TW202206773A - 用於即時直接監測傳熱表面的表面結污和結垢之方法及裝置 - Google Patents

用於即時直接監測傳熱表面的表面結污和結垢之方法及裝置 Download PDF

Info

Publication number
TW202206773A
TW202206773A TW110110422A TW110110422A TW202206773A TW 202206773 A TW202206773 A TW 202206773A TW 110110422 A TW110110422 A TW 110110422A TW 110110422 A TW110110422 A TW 110110422A TW 202206773 A TW202206773 A TW 202206773A
Authority
TW
Taiwan
Prior art keywords
heat transfer
htsm
fouling
unit
heat
Prior art date
Application number
TW110110422A
Other languages
English (en)
Other versions
TWI764637B (zh
Inventor
安迪亞 拉哈戴安圖
穆罕默德 比拉 卡恩
Original Assignee
美商戽水車水科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商戽水車水科技股份有限公司 filed Critical 美商戽水車水科技股份有限公司
Publication of TW202206773A publication Critical patent/TW202206773A/zh
Application granted granted Critical
Publication of TWI764637B publication Critical patent/TWI764637B/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/008Monitoring fouling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2200/00Prediction; Simulation; Testing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction

Abstract

一種用於直接檢測和監測傳熱表面的結污、結垢、腐蝕和點蝕的傳熱表面監測(heat transfer surface monitoring, HTSM)系統和單元。該系統具有傳熱板(heat transfer plate, HTP),該傳熱板具有傳熱監測表面(heat transfer monitoring surface, HTMS)。該系統還包括側光式光導和用於照明該HTMS的光源、流體流動通道模組、加熱/冷卻模組、用於觀察HTMS的表面成像模組、以及系統控制器。對環境進行控制以模擬熱交換設備內的環境,從而指示熱交換設備內部的變化。與HTMS有關的信號輸出被用來作為指導以減輕與被監測的熱交換設備有關的問題。該系統還可以使用熱交換器圓柱管,該熱交換器圓柱管具有沿著該管的狹縫光導,並且該表面成像模組觀察熱交換器圓柱管的內表面。

