TW202206803A - 提高環境感測裝置檢測精度的校正方法 - Google Patents

提高環境感測裝置檢測精度的校正方法 Download PDF

Info

Publication number
TW202206803A
TW202206803A TW109126220A TW109126220A TW202206803A TW 202206803 A TW202206803 A TW 202206803A TW 109126220 A TW109126220 A TW 109126220A TW 109126220 A TW109126220 A TW 109126220A TW 202206803 A TW202206803 A TW 202206803A
Authority
TW
Taiwan
Prior art keywords
calibration
value
sensing device
detection
air pollution
Prior art date
Application number
TW109126220A
Other languages
English (en)
Inventor
盧重興
Original Assignee
思維環境科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 思維環境科技有限公司 filed Critical 思維環境科技有限公司
Priority to TW109126220A priority Critical patent/TW202206803A/zh
Publication of TW202206803A publication Critical patent/TW202206803A/zh

Links

Images

Landscapes

  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

本發明係關於一種提高環境感測裝置檢測精度的校正方法,包括將該環境感測裝置設置於空品監測站中;經由環境感測裝置針對外界環境進行檢測,並根據環境感測裝置之地理資訊及空品檢測資訊,整合產生對應於空品監測站所在地理位置的一空品定位數據;經由一雲端伺服器經網路連線累積一收集時間內取得空品定位數據、以及對應空品監測站之監測地的一標準監測資訊;經由雲端伺服器將該空品定位數據與該標準監測資訊經過分析運算產生一校正模型,並基於該校正模型進行檢測精度校正,獲得校正後的該空品定位數據;以及在一校正時間內每隔一特定時間重複前述步驟,基於前一次校正後所得的該空品定位數據進行下一次的檢測精度校正。

