TW202202898A - Eye tracking structure, electronic device and smart glasses - Google Patents

Eye tracking structure, electronic device and smart glasses Download PDF

Info

Publication number
TW202202898A
TW202202898A TW109123113A TW109123113A TW202202898A TW 202202898 A TW202202898 A TW 202202898A TW 109123113 A TW109123113 A TW 109123113A TW 109123113 A TW109123113 A TW 109123113A TW 202202898 A TW202202898 A TW 202202898A
Authority
TW
Taiwan
Prior art keywords
micro
user
eyeball
tracking structure
eye
Prior art date
Application number
TW109123113A
Other languages
Chinese (zh)
Other versions
TWI769479B (en
Inventor
王世育
Original Assignee
大陸商業成科技(成都)有限公司
大陸商業成光電(深圳)有限公司
英特盛科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商業成科技(成都)有限公司, 大陸商業成光電(深圳)有限公司, 英特盛科技股份有限公司 filed Critical 大陸商業成科技(成都)有限公司
Publication of TW202202898A publication Critical patent/TW202202898A/en
Application granted granted Critical
Publication of TWI769479B publication Critical patent/TWI769479B/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0093Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for monitoring data relating to the user, e.g. head-tracking, eye-tracking
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Eye Examination Apparatus (AREA)
  • Position Input By Displaying (AREA)
  • User Interface Of Digital Computer (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

An embodiment of the present invention provides an eye tracking structure, which includes a transparent substrate, a plurality of infrared micro LEDs arranged on the substrate, a plurality of micro optical sensing elements arranged on the substrate, and a micro integrated circuit on the substrate. The infrared micro LEDs and the micro optical sensing elements are electrically connected to the micro integrated circuit. The infrared micro LEDs are used to emit infrared light to a user's eyeball. The micro optical sensing elements are used to sense the infrared light reflected by the user's eyeball and collect an image of the user's eyeball. The micro integrated circuit is used to determine a rotation position of the user's eyeball and perform eye iris recognition based on the image of the user's eyeball. Another embodiment of the present invention provides an electronic device and smart glasses.

Description

眼球追蹤結構、電子裝置及智能眼鏡Eye tracking structure, electronic device and smart glasses

本發明涉及顯示技術領域,尤其涉及一種眼球追蹤結構、電子裝置及智能眼鏡。The present invention relates to the field of display technology, and in particular, to an eye tracking structure, an electronic device and smart glasses.

眼球追蹤技術是一種利用機械、電子、光學等各種檢測手段獲取使用者當前“注視方向”的技術。隨著計算機視覺、人工智能技術與數字化技術的迅速發展,眼球追蹤技術已成為當前熱點研究領域,在人機交互領域有著廣泛應用,例如,可應用於虛擬現實、增強現實、車輛輔助駕駛、用戶體驗、認知障礙診斷等複數領域。Eye tracking technology is a technology that uses mechanical, electronic, optical and other detection methods to obtain the user's current "gazing direction". With the rapid development of computer vision, artificial intelligence technology and digital technology, eye tracking technology has become a hot research field and has a wide range of applications in the field of human-computer interaction, such as virtual reality, augmented reality, vehicle assisted driving, user Plural fields such as experience, cognitive impairment diagnosis, etc.

然,習知的眼球追蹤結構,功能單一。Of course, the conventional eye tracking structure has a single function.

