Turgut-Cosan D, Baydemir C, Kazanci B, Hafizoglu D. Effect of etanercept and lithium chloride on preventing secondary tissue damage in rats with experimental diffuse severe brain injury. Eur Rev Med Pharmacol Sci 2014;18:10-27.

[86]   Cheong CU、Chang CP、Chao CM、Cheng BC、Yang CZ、Chio CC。Etanercept attenuates traumatic brain injury in rats by reducing brain TNF-α contents and by stimulating newly formed neurogenesis。Mediat Inflamm 2013;620837。[86] Cheong CU, Chang CP, Chao CM, Cheng BC, Yang CZ, Chio CC. Etanercept attenuates traumatic brain injury in rats by reducing brain TNF-α contents and by stimulating newly formed neurogenesis. Mediat Inflamm 2013;620837.

[87]   Wang L、Wei FX、Cen JS、Ping SN、Li ZQ、Chen NN、Cui SB、Wan Y、Liu SY。Early administration of tumor necrosis factor-alpha antagonist promotes survival of transplanted neural stem cells and axon myelination after spinal cord injury in rats。Brain Res 2014;1575:87-100。[87] Wang L, Wei FX, Cen JS, Ping SN, Li ZQ, Chen NN, Cui SB, Wan Y, Liu SY. Early administration of tumor necrosis factor-alpha antagonist promotes survival of transplanted neural stem cells and axon myelination after spinal cord injury in rats. Brain Res 2014;1575:87-100.

[88]   Chen KB、Uchida K、Nakajima H、Yayama T、Hirai T、Watanabe S、Guerrero AR、Kobayashi S、Ma WY、Liu SY、Baba H。Tumor necrosis factor-α antagonist reduces apoptosis of neurons and oligodendroglia in rat spinal cord injury。Spine 2011;36:1350-1358。[88] Chen KB, Uchida K, Nakajima H, Yayama T, Hirai T, Watanabe S, Guerrero AR, Kobayashi S, Ma WY, Liu SY, Baba H. Tumor necrosis factor-α antagonist reduces apoptosis of neurons and oligodendroglia in rat spinal cord injury. Spine 2011;36:1350-1358.

[89]   Shohami E、Bass R、Wallach D、Yamin A、Gallily R。Inhibition of tumor necrosis factor alpha (TNF alpha) activity in rat brain is associated with cerebroprotection after closed head injury。J Cereb Blood Flow Metab 1996;16:378-384。[89] Shohami E, Bass R, Wallach D, Yamin A, Gallily R. Inhibition of tumor necrosis factor alpha (TNF alpha) activity in rat brain is associated with cerebroprotection after closed head injury. J Cereb Blood Flow Metab 1996;16:378-384.

[90]   Detrait ER、Danis B、Lamberty Y、Foerch P。Peripheral administration of an anti-TNF-alpha receptor fusion protein counteracts the amyloid induced elevation of hippocampal TNF-alpha levels and memory deficits in mice。Neurochem Int 2014;72:10-13。[90] Detrait ER, Danis B, Lamberty Y, Foerch P. Peripheral administration of an anti-TNF-alpha receptor fusion protein counteracts the amyloid induced elevation of hippocampal TNF-alpha levels and memory deficits in mice. Neurochem Int 2014;72:10-13.

[91]   Marchand F、Tsantoulas C、Singh D、Grist J、Clark AK、Bradbury EJ、McMahon SB。Effects of etanercept and minoclycline in a rat model of spinal cord injury。Eur J Pain 2009;13:673-681。[91] Marchand F, Tsantoulas C, Singh D, Grist J, Clark AK, Bradbury EJ, McMahon SB. Effects of etanercept and minoclycline in a rat model of spinal cord injury. Eur J Pain 2009;13:673-681.

[92]   Tuttolomondo A、Pecoraro R、Pinto A。Studies of selective TNF inhibitors in the treatment of brain injury from stroke and trauma: a review of the evidence。Drug Des, Devel Ther 2014;8:2221-2239。[92] Tuttolomondo A, Pecoraro R, Pinto A. Studies of selective TNF inhibitors in the treatment of brain injury from stroke and trauma: a review of the evidence. Drug Des, Devel Ther 2014;8:2221-2239.

[93]   Tobinick E、Kim NM、Reyzin G、Rodriguez-Romanacce H、DePuy V。Selective TNF inhibition for chronic stroke and traumatic brain injury: an observational study involving 629 consecutive patients treated with perispinal etanercept。CNS Drugs 2012;26:1051-1070。[93] Tobinick E, Kim NM, Reyzin G, Rodriguez-Romanacce H, DePuy V. Selective TNF inhibition for chronic stroke and traumatic brain injury: an observational study involving 629 consecutive patients treated with perispinal etanercept. CNS Drugs 2012;26:1051-1070.

[94]   Morganti-Kossmann MC、Rancan M、Stahel PF、Kossman T。Inflammatory response in acute traumatic brain injury: a double-edged sword。Curr Opin Crit Care 2012;8:101-105。[94] Morganti-Kossmann MC, Rancan M, Stahel PF, Kossman T. Inflammatory response in acute traumatic brain injury: a double-edged sword. Curr Opin Crit Care 2012;8:101-105.

[95]   Erta M、Quintana A、Hidalgo J。Interleukin-6, a major cytokine in the central nervous system。Int J Biol Sci 2012;8:1254-1266。[95] Erta M, Quintana A, Hidalgo J. Interleukin-6, a major cytokine in the central nervous system. Int J Biol Sci 2012;8:1254-1266.

[96]   Ley EJ、Clond MA、Singer MB、Shouhed D及Salim A。Il6 deficiency affects function after traumatic brain injury。J Surg Res 2011;170:253-256。[96] Ley EJ, Clond MA, Singer MB, Shouhed D, and Salim A. Il6 deficiency affects function after traumatic brain injury. J Surg Res 2011;170:253-256.

[97]   Winter CD、Pringle AK、Clough GF、Church MK。Raised parenchymal interleukin-6 levels correlate with improved outcome after traumatic brain injury。Brain 2004;127: 315-320。[97] Winter CD, Pringle AK, Clough GF, Church MK. Raised parenchymal interleukin-6 levels correlate with improved outcome after traumatic brain injury. Brain 2004;127:315-320.

[98]   Conroy SM、Nguyen V、Quina LA、Blakely-Gonzales P、Ur C、Netzeband JG、Prieto AL、Gruol DL。Interleukin-6 produces neuronal loss in developing cerebellar granule neuron cultures。J Neuroimmunol 2004;155:43-54。[98] Conroy SM, Nguyen V, Quina LA, Blakely-Gonzales P, Ur C, Netzeband JG, Prieto AL, Gruol DL. Interleukin-6 produces neuronal loss in developing cerebellar granule neuron cultures. J Neuroimmunol 2004;155:43-54.

[99]   Kalueff AV、Lehtimaki KA、Ylinen A、Honkaniemi J、Peltola J。Intranasal administration of human IL-6 increases the severity of chemically induced seizures in rats。Neurosci Lett 2004;365:106-110。[99] Kalueff AV, Lehtimaki KA, Ylinen A, Honkaniemi J, Peltola J. Intranasal administration of human IL-6 increases the severity of chemically induced seizures in rats. Neurosci Lett 2004;365:106-110.

[100] Samland H、Huitron-Resendiz S、Masliah E、Criado J、Henriksen SJ、Campbell IL。Profound increase in sensitivity to glutamatergic-but not cholinergic agonist-induced seizures in transgenic mice with astrocyte production of IL-6。J Neurosci Res 2004;73:176-187。[100] Samland H, Huitron-Resendiz S, Masliah E, Criado J, Henriksen SJ, Campbell IL. Profound increase in sensitivity to glutamatergic-but not cholinergic agonist-induced seizures in transgenic mice with astrocyte production of IL-6. J Neurosci Res 2004;73:176-187.

[101] Yang SH、Gangidine M、Pritts TA、Goodman MD、Lentsch AB。Interleukin 6 mediates neuroinflammation and motor coordination deficits after mild traumatic brain injury and brief hypoxia in mice。Shock 2013;40:471-475。[101] Yang SH, Gangidine M, Pritts TA, Goodman MD, Lentsch AB. Interleukin 6 mediates neuroinflammation and motor coordination deficits after mild traumatic brain injury and brief hypoxia in mice. Shock 2013;40:471-475.

[102] Okada S、Nakamura M、Mikami Y、Shimazaki T、Mihara M、Ohsugi Y、Iwamoto Y、Yoshizaki K、Kishimoto T、Toyama Y、Okano H。Blockade of interleukin-6 receptor suppresses reactive astrogliosis and ameliorates functional recovery in experimental spinal cord injury。J Neurosci Res 2004;76:265-276。[102] Okada S, Nakamura M, Mikami Y, Shimazaki T, Mihara M, Ohsugi Y, Iwamoto Y, Yoshizaki K, Kishimoto T, Toyama Y, Okano H. Blockade of interleukin-6 receptor suppresses reactive astrogliosis and ameliorates functional recovery in experimental spinal cord injury. J Neurosci Res 2004;76:265-276.

[103] Nakamura M、Okada S、Toyama Y、Okano H。Role of IL-6 in spinal cord injury in a mouse model。Clin Rev Allergy Immunol 2005;28:197-204。[103] Nakamura M, Okada S, Toyama Y, Okano H. Role of IL-6 in spinal cord injury in a mouse model. Clin Rev Allergy Immunol 2005;28:197-204.

