TW202204646A - Composite ceramic reinforcement material - Google Patents

Composite ceramic reinforcement material Download PDF

Info

Publication number
TW202204646A
TW202204646A TW109123895A TW109123895A TW202204646A TW 202204646 A TW202204646 A TW 202204646A TW 109123895 A TW109123895 A TW 109123895A TW 109123895 A TW109123895 A TW 109123895A TW 202204646 A TW202204646 A TW 202204646A
Authority
TW
Taiwan
Prior art keywords
carbide
composition
chromium
content
alloy material
Prior art date
Application number
TW109123895A
Other languages
Chinese (zh)
Other versions
TWI784294B (en
Inventor
邱聖民
蔡哲瑋
彭俊浩
林柏廷
Original Assignee
已成先進材料股份有限公司
邱聖民
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 已成先進材料股份有限公司, 邱聖民 filed Critical 已成先進材料股份有限公司
Priority to TW109123895A priority Critical patent/TWI784294B/en
Publication of TW202204646A publication Critical patent/TW202204646A/en
Application granted granted Critical
Publication of TWI784294B publication Critical patent/TWI784294B/en

Links

Images

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Powder Metallurgy (AREA)

Abstract

A composite alloy material includes: 2.4 to 12.4 wt% of Cr, 29.6 to 57.2 wt% of W, 1.0 to 4.5 wt% of Si, 0.8 to 4.1 wt% of B, 3.9 to 13.2 wt% of Fe, 0.2 to 4.8 wt% of Co, 1.3 to 5.5 wt% of C and Ni in balance; 25.2 to 50.2 wt% of Cr, 2.8 to 12.6 wt% of W, 0.5 to 1.7 wt% of Si, 0.5 to 3.5 wt% of Fe, 0.5 to 3.5 wt% of Ni, 0.8 to 7.4 wt% of C and Co in balance; 3.5 to 25.0 wt% of Cr, 2.5 to 14.5 wt% of Ni, 0 to 2.5 wt% of Mn, 0.5 to 17.5 wt% of Ti, 0.2 to 5.0 wt% of Si, 1.0 to 3.2 wt% of B, 0.1 to 7.5 wt% of C and Fe in balance; or, a tungsten carbide, metal carbides different from tungsten carbide, and 6 to 10 metallic elements in periodic table, the content of each of the metallic elements is 5 to 30 mol.%. The composite alloy material effectively improves the service life of work pieces.

Description

複合型合金材料Composite alloy material

本發明關於一種合金材料,特別是一種含有碳化物的複合型合金材料。The present invention relates to an alloy material, especially a composite alloy material containing carbide.

表面強化加工係指將粉末融化並塗覆於工件表面以生成緻密合金層於工件表面,提升工件表面對於磨耗、腐蝕等的抵抗能力。藉由緻密合金層,延長在某些高低溫環境下的重度磨損、腐蝕條件下之工件使用壽命。Surface strengthening processing refers to melting and coating the powder on the surface of the workpiece to form a dense alloy layer on the surface of the workpiece to improve the resistance of the workpiece surface to wear and corrosion. Through the dense alloy layer, the service life of the workpiece under severe wear and corrosion conditions in some high and low temperature environments is prolonged.

一般而言,合金粉末廣泛應用於物件之表面抗腐蝕與磨耗之強化材料,常見使用的合金粉末例如鎳基合金粉末、鈷基合金粉末以及鐵基合金粉末。鎳基合金粉末、鈷基合金粉末以及鐵基合金粉末之元素組成分別以鎳、鐵及鉻等基礎元素為主,亦另外添加適量鐵、鉻、碳、硼、矽等非基礎元素使合金發生共晶反應並下降熔點。Generally speaking, alloy powders are widely used in strengthening materials for surface corrosion and wear resistance of objects. Commonly used alloy powders are nickel-based alloy powders, cobalt-based alloy powders, and iron-based alloy powders. The elemental composition of nickel-based alloy powder, cobalt-based alloy powder and iron-based alloy powder is mainly composed of basic elements such as nickel, iron and chromium, and an appropriate amount of non-basic elements such as iron, chromium, carbon, boron and silicon are also added to make the alloy occur. The eutectic reacts and lowers the melting point.

為進一步提升例如硬度之機械性質,現有技術提供了複合型合金材料,複合型合金材料由合金粉末與碳化物構成。舉例而言,現有技術的鎳基合金粉末通常藉由添加碳化鎢(WC)以構成複合型合金材料,從而達到提升如硬度之機械性質的需求。To further improve mechanical properties such as hardness, the prior art provides composite alloy materials, which are composed of alloy powders and carbides. For example, nickel-based alloy powders in the prior art are usually formed by adding tungsten carbide (WC) to form a composite alloy material, so as to achieve the requirement of improving mechanical properties such as hardness.

然而,隨工業技術之進步,現有技術的複合型合金材料所能提供的機械性質,如硬度或韌性,往往無法承受外力而失效,難以符合目前業界的需求。因此,現有技術亟需一種具有良好機械性質的材料,以提升工件的使用壽命。However, with the advancement of industrial technology, the mechanical properties, such as hardness or toughness, provided by the composite alloy materials in the prior art are often unable to withstand external forces and fail, which is difficult to meet the current needs of the industry. Therefore, there is an urgent need for a material with good mechanical properties in the prior art to increase the service life of the workpiece.

本發明提供一種複合型合金材料,可形成具有良好機械性質的表面強化層,可有效提升工件的使用壽命。The invention provides a composite alloy material, which can form a surface strengthening layer with good mechanical properties and can effectively increase the service life of the workpiece.

依據本發明的第一方面,本發明所提供的複合型合金材料包括元素組成,元素組成包括鉻(Cr)、鎢(W)、矽(Si)、硼(B)、鐵(Fe)、鈷(Co)、碳(C)以及鎳(Ni),以鉻、鎢、矽、硼、鐵、鈷、碳與鎳之總重量為基準,鉻的含量為2.4重量百分比(wt%)至12.4 wt%,鎢的含量為29.6 wt%至57.2 wt%,矽的含量為1.0 wt%至4.5 wt%,硼的含量為0.8 wt%至4.1 wt%,鐵的含量為3.9 wt%至13.2 wt%,鈷的含量為0.2 wt%至4.8 wt%,碳的含量為1.3 wt%至5.5 wt%。According to the first aspect of the present invention, the composite alloy material provided by the present invention includes elemental composition, and the elemental composition includes chromium (Cr), tungsten (W), silicon (Si), boron (B), iron (Fe), cobalt (Co), carbon (C) and nickel (Ni), based on the total weight of chromium, tungsten, silicon, boron, iron, cobalt, carbon and nickel, the content of chromium is 2.4 weight percent (wt%) to 12.4 wt %, the content of tungsten is 29.6 wt% to 57.2 wt%, the content of silicon is 1.0 wt% to 4.5 wt%, the content of boron is 0.8 wt% to 4.1 wt%, and the content of iron is 3.9 wt% to 13.2 wt%, The content of cobalt is 0.2 wt % to 4.8 wt %, and the content of carbon is 1.3 wt % to 5.5 wt %.

在本發明的一實施例中,上述之複合型合金材料包括合金組成以及碳化物組成,合金組成以及碳化物組成構成元素組成,以複合型合金材料之整體為基準,碳化物組成的含量為25體積百分比(vol.%)至75 vol.%。藉此,含量為25 vol.%至75 vol.%的碳化物組成可構成散佈相而散佈於合金組成所構成的基地相內,從而提升複合型合金材料的機械強度,例如硬度或韌性。In an embodiment of the present invention, the above-mentioned composite alloy material includes alloy composition and carbide composition, alloy composition and carbide composition constituent element composition, based on the overall composite alloy material, the content of carbide composition is 25% Volume percent (vol.%) to 75 vol.%. Thereby, the carbide composition with a content of 25 vol.% to 75 vol.% can form a dispersed phase and be dispersed in the base phase formed by the alloy composition, thereby enhancing the mechanical strength of the composite alloy material, such as hardness or toughness.

在本發明的一實施例中,上述之碳化物組成包括碳化鎢以及非碳化鎢之碳化物,非碳化鎢的碳化物選自於下列構成的群組:碳化鐵、碳化鉻、碳化釩、碳化鉬、碳化鈦、碳化鈷及其組合,以碳化物組成之整體為基準,非碳化鎢之碳化物的含量為40 vol.%至90 vol.%。In an embodiment of the present invention, the above-mentioned carbide composition includes tungsten carbide and non-tungsten carbide carbide, and the non-tungsten carbide carbide is selected from the group consisting of: iron carbide, chromium carbide, vanadium carbide, carbide Molybdenum, titanium carbide, cobalt carbide and their combinations, based on the overall carbide composition, the content of carbides other than tungsten carbide is 40 vol.% to 90 vol.%.

依據本發明的一方面,本發明所提供的複合型合金材料包括元素組成,元素組成包括鉻(Cr)、鎢(W)、矽(Si)、鐵(Fe)、鎳(Ni)、碳(C)以及鈷(Co),以鉻、鎢、矽、鐵、鎳、鈷與碳之總重量為基準,鉻的含量為25.2 wt%至50.2 wt%,鎢的含量為2.8 wt%至12.6 wt%,矽的含量為0.5 wt%至1.7 wt%,鐵的含量為0.5 wt%至3.5 wt%,鎳的含量為0.5 wt%至3.5 wt%,碳的含量為0.8 wt%至7.4 wt%。According to one aspect of the present invention, the composite alloy material provided by the present invention includes elemental composition, and the elemental composition includes chromium (Cr), tungsten (W), silicon (Si), iron (Fe), nickel (Ni), carbon ( C) and cobalt (Co), based on the total weight of chromium, tungsten, silicon, iron, nickel, cobalt and carbon, the content of chromium is 25.2 wt% to 50.2 wt%, and the content of tungsten is 2.8 wt% to 12.6 wt% %, the content of silicon is 0.5 wt% to 1.7 wt%, the content of iron is 0.5 wt% to 3.5 wt%, the content of nickel is 0.5 wt% to 3.5 wt%, and the content of carbon is 0.8 wt% to 7.4 wt%.

在本發明的一實施例中,上述之複合型合金材料包括合金組成以及碳化物組成,合金組成以及碳化物組成構成元素組成,以複合型合金材料之整體為基準,碳化物組成的含量為25 vol.%至75 vol.%。藉此,含量為25 vol.%至75 vol.%的碳化物組成可構成散佈相而散佈於合金組成所構成的基地相內,從而提升複合型合金材料的機械強度,例如硬度或韌性。In an embodiment of the present invention, the above-mentioned composite alloy material includes alloy composition and carbide composition, alloy composition and carbide composition constituent element composition, based on the overall composite alloy material, the content of carbide composition is 25% vol.% to 75 vol.%. Thereby, the carbide composition with a content of 25 vol.% to 75 vol.% can form a dispersed phase and be dispersed in the base phase formed by the alloy composition, thereby enhancing the mechanical strength of the composite alloy material, such as hardness or toughness.

在本發明的一實施例中,上述之碳化物組成包括碳化鈷鉻鎢以及非碳化鈷鉻鎢之碳化物,非碳化鎢的碳化物選自於下列構成的群組:碳化鐵、碳化鉻、碳化釩、碳化鉬、碳化鈦、碳化鈷及其組合,以該碳化物組成之整體為基準,該非碳化鈷鉻鎢之碳化物的含量為40 vol.%至90 vol.%。In an embodiment of the present invention, the above-mentioned carbide composition includes cobalt-chromium-tungsten carbide and non-cobalt-chromium-tungsten carbide, and the non-tungsten carbide carbide is selected from the group consisting of: iron carbide, chromium carbide, Vanadium carbide, molybdenum carbide, titanium carbide, cobalt carbide and their combinations, based on the entire composition of the carbide, the content of the non-cobalt-chromium-tungsten carbide is 40 vol.% to 90 vol.%.