本發明一實施例提供一種眼球追蹤結構,其包括: 透明的基板; 複數紅外微型LED,陣列排佈於所述基板上; 複數微型光學感測元件,陣列排佈於所述基板上;以及 微型集成電路,設置於所述基板上,所述紅外微型LED與所述微型光學感測元件電性連接所述微型集成電路; 其中,所述紅外微型LED用於向使用者的眼球發射紅外光; 所述微型光學感測元件用於感測被使用者的眼球反射回的紅外光並採集使用者的眼球的圖像; 所述微型集成電路用於根據所述使用者的眼球的圖像確定使用者的眼球轉動的位置以及根據所述使用者的眼球的圖像進行人眼虹膜辨識。An embodiment of the present invention provides an eye tracking structure, which includes: transparent substrate; a plurality of infrared micro-LEDs arranged in an array on the substrate; a plurality of miniature optical sensing elements, arrayed on the substrate; and a micro-integrated circuit, disposed on the substrate, the infrared micro-LED and the micro-optical sensing element are electrically connected to the micro-integrated circuit; Wherein, the infrared micro-LED is used to emit infrared light to the user's eyeball; The micro-optical sensing element is used for sensing the infrared light reflected back by the user's eyeball and collecting the image of the user's eyeball; The micro integrated circuit is used for determining the rotational position of the user's eyeball according to the image of the user's eyeball and performing human iris recognition according to the image of the user's eyeball.

本發明一實施例還提供一種電子裝置,其包括本體以及設置於所述本體上的眼球追蹤結構,其中,所述眼球追蹤結構為上述的眼球追蹤結構。An embodiment of the present invention further provides an electronic device, which includes a body and an eye tracking structure disposed on the body, wherein the eye tracking structure is the above-mentioned eye tracking structure.

本發明一實施例還提供一種智能眼鏡,包括鏡片,所述鏡片上裝設有上述的眼球追蹤結構。An embodiment of the present invention also provides smart glasses, including a lens, and the above-mentioned eye tracking structure is mounted on the lens.

該眼球追蹤結構、電子裝置及智能眼鏡,至少同時具有眼球追蹤功能與人眼虹膜辨識功能,功能多樣。The eye tracking structure, the electronic device and the smart glasses have at least both an eye tracking function and a human iris recognition function, and have various functions.

圖1為本發明一實施例的眼球追蹤結構10的平面示意圖。如圖1所示,眼球追蹤結構10包括透明的基板11、陣列排佈於所述基板11上的複數紅外微型LED12、陣列排佈於所述基板11上的複數微型光學感測元件13以及設置於所述基板11上的微型集成電路14(micro integrated circuit,簡稱micro IC或μIC)。所述紅外微型LED12與所述微型光學感測元件13電性連接所述微型集成電路14。FIG. 1 is a schematic plan view of an eye tracking structure 10 according to an embodiment of the present invention. As shown in FIG. 1 , the eye tracking structure 10 includes a transparent substrate 11 , a plurality of infrared micro LEDs 12 arranged in an array on the substrate 11 , a plurality of micro optical sensing elements 13 arranged in an array on the substrate 11 , and A micro integrated circuit 14 (micro integrated circuit, referred to as micro IC or μIC) on the substrate 11 . The infrared micro LED 12 and the micro optical sensing element 13 are electrically connected to the micro integrated circuit 14 .

所述紅外微型LED12用於向使用者的眼球發射紅外光。所述微型光學感測元件13用於感測被使用者的眼球反射回的紅外光並採集使用者的眼球的圖像。The infrared micro-LED 12 is used to emit infrared light to the user's eyeball. The micro-optical sensing element 13 is used for sensing the infrared light reflected back by the user's eyeball and collecting the image of the user's eyeball.

所述微型集成電路14用於根據所述使用者的眼球的圖像確定使用者的眼球轉動的位置,進而實現眼球追蹤功能。所述微型集成電路14還用於根據所述使用者的眼球的圖像進行人眼虹膜辨識。即,眼球追蹤結構10至少同時具有眼球追蹤功能與人眼虹膜辨識功能,功能多樣。另,該眼球追蹤結構10,人眼虹膜辨識功能的實現可基於眼球追蹤功能的硬件(如,微型光學感測元件13與微型集成電路14)實現,設備集成度高。The micro-integrated circuit 14 is used for determining the position of the user's eyeball rotation according to the image of the user's eyeball, so as to realize the eye tracking function. The micro integrated circuit 14 is also used to perform human iris recognition according to the image of the user's eyeball. That is, the eye tracking structure 10 has at least both an eye tracking function and a human iris recognition function, and has various functions. In addition, in the eye tracking structure 10 , the realization of the human iris recognition function can be realized based on the hardware of the eye tracking function (eg, the micro optical sensing element 13 and the micro integrated circuit 14 ), and the device has a high degree of integration.