Description

提高環境感測裝置檢測精度的校正方法
本發明係關於一種空氣污染源濃度感測器的檢測技術領域,特別是關於一種環境感測裝置偵測數據的蒐集/校正以及提高檢測精度的方法。
總懸浮微粒(TSP)、懸浮微粒(PM10)及細懸浮微粒(PM2.5)是我國法定的空氣汙染物,其主要來源除了固定管道排放源與交通移動源外,還包括裸露於地面或街道的塵土,其中裸露於地面或街道的塵土所造成的空氣汙染現象主要是透過風揚或車行的再懸浮作用,而易於風揚的微粒之粒徑約在200μm以下,相當於總懸浮微粒,對人體健康影響較大者為懸浮微粒(粒徑小於10μm)與細懸浮微粒(粒徑小於2.5μm)。
環境感測裝置是市售的簡易空氣污染源濃度感測器,透過通訊模組傳輸,提供即時PM2.5監測資料、溫度與相對濕度資訊。隨著對於空氣品質的關注程度增加,類似環境感測裝置這類低成本微型化的空氣污染源濃度感測器數量持續上升, 然而微型感測器因為體積小,使用感測原理簡易,使得感測數據會與標準方法使用的設備產生誤差。這種誤差在測定PM2.5時,更容易出現。簡易感測器將空氣中微粒導入光學散射原理的感測區域,在未經粒徑篩選方式下,以光學方式(光散射原理)量測不同粒徑微粒數量,再經轉換為PM2.5質量濃度。當光線照射到微粒表面,會有反射、散射等效應,這些效益會因微粒粒徑、形狀及表面粗糙情形而不同,同時也與光的波長有關。而當微粒含有吸水成分(例如硫酸鹽、硝酸鹽等),微粒外形、粒徑會因吸收空氣中水分而改變,進而影響測定結果。
簡易感測器在測定PM2.5時,為了減少感測器體積,各種可能干擾的因數,並未納入設計,包括粒徑、溫溼度干擾等,因此測值容易出現誤差。此外,簡易感測器利用光學原理測定的微粒粒徑,稱為「光學粒徑」,這與一般量測或呼吸過程有關的「氣動粒徑」也有差異。至於簡易感測器使用空氣擴散原理或馬達抽取空氣樣品,都與標準測站使用精準流量控制器進行控制不同。這些都是影響測定結果的重要因數,在使用簡易感測器測定數據時,應注意測值可能的差異。由於市面上多數類似環境感測裝置的簡易感測器,並未經過完整的性能驗證評估,若民眾在未經瞭解其應用限制而直接採用其監測數值,反而造成無謂的恐慌。
是以,如何改善上述問題並且提升感測器的偵測精準度,申請人有鑑於習知技術中所產生之缺失,經過悉心試驗與研究,並一本鍥而不捨之精神,終構思出本發明以解決習知技藝的缺點。
有鑑於此,本發明提供一種提高環境感測裝置檢測精度的校正方法,藉由在多個空品監測站配置的環境感測裝置,配合定位產生對應空品定位數據,提供雲端伺服器經過一定蒐集資料時間並且分析運算處理而產生校正參數之指令,能即時校正空品定位數據與標準監測資訊,以確保感測準確性。
為達成本發明的目的,本發明提供一種提高環境感測裝置檢測精度的校正方法,其包括:(a) 將欲校正之環境感測裝置設置於空品監測站中;(b) 經由環境感測裝置針對外界環境進行檢測,並根據環境感測裝置之地理資訊及空品檢測資訊,整合產生對應於空品監測站所在地理位置的一空品定位數據;(c) 經由一雲端伺服器經網路連線累積一收集時間內取得空品定位數據、以及對應空品監測站之監測地的一標準監測資訊;(d) 經由雲端伺服器將該空品定位數據與該標準監測資訊經過分析運算產生一校正模型,並基於該校正模型進行檢測精度校正;(e) 在一校正時間內;以及(f) 將完成檢測精度校正後之環境感測裝置自空品監測站移至所需環境檢測之地點安置並啟用。
根據本發明之一實施例,該空品檢測資訊為溫溼度檢測值、風速檢測值、及空氣污染源濃度檢測值中之至少一種。
根據本發明之一實施例,該雲端伺服器中設有一校正模組,該校正模組基於該校正模型校正該空品檢測資訊,並將校正後的該空品檢測資訊傳送至該環境感測裝置。
根據本發明之一實施例,其中該環境感測裝置包含:一檢測模組,其係用以偵測環境並生成該空品檢測資訊;一通訊模組,其係與該雲端伺服器通訊連接,用以傳輸數據;一定位模組,其係與該通訊模組電性連接,用以確認地理位置資料並生成該地理資訊;以及一校正模組,其係與該通訊模組電性連接,用以接收該校正參數並基於校正模型校正該空品檢測資訊。
根據本發明之一實施例,其中關於溫度及濕度的校正模型之生成方法包含:取得該空品監測站對於所在環境監測而得的溫濕度基準值、以及在相同位置之環境感測裝置所測得的溫溼度檢測值;建立溫溼度基準值和溫溼度檢測值之間的標定迴歸模型:溫溼度基準值(y)= α×溫溼度檢測值(x)+β;其中,α、β為校正參數;基於該標定迴歸模型進行線性擬合後獲得該些校正參數α、β;將校正參數α、β的資料寫入溫/濕度感測器中以建立校正模型如下:溫濕度校正值= α×溫溼度檢測值+β。
根據本發明之一實施例,其中關於空氣污染源濃度的校正模型之生成方法包含:取得該空品監測站對於所在環境監測而得的空氣污染源濃度基準值、溫濕度基準值、以及在相同位置之該環境感測裝置所測得的空氣污染源濃度測量值;按照多元線性迴歸公式,建立溫濕度基準值、空氣污染源濃度測量值和空氣污染源濃度基準值之間的標定迴歸模型:空氣品質基準值= β01 ×空氣汙染源濃度檢測值+β2 ×空品監測站所測得的溫度基準值+β3 ×空品監測站所測得的相對濕度基準值;其中,β0 、β1 、β2 、β3 為校正參數;基於該標定迴歸模型進行線性擬合後獲得該些校正參數β0 、β1 、β2 、β3 ;將該些校正參數的資料寫入該環境感測裝置中以建立校正模型:空氣汙染源濃度校正值= β0 + β1 ×空氣汙染源濃度檢測值+β2 ×溫度校正值+β3 ×相對濕度校正值。