依據本發明的一方面,本發明所提供的複合型合金材料包括元素組成,元素組成包括鉻(Cr)、鎳(Ni)、錳(Mn)、鈦(Ti)、矽(Si)、硼(B)、碳(C)以及鐵(Fe),以鉻、鎳、錳、鈦、矽、硼、碳與鐵之總重量為基準,鉻的含量為3.5 wt%至25.0 wt%,鎳的含量為2.5 wt%至14.5 wt%,錳的含量大於0 wt%且小於或等於2.5 wt%,鈦的含量為0.5 wt%至17.5 wt%,矽的含量為0.2 wt%至5.0 wt%,硼的含量為1.0 wt%至3.2 wt%,碳的含量為0.1 wt%至7.5wt%。According to one aspect of the present invention, the composite alloy material provided by the present invention includes elemental composition, and the elemental composition includes chromium (Cr), nickel (Ni), manganese (Mn), titanium (Ti), silicon (Si), boron ( B), carbon (C) and iron (Fe), based on the total weight of chromium, nickel, manganese, titanium, silicon, boron, carbon and iron, the content of chromium is 3.5 wt% to 25.0 wt%, the content of nickel 2.5 wt% to 14.5 wt%, manganese content is greater than 0 wt% and less than or equal to 2.5 wt%, titanium content is 0.5 wt% to 17.5 wt%, silicon content is 0.2 wt% to 5.0 wt%, boron content The content is 1.0 wt% to 3.2 wt%, and the content of carbon is 0.1 wt% to 7.5 wt%.

在本發明的一實施例中,上述之複合型合金材料包括合金組成以及碳化物組成,合金組成以及碳化物組成構成元素組成,以複合型合金材料之整體為基準,碳化物組成的含量為25 vol.%至75 vol.%。藉此,含量為25 vol.%至75 vol.%的碳化物組成可構成散佈相而散佈於合金組成所構成的基地相內,從而提升複合型合金材料的機械強度,例如硬度或韌性。In an embodiment of the present invention, the above-mentioned composite alloy material includes alloy composition and carbide composition, alloy composition and carbide composition constituent element composition, based on the overall composite alloy material, the content of carbide composition is 25% vol.% to 75 vol.%. Thereby, the carbide composition with a content of 25 vol.% to 75 vol.% can form a dispersed phase and be dispersed in the base phase formed by the alloy composition, thereby enhancing the mechanical strength of the composite alloy material, such as hardness or toughness.

在本發明的一實施例中,上述之碳化物組成包括碳化鉻以及非碳化鉻之碳化物,非碳化鉻的碳化物選自於下列構成的群組:碳化鐵、碳化錳、碳化釩、碳化鉬、碳化鎢、碳化鈦及其組合以該碳化物組成之整體為基準,該非碳化鉻之碳化物的含量為40 vol.%至90 vol.%。In an embodiment of the present invention, the above-mentioned carbide composition includes chromium carbide and non-chromium carbide carbide, and the non-chromium carbide carbide is selected from the group consisting of: iron carbide, manganese carbide, vanadium carbide, carbide Molybdenum, tungsten carbide, titanium carbide and their combinations are based on the whole of the carbide composition, and the content of the non-chromium carbide carbide is 40 vol.% to 90 vol.%.

依據本發明的一方面,本發明所提供的複合型合金材料包括合金組成以及碳化物組成,合金組成包括六至十種週期表金屬元素,以合金組成之總莫耳數為基準,合金組成所包括的每一種週期表金屬元素的含量為5莫耳百分比(mol.%)至30 mol.%,碳化物組成包括M1金屬碳化物以及碳化鎢,M1金屬碳化物由碳與M1金屬構成,M1金屬選自於釩(V)、鉬(Mo)、鈮(Nb)、鋯(Zr)、釔(Y)、銫(Cs)、鈦(Ti)、鉻(Cr)、錳(Mn)、鐵(Fe)、鈷(Co)、鎳(Ni)、鋁(Al)、錸(Re)、鉿(Hf)、鉭(Ta)及其組合所構成的群組。According to one aspect of the present invention, the composite alloy material provided by the present invention includes an alloy composition and a carbide composition. The alloy composition includes six to ten periodic table metal elements. Based on the total molar number of the alloy composition, the alloy composition is The content of each periodic table metal element included is 5 mol.% (mol.%) to 30 mol.%. The carbide composition includes M1 metal carbide and tungsten carbide. M1 metal carbide is composed of carbon and M1 metal. M1 The metal is selected from vanadium (V), molybdenum (Mo), niobium (Nb), zirconium (Zr), yttrium (Y), cesium (Cs), titanium (Ti), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), aluminum (Al), rhenium (Re), hafnium (Hf), tantalum (Ta) and combinations thereof.

在本發明的一實施例中,以複合型合金材料之整體為基準,碳化物組成的含量為25 vol.%至75 vol.%。藉此,碳化物組成可構成散佈相而散佈於合金組成所構成的基地相內,從而提升複合型合金材料的機械強度,例如硬度。據此,含量為25 vol.%至75 vol.%的碳化物組成可構成散佈相而散佈於合金組成所構成的基地相內,從而提升複合型合金材料的機械強度,例如硬度或韌性。In an embodiment of the present invention, based on the entire composite alloy material, the content of the carbide composition is 25 vol.% to 75 vol.%. Thereby, the carbide composition can form a dispersed phase and is dispersed in the base phase formed by the alloy composition, thereby enhancing the mechanical strength, such as hardness, of the composite alloy material. Accordingly, the carbide composition with a content of 25 vol.% to 75 vol.% can form a dispersed phase and be dispersed in the base phase formed by the alloy composition, thereby enhancing the mechanical strength of the composite alloy material, such as hardness or toughness.

在本發明的一實施例中,以碳化物組成之整體為基準,碳化物的含量40 vol.%至90 vol.%。In an embodiment of the present invention, based on the entire carbide composition, the content of carbide is 40 vol.% to 90 vol.%.

在本發明的各方面的一實施例中,複合型合金材料更包括添加物,添加物選自於M2金屬及其碳化物所構成的群組,M2金屬選自於釩(V)、鉬(Mo)、鈮(Nb)、鋯(Zr)、釔(Y)、銫(Cs)、鈦(Ti)、鉻(Cr)、錳(Mn)、鐵(Fe)、鈷(Co)、鎳(Ni)、鋁(Al)、錸(Re)、鉿(Hf)、鉭(Ta)及其組合所構成的群組。In an embodiment of each aspect of the present invention, the composite alloy material further includes additives, the additives are selected from the group consisting of M2 metals and their carbides, and the M2 metals are selected from vanadium (V), molybdenum ( Mo), niobium (Nb), zirconium (Zr), yttrium (Y), cesium (Cs), titanium (Ti), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel ( A group consisting of Ni), aluminum (Al), rhenium (Re), hafnium (Hf), tantalum (Ta) and combinations thereof.

在本發明的各方面的一實施例中,以複合型合金材料之整體為基準,M2金屬的含量大於0 wt%且小於或等於10 wt%。In an embodiment of each aspect of the present invention, based on the entire composite alloy material, the content of M2 metal is greater than 0 wt % and less than or equal to 10 wt %.

據此,藉由添加物之添加,將能使碳化物組成所構成散佈相之尺寸達到細化效果,進一步大幅降低原料成本與提升複合型合金材料之機械性質。Accordingly, through the addition of additives, the size of the dispersed phase formed by the carbide composition can be refined, which further greatly reduces the cost of raw materials and improves the mechanical properties of the composite alloy material.

本發明的複合型合金材料可以下列任一種製程製得:旋轉電極製程(rotating electrode process)、電漿旋轉電極製程(plasma rotating electrode process)、例如高壓霧化、水霧化以及氣霧化等的霧化製程(atomization process)、高能球磨混合製程(high energy ball mill mixing process)、雙盤研磨製程(Twin-Disk Milling Method)或噴霧造粒製程(spray granulation process)。且本發明的複合型合金材料,可由下列任一種表面處理製程而加工披覆至目標工件的表面上:鑄造(casting)、火焰噴塗(flame spraying)、電漿噴塗(plasma spraying)、電弧噴塗(arc spraying)、高速火焰噴塗(high velocity oxy- fuel spraying)、高壓冷噴塗(high pressure cold spraying)、低壓冷噴塗(low pressure cold spraying)、雷射熔覆(laser cladding)、電漿轉移弧焊接(plasma transferred arc welding)或熱燒結(heat sintering)。The composite alloy material of the present invention can be prepared by any of the following processes: a rotating electrode process, a plasma rotating electrode process, such as high-pressure atomization, water atomization, and gas atomization. Atomization process, high energy ball mill mixing process, Twin-Disk Milling Method or spray granulation process. And the composite alloy material of the present invention can be processed and coated on the surface of the target workpiece by any one of the following surface treatment processes: casting (casting), flame spraying (flame spraying), plasma spraying (plasma spraying), arc spraying ( arc spraying), high velocity oxy-fuel spraying, high pressure cold spraying, low pressure cold spraying, laser cladding, plasma transfer arc welding (plasma transferred arc welding) or heat sintering.

本發明的複合型合金材料,在應用於工件表面處理時,可形成具有良好機械性質(如硬度)的表面強化層,從而有效提升工件的使用壽命。When the composite alloy material of the present invention is applied to the surface treatment of the workpiece, a surface strengthening layer with good mechanical properties (eg hardness) can be formed, thereby effectively increasing the service life of the workpiece.

為讓本發明之上述和其他目的、特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式,作詳細說明如下。In order to make the above-mentioned and other objects, features and advantages of the present invention more obvious and easy to understand, the following specific embodiments are given and described in detail in conjunction with the accompanying drawings.

實施例1 複合型合金材料的製備Example 1 Preparation of composite alloy material

本實施例的複合型合金材料具有下述元素組成:鉻、鎢、矽、硼、鐵、鈷、碳以及鎳。以鉻、鎢、矽、硼、鐵、鈷、碳與鎳之總重量為基準,鉻的含量為2.4 wt%至12.4 wt%,鎢的含量為29.6 wt%至57.2 wt%,矽的含量為1.0 wt%至4.5 wt%,硼的含量為0.8 wt%至4.1 wt%,鐵的含量為3.9 wt%至13.2 wt%,鈷的含量為0.2 wt%至4.8 wt%,碳的含量為1.3 wt%至5.5 wt%,所述總重量的其餘百分比為鎳的含量。The composite alloy material of this embodiment has the following elemental composition: chromium, tungsten, silicon, boron, iron, cobalt, carbon and nickel. Based on the total weight of chromium, tungsten, silicon, boron, iron, cobalt, carbon and nickel, the content of chromium is 2.4 wt% to 12.4 wt%, the content of tungsten is 29.6 wt% to 57.2 wt%, and the content of silicon is 1.0 wt% to 4.5 wt%, 0.8 wt% to 4.1 wt% boron, 3.9 wt% to 13.2 wt% iron, 0.2 wt% to 4.8 wt% cobalt, and 1.3 wt% carbon % to 5.5 wt%, and the remaining percentage of the total weight is the nickel content.