[104] Crack PJ、Zhang M、Morganti-Kossmann MC、Morris AJ、Wojciak JM、Fleming JK、Karve I、Wright D、Sashindranath M、Goldshmit Y、Conquest A、Daglas M、Johnston LA、Medcalf RL、Sabbadini RA、Pebay A。Anti-lysophosphatidic acid antibodies improve traumatic brain injury outcomes。J Neuroinflamm 2014;11:37。[104] Crack PJ, Zhang M, Morganti-Kossmann MC, Morris AJ, Wojciak JM, Fleming JK, Karve I, Wright D, Sashindranath M, Goldshmit Y, Conquest A, Daglas M, Johnston LA, Medcalf RL, Sabbadini RA, Pebay A. Anti-lysophosphatidic acid antibodies improve traumatic brain injury outcomes. J Neuroinflamm 2014;11:37.

[105] Suzuki S、Tanaka K、Suzuki N。Ambivalent aspects of interleukin-6 in cerebral ischemia: Inflammatory versus neurotrophic aspects。J Cereb Blood Flow Metab 2009;29:464-479。[105] Suzuki S, Tanaka K, Suzuki N. Ambivalent aspects of interleukin-6 in cerebral ischemia: Inflammatory versus neurotrophic aspects. J Cereb Blood Flow Metab 2009;29:464-479.

[106] Kaneko A。Tocilizumab in rheumatoid arthritis: efficacy, safety and its place in therapy。Ther Adv Chronic Dis 2013;4:15-21。[106] Kaneko A. Tocilizumab in rheumatoid arthritis: efficacy, safety and its place in therapy. Ther Adv Chronic Dis 2013;4:15-21.

[107] Opal SM、DePalo VA。Anti-inflammatory cytokines。Chest 2000;117:1162-1172。[107] Opal SM, DePalo VA. Anti-inflammatory cytokines. Chest 2000;117:1162-1172.

[108] Csuka E、Morganti-Kossmann MC、Lenzlinger PM、Joller H、Trentz O、Kossmann T。IL-10 levels in cerebrospinal fluid and serum of patients with severe traumatic brain injury: Relationship to IL-6, TNF-alpha, TGF-beta1 and blood-brain barrier function。J Neuroimmunol 1999;101:211-221。[108] Csuka E, Morganti-Kossmann MC, Lenzlinger PM, Joller H, Trentz O, Kossmann T. IL-10 levels in cerebrospinal fluid and serum of patients with severe traumatic brain injury: Relationship to IL-6, TNF-alpha, TGF-beta1 and blood-brain barrier function. J Neuroimmunol 1999;101:211-221.

[109] Kumar RG、Boles JA、Wagner AK。Chronic inflammation after severe traumatic brain injury: characterization and associations with outcome at 6 and 12 months post injury。J Head Trauma Rehabil 2014。[109] Kumar RG, Boles JA, Wagner AK. Chronic inflammation after severe traumatic brain injury: characterization and associations with outcome at 6 and 12 months post injury. J Head Trauma Rehabil 2014.

[110]  Bachis A, Colangelo AM, Vicini S, Doe PP, De Bernardi MA, Brooker G, Mocchetti I. Interleukin-10 prevents glutamate-mediated cerebellar granule cell death by blocking caspase-3-like activity. J Neurosci 2001;21:3104-3112.[110] Bachis A, Colangelo AM, Vicini S, Doe PP, De Bernardi MA, Brooker G, Mocchetti I. Interleukin-10 prevents glutamate-mediated cerebellar granule cell death by blocking caspase-3-like activity. J Neurosci 2001;21 :3104-3112.

[111]  Knoblach SM、Faden AI。Interleukin-10 improves outcome and alters proinflammatory cytokine expression after experimental traumatic brain injury。Exp Neurol 1998;153:143-151。[111] Knoblach SM, Faden AI. Interleukin-10 improves outcome and alters proinflammatory cytokine expression after experimental traumatic brain injury. Exp Neurol 1998;153:143-151.

[112]  Chen X、Duan XS、Xu LJ、Zhao JJ、She ZF、Chen WW、Zheng ZJ、Jiang GD。Interleukin-10 mediates the neuroprotection of hyperaric oxygen therapy against traumatic brain injury in mice。Neuroscience 2014;266:235-243。[112] Chen X, Duan XS, Xu LJ, Zhao JJ, She ZF, Chen WW, Zheng ZJ, Jiang GD. Interleukin-10 mediates the neuroprotection of hyperaric oxygen therapy against traumatic brain injury in mice. Neuroscience 2014;266:235-243.

[113]  Bethea JR、Nagashima H、Acosta MC、Briceno C、Gomez F、Marcillo AE、Loor K、Green J、Dietrich WD。Systemically administered interleukin-10 reduces tumor necrosis factor-alpha production and significantly improves functional recovery following traumatic spinal cord injury in rats。J Neurotrauma 1999;16:851-863。[113] Bethea JR, Nagashima H, Acosta MC, Briceno C, Gomez F, Marcillo AE, Loor K, Green J, Dietrich WD. Systemically administered interleukin-10 reduces tumor necrosis factor-alpha production and significantly improves functional recovery following traumatic spinal cord injury in rats. J Neurotrauma 1999;16:851-863.

[114]  Brewer KL、Bethea JR、Yezierski RP。Neuroprotective effects of interleukin-10 following excitotoxic spinal cord injury。Exp Neurol 1999;159:484-493。[114] Brewer KL, Bethea JR, Yezierski RP. Neuroprotective effects of interleukin-10 following excitotoxic spinal cord injury. Exp Neurol 1999;159:484-493.

[115]  Abraham KE、McMillen D、Brewer KL。The effects of endogenous interleukin-10 on gray matter damage and the development of pain behaviors following excitotoxic spinal cord injury in the mouse。Neuroscience 2004;124:945-952。[115] Abraham KE, McMillen D, Brewer KL. The effects of endogenous interleukin-10 on gray matter damage and the development of pain behaviors following excitotoxic spinal cord injury in the mouse. Neuroscience 2004;124:945-952.

[116]  Marlow GJ、van Gent D、Ferguson LR。Why interleukin-10 supplementation does not work in Crohn’s disease patients。World J Gastroenterol 2013;19:3931-3941。[116] Marlow GJ, van Gent D, Ferguson LR. Why interleukin-10 supplementation does not work in Crohn’s disease patients. World J Gastroenterol 2013;19:3931-3941.

[117]  Roof RL、Hoffman SW、Stein DG。Progesterone protects against lipid peroxidation following traumatic brain injury in rats。Mol Chem Neuropathol 1997;31:1-11。[117] Roof RL, Hoffman SW, Stein DG. Progesterone protects against lipid peroxidation following traumatic brain injury in rats. Mol Chem Neuropathol 1997;31:1-11.

[118]  Sayeed I、Stein DG。Progesterone as a neuroprotective factor in traumatic and ischemic brain injury。Prog Brain Res 2009;175:219-237。[118] Sayeed I, Stein DG. Progesterone as a neuroprotective factor in traumatic and ischemic brain injury. Prog Brain Res 2009;175:219-237.

[119]  O’Connor CA、Cernak I、Johnson F等人。Effects of progesterone on neurologic and morphologic outcome following diffuse traumatic brain injury in rats、Exp Neurol 2007;205:145-153、[119] O'Connor CA, Cernak I, Johnson F et al. Effects of progesterone on neurologic and morphologic outcome following diffuse traumatic brain injury in rats, Exp Neurol 2007;205:145-153,

[120] Robertson CL、Puskar A、Hoffman GE等人。Physiologic progesterone reduces mitochondrial dysfunction and hippocampal cell loss after traumatic brain injury in female rats。Exp Neurol 2006;197:235-243。[120] Robertson CL, Puskar A, Hoffman GE, et al. Physiologic progesterone reduces mitochondrial dysfunction and hippocampal cell loss after traumatic brain injury in female rats. Exp Neurol 2006;197:235-243.

[121] De Nicola AF、Labombarda F、Gonzalez Deniselle MC、Gonzalez SL、Garay L、Meyer M、Gargiulo G、Guennoun R、Schmacher M。Progesterone neuroprotection in traumatic CNS injury and motoneuron degeneration。Front Neuroendocrinol 2009;30:173-187。[121] De Nicola AF, Labombarda F, Gonzalez Deniselle MC, Gonzalez SL, Garay L, Meyer M, Gargiulo G, Guennoun R, Schmacher M. Progesterone neuroprotection in traumatic CNS injury and motoneuron degeneration. Front Neuroendocrinol 2009;30:173-187.

[122] Cutler SM、Cekic M、Miller DM、Wali B、VanLandingham JW、Stein DG。Progesterone improves acute recovery after traumatic brain injury in the aged rat。J Neurotrauma 2007;24:1475-1486。[122] Cutler SM, Cekic M, Miller DM, Wali B, VanLandingham JW, Stein DG. Progesterone improves acute recovery after traumatic brain injury in the aged rat. J Neurotrauma 2007;24:1475-1486.

[123] He J、Evans CO、Hoffman SW、Oyesiku NM、Stein DG。Progesterone and allopregnanolone reduce inflammatory cytokines after traumatic brain injury。Exp Neurol 2004;189:404-412。[123] He J, Evans CO, Hoffman SW, Oyesiku NM, Stein DG. Progesterone and allopregnanolone reduce inflammatory cytokines after traumatic brain injury. Exp Neurol 2004;189:404-412.

