TW202203845A - Method and device for generating eit image using periodic biomedical signal - Google Patents
Method and device for generating eit image using periodic biomedical signal Download PDFInfo
- Publication number
- TW202203845A TW202203845A TW109125380A TW109125380A TW202203845A TW 202203845 A TW202203845 A TW 202203845A TW 109125380 A TW109125380 A TW 109125380A TW 109125380 A TW109125380 A TW 109125380A TW 202203845 A TW202203845 A TW 202203845A
- Authority
- TW
- Taiwan
- Prior art keywords
- signal
- physiological signals
- eit
- periodic physiological
- signals
- Prior art date
Links
Images
Landscapes
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
Description
本發明是有關於一種電阻抗體層成像技術,且特別是有關於一種利用週期性生理訊號產生電阻抗體層成像方法與裝置。The present invention relates to a resistive antibody tomography technology, and more particularly, to a method and device for generating resistive antibody tomography by utilizing periodic physiological signals.
在大部分醫療機構,常見的人體內部成像技術有X光、電腦斷層掃描、核磁共振、及超音波。然而,X光與電腦斷層具有輻射性疑慮,核磁共振與超音波雖為非輻射性檢測儀器,但由於造價不斐以及儀器體積龐大,故無法在非研究型醫院普及化。In most medical institutions, common internal imaging techniques are X-ray, computed tomography, nuclear magnetic resonance, and ultrasound. However, X-ray and computed tomography have radiation concerns. Although nuclear magnetic resonance and ultrasound are non-radiation detection instruments, they cannot be popularized in non-research hospitals due to their high cost and large size.
電阻抗成像(electrical impedance tomography,EIT)技術為非輻射性、非侵入式的醫學成像技術,其利用量測物體外部電壓訊號解析物體內部的電導率分布。因此,電阻抗成像技術在開發上具有攜帶式與低成本的優勢。近年來,電阻抗成像技術在人體上影像量測之研究提出許多影像解析度之精進方案,例如,複合式電極設計、前端類比電路的改善、類比數位轉換器(ADC)轉換解析度的提升、後端成像軟體演算法優化、及影像後修飾,以提高電阻抗成像之解析度。然而,在實際應用上,解析度仍停留在解析器官等級之大小,如肺臟、腎臟成像之應用。Electrical impedance tomography (EIT) technology is a non-radiative, non-invasive medical imaging technology, which uses the voltage signal outside the measured object to analyze the conductivity distribution inside the object. Therefore, the electrical impedance imaging technology has the advantages of being portable and low-cost in development. In recent years, the research of electrical impedance imaging technology in the image measurement of the human body has proposed many solutions for improving the image resolution, such as the design of composite electrodes, the improvement of the front-end analog circuit, the improvement of the conversion resolution of the analog-to-digital converter (ADC), Back-end imaging software algorithm optimization and image post-modification to improve the resolution of electrical impedance imaging. However, in practical applications, the resolution still remains at the size of the organ level, such as the application of lung and kidney imaging.
目前在人體成像應用上至今,尚未提及利用同步化生理訊號量測進行雜訊的消除,進而提高電阻抗成像之解析度。So far, in the application of human imaging, there is no mention of using synchronized physiological signal measurement to eliminate noise, thereby improving the resolution of electrical impedance imaging.
依據一實施例,提供一種利用週期性生理訊號產生電阻抗體層成像方法,包括:量測週期性生理訊號,並偵測所述週期性生理訊號的每一周期中的特徵點;基於所述週期性生理訊號的每一周期中的所述特徵點,觸發以擷取電阻抗成像(EIT)訊號,並且以預定次數進行所述EIT訊號量測;將所述預定次數的所述EIT訊號量測進行平均,以產生一模板;以及依據所述模板,產生電阻抗體層成像。According to an embodiment, a method for generating resistive antibody layer imaging using periodic physiological signals is provided, comprising: measuring the periodic physiological signals, and detecting characteristic points in each cycle of the periodic physiological signals; The characteristic point in each cycle of the sexual physiological signal is triggered to capture an electrical impedance imaging (EIT) signal, and the EIT signal is measured for a predetermined number of times; the EIT signal for the predetermined number of times is measured Averaging is performed to generate a template; and based on the template, a resistive antibody layer image is generated.
在上述方法中,EIT訊號量測可以是量測EIT訊號的原始訊號、基於所述EIT訊號產生的均方根電壓訊號、基於所述EIT訊號產生的導電值訊號以及基於所述EIT訊號產生的EIT影像。In the above method, the measurement of the EIT signal may be to measure the original signal of the EIT signal, the root mean square voltage signal generated based on the EIT signal, the conduction value signal generated based on the EIT signal, and the signal generated based on the EIT signal. EIT image.