Description

用於即時直接監測傳熱表面的表面結污和結垢之方法及裝置
本發明關於一種傳熱表面監測(heat transfer surface monitoring, HTSM)系統,並且更具體地關於一種用於直接檢測表面結污和礦物結垢之HTSM系統。
在各個行業中,熱交換設備之結污、礦物結垢和腐蝕係一具有挑戰性問題。因此,早期檢測結污、結垢和腐蝕的能力對於及時實施校正動作很重要。先前之方法(Holmes和Rohrback 1979年,Rhoades和Finley 1984年,Otake、Miyai等人1988年,Perkins、Waterman等人1993年,Winters、Stokes等人1993年,Tsou和Garey 1997年,Moon 1999年,Hays和Hoernle 2009年,Seida、Flocken等人2011年,Veau、Petit等人2014年,Chattoraj、Murcia等人2017年,Menn和Krimerman 2017年)一直依賴於基於例如傳熱係數的計算的間接結污/結垢/腐蝕檢測方法,該等傳熱係數基於被監測的熱交換設備的溫度測量值和流量測量值來確定。替代性方法包括使用預先稱重的腐蝕試樣和安裝在試樣架中的被測金屬帶。例如,腐蝕試樣可以用於藉由將初始重量與暴露於系統中的水規定的一段時間(例如,60天、90天或120天)後之重量進行比較來估計金屬腐蝕之速率。然而,迄今為止,對加熱的/冷卻的傳熱表面進行直接且即時的光學和光譜監測以進行結污/結垢/腐蝕檢測的做法既未在科學文獻中報導也沒有商業上之應用。
已經進行了各種嘗試來對抗結污和結垢。例如,在礦物結垢的情況下,防垢劑被用於延緩礦物鹽成核和生長,並添加額外的添加劑以促進礦物沈澱物在主體溶液中之懸浮。然而,由於難以在內部觀察運行中的熱交換設備的結垢,因此在人們確定需要使用防垢劑之前就發生了系統損壞之情況。在某些情況下,藉由使用供給到水流的分散劑添加劑可以減少對由於顆粒物質的沈積導致的結污之預防。同樣地,對供給到熱交換設備的水進行預處理(例如,藉由添加水處理化學品或過濾)可以降低由於顆粒和生物污染物導致的設備結污傾向。減輕措施還可以包括但不限於調節供給流速和壓力以及防垢劑劑量。
已經提出了各種方法來即時檢測熱交換設備的礦物結垢和結污。大多數提出之方法依賴於膜結污和結垢的總體和間接測量(比如由於結垢或腐蝕導致的增加或減少)。該等方法不能提供結垢和腐蝕的早期檢測,並且不能用於確定發生的結垢/結污之類型。之前的系統和方法沒有充分解決產業對早期檢測之需求,因為在進行肯定的結垢或結污檢測之前,它們通常需要結垢或污染物沈積物的高表面負荷。上述方法也沒有提供對傳熱表面上污染物或結垢的類型之直接識別,也沒有對非原位傳熱單元中的膜表面或直接對傳熱設備元件進行表面成像。
由於至少上述缺點,仍然需要改進的傳熱表面監測系統、單元及方法。
本發明關於一種用於直接和明確地檢測傳熱表面的結污和礦物結垢之新穎傳熱表面監測(heat transfer surface monitoring, HTSM)系統。簡而言之,該HTSM系統可以用於監測任何傳熱系統中之結污或礦物結垢。HTSM使用可見光、UV光或IR光源來提供傳熱表面的即時表面影像。即時分析表面影像以提供關於傳熱表面上的結污/結垢覆蓋的發展、污染物和結垢的類別的識別、標識由於腐蝕和點蝕導致的物理表面變化、以及量化在被監測的熱交換設備的操作週期期間結污/結垢的變化的一系列定量度量。然後,可以利用與結污/礦物/腐蝕度量相關的數位或類比信號之定量輸出來指導熱交換設備操作員確立和觸發用於減輕結污/結垢之適當策略。
例如,結污/結垢的早期檢測可以用於向設備控制系統發送信號(或警告設備操作員)以觸發結垢減輕動作,比如調節給水的pH、調節結垢抑制劑(即,防垢劑)、分散劑和生物殺滅劑的化學劑量;調節用於去除結污和結垢先質的供給預處理操作的操作條件、用合適的清洗溶液清洗傳熱表面、以及調節操作壓力或供給流速。該HTSM系統係完全自動化的並且可以作為線上即時熱交換系統監測器或以獨立模式操作以用於診斷任務(例如,熱交換表徵和對操作條件、防垢劑和傳熱清洗化學品的效果的評估)。本發明提供了一種用於即時監測傳熱表面之優越方法,該方法生成礦物結垢/結污的類型和嚴重程度的定量度量來用於熱交換設備以實現資訊化傳熱表面監測和穩健的回饋控制。
本發明有利地使用側光式光導和邊緣照明光源而不是反射鏡來引導光平行於傳熱板,從而減少來自光源的雜散光以提高由影像擷取裝置捕獲的影像之品質。藉由使用側光式光導和照明光源而不是反射鏡,賦予了許多優點,比如相對光和光學成像部件隨時間的結構變化被最小化以及傳熱表面的更精確的視覺和光譜資料分析。
本發明還介紹了一種獨特之方法,該方法藉由使用圓周光導(垂直於熱交換管道中水流的流動方向)來為管狀發光管道引入光照。另一種光照佈置係經由沿熱交換流動管道處的流動方向之水平光導。該等光導佈置可以被結合到同一監測系統中以允許用於熱交換結污、結垢和腐蝕/點蝕成像的表面光照之靈活性。
在本發明之一個方面,存在一種用於監測傳熱表面的結垢、結污、點蝕和腐蝕的傳熱表面監測單元。該單元具有傳熱板,該傳熱板在流體入口供給側具有第一表面。該單元還包括側光式光導,該側光式光導具有形成流體流動通道的孔,該傳熱板鄰近該側光式光導定位並覆蓋該孔。該側光式光導由透明或半透明材料構成以照明該傳熱板之第一表面。該側光式光導連接到鄰近該側光式光導的邊緣照明光源,該邊緣照明光源可操作以照明該側光式光導,從而提供實質上平行於該傳熱板的照明並且允許觀察者觀察該傳熱板的第一表面上的結垢、結污、點蝕和腐蝕。
該單元還包括流體流動通道模組,該流體流動通道模組具有流體流動通道模組支撐塊、在該流體流動通道支撐塊內的光學窗口,該光學窗口用於觀察該傳熱板。該流體流動通道包括流體入口管道和流體出口管道,該流體入口管道用於使流體流進入該流體流動通道模組內,該流體出口管道用於使該流體流從該流體流動通道模組離開。
該單元還包括加熱/冷卻模組,該加熱/冷卻模組能夠將熱量傳遞到該傳熱板。該加熱/冷卻模組具有加熱/冷卻支撐塊和加熱/冷卻元件,該加熱/冷卻元件能夠進行溫度控制。該加熱/冷卻支撐塊能夠在該加熱/冷卻元件與該傳熱板之間傳導熱量。
在本發明之另一個方面,存在一種用於監測傳熱表面的結垢、結污、點蝕和腐蝕之系統。該系統包括上述HTSM單元以及具有成像部件(比如相機和鏡頭)之表面成像模組。在一些實施方式中,該等成像部件可以使用無鏡頭影像擷取裝置。該表面成像模組相對於該HTSM被配置和定位以便可操作以:捕獲該單元的傳熱板的第一表面的表面的影像和反射光譜中的至少一者,並且產生指示所捕獲的影像和反射光譜中的至少一者的影像資料信號和光譜信號中的至少一者。該傳熱監測系統還在整個系統內包括影像處理系統,該影像處理系統可操作地連結到該表面成像模組以便從其接收該影像資料信號。該影像處理系統分析該影像資料信號以便提供該傳熱板上的結垢、結污、腐蝕和點蝕中的至少一者的程度的指示。該系統還包括系統控制器,該系統控制器可操作以控制以下各項中的至少一項:照明;影像捕獲;光譜捕獲;影像資料管理;影像分析;外部資料通信;流體入口供給側的入口流速和壓力,以使其等於或約為被監測的熱交換設備的流速和壓力。