[124] Chen G、Shi J、Jin W、Wang L、Xie W、Sun J、Hang C。Progesterone administration modulates TLRs/NF-kappaB signaling pathway in rat brain after cortical contusion。Ann Clin Lab Sci 2008;38:65-74。[124] Chen G, Shi J, Jin W, Wang L, Xie W, Sun J, Hang C. Progesterone administration modulates TLRs/NF-kappaB signaling pathway in rat brain after cortical contusion. Ann Clin Lab Sci 2008;38:65-74.

[125] Pan DS、Liu WG、Yang XF、Cao F。Inhibitory effect of progesterone on inflammatory factors after experimental traumatic brain injury。Biomed Environ Sci 2007;20:432-438。[125] Pan DS, Liu WG, Yang XF, Cao F. Inhibitory effect of progesterone on inflammatory factors after experimental traumatic brain injury. Biomed Environ Sci 2007;20:432-438.

[126] Xiao G、Wei J、Yan W、Wang W、Lu Z。Improved outcomes from the administration of progesterone for patients with acute severe traumatic brain injury: a randomized controlled trial。Crit Care 2008;12:R61。[126] Xiao G, Wei J, Yan W, Wang W, Lu Z. Improved outcomes from the administration of progesterone for patients with acute severe traumatic brain injury: a randomized controlled trial. Crit Care 2008;12:R61.

[127] Robertson CL、Fidan E、Stanley RM、Noje C、Bayir H。Progesterone for neuroprotection in pediatric traumatic brain injury。Pediatr Crit Care Med 2015;16:236-244。[127] Robertson CL, Fidan E, Stanley RM, Noje C, Bayir H. Progesterone for neuroprotection in pediatric traumatic brain injury. Pediatr Crit Care Med 2015;16:236-244.

[128] Skolnick BE、Maas AI、Narayan RK、van der Hoop RG、MacAllister T、Ward JD、Nelson NR、Stocchetti N。A clinical trial of progesterone for severe traumatic brain injury。N Engl J Med 2014;371:2467-2476。[128] Skolnick BE, Maas AI, Narayan RK, van der Hoop RG, MacAllister T, Ward JD, Nelson NR, Stocchetti N. A clinical trial of progesterone for severe traumatic brain injury. N Engl J Med 2014;371:2467-2476.

[129] Chase A。Traumatic brain injury.No benefit of progesterone therapy in patients with TBI。Nat Rev 2015;11:65。[129] Chase A. Traumatic brain injury. No benefit of progesterone therapy in patients with TBI. Nat Rev 2015;11:65.

[130] Chen SF、Hung TH、Chen CC、Lin KH、Huang YN、Tsai HC、Wang JY。Lovastatin improves histological and functional outcomes and reduces inflammation after experimental traumatic brain injury。Life Sci 2007;81:288-298。[130] Chen SF, Hung TH, Chen CC, Lin KH, Huang YN, Tsai HC, Wang JY. Lovastatin improves histological and functional outcomes and reduces inflammation after experimental traumatic brain injury. Life Sci 2007;81:288-298.

[131] Li B、Mahmood A、Lu D、Wu H、Xiong Y、Qu C、Chopp M。Simvastatin attenuates microglia, astrocyte activation and decreases IL-1β level following traumatic brain injury。Neurosurgery 2009;65:179-186。[131] Li B, Mahmood A, Lu D, Wu H, Xiong Y, Qu C, Chopp M. Simvastatin attenuates microglia, astrocyte activation and decreases IL-1β level following traumatic brain injury. Neurosurgery 2009;65:179-186.

[132] Wang H、Lynch JR、Song P、Yang HJ、Yates RB、Mace B、Warner DS、Guyton JR、Laskowitz DT。Simvastatin and atorvastatin improve behavioral outcome, reduce hippocampal degeneration, and improve cerebral blood flow after experimental traumatic brain injury。Exp Neurol 2007;206:59-69。[132] Wang H, Lynch JR, Song P, Yang HJ, Yates RB, Mace B, Warner DS, Guyton JR, Laskowitz DT. Simvastatin and atorvastatin improve behavioral outcome, reduce hippocampal degeneration, and improve cerebral blood flow after experimental traumatic brain injury. Exp Neurol 2007;206:59-69.

[133] Lai WT、Lee KT、Chu CS、Voon WC、Yen HW、Tsai LY、Sheu SH。Influence of withdrawal of statin treatment on proinflammatory response and fibrinolytic activity in humans: an effect independent on cholesterol elevation。Int J Cardiol 2005;98: 459-464。[133] Lai WT, Lee KT, Chu CS, Voon WC, Yen HW, Tsai LY, Sheu SH. Influence of withdrawal of statin treatment on proinflammatory response and fibrinolytic activity in humans: an effect independent on cholesterol elevation. Int J Cardiol 2005;98:459-464.

[134] Lee KT、Lai WT、Chu CS、Tsai LY、Yen HW、Voon WC、Sheu SH。Effect of withdrawal of statin on C-reactive protein。Cardiology 2004;102:166-170。[134] Lee KT, Lai WT, Chu CS, Tsai LY, Yen HW, Voon WC, Sheu SH. Effect of withdrawal of statin on C-reactive protein. Cardiology 2004;102:166-170.

[135] Li JJ、Li YS、Chu JM、Zhang CY、Wang Y、Huang Y、Chen J、Yuan JQ、Huang YL。Changes of plasma inflammatory markers after withdrawal of statin therapy in patients with hyperlipidemia。Clin Chim Acta 2006;366:269-273。[135] Li JJ, Li YS, Chu JM, Zhang CY, Wang Y, Huang Y, Chen J, Yuan JQ, Huang YL. Changes of plasma inflammatory markers after withdrawal of statin therapy in patients with hyperlipidemia. Clin Chim Acta 2006;366:269-273.

[136] Orlando A、Bar-Or D、Salottolo K、Levy AS、Mains CW、Slone DS、Offner PJ。Unintentional discontinuation of statins may increase mortality after traumatic brain injury in elderly patients: A preliminary observation。J Clin Med Res 2013;5:168-173。[136] Orlando A, Bar-Or D, Salottolo K, Levy AS, Mains CW, Slone DS, Offner PJ. Unintentional discontinuation of statins may increase mortality after traumatic brain injury in elderly patients: A preliminary observation. J Clin Med Res 2013;5:168-173.

[137] Schneider EB、Efron DT、MacKenzie EJ、Rivara FP、Nathens AB、Jurkovich GJ。Premorbid statin use is associated with improved survival and functional outcomes in older head-injured individuals。J Trauma 2011;71:815-819。[137] Schneider EB, Efron DT, MacKenzie EJ, Rivara FP, Nathens AB, Jurkovich GJ. Premorbid statin use is associated with improved survival and functional outcomes in older head-injured individuals. J Trauma 2011;71:815-819.

[138] Tapia-Perez J、Sachez-Aquilar M、Torres-Corzo JG、Gordillo-Moscoso A、Martinez-Perez P、Madeville P、de la Cruz-Mendoza E、Chalita-Williams J。Effect of rosuvastatin on amnesia and disorientation after traumatic brain injury (NCT003229758)。J Neurotrauma 2008;25:1011-1017。[138] Tapia-Perez J, Sachez-Aquilar M, Torres-Corzo JG, Gordillo-Moscoso A, Martinez-Perez P, Madeville P, de la Cruz-Mendoza E, Chalita-Williams J. Effect of rosuvastatin on amnesia and disorientation after traumatic brain injury (NCT003229758). J Neurotrauma 2008;25:1011-1017.

[139] Sanchez-Aquilar M、Tapia-Perez JH、Sanchez-Rodriguez JJ、Vinas-Rios JM、Martinez-Perez P、de la Cruz-Mendoza E、Sanchez-Reyna M、Torres-Corzo JG、Gordillo-Moscoso A。Effect of rosuvastatin on cytokines after traumatic brain injury。J Neurosurg 2013;118:669-675。[139] Sanchez-Aquilar M, Tapia-Perez JH, Sanchez-Rodriguez JJ, Vinas-Rios JM, Martinez-Perez P, de la Cruz-Mendoza E, Sanchez-Reyna M, Torres-Corzo JG, Gordillo-Moscoso A. Effect of rosuvastatin on cytokines after traumatic brain injury. J Neurosurg 2013;118:669-675.

[140] Rasras S、Rahbariyan F、Khezri M。The effect of simvastatin on patients with traumatic brain injury。J Inj Violence Res 2012;4(3 Suppl 1)63。[140] Rasras S, Rahbariyan F, Khezri M. The effect of simvastatin on patients with traumatic brain injury. J Inj Violence Res 2012;4(3 Suppl 1)63.

[141] Bye N、Habgood MD、Callaway JK、Malakooti N、Potter A、Kossman T、Morganti-Kossman MC。Transient neuroprotection by minocycline following traumatic brain injury is associated with attenuated microglial activation but no changes in cell apoptosis or neutrophil infiltration。Exp Neurol 2007;204:220-233。[141] Bye N, Habgood MD, Callaway JK, Malakooti N, Potter A, Kossman T, Morganti-Kossman MC. Transient neuroprotection by minocycline following traumatic brain injury is associated with attenuated microglial activation but no changes in cell apoptosis or neutrophil infiltration. Exp Neurol 2007;204:220-233.

[142] Ziebell JM、Morganti-Kossmann MC。Involvement of pro- and anti-inflammatory cytokines and chemokines in the pathophysiology of traumatic brain injury。Neurotherapeutics 2010;7:22-30。[142] Ziebell JM, Morganti-Kossmann MC. Involvement of pro- and anti-inflammatory cytokines and chemokines in the pathophysiology of traumatic brain injury. Neurotherapeutics 2010;7:22-30.