在上述方法中,所述週期性生理訊號可以包括隨著心臟脈動產生的生理訊號。隨著心臟脈動的所述生理訊號可以包括心電圖訊號、光電容積圖訊號、血氧訊號、心音訊號。所述週期性生理訊號還可以包括呼吸訊號。In the above method, the periodic physiological signal may include a physiological signal generated with the pulse of the heart. The physiological signals accompanying the heart pulsation may include electrocardiogram signals, photoplethysmography signals, blood oxygen signals, and heart sound signals. The periodic physiological signal may also include a breathing signal.
在上述方法中,所述特徵點可以包括所述週期性生理訊號的每一周期中的訊號波峰、訊號波谷或R-波峰。在上述方法中,每次所述EIT訊號量測可以是以預定資料長度進行。In the above method, the characteristic points may include signal peaks, signal troughs or R-peaks in each cycle of the periodic physiological signal. In the above method, each measurement of the EIT signal may be performed with a predetermined data length.
依據另一實施例,提供一種利用週期性生理訊號產生電阻抗體層成像裝置,其包括:電阻抗體層成像單元,用以產生電阻抗體層成像;以及處理器,架構成執行以下步驟:接收週期性生理訊號,並偵測所述週期性生理訊號的每一周期中的特徵點;基於所述週期性生理訊號的每一周期中的所述特徵點,觸發所述電阻抗體層成像單元以擷取電阻抗成像(EIT)訊號,並且以預定次數進行所述EIT訊號量測;將所述預定次數的所述EIT訊號量測進行平均,以產生一模板;以及依據所述模板,產生所述電阻抗體層成像。According to another embodiment, there is provided a resistive tomographic imaging device using periodic physiological signals, comprising: a resistive tomographic imaging unit for generating resistive tomographic imaging; and a processor configured to perform the following steps: receiving periodic Physiological signals, and detect feature points in each cycle of the periodic physiological signals; trigger the resistive antibody tomography unit to capture based on the feature points in each cycle of the periodic physiological signals Electrical Impedance Imaging (EIT) signals, and performing the EIT signal measurements a predetermined number of times; averaging the predetermined number of EIT signal measurements to generate a template; and generating the resistance based on the template Antibody layer imaging.
在上述裝置中,EIT訊號量測可以是量測EIT訊號的原始訊號、基於所述EIT訊號產生的均方根電壓訊號、基於所述EIT訊號產生的導電值訊號以及基於所述EIT訊號產生的EIT影像。In the above-mentioned device, the EIT signal measurement may be to measure the original signal of the EIT signal, the root mean square voltage signal generated based on the EIT signal, the conduction value signal generated based on the EIT signal, and the signal generated based on the EIT signal. EIT image.
在上述裝置中,所述週期性生理訊號可以包括隨著心臟脈動產生的生理訊號。隨著心臟脈動的所述生理訊號可以包括心電圖訊號、光電容積圖訊號、血氧訊號、心音訊號。所述週期性生理訊號還可以包括呼吸訊號。In the above device, the periodic physiological signal may include a physiological signal generated along with the pulse of the heart. The physiological signals accompanying the heart pulsation may include electrocardiogram signals, photoplethysmography signals, blood oxygen signals, and heart sound signals. The periodic physiological signal may also include a breathing signal.
在上述裝置中,所述特徵點可以包括所述週期性生理訊號的每一周期中的訊號波峰、訊號波谷或R-波峰。在上述裝置中,每次所述EIT訊號量測可以是以預定資料長度進行。此外,利用週期性生理訊號產生電阻抗體層成像裝置可以構成為穿戴式裝置。In the above device, the characteristic points may include signal peaks, signal troughs or R-peaks in each cycle of the periodic physiological signal. In the above apparatus, each measurement of the EIT signal may be performed with a predetermined data length. In addition, the resistive tomographic imaging device using periodic physiological signals can be configured as a wearable device.
通過上述周期性生理訊號(如心電訊號)量測同步化之電阻抗成像技術,可以增加影像解析度,也有利於增進醫療檢測品質的提升。Through the above-mentioned electrical impedance imaging technology for synchronizing the measurement of periodic physiological signals (eg, ECG signals), the image resolution can be increased, and the quality of medical testing can also be improved.