根據本發明之一實施例,其中有關風速的校正模型之生成方法包含:取得該空品監測站對於所在環境監測而得的風速基準值、以及在相同位置之環境感測裝置所測得的風速測量值;按照線性迴歸公式,建立風速基準值和風速檢測值之間的標定迴歸模型:風速基準值(y)= γ×風速度檢測值(x)+ δ;其中,γ、δ為校正參數;基於該標定迴歸模型進行線性擬合後獲得該些校正參數γ、δ;將校正參數的資料寫入溫/濕度感測器中以建立校正模型:風速校正值= γ×風速檢測值+δ。
根據本發明之一實施例,其中有關空氣污染源濃度的校正模型之運算方法包含: 取得該空品監測站對於所在環境監測而得的空氣污染源濃度基準值、溫濕度基準值、風速基準值、以及在相同位置之該環境感測裝置所測得的空氣污染源濃度測量值;按照多元線性迴歸公式,建立溫濕度基準值、風速基準值、空氣污染源濃度測量值和空氣污染源濃度基準值之間的標定迴歸模型:空氣污染源濃度基準值= β01 ×空氣污染源濃度測量值+β2 ×空品監測站所測得的風速基準值+β3 ×空品監測站所測得的溫度基準值+β4 ×空品監測站所測得的相對濕度基準值;其中,β0 、β1 、β2 、β3 、β4 為校正參數;基於該標定迴歸模型進行線性擬合後獲得該些校正參數β0 、β1 、β2 、β3 、β4 ;將該些校正參數的資料寫入該環境感測裝置中以建立校正模型:空氣汙染源濃度校正值= β0 + β1 ×空氣汙染源濃度檢測值+β2 ×風速校正值+β3 ×溫度校正值+β4 ×相對濕度校正值。
根據本發明之一實施例,在上述空氣污染源濃度的校正模型之運算方法中,進一步包含將空氣汙染源濃度由低至高區分為複數個區段,並分別換算出在各該區段中的校正模型。
根據本發明之一實施例,其中該空氣污染源濃度感測器包含一光線發射器和一光線感測器、以及一光電轉換電路該光線發射器以光學式射出一預定光線於一樣本氣體,且該樣本氣體可包含多個懸浮微粒或者細懸浮微粒,以便在預定光線通過樣本氣體之細懸浮微粒時,造成預定光線產生一散射、一折射角度或一反射角度;該光線檢測器係一散射式檢測或依非散射式檢測方式的一光電二極體或光電晶體,光線檢測器相對配置於光線發射器之預定光線接收角度,用以量測預定光線之散射、折射或反射以獲得一光線量測值;光電轉換電路係用以將光線量測值轉換成一懸浮微粒量測值或者一細懸浮微粒量測值。
為了對本發明的技術特徵、目的和效果有更加清楚的理解,現對照附圖詳細說明本發明的具體實施方式。有關本發明之詳細說明及技術內容,配合圖式說明如下,然而所附圖式僅提供參考與說明用,並非用來對本創作加以限制者;而關於本發明之前述及其他技術內容、特點與功效,在以下配合參考圖式之各實施例的詳細說明中,將可清楚呈現,以下實施例所提到的方向用語,例如:「上」、「下」、「左」、「右」、「前」、「後」等,僅是參考附加圖示的方向。因此,使用的方向用語是用來說明,而並非用來限制本創作;再者,在下列各實施例中,相同或相似的元件將採用相同或相似的元件標號。
首先說明,本發明主要是一種提高環境感測裝置檢測精度的校正方法;請同時參考圖1及2,圖1為本發明之校正方法的流程示意圖,圖2為本發明之校正方法的系統運作架構示意圖。本發明之校正方法主要包括以下步驟S10~S60:
步驟S10:將欲校正之環境感測裝置10設置於於本國環保局或環保署所屬之任一個或多個空品監測站90,其中該環境感測裝置10外部具有用以顯示檢測數據的顯示屏幕以及用以收集氣體的樣本氣體採樣口。
在本實施例中,環境感測裝置10包含一檢測模組11、用以作為傳輸數據的一通訊模組12、用以作為地理位置資料確認的一定位模組13以及用以作為檢測精度校正的一校正模組14;其中檢測模組11具有能夠檢測多種污染氣體或懸浮微粒的空氣污染源濃度感測器150、檢測環境溫度及濕度的溫/溼度感測器160;空氣污染源濃度感測器150可以採樣空氣中汙染源至少包含一氮氧化合物濃度(NOx)、硫氧化物濃度(SOx)、一氧化碳濃度(CO)、二氧化碳濃度(CO2 )、臭氧濃度(O3 )、揮發性有機物質混合氣體濃度、懸浮微粒(PM10)以及細懸浮微粒濃度(PM2.5)之前述任意一者或兩者以上之組合。進一步說明,該些氣體濃度、PM2.5/PM10濃度以及空氣的溫度和相對濕度等各項參數採集的感測器集成在一個主機板上,組合成一部完整的環境感測裝置10,而該些感測器以及該些模組的連接方式,均可為插拔式(非焊接)的方式,以便利檢修、更換和現場安裝。
步驟S20:利用環境感測裝置10中的該些感測器針對外界之溫溼度以及空氣污染源進行檢測,通過定位模組13記錄環境感測裝置10之地理資訊並且對應從該些感應器獲得的檢測資訊,以整合產生對應於空品監測站90所在地理位置的一空品定位數據。關於環境感測裝置10中的該些感測器的檢測詳細資訊將於後續說明。
在本實施例中,檢測數據資料是由檢測模組11所量測溫溼度、外界空氣污染源以類比值之數據形式呈現,且經過檢測模組11之內建的轉換關係式運算轉換後而產生對應之檢測資訊,但不以此為限。轉換關係式基本上包含有一第一基準值、一第二基準值、一第一轉換係數以及一第二轉換係數。當所量測之類比值在第一基準值以下,所對應之檢測資訊等於類比值除以第一基準值後再乘以第一轉換係數。當所量測之類比值大於第一基準值且在第二基準值以下,所對應之檢測資訊等於類比值除以第二基準值與第一基準值的差值後再乘以第二轉換係數。
步驟S30:經由通訊模組12將空品定位數據傳至一雲端伺服器20,而雲端伺服器20經網路連線取得與該環境感測裝置10位置對應之空品監測站90的標準監測資訊。