[143] Sanchez Mejia RO、Ona VO、Li M、Friedlander RM。Minocycline reduces traumatic brain injury-mediated caspase-1 activation, tissue damage, and neurological dysfunction。Neurosurgery 2001;48:1393-1399。[143] Sanchez Mejia RO, Ona VO, Li M, Friedlander RM. Minocycline reduces traumatic brain injury-mediated caspase-1 activation, tissue damage, and neurological dysfunction. Neurosurgery 2001;48:1393-1399.

[144] Lee SM、Yune TY、Kim SJ、Park DW、Lee YK、Kim YC、Oh YJ、Markelonis GJ、Oh TH。Minocylcline reduces cell death and improves functional recovery after traumatic spinal cord injury in the rat。J Neurotrauma 2013;20:1017-1027。[144] Lee SM, Yune TY, Kim SJ, Park DW, Lee YK, Kim YC, Oh YJ, Markelonis GJ, Oh TH. Minocylcline reduces cell death and improves functional recovery after traumatic spinal cord injury in the rat. J Neurotrauma 2013;20:1017-1027.

[145] Yrjanheikki J、Keinanen R、Pellikka M、Hokfelt T、Koistinaho J。Tetracyclines inhibit microglial activation and are neuroprotective in glial brain ischemia。Proc Natl Acad Sci 1998;95:15769-15774。[145] Yrjanheikki J, Keinanen R, Pellikka M, Hokfelt T, Koistinaho J. Tetracyclines inhibit microglial activation and are neuroprotective in glial brain ischemia. Proc Natl Acad Sci 1998;95:15769-15774.

[146] Uckun OM、Alagoz F、Secer M、Karakoyun O、Ocakcioglu A、Yildirim AE、Yimaz F、Sahinoglu M、Divanlioglu D、Dalgic A、Daglioglu E、Belen AD。Neuroprotective effects of tetracyclines on blunt head trauma: an experimental study on rats。J Neurosci Rural Pract 2015;6:27-32。[146] Uckun OM, Alagoz F, Secer M, Karakoyun O, Ocakcioglu A, Yildirim AE, Yimaz F, Sahinoglu M, Divanlioglu D, Dalgic A, Daglioglu E, Belen AD. Neuroprotective effects of tetracyclines on blunt head trauma: an experimental study on rats. J Neurosci Rural Pract 2015;6:27-32.

[147] Kovesdi E、Kamnaksh A、Wingo D、Ahmed F、Grunberg NE、Long JB、Kasper CE、Agoston DV。Acute minocycline treatment mitigates the symptoms of mild blast-induced traumatic brain injury。Front Neurol 2012;3:111。[147] Kovesdi E, Kamnaksh A, Wingo D, Ahmed F, Grunberg NE, Long JB, Kasper CE, Agoston DV. Acute minocycline treatment mitigates the symptoms of mild blast-induced traumatic brain injury. Front Neurol 2012;3:111.

[148] Stirling DP、Koochesfahani KM、Steeves JD、Tetzlaff W。Minocycline as a neuroprotective agent.Neuroscientist 2005;11:308-322。[148] Stirling DP, Koochesfahani KM, Steeves JD, Tetzlaff W. Minocycline as a neuroprotective agent. Neuroscientist 2005;11:308-322.

[149] Turtzo L、Janaria N、Lescher J、Tu J、Frank J。Efficacy of minocycline in female rats after mild diffuse traumatic brain injury (15-1B)。Neurology 2015;84:Suppl 15-1B。[149] Turtzo L, Janaria N, Lescher J, Tu J, Frank J. Efficacy of minocycline in female rats after mild diffuse traumatic brain injury (15-1B). Neurology 2015;84:Suppl 15-1B.

[150] Tsuji M、Wilson MA、Lange MS、Johnston MV。Minocycline worsens hypoxic-ischemic brain injury in a neonatal mouse model。Exp Neurol 2004;189:58-65。[150] Tsuji M, Wilson MA, Lange MS, Johnston MV. Minocycline worsens hypoxic-ischemic brain injury in a neonatal mouse model. Exp Neurol 2004;189:58-65.

[151] Diguet E、Gross CE、Tison F、Bezard E。Rise and fall of minocycline in neuroprotection: Need to promote publication of negative results。Exp Neurol 2004;189:1-4。[151] Diguet E, Gross CE, Tison F, Bezard E. Rise and fall of minocycline in neuroprotection: Need to promote publication of negative results. Exp Neurol 2004;189:1-4.

[152] Ding K、Wang H、Xu J、Lu X、Zhang L、Zhu L。Melatonin reduced microglial activation and alleviated neuroinflammation induced neuron degeneration in experimental traumatic brain injury: Possible involvement on mTOR pathway。Neurochem Int 2014;76:23-31。[152] Ding K, Wang H, Xu J, Lu X, Zhang L, Zhu L. Melatonin reduced microglial activation and alleviated neuroinflammation induced neuron degeneration in experimental traumatic brain injury: Possible involvement on mTOR pathway. Neurochem Int 2014;76:23-31.

[153] Mesenge C、Margaill I、Verrecchia C、Allix M、Boulu RG、Plotkine M。Protective effect of melatonin in a model of traumatic brain injury in mice。J Pineal Res 1998;25:41-46。[153] Mesenge C, Margaill I, Verrecchia C, Allix M, Boulu RG, Plotkine M. Protective effect of melatonin in a model of traumatic brain injury in mice. J Pineal Res 1998;25:41-46.

[154] Senol N、Naziroglu M。Melatonin reduces traumatic brain injury-induced oxidative stress in the cerebral cortex and blood of rats。Neural Regen Res 2014;9:1112-1116。[154] Senol N, Naziroglu M. Melatonin reduces traumatic brain injury-induced oxidative stress in the cerebral cortex and blood of rats. Neural Regen Res 2014;9:1112-1116.

[155] Ozdemir D、Uysal N、Gonenc S、Acikgoz O、Sonmez A、Topcu A、Ozdemir N、Duman M、Semin I、Ozkan H。Effect of melatonin on brain oxidative damage induced by traumatic brain injury in immature rats。Physiol Res 2005;54:631-637。[155] Ozdemir D, Uysal N, Gonenc S, Acikgoz O, Sonmez A, Topcu A, Ozdemir N, Duman M, Semin I, Ozkan H. Effect of melatonin on brain oxidative damage induced by traumatic brain injury in immature rats. Physiol Res 2005;54:631-637.

[156] Naseem M、Parvez S。Role of melatonin in traumatic brain injury and spinal cord injury。Scientific World J 2014;586270:13。[156] Naseem M, Parvez S. Role of melatonin in traumatic brain injury and spinal cord injury. Scientific World J 2014;586270:13.

[157] Zhu HT、Bian C、Yuan JC、Chu WH、Xiang X、Chen F、Wang CS、Feng H、Lin JK。Curcumin attenuates acute inflammatory injury by inhibiting the TLR4/MyD88/NF-κB signaling pathway in experimental traumatic brain injury。J Neuroinflamm 2014;11:59。[157] Zhu HT, Bian C, Yuan JC, Chu WH, Xiang X, Chen F, Wang CS, Feng H, Lin JK. Curcumin attenuates acute inflammatory injury by inhibiting the TLR4/MyD88/NF-κB signaling pathway in experimental traumatic brain injury. J Neuroinflamm 2014;11:59.

[158] Sharma S、Ying Z、Gomez-Pinilla F。A pyrazole curcumin derivative restores membrane homeostasis disrupted after brain trauma。Exp Neurol 2010;226:191-199。[158] Sharma S, Ying Z, Gomez-Pinilla F. A pyrazole curcumin derivative restores membrane homeostasis disrupted after brain trauma. Exp Neurol 2010;226:191-199.

[159] Wu A、Ying Z、Schubert D、Gomez-Pinilla F。Brain and spinal cord interaction: a dietary curcumin derivative counteracts locomotor and cognitive deficits after brain trauma。Neurorehabil Neural Repair 2011;25:322-342。[159] Wu A, Ying Z, Schubert D, Gomez-Pinilla F. Brain and spinal cord interaction: a dietary curcumin derivative counteracts locomotor and cognitive deficits after brain trauma. Neurorehabil Neural Repair 2011;25:322-342.

[160] Laird MD、Sukumari-Ramesh S、Swift AE、Meiler SE、Vender JR、Dhandapani KM。Curcumin attenuates cerebral edema following traumatic brain injury in mice: a possible role for aquaporin-4? J Neurochem 2010;113:637-648。[160] Laird MD, Sukumari-Ramesh S, Swift AE, Meiler SE, Vender JR, Dhandapani KM. Curcumin attenuates cerebral edema following traumatic brain injury in mice: a possible role for aquaporin-4? J Neurochem 2010;113:637-648.

[161] Samini F、Samarghandian S、Borji A、Mohammadi G、Bakanian M。Curcumin pretreatment attenuates brain lesion size and improves neurological function following traumatic brain injury in rat。Pharmacol Biochem Behav 2013;110:238-244。[161] Samini F, Samarghandian S, Borji A, Mohammadi G, Bakanian M. Curcumin pretreatment attenuates brain lesion size and improves neurological function following traumatic brain injury in rat. Pharmacol Biochem Behav 2013;110:238-244.