本發明是利用週期性生理訊號之特性,與電阻抗成像技術進行同步量測,藉此以利標示與定義出每段節拍的電阻抗訊號。週期性生理訊號例如可以是心電圖(electrocardiography,ECG)訊號之後,將各段節拍的電阻抗訊號進行平均,以消除內部雜訊,得到電阻抗訊號之模板。將此近似無雜訊之電阻抗訊號的模板輸入後端成像軟體,藉此得到高解析度影像。The present invention utilizes the characteristics of periodic physiological signals to perform synchronous measurement with the electrical impedance imaging technology, thereby marking and defining the electrical impedance signal of each beat. The periodic physiological signal may be, for example, an electrocardiogram (ECG) signal, after which the electrical impedance signal of each beat is averaged to eliminate internal noise and obtain a template of the electrical impedance signal. The template of this near noise-free electrical impedance signal is input to the back-end imaging software to obtain high-resolution images.
圖1A至1E用以說明週期性生理訊號多次平均後之效果的示意圖。如圖1所示,其顯示出對ECG訊號的連續節拍進行量測,殂該圖可以看出在每個ECG訊號之節拍會出現R波的R-波峰 (R-peak)。在圖1B,量測者可以對每個節拍之R-波峰進行標示,其如圖之三角標示。接著,當以每個節拍之R-波峰為對準基準時,將每個節拍的暫時疊加後的ECG訊號波形則如圖1C所示。最後,將各段ECG訊號加以平均後,得到如圖1D所示的波形。如圖1D所示,最後的平均ECG訊號模板如粗線所示,而各節拍之ECG訊號則如虛線所示。1A to 1E are schematic diagrams for illustrating the effect of multiple averaging of periodic physiological signals. As shown in Figure 1, which shows the measurement of the continuous beats of the ECG signal, it can be seen from the figure that an R-peak of the R wave appears at each beat of the ECG signal. In FIG. 1B , the measurer can mark the R-wave peak of each beat, which is marked with a triangle in the figure. Then, when the R-wave peak of each beat is used as the alignment reference, the ECG signal waveform after the temporary superposition of each beat is shown in FIG. 1C . Finally, after averaging the ECG signals of each segment, the waveform shown in Figure 1D is obtained. As shown in FIG. 1D , the final averaged ECG signal template is shown as a thick line, and the ECG signal of each beat is shown as a dashed line.
因為,各節拍之ECG訊號中的頻帶內雜訊(in-band noise)可以視為是隨機的,故將多個節拍的ECG訊號加以平均後,此隨機的頻帶內雜訊便可以幾乎被消除,而呈現出擬無雜訊(pseudo noise)訊號。因此,以週期性生理訊號之各節拍的特徵點(如上述的R-波峰)為對準基準,將週期性生理訊號之各節拍加以平均後便可以得到幾乎是無雜訊的模板。Because the in-band noise in the ECG signal of each beat can be regarded as random, the random in-band noise can be almost eliminated after averaging the ECG signals of multiple beats , and presents a pseudo-noise (pseudo noise) signal. Therefore, taking the characteristic points of each beat of the periodic physiological signal (such as the above-mentioned R-wave peak) as the alignment reference, and averaging the beats of the periodic physiological signal, a template with almost no noise can be obtained.
此外,圖1E繪示另外一個周期性生理訊號的例子,其使用光電容積圖(photoplethysmography,PPG)訊號子。一般,隨著心跳會有一壓力波通過血管,這個波會稍微改變血管的直徑,PPG就是利用這個變化,主要用於血容積描述。如圖1E所示,PPG訊號也可以如上述ECG訊號一般,將每個節拍的量測進行平均後,也可將其內部隨機雜訊抵銷,以獲得幾乎無雜訊的PPG訊號模板。In addition, FIG. 1E shows another example of a periodic physiological signal, which uses a photoplethysmography (PPG) signal. Generally, with the heartbeat, there will be a pressure wave passing through the blood vessel, and this wave will slightly change the diameter of the blood vessel. PPG uses this change and is mainly used for blood volume description. As shown in FIG. 1E , the PPG signal can also be similar to the above-mentioned ECG signal. After averaging the measurements of each beat, the internal random noise can also be canceled to obtain a PPG signal template with almost no noise.
接著將說明本發明實施例之利用週期性生理訊號產生電阻抗體層成像裝置方法。在此方法中,將利用週期性生理訊號來同步電阻抗體層成像之量測。根據本實施例,可以作為週期性生理訊號例如是跟心臟搏動出來的相關週期性訊號,例如血壓訊號、心電圖(ECG)訊號、光電容積圖(PPG)訊號、血氧訊號、心音訊號等。除了與心臟有關的訊號外,呼吸訊號也可以作為週期性生理訊號。Next, a method for generating a resistive tomography device using periodic physiological signals according to an embodiment of the present invention will be described. In this method, periodic physiological signals are used to synchronize measurements of resistive tomography. According to this embodiment, the periodic physiological signal can be, for example, a periodic signal related to the heart beat, such as a blood pressure signal, an electrocardiogram (ECG) signal, a photoplethysmography (PPG) signal, a blood oxygen signal, a heart sound signal, and the like. In addition to the signals related to the heart, breathing signals can also be used as periodic physiological signals.