本實施例的複合型合金材料由合金組成以及碳化物組成製備,碳化物組成包括碳化鎢與非碳化鎢的碳化物(其他碳化物),非碳化鎢的碳化物可包括碳化鐵、碳化鉻或/及碳化鈷。在本實施例中,合金組成為鎳基合金組成,合金組成包括鎳、鐵、鉻、鈷、矽及硼,非碳化鎢的碳化物為碳化鐵。進一步而言,本實施例的複合型合金材料之製備步驟如下:首先氣霧化所述合金組成,再以高能球磨設備研磨並且混合氣霧化的合金組成與碳化物組成12小時,接著通入氮氣作為保護氣體並封罐,如此獲得本實施例的複合型合金材料。此外,本實施例的複合型合金材料呈粉末狀,但本發明不以此為限。The composite alloy material in this embodiment is prepared from an alloy composition and a carbide composition. The carbide composition includes tungsten carbide and non-tungsten carbide carbides (other carbides). Non-tungsten carbide carbides may include iron carbide, chromium carbide or / and cobalt carbide. In this embodiment, the alloy composition is a nickel-based alloy composition, and the alloy composition includes nickel, iron, chromium, cobalt, silicon and boron, and the non-tungsten carbide carbide is iron carbide. Further, the preparation steps of the composite alloy material of this embodiment are as follows: firstly, the alloy composition is gas-atomized, then ground with a high-energy ball mill and mixed with the gas-atomized alloy composition and carbide composition for 12 hours, and then the Nitrogen gas was used as a protective gas and the can was sealed to obtain the composite alloy material of this embodiment. In addition, the composite alloy material in this embodiment is in powder form, but the present invention is not limited to this.

實施例2 實施例1的複合型合金材料的樣品的製備Example 2 Preparation of the sample of the composite alloy material of Example 1

取實施例1的複合型合金材料:粉末(a)及粉末(b);。以篩網過篩實施例1的複合型合金材料[粉末(a)以及粉末(b)];接著,以雙軸加壓的粉末成型機將過篩後的粉末(a)以及粉末(b)加壓成型獲得生胚(a)以及生胚(b);然後,以水平式真空爐管將生胚(a)以及生胚(b)燒結為樣品(a)以及樣品(b)。粉末(a)以及粉末(b)的元素組成、合金組成以及碳化物組成如表1及表2所示。Take the composite alloy material of Example 1: powder (a) and powder (b); The composite alloy material [powder (a) and powder (b)] of Example 1 was sieved with a sieve; then, the sieved powder (a) and powder (b) were sieved with a biaxially pressurized powder molding machine. Press molding to obtain green embryos (a) and green embryos (b); then, the green embryos (a) and green embryos (b) are sintered into samples (a) and (b) in a horizontal vacuum furnace tube. The elemental composition, alloy composition, and carbide composition of the powder (a) and the powder (b) are shown in Tables 1 and 2.

在本實施例中,生胚(a)以及生胚(b)是以兩階段加壓獲得:第一階段加壓參數為50百萬帕(MPa)之成型壓力與5分鐘之施壓時間;第二階段加壓參數為100 Mpa之成型壓力與5分鐘之施壓時間。此外,生胚(a)以及生胚(b)的相對緻密度約55%。In this embodiment, the green embryos (a) and the green embryos (b) are obtained by two-stage pressing: the first-stage pressing parameters are the forming pressure of 50 megapascals (MPa) and the pressing time of 5 minutes; The pressing parameters of the second stage are a molding pressure of 100 Mpa and a pressing time of 5 minutes. In addition, the relative density of green embryos (a) and green embryos (b) is about 55%.

另外,本實施例所使用的水平式真空爐管的載台是由氧化鋁船型坩鍋與氧化鋁墊片組成。在本實施例中,於燒結生胚(a)以及生胚(b)時,水平式真空爐管是先以每分鐘3 °c的升溫速率升溫至600 °c並持溫1小時以進行脫脂;接著,再升溫至800 °c以進行還原;之後,以每分鐘5 °c的升溫速率升溫至950 °c並持溫1小時以進行除氣;最後,升溫至1000 °c至1050 °c並持溫1小時以進行液相燒結,使合金組成融化並均勻包覆碳化物組成,從而獲得樣品(a)以及樣品(b)。In addition, the stage of the horizontal vacuum furnace tube used in this embodiment is composed of an alumina boat-shaped crucible and an alumina gasket. In this embodiment, when sintering green embryos (a) and green embryos (b), the horizontal vacuum furnace tube is first heated to 600 °C at a heating rate of 3 °C per minute and held for 1 hour for degreasing Then, be warming up to 800 DEG C again to carry out reduction; Afterwards, be warming up to 950 DEG C with the heating rate of 5 DEG C per minute and hold temperature 1 hour to carry out degassing; Finally, be warming up to 1000 DEG C to 1050 DEG C The temperature is maintained for 1 hour to perform liquid phase sintering, so that the alloy composition is melted and the carbide composition is uniformly coated, thereby obtaining the sample (a) and the sample (b).

表1 粉末(a)、粉末(b)、商用粉末(c)、商用粉末(d)、商用粉末(e)以及商用粉末(f)的元素組成(單位:wt.%) 粉末編號 Ni Cr W Si B Fe Co C 粉末(a) Bal. 5.4 39.7 2.0 1.2 14.6 3.6 1.6 粉末(b) Bal. 4.8 37.6 1.8 2.4 12.4 3.2 1.4 商用粉末(c) Bal. 3.9 32.8 3.1 - 2.8 - 9.2 商用粉末(d) Bal. 1.6 56.7 0.8 - 7.0 2.6 7.0 商用粉末(e) Bal. 3.0 28.1 2.0 - 5.7 5.2 5.7 商用粉末(f) Bal. 11.2 27.6 2.8 2.2 9.1 - 3.0 Table 1 Elemental composition of powder (a), powder (b), commercial powder (c), commercial powder (d), commercial powder (e) and commercial powder (f) (unit: wt.%) powder number Ni Cr W Si B Fe Co C Powder (a) Bal. 5.4 39.7 2.0 1.2 14.6 3.6 1.6 Powder (b) Bal. 4.8 37.6 1.8 2.4 12.4 3.2 1.4 Commercial Powder (c) Bal. 3.9 32.8 3.1 - 2.8 - 9.2 Commercial Powder (d) Bal. 1.6 56.7 0.8 - 7.0 2.6 7.0 Commercial Powder (e) Bal. 3.0 28.1 2.0 - 5.7 5.2 5.7 Commercial Powder (f) Bal. 11.2 27.6 2.8 2.2 9.1 - 3.0

表2 粉末(a)、粉末(b)、商用粉末(c)、商用粉末(d)、商用粉末(e)以及商用粉末(f)的合金組成與碳化物組成的含量 粉末編號 鎳基合金(vol.%) 碳化鎢(vol.%) 其他碳化物(vol.%) 其他碳化物佔整體碳化物比例 粉末(a) 72.7 16.2 11.1 40.7% 粉末(b) 71.3 15.7 13.0 50.3% 商用粉末(c) 57.8 42.2 0.0 0.0% 商用粉末(d) 36.0 64.0 0.0 0.0% 商用粉末(e) 69.8 30.2 0.0 0.0% 商用粉末(f) 65.3 29.6 5.1 17.2% Table 2 Contents of alloy composition and carbide composition of powder (a), powder (b), commercial powder (c), commercial powder (d), commercial powder (e) and commercial powder (f) powder number Nickel base alloy (vol.%) Tungsten carbide (vol.%) Other carbides (vol.%) The proportion of other carbides in the overall carbide Powder (a) 72.7 16.2 11.1 40.7% Powder (b) 71.3 15.7 13.0 50.3% Commercial Powder (c) 57.8 42.2 0.0 0.0% Commercial Powder (d) 36.0 64.0 0.0 0.0% Commercial Powder (e) 69.8 30.2 0.0 0.0% Commercial Powder (f) 65.3 29.6 5.1 17.2%

實施例3 實施例2的樣品的硬度測試Example 3 Hardness test of the sample of Example 2

將實施例2之樣品(a)以及經表面拋光研磨處理,使用硬度機量測硬度值。施加荷重為30千克力(kgf)、負荷時間為15秒。任相鄰兩壓痕間隔2釐米(mm)以上,以避免壓痕與壓痕之間相互影響產生誤差,每一試片皆量測七點後,進行計算求其平均硬度值,其平均硬度值如表2所示,並將樣品(a)與經表面拋光研磨處理的樣品(c)、樣品(d)、樣品(e)以及樣品(f)進行硬度分析之比較,並藉由光學顯微鏡分析裂痕延伸長度,判斷韌性之優劣;樣品(a)與經表面拋光研磨處理的樣品(c)、樣品(d)、樣品(e)以及樣品(f)的光學顯微鏡圖如圖所示。在本實施例中,樣品(c)、樣品(d)、樣品(e)以及樣品(f)是由商用粉末(c)、商用粉末(d)、商用粉末(e)以及商用粉末(f)經過如實施例2中所述的熱壓燒結製程所製成,商用粉末(c)、商用粉末(d)、商用粉末(e)以及商用粉末(f)中的元素組成、合金組成以及碳化物組成如表1及表2所示。The sample (a) of Example 2 and its surface were polished and ground, and the hardness was measured using a hardness tester. The applied load was 30 kilogram force (kgf) and the load time was 15 seconds. Any two adjacent indentations are separated by more than 2 cm (mm) to avoid errors caused by the interaction between indentations and indentations. After each test piece is measured at seven points, the average hardness value is calculated and the average hardness value is as follows As shown in Table 2, the sample (a) was compared with the surface polished and ground sample (c), sample (d), sample (e) and sample (f) for hardness analysis, and cracks were analyzed by optical microscopy The extension length is used to judge the strengths and weaknesses of toughness; the optical microscope images of sample (a) and the sample (c), sample (d), sample (e) and sample (f) treated by surface polishing and grinding are shown in the figure. In this embodiment, the sample (c), the sample (d), the sample (e) and the sample (f) are composed of the commercial powder (c), the commercial powder (d), the commercial powder (e) and the commercial powder (f) Elemental composition, alloy composition and carbides in commercial powder (c), commercial powder (d), commercial powder (e) and commercial powder (f) produced by hot pressing sintering process as described in Example 2 The composition is shown in Table 1 and Table 2.

如表3所示,樣品(a)的Hv30 硬度為904,樣品(c)、樣品(d)、樣品(e)以及樣品(f)的Hv30 硬度依序為765、878、831以及789。由此可見,樣品(a)具有優於樣品(c)、樣品(d)、樣品(e)以及樣品(f)的硬度,換言之,實施例1的複合型合金材料的硬度優於商用的合金材料[商用粉末(c)、商用粉末(d)、商用粉末(e)以及商用粉末(f)]的硬度。As shown in Table 3, the Hv 30 hardness of sample (a) is 904, and the Hv 30 hardness of sample (c), sample (d), sample (e) and sample (f) are 765, 878, 831 and 789 in order. . It can be seen that the sample (a) has a hardness superior to that of the sample (c), the sample (d), the sample (e) and the sample (f), in other words, the hardness of the composite alloy material of Example 1 is better than that of the commercial alloy Hardness of materials [commercial powder (c), commercial powder (d), commercial powder (e), and commercial powder (f)].