[162] Cho ML、Kim WU、Min SY、Min DJ、Min JK、Lee SH、Park SH、Cho CS、Kim HY。Cyclosporine differentially regulates interleukin-10, interleukin-15, and tumor necrosis factor α production by rheumatoid synoviocytes。Arthritis Rheum 2002;46:42-51。[162] Cho ML, Kim WU, Min SY, Min DJ, Min JK, Lee SH, Park SH, Cho CS, Kim HY. Cyclosporine differentially regulates interleukin-10, interleukin-15, and tumor necrosis factor α production by rheumatoid synoviocytes. Arthritis Rheum 2002;46:42-51.

[163] Myrillas TT、Linden GJ、Marley JJ、Irwin CR。Cyclosporin A regulates interleukin-1beta and interleukin-6 expression in gingiva: Implications for gingival overgrowth。J Periodontol 1999;70:294-300。[163] Myrillas TT, Linden GJ, Marley JJ, Irwin CR. Cyclosporin A regulates interleukin-1beta and interleukin-6 expression in gingiva: Implications for gingival overgrowth. J Periodontol 1999;70:294-300.

[164] Gauchat JF、Khandjian EW、Weil R。Cyclosporin A prevents induction of the interleukin 2 receptor gene in cultured murine thymocytes。Proc Natl Acad Sci 1986;83:6430-6434。[164] Gauchat JF, Khandjian EW, Weil R. Cyclosporin A prevents induction of the interleukin 2 receptor gene in cultured murine thymocytes. Proc Natl Acad Sci 1986;83:6430-6434.

[165] Tracey DE、Hardee MM、Richard KA、Paslay JW。Pharmacological inhibition of interleukin-1 activity on T cells by hydrocortisone, cyclosporine, prostaglandins, and cyclic nucleotides。Immunopharmacology 1988;15:47-62。[165] Tracey DE, Hardee MM, Richard KA, Paslay JW. Pharmacological inhibition of interleukin-1 activity on T cells by hydrocortisone, cyclosporine, prostaglandins, and cyclic nucleotides. Immunopharmacology 1988;15:47-62.

[166] Kilbaugh TJ、Bhandare S、Lorom DH、Saraswati M、Robertson CL、Margulies SS。Cyclosporin A preserves mitochondrial function after traumatic brain injury in the immature rat and piglet。J Neurotrauma 2011;28:763-774。[166] Kilbaugh TJ, Bhandare S, Lorom DH, Saraswati M, Robertson CL, Margulies SS. Cyclosporin A preserves mitochondrial function after traumatic brain injury in the immature rat and piglet. J Neurotrauma 2011;28:763-774.

[167] Hatton J、Rosbolt B、Empey P、Kryscio R、Young B。Dosing and safety of cyclosporine in patients with severe brain injury。J Neurosurg 2008;109:699-707。[167] Hatton J, Rosbolt B, Empey P, Kryscio R, Young B. Dosing and safety of cyclosporine in patients with severe brain injury. J Neurosurg 2008;109:699-707.

[168] Nighoghossian N、Berthezene Y、Mechtouff L、Derex L、Cho TH、Ritzenthaler T、Rheims S、Chauveau E、Bejot Y、Jacquin A、Giroud M、Ricolfi F、Philippeau F、Lamy C、Turc G、Bodiguel E、Domigo V、Guiraud V、Mas JL、Oppenheim C、Amarenco P、Cakmak S、Sevin-Allouet M、Guillon B、Desal H、Hosseini H、Sibon I、Mahagne MH、Ong E、Mewton N、Ovize M。Cyclosporine in acute ischemic stroke。Neurology 2015:84(22):2216-23。[168] Nighoghossian N, Berthezene Y, Mechtouff L, Derex L, Cho TH, Ritzenthaler T, Rheims S, Chauveau E, Bejot Y, Jacquin A, Giroud M, Ricolfi F, Philippeau F, Lamy C, Turc G, Bodiguel E , Domigo V, Guiraud V, Mas JL, Oppenheim C, Amarenco P, Cakmak S, Sevin-Allouet M, Guillon B, Desal H, Hosseini H, Sibon I, Mahagne MH, Ong E, Mewton N, Ovize M. Cyclosporine in acute ischemic stroke. Neurology 2015:84(22):2216-23.

[169] Thau-Zuchman O、Shohami E、Alexandrovich AG、Trembovler V、Leker RR。The anti-inflammatory drug carprofen improves long-term outcome and induces gliogenesis after traumatic brain injury。J Neurotrauma 2012;29:375-384。[169] Thau-Zuchman O, Shohami E, Alexandrovich AG, Trembovler V, Leker RR. The anti-inflammatory drug carprofen improves long-term outcome and induces gliogenesis after traumatic brain injury. J Neurotrauma 2012;29:375-384.

[170] Lee HF、Lee TS、Kou YR。Anti-inflammatory and neuroprotective effects of triptolide on traumatic brain injury in rats。Respir Physiol Neurobiol 2012;182:1-8。[170] Lee HF, Lee TS, Kou YR. Anti-inflammatory and neuroprotective effects of triptolide on traumatic brain injury in rats. Respir Physiol Neurobiol 2012;182:1-8.

[171] Oh JY、Roddy GW、Choi H、Lee RH、Ylostalo JH、Rosa Jr. RH、Prockop DJ。Anti-inflammatory protein TSG-6 reduces inflammatory damage to the cornea following chemical and mechanical injury。Proc Natl Acad Sci 2010;107:16875-16880。[171] Oh JY, Roddy GW, Choi H, Lee RH, Ylostalo JH, Rosa Jr. RH, Prockop DJ. Anti-inflammatory protein TSG-6 reduces inflammatory damage to the cornea following chemical and mechanical injury. Proc Natl Acad Sci 2010;107:16875-16880.

[172] Watanabe J、Shetty AK、Hattiangady B、Kim DK、Foraker JE、Nishida H、Prockop DJ。Administration of TSG-6 improves memory after traumatic brain injury in mice。Neurobiol Dis 2013;59:86-99。[172] Watanabe J, Shetty AK, Hattiangady B, Kim DK, Foraker JE, Nishida H, Prockop DJ. Administration of TSG-6 improves memory after traumatic brain injury in mice. Neurobiol Dis 2013;59:86-99.

[173] Bachstetter AD、Webster SJ、Goulding DS、Morton JE、Watterson SM、Van Eldik LJ。Attenuation of traumatic brain injury-induced cognitive impairment in mice by targeting increased cytokine levels with a small molecule experimental therapeutic。J Neuroinflamm 2015;12:69-77。[173] Bachstetter AD, Webster SJ, Goulding DS, Morton JE, Watterson SM, Van Eldik LJ. Attenuation of traumatic brain injury-induced cognitive impairment in mice by targeting increased cytokine levels with a small molecule experimental therapeutic. J Neuroinflamm 2015;12:69-77.

[174] Zhang R、Liu Y、Yan K、Chen L、Chen XR、Li P、Chen FF、Jiang XD。Anti-inflammatory and immunomodulatory mechanisms of mesenchymal stem cell transplantation in experimental traumatic brain injury。J Neuroinflamm 2015;10:106。[174] Zhang R, Liu Y, Yan K, Chen L, Chen XR, Li P, Chen FF, Jiang XD. Anti-inflammatory and immunomodulatory mechanisms of mesenchymal stem cell transplantation in experimental traumatic brain injury. J Neuroinflamm 2015;10:106.

[175] Hernandez-Ontiveros DG、Tajiri N、Acosta S、Giunta B、Tan J、Borlongan CV。Microglia activation as a biomarker for traumatic brain injury。Front Neurol 2013;4:30。[175] Hernandez-Ontiveros DG, Tajiri N, Acosta S, Giunta B, Tan J, Borlongan CV. Microglia activation as a biomarker for traumatic brain injury. Front Neurol 2013;4:30.

[176] Niesman IR、Schilling JM、Shapiro LA、Kellerhals SE、Bonds JA、Kleschevnikov AM、Cui W、Voong A、Krajewski S、Ali SS、Roth DM、Patel HH、Patel PM、Head BP。Traumatic brain injury enhances neuroinflammation and lesion volume in caveolin deficient mice。J Neuroinflamm 2014;11:39。[176] Niesman IR, Schilling JM, Shapiro LA, Kellerhals SE, Bonds JA, Kleschevnikov AM, Cui W, Voong A, Krajewski S, Ali SS, Roth DM, Patel HH, Patel PM, Head BP. Traumatic brain injury enhances neuroinflammation and lesion volume in caveolin deficient mice. J Neuroinflamm 2014;11:39.

為了更完整地理解本發明之特徵及優點,現結合附圖參考本發明之詳細描述且其中:For a more complete understanding of the features and advantages of the present invention, reference is now made to the detailed description of the invention taken in conjunction with the accompanying drawings and wherein:

圖1A及1B分別顯示以微脂體薑黃素在HeLa細胞中達成的抑制百分比及存活率百分比。Figures 1A and 1B show the percent inhibition and percent survival, respectively, achieved with liposomal curcumin in HeLa cells.

圖2A及2B分別顯示在HeLa細胞中使用固體S-薑黃素達成的抑制百分比及存活率百分比。Figures 2A and 2B show the percent inhibition and percent survival, respectively, achieved using solid S-curcumin in HeLa cells.

圖3A及3B分別顯示比較HeLa細胞中微脂體薑黃素及固體薑黃素的抑制百分比及存活率百分比。Figures 3A and 3B show the comparison of the percentage inhibition and percentage survival of liposomal curcumin and solid curcumin in HeLa cells, respectively.