此外,根據本實施例,週期性生理訊號每一週其中的特徵點並不限制於上述R波之R-波峰。在週期性生理訊號每一週中,只要該點具有區別性,便可以選作為本實施例之特徵點,故除了上述ECG訊號中的R波之R-波峰外,該訊號之波峰、波谷等,也可以選作為本實施例之特徵點。此特徵點可以用來觸發EIT訊號量測。藉此,可以讓EIT訊號量測同步於週期性生理訊號。In addition, according to this embodiment, the characteristic points in each cycle of the periodic physiological signal are not limited to the R-wave peak of the above-mentioned R wave. In each week of the periodic physiological signal, as long as the point is distinctive, it can be selected as the characteristic point of this embodiment. Therefore, in addition to the R-wave peak of the R wave in the above ECG signal, the peak and trough of the signal, etc. It can also be selected as a feature point of this embodiment. This feature point can be used to trigger EIT signal measurement. In this way, the EIT signal measurement can be synchronized with the periodic physiological signal.
圖2繪示依據本發明實施例之利用週期性生理訊號產生電阻抗體層成像裝置方法之各階段的波形示意圖。首先,將參考圖2簡單說明本實施例之方法。此外,在以下實施例中,將以ECG訊號作為週期性生理訊號的說明例,但如前所述,週期性生理訊號並不受限於ECG訊號,只要具備週期性特性即可。FIG. 2 is a schematic diagram of waveforms at various stages of a method for generating a resistive tomography device using periodic physiological signals according to an embodiment of the present invention. First, the method of the present embodiment will be briefly described with reference to FIG. 2 . In addition, in the following embodiments, the ECG signal is used as an example of the periodic physiological signal, but as mentioned above, the periodic physiological signal is not limited to the ECG signal, as long as it has periodic characteristics.
如圖2所示,在受測者10身上放置例如三片ECG量測用的電極片12,藉此可以通過ECG量測裝置量測出受測者10之ECG訊號。如圖,ECG訊號呈現出周期性的特性,並且使用R波之R-波峰作為特徵點,亦即將以特徵點作為基準,觸發EIT訊號量測。透過利用此特徵點來觸發以擷取EIT訊號,便達到EIT訊號量測可以同步於週期性生理訊號。As shown in FIG. 2 , for example, three
此外,在受測者10的手上更設置了EIT裝置,用以進行電阻抗成像。在本實施例中,利用先前量測的ECG訊號的每個周期中,當檢測到ECG訊號之R波的R波峰時 (特徵點的例子),便觸發EIT裝置開始擷取EIT訊號,以進行量測。擷取EIT訊號可以擷取預定的資料長度,例如N個訊框,其中N為自然數。此EIT訊號之擷取與量測將持續預定次數K,例如在本實施例可以進行10次量測。預定次數K並未特別限定,可以根據如解析度等需求來加以設定。In addition, an EIT device is set on the hands of the subject 10 to perform electrical impedance imaging. In this embodiment, in each cycle of the previously measured ECG signal, when the R-wave peak of the R-wave of the ECG signal is detected (an example of a feature point), the EIT device is triggered to start capturing the EIT signal, so as to perform Measure. Extracting the EIT signal can extract a predetermined data length, such as N frames, where N is a natural number. The acquisition and measurement of the EIT signal will continue for a predetermined number of times K, for example, 10 times of measurement may be performed in this embodiment. The predetermined number of times K is not particularly limited, and can be set according to requirements such as resolution.
接著,將圖2中各周期的EIT訊號量測取平均,以獲得模板20。最後,利用此模板20進行電阻抗成像,而獲得EIT影像30。在EIT影像30中便可以清楚看到如骨骼32或動脈34等的人體內部影像。透過此方式獲得的EIT影像30,因為雜訊可以幾乎消除,故可以獲得解析度高的EIT影像30。Next, the measurement of the EIT signal of each cycle in FIG. 2 is averaged to obtain the
圖3繪示依據本發明實施例之利用週期性生理訊號產生電阻抗體層成像裝置方法的流程示意圖。接著,將參考圖3所示的流程圖,進一步地說明本實施例之電阻抗體層成像裝置方法。FIG. 3 is a schematic flowchart of a method for generating a resistive tomography device using periodic physiological signals according to an embodiment of the present invention. Next, the method of the resistive tomography apparatus of the present embodiment will be further described with reference to the flowchart shown in FIG. 3 .