圖1至圖5依序為樣品(a)、樣品(c)、樣品(d)、樣品(e)以及樣品(f)經過硬度測試後的光學顯微鏡圖。如圖1所示,樣品(a)經過硬度測試後產生的刻痕周圍並沒有觀察到裂痕,換言之,裂痕長度為0微米(μm);如圖2所示,樣品(c)經過硬度測試後產生的刻痕周圍則可觀察到長約24 μm的裂痕C1;如圖所示,樣品(d)經過硬度測試後產生的刻痕周圍則可觀察到長約26 μm的裂痕C2;如圖所示,樣品(e)經過硬度測試後產生的刻痕周圍則可觀察到長約130 μm的裂痕C3;如圖所示,樣品(f)經過硬度測試後產生的刻痕周圍則可觀察到長約35 μm的裂痕C4。依裂痕長度由短至長排列次序為1、2、3、4、5,樣品(a)的裂痕長度最短故排序最佳為1,樣品(e)的裂痕長度最長故排序為5。可理解的是,材料韌性與裂痕長度呈負相關,韌性越佳者裂痕長度越短。因此,上述基於裂痕長度由短至長的排序相應的表示了韌性優劣的排序。如表3所示,在樣品(a)、樣品(c)、樣品(d)、樣品(e)以及樣品(f)中,樣品(a)韌性最佳,其後依序為樣品(c)、樣品(d)以及樣品(f),最後則是、樣品(e)。Figures 1 to 5 are the optical microscope images of sample (a), sample (c), sample (d), sample (e) and sample (f) after hardness testing. As shown in Figure 1, no cracks were observed around the notch produced by the hardness test of the sample (a), in other words, the crack length was 0 micrometers (μm); as shown in Figure 2, the sample (c) after the hardness test A crack C1 with a length of about 24 μm can be observed around the generated notch; as shown in the figure, a crack C2 with a length of about 26 μm can be observed around the notch generated after the hardness test of the sample (d); as shown in the figure As shown in the figure, a crack C3 with a length of about 130 μm can be observed around the notch produced by the sample (e) after the hardness test; Crack C4 of about 35 μm. The order of crack length from short to long is 1, 2, 3, 4, and 5. Sample (a) has the shortest crack length, so the best ranking is 1, and sample (e) has the longest crack length, so the ranking is 5. It is understandable that the material toughness is negatively correlated with the crack length, and the better the toughness, the shorter the crack length. Therefore, the above order based on the short to long crack length correspondingly represents the order of toughness. As shown in Table 3, among sample (a), sample (c), sample (d), sample (e) and sample (f), sample (a) has the best toughness, followed by sample (c) , sample (d), and sample (f), and finally, sample (e).

表3 在樣品(a)、樣品(c)、樣品(d)、樣品(e)以及樣品(f)的硬度(Hv30 )值或/及韌性排序 樣品編號 樣品(a) 樣品(c) 樣品(d) 樣品(e) 樣品(f) 硬度 (Hv30 ) 904 765 878 831 789 韌性(1最佳) 1 2 3 5 4 Table 3 Hardness (Hv 30 ) value or/and toughness ranking of sample (a), sample (c), sample (d), sample (e) and sample (f) Sample serial number Sample (a) Sample (c) Sample (d) Sample (e) Sample (f) Hardness (Hv 30 ) 904 765 878 831 789 toughness (1 best) 1 2 3 5 4

實施例4 實施例2的樣品的耐蝕性測試Example 4 Corrosion resistance test of the sample of Example 2

本實施例採用腐蝕速率評估耐蝕性。將實施例2之樣品(a)浸泡在濃度為70重量百分比(wt.%)之硫酸溶液中,浸泡時間為24小時,計算樣品(a)在硫酸溶液中的腐蝕速率,即樣品(a)在硫酸溶液中每單位面積每單位時間損失的重量,腐蝕速率的方程式如下式(1)所示,其中CR為腐蝕速率,WLoss 為損失的重量[單位為毫克(mg)],Area為面積[單位為平方公分(cm2 )],Time為時間[單位為小時(hr)]。本實施例的腐蝕速率測試結果如表4所示。

Figure 02_image001
式(1)This example uses corrosion rate to evaluate corrosion resistance. The sample (a) of Example 2 was immersed in a sulfuric acid solution with a concentration of 70 weight percent (wt.%) for 24 hours, and the corrosion rate of the sample (a) in the sulfuric acid solution was calculated, that is, the sample (a) The weight loss per unit area per unit time in the sulfuric acid solution, the equation of the corrosion rate is shown in the following formula (1), where CR is the corrosion rate, W Loss is the weight lost [in milligrams (mg)], and Area is the area [unit is square centimeter (cm 2 )], Time is time [unit is hour (hr)]. The corrosion rate test results of this example are shown in Table 4.
Figure 02_image001
Formula 1)

表4 樣品(a)以及樣品(f)的腐蝕速率   腐蝕速率(mg.cm-2 .hr-1 樣品(a) 7.0 樣品(f) 7.6 Table 4 Corrosion rates of sample (a) and sample (f) Corrosion rate (mg.cm - 2.hr -1 ) Sample (a) 7.0 Sample (f) 7.6

實施例5 實施例2的樣品的金相觀察Example 5 Metallographic observation of the sample of Example 2

將實施例2之樣品(a)以及樣品(b)經表面拋光、研磨後,使用掃描式電子顯微鏡(SEM)進行影像觀察與分析,判斷碳化物形貌與數量,樣品(a)以及樣品(b)的掃描式電子顯微鏡照片如圖6及圖7所示。在本實施例中,碳化物比例測量方法係使用Image J影像辨識軟體輔助分析,藉由背向散射電子影像(backscattered electron image,BEI)中,不同種類碳化物於合金基材內顯現不同對比進行辨識與計算,並統計碳化物在整體影像中所佔面積比,經多張影像統計平均後,計算出如表2中所示的碳化物組成以及合金組成比例。After surface polishing and grinding of the samples (a) and (b) of Example 2, image observation and analysis were carried out using a scanning electron microscope (SEM) to determine the morphology and quantity of carbides. Samples (a) and samples ( The scanning electron microscope photographs of b) are shown in Fig. 6 and Fig. 7 . In this embodiment, the carbide ratio measurement method uses Image J image recognition software to assist the analysis, and is carried out by backscattered electron image (BEI), different types of carbides appear in the alloy substrate for different contrasts. Identify and calculate, and count the area ratio of carbides in the overall image. After statistical averaging of multiple images, the carbide composition and alloy composition ratio shown in Table 2 are calculated.

由本發明實施例1至5可見,具有特定含量範圍比例的鉻、鎢、矽、硼、鐵、鈷、碳以及鎳的元素組成的實施例1之複合型合金材料,可具有較商用合金材料較佳的硬度及韌性等機械性質以及如耐腐蝕性的化學性質。據此,實施例1之複合型合金材料可應用於表面處理製程所形成的表面強化層,從而有效提升工件的使用壽命。It can be seen from Examples 1 to 5 of the present invention that the composite alloy material of Example 1, which is composed of elements of chromium, tungsten, silicon, boron, iron, cobalt, carbon and nickel in a specific content range ratio, can have a higher performance than commercial alloy materials. Good mechanical properties such as hardness and toughness as well as chemical properties such as corrosion resistance. Accordingly, the composite alloy material of Example 1 can be applied to the surface strengthening layer formed by the surface treatment process, thereby effectively improving the service life of the workpiece.

實施例6 複合型合金材料的製備Example 6 Preparation of composite alloy material

本實施例的複合型合金材料具有下述元素組成:鉻、鎢、矽、鐵、鎳、碳以及鈷。以鉻、鎢、矽、鐵、鎳、碳與鈷之總重量為基準,鉻的含量為25.2 wt%至50.2 wt%,鎢的含量為2.8 wt%至12.6 wt%,矽的含量為0.5 wt%至1.7 wt%,鐵的含量為0.5 wt%至3.5 wt%,鎳的含量為0.5 wt%至3.5 wt%,碳的含量為0.8 wt%至7.4 wt%,所述總重量的其餘百分比為鈷的含量。The composite alloy material of this embodiment has the following elemental composition: chromium, tungsten, silicon, iron, nickel, carbon and cobalt. Based on the total weight of chromium, tungsten, silicon, iron, nickel, carbon and cobalt, the content of chromium is 25.2 wt% to 50.2 wt%, the content of tungsten is 2.8 wt% to 12.6 wt%, and the content of silicon is 0.5 wt% % to 1.7 wt%, the content of iron is 0.5 wt% to 3.5 wt%, the content of nickel is 0.5 wt% to 3.5 wt%, the content of carbon is 0.8 wt% to 7.4 wt%, and the remaining percentages of the total weight are Cobalt content.

本實施例的複合型合金材料由合金組成以及碳化物組成製備,碳化物組成包括碳化鈷鉻鎢與非碳化鈷鉻鎢的碳化物(其他碳化物),非碳化鎢的碳化物可包括碳化鐵、碳化鉻或/及碳化鈷。在本實施例中,合金組成為鈷基合金組成,合金組成包括鉻、鎢、矽、鐵、鎳以及鈷,非碳化鈷鉻鎢的碳化物為碳化鐵。進一步而言,本實施例的複合型合金材料之製備步驟如下:首先氣霧化所述合金組成,再以高能球磨設備研磨並且混合氣霧化的合金組成與碳化物組成12小時,接著通入氮氣作為保護氣體並封罐,如此獲得本實施例的複合型合金材料。此外,本實施例的複合型合金材料呈粉末狀,但本發明不以此為限。The composite alloy material in this embodiment is prepared from an alloy composition and a carbide composition. The carbide composition includes cobalt-chromium-tungsten carbide and non-cobalt-chromium-tungsten carbides (other carbides), and the non-tungsten carbide carbide may include iron carbide , chromium carbide or/and cobalt carbide. In this embodiment, the alloy composition is a cobalt-based alloy composition, and the alloy composition includes chromium, tungsten, silicon, iron, nickel and cobalt, and the non-cobalt carbide chromium tungsten carbide is iron carbide. Further, the preparation steps of the composite alloy material of this embodiment are as follows: firstly, the alloy composition is gas-atomized, then ground with a high-energy ball mill and mixed with the gas-atomized alloy composition and carbide composition for 12 hours, and then the Nitrogen gas was used as a protective gas and the can was sealed to obtain the composite alloy material of this embodiment. In addition, the composite alloy material in this embodiment is in powder form, but the present invention is not limited to this.

實施例7 實施例6的複合型合金材料的樣品的製備Example 7 Preparation of the sample of the composite alloy material of Example 6

取實施例6的複合型合金材料:粉末(g);以篩網過篩實施例6的複合型合金材料[粉末(g)];接著,以雙軸加壓的粉末成型機將過篩後的粉末(g)加壓成型獲得生胚(g);然後,以水平式真空爐管將生胚(g)燒結為樣品(g)。粉末(g)的元素組成、合金組成以及碳化物組成如表5及表6所示。Take the composite alloy material of Example 6: powder (g); sieve the composite alloy material of Example 6 [powder (g)] with a sieve; then, use a biaxially pressurized powder molding machine to sieve the The powder (g) was press-molded to obtain a green embryo (g); then, the green embryo (g) was sintered into a sample (g) with a horizontal vacuum furnace tube. The elemental composition, alloy composition, and carbide composition of the powder (g) are shown in Tables 5 and 6.

在本實施例中,在本實施例中,生胚(g)是以兩階段加壓獲得:第一階段加壓參數為50 MPa之成型壓力與5分鐘之施壓時間;第二階段加壓參數為100 MPa之成型壓力與5分鐘之施壓時間。此外,生胚(g)的相對緻密度約55%。In this embodiment, in this embodiment, the green embryo (g) is obtained by two-stage pressurization: the first-stage pressurization parameters are a molding pressure of 50 MPa and a pressurization time of 5 minutes; the second-stage pressurization The parameters are a molding pressure of 100 MPa and a pressing time of 5 minutes. In addition, the relative density of green embryos (g) is about 55%.