圖4A係顯示敗血症期間微脂體薑黃素於肝功能(包括天冬胺酸轉胺酶(AST)及丙胺酸轉胺酶(AST)濃度)之效應的圖。該等結果顯示微脂體薑黃素相較於年齡匹配對照組的敗血症的照護標準之有效性。對於AST及ALT,微脂體薑黃素顯示相較於照護標準之更高有效性。Figure 4A is a graph showing the effect of liposomal curcumin on liver function including aspartate transaminase (AST) and alanine transaminase (AST) concentrations during sepsis. These results demonstrate the effectiveness of liposomal curcumin compared to the standard of care for sepsis in age-matched controls. For AST and ALT, liposomal curcumin showed higher efficacy compared to standard of care.

圖4B至4D係顯示敗血症期間微脂體薑黃素於腎功能之效應的圖,其測定肌酸、嗜中性白血球明膠酶相關脂質運載蛋白(NGAL)及血尿素氮(BUN)。特定言之且重要地,就測量慢性腎病進展的NGAL而言,微脂體薑黃素顯示相較於標準照護在保持腎功能中更高有效性。Figures 4B-4D are graphs showing the effect of liposomal curcumin on renal function during sepsis as measured by creatine, neutrophil gelatinase-associated lipocalin (NGAL) and blood urea nitrogen (BUN). Specifically and importantly, with respect to NGAL, which measures chronic kidney disease progression, liposomal curcumin was shown to be more effective in maintaining kidney function than standard care.

圖4E及4F係顯示敗血症期間微脂體薑黃素於心臟功能的c-肌鈣蛋白及射血分數百分比之效應的圖。微脂體薑黃素顯示相較於標準照護之心臟損傷減少且在射血分數百分比上與照護標準相等。Figures 4E and 4F are graphs showing the effect of liposomal curcumin on c-troponin and percent ejection fraction on cardiac function during sepsis. Liposome curcumin showed reduced cardiac damage compared to standard of care and was equal to standard of care in percent ejection fraction.

圖4G係顯示敗血症期間微脂體薑黃素於總存活期之效應的圖。與標準照護治療相比,微脂體薑黃素顯示更長存活時間。Figure 4G is a graph showing the effect of liposomal curcumin on overall survival during sepsis. Liposome curcumin showed longer survival compared to standard-of-care treatments.

Claims (22)