如圖2、3所示,首先在步驟S100,量測受測者10的週期性生理訊號。此處,作為週期性生理訊號例子有與心臟搏動出來的相關週期性訊號,例如血壓訊號、ECG訊號、PPG訊號、血氧訊號、心音訊號等。此外,除了與心臟有關的訊號外,呼吸訊號也可以作為週期性生理訊號。As shown in FIGS. 2 and 3 , first, in step S100 , the periodic physiological signals of the subject 10 are measured. Here, examples of periodic physiological signals include periodic signals related to heart beating, such as blood pressure signal, ECG signal, PPG signal, blood oxygen signal, heart sound signal, and the like. Besides, besides the signals related to the heart, breathing signals can also be used as periodic physiological signals.
接者,在步驟S102,偵測週期性生理訊號的每一周期中的特徵點。例如,在使用ECG訊號作為週期性生理訊號時,可以採用ECG訊號中的R波之R-波峰。在此,只有此特徵點具有區別性,足以用來明確地觸發以擷取EIT訊號即可。例如,一周期中的訊號波峰或波谷也可以作為此特徵點。Then, in step S102, the characteristic points in each cycle of the periodic physiological signal are detected. For example, when the ECG signal is used as the periodic physiological signal, the R-wave peak of the R wave in the ECG signal can be used. Here, only this feature point is distinguishable enough to be used to explicitly trigger to capture the EIT signal. For example, signal peaks or troughs in a cycle can also be used as this feature point.
當檢測週期性生理訊號之特徵點後,變執行步驟S104,反之,若沒有檢測到特徵點,則再回到步驟S100,繼續從量測的週期生理訊號中檢測特徵點。在步驟S104,此時基於週期性生理訊號(ECG訊號)的每一周期中的特徵點(R-波峰),觸發EIT成像單元,以擷取EIT訊號。如此,本實施例在擷取EIT訊號時,便可以同步於ECG訊號。After detecting the characteristic point of the periodic physiological signal, step S104 is executed; otherwise, if no characteristic point is detected, then go back to step S100 to continue to detect the characteristic point from the measured periodic physiological signal. In step S104, the EIT imaging unit is triggered to capture the EIT signal based on the characteristic points (R-wave peaks) in each cycle of the periodic physiological signal (ECG signal). In this way, when the EIT signal is captured in this embodiment, the ECG signal can be synchronized.
接著,步驟S106,當擷取EIT訊號以進行EIT訊號量測後,便判斷此EIT訊號量測是否已經進行了預定次數K,在本實施例以量測10次作為例子。若EIT訊號量測已經到達預定次數K,則執行步驟S108,反之則回到步驟S100,進續上述S100~S104之步驟,直到完成K次量測為止。Next, in step S106, after the EIT signal is captured for EIT signal measurement, it is determined whether the EIT signal measurement has been performed for a predetermined number of times K. In this embodiment, 10 measurements are taken as an example. If the EIT signal measurement has reached the predetermined number of times K, go to step S108 , otherwise, go back to step S100 , and continue the above steps S100 to S104 until the K times of measurement are completed.
在步驟S108,將上述K次的EIT訊號量測進行平均,以產生一模板。此外,EIT訊號量測進行平均會在後面進一步說明。接著,在步驟S110,依據此模板,由EIT成像單元產生電阻抗體層成像。因為此10次的量測都同步於週期性生理訊號,各次量測中的隨機誤差便可以透過平均後,產生幾乎無誤差的模板,藉此可以產生高解析度的EIT成像。In step S108, the above K times of EIT signal measurements are averaged to generate a template. In addition, the averaging of EIT signal measurements will be further described later. Next, in step S110, according to the template, the resistive antibody layer image is generated by the EIT imaging unit. Because the 10 measurements are synchronized with periodic physiological signals, random errors in each measurement can be averaged to generate a nearly error-free template, thereby producing high-resolution EIT images.
圖4A至4D繪示EIT成像過程中各階階段的波形圖及空間分布圖。在開始進行EIT成像時,首先會在如圖2所示之受測者10的手腕(一個例子)貼上例如8個電極 (參考圖7之手腕110上的電極112),並通過電極來進行量測,以取得如圖4A所示的16對原始訊號(訊號對0-16)。此原始訊號基本上可以呈現出正弦波。4A to 4D illustrate waveform diagrams and spatial distribution diagrams of various stages in the EIT imaging process. When starting EIT imaging, firstly, 8 electrodes (refer to the
接著,對量測到的原始訊號轉換成如圖4B的均方根(root means square,RMS)電壓波形圖。之後,在從均方根形圖轉換成如圖4C之導電值的空間分布圖。從圖4C中的局部放大圖中可以看出在空間中的每一格導電值得分布狀況。最後,再依據導電值的空間分布圖,進行成像,產生如圖4D的EIT影像。Next, the measured original signal is converted into a root mean square (root means square, RMS) voltage waveform as shown in FIG. 4B . Afterwards, the RMS map is converted into a spatial distribution map of conductivity values as shown in FIG. 4C. It can be seen from the partial enlarged view in FIG. 4C that the distribution of the conductivity value of each grid in the space. Finally, imaging is performed according to the spatial distribution map of the conductivity value to generate an EIT image as shown in FIG. 4D .