在本發明之又另一個方面,存在一種具有熱交換器圓柱管的HTSM單元,該熱交換器圓柱管具有可觀察內表面。該單元具有光導,該光導用於允許光從該熱交換器圓柱管的外部進入以照明該可觀察內表面。光源連接到該光導,以照明該熱交換器圓柱管的可觀察內表面。流體入口管道被定位成允許流體進入該熱交換器圓柱管內,並且流體出口管道被定位成允許流體離開該熱交換器圓柱管。表面成像模組被固定到該熱交換器圓柱管並且被定位在光學窗口上方以觀察該熱交換器圓柱管的可觀察內表面。在該單元的一個方面,加熱元件被周向地安裝在HTSM單元中的熱交換器管的片段或整個熱交換器管的上方。
在一個方面,該光導係定位在該熱交換器圓柱管的縱向端處的透明側窗,並且該光源鄰近該透明側窗定位以實現該管的可觀察內表面的低角度照明。在另一個方面,該光導係被結合在該熱交換器圓柱管的壁的外周內的狹縫光導,並且延伸穿過該壁使得該狹縫光導允許光穿過從而到達該熱交換器圓柱管的內部,以照明該管的可觀察內表面。該光源還可以沿著該熱交換器圓柱管的內表面定位。
在本發明之又另一個方面,存在一種用於監測傳熱表面的結污、結垢、腐蝕和點蝕之方法。該方法包括:提供如前所述之HTSM單元;使流體進入流穿過該傳熱板的第一表面;從該傳熱板的第一表面的被照明部分收集視覺資料 將該等收集的視覺資料傳送到影像處理系統;以及利用該影像處理系統來解釋該等收集的視覺資料以確定結污、結垢、腐蝕和點蝕之程度。
現在將在下文中參考附圖對本發明進行更全面的描述,在附圖中,示出了本發明之實施方式。然而,本發明可以被實施為許多不同的形式並且不應被解釋為局限於本文闡述的實施方式。相反,提供該等實施方式從而使得本揭露將是詳盡且完整的,並且將向熟悉該項技術者充分地傳達本發明之範圍。
應當理解,當一個元件被稱為「在」另一個元件上時,它可以直接在另一個元件上或者其間可以存在中間元件。如本文所使用的,術語「和/或」包括相關聯的列舉項目中的一個或多個的任何和所有組合。
應當理解,儘管本文可以使用術語第一、第二、第三等來描述各種元件、部件、區域、層和/或部分,但是該等元件、部件、區域、層和/或部分不應該受該等術語的限制。該等術語僅用於區分一個元件、部件、區域、層和/或部分與另一個元件、部件、區域、層和/或部分。
應當理解,附圖中描繪的元件、部件、區域、層和部分不一定按比例繪製。
本文所使用的術語僅用於描述特定實施方式,並且不旨在限制本發明。如本文所使用的,單數形式「一個(a)」、「一個(an)」和「該(the)」旨在也包括複數形式,除非上下文另有明確指示。應當進一步理解,當在本說明書中使用時,術語「包括(comprises)」和/或「包括(comprising)」或者「包括(includes)」和/或「包括(including)」指定所述特徵、區域、整數、步驟、操作、元件和/或部件的存在,但不排除一個或多個其他特徵、區域、整數、步驟、操作、元件、部件和/或其組的存在或添加。
此外,本文可以使用比如「下(lower)」或「底部(bottom)」、「上(upper)」或「頂部(top)」、「左(left)」或「右(right)」、「上(above)」或「下(below)」、「前(front)」或「後(rear)」等相對術語來描述如附圖中所描繪的一個元件與另一個元件的關係。應當理解,相對術語旨在包括除了附圖中描繪的取向之外的設備的不同取向。
除非另有定義,否則本文使用的所有術語具有與本發明所屬領域的普通技術人員通常理解的相同含義。應當進一步理解,比如常用詞典中定義的術語等術語應被解釋為具有與其在相關技術和本揭露的上下文中的含義一致的含義,並且除非本文明確定義,否則不會被解釋為理想化或過於正式的含義。
本文參考本發明之理想化實施方式描述了本發明之示例性實施方式。因此,由於例如製造技術和/或公差的原因,圖中形狀之變化係可以預料的。因此,本發明之實施方式不應被解釋為局限於本文所展示的區域之特定形狀,而是包括例如由製造導致的形狀偏差。本文說明性地揭露的本發明可以在不存在本文具體揭露的任何元件之情況下適當地實施。
本發明係能夠在加熱或冷卻操作期間即時直接監測傳熱表面之傳熱表面監測(heat transfer surface monitoring, HTSM)系統26。藉由以模擬被監測的熱交換設備片段(例如,表面冷凝器的冷卻水離開區域,該表面冷凝器通常是水冷殼管式熱交換器,其被安裝用於冷凝來自熱電站中的汽輪機的排出蒸汽條件的流體動力學條件和傳熱條件來操作HTSM系統(26),該HTSM系統可以充當用於熱交換設備的表面結污、結垢或腐蝕的非原位監測器。
轉向附圖,圖1描繪了HTSM系統26的一個示意性實施方式。HTSM系統26包括:HTSM單元10,該HTSM單元具有流體流動單元模組102、表面成像模組44、加熱/冷卻模組104、視覺上可觀察的傳熱板16;系統控制器12;用於HTP 16的溫度探測器/傳送器TT-1;流量計FT-1以及流量控制閥CV。
HTSM系統26還可以包括供給溫度傳送器TT-2、熱通量感測器HF-1、入口壓力感測器/傳送器PT-1、加熱/冷卻溫度傳送器TT-3、出口流溫度感測器/傳送器TT-4以及傳導率傳送器CT-1。加壓入口流14被供給到HTSM單元10,並且在單元10中,供給流接觸到傳熱板(heat transfer plate, HTP),在該傳熱板的流-固介面發生傳熱。該等感測器/傳送器可用於即時表徵HTSM單元10中的傳熱性能(即,傳熱通量、傳熱係數)。
HTSM單元10整合了表面照明和成像部件(參見圖4)以實現對傳熱板16的傳熱板第一表面106的直接即時視覺化。過程/系統控制器12控制HTSM單元10中的成像和照明操作,包括照明選擇(當利用多種類型的光源時,即可見光、UV光或IR光)、定時、強度、影像捕獲觸發、影像資料管理、影像分析和外部資料通信100。為了將透過HTSM流體流動單元102的流體流動速度調節為約為被監測的熱交換設備片段的流體流動速度,可以在HTSM單元10的入口流14或出口流108處裝配控制閥(control valve, CV)。
系統控制器12向流速提供回饋控制輸入,並且基於經由流量計(FT-1)的流體流動的測量值和設定點值來操縱控制閥(control valve, CV)致動器。HTSM系統26利用加熱/冷卻模組104來控制HTP 16的溫度。因此,透過HTP 16的傳熱速率允許HTSM系統26模擬被監測的熱交換設備片段中的傳熱條件。
轉向圖2A、圖2B和圖2C,HTSM系統26可以以各種方式實施。圖2A和圖2B描繪了用於即時監測熱交換設備100(比如,如發電站中發現的具有傳熱表面112的被監測的表面冷凝器110)中的傳熱表面結污和/或結垢的HTSM系統26之常見實施方式。在上述兩種情況中的每種情況中,HTSM系統26從表面冷凝器112的熱交換設備110的被監測片段被供給加壓的入口側流114(即,具有足夠小的供給流速以使對被監測的熱交換設備操作的影響最小化)。圖2A描繪了示出了在冷凝器110的(冷側)水入口14處的用於監測傳熱表面冷凝器112結污的元件之示意圖。在該實施方式中,HTSM系統26從表面冷凝器110冷卻水入口(即,從採樣點1(SP1);圖2A)被供給側流14。HTSM系統26內的條件與表面冷凝器110的熱交換設備元件片段內的條件基本相似。因此,發生在HTSM系統26內的任何結污、結垢和腐蝕或點蝕也可能發生在被監測的熱交換設備110中。