承上所述,空品定位數據記錄有環境感測裝置10對應空品監測站90之地點的空品檢測資訊(包含溫溼度檢測值與空氣汙染源濃度檢測值)與地理資訊,而空品監測站90也會將對應之監測地的標準監測資訊(包含溫溼度基準值與空氣品質基準值)傳至雲端伺服器20,便於雲端伺服器20後續數據分析與比對運算。在本實施例中,雲端伺服器20收集空品定位數據與標準監測資訊累積一收集時間;其中收集時間為3天~30天,但不以此為限,也可依需求累積較長時間如:一個月或一季,以累積增加大數據分析的資料。另外,在該收集時間內的監測頻率一般為每隔一小時收集一次。
步驟S40:經由雲端伺服器20將空品定位數據與空品監測站90的標準監測資訊分析運算產生一校正模型,並基於該校正模型進行檢測精度校正,獲得校正後的該空品定位數據。
承上所述,將空品定位數據分別與對應之地點的標準監測資訊進行分析比對與運算而產生校正模型。也就是說,雲端伺服器20持續收集資料且累積收集時間後,並將空品定位數據配合對應地點之空品監測站90的標準監測資訊經過大數據分析運算產生校正數據。在本實施例中,雲端伺服器20先將某市某區之標準測站區分出各個區域範圍,再將每一區域範圍內的所收集到的標準監測資訊與空品定位數據,經過大數據分析配合校正運算方法以計算出校正模型。
步驟S50:在一校正時間內每隔一特定時間重複步驟S30及步驟S40,基於前一次校正後所得的該空品定位數據進行下一次的檢測精度校正。
本實施例中,校正時間可以為1天至7天之間,但不以此為限,也可以是配合收集時間或是依實際情形,延長或縮短校正時間。另外,在該校正時間內,雲端伺服器20會持續分析標準監測資訊及前一次校正後所得的該空品定位數據,並且每隔一小時或一日更新校正模型並傳送至校正模組14,進行下一次的檢測精度校正,藉以達到動態校正之作用。
步驟S60:將完成檢測精度校正後之環境感測裝置自空品監測站移至所需環境檢測之地點安置並啟用。
接著,以下說明上述步驟S40中之校正模型的產生方式。
首先說明關於溫/濕度感測器160的校正模型的產生方式,主要是通過線性迴歸(linear regression)來校正溫濕度,以分析探討單一自變項(x)及應變項(y)之間的關係,藉由迴歸模式的建立來預測應變項(y),如下式:
y =αx + β.....
其校正方式如下步驟:
(1) 取得溫濕度感測器160的溫溼度檢測值(自變項(x))以及空品監測站90所測得的溫溼度基準值(應變項(y));
(2) 按照線性迴歸公式,建立溫溼度基準值和溫溼度檢測值之間的標定迴歸模型如下: 溫溼度基準值(y)= α×溫溼度檢測值(x)+β;
(3)進行線性擬合後得到擬合直線以獲得校正參數α、β之數值;
(4) 將校正參數α、β的數值寫入該環境感測裝置10中,使該環境感測裝置10將該校正參數α、β代入校正模型如下,藉以獲得溫溼度校正值: 溫濕度校正值= α×溫溼度檢測值+β。
又,關於採樣空氣中之污染濃度的空氣污染源濃度感測器150的校正模型產生方式,主要是通過多元線性迴歸(Multiple regression analysis)來進行校正,將空品監測站90所測得的空氣品質基準值作為應變項(y)、環境感測裝置10的空氣汙染源濃度檢測值(總微粒量測值,包含懸浮微粒量測值以及細懸浮微粒量測值)以及氣象因子(溫溼度檢測值)作為自變項(x)之間的關係,藉由迴歸模式的建立,可以預測應變項(y),如下式: y = β0 + β1 x1 + β2 x2 +…+ βi xi i=1,2,3,….,i
其校正方式如下步驟:
(1)將在空品監測站90所偵測而得的空氣品質基準值作為應變項(y),並將該空品監測站90所測得的溫溼度基準值及環境感測裝置10的所測得的空氣汙染源濃度檢測值做為自變項(x);
(2) 按照多元線性迴歸公式,建立多筆環境檢測資料和基準值之間的標定迴歸模型如下: 空氣品質基準值= β01 ×空氣汙染源濃度檢測值+β2 ×空品監測站90所測得的溫度基準值+β3 ×空品監測站90所測得的相對濕度基準值。
(3) 進行線性擬合後得到擬合直線以獲得校正參數β0 、β1 、β2 、β3 之數值;
(4) 將校正參數β0 、β1 、β2 、β3 的數值寫入該環境感測裝置10中,使該環境感測裝置10將該校正參數β0 、β1 、β2 、β3 代入校正參數模型如下,藉以獲得空氣汙染源濃度校正值: 空氣汙染源濃度校正值= β0 + β1 ×空氣汙染源濃度檢測值+β2 ×溫度校正值+β3 ×相對濕度校正值。
另外,基於上述校正方法,本發明再提出另一實施例,其與上述實施例的差異主要在於環境感測裝置10更包含有一風速計(圖未示),該風速計與該校正模組14電性連接,與上述實施例相似部分在此不另行贅述。以下針對差異部分做說明,請參考圖3所示,在本實施例中,該校正方法包含步驟S10’~S60’:
步驟S10’:將欲校正之環境感測裝置10設置於於本國環保局或環保署所屬之任一個或多個空品監測站90,其中該環境感測裝置10外部具有用以顯示檢測數據的顯示屏幕以及用以收集氣體的樣本氣體採樣口。
步驟S20’:利用環境感測裝置10中的該些感測器針對外界之溫溼度、風速以及空氣污染源進行檢測,通過定位模組13記錄環境感測裝置10之地理資訊並且對應從該些感應器獲得的檢測資訊,以整合產生對應於空品監測站90所在地理位置的一空品定位數據。該空品定位數據記錄有環境感測裝置10對應空品監測站90之地點的空品檢測資訊(包含溫溼度檢測值、風速檢設值、及空氣汙染源濃度檢測值)與地理資訊。
步驟S30’:經由通訊模組12將空品定位數據傳至一雲端伺服器20,而雲端伺服器20經網路連線取得與該環境感測裝置10位置對應之空品監測站90的標準監測資訊(包含溫溼度基準值、風速基準值、及空氣品質基準值)。
步驟S40’:經由雲端伺服器20將空品定位數據與空品監測站90的標準監測資訊分析運算產生校正模型並傳送至校正模組14,並基於該校正模型進行檢測精度校正,獲得校正後的該空品定位數據。