圖5A至5D繪示平均EIT訊號量測的方法示意圖。本實施例是將在各周期同步於生理訊號所量測到的EIT訊號進行疊加再取其平均,以產生模板。本實施例在取平均時,可以根據EIT成像之不同階段的訊號來進行。如圖4A至4D所示,EIT成像過程主要有四個階段,即原始訊號、RMS電壓訊號、導電值以及EIT影像。故,可以使用此四階段的訊號來進行EIT訊號量測的平均。5A to 5D are schematic diagrams illustrating a method for measuring the average EIT signal. In this embodiment, the EIT signals measured in synchronization with the physiological signals in each cycle are superimposed and then averaged to generate a template. In this embodiment, the averaging can be performed according to signals of different stages of EIT imaging. As shown in FIGS. 4A to 4D , the EIT imaging process mainly has four stages, ie, the original signal, the RMS voltage signal, the conductivity value, and the EIT image. Therefore, the four-stage signal can be used to average the EIT signal measurements.
首先,如圖5A所示,此取平均的訊號源是來自EIT量測的原始訊號(正弦波)。如圖5A所示,針對每一周期之ECG訊號的R-波峰,觸發以擷取EIT訊號。在每次量測可以預定資料長度來進行,在本實施例中可以設定預定資料長度為N訊框(N為自然數)。再經過例如10次量測後,得到10筆資料長度為N訊框的原始訊號。之後,再將此10筆原始訊號取平均,得到以原始訊號為基礎且資料長度為N訊框的模板20。因為此10次的量測都同步於週期性生理訊號(此例為ECG訊號),故各次量測中的隨機誤差便可以透過平均後產生幾乎無誤差的模板,藉此可以產生高解析度的EIT成像。First, as shown in Figure 5A, the source of the averaged signal is the raw signal (sine wave) from the EIT measurement. As shown in FIG. 5A, for each cycle of the R-peak of the ECG signal, trigger to capture the EIT signal. Each measurement can be performed with a predetermined data length. In this embodiment, the predetermined data length can be set as N frames (N is a natural number). After, for example, 10 measurements, 10 original signals with a data length of N frames are obtained. Afterwards, the 10 original signals are averaged to obtain a
此外,如圖5B,其採用如圖4B所示的RMS電壓訊號來進行平均。同理,在此方式中,最後會得到10筆資料長度為N訊框的RMS電壓訊號。之後,再將此10筆RMS電壓訊號取平均,得到以RMS電壓訊號為基礎且資料長度為N訊框的模板22。因為此10次的量測都同步於週期性生理訊號(此例為ECG訊號),故各次量測中的隨機誤差便可以透過平均後產生幾乎無誤差的模板,藉此可以產生高解析度的EIT成像。圖5C所示的例子則是採用如圖4C所示的導電值訊號來進行平均。如此,可以獲得導電值訊號為基礎且資料長度為N訊框的模板24,同上述理由,也可以產生高解析度的EIT成像。此外,圖5D所示的例子則是採用如圖4D所示的EIT影像來進行平均。如此,可以獲得EIT影像訊號為基礎且資料長度為N訊框的模板26,同上述理由,也可以產生高解析度的EIT成像。In addition, as shown in FIG. 5B, the RMS voltage signal as shown in FIG. 4B is used for averaging. Similarly, in this method, 10 RMS voltage signals with a data length of N frames are finally obtained. Then, the 10 RMS voltage signals are averaged to obtain a
圖6繪示依據本發明實施例之利用週期性生理訊號產生電阻抗體層成像裝置的方塊示意圖。此電阻抗體層成像裝置100至少包括處理器102以及EIT成像單元104。電阻抗體層成像裝置100可以接收ECG訊號,並且據此觸發EIT成像單元104開始對受測者10進行EIT訊號之擷取。EIT成像單元104例如可以設置在受測者10的手腕上。此ECG訊號例如可以使用任何ECG模組來對受測者進行量測,並提供穩定無基線偏移之心電訊號量測。電阻抗體層成像裝置100也可以使用其他週期性生理訊號。FIG. 6 is a block diagram illustrating a resistive tomographic imaging device using periodic physiological signals according to an embodiment of the present invention. The
之後,處理器102便可以控制EIT成像單元104,以基於ECG訊號之R-波峰來觸發EIT成像單元104進行預定次數K。接著可以將此K次EIT訊號量測進行平均,以獲得幾乎無雜訊的模板。最後,依據此模板輸出EIT成像。電阻抗體層成像裝置100之處理器102以及EIT成像單元104可以協同執行上述圖3所描述的利用週期性生理訊號產生電阻抗體層成像裝置方法的流程示意圖,以及圖5A至5D所描述的EIT訊號量測的平均方法,在此便不多冗述。After that, the
圖7繪示EIT成像裝置的示意圖。具體的EIT成像裝置100可以有多種設計方示,本發明並不限制EIT成像裝置100的具體電路結構。FIG. 7 is a schematic diagram of an EIT imaging device. The specific