為了監測在被監測的熱交換設備110的(熱側)水出口108處之結污、結垢、點蝕和腐蝕,HTSM系統26從熱交換設備100(即,從採樣點2 (SP2);圖2B)被供給出口側流116。
在圖2A或圖2B的實施方式中,HTSM系統26可以用於相對於結污/礦物結垢或表面腐蝕的開始來通知表面冷凝器112之操作狀態。這使得熱交換設備操作員(或自動控制系統)能夠適當調節表面冷凝器112的操作條件(例如,增加流體速度、減少冷卻水溫度增加、調節pH、結垢/腐蝕抑制劑劑量、化學品劑量等),以避免延長的或不受控制的傳熱表面冷凝器112的結污/礦物結垢或腐蝕條件之破壞性影響。流體在穿過HTSM系統26之後可以比如透過排放口118被排出。
除了用於即時監測工業熱交換設備的部署(圖2A至圖2B)之外,HTSM系統26還可以被配置為與連接到水箱122的外部供給泵32和小型熱交換器120一起操作之獨立系統,如圖2C所示。例如,該配置可以用於評價與給定水源水或熱交換表面類型相關聯的結污或礦物結垢或腐蝕趨勢,評估結污/礦物結垢/腐蝕減輕方法(例如,使用結垢/腐蝕抑制劑、調節pH、陽極/陰極保護等)的效果,評估供給預處理的有效性,以及評價冷卻水環路操作的濃縮倍數極限。
相對於被監測的熱交換設備片段110中存在的傳熱速率(例如,參見圖2a至圖2b),透過HTSM單元10中的HTP 16的傳熱速率可以經由加熱/冷卻模組104(即,用於控制HTP 16的溫度)和流體流動控制閥(control valve, CV)(即,用於控制平行於HTP 16的流體流動速度)二者來調節。HTP 16的第一表面106的結污和礦物結垢的驅動力同樣受HTP 16的溫度和流體流動速度控制。因此,本實施方式的方面係為了確保進入HTSM單元10的流體溫度保持與被監測的熱交換器設備110片段中的溫度相同(即,藉由使用適當的隔熱材料以及使側流114、116的管道長度最小化)。此外,在流體動力學相似和傳熱相似的條件下,HTSM單元10中的結污/礦物結垢和腐蝕應代表發生在被監測的熱交換設備片段110中的結污/礦物結垢和腐蝕。在HTSM單元10中的流動通道的幾何形狀與設備中被監測的熱交換器流體通道124(例如,管)片段的幾何形狀相同或緊密匹配的特殊情況下,平均流體流速和/或雷諾數也可以是匹配的,從而提供了幾何形狀相似和流體動力學相似。然後,傳熱相似可以藉由另外將HTSM單元10的傳熱板16的溫度匹配為被監測的熱交換設備片段110的傳熱表面冷凝器112中之溫度來實現。
轉向圖3,HTSM系統26被示出為在熱交換器設備100的片段中的(冷側)冷卻水出口108的出口處用於監測結污,比如在發電站表面冷凝器中發現之結污(即,與圖2b中的配置相同)。HTSM系統26經由出口側流管道116被供給從冷凝器110的冷卻水出口108獲取的冷卻水。冷卻水以進入到HTSM單元10之前測量的溫度進入HTSM單元10。在HTSM單元10中,冷卻水供給流經具有與表面冷凝器112(例如,熱交換器管)相同的冶金學的傳熱板16(其可以是平坦的或彎曲的)上方,相對於被監測的熱交換器表面片段(在本案中,為冷卻水出口片段108)被加熱到給定的溫度。傳熱板16(如圖4a至圖4c中更詳細示出的)的加熱係藉由受HTSM系統控制器12控制的加熱/冷卻元件126基於傳熱板16的溫度來完成的。透過傳熱板16的熱通量可以使用合適的熱通量感測器(HF-1)來測量。HTSM系統26裝配有由控制器12控制的控制閥(control valve, CV),以便調節進入HTSM單元10之流速(如由流量計FT-1測量的)。在一個實施方式中,透過側流管道116的流速顯著小於冷凝器110的冷卻水出口流108中的總流速。來自HTSM系統26的出口流不會返回到冷凝器110的冷卻水流14,而是它會根據需要經由進入排放口118的管線被排出或者被引導到設備中之適當位置。重要的是,進入的冷卻水的溫度不會隨著其流入HTSM單元10而改變(如由溫度感測器TT-1測量的),並且因此,藉由為出口側流116設置最優管道長度和合適的隔熱,熱量損失被最小化。 傳熱表面監測單元
轉向圖4A至圖4C,本發明之中心部件係傳熱表面監測(heat transfer surface monitoring, HTSM)單元10。在一個實施方式中,HTSM 10單元結合了四個模組(圖4a):a) 表面成像模組44,b) 流體流動通道模組102,c) 加熱/冷卻模組104,以及d) 邊緣照明/光源62。
如圖4A至圖4C所示,供給流體透過流體流動通道模組支撐塊68的入口管道52流入流動通道42,與加熱/冷卻模組104中的傳熱板16的第一表面106接觸並透過流體流動通道模組支撐塊68的出口管道54離開。透明的側光式光導60既用於形成流動通道42結構又使用邊緣照明/光源62來實現平行於傳熱板106的第一表面的側面照明。側光式光導62可以被製成實質上任何希望的厚度以將希望的流體流動通道高度設置為任何預定尺寸。因此藉由調節側光式光導的尺寸(比如高度和寬度),能夠將流體通道調節為具有任何數量之預定尺寸。透明部分充當流體流動通道模組102中的光學窗口64,該光學窗口允許使用表面成像模組44中的成像部件20 (比如CCD相機66和鏡頭82)直接即時觀察到傳熱板106的第一表面。任何足夠強度的光源可以用於邊緣照明,範圍從例如可見光LED到各種波長(例如,(多個)特定可見顏色範圍、紫外、紅外)的LED。可以利用表面成像模組44中的任何成像裝置(相機鏡頭、無鏡頭相機、影像感測器),範圍從宏觀成像、高放大倍率的光學顯微鏡到光譜成像(例如,紫外、可見、紅外)和無鏡頭影像感測器。在一個實施方式中,表面成像模組44具有能夠觀察傳熱板106的第一表面並對其成像的CCD相機66和鏡頭82。金屬夾具84用於將流體流動通道模組102壓緊在加熱/冷卻模組104頂部。加熱/冷卻模組104包含被設計用於使用加熱/冷卻元件126使傳熱板16達到並保持在目標溫度之部件。具體而言,傳熱板16被置於導熱傳熱介質128上進行熱接觸(例如,經由適當的熱膠薄層),由低導熱性材料製成的不透明的加熱/冷卻支撐塊130支撐。在傳熱介質128的底部設置有組合熱通量-溫度感測器132,以便測量透過傳熱板16和傳熱介質128的熱通量,並監測傳熱板16和傳熱介質128之溫度。傳熱介質128藉由加熱/冷卻板134和與加熱/冷卻板相關聯的加熱/冷卻元件126被加熱/冷卻,加熱/冷卻板和加熱/冷卻元件都覆蓋有適當之隔熱材料136。
由於流體透過流動通道42,所以流體可以使與流體相接觸的傳熱板16發生結污、結垢、點蝕和/或腐蝕。由於光源62對傳熱板106的第一表面的照明,可以藉由表面成像模組44觀察到監測系統中傳熱表面的結污或結垢以及由於傳熱板表面16的腐蝕/點蝕導致的其他表面變化,如以下部分進一步詳細描述的。