於一實施例中,所述微型集成電路14根據使用者的眼球轉動的位置,可以判斷出使用者的眼部活動,例如,眼跳動、注視、平滑跟蹤、眨眼等。In one embodiment, the micro integrated circuit 14 can determine the user's eye movement, such as eye movement, gaze, smooth tracking, blinking, etc., according to the position of the user's eyeball movement.

於一實施例中,眼球追蹤結構10的人眼虹膜辨識功能的實現包括以下步驟。In one embodiment, the realization of the human iris recognition function of the eye tracking structure 10 includes the following steps.

S1:圖像獲取(image acquisition)。S1: image acquisition.

S2:虹膜活體檢測(iris liveness detection)。S2: iris liveness detection.

S3:切割(segmentation),並歸一化(normalization)。S3: Segmentation and normalization.

S4:特徵提取(feature extraction),並進行編碼。S4: Feature extraction and encoding.

S5:特徵匹配(feature comparison),並計算相似值(similarity value)。S5: feature matching (feature comparison), and calculate the similarity value (similarity value).

步驟S1中,微型光學感測元件13採集所述使用者的眼球的圖像。於一實施例中,該眼球的圖像可以包括眼睛的一些或全部,如圖3A所示。In step S1, the micro-optical sensing element 13 collects the image of the user's eyeball. In one embodiment, the image of the eyeball may include some or all of the eye, as shown in FIG. 3A .

步驟S2中,微型集成電路14根據所述使用者的眼球的圖像進行虹膜活體檢測。於一實施例中,該步驟S1可基於瞳孔灰度進行活體檢測。由於瞳孔是人眼的通光孔,藉由瞳孔的光線經過晶狀體後在視網膜成像,進入瞳孔的光線很少會反射出瞳孔,故在外界不同的輝度下觀察,瞳孔都是黑色的,而如果對應非活體(如,打印在紙張上的假眼),在不同的輝度下,假眼的瞳孔區域會呈現不同的灰度。藉由利用活體人眼瞳孔區域不反射外界光線的特性,進行活體檢測,檢測速度快。如步驟S2中,活體檢測通過,則進行步驟S3。In step S2, the micro integrated circuit 14 performs iris biometric detection according to the image of the user's eyeball. In one embodiment, the step S1 may perform biometric detection based on pupil grayscale. Since the pupil is the clear aperture of the human eye, the light from the pupil passes through the lens and is then imaged in the retina, and the light entering the pupil is rarely reflected out of the pupil, so the pupil is black when observed under different brightnesses of the outside world. Corresponding to a non-living body (such as a fake eye printed on paper), the pupil area of the fake eye will show different grayscales under different brightness. By using the characteristic that the pupil area of the living human eye does not reflect external light, the living body detection is performed, and the detection speed is fast. If in step S2, the living body detection is passed, then step S3 is performed.

步驟S3中,微型集成電路14根據所述使用者的眼球的圖像獲取圓環形虹膜辨識區域。In step S3, the micro integrated circuit 14 acquires the annular iris recognition area according to the image of the user's eyeball.