步驟S50’:在一校正時間內每隔一特定時間重複步驟30’及步驟40’,基於前一次校正後所得的該空品定位數據進行下一次的檢測精度校正。
步驟S60’:將完成檢測精度校正後之環境感測裝置10自空品監測站移至所需環境檢測之地點安置並啟用。
接著,以下說明本實施例中步驟S40’中之校正模型的產生方式,其中溫溼度的校正方式與前述相同,在此不贅述,而風速值的校正方式說明如下步驟:
(1) 取得的環境感測裝置10所測得的風速檢測值(自變項(x))以及空品監測站90所測得的風速基準值(應變項(y));
(2) 按照線性迴歸公式,建立溫溼度基準值和溫溼度檢測值之間的標定迴歸模型如下: 風速基準值(y)= γ×風速檢測值(x)+δ;
(3)進行線性擬合後得到擬合直線以獲得校正參數γ、δ之數值;
(4) 將校正參數γ、δ的數值寫入該環境感測裝置10中,使該環境感測裝置10將該校正參數γ、δ代入校正參數模型如下,藉以獲得風速校正值: 風速校正值= γ×風速檢測值+δ,以求得風速校正值。
又,關於採樣空氣中之污染濃度的空氣污染源濃度感測器150的校正參數產生方式,主要是通過多元線性迴歸(Multiple regression analysis)來進行校正,將空品監測站90所測得的空氣品質基準值作為應變項(y)、環境感測裝置10的空氣汙染源濃度檢測值(總微粒量測值,包含懸浮微粒量測值以及細懸浮微粒量測值)以及氣象因子(溫溼度檢測值、風速檢測值)作為自變項(x)之間的關係,藉由迴歸模式的建立,可以預測應變項(y),如下式: y = β0 + β1 x1 + β2 x2 +…+ βi xi , i=1,2,3,….,i
其校正方式如下步驟:
(1)將在空品監測站90所偵測而得的空氣品質基準值作為應變項(y),並將該空品監測站90所測得的溫溼度基準值、風速基準值、及環境感測裝置10的所測得的空氣汙染源濃度檢測值做為自變項(x);
(2) 按照多元線性迴歸公式,建立多筆環境檢測資料和基準值之間的標定迴歸模型如下: 空氣品質基準值= β01 ×空氣汙染源濃度檢測值+β2 ×空品監測站90所測得的風速基準值+β3 ×空品監測站90所測得的溫度基準值+β4 ×空品監測站90所測得的相對濕度基準值。
(3) 進行線性擬合後得到擬合直線以獲得校正參數β0 、β1 、β2 、β3 、β4 之數值;
(4) 將校正參數β0 、β1 、β2 、β3 、β4 的數值寫入該環境感測裝置10中,使該環境感測裝置10將該校正參數β0 、β1 、β2 、β3 、β4 代入校正參數模型如下,藉以獲得空氣汙染源濃度校正值: 空氣汙染源濃度校正值= β0 + β1 ×空氣汙染源濃度檢測值+β2 ×風速校正值+β3 ×溫度校正值+β4 ×相對濕度校正值。
請參考下表1,其為將環境感測裝置(sensor1, sensor2…., sensor8)以本發明之校正方法進行校正後,在校正前/後的PM2.5濃度與空品監測站差異及相關性。該些環境感測裝置皆設置於苗栗測站,監測期間為2020年2月1日至2020年3月14日,以累積14天的每小時空品定位數據及每小時標準監測資訊建立校正模型, 並且每隔1小時進行校正。結果顯示校正前各環境感測裝置差異百分比皆高於20%,其中Sensor3的小時值及日均值與空品監測站之差異更分別高達51.7及51.2%,而再經由本發明之校正方法進行校正後,各環境感測裝置的差異百分比皆明顯下降且低於10%,R2 值也有顯著提升,日均值之R2 值皆高於0.90。
表1
環境感測裝置編號 PM2.5(μg/m3 )
空品監測站 環境感測裝置
校正前(差異百分比%)/R2 校正後(差異百分比%)/R2
Sensor1 小時值 18.05 26.19(45.1%)/0.80 18.89(4.6%)/0.84
日均值 18.11 26.21(44.8%)/0.90 18.93(4.5%)/0.94
Sensor2 小時值 18.05 26.61(47.5%)/0.72 19.18(6.2%)/0.81
日均值 18.11 26.63(47.1%)/0.88 19.22(6.1%)/0.93
Sensor3 小時值 18.05 27.37(51.7%)/0.79 19.83(9.9%)/0.84
日均值 18.11 27.38(51.2%)/0.89 19.87(9.7%)/0.93
Sensor4 小時值 18.05 24.67(36.7%)/0.78 17.93(-0.6%)/0.84
日均值 18.11 24.67(36.2%)/0.91 17.97(-0.8%)/0.95
Sensor5 小時值 18.05 25.76(42.7%)/0.82 18.96(5.0%)/0.85
日均值 18.11 25.79(42.4%)/0.91 19.01(5.0%)/0.95
Sensor6 小時值 18.05 24.08(33.5%)/0.82 17.40(-3.6%)/0.85
日均值 18.11 24.12(33.2%)/0.92 17.24(-4.8%)/0.96
Sensor7 小時值 18.05 22.16(22.8%)/0.81 16.47(-8.7%)/0.86
日均值 18.11 22.20(22.6%)/0.91 16.53(-8.7%)/0.95
Sensor8 小時值 18.05 22.23(23.2%)/0.80 16.46(-8.8%)/0.85
日均值 18.11 22.24(22.8%)/0.90 16.50(-8.9%)/0.94