另外,本實施例所使用的水平式真空爐管的載台是由氧化鋁船型坩鍋與氧化鋁墊片組成。在本實施例中,於燒結生胚(g)時,水平式真空爐管是先以每分鐘3 °C的升溫速率升溫至600 °C並持溫1小時以進行脫脂;接著,再升溫至800 °C以進行還原;之後,以每分鐘5 °C的升溫速率升溫至950 °C並持溫1小時以進行除氣;最後,升溫至1350 °C至1450 °C並持溫1小時以進行液相燒結,使合金組成融化並均勻包覆碳化物組成,從而獲得樣品C。In addition, the stage of the horizontal vacuum furnace tube used in this embodiment is composed of an alumina boat-shaped crucible and an alumina gasket. In this embodiment, when sintering the green embryo (g), the horizontal vacuum furnace tube is first heated to 600 °C at a heating rate of 3 °C per minute and held for 1 hour for degreasing; then, it is heated to 600 °C. 800 ℃ to carry out reduction; After that, be warmed up to 950 ℃ with the heating rate of 5 ℃ per minute and hold the temperature for 1 hour to carry out degassing; Finally, be warmed up to 1350 ℃ to 1450 ℃ and hold the temperature for 1 hour to carry out degassing. Liquid phase sintering was performed to melt the alloy composition and uniformly coat the carbide composition, thereby obtaining sample C.

表5 粉末(g)及商用粉末(h)的元素組成(單位:wt.%) 粉末編號 Co Cr W Si Fe Ni C Mo Mn 粉末(g) Bal. 25.2 6.2 1.7 3.5 3.2 2.4 - - 商用粉末(h) Bal. 20.4 4.5 3.2 4.7 4.2 0.6 1.5 1.9 Table 5 Elemental composition of powder (g) and commercial powder (h) (unit: wt.%) powder number Co Cr W Si Fe Ni C Mo Mn Powder (g) Bal. 25.2 6.2 1.7 3.5 3.2 2.4 - - Commercial powder (h) Bal. 20.4 4.5 3.2 4.7 4.2 0.6 1.5 1.9

表6 粉末(g)以及商用粉末(h)的合金組成與碳化物組成的含量 粉末編號 鈷基合金(vol.%) 碳化鈷鉻鎢(vol.%) 其他碳化物(vol.%) 其他碳化物佔整體碳化物比例 粉末(g) 65.5 3.6 31.9 89.9% 商用粉末(h) 90.6 9.4 0 0% Table 6 Contents of alloy composition and carbide composition of powder (g) and commercial powder (h) powder number Cobalt-based alloy (vol.%) Cobalt chromium tungsten carbide (vol.%) Other carbides (vol.%) The proportion of other carbides in the overall carbide Powder (g) 65.5 3.6 31.9 89.9% Commercial powder (h) 90.6 9.4 0 0%

實施例8 實施例7的樣品的硬度測試Example 8 Hardness test of the sample of Example 7

將實施例7之樣品(g)經表面拋光研磨處理,使用硬度機量測硬度值。施加荷重為5 kgf、負荷時間為12秒。任相鄰兩壓痕間隔2 mm以上,以避免壓痕與壓痕之間相互影響產生誤差,每一試片皆量測七點後,進行計算求其平均硬度值,並將樣品(g)與經表面拋光研磨處理的樣品(h)進行硬度分析之比較。在本實施例中,樣品(h)是由商用粉末(h)經過如實施例7中所述的熱壓燒結製程所製成,商用粉末(h)中的元素組成、合金組成以及碳化物組成如表5及表6所示。The surface of the sample (g) of Example 7 was polished and ground, and the hardness value was measured using a hardness tester. The applied load was 5 kgf and the load time was 12 seconds. Any two adjacent indentations are separated by more than 2 mm to avoid errors caused by the interaction between indentations and indentations. After each test piece is measured at seven points, calculate the average hardness value, and compare the sample (g) with the The surface polished and ground treated samples (h) were compared for hardness analysis. In this example, the sample (h) is made from commercial powder (h) through the hot pressing sintering process as described in Example 7. The elemental composition, alloy composition and carbide composition of the commercial powder (h) As shown in Table 5 and Table 6.

如表7所示,樣品(g)的Hv5 硬度為533,樣品(h)的Hv5 硬度依序為329。由此可見,樣品(g)具有優於樣品(h)的硬度,換言之,實施例6的複合型合金材料的硬度優於商用合金材料[粉末(h)]的硬度。As shown in Table 7, the Hv 5 hardness of sample (g) is 533, and the Hv 5 hardness of sample (h) is 329 in sequence. It can be seen that the hardness of the sample (g) is better than that of the sample (h), in other words, the hardness of the composite alloy material of Example 6 is better than that of the commercial alloy material [powder (h)].

表7 樣品(g)及樣品(h)的硬度(Hv5 )值 樣品編號 樣品(g) 樣品(h) 硬度 (Hv5 ) 533 329 Table 7 Hardness (Hv 5 ) values of sample (g) and sample (h) Sample serial number Sample (g) Sample (h) Hardness (Hv 5 ) 533 329

實施例9 實施例7的樣品的金相觀察Example 9 Metallographic observation of the sample of Example 7

將實施例7之樣品(g)以及樣品(h)經表面拋光、研磨後,使用掃描式電子顯微鏡(SEM)進行影像觀察與分析,判斷碳化物形貌與數量,樣品(g)以及樣品(h)的掃描式電子顯微鏡照片如圖8及圖9所示。在本實施例中,碳化物比例測量方法係使用Image J影像辨識軟體輔助分析,藉由背向散射電子影像(backscattered electron image,BEI)中,不同種類碳化物於合金基材內顯現不同對比進行辨識與計算,並統計碳化物在整體影像中所佔面積比,經多張影像統計平均後,計算出如表6中所示的碳化物組成以及合金組成比例。After surface polishing and grinding the sample (g) and sample (h) of Example 7, image observation and analysis were performed using a scanning electron microscope (SEM) to determine the morphology and quantity of carbides, sample (g) and sample ( h) Scanning electron microscope photographs are shown in Figures 8 and 9. In this embodiment, the carbide ratio measurement method uses Image J image recognition software to assist the analysis, and is carried out by backscattered electron image (BEI), different types of carbides appear in the alloy substrate for different contrasts. Identify and calculate, and count the area ratio of carbides in the overall image. After statistical averaging of multiple images, the carbide composition and alloy composition ratio shown in Table 6 are calculated.

由本發明實施例6至9可見,具有特定含量範圍比例的鉻、鎢、矽、鐵、鎳、碳以及鈷的元素組成的實施例6之複合型合金材料,可具有較商用合金材料較佳的硬度等機械性質。據此,實施例6之複合型合金材料可應用於表面處理製程所形成的表面強化層,從而有效提升工件的使用壽命。It can be seen from Examples 6 to 9 of the present invention that the composite alloy material of Example 6, which is composed of elements of chromium, tungsten, silicon, iron, nickel, carbon and cobalt in a specific content range ratio, can have better properties than commercial alloy materials. Mechanical properties such as hardness. Accordingly, the composite alloy material of Example 6 can be applied to the surface strengthening layer formed by the surface treatment process, thereby effectively improving the service life of the workpiece.

實施例10 複合型合金材料的製備Example 10 Preparation of composite alloy material

本實施例的複合型合金材料具有下述元素組成:鉻、鎳、錳、鈦、矽、硼、碳以及鐵。以鉻、鎳、錳、鈦、矽、硼、碳以及鐵之總重量為基準,鉻的含量為3.5 wt%至25.0 wt%,鎳的含量為2.5 wt%至14.5 wt%,錳的含量為大於0 wt%且小於等於2.5 wt%,鈦的含量為0.5 wt%至17.5 wt%,矽的含量為0.2 wt%至5.0 wt%,硼的含量為1.0 wt%至3.2 wt%,碳的含量為0.1 wt%至7.5wt%,所述總重量的其餘百分比為鐵的含量。The composite alloy material of this embodiment has the following elemental composition: chromium, nickel, manganese, titanium, silicon, boron, carbon and iron. Based on the combined weight of chromium, nickel, manganese, titanium, silicon, boron, carbon, and iron, the chromium content is 3.5 wt% to 25.0 wt%, the nickel content is 2.5 wt% to 14.5 wt%, and the manganese content is More than 0 wt% and less than or equal to 2.5 wt%, the content of titanium is 0.5 wt% to 17.5 wt%, the content of silicon is 0.2 wt% to 5.0 wt%, the content of boron is 1.0 wt% to 3.2 wt%, and the content of carbon From 0.1 wt% to 7.5 wt%, the remaining percentage of the total weight is the iron content.

本實施例的複合型合金材料由合金組成以及碳化物組成製備,碳化物組成包括碳化鉻與非碳化鉻的碳化物(其他碳化物),非碳化鎢的碳化物可包括碳化鐵、碳化錳或/及碳化鈦。在本實施例中,合金組成為鐵基合金組成,合金組成包括鐵、鎳、鉻、鈦、硼以及矽,非碳化鉻的碳化物為碳化錳。進一步而言,本實施例的複合型合金材料之製備步驟如下:首先氣霧化所述合金組成,再以高能球磨設備研磨並且混合氣霧化的合金組成與碳化物組成12小時,接著通入氮氣作為保護氣體並封罐,如此獲得本實施例的複合型合金材料。此外,本實施例的複合型合金材料呈粉末狀,但本發明不以此為限。The composite alloy material of this embodiment is prepared from an alloy composition and a carbide composition. The carbide composition includes chromium carbide and non-chromium carbide carbides (other carbides), and the non-tungsten carbide carbides may include iron carbide, manganese carbide or / and titanium carbide. In this embodiment, the alloy composition is an iron-based alloy composition, and the alloy composition includes iron, nickel, chromium, titanium, boron and silicon, and the non-chromium carbide carbide is manganese carbide. Further, the preparation steps of the composite alloy material of this embodiment are as follows: firstly, the alloy composition is gas-atomized, then ground with a high-energy ball mill and mixed with the gas-atomized alloy composition and carbide composition for 12 hours, and then the Nitrogen gas was used as a protective gas and the can was sealed to obtain the composite alloy material of this embodiment. In addition, the composite alloy material in this embodiment is in powder form, but the present invention is not limited to this.

實施例11 實施例10的複合型合金材料的樣品的製備Example 11 Preparation of the sample of the composite alloy material of Example 10

取實施例10的複合型合金材料:粉末(i);以篩網過篩實施例10的複合型合金材料[粉末(i)];接著,以雙軸加壓的粉末成型機將過篩後的粉末(i)加壓成型獲得生胚(i);然後,以水平式真空爐管將生胚(i)燒結為樣品(i)。粉末(i)的元素組成、合金組成以及碳化物組成如表8及表9所示。Take the composite alloy material of Example 10: powder (i); sieve the composite alloy material [powder (i)] of Example 10 with a sieve; then, use a biaxially pressurized powder molding machine to sieve the The powder (i) was press-molded to obtain a green embryo (i); then, the green embryo (i) was sintered into a sample (i) with a horizontal vacuum furnace tube. Table 8 and Table 9 show the elemental composition, alloy composition, and carbide composition of the powder (i).

在本實施例中,在本實施例中,生胚(i)是以兩階段加壓獲得:第一階段加壓參數為50 MPa之成型壓力與5分鐘之施壓時間;第二階段加壓參數為100 MPa之成型壓力與5分鐘之施壓時間。此外,生胚(i)的相對緻密度約55%。In this embodiment, in this embodiment, the green embryo (i) is obtained by two-stage pressurization: the first-stage pressurization parameters are the molding pressure of 50 MPa and the pressurization time of 5 minutes; the second-stage pressurization The parameters are a molding pressure of 100 MPa and a pressing time of 5 minutes. In addition, the relative density of green embryos (i) is about 55%.