於一實施例中,如圖2所示,定義所述使用者的兩個瞳孔的圓心之間的距離(inter-ocular distance,IOD)為雙眼間距D。定義以所述使用者的眼球的圖像中瞳孔的中心為圓心,直徑為R1的圓形區域為人眼區域。定義以所述使用者的眼球的圖像中瞳孔的中心為圓心,直徑為R3的圓形區域為瞳孔區域。定義以所述使用者的眼球的圖像中瞳孔的中心為圓心,內圓直徑為R3,外圓直徑為R2的環形區域為圓環形虹膜辨識區域。In one embodiment, as shown in FIG. 2 , the inter-ocular distance (IOD) between the centers of the two pupils of the user is defined as the inter-ocular distance D. It is defined that the center of the pupil in the image of the user's eyeball is the center of the circle, and the circular area with the diameter R1 is the area of the human eye. It is defined that the center of the pupil in the image of the user's eyeball is the center of the circle, and the circular area with the diameter R3 is the pupil area. Define an annular area with the center of the pupil in the image of the user's eyeball as the center of the circle, the diameter of the inner circle as R3, and the diameter of the outer circle as R2 as the annular iris recognition area.

於一實施例中,人眼區域的直徑R1為0.25D,圓環形虹膜辨識區域的外圓直徑R2為0.1D,瞳孔區域的直徑R3為0.05D。即,由於人眼大小的差異,及上下眼瞼的遮擋作用,部分虹膜信息不能被利用,於該實施例中,選取內外圓半徑分別為0.05D與0.1D的環形區域作為虹膜辨識區域,保留比較靠近瞳孔的部分,以滿足虹膜辨識的需要。In one embodiment, the diameter R1 of the human eye region is 0.25D, the outer diameter R2 of the annular iris recognition region is 0.1D, and the diameter R3 of the pupil region is 0.05D. That is, due to the difference in the size of human eyes and the occlusion effect of the upper and lower eyelids, part of the iris information cannot be used. In this embodiment, an annular area with inner and outer circle radii of 0.05D and 0.1D is selected as the iris identification area, and reserved for comparison The part close to the pupil to meet the needs of iris recognition.

於其他實施例中,由於虹膜的圓心與瞳孔的圓心不一定會重合,圓環形虹膜辨識區域中,內外圓的圓心不一定為瞳孔的圓心。In other embodiments, since the center of the iris and the center of the pupil may not necessarily coincide, in the annular iris identification area, the center of the inner and outer circles may not necessarily be the center of the pupil.

如圖3A所示,步驟S3還包括對所述圓環形虹膜辨識區域進行切割。圖3A中,圓環形虹膜辨識區域被等分為四部分。As shown in FIG. 3A , step S3 further includes cutting the annular iris identification area. In FIG. 3A , the annular iris recognition area is divided into four equal parts.

如圖3B所示,步驟S3還包括將所述圓環形虹膜辨識區域轉換為矩形虹膜辨識區域。其中,從虹膜的圓心右側的水平軸開始,繞虹膜的圓心順時針方向,依次展開得到矩形虹膜辨識區域。矩形虹膜辨識區域的上邊界對應虹膜的外圓邊界,虹膜的內圓邊界(即,瞳孔邊界)位於矩形虹膜辨識區域的下邊界。As shown in FIG. 3B , step S3 further includes converting the circular iris recognition area into a rectangular iris recognition area. Wherein, starting from the horizontal axis on the right side of the center of the iris, and clockwise around the center of the iris, the rectangular iris recognition area is obtained by expanding in turn. The upper boundary of the rectangular iris recognition area corresponds to the outer circular boundary of the iris, and the inner circular boundary of the iris (ie, the pupil boundary) is located at the lower boundary of the rectangular iris recognition area.

步驟S3中,還包括將矩形虹膜辨識區域歸一化。例如,對矩形虹膜辨識區域的高度、下邊界進行修正,以使其歸一化。In step S3, it also includes normalizing the rectangular iris recognition area. For example, the height and lower boundary of the rectangular iris recognition area are corrected to normalize them.

步驟S4中,可藉由邏輯判斷的方法,進行編碼,例如,對特徵點標記為邏輯“1”,對非特徵點標記為邏輯“0”,由0與1組成虹膜的特徵信息。In step S4, the coding can be performed by a method of logical judgment, for example, the feature points are marked as logical "1", the non-feature points are marked as logical "0", and 0 and 1 constitute the feature information of the iris.