又,在本發明的另一實施例中,空氣污染源濃度感測器150包含有一光線發射器110、一光線感測器120、以及一光電轉換電路130。其中光線發射器110可選擇為一紅外線模組、一雷射光模組、一發光二極體模組或者其它光線發射模組。光線發射器110以光學式射出一預定光線於一樣本氣體,且樣本氣體可包含多個細懸浮微粒(PM 2.5、PM 10),以便在預定光線通過樣本氣體之細懸浮微粒時,造成預定光線產生一散射、一折射角度或一反射角度。
承上所述,光線檢測器120可選擇散射式檢測或非散射式檢測的方式;例如光線檢測器120可為一光電二極體或光電晶體。光線檢測器120相對配置於光線發射器110之一預定光線接收角度,通過光線檢測器12來量測預定光線之散射、折射或反射,以獲得一光線量測值。進一步說明,光線發射器110以及光線檢測器120的組成即為一光學式檢測器,但其初步偵測值通常不精確,因此需要進一步校正。光電轉換電路可選擇一實體電路、虛擬電路 、可編輯邏輯晶片、可編輯電腦程式或具類似功能的元件。光電轉換電路130用以將光線量測值轉換成一懸浮微粒量測值/細懸浮微粒量測值。
根據本發明的技術思想,校正模組14包含有選自一實體電路、虛擬電路、可編輯邏輯晶片、可編輯電腦程式或具類似功能的元件。在前述實施例中,校正模組14是設置在環境感測裝置10之中,但並不以此為限;如圖4所示,校正模組14也可以設置在雲端伺服器20之中,並經由通訊模組12將校正後的空品檢測資訊傳送至該環境感測裝置10。
本發明之環境感測裝置10在工作溫度及工作濕度範圍內符合以下精度指標:
(1)工作原理:光學方式(光散射原理)量測不同粒徑微粒數量;
(2)測量範圍:1-500μg/m3
(3)輸出解析度:0.01μg/m3
(4)測量精度:器差中位數<30%;
(5)工作溫度:0-40 ℃;
(6)工作濕度:0-85% RH不結露;
(7)供電電源:5.0V;
(8)輸出方式:UART輸出。
關於溫濕度感測器採用數位式溫濕度一體化感測器,具有測量精度高,回應時間快,穩定性高等特點。
濕度測量:
(1)相對濕度測量範圍:0-100%RH;
(2)輸出解析度:0.03% RH;
(3)測量精度:<±5%RH;
(4)工作溫度範圍:-40-110 ℃;
(5)回應時間:5s;
(6)供電電源:3.0-5.0V;
(7)抗結露。
溫度測量:
(1)溫度測量範圍:-40~100℃;
(2)輸出解析度:0.016℃;
(3)測量精度:<±0.5 ℃;
(4)工作溫度範圍:-40~110 ℃;
(5)回應時間:1s;
(6) 供電電源:3.0-5.0V;
(7) 抗結露。
另外,根據本發明的技術思想,還可以將空氣汙染源濃度由低至高分為複數個區段,並分別換算出在各該區段中之空氣汙染源濃度的校正模型,藉以提高回歸擬合的精準度。
舉例來說,可以將PM2.5的濃度以5μg/m3 設定為分隔點,第一區段的PM2.5濃度為在1~5μg/m3 之間,第二區段的PM2.5濃度為大於5μg/m3 ,然後分別以落在第一區段及第二區段數值範圍內的空氣汙染源濃度檢測值、及空氣品質基準值與相關氣象因子進行線性擬合,進而獲得與第一區段相應的空氣汙染源濃度校正模型,以及與第二區段相應的空氣汙染源濃度校正模型。
又,本發明所述之環境感測裝置10中的各感測器、電子元件均應選擇低漂移係數的產品,從源頭消除長期工作或溫濕度影響造成的精度漂移問題,根據環境溫濕度變化,對採集的資料通過上述校正參數自動進行修正補償,保證檢測數據資料的準確性。
在本實施例中,通訊模組12可以具備有WIFI、乙太網、RS485、4G及藍芽5.0(bluetooth 5.0)中之至少一種以上的通訊介面:
(1)WIFI介面應支援網路通訊協定IEEE802.11 B/G/N和IEEE802.1X;支援絕大多數WIFI加密方式和演算法WEP/WAP-PSK/WAP2-PSK/WAPI;支援加密類型WEP64/WEP128/TKIP/AES;支持通訊協定MODBUS-TCP;故障檢測應具有WIFI連接自動監測功能,WIFI連接中斷儀器應能自動重啟,恢復連接。(2)乙太網介面為10/100M自我調整RJ45埠;支持通訊協定MODBUS-TCP。(3)RS485介面工作方式為半雙工;傳輸介質為雙絞線;傳輸距離≤1Km;串列傳輸速率為9600;通訊協定為MODBUS-RTU。
綜上所述,本發明提高環境感測裝置檢測精度的校正方法,藉由在多個空品監測站配置的環境感測裝置,配合定位產生對應空品定位數據,提供雲端伺服器經過一定蒐集資料時間並且分析運算處理而產生校正參數指令,能校正空品定位數據與標準監測資訊,以確保其準確性及公正性,並且在校正過程會持續更新校正模型進行動態校正,故確實能達成本發明之目的。
上面結合附圖對本發明的實施例進行了描述,但是本發明並不局限於上述的具體實施方式,上述的具體實施方式僅僅是示意性的,而不是限制性的,本領域的普通技術人員在本發明的啟示下,在不脫離本發明宗旨和申請專利範圍所保護的範圍情況下,還可做出很多形式,這些均屬於本發明的保護之內。
10:環境感測裝置 11:檢測模組 12:通訊模組 13:定位模組 14:校正模組 110:光線發射器 120:光線感測器 130:光電轉換電路 150:空氣污染源濃度感測器 160:溫/溼度感測器 20:雲端伺服器 90:空品監測站 S10~S60:流程步驟 S10’~S60’:流程步驟
圖1係顯示本發明一實施例中的流程示意圖。 圖2係顯示本發明一實施例中的系統運作架構示意圖。 圖3係顯示本發明另一實施例中的流程示意圖。 圖4係顯示本發明又一實施例中的系統運作架構示意圖。
S10~S60:流程步驟