如圖4a至圖4c所示,HTSM單元10可以使用矩形形狀的流動通道,該流動通道使用矩形形狀之傳熱板16。然而,可以設想不背離本發明精神的其他形狀之流動通道。例如,在圖11至圖14中展示了使用熱交換圓柱管200的圓柱形HTSM單元(即,熱交換器圓柱管片段200)。在這種情況下,使用與被監測的熱交換系統110中的相同類型(幾何形狀和冶金學)的熱交換圓柱管200片段,從而允許熱交換器管片段200模擬被監測的熱交換器系統110。如圖11所示,圓柱管200可以裝配有形成入口端口和出口端口144的流體入口管道52和流體出口管道54,以使冷卻水能夠流入和流出管單元200。在入口端口52與出口端口54之間的某一位置,可以裝配透明窗口64以使得能夠經由管的可觀察內表面140的一部分的成像模組44進行成像,以用於即時的結污/結垢/腐蝕檢測和監測。 表面照明和光導
傳熱表面監測系統中的增強表面成像的主要原理對之前開發的國際申請案號PCT/US 2018/028823中的用於即時監測反滲透(reverse osmosis, RO)膜表面之方法進行了延伸,該國際申請由Rahardianto和Bilal提交,並且其出於所有目的藉由援引以其全文併入本文。
該方法依賴於特定的照明,這種照明將光路引導到傳熱板16的第一表面106的正上方但是處於或接近(即,低角度)平行之取向。使用這種方法,在第一表面106上形成的任何對象突出到光路中,導致朝向相機的光散射(藉由傳熱板16上方的光學窗口64觀察),從而可以捕獲高對比(傳熱板16上的對象85與傳熱表面106背景之間)影像。對象85可以是結垢或結污,但是成像還可以觀察到由於點蝕和腐蝕導致的傳熱板的表面變化。這種照明技術通常被稱為低角度或暗場照明,通常用於增強對象與背景表面之間的對比度。在將這種照明技術應用於加熱/冷卻操作期間的即時傳熱表面監測時,主要的技術挑戰係如何在加壓的加熱/冷卻條件下操作的傳熱表面上方提供平行/低角度照明。
在本發明中,照明挑戰的解決方案係利用夾緊在不透明支撐塊68、130之間的透明側光式光導60 (參見圖5和圖6)。光導60中段的側光式光導孔(開口) 72形成流體流動通道42,該流體流動通道可以形成為具有定製的通道厚度以便滿足與被監測的熱交換器設備110的希望的流體動力學雷諾數相似。可以藉由在光導60內構造錐形表面或梯度74來使入口管道區域52/出口管道區域54處的流動干擾最小化。透明側光式光導60之功能包括:a) 形成流體流動通道42結構以隔離流體流動通道42中的加壓流體,並利用適當的密封件76防止洩露,b) 夾緊傳熱板16,使其固定在傳熱介質128上方,c) 固持不透明支撐塊68,該不透明支撐塊也充當光學窗口64的框架,以及d) 使得能夠使用直接(即,沒有鏡面反射)邊緣照明/光源62有效傳輸光以照明流體流動通道42。
光導60與不透明支撐結構68結合;確保光路相對於傳熱板16的表面處於或接近平行取向,從而使雜散光最小化並且使傳熱板106的第一表面上的對象85與背景傳熱表面之間的對比度最大化。使未被表面對象覆蓋的區域(即,傳熱板16的乾淨區域)中垂直於傳熱表面106的光路(即,雜散光)最小化對於確保表面對象85(尤其是透明對象)與傳熱表面106之間的增強成像和良好對比度至關重要。同樣重要的是,在裝配後設置最少的情況下獲得均勻照明。儘管光導60可以由任何透明材料製成,但是今天在市場上可獲得的部件即由丙烯酸(由分散的光漫射顆粒(比如Lucitelux LGP或Acrylite Endlighten)配製而成)製成的塑膠側光式光導60係目前較佳的,因為它在邊緣照明/光源62取向的調節最少的情況下最好地在整個流動通道42中提供均勻照明。設置有光導螺栓孔86,以允許夾緊流體流動通道模組102和加熱/冷卻模組104。設置有光導對準孔138,以使用連接構件(比如定位銷)將光導60與流體流動通道模組102和加熱/冷卻模組104對準。
在圖11所示出的實施方式中,光源62位於兩個透明側窗142的外部,以對內管的可觀察表面140進行低角度照明。該等光源62被裝配在管單元200的兩端以實現對管的可觀察內表面140的低角度照明,從而增強管的內表面140與表面沈積物或點蝕之間的對比度。在該實施方式中,管的可觀察內表面140在不需要額外的傳熱板16(比如圖4B、圖4C、圖7所示的傳熱板16)的情況下模擬熱交換系統110內的表面,因為熱交換器圓柱管200模擬被監測的熱交換器設備110的環境。在該單元的一個方面,加熱/冷卻元件126被周向地安裝在熱交換器圓柱管200的片段或整個熱交換器圓柱管的上方,提供對熱交換器圓柱管200中的傳熱環境之額外控制。在圖12至圖14中示出了不使用單獨的傳熱板16的其他實施方式。
特別地,在圖12至圖14中,HTSM配置中的光源係水平或周向光源146,定位在管的被監測內表面140的正上方或附近的狹縫148處。該等光源146可以被置於熱交換管200的壁中,如圖12所示。照明區域的定位可以是沿著管200的圓周的、在被監測表面區域(如在圖12的管部的底部處所示的)上方之任何部分。與圖4、圖6和圖7所示的實施方式相比,圖12中的光導係側光式光導,該等光導被示出為圖13和圖14中之狹縫光導148。該等狹縫光導148可以沿所示出的管200被定位在任何希望的部分,並且與圖4a至圖4c和圖7的實施方式相比,狹縫光導148沒有形成流動通道。而是,狹縫光導148被整合在管200壁內,在該壁中可以附接光源146(比如LED)。狹縫光導148可以被結合在熱交換器圓柱管200的壁的外圓周內,並且可以延伸到熱交換器圓柱管200之內周圓中。這允許光照明可觀察內表面。可以經由以上段落所述之方法發生流入和流出管200之流動。
為了將管皮(skin)保持在希望的溫度,熱交換器圓柱管200被封裝在加熱/冷卻元件126(例如水套、柔性加熱元件等)中。在此以及貫穿本說明書,加熱/冷卻元件126可以是僅能加熱的元件,或者可以是既能加熱又能夠冷卻鄰近結構之元件。熱通量和/或溫度感測器132可以被置於直接跨越管的可觀察內表面140的管部分處,該感測器可以用於測量熱交換器圓柱管200之溫度和熱通量。
應當注意,流入和流出管的流動可以是如圖11至圖14所示出的,或者在移除了入口管道端口52/出口管道端口54的情況下,流動從左到右直接透過管200之開口。同樣地,除了透過透明窗口進行直接表面成像之外,還可以利用光纖成像系統來對管的可觀察內表面140成像。 單元組裝
傳熱表面監測(heat transfer surface monitoring, HTSM)單元10的實施方式的示例在圖7中以剖面圖示出,該圖係圖4c的分解視圖。在這種配置中,三個獨立的模組整合在一起並形成一個完整的裝置。在圖8中,HTSM單元10係被構建為盒88的裝置,該盒可以是可移除盒88,可以容易地移除和更換,而不影響照明系統光源62或表面成像模組44之定位。 影像分析