另外,本實施例所使用的水平式真空爐管的載台是由氧化鋁船型坩鍋與氧化鋁墊片組成。在本實施例中,於燒結生胚(i)時,水平式真空爐管是先以每分鐘3 °C的升溫速率升溫至600 °C並持溫1小時以進行脫脂;接著,再升溫至800 °C以進行還原;之後,以每分鐘5 °C的升溫速率升溫至950 °C並持溫1小時以進行除氣;最後,升溫至1250 °C至1300 °C並持溫1小時以進行液相燒結,使合金組成融化並均勻包覆碳化物組成,從而獲得樣品(i)。In addition, the stage of the horizontal vacuum furnace tube used in this embodiment is composed of an alumina boat-shaped crucible and an alumina gasket. In this embodiment, when sintering the green embryo (i), the horizontal vacuum furnace tube is first heated to 600 °C at a heating rate of 3 °C per minute and held for 1 hour for degreasing; then, it is heated to 600 °C. 800 ℃ to carry out reduction; After that, be warmed up to 950 ℃ with the heating rate of 5 ℃ per minute and hold the temperature for 1 hour to carry out degassing; Finally, be warmed up to 1250 ℃ to 1300 ℃ and hold the temperature for 1 hour to carry out degassing. Liquid phase sintering was performed to melt the alloy composition and uniformly coat the carbide composition to obtain sample (i).

表8 粉末(i)及商用粉末(j)的元素組成(單位:wt.%) 粉末編號 Fe Cr Ni Mn Ti Si B C 粉末(i) Bal. 3.7 13.5 2.5 0.7 0.4 1.5 6.5 商用粉末(j) Bal. 4.5 11 0.8 - 1.5 3.0 1.7 Table 8 Elemental composition of powder (i) and commercial powder (j) (unit: wt.%) powder number Fe Cr Ni Mn Ti Si B C Powder (i) Bal. 3.7 13.5 2.5 0.7 0.4 1.5 6.5 Commercial Powder (j) Bal. 4.5 11 0.8 - 1.5 3.0 1.7

表9 粉末(i)及商用粉末(j)的合金組成以及碳化物組成的含量 粉末編號 鐵基合金(vol.%) 碳化鉻(vol.%) 其他碳化物(vol.%) 其他碳化物佔整體碳化物比例 粉末(i) 71.7 10 18.3 64.7% 商用粉末(j) 73.6 26.4 0% 0% Table 9 Alloy composition and carbide composition content of powder (i) and commercial powder (j) powder number Iron-based alloys (vol.%) Chromium carbide (vol.%) Other carbides (vol.%) The proportion of other carbides in the overall carbide Powder (i) 71.7 10 18.3 64.7% Commercial Powder (j) 73.6 26.4 0% 0%

實施例12 實施例11的樣品的硬度測試Example 12 Hardness testing of the samples of Example 11

將實施例11之樣品(i)經表面拋光研磨處理,使用硬度機量測硬度值。施加荷重為5 kgf、負荷時間為12秒。任相鄰兩壓痕間隔2 mm以上,以避免壓痕與壓痕之間相互影響產生誤差,每一試片皆量測七點後,進行計算求其平均硬度值,並將樣品(i)與經表面拋光研磨處理的樣品(j)進行硬度分析之比較。在本實施例中,樣品(j)是由商用粉末(j)經過如實施例11中所述的熱壓燒結製程所製成,商用粉末(j)中的元素組成、合金組成以及碳化物組成如表8及表9所示。The surface of the sample (i) of Example 11 was polished and ground, and the hardness was measured using a hardness tester. The applied load was 5 kgf and the load time was 12 seconds. Any two adjacent indentations are separated by more than 2 mm to avoid errors caused by the interaction between indentations and indentations. After each test piece is measured at seven points, calculate the average hardness value, and compare the sample (i) with the The surface polished and ground treated samples (j) were compared for hardness analysis. In this example, sample (j) is made from commercial powder (j) through the hot pressing sintering process as described in Example 11. The elemental composition, alloy composition and carbide composition of commercial powder (j) As shown in Table 8 and Table 9.

如表10所示,樣品(i)的Hv5 硬度為788,樣品(j)的Hv5 硬度依序為445。由此可見,樣品(i)具有優於樣品(j)的硬度,換言之,實施例10的複合型合金材料的硬度優於商用合金材料[粉末(j)]的硬度。As shown in Table 10, the Hv 5 hardness of sample (i) is 788, and the Hv 5 hardness of sample (j) is 445 in sequence. It can be seen that the hardness of the sample (i) is better than that of the sample (j), in other words, the hardness of the composite alloy material of Example 10 is better than that of the commercial alloy material [powder (j)].

表10 樣品(i)及樣品(j)的硬度(Hv5 )值 樣品編號 樣品(i) 樣品(j) 硬度 (Hv5 ) 788 445 Table 10 Hardness (Hv 5 ) values of sample (i) and sample (j) Sample serial number Sample (i) sample (j) Hardness (Hv 5 ) 788 445

實施例13 實施例11的樣品的金相觀察Example 13 Metallographic observation of the sample of Example 11

將實施例11之樣品(i)以及樣品(j)經表面拋光、研磨後,使用掃描式電子顯微鏡(SEM)進行影像觀察與分析,判斷碳化物形貌與數量,樣品(i)以及樣品(j)的掃描式電子顯微鏡照片如圖10及圖11所示。在本實施例中,碳化物比例測量方法係使用Image J影像辨識軟體輔助分析,藉由背向散射電子影像(backscattered electron image,BEI)中,不同種類碳化物於合金基材內顯現不同對比進行辨識與計算,並統計碳化物在整體影像中所佔面積比,經多張影像統計平均後,計算出如表9中所示的碳化物組成以及合金組成比例。After surface polishing and grinding the samples (i) and (j) of Example 11, image observation and analysis were carried out using a scanning electron microscope (SEM) to determine the morphology and quantity of carbides, and the samples (i) and samples ( The scanning electron microscope photographs of j) are shown in FIGS. 10 and 11 . In this embodiment, the carbide ratio measurement method uses Image J image recognition software to assist the analysis, and is carried out by backscattered electron image (BEI), different types of carbides appear in the alloy substrate for different contrasts. Identify and calculate, and count the area ratio of carbides in the overall image. After statistical averaging of multiple images, the carbide composition and alloy composition ratio shown in Table 9 are calculated.

由本發明實施例10至13可見,具有特定含量範圍比例的鉻、鎳、錳、鈦、矽、硼、碳以及鐵的元素組成的實施例10之複合型合金材料,可具有較商用合金材料較佳的硬度等機械性質。據此,實施例10之複合型合金材料可應用於表面處理製程所形成的表面強化層,從而有效提升工件的使用壽命。From Examples 10 to 13 of the present invention, it can be seen that the composite alloy material of Example 10, which is composed of elements of chromium, nickel, manganese, titanium, silicon, boron, carbon and iron in a specific content range ratio, can have a higher performance than commercial alloy materials. Good mechanical properties such as hardness. Accordingly, the composite alloy material of Example 10 can be applied to the surface strengthening layer formed by the surface treatment process, thereby effectively improving the service life of the workpiece.

實施例14 複合型合金材料的製備Example 14 Preparation of composite alloy material

本實施例的複合型合金材料具有下述元素組成:鉻、鈷、鎳、鋁、銅、鐵、碳以及鎢。以鉻、鈷、鎳、鋁、銅、鐵、碳以及鎢之總重量為基準,鉻的含量為1.2 wt%至6.5 wt%,鈷的含量為1.5 wt%至7.5 wt%,鎳的含量為1.5 wt%至7.5 wt%,鋁的含量為0.2 wt%至2.5 wt%,銅的含量為1.5 wt%至8.2 wt%,鐵的含量為1.5 wt%至8.2 wt%,碳的含量為2.5 wt%至6.5wt%,所述總重量的其餘百分比為鎢的含量。The composite alloy material of this embodiment has the following elemental composition: chromium, cobalt, nickel, aluminum, copper, iron, carbon, and tungsten. Based on the total weight of chromium, cobalt, nickel, aluminum, copper, iron, carbon and tungsten, the content of chromium is 1.2 wt% to 6.5 wt%, the content of cobalt is 1.5 wt% to 7.5 wt%, and the content of nickel is 1.5 wt% to 7.5 wt%, 0.2 wt% to 2.5 wt% aluminum, 1.5 wt% to 8.2 wt% copper, 1.5 wt% to 8.2 wt% iron, and 2.5 wt% carbon % to 6.5 wt %, and the remaining percentage of the total weight is the content of tungsten.

本實施例的複合型合金材料由合金組成以及碳化物組成製備,合金組成可包括六至十種週期表金屬元素,以合金組成之總莫耳數為基準,合金組成所包括的每一種週期表金屬元素的含量為5 mol.%至30 mol.%,碳化物組成包括碳化鎢以及M1金屬碳化物(其他碳化物),M1金屬碳化物由碳與M1金屬構成,M1金屬可選自於釩、鉬、鈮、鋯、釔、銫、鈦、鉻、錳、鐵、鈷、鎳、鋁、錸、鉿、鉭及其組合所構成的群組。進一步而言,在本實施例中,合金組成所包括的週期表金屬元素為鉻、鐵、鎳、銅、鋁以及鈷,上述元素的含量各為5 mol.%至30 mol.%,且M1金屬碳化物為碳化鐵(M1金屬為鐵)。本實施例的複合型合金材料之製備步驟如下:首先氣霧化所述合金組成,再以高能球磨設備研磨並且混合氣霧化的合金組成與碳化物組成12小時,接著通入氮氣作為保護氣體並封罐,如此獲得本實施例的複合型合金材料。此外,本實施例的複合型合金材料呈粉末狀,但本發明不以此為限。The composite alloy material of this embodiment is prepared from an alloy composition and a carbide composition. The alloy composition may include six to ten periodic table metal elements. Based on the total molar number of the alloy composition, each periodic table included in the alloy composition The content of metal elements is 5 mol.% to 30 mol.%, the carbide composition includes tungsten carbide and M1 metal carbide (other carbides), M1 metal carbide is composed of carbon and M1 metal, and M1 metal can be selected from vanadium , molybdenum, niobium, zirconium, yttrium, cesium, titanium, chromium, manganese, iron, cobalt, nickel, aluminum, rhenium, hafnium, tantalum, and combinations thereof. Further, in this embodiment, the periodic table metal elements included in the alloy composition are chromium, iron, nickel, copper, aluminum and cobalt, and the content of the above elements is 5 mol.% to 30 mol.%, and M1 The metal carbide is iron carbide (M1 metal is iron). The preparation steps of the composite alloy material of this embodiment are as follows: firstly gas atomize the alloy composition, then grind and mix the gas atomized alloy composition and carbide composition for 12 hours with high-energy ball milling equipment, and then introduce nitrogen as a protective gas The cans were sealed to obtain the composite alloy material of this embodiment. In addition, the composite alloy material in this embodiment is in powder form, but the present invention is not limited to this.