Claims (10)

  1. 一種提高環境感測裝置檢測精度的校正方法,其包括: (a) 將欲校正之環境感測裝置設置於空品監測站中; (b) 經由該環境感測裝置針對外界環境進行檢測,並根據環境感測裝置之地理資訊及空品檢測資訊,整合產生對應於該空品監測站所在地理位置的一空品定位數據; (c) 經由一雲端伺服器經網路連線累積一收集時間內取得該空品定位數據、以及對應空品監測站之監測地的一標準監測資訊; (d) 經由雲端伺服器將該空品定位數據與該標準監測資訊經過分析運算產生一校正模型,並基於該校正模型進行檢測精度校正,獲得校正後的該空品定位數據; (e) 在一校正時間內每隔一特定時間重複步驟c及步驟d,基於前一次校正後所得的該空品定位數據進行下一次的檢測精度校正;以及 (f) 完成檢測精度校正後之環境感測裝置自空品監測站移至所需環境檢測之地點安置並啟用;其中 該空品檢測資訊為溫溼度檢測值、風速檢測值、及空氣污染源濃度檢測值中之至少一種。
  2. 如請求項1所記載之提高環境感測裝置檢測精度的校正方法,其中該雲端伺服器中設有一校正模組,該校正模組基於該校正模型校正該空品檢測資訊,並將校正後的該空品檢測資訊傳送至該環境感測裝置。
  3. 如請求項1所記載之提高環境感測裝置檢測精度的校正方法,其中該環境感測裝置包含: 一檢測模組,其係用以偵測環境並生成該空品檢測資訊; 一通訊模組,其係與該雲端伺服器通訊連接,用以傳輸數據; 一定位模組,其係與該通訊模組電性連接,用以確認地理位置並生成該地理資訊;以及 一校正模組,其係與該通訊模組電性連接,用以接收該校正模型並基於該校正模型校正該空品檢測資訊。
  4. 如請求項3所記載之提高環境感測裝置檢測精度的校正方法,其中該檢測模組包含有一空氣污染源濃度感測器,且該空氣污染源濃度感測器包含一光線發射器、一光線感測器、以及一光電轉換電路; 該光線發射器以光學式射出一預定光線於一樣本氣體,且該樣本氣體可包含多個懸浮微粒或者細懸浮微粒,以便在預定光線通過樣本氣體之細懸浮微粒時,造成預定光線產生一散射、一折射角度或一反射角度; 該光線檢測器係一散射式檢測或依非散射式檢測方式的一光電二極體或光電晶體,光線檢測器相對配置於光線發射器之預定光線接收角度,用以量測預定光線之散射、折射或反射以獲得一光線量測值; 該光電轉換電路係用以將光線量測值轉換成一懸浮微粒量測值或者一細懸浮微粒量測值。
  5. 如請求項2或3所記載之提高環境感測裝置檢測精度的校正方法,其中關於溫度及濕度的校正模型之生成方法包含: 取得該空品監測站對於所在環境監測而得的溫濕度基準值、以及在相同位置之環境感測裝置所測得的溫溼度檢測值; 建立溫溼度基準值和溫溼度檢測值之間的標定迴歸模型:溫溼度基準值(y)= α×溫溼度檢測值(x)+β;其中,α、β為校正參數; 基於該標定迴歸模型進行線性擬合後獲得該些校正參數α、β; 將校正參數α、β的資料寫入溫/濕度感測器中以建立校正模型如下: 溫濕度校正值= α×溫溼度檢測值+β。
  6. 如請求項5所記載之提高環境感測裝置檢測精度的校正方法,其中關於空氣污染源濃度的校正模型之生成方法包含: 取得該空品監測站對於所在環境監測而得的空氣污染源濃度基準值、溫濕度基準值、以及在相同位置之該環境感測裝置所測得的空氣污染源濃度測量值; 按照多元線性迴歸公式,建立溫濕度基準值、空氣污染源濃度測量值和空氣污染源濃度基準值之間的標定迴歸模型:空氣品質基準值= β01 ×空氣汙染源濃度檢測值+β2 ×空品監測站所測得的溫度基準值+β3 ×空品監測站所測得的相對濕度基準值;其中,β0 、β1 、β2 、β3 為校正參數; 基於該標定迴歸模型進行線性擬合後獲得該些校正參數β0 、β1 、β2 、β3 ; 將該些校正參數的資料寫入該環境感測裝置中以建立校正模型:空氣汙染源濃度校正值= β0 + β1 ×空氣汙染源濃度檢測值+β2 ×溫度校正值+β3 ×相對濕度校正值。
  7. 如請求項6所記載之提高環境感測裝置檢測精度的校正方法,其中進一步包含將空氣汙染源濃度由低至高分為複數個區段,並分別換算出在各該區段中的該校正模型。
  8. 如請求項5所記載之提高環境感測裝置檢測精度的校正方法,其中關於風速的校正模型之生成方法包含: 取得該空品監測站對於所在環境監測而得的風速基準值、以及在相同位置之環境感測裝置所測得的風速測量值; 按照線性迴歸公式,建立風速基準值和風速檢測值之間的標定迴歸模型:風速基準值(y)= γ×風速度檢測值(x)+ δ;其中,γ、δ為校正參數; 基於該標定迴歸模型進行線性擬合後獲得該些校正參數γ、δ; 將校正參數的資料寫入溫/濕度感測器中以建立校正模型:風速校正值= γ×風速檢測值+δ。
  9. 如請求項8所記載之提高環境感測裝置檢測精度的校正方法,其中關於空氣污染源濃度的校正模型之生成方法包含: 取得該空品監測站對於所在環境監測而得的空氣污染源濃度基準值、溫濕度基準值、風速基準值、以及在相同位置之該環境感測裝置所測得的空氣污染源濃度測量值; 按照多元線性迴歸公式,建立溫濕度基準值、風速基準值、空氣污染源濃度測量值和空氣污染源濃度基準值之間的標定迴歸模型:空氣污染源濃度基準值= β01 ×空氣污染源濃度測量值+β2 ×空品監測站所測得的風速基準值+β3 ×空品監測站所測得的溫度基準值+β4 ×空品監測站所測得的相對濕度基準值;其中,β0 、β1 、β2 、β3 、β4 為校正參數; 基於該標定迴歸模型進行線性擬合後獲得該些校正參數β0 、β1 、β2 、β3 、β4 ; 將該些校正參數的資料寫入該環境感測裝置中以建立校正模型:空氣汙染源濃度校正值= β0 + β1 ×空氣汙染源濃度檢測值+β2 ×風速校正值+β3 ×溫度校正值+β4 ×相對濕度校正值。
  10. 如請求項9所記載之提高環境感測裝置檢測精度的校正方法,其中進一步包含將空氣汙染源濃度由低至高分為複數個區段,並分別換算出在各該區段中的該校正模型。
TW109126220A 2020-08-03 2020-08-03 提高環境感測裝置檢測精度的校正方法 TW202206803A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109126220A TW202206803A (zh) 2020-08-03 2020-08-03 提高環境感測裝置檢測精度的校正方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109126220A TW202206803A (zh) 2020-08-03 2020-08-03 提高環境感測裝置檢測精度的校正方法