來自HTSM單元10的表面影像的示例。對於HTSM的情況,以較低和不斷降低的流速操作會導致傳熱表面上的材料沈積物增加,如圖11a所示,其中沈積物從第0天到第3天到第6天在不斷增加。在圖11a中,板由海軍黃銅製成,該板的溫度為95°F,並且平均流速從7 ft/s降到1.5 ft/s(約為2.13 m/s到0.46 m/s)。在圖11b中,傳熱板16由鈦製成,該板的溫度為115°F(46°C),並且平均流速從3 ft/s降到0.75 ft/sec(約為0.91 m/s到0.3 m/s)。如可以從影像中看到的,當傳熱材料從海軍黃銅變成鈦並且流速進一步降低時,在傳熱板的表面上形成大量沈積物。上述實驗表明,傳熱板的成分和流體環境條件導致了傳熱表面結污的顯著差異。這就是為什麼必須要有一種可以即時檢測熱交換設備的傳熱表面條件之系統。
本發明之重要方面係即時分析表面影像以即時評估結污程度。將用於反滲透膜的表面監測之方法延伸到傳熱表面,視頻流式資料獲取模組與HTSM(圖4)介面連接以與用於即時表面分析的基於web的視覺化和儲存平臺相連接。該模組由其軟體部件控制,該軟體部件使用高級影像分析軟體來獲取用於對象檢測、辨識和量化各種表面度量的高品質資料。
影像分析軟體利用一系列電腦視覺演算法和統計方法基於各種表面特徵/度量來檢測作為時間的函數的傳熱表面結垢和結污。用於檢測表面結垢的存在和類型的特徵包括對象大小分佈、形狀、紋理、強度(在像素級)、區域梯度和幾何形狀(例如,圓形度、凸度、使用角檢測的形狀識別)。作為該方法的示例,對於礦物結垢檢測,用之前捕獲的已知特性的資料來訓練(乾淨的)傳熱表面之初始狀態。在這個模組中,基於強度、局部像素鄰域和梯度來訓練一組區域啟發式演算法以得出背景的統計模型。然後,訓練的模型使用其學習的啟發式演算法週期性地分割結污/結垢發生的區域以確定前景遮罩作為檢測到的變化。使用比如長條圖均衡化、影像打開和膨脹等若干形態學和歸一化操作來進一步細化檢測以去除不想要的雜訊並隔離影像中鬆散連接之分量。流式資料獲取和分析模組與軟體的硬體和其他程序控制模組整合在一起。在圖10中就傳熱表面的HTSM可觀察區域中的結污表面的百分比發展描繪了即時確定結污程度之圖示。
除了表面污染物沈積(例如,如圖9所示)和各種類型的表面結污(例如,顆粒、有機物和生物污染物)的自動檢測之外,還嵌入了深度學習引擎,用於使用高級模式辨識技術的線上影像分析。該引擎使用一大組定製的可學習過濾器進行訓練並提供自動產生注釋(對象標籤)以及它們的置信度得分(即,檢測到的對象屬於某種類型/類別的污染物/結垢的概率)之能力。使用先進的電腦視覺演算法來量化作為時間的函數的表面礦物結垢/結污(例如,圖9和圖10)以及儲存對象特性的能力係使用自動定標時間序列資料庫系統實現的。即時獲取成像的表面特性並將其儲存在本地以及儲存在遠端存放系統中,從而允許即時分析,在達到污染物沈積物、結垢或腐蝕/點蝕的臨界水準時自動觸發生成以及動態系統報告生成。結合結污/結垢/腐蝕檢測和深度學習模組,高級線上平臺支持自動辨識表面結污的類型、大小、幾何形狀、形狀、密度和程度及其表面覆蓋程度(例如,圖9)。使用以上資訊、系統規範和動態報告,決策支持過程可以用於確定關鍵動作以優化程序控制、以及調節熱交換設備的加熱/冷卻操作條件、以及藉由回應於被監測表面的各種類型和程度的結污、結垢、腐蝕和點蝕的識別來觸發必要的減輕策略。
雖然已經根據示例性實施方式描述了本發明,但是應當理解,已經使用的詞語係描述性的,而不是限制性的。如熟悉該項技術者所理解的,在不脫離由所附請求項限定的本發明之範圍的情況下,可以進行各種修改,請求項應當被給予其最充分、合理之範圍。
10:傳熱表面監測單元 12:系統控制器 14:入口流 16:視覺上可觀察的傳熱板 20:成像部件 26:傳熱表面監測系統 32:泵 42:流體流動通道 44:表面成像模組 52:流體入口管道/端口 54:流體出口管道/端口 60:側光式光導 62:邊緣照明光源 64:光學窗口 66:相機鏡頭裝置 68:流體流動通道支撐塊 72:側光式光導孔 74:側光式光導梯度 76:密封件 82:鏡頭 84:夾具 85:對象 86:光導螺栓孔 88:盒 100:外部資料通信 102:流體流動通道模組 104:加熱/冷卻模組 106:傳熱板的第一表面 108:流體出口流 110:熱交換設備 112:熱交換設備的表面冷凝器 114:入口側流 116:出口側流 118:排放口 120:熱交換器 122:水箱 124:熱交換器流體通道 126:加熱/冷卻元件 128:傳熱介質 130:加熱/冷卻支撐塊 132:熱通量溫度感測器 134:加熱/冷卻板 136:隔熱材料 138:光導對準孔 140:管的可觀察內表面 142:透明側窗 144:入口/出口端口 146:水平或周向光源 148:狹縫光導 200:熱交換器圓柱管 CV:控制閥 FT-1:流量計 HF-1:熱通量感測器 PT-1:入口壓力感測器/傳送器 SP1:採樣點1 SP2:採樣點2 TT-1:溫度探測器/傳送器 TT-2:供給溫度傳送器 TT-3:加熱/冷卻溫度傳送器 TT-4:出口流溫度感測器/傳送器 CT-1:傳導率傳送器
[圖1]係傳熱表面監測表面監測系統的過程圖解之示意圖; [圖2A]係在冷凝器冷側水入口處的傳熱表面監測系統的過程圖解之示意圖; [圖2B]係在冷凝器熱側水出口處的傳熱表面監測系統的過程圖解之示意圖。 [圖2C]係作為獨立操作的傳熱表面監測系統的過程圖解之示意圖; [圖3]係被實施用於監測表面冷凝器的冷卻水出口處的結污的傳熱表面監測系統的過程圖解之示意圖。 [圖4A]係傳熱表面監測單元的實施方式之透視圖; [圖4B]係圖4A的傳熱表面監測單元的實施方式(在中段x-z平面上)之剖視圖; [圖4C]係圖4A的傳熱表面監測單元的實施方式(在中段y-z平面上)之剖視圖; [圖5]係側光式光導之實施方式; [圖6]係傳熱表面監測單元之半示意圖,示出了光穿過監測表面的方向; [圖7]係傳熱表面監測單元(在中段y-z平面上)之分解剖視圖。 [圖8]係傳熱表面監測單元的實施方式之分解透視圖。 [圖9]係描繪了暴露於來自發電站表面冷凝器的水的海軍黃銅和鈦傳熱表面的結污發展之影像。 [圖10]係示出了傳熱表面的結污百分比隨時間的變化之圖。 [圖11]係在具有側光式照明的熱交換器圓柱管中的HTSM單元的實施方式之剖視圖。 [圖12]係在具有表面光導的熱交換器圓柱管中的HTSM單元的實施方式之剖視圖,該等表面光導置於熱交換器管的壁中。 [圖13]係圖12中的HTSM單元的圓柱管實施方式之側視圖。 [圖14]係圖12中的HTSM單元的圓柱管實施方式之透視圖。
16:視覺上可觀察的傳熱板
20:成像部件
42:流體流動通道
44:表面成像模組
52:流體入口管道/端口
54:流體出口管道/端口
60:側光式光導
64:光學窗口
66:相機鏡頭裝置
68:流體流動通道支撐塊
76:密封件
82:鏡頭
84:夾具
102:流體流動通道模組
104:加熱/冷卻模組
106:傳熱板的第一表面
126:加熱/冷卻元件
128:傳熱介質
130:加熱/冷卻支撐塊
132:熱通量溫度感測器
134:加熱/冷卻板
136:隔熱材料