EIT成像裝置100可以設置電阻抗成像電極112,例如使用 8個電極平均分配於受測者10的待測部位,如手腕110上。The
EIT成像裝置100更包括電流源124,例如可以提供0.14 mA, 10KHz的電流輸出。EIT成像裝置100更包括兩個多工器120、122,作為電流源放電路徑選擇,其中多工器120之輸入端接至電流源,多工器122之輸入端接地,藉由資料擷取裝置(DAQ裝置)126控制其數位輸出,達到電流路徑選擇之目的。DAQ裝置126例如可以使用NI MyDAQ(商品名)裝置,其用來產生數位輸出作為多工器120、122的邏輯控制,以達到電流路徑選擇。此外,DAQ裝置126可連續擷取16極來自手腕110的外圍電壓並將其電壓從類比轉換為數位訊號DAC)。The
最後,本實施例例如可以使用成像軟體Matlab EIDORS toolbox (商品名)將DAQ裝置126收到手腕110之外圍電壓進行內部解,得出其內部之電導率之分布圖,據此輸出EIT影像。Finally, in this embodiment, for example, the imaging software Matlab EIDORS toolbox (trade name) can be used to internally solve the peripheral voltage of the
綜上所述,通過上述周期性生理訊號(如心電訊號)量測同步化之電阻抗成像技術,可以增加影像解析度。故,在長期發展上,有利於電阻抗成像技術上的發展,更往臨床應用邁進。使其達到非輻射性、低成本之影像檢測系統。在短期發展上,藉由此專利,可提升其影像解析能力,檢測其血管影像,在穿戴式裝置發展上,可以做成手環型式配戴於手腕上,進行橈動脈的偵測,進而達到長期的心血管健康監測。此外,本實施例周期性生理訊號(如心電訊號)之電阻抗成像技術也有利於增進醫療檢測品質的提升。To sum up, the above-mentioned electrical impedance imaging technology for synchronizing the measurement of periodic physiological signals (eg, ECG signals) can increase the image resolution. Therefore, in the long-term development, it is conducive to the development of electrical impedance imaging technology, and it is more advanced towards clinical application. Make it a non-radiative, low-cost image detection system. In the short-term development, this patent can improve its image analysis ability and detect its blood vessel images. In the development of wearable devices, it can be made into a wristband and worn on the wrist to detect the radial artery, and then achieve Long-term cardiovascular health monitoring. In addition, the electrical impedance imaging technology of periodic physiological signals (eg, ECG signals) in this embodiment is also beneficial to improve the quality of medical testing.
10:受測者
12:ECG電極
20、22、24、26:模板
30:EIT影像
32:骨骼
34:動脈
100:電阻抗體層成像裝置
102:處理器
104:EIT成像單元
110:手腕
112:電極
124:電流源
120、122:多工器
126:DAQ裝置
S100~S110:各流程步驟10: Subjects
12: ECG
圖1A至1E用以說明週期性生理訊號多次平均後之效果的示意圖。 圖2繪示依據本發明實施例之利用週期性生理訊號產生電阻抗體層成像裝置方法之各階段的波形示意圖。 圖3繪示依據本發明實施例之利用週期性生理訊號產生電阻抗體層成像裝置方法的流程示意圖。 圖4A至4D繪示EIT成像過程中各階階段的波形圖及空間分布圖。 圖5A至5D繪示平均EIT訊號量測的方法示意圖。 圖6繪示依據本發明實施例之利用週期性生理訊號產生電阻抗體層成像裝置的方塊示意圖。 圖7繪示EIT成像單元的示意圖。1A to 1E are schematic diagrams for illustrating the effect of multiple averaging of periodic physiological signals. FIG. 2 is a schematic diagram of waveforms at various stages of a method for generating a resistive tomography device using periodic physiological signals according to an embodiment of the present invention. FIG. 3 is a schematic flowchart of a method for generating a resistive tomography device using periodic physiological signals according to an embodiment of the present invention. 4A to 4D illustrate waveform diagrams and spatial distribution diagrams of various stages in the EIT imaging process. 5A to 5D are schematic diagrams illustrating a method for measuring the average EIT signal. FIG. 6 is a block diagram illustrating a resistive tomographic imaging device using periodic physiological signals according to an embodiment of the present invention. FIG. 7 is a schematic diagram of an EIT imaging unit.