一種改善或治療個體由細胞素廣泛釋放所觸發的症狀或一或多種不良反應之方法,該方法包括以下步驟: 鑑定需要改善或治療觸發細胞素廣泛釋放的一或多種傳染性疾病或疾病病症之症狀的個體;及 投與一或多種醫藥組合物,其包含治療有效量之脂質溶解或分散於足以降低該個體的細胞素濃度之適宜水性或非水性介質中。A method of ameliorating or treating a symptom or one or more adverse reactions triggered by the widespread release of cytokines in an individual, the method comprising the steps of: Identifying individuals in need of amelioration or treatment of symptoms of one or more infectious diseases or disease conditions that trigger widespread release of cytokines; and One or more pharmaceutical compositions are administered comprising a therapeutically effective amount of lipid dissolved or dispersed in a suitable aqueous or non-aqueous medium sufficient to reduce the cytokine concentration in the subject. 如請求項1之方法,其中細胞素的廣泛釋放係由一或多種選自病毒性、細菌性、真菌性、蠕蟲性、原生動物性或出血性傳染媒介物(infectious agent)中之至少一者之傳染性疾病引起。The method of claim 1, wherein the widespread release of cytokines is by at least one of one or more selected from the group consisting of viral, bacterial, fungal, helminthic, protozoal, or hemorrhagic infectious agents caused by infectious diseases. 如請求項1之方法,其中該一或多種傳染性疾病係選自至少一種以下感染:鼻病毒、冠狀病毒、副黏液病毒科(Paramyxoviridae)、正黏液病毒科(Orthomyxoviridae)、腺病毒、副流行性感冒病毒(Parainfluenza Virus)、間質肺炎病毒(Metapneumovirus)、呼吸道融合病毒(Respiratory Syncytial Virus)、流行性感冒病毒(Influenzavirus)、沙粒病毒科(Arenaviridae)、絲狀病毒科(Filoviridae)、本雅病毒科(Bunyaviridae)、黃熱病毒科(Flaviviridae)、桿狀病毒科病毒(Rhabdoviridae virus)、伊波拉病毒(Ebola)、馬爾堡病毒(Marburg)、克里米亞-剛果出血熱(Crimean–Congo hemorrhagic fever;CCHF)病毒、南美出血熱(South American hemorrhagic fever)病毒、登革熱(dengue)病毒、黃熱病病毒、裂谷熱(Rift Valley fever)病毒、鄂木斯克出血熱病毒(Omsk hemorrhagic fever virus)、凱氏森林病(Kyasanur Forest)病毒、胡寧病毒(Junin)、馬秋波病毒(Machupo)、薩比亞病毒(Sabiá)、瓜納瑞托病毒(Guanarito)、加里薩病毒(Garissa)、伊勒夏病毒(Ilesha)或賴薩熱病毒(Lassa fever virus)。The method of claim 1, wherein the one or more infectious diseases are selected from at least one of the following infections: rhinoviruses, coronaviruses, Paramyxoviridae, Orthomyxoviridae, adenoviruses, paraendemics Parainfluenza Virus, Metapneumovirus, Respiratory Syncytial Virus, Influenzavirus, Arenaviridae, Filoviridae, the Bunyaviridae, Flaviviridae, Rhabdoviridae virus, Ebola virus, Marburg virus, Crimean-Congo hemorrhagic fever Congo hemorrhagic fever; CCHF) virus, South American hemorrhagic fever virus, dengue virus, yellow fever virus, Rift Valley fever virus, Omsk hemorrhagic fever virus ), Kyasanur Forest virus, Junin, Machupo, Sabiá, Guanarito, Garissa, Ilesha or Lassa fever virus. 如請求項1之方法,其中該一或多種疾病病症係選自以下中之至少一者:惡病質、敗血性休克症候群、慢性發炎反應、敗血性休克症候群、創傷性腦損傷、腦細胞素風暴、移植物抗宿主病(GVHD)、自體免疫疾病、多發性硬化症、急性胰臓炎,或肝炎。The method of claim 1, wherein the one or more disease conditions are selected from at least one of the following: cachexia, septic shock syndrome, chronic inflammation, septic shock syndrome, traumatic brain injury, cerebral cytokine storm, Graft versus host disease (GVHD), autoimmune disease, multiple sclerosis, acute pancreatitis, or hepatitis. 如請求項1之方法,其中該一或多種疾病病症係由於用抗CD19嵌合抗原受體(CAR) T細胞或抗腫瘤細胞療法、活化的樹突細胞、活化的巨噬細胞或活化的B細胞治療所引起的不良反應。The method of claim 1, wherein the one or more disease conditions are due to therapy with anti-CD19 chimeric antigen receptor (CAR) T cells or anti-tumor cells, activated dendritic cells, activated macrophages, or activated B cells Adverse reactions caused by cell therapy. 如請求項1之方法,其中該組合物進一步包含薑黃素提取物、薑黃素、類薑黃素配置於脂質中,其中該等類薑黃素係選自以下中之至少一者:芳薑黃酮(Ar-tumerone)、甲基薑黃素、去甲氧基薑黃素、雙去甲氧基薑黃素、薑黃素鈉、二苯甲醯甲烷、乙醯薑黃素、阿魏醯甲烷(feruloyl methane)、四氫薑黃素、1,7-雙(4-羥基-3-甲氧基苯基)-1,6-庚二烯-3,5-二酮(薑黃素1)、1,7-雙(胡椒基(piperonyl))-1,6-庚二烯-3,5-二酮(胡椒基薑黃素)、1,7-雙(2-羥基萘基)-1,6-庚二烯-2,5-二酮(2-羥基萘基薑黃素)及1,1-雙(苯基)-1,3,8,10-十一碳四烯-5,7-二酮。The method of claim 1, wherein the composition further comprises curcumin extract, curcumin, and curcuminoids configured in lipids, wherein the curcuminoids are selected from at least one of the following: aryl curcumin (Ar -tumerone), methyl curcumin, demethoxycurcumin, bisdemethoxycurcumin, sodium curcumin, dibenzoylmethane, acetyl curcumin, feruloyl methane (feruloyl methane), tetrahydro Curcumin, 1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione (curcumin 1), 1,7-bis(piperonyl) (piperonyl))-1,6-heptadiene-3,5-dione (piperonyl curcumin), 1,7-bis(2-hydroxynaphthyl)-1,6-heptadiene-2,5 - Diketone (2-hydroxynaphthylcurcumin) and 1,1-bis(phenyl)-1,3,8,10-undecatetraene-5,7-dione. 如請求項1之方法,其中該脂質或磷脂係選自由以下組成之群:二肉荳蔻醯磷脂醯膽鹼(DMPC)、二肉荳蔻醯磷脂醯甘油(DMPG)、二棕櫚醯磷脂醯膽鹼(DPPC)、二硬脂醯磷脂醯甘油(DSPG)、二棕櫚醯磷脂醯甘油(DMPG)、磷脂醯膽鹼、溶血卵磷脂、溶血磷脂醯乙醇胺、lysoDMPC、lysoDMPG、lysoDSPG、lysoDPPC、磷脂醯絲胺酸、磷脂醯肌醇、鞘磷脂、磷脂醯乙醇胺、心磷脂、磷脂酸、腦苷脂、二鯨蠟基磷酸酯、磷脂醯膽鹼、及二棕櫚醯磷脂醯甘油、硬脂胺、十二烷基胺、十六烷基胺、乙醯棕櫚酸酯、甘油蓖麻油酸酯、十六烷基硬脂酸酯、肉荳蔻酸異丙酯、兩性丙烯酸系聚合物、脂肪酸、脂肪酸醯胺、膽固醇、膽固醇酯、二醯基甘油,及二醯基甘油琥珀酸酯。9. The method of claim 1, wherein the lipid or phospholipid is selected from the group consisting of: dimyristophospholipid choline (DMPC), dimyristophospholipid glycerol (DMPG), dipalmitophospholipid choline (DPPC), Distearyl Phosphatidyl Glycerol (DSPG), Dipalmito Phosphatidyl Phosphatidyl Glycerol (DMPG), Phosphatidyl Choline, Lysophosphatidylcholine, Lysophosphatidylethanolamine, lysoDMPC, lysoDMPG, lysoDSPG, lysoDPPC, Phosphatidyl Filament Amino acid, phosphatidylinositol, sphingomyelin, phosphatidylethanolamine, cardiolipin, phosphatidic acid, cerebroside, dicetyl phosphate, phosphatidylcholine, and dipalmitophosphatidylglycerol, stearylamine, ten Dialkylamine, Cetylamine, Acetyl Palmitate, Glycerin Ricinoleate, Cetyl Stearate, Isopropyl Myristate, Amphoteric Acrylic Polymer, Fatty Acid, Fatty Acid Amide , cholesterol, cholesterol esters, diacylglycerol, and diacylglycerol succinate. 如請求項1之方法,其中該治療有效量包含50 nM/kg、10至100 nM/kg、25至75 nM/kg、10、20、30、40、50、60、70、80、90或100 nM/kg個體體重。The method of claim 1, wherein the therapeutically effective amount comprises 50 nM/kg, 10 to 100 nM/kg, 25 to 75 nM/kg, 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100 nM/kg individual body weight. 如請求項1之方法,其中該組合物包含活性劑,且具有3:1、1:1、0.3:1及0.1:1之脂質磷脂與活性劑比。The method of claim 1, wherein the composition comprises an active agent and has a lipid phospholipid to active agent ratio of 3:1, 1:1, 0.3:1 and 0.1:1. 如請求項1之方法,其中該疾病係類風濕性關節炎、牛皮癬、多發性硬化症、復發型多發性硬化症或發炎性腸病。The method of claim 1, wherein the disease is rheumatoid arthritis, psoriasis, multiple sclerosis, relapsing multiple sclerosis, or inflammatory bowel disease. 一種用於改善或治療個體由觸發細胞素廣泛釋放的傳染性疾病或疾病病症所觸發的症狀或一或多種不良反應之組合物,其包含治療有效量之脂質或溶血磷脂醯溶解或分散於適宜水性或非水性介質中。A composition for the amelioration or treatment of symptoms or one or more adverse reactions triggered by an infectious disease or disease condition that triggers widespread release of cytokines in an individual, comprising a therapeutically effective amount of a lipid or lysophospholipid dissolved or dispersed in a suitable in aqueous or non-aqueous media. 如請求項11之組合物,其中該一或多種傳染性疾病係選自病毒性、細菌性、真菌性、蠕蟲性、原生動物性或出血性傳染媒介物中之至少一者。The composition of claim 11, wherein the one or more infectious diseases are selected from at least one of viral, bacterial, fungal, helminthic, protozoal, or hemorrhagic infectious agents. 如請求項11之組合物,其中該一或多種傳染性疾病係選自以下感染中之至少一者:鼻病毒、冠狀病毒、副黏液病毒科、正黏液病毒科、腺病毒、副流行性感冒病毒、間質肺炎病毒、呼吸道融合病毒、流行性感冒病毒、沙粒病毒科、絲狀病毒科、本雅病毒科、黃熱病毒科、桿狀病毒科病毒、伊波拉病毒、馬爾堡病毒、克里米亞-剛果出血熱(CCHF)病毒、南美出血熱病毒、登革熱病毒、黃熱病病毒、裂谷熱病毒、鄂木斯克出血熱病毒、凱氏森林病病毒、胡寧病毒、馬秋波病毒、薩比亞病毒、瓜納瑞托病毒、加里薩病毒、伊勒夏病毒或賴薩熱病毒。The composition of claim 11, wherein the one or more infectious diseases are selected from at least one of the following infections: rhinovirus, coronavirus, Paramyxoviridae, Orthomyxoviridae, adenovirus, parainfluenza Viruses, Interstitial Pneumonia Virus, Respiratory Fusion Virus, Influenza Virus, Arenaviridae, Filoviridae, Benjaviridae, Yellow Fever Viruses, Baculoviridae, Ebola Virus, Marburg Virus, Crimean-Congo haemorrhagic fever (CCHF) virus, South American haemorrhagic fever virus, Dengue virus, Yellow fever virus, Rift Valley fever virus, Omsk haemorrhagic fever virus, Kejeldahl virus, Junin virus, Maqiubo virus , Sabia virus, Guanarito virus, Garissa virus, Ilexia virus or Lyssa virus. 如請求項11之組合物,其中該一或多種疾病病症係選自以下中之至少一者:惡病質、敗血性休克症候群、慢性發炎反應、敗血性休克症候群、創傷性腦損傷、腦細胞素風暴、移植物抗宿主病(GVHD)、自體免疫疾病、多發性硬化症、急性胰臓炎,或肝炎。The composition of claim 11, wherein the one or more disease conditions are selected from at least one of the following: cachexia, septic shock syndrome, chronic inflammation, septic shock syndrome, traumatic brain injury, cerebral cytokine storm , Graft Versus Host Disease (GVHD), Autoimmune Disease, Multiple Sclerosis, Acute Pancreatitis, or Hepatitis. 如請求項11之組合物,其中該薑黃素提取物、類薑黃素或合成薑黃素係配置於脂質中。The composition of claim 11, wherein the curcumin extract, curcuminoid or synthetic curcumin is formulated in lipids. 如請求項11之組合物,其中該脂質或溶血磷脂醯係選自由以下組成之群:二肉荳蔻醯磷脂醯膽鹼(DMPC)、二肉荳蔻醯磷脂醯甘油(DMPG)、二棕櫚醯磷脂醯膽鹼(DPPC)、二硬脂醯磷脂醯甘油(DSPG)、二棕櫚醯磷脂醯甘油(DMPG)、磷脂醯膽鹼、溶血卵磷脂、溶血磷脂醯乙醇胺、lysoDMPC、lysoDMPG、lysoDSPG、lysoDPPC、磷脂醯絲胺酸、磷脂醯肌醇、鞘磷脂、磷脂醯乙醇胺、心磷脂、磷脂酸、腦苷脂、二鯨蠟基磷酸酯、磷脂醯膽鹼、及二棕櫚醯磷脂醯甘油、硬脂胺、十二烷基胺、十六烷基胺、乙醯棕櫚酸酯、甘油蓖麻油酸酯、十六烷基硬脂酸酯、肉荳蔻酸異丙酯、兩性丙烯酸系聚合物、脂肪酸、脂肪酸醯胺、膽固醇、膽固醇酯、二醯基甘油,及二醯基甘油琥珀酸酯。11. The composition of claim 11, wherein the lipid or lysophospholipid is selected from the group consisting of: dimyristine phospholipid choline (DMPC), dimyristine phospholipid glycerol (DMPG), dipalmitophospholipid Choline (DPPC), Distearyl Phosphatidyl Glycerol (DSPG), Dipalmito Phosphatidyl Glycerol (DMPG), Phosphatidyl Choline, Lysophosphatidylcholine, Lysophosphatidylethanolamine, lysoDMPC, lysoDMPG, lysoDSPG, lysoDPPC, Phosphatidylserine, Phosphatidylinositol, Sphingomyelin, Phosphatidylethanolamine, Cardiolipin, Phosphatidic Acid, Cerebroside, Dicetyl Phosphate, Phosphatidylcholine, and Dipalmitoyl Phosphatidylglycerol, Stearyl Amine, Laurylamine, Cetylamine, Acetyl Palmitate, Glycerin Ricinoleate, Cetyl Stearate, Isopropyl Myristate, Amphoteric Acrylic Polymers, Fatty Acids, Fatty acid amides, cholesterol, cholesterol esters, diacylglycerol, and diacylglycerol succinate. 如請求項11之組合物,其中該生物可降解之聚合物係選自由以下組成之群:聚酯、聚乳酸、聚甘胺酸交酯(polyglycolides)、聚己內酯、聚酐、聚醯胺、聚胺甲酸酯、聚酯醯胺、聚二氧雜環己酮(poly-dioxanones)、聚縮醛、聚縮酮、聚碳酸酯、聚原碳酸酯、聚原酸酯、聚磷酸酯、聚磷腈、聚羥基丁酸酯、聚羥基戊酸酯、聚伸烷基草酸酯、聚伸烷基琥珀酸酯、聚(蘋果酸)、聚(胺基酸)、共聚物、三元共聚物,及其組合或混合物。The composition of claim 11, wherein the biodegradable polymer is selected from the group consisting of polyesters, polylactic acids, polyglycolides, polycaprolactones, polyanhydrides, polyamides Amines, polyurethanes, polyesteramides, poly-dioxanones, polyacetals, polyketals, polycarbonates, polyorthocarbonates, polyorthoesters, polyphosphoric acids ester, polyphosphazene, polyhydroxybutyrate, polyhydroxyvalerate, polyalkylene oxalate, polyalkylene succinate, poly(malic acid), poly(amino acid), copolymer, Terpolymers, and combinations or mixtures thereof. 如請求項11之組合物,其中該組合物適用於靜脈內、皮下、肌肉內或腹膜內注射於該個體中。The composition of claim 11, wherein the composition is suitable for intravenous, subcutaneous, intramuscular or intraperitoneal injection into the individual. 如請求項11之組合物,其中該組合物進一步包含薑黃素或類薑黃素,選自以下中之至少一者:芳薑黃酮、甲基薑黃素、去甲氧基薑黃素、雙去甲氧基薑黃素、薑黃素鈉、二苯甲醯甲烷、乙醯薑黃素、阿魏醯甲烷、四氫薑黃素、1,7-雙(4-羥基-3-甲氧基苯基)-1,6-庚二烯-3,5-二酮(薑黃素1)、1,7-雙(胡椒基)-1,6-庚二烯-3,5-二酮(胡椒基薑黃素)、1,7-雙(2-羥基萘基)-1,6-庚二烯-2,5-二酮(2-羥基萘基薑黃素)及1,1-雙(苯基)-1,3,8,10-十一碳四烯-5,7-二酮。The composition of claim 11, wherein the composition further comprises curcumin or curcuminoids selected from at least one of the following: aryl curcumin, methyl curcumin, demethoxy curcumin, bisdemethoxy curcumin base curcumin, curcumin sodium, dibenzoylmethane, acetyl curcumin, ferulic acid methane, tetrahydrocurcumin, 1,7-bis(4-hydroxy-3-methoxyphenyl)-1, 6-Heptadiene-3,5-dione (Curcumin 1), 1,7-Bis(piperonyl)-1,6-heptadiene-3,5-dione (Piperonyl Curcumin), 1 ,7-bis(2-hydroxynaphthyl)-1,6-heptadiene-2,5-dione (2-hydroxynaphthylcurcumin) and 1,1-bis(phenyl)-1,3, 8,10-undecatetraene-5,7-dione. 如請求項11之組合物,其中該組合物包含活性劑,且具有3:1、1:1、0.3:1及0.1:1之脂質與活性劑比。The composition of claim 11, wherein the composition comprises an active agent and has a lipid to active agent ratio of 3:1, 1:1, 0.3:1 and 0.1:1. 一種確定候選藥物是否導致改善或治療個體由觸發細胞素廣泛釋放的傳染性疾病或疾病病症所觸發的症狀或一或多種不良反應之方法,該方法包括: (a)投與一量之候選藥物與空微脂體之組合,及安慰劑於第二子組的患者,其中該候選藥物係以有效降低或預防該個體中細胞素之總體濃度之量提供; (b)測量來自該第一及第二組的患者的個體之細胞素濃度;及 (c)確定該候選藥物與空微脂體之組合相較於服用該安慰劑的患者子組中發生的任何降低是否在統計學上顯著改善或治療由觸發細胞素廣泛釋放的傳染性疾病或疾病病症所觸發的症狀或一或多種不良反應,其中在統計學上顯著降低指示該候選藥物可用於治療疾病狀態同時亦降低或消除個體中細胞素之總體濃度。A method of determining whether a drug candidate results in amelioration or treatment of symptoms or one or more adverse effects in an individual triggered by an infectious disease or disease condition that triggers widespread release of cytokines, the method comprising: (a) administering an amount of the drug candidate in combination with empty liposomes, and a placebo to a second subgroup of patients, wherein the drug candidate is provided in an amount effective to reduce or prevent the overall concentration of cytokines in the subject ; (b) measuring individual cytokine concentrations from patients of the first and second groups; and (c) determine whether the combination of the drug candidate and empty liposomes results in a statistically significant improvement or treatment of an infectious disease caused by triggering widespread release of cytokines compared to any reduction occurring in the subgroup of patients taking the placebo A symptom or one or more adverse effects triggered by a disease condition wherein a statistically significant reduction indicates that the drug candidate is useful for treating the disease state while also reducing or eliminating the overall concentration of cytokines in the individual. 一種改善或治療個體由治療劑引起的症狀或細胞素風暴之方法,該方法包括以下步驟: 鑑定需要改善或治療由治療劑引起的症狀或細胞素風暴的個體;及 投與一或多種醫藥組合物,其包含治療有效量之薑黃素提取物、類薑黃素或合成薑黃素及其衍生物、或空微脂體,溶解或分散於足以降低該個體中之細胞素濃度之適宜水性或非水性介質中。A method of ameliorating or treating a symptom or cytokine storm caused by a therapeutic agent in an individual, the method comprising the steps of: Identifying individuals in need of amelioration or treatment of symptoms or cytokine storms caused by therapeutic agents; and Administration of one or more pharmaceutical compositions comprising a therapeutically effective amount of curcumin extract, curcuminoid or synthetic curcumin and derivatives thereof, or empty liposomes, dissolved or dispersed in a sufficient amount to reduce cytokines in the individual appropriate concentration in aqueous or non-aqueous media.
TW110125635A 2020-07-31 2021-07-13 Suppression of cytokine release and cytokine storm TW202207907A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/945,195 US20200360300A1 (en) 2014-12-31 2020-07-31 Suppression of Cytokine Release and Cytokine Storm
US16/945,195 2020-07-31