實施例15 實施例14的複合型合金材料的樣品的製備Example 15 Preparation of the sample of the composite alloy material of Example 14

取實施例14的複合型合金材料:粉末(k)及粉末(l);以篩網過篩實施例14的複合型合金材料[粉末(k)以及粉末(l)];接著,以雙軸加壓的粉末成型機將過篩後的粉末(k)以及粉末(l)加壓成型獲得生胚(k)以及生胚(l);然後,以水平式真空爐管將生胚(k)以及生胚(l)燒結為樣品(k)以及樣品(l)。粉末(k)以及粉末(l)的元素組成、合金組成以及碳化物組成如表11及表12所示。Take the composite alloy material of Example 14: powder (k) and powder (l); sieve the composite alloy material of Example 14 [powder (k) and powder (l)] with a screen; The pressurized powder molding machine pressurizes the sieved powder (k) and powder (l) to obtain green embryos (k) and green embryos (l); then, the green embryos (k) are formed by a horizontal vacuum furnace tube. And the green embryo (l) is sintered into sample (k) and sample (l). The elemental composition, alloy composition, and carbide composition of the powder (k) and the powder (l) are shown in Table 11 and Table 12.

在本實施例中,生胚(k)以及生胚(l)是以兩階段加壓獲得:第一階段加壓參數為50百萬帕(MPa)之成型壓力與5分鐘之施壓時間;第二階段加壓參數為100 MPa之成型壓力與5分鐘之施壓時間。此外,生胚(k)以及生胚(l)的相對緻密度約55%。In this embodiment, the green embryos (k) and the green embryos (l) are obtained by two-stage pressing: the first-stage pressing parameters are a forming pressure of 50 million Pascals (MPa) and a pressing time of 5 minutes; The pressing parameters of the second stage are a molding pressure of 100 MPa and a pressing time of 5 minutes. In addition, the relative density of green embryos (k) and green embryos (l) is about 55%.

另外,本實施例所使用的水平式真空爐管的載台是由氧化鋁船型坩鍋與氧化鋁墊片組成。在本實施例中,於燒結生胚(k)以及生胚(l)時,水平式真空爐管是先以每分鐘3 °C的升溫速率升溫至600 °C並持溫1小時以進行脫脂;接著,再升溫至800 °C以進行還原;之後,以每分鐘5 °C的升溫速率升溫至950 °C並持溫1小時以進行除氣;最後,升溫至1350°C至1400 °C並持溫1小時以進行液相燒結,使合金組成融化並均勻包覆碳化物組成,從而獲得樣品(k)以及樣品(l)。In addition, the stage of the horizontal vacuum furnace tube used in this embodiment is composed of an alumina boat-shaped crucible and an alumina gasket. In this embodiment, when sintering the green embryos (k) and green embryos (l), the horizontal vacuum furnace tube is first heated to 600 °C at a heating rate of 3 °C per minute and held for 1 hour for degreasing Then, be warming up to 800 DEG C again to carry out reduction; After that, be warming up to 950 DEG C with the heating rate of 5 DEG C per minute and hold temperature 1 hour to carry out degassing; Finally, be warming up to 1350 DEG C to 1400 DEG C The temperature is maintained for 1 hour to perform liquid phase sintering, so that the alloy composition is melted and the carbide composition is uniformly coated, thereby obtaining the sample (k) and the sample (l).

表11 粉末(k)以及粉末(l)的元素組成(單位:wt. %) 粉末編號 W Cr Co Ni Al Cu Fe C 粉末(k) Bal. 1.2 2.7 1.3 0.6 2.9 1.3 5.5 粉末(l) Bal. 2.4 5.4 2.7 1.2 5.8 2.5 4.9 Table 11 Elemental composition of powder (k) and powder (l) (unit: wt. %) powder number W Cr Co Ni Al Cu Fe C Powder (k) Bal. 1.2 2.7 1.3 0.6 2.9 1.3 5.5 Powder (l) Bal. 2.4 5.4 2.7 1.2 5.8 2.5 4.9

表12 粉末(k)以及粉末(l)的合金組成與碳化物組成的含量 粉末編號 合金組成(vol.%) 碳化鎢(vol.%) 其他碳化物(vol.%) 其他碳化物佔整體碳化物比例 粉末(k) 66.0 18.4 15.6 45.9% 粉末(l) 63.9 12.4 23.7 65.7% Table 12 Contents of alloy composition and carbide composition of powder (k) and powder (l) powder number Alloy composition (vol.%) Tungsten carbide (vol.%) Other carbides (vol.%) The proportion of other carbides in the overall carbide Powder (k) 66.0 18.4 15.6 45.9% Powder (l) 63.9 12.4 23.7 65.7%

實施例16 實施例14的樣品的硬度測試Example 16 Hardness testing of samples of Example 14

將實施例15之樣品(k)以及樣品(l)經表面拋光研磨處理,使用硬度機量測硬度值。施加荷重為30 kgf、負荷時間為12秒。任相鄰兩壓痕間隔2 mm以上,以避免壓痕與壓痕之間相互影響產生誤差,每一試片皆量測七點後,進行計算求其平均硬度值。如表13所示,樣品(k)的Hv30 硬度可達到1260,樣品(l)的Hv30 硬度可達到1037。The samples (k) and (l) of Example 15 were subjected to surface polishing and grinding treatment, and the hardness values were measured using a hardness tester. The applied load was 30 kgf and the load time was 12 seconds. Any two adjacent indentations are separated by more than 2 mm to avoid errors caused by the interaction between the indentation and the indentation. After each test piece is measured at seven points, the average hardness value is calculated and calculated. As shown in Table 13, the Hv 30 hardness of sample (k) can reach 1260, and the Hv 30 hardness of sample (l) can reach 1037.

表13 樣品(k)以及樣品(l)的硬度(Hv30 )值 樣品編號 樣品(k) 樣品(l) 硬度(Hv30 ) 1260 1037 Table 13 Hardness (Hv 30 ) values of sample (k) and sample (l) Sample serial number Sample (k) Sample (l) Hardness (Hv 30 ) 1260 1037

實施例17 實施例14的樣品的金相觀察Example 17 Metallographic observation of the sample of Example 14

將實施例14之樣品(k)以及樣品(l)經表面拋光、研磨後,使用掃描式電子顯微鏡(SEM)進行影像觀察與分析,判斷碳化物形貌與數量,樣品(k)以及樣品(l)的掃描式電子顯微鏡照片如圖12及圖13所示。在本實施例中,碳化物比例測量方法係使用Image J影像辨識軟體輔助分析,藉由背向散射電子影像(backscattered electron image,BEI)中,不同種類碳化物於合金基材內顯現不同對比進行辨識與計算,並統計碳化物在整體影像中所佔面積比,經多張影像統計平均後,計算出如表12中所示的碳化物組成以及合金組成比例。After surface polishing and grinding the sample (k) and sample (l) of Example 14, image observation and analysis were performed using a scanning electron microscope (SEM) to determine the morphology and quantity of carbides, sample (k) and sample ( l) Scanning electron microscope photographs are shown in Figures 12 and 13. In this embodiment, the carbide ratio measurement method uses Image J image recognition software to assist the analysis, and is carried out by backscattered electron image (BEI), different types of carbides appear in the alloy substrate for different contrasts. Identify and calculate, and count the area ratio of carbide in the overall image. After statistical averaging of multiple images, the carbide composition and alloy composition ratio shown in Table 12 are calculated.

由本發明實施例14至17可見,實施例14之複合型合金材料,可具有較商用合金材料較佳的硬度等機械性質。據此,實施例14之複合型合金材料可應用於表面處理製程所形成的表面強化層,從而有效提升工件的使用壽命。It can be seen from Examples 14 to 17 of the present invention that the composite alloy material of Example 14 can have better mechanical properties such as hardness than commercial alloy materials. Accordingly, the composite alloy material of Example 14 can be applied to the surface strengthening layer formed by the surface treatment process, thereby effectively improving the service life of the workpiece.

綜上所述,本發明實施例的複合型合金材料,可具有較商用合金材料較佳的硬度等機械性質,可應用於表面處理製程所形成的表面強化層,從而有效提升工件的使用壽命。To sum up, the composite alloy material of the embodiment of the present invention can have better mechanical properties such as hardness than commercial alloy materials, and can be applied to the surface strengthening layer formed by the surface treatment process, thereby effectively improving the service life of the workpiece.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed as above with examples, it is not intended to limit the present invention. Those with ordinary knowledge in the technical field to which the present invention pertains can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be determined by the scope of the appended patent application.

C1:裂痕 C2:裂痕 C3:裂痕 C4:裂痕C1: Crack C2: Crack C3: Crack C4: Crack

圖1為樣品(a)經過硬度測試後的光學顯微鏡圖; 圖2為樣品(c)經過硬度測試後的光學顯微鏡圖; 圖3為樣品(d)經過硬度測試後的光學顯微鏡圖; 圖4為樣品(e)經過硬度測試後的光學顯微鏡圖; 圖5為樣品(f)經過硬度測試後的光學顯微鏡圖; 圖6為樣品(a)的掃描式電子顯微鏡照片; 圖7為樣品(b)的掃描式電子顯微鏡照片; 圖8為樣品(g)的掃描式電子顯微鏡照片; 圖9為樣品(h)的掃描式電子顯微鏡照片; 圖10為樣品(i)的掃描式電子顯微鏡照片; 圖11為樣品(j)的掃描式電子顯微鏡照片; 圖12為樣品(k)的掃描式電子顯微鏡照片;以及 圖13為樣品(l)的掃描式電子顯微鏡照片。Figure 1 is an optical microscope image of sample (a) after hardness test; Figure 2 is an optical microscope image of sample (c) after hardness testing; Figure 3 is an optical microscope image of sample (d) after hardness test; Figure 4 is an optical microscope image of sample (e) after hardness testing; Figure 5 is an optical microscope image of sample (f) after hardness test; Fig. 6 is the scanning electron microscope photograph of sample (a); Figure 7 is a scanning electron microscope photograph of sample (b); Figure 8 is a scanning electron microscope photograph of sample (g); Fig. 9 is the scanning electron microscope photograph of sample (h); Figure 10 is a scanning electron microscope photograph of sample (i); Figure 11 is a scanning electron microscope photograph of sample (j); Figure 12 is a scanning electron microscope photograph of sample (k); and Fig. 13 is a scanning electron microscope photograph of the sample (l).