Claims (22)

  1. 一種用於監測傳熱表面的結垢、結污、點蝕和腐蝕之傳熱表面監測(heat transfer surface monitoring, HTSM)單元(10),該HTSM單元包括: a)   傳熱板(16),該傳熱板(16)在流體入口供給側具有第一表面(106); b)   側光式光導(60),該側光式光導具有形成流體流動通道(42)的孔(72),該傳熱板(16)鄰近該側光式光導(60)定位並覆蓋該孔(72),其中,該側光式光導(60)由透明或半透明材料構成以照明該傳熱板(16)的第一表面(106); c)   邊緣照明光源(62),其係鄰近該側光式光導(60),該邊緣照明光源(62)可操作以照明該側光式光導(60),從而提供實質上平行於該傳熱板(16)的照明並且允許觀察者觀察該傳熱板(16)的第一表面(106)上的結垢、結污、點蝕和+ 腐蝕; d)   流體流動通道模組(102),該流體流動通道模組具有: i)   流體流動通道模組支撐塊(68), ii)  光學窗口(64),其係在該流體流動通道支撐塊(68)內,該光學窗口(64)可操作以觀察該傳熱板(16), iii) 流體入口管道(52),該流體入口管道(52)可操作以允許流體流進入該流體流動通道模組(102)內, iv) 流體出口管道(54),該流體出口管道可操作以允許該流體流從該流體流動通道模組(102)離開;以及, e)   加熱/冷卻模組(104),該加熱/冷卻模組(104)能夠將熱量傳遞到該傳熱板(16),該加熱/冷卻(104)模組具有: i)   加熱/冷卻支撐塊(130), ii)  加熱/冷卻元件(126),該加熱/冷卻元件(126)能夠進行溫度控制, 其中,該加熱/冷卻支撐塊(130)能夠在該加熱/冷卻元件(126)與該傳熱板(16)之間傳導熱量。
  2. 如請求項1所述之HTSM單元(10), 其中,該流體流動通道模組支撐塊(68)的特徵在於具有不透明區域,從而使由於雜散光導致的影像失真最小化, 其中,該光學窗口(64)係透明的光學窗口;並且, 其中,該流體入口管道(52)和該流體出口管道(54)整合在該流體流動通道模組內。
  3. 如請求項1所述之HTSM單元(10), 其中,該側光式光導(60)位於該流體流動通道模組(102)與該加熱/冷卻模組(104)之間。
  4. 如請求項1所述之HTSM單元(10),進一步包括多個密封件(76),該多個密封件(76)位於以下位置中的至少一個位置: a)   該光學窗口(64)與該流體流動通道模組支撐塊(68)之間, b)   該流體流動通道支撐塊(68)與該側光式光導(60)之間,以及 c)   該側光式光導(60)、該傳熱板(16)、傳熱介質(128)與該加熱/冷卻支撐塊(130)之間。
  5. 如請求項1所述之HTSM單元(10),其中,該側光式光導(60)被定位使得該側光式光導(60)的孔(72)在該流體入口管道(52)與該流體出口管道(54)之間形成流體流動通道(42),從而允許流體從該傳熱板(16)上方透過。
  6. 如請求項1所述之HTSM單元(10),其中,該流體流動通道(42)具有高度和寬度,其中,該流體流動通道(42)的高度和寬度能夠藉由具有預定尺寸的光導(60)來調節以形成期望的流體流動通道(42)的高度和寬度。
  7. 如請求項1所述之HTSM單元(10),進一步包括熱通量感測器(HF-1)、傳熱板溫度傳送器(TT-1)和加熱/冷卻元件溫度傳送器(TT-3),該等元件各自可操作地連接到該HTSM單元(10)。
  8. 如請求項1所述之HTSM單元(10),其中,HTSM單元(10)係可移除盒(88)。
  9. 一種用於監測傳熱表面的結垢、結污、點蝕和腐蝕的傳熱表面監測(heat transfer surface monitoring, HTSM)系統(26),該系統包括: a)   如請求項1所述之傳熱表面監測(heat transfer surface monitoring, HTSM)單元(10); b)   表面成像模組(44),該表面成像模組(44)具有包括相機(66)和鏡頭(82)在內的成像部件,該表面成像模組(44)相對於該傳熱表面監測系統被配置和定位以便可操作以: i)   捕獲該HTSM單元(10)的傳熱板(16)的第一表面(106)的影像和反射光譜中的至少一者; (ii) 創建指示該影像和該反射光譜的影像資料信號和光譜信號中的至少一者; c)   影像處理系統,該影像處理系統可操作地連結到該表面成像模組(44)以便從其接收該影像資料信號,該影像處理系統可操作以分析該影像資料信號以便提供該傳熱板(16)上的結垢、結污、腐蝕和點蝕中的至少一者的程度的指示;以及, d)   系統控制器(12),該系統控制器(12)可操作以控制以下各項中的至少一項:照明;影像捕獲;光譜捕獲;影像資料管理;影像分析和外部資料通信(100);流體入口供給側的入口流速和壓力,以使其約為被監測的熱交換設備的流速和壓力。
  10. 如請求項9所述之HTSM系統(26),其中,該HTSM單元(10)係能夠在無需重新定位該表面成像模組(44)的情況下被插入該HTSM系統和從其移除的可移除盒(88)。
  11. 如請求項9所述之HTSM系統(26),其中,該影像處理系統被配置用於確定以下各項中的至少一項: a)   該傳熱板(16)的表面區域的結污、結垢、腐蝕和點蝕中的至少一者的百分比和密度;以及, b)   結污、結垢、腐蝕和點蝕的類型,這係基於幾何形狀分析和影像的光譜分析確定的。
  12. 如請求項11所述之HTSM系統(26),其中,該影像處理系統被配置用於基於以下各項中的至少一項來識別該傳熱板(16)的第一表面(106)上的結污、結垢、點蝕和腐蝕中的至少一者: a)   幾何形狀和大小分析;以及, b)   對該影像處理系統所捕獲的影像的光譜分析,這係藉由使用光譜分析和模式辨識來進行的。
  13. 如請求項9所述之HTSM系統(26),進一步包括: 熱通量感測器(HF-1)、傳熱板溫度傳送器(TT-1)和加熱/冷卻元件溫度傳送器(TT-3),該等元件可操作地連接到該HTSM單元(10);以及, 流量計(FT-1)、流量控制閥(CV)、供給溫度傳送器(TT-2)、入口壓力計(PT-1)、出口溫度傳送器(TT-4)和傳導率傳送器(CT-1),該等元件可操作地連接到該系統控制器(12), 其中,回應於所接收的從該熱通量感測器、該傳熱板溫度傳送器、該加熱/冷卻元件溫度傳送器、該流量計、該供給溫度傳送器、該入口壓力計、該出口溫度傳送器和該傳導率傳送器中的至少一者傳送的信號,該系統控制器(12)可操作以接收、控制和調節流速、溫度、熱通量和壓力, 其中,該HTSM系統(26)能夠以與被監測的熱交換設備(110)片段實質上相同的壓力來操作,並且其中,該HTSM單元(10)中的流速和傳熱表面板的溫度能夠被調節並且被設置為特定值,以相對於被監測的熱交換設備(110)片段的條件確立目標流體動力學條件和傳熱條件。
  14. 一種監測傳熱表面的結污、結垢、腐蝕和點蝕之方法,該方法包括: a)   提供如請求項1所述之HTSM單元(10); b)   使流體進入流穿過該傳熱板(16)的第一表面(106); c)   從該傳熱板(16)的第一表面(106)的被照明部分收集視覺和光譜成像中的至少一者的資料;以及, d)   將該等收集的資料傳送到影像處理系統; e)   利用該影像處理系統來解釋該等收集的資料以確定結污、結垢、腐蝕和點蝕之程度。
  15. 如請求項14所述之方法,進一步包括回應於結污、結垢、腐蝕和點蝕的程度來調節流速、壓力和溫度中的至少一者的步驟。
  16. 如請求項14所述之方法,其中,該解釋該等收集的資料的步驟包括以下操作中的至少一項操作: a)   顯示該傳熱板(16)的表面的即時影像和表面成像光譜;以及, b)   將該等收集的資料與被監測的熱交換設備(110)的結污、結垢、腐蝕和點蝕中的至少一者相關。
  17. 如請求項14所述之方法,其中,該光源(62)發出在可見光、UV光和近紅外光中的至少一者的範圍內的光。
  18. 一種用於監測傳熱表面的結垢、結污、點蝕和腐蝕的傳熱表面監測(heat transfer surface monitoring, HTSM)單元,該單元包括: a)   熱交換器圓柱管(200),該熱交換器圓柱管具有可觀察內表面(140); b)   光導,該光導可操作以允許光從該熱交換器圓柱管的外部進入以照明該可觀察內表面(140); c)   光源(140、62),該光源可操作以照明該熱交換器圓柱管(200)的可觀察內表面(140); d)   流體入口管道(52)和流體出口管道(54),該流體入口管道(52)被定位成允許流體進入該熱交換器圓柱管(148)內,該流體出口管道(54)被設計用於允許流體離開該熱交換器圓柱管(148);以及 e)   表面成像模組,該表面成像模組被固定到該熱交換器圓柱管並且被定位在光學窗口上方以觀察該熱交換器圓柱管(200)的可觀察內表面(140)。
  19. 如請求項18所述之HTSM單元,進一步包括加熱/冷卻元件,該加熱/冷卻元件至少周向地固定在熱交換器圓柱管的片段的上方,從而添加了對該HTSM單元中的傳熱的控制。
  20. 如請求項18所述之HTSM單元,其中,該光導係定位在該熱交換器圓柱管(200)的縱向端處的透明側窗(142),並且該光源(62)鄰近該透明側窗(200)定位以實現對該熱交換圓柱管的可觀察表面(140)的低角度照明。
  21. 如請求項18所述之HTSM單元,其中,該光導係被結合在該熱交換器圓柱管(200)的壁的外周內並且延伸到該熱交換器圓柱管(200)的內周的狹縫光導(148),從而允許光照明該可觀察內表面(140),並且其中,該光源(146)沿著該熱交換器圓柱管的內表面定位。
  22. 一種監測傳熱表面的結污、結垢、腐蝕和點蝕之方法,該方法包括: a)   提供如請求項18所述之HTSM單元; b)   使流體進入流穿過該熱交換器圓柱管並且從該可觀察內表面上方透過; c)   從該可觀察內表面的被照明部分收集視覺和光譜成像中的至少一者的資料; d)   將該等收集的資料傳送到影像處理系統;以及, e)   利用該影像處理系統來解釋該等收集的資料以確定結污、結垢、腐蝕和點蝕之程度。
TW110110422A 2020-03-25 2021-03-23 用於監測傳熱表面的結垢、結污、點蝕和腐蝕之傳熱表面監測單元、系統以及方法 TWI764637B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
WOPCT/US20/24773 2020-03-25
PCT/US2020/024773 WO2021194489A1 (en) 2020-03-25 2020-03-25 Method and apparatus for real-time direct surface fouling and scale monitoring of heat transfer surfaces