Publications (1)

Publication Number Publication Date
TW202207907A true TW202207907A (en) 2022-03-01

Family

ID=80036956

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110125635A TW202207907A (en) 2020-07-31 2021-07-13 Suppression of cytokine release and cytokine storm

Country Status (9)

Country Link
EP (1) EP4188398A1 (en)
JP (1) JP2023536833A (en)
KR (1) KR20230026468A (en)
CN (1) CN116710123A (en)
AU (1) AU2021315452A1 (en)
CA (1) CA3189374A1 (en)
MX (1) MX2023001145A (en)
TW (1) TW202207907A (en)
WO (1) WO2022026170A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104602672B (en) * 2012-06-14 2018-12-25 伯尔尼大学 For treating the customization liposome of bacterium infection
US10286065B2 (en) * 2014-09-19 2019-05-14 Board Of Regents, The University Of Texas System Compositions and methods for treating viral infections through stimulated innate immunity in combination with antiviral compounds
US20200360300A1 (en) * 2014-12-31 2020-11-19 Signpath Pharma, Inc. Suppression of Cytokine Release and Cytokine Storm
US10739353B2 (en) * 2014-12-31 2020-08-11 Signpath Pharma, Inc. Suppression of cytokine release and cytokine storm
EP3405587A4 (en) * 2015-12-23 2019-10-30 Moonshot Pharma LLC Methods for inducing an immune response by promoting premature termination codon read-through

Also Published As

Publication number Publication date
CA3189374A1 (en) 2022-02-03
MX2023001145A (en) 2023-03-06
JP2023536833A (en) 2023-08-30
WO2022026170A1 (en) 2022-02-03
KR20230026468A (en) 2023-02-24
EP4188398A1 (en) 2023-06-07
AU2021315452A1 (en) 2023-02-02
CN116710123A (en) 2023-09-05

Similar Documents

Publication Publication Date Title
US10739353B2 (en) Suppression of cytokine release and cytokine storm
Profyris et al. Degenerative and regenerative mechanisms governing spinal cord injury
US20200360300A1 (en) Suppression of Cytokine Release and Cytokine Storm
Hemdan et al. Modulating sphingosine 1‐phosphate signaling with DOP or FTY720 alleviates vascular and immune defects in mouse sepsis
US20190167710A1 (en) Methods of Treating Conditions Involving Elevated Inflammatory Response
EP2391351B1 (en) Pharmaceutical compositions comprising 2-oxo-1-pyrrolidine derivatives
Guan et al. Dysregulated chemokine signaling in cystic fibrosis lung disease: a potential therapeutic target
CN102439153A (en) Compositions for stimulation of mammalian innate immune resistance to pathogens
Ahmad et al. Inhibition of tyrosine kinase signaling by tyrphostin AG126 downregulates the IL-21/IL-21R and JAK/STAT pathway in the BTBR mouse model of autism
CN116459265A (en) Medicament for preventing or treating rhinovirus infection
Zhang et al. Preclinical and clinical progress for HDAC as a putative target for epigenetic remodeling and functionality of immune cells
Sokolik et al. Comparative analysis of nasal therapy with soluble and liposomal forms of curcumin on rats with Alzheimer’s disease model
HRP960070A2 (en) Use of quinoxaline and protease inhibitors in a composition for the treatment of aids and/or hiv infections
Fritsch et al. The role of STING signaling in central nervous system infection and neuroinflammatory disease
TW202207907A (en) Suppression of cytokine release and cytokine storm
Yang et al. Discovery of novel aporphine alkaloid derivative as potent TLR2 antagonist reversing macrophage polarization and neutrophil infiltration against acute inflammation
Wang et al. Mechanisms of PANoptosis and relevant small-molecule compounds for fighting diseases
Zhang et al. The current landscape of the antimicrobial peptide melittin and its therapeutic potential
US20230372311A1 (en) Compositions and methods of treating age-related retinal dysfunction
US20210205325A1 (en) Methods of treating a subject having an infectious disease
WO2019246520A1 (en) Aminobisphosphonates as latency reversing agents and combination treatments for hiv cure
Lo Vasco Emerging roles of signal transduction pathways in neurodegenerative diseases. Hunting new possible therapeutic molecular targets
US20230263812A1 (en) Compositions and Methods for Treating COVID-19 and/or Acute Respiratory Failure and/or Acute Respiratory Distress Syndrome Using Tetrahydrocannabinol and Compositions Including Same
US11690856B2 (en) Compounds for treating CMV related diseases
Oladapo et al. Role of inflammasomes in HIV-1 and drug abuse-mediated neuroinflammation