Publications (1)

Publication Number Publication Date
TW202206803A true TW202206803A (zh) 2022-02-16

Family

ID=81323551

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109126220A TW202206803A (zh) 2020-08-03 2020-08-03 提高環境感測裝置檢測精度的校正方法

Country Status (1)

Country Link
TW (1) TW202206803A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI802434B (zh) * 2022-06-08 2023-05-11 桓達科技股份有限公司 粉塵濃度訊號處理裝置及其訊號處理方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI802434B (zh) * 2022-06-08 2023-05-11 桓達科技股份有限公司 粉塵濃度訊號處理裝置及其訊號處理方法

Similar Documents

Publication Publication Date Title
Kelly et al. Ambient and laboratory evaluation of a low-cost particulate matter sensor
Cross et al. Use of electrochemical sensors for measurement of air pollution: correcting interference response and validating measurements
Holstius et al. Field calibrations of a low-cost aerosol sensor at a regulatory monitoring site in California
Borrego et al. Assessment of air quality microsensors versus reference methods: The EuNetAir joint exercise
Burkart et al. Characterizing the performance of two optical particle counters (Grimm OPC1. 108 and OPC1. 109) under urban aerosol conditions
Castell et al. Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates?
Papapostolou et al. Development of an environmental chamber for evaluating the performance of low-cost air quality sensors under controlled conditions
Birmili et al. Long-term observations of tropospheric particle number size distributions and equivalent black carbon mass concentrations in the German Ultrafine Aerosol Network (GUAN)
Gao et al. A distributed network of low-cost continuous reading sensors to measure spatiotemporal variations of PM2. 5 in Xi'an, China
Masiol et al. Hourly land-use regression models based on low-cost PM monitor data
CN205506621U (zh) 传感器组件
CN107655800B (zh) 一种pm2.5在线监测系统及其校核标定方法
CN205483924U (zh) 用于检测空气中细颗粒物浓度的系统
JP2013531244A5 (zh)
CN107505005A (zh) 工业园区环境空气质量监管系统
CN101354332A (zh) 具有湿度连续自动修正功能的激光粉尘检测仪及检测方法
KR20110121810A (ko) 미세입자 측정 데이터 보정 시스템 및 그 방법
CN107941666A (zh) 一种消除颗粒物的温湿度影响的动态校准方法及监测仪
Lotrecchianoa et al. Real-time on-road monitoring network of air quality
Javed et al. Performance evaluation of real-time DustTrak monitors for outdoor particulate mass measurements in a desert environment
CN107607449A (zh) 一种检测颗粒物质量浓度的装置及方法
WO2023207579A1 (zh) 基于超光谱遥感的痕量气体水平分布探测交通污染源方法
WO2020021343A1 (zh) 一种环境监测站数据可信度评价方法
TW202206803A (zh) 提高環境感測裝置檢測精度的校正方法
CN107884322A (zh) 一种消除颗粒物的化学组分影响的动态校准方法及监测仪