S100~S110:各流程步驟S100~S110: each process step
Claims (21)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109125380A TWI740586B (en) | 2020-07-28 | 2020-07-28 | Method and device for generating eit image using periodic biomedical signal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109125380A TWI740586B (en) | 2020-07-28 | 2020-07-28 | Method and device for generating eit image using periodic biomedical signal |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI740586B TWI740586B (en) | 2021-09-21 |
TW202203845A true TW202203845A (en) | 2022-02-01 |
Family
ID=78778038
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109125380A TWI740586B (en) | 2020-07-28 | 2020-07-28 | Method and device for generating eit image using periodic biomedical signal |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI740586B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114024522B (en) * | 2021-12-20 | 2023-02-17 | 广州国家实验室 | Resistor network, device and method for simulating lung respiration |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5865376B2 (en) * | 2010-10-07 | 2016-02-17 | スイストム・アーゲー | Sensor device for electrical impedance tomography imaging |
US10206632B2 (en) * | 2014-07-25 | 2019-02-19 | The Trustees Of Dartmouth College | Systems and methods for cardiovascular-dynamics correlated imaging |
CN105411577B (en) * | 2015-12-30 | 2019-06-04 | 深圳先进技术研究院 | Fetal ECG signal separating method and system |
EP3622375A4 (en) * | 2017-05-25 | 2020-05-27 | Samsung Electronics Co., Ltd. | Method and wearable device for performing actions using body sensor array |
-
2020
- 2020-07-28 TW TW109125380A patent/TWI740586B/en active
Also Published As
Publication number | Publication date |
---|---|
TWI740586B (en) | 2021-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Charlton et al. | Breathing rate estimation from the electrocardiogram and photoplethysmogram: A review | |
Etemadi et al. | Rapid assessment of cardiac contractility on a home bathroom scale | |
CN103385702B (en) | A kind of non-invasive blood pressure continuous detection apparatus and method | |
JP2021519621A (en) | A method for estimating blood pressure and arterial wall sclerosis based on photoplethysmographic (PPG) signals | |
Béres et al. | On the minimal adequate sampling frequency of the photoplethysmogram for pulse rate monitoring and heart rate variability analysis in mobile and wearable technology | |
CN107865647A (en) | The bearing calibration of blood pressure detector and blood pressure detector | |
Ibrahim et al. | Continuous blood pressure monitoring using wrist-worn bio-impedance sensors with wet electrodes | |
CN108478203A (en) | A kind of blood pressure measuring method monitoring radar based on single vital sign | |
TWI374726B (en) | Method and apparatus for sensing a physiological signal | |
CN110236508A (en) | A kind of non-invasive blood pressure continuous monitoring method | |
Ibrahim et al. | A novel method for pulse transit time estimation using wrist bio-impedance sensing based on a regression model | |
CN109222941A (en) | A kind of measurement method and measuring device of pulse wave propagation time | |
Narasimhan et al. | Finger-wearable blood pressure monitor | |
Singstad et al. | Estimation of heart rate variability from finger photoplethysmography during rest, mild exercise and mild mental stress | |
Girčys et al. | Wearable system for real-time monitoring of hemodynamic parameters: Implementation and evaluation | |
JP7235120B2 (en) | Sphygmomanometer | |
Scarpetta et al. | Simultaneous measurement of heartbeat intervals and respiratory signal using a smartphone | |
Scarpetta et al. | Accurate simultaneous measurement of heartbeat and respiratory intervals using a smartphone | |
Ding et al. | A flexible tonoarteriography-based body sensor network for cuffless measurement of arterial blood pressure | |
TWI740586B (en) | Method and device for generating eit image using periodic biomedical signal | |
CN105748038B (en) | Nondestructive testing device for coronary heart disease risk indexes | |
Ahmad et al. | A prototype of an integrated blood pressure and electrocardiogram device for multi-parameter physiologic monitoring | |
Tanaka et al. | Accuracy assessment of a noninvasive device for monitoring beat-by-beat blood pressure in the radial artery using the volume-compensation method | |
Feng et al. | Non-invasive monitoring of cardiac function through Ballistocardiogram: An algorithm integrating short-time Fourier transform and ensemble empirical mode decomposition | |
Qiu et al. | A wireless wearable sensor patch for the real-time estimation of continuous beat-to-beat blood pressure |