Claims (12)

一種複合型合金材料,其包括一元素組成,該元素組成包括鉻、鎢、矽、硼、鐵、鈷、碳以及鎳,以鉻、鎢、矽、硼、鐵、鈷、碳與鎳之總重量為基準,鉻的含量為2.4 wt%至12.4 wt%,鎢的含量為29.6 wt%至57.2 wt%,矽的含量為1.0 wt%至4.5 wt%,硼的含量為0.8 wt%至4.1 wt%,鐵的含量為3.9 wt%至13.2 wt%,鈷的含量為0.2 wt%至4.8 wt%,碳的含量為1.3 wt%至5.5 wt%。A composite alloy material, which includes an elemental composition, the elemental composition includes chromium, tungsten, silicon, boron, iron, cobalt, carbon and nickel, with the total of chromium, tungsten, silicon, boron, iron, cobalt, carbon and nickel. 2.4 wt% to 12.4 wt% chromium, 29.6 wt% to 57.2 wt% tungsten, 1.0 wt% to 4.5 wt% silicon, 0.8 wt% to 4.1 wt% boron on a weight basis %, the content of iron is 3.9 wt% to 13.2 wt%, the content of cobalt is 0.2 wt% to 4.8 wt%, and the content of carbon is 1.3 wt% to 5.5 wt%. 一種複合型合金材料,其包括一元素組成,該元素組成包括鉻、鎢、矽、鐵、鎳、碳以及鈷,以鉻、鎢、矽、鐵、鎳、鈷與碳之總重量為基準,鉻的含量為25.2 wt%至50.2 wt%,鎢的含量為2.8 wt%至12.6 wt%,矽的含量為0.5 wt%至1.7 wt%,鐵的含量為0.5 wt%至3.5 wt%,鎳的含量為0.5 wt%至3.5 wt%,碳的含量為0.8 wt%至7.4 wt%。A composite alloy material comprising an elemental composition comprising chromium, tungsten, silicon, iron, nickel, carbon and cobalt, based on the total weight of chromium, tungsten, silicon, iron, nickel, cobalt and carbon, 25.2 wt% to 50.2 wt% of chromium, 2.8 to 12.6 wt% of tungsten, 0.5 to 1.7 wt% of silicon, 0.5 to 3.5 wt% of iron, and 0.5 to 3.5 wt% of nickel The content is 0.5 wt% to 3.5 wt%, and the content of carbon is 0.8 wt% to 7.4 wt%. 一種複合型合金材料,其包括一元素組成,該元素組成包括鉻、鎳、錳、鈦、矽、硼、碳以及鐵,以鉻、鎳、錳、鈦、矽、硼、碳與鐵之總重量為基準,鉻的含量為3.5 wt%至25.0 wt%,鎳的含量為2.5 wt%至14.5 wt%,錳的含量大於0 wt%且小於或等於2.5 wt%,鈦的含量為0.5 wt%至17.5 wt%,矽的含量為0.2 wt%至5.0 wt%,硼的含量為1.0 wt%至3.2 wt%,碳的含量為0.1 wt%至7.5wt%。A composite alloy material, which includes an element composition, the element composition includes chromium, nickel, manganese, titanium, silicon, boron, carbon and iron, and the total of chromium, nickel, manganese, titanium, silicon, boron, carbon and iron is 3.5 wt% to 25.0 wt% of chromium, 2.5 to 14.5 wt% of nickel, greater than 0 wt% and less than or equal to 2.5 wt% of manganese, and 0.5 wt% of titanium on a weight basis to 17.5 wt%, the silicon content is 0.2 wt% to 5.0 wt%, the boron content is 1.0 wt% to 3.2 wt%, and the carbon content is 0.1 wt% to 7.5 wt%. 如請求項1至3中任一項所述的複合型合金材料,其中包括一合金組成以及一碳化物組成,該合金組成以及該碳化物組成構成該元素組成,以該複合型合金材料之整體為基準,該碳化物組成的含量為25 vol.%至75 vol.%。The composite alloy material as claimed in any one of claims 1 to 3, comprising an alloy composition and a carbide composition, the alloy composition and the carbide composition constitute the element composition, and the composite alloy material as a whole The content of the carbide composition is 25 vol.% to 75 vol.% on a basis. 如請求項1所述的複合型合金材料,其中包括一合金組成以及一碳化物組成,該合金組成以及該碳化物組成構成該元素組成,該碳化物組成包括碳化鎢以及非碳化鎢之碳化物,所述非碳化鎢的碳化物選自於下列構成的群組:碳化鐵、碳化鉻、碳化釩、碳化鉬、碳化鈦、碳化鈷及其組合,以該碳化物組成之整體為基準,該非碳化鎢之碳化物的含量為40 vol.%至90 vol.%。The composite alloy material according to claim 1, comprising an alloy composition and a carbide composition, the alloy composition and the carbide composition constitute the element composition, and the carbide composition includes tungsten carbide and non-tungsten carbide carbides , the non-tungsten carbide carbide is selected from the group consisting of: iron carbide, chromium carbide, vanadium carbide, molybdenum carbide, titanium carbide, cobalt carbide and combinations thereof. Based on the overall composition of the carbide, the non-tungsten carbide The carbide content of tungsten carbide is 40 vol.% to 90 vol.%. 如請求項2所述的複合型合金材料,其中包括一合金組成以及一碳化物組成,該合金組成以及該碳化物組成構成該元素組成,該碳化物組成包括碳化鈷鉻鎢以及非碳化鈷鉻鎢之碳化物,所述非碳化鎢的碳化物選自於下列構成的群組:碳化鐵、碳化鉻、碳化釩、碳化鉬、碳化鈦、碳化鈷及其組合,以該碳化物組成之整體為基準,該非碳化鈷鉻鎢之碳化物的含量為40 vol.%至90 vol.%。The composite alloy material according to claim 2, comprising an alloy composition and a carbide composition, the alloy composition and the carbide composition constitute the element composition, and the carbide composition includes cobalt-chromium-tungsten carbide and non-carbide-cobalt-chromium Carbides of tungsten, the carbides of non-tungsten carbides are selected from the group consisting of iron carbide, chromium carbide, vanadium carbide, molybdenum carbide, titanium carbide, cobalt carbide and combinations thereof, with the carbide as a whole The content of the non-carbide cobalt chromium tungsten carbide is 40 vol.% to 90 vol.% on a basis. 如請求項3所述的複合型合金材料,其中包括一合金組成以及一碳化物組成,該合金組成以及該碳化物組成構成該元素組成,該碳化物組成包括碳化鉻以及非碳化鉻之碳化物,所述非碳化鎢的碳化物選自於下列構成的群組:碳化鐵、碳化錳、碳化釩、碳化鉬、碳化鎢、碳化鈦及其組合,以該碳化物組成之整體為基準,該非碳化鉻之碳化物的含量為40 vol.%至90 vol.%。The composite alloy material according to claim 3, comprising an alloy composition and a carbide composition, the alloy composition and the carbide composition constitute the element composition, and the carbide composition includes chromium carbide and non-chromium carbide carbides , the non-tungsten carbide carbide is selected from the group consisting of: iron carbide, manganese carbide, vanadium carbide, molybdenum carbide, tungsten carbide, titanium carbide and combinations thereof. Based on the overall composition of the carbide, the non-tungsten carbide The carbide content of chromium carbide is 40 vol.% to 90 vol.%. 一種複合型合金材料,其包括一合金組成以及一碳化物組成,該合金組成包括六至十種週期表金屬元素,以該合金組成之總莫耳數為基準,該合金組成所包括的每一種週期表金屬元素的含量為5 mol.%至30 mol.%,該碳化物組成包括一M1金屬碳化物以及碳化鎢,該M1金屬碳化物由碳與一M1金屬構成,該M1金屬選自於釩、鉬、鈮、鋯、釔、銫、鈦、鉻、錳、鐵、鈷、鎳、鋁、錸、鉿、鉭及其組合所構成的群組。A composite alloy material, which includes an alloy composition and a carbide composition, the alloy composition includes six to ten periodic table metal elements, and based on the total molar number of the alloy composition, each of the alloy composition includes The content of metal elements in the periodic table is 5 mol.% to 30 mol.%, the carbide composition includes an M1 metal carbide and tungsten carbide, the M1 metal carbide is composed of carbon and an M1 metal, and the M1 metal is selected from The group consisting of vanadium, molybdenum, niobium, zirconium, yttrium, cesium, titanium, chromium, manganese, iron, cobalt, nickel, aluminum, rhenium, hafnium, tantalum, and combinations thereof. 如請求項7所述的複合型合金材料,其中,以該複合型合金材料之整體為基準,該碳化物組成的含量為25 vol.%至75 vol.%。The composite alloy material according to claim 7, wherein, based on the entire composite alloy material, the content of the carbide composition is 25 vol.% to 75 vol.%. 如請求項7所述的複合型合金材料,其中以該碳化物組成之整體為基準,該碳化物的含量40 vol.%至90 vol.%。The composite alloy material according to claim 7, wherein the content of the carbide is 40 vol.% to 90 vol.% based on the entire composition of the carbide. 2、3及7中任一項所述的複合型合金材料,其中該複合型合金材料更包括一添加物,該添加物選自於一M2金屬及其碳化物所構成的群組,該M2金屬選自於釩、鉬、鈮、鋯、釔、銫、鈦、鉻、錳、鐵、鈷、鎳、鋁、錸、鉿、鉭及其組合所構成的群組。The composite alloy material described in any one of 2, 3 and 7, wherein the composite alloy material further comprises an additive selected from the group consisting of an M2 metal and its carbide, the M2 The metal is selected from the group consisting of vanadium, molybdenum, niobium, zirconium, yttrium, cesium, titanium, chromium, manganese, iron, cobalt, nickel, aluminum, rhenium, hafnium, tantalum, and combinations thereof. 如請求項10所述的複合型合金材料,其中,以該複合型合金材料之整體為基準,該M2金屬的含量大於0 wt%且小於或等於10 wt%。The composite alloy material according to claim 10, wherein, based on the entire composite alloy material, the content of the M2 metal is greater than 0 wt% and less than or equal to 10 wt%.
TW109123895A 2020-07-15 2020-07-15 Composite ceramic reinforcement material TWI784294B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109123895A TWI784294B (en) 2020-07-15 2020-07-15 Composite ceramic reinforcement material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109123895A TWI784294B (en) 2020-07-15 2020-07-15 Composite ceramic reinforcement material

Publications (2)

Publication Number Publication Date
TW202204646A true TW202204646A (en) 2022-02-01
TWI784294B TWI784294B (en) 2022-11-21

Family

ID=81323661

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109123895A TWI784294B (en) 2020-07-15 2020-07-15 Composite ceramic reinforcement material

Country Status (1)

Country Link
TW (1) TWI784294B (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040258554A1 (en) * 2002-01-09 2004-12-23 Roman Radon High-chromium nitrogen containing castable alloy
TWI347978B (en) * 2007-09-19 2011-09-01 Ind Tech Res Inst Ultra-hard composite material and method for manufacturing the same

Also Published As

Publication number Publication date
TWI784294B (en) 2022-11-21

Similar Documents

Publication Publication Date Title
EP3472365B1 (en) Steel suitable for plastic moulding tools
US12000022B2 (en) High entropy alloy article, product formed of said high entropy alloy article, and fluid machine having said product
JP3952252B2 (en) Powder for thermal spraying and high-speed flame spraying method using the same
JP7311633B2 (en) Nickel-base alloy for powder and method for producing powder
EP2612944A1 (en) Plunger for use in manufacturing glass containers
KR20130122900A (en) Wear-resistant cobalt-based alloy and engine valve coated with same
JP5486092B2 (en) High toughness cobalt base alloy and engine valve
JP2023519255A (en) cobalt chromium alloy powder
KR101412797B1 (en) Ni-base wear and corrosion resistant alloy
JP6646885B2 (en) Manufacturing method of hot forging dies and forged products
CN111004953A (en) Molten aluminum corrosion resistant cermet material and preparation method and application thereof
CN113549801A (en) Second-phase reinforced high-entropy binder hard alloy and preparation method thereof
JP3916465B2 (en) Molten metal member made of sintered alloy having excellent corrosion resistance and wear resistance against molten metal, method for producing the same, and machine structure member using the same
CN110484916A (en) A kind of high speed and ultrahigh speed laser melting coating Co-based alloy powder
TW202204646A (en) Composite ceramic reinforcement material
CN116275010A (en) In-situ nitride reinforced 3D printing nickel-based superalloy powder
JPH0645863B2 (en) Thermal spray material excellent in high temperature wear resistance and build-up resistance and its coated article
JP2006265591A (en) Ni-based self-fluxing alloy powder and corrosion resistant and wear resistant component obtained by using the powder
JP2019090098A (en) Sintered body and tool for friction stir welding
JP2019183201A (en) Sintered body and rotation tool
JP2015107525A (en) Rotary tool
JP6036795B2 (en) Rotation tool
JP7406329B2 (en) Ni-Cr-Mo precipitation hardening alloy
JP2000336445A (en) High hardness nickel base sintered alloy excellent in wear resistance and its production
JP2012166219A (en) Rotary tool