Publications (2)

Publication Number Publication Date
TW202206773A true TW202206773A (zh) 2022-02-16
TWI764637B TWI764637B (zh) 2022-05-11

Family

ID=77892421

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110110422A TWI764637B (zh) 2020-03-25 2021-03-23 用於監測傳熱表面的結垢、結污、點蝕和腐蝕之傳熱表面監測單元、系統以及方法

Country Status (8)

Country Link
US (1) US20230119268A1 (zh)
EP (1) EP4127593A4 (zh)
CN (1) CN115667835A (zh)
BR (1) BR112022019000A2 (zh)
CA (1) CA3173006A1 (zh)
CO (1) CO2022015034A2 (zh)
TW (1) TWI764637B (zh)
WO (1) WO2021194489A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115371958B (zh) * 2022-10-24 2023-03-24 中国航天三江集团有限公司 光学元件液冷散热与杂散光处理一体化装置及其使用方法
CN117433339A (zh) * 2023-11-27 2024-01-23 无锡鼎邦换热设备股份有限公司 多热源换热器的换热除垢系统及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100206660B1 (ko) * 1996-08-13 1999-07-01 이종훈 열교환기 전열면의 부착물 감시장치 및 방법
US9068782B2 (en) * 2009-03-17 2015-06-30 Dow Global Technologies Llc Tube-side sequentially pulsable-flow shell-and-tube heat exchanger appratus, system, and method
NZ600225A (en) * 2009-12-11 2013-12-20 Ecolab Inc Fouling detection setup and method to detect fouling
DE102011016048A1 (de) * 2011-04-04 2012-10-04 Li-Tec Battery Gmbh Energiespeichervorrichtung mit einer Temperiereinrichtung
CN112105444B (zh) * 2018-04-23 2022-08-16 美商戽水车水科技股份有限公司 用于实时直接膜表面监控的方法和设备

Also Published As

Publication number Publication date
CN115667835A (zh) 2023-01-31
EP4127593A4 (en) 2023-11-29
TWI764637B (zh) 2022-05-11
CO2022015034A2 (es) 2023-02-27
CA3173006A1 (en) 2021-09-30
WO2021194489A1 (en) 2021-09-30
EP4127593A1 (en) 2023-02-08
BR112022019000A2 (pt) 2022-11-29
US20230119268A1 (en) 2023-04-20

Similar Documents

Publication Publication Date Title
TWI764637B (zh) 用於監測傳熱表面的結垢、結污、點蝕和腐蝕之傳熱表面監測單元、系統以及方法
CN112105444B (zh) 用于实时直接膜表面监控的方法和设备
KR20080091244A (ko) 역삼투막 모니터링 방법 및 시스템
US11662314B2 (en) System and method of inline deposit detection in process fluid
CN104011529B (zh) 用于检测沉积物的设备和方法
US20130220002A1 (en) Membrane separation apparatus, membrane separation apparatus operation method, and evaluation method using the membrane separation apparatus
US11953445B2 (en) Control of industrial water treatment via digital imaging
US20230176027A1 (en) Apparatus for measuring characteristics of a water facility
GB2089512A (en) Process and Apparatus for Testing Fluids for Fouling
CN214252035U (zh) 一种换热设备污垢生长实时监测装置
WO2017141063A1 (en) Digital holographic automatic microscope with through flowing cell
JP2021004759A (ja) 接液部材のファウリング診断装置
JP2016105034A (ja) 多管式熱交換器の細管洗浄方法およびそれに用いる細管汚れ検出装置