步驟S5中,特徵匹配例如可包括初步匹配,以及精細匹配等。In step S5, the feature matching may include, for example, preliminary matching, fine matching, and the like.

藉此,該眼球追蹤結構10,可基於眼球追蹤功能的硬件(如,微型光學感測元件13與微型集成電路14)實現人眼虹膜辨識功能,設備集成度高。Thereby, the eye tracking structure 10 can realize the human iris recognition function based on the hardware of the eye tracking function (eg, the micro optical sensing element 13 and the micro integrated circuit 14 ), and the device has a high degree of integration.

另,該眼球追蹤結構10中,紅外微型LED12、微型光學感測元件13、微型集成電路14均為微米級的,基板11為透明的,眼球追蹤結構10的光穿透率非常高。於一實施例中,所述紅外微型LED12的尺寸範圍為1微米到100微米。所述微型光學感測元件13的尺寸範圍為1微米到100微米。In addition, in the eye tracking structure 10 , the infrared micro LED 12 , the micro optical sensing element 13 , and the micro integrated circuit 14 are all micron-scale, the substrate 11 is transparent, and the light transmittance of the eye tracking structure 10 is very high. In one embodiment, the size of the infrared micro LEDs 12 ranges from 1 micron to 100 microns. The size of the miniature optical sensing element 13 ranges from 1 micrometer to 100 micrometers.

於一實施例中,所述微型光學感測元件13為互補金屬氧化物半導體(Complementary Metal Oxide Semiconductor,CMOS)元件。In one embodiment, the miniature optical sensing element 13 is a Complementary Metal Oxide Semiconductor (CMOS) element.

於一實施例中,紅外微型LED12、微型光學感測元件13藉由引線16電性連接至微型集成電路14。其中,引線16為透明的導電材料,例如銦錫氧化物(Indium Tin Oxide,ITO)。In one embodiment, the infrared micro LED 12 and the micro optical sensing element 13 are electrically connected to the micro integrated circuit 14 through the lead wire 16 . The lead 16 is a transparent conductive material, such as indium tin oxide (Indium Tin Oxide, ITO).

於一實施例中,基板11的材質為透明的玻璃或透明的塑料,例如聚醯亞胺(PI)。其中,若眼球追蹤結構10裝設於智能眼鏡100的鏡片40使用時,基板11的材質為具有一定彎曲特性且透明的玻璃或具有一定彎曲特性且透明的塑料。In one embodiment, the substrate 11 is made of transparent glass or transparent plastic, such as polyimide (PI). Wherein, when the eye tracking structure 10 is installed on the lens 40 of the smart glasses 100 and used, the material of the substrate 11 is transparent glass with certain bending properties or transparent plastic with certain bending properties.

於一實施例中,該眼球追蹤結構10可應用於虛擬現實(virtual reality,VR)、增強現實(augmented reality,AR)、混合現實(mixed reality,MR)產品上。In one embodiment, the eye tracking structure 10 can be applied to virtual reality (VR), augmented reality (AR), and mixed reality (MR) products.

於一實施例中,眼球追蹤結構10還包括陣列排佈於所述基板11上的複數像素微型LED(圖未示)。所述像素微型LED電性連接所述微型集成電路14,並在所述微型集成電路14的控制下進行圖像顯示。藉此,眼球追蹤結構10兼具眼球追蹤、虹膜辨識以及圖像顯示功能。In one embodiment, the eye tracking structure 10 further includes a plurality of pixel micro-LEDs (not shown) arranged on the substrate 11 in an array. The pixel micro-LED is electrically connected to the micro-integrated circuit 14 and performs image display under the control of the micro-integrated circuit 14 . Thereby, the eye tracking structure 10 has the functions of eye tracking, iris recognition and image display.

於一實施例中,像素微型LED的尺寸範圍為1微米到100微米,其具有輝度高,低功耗,高可靠性,響應時間短等優點。In one embodiment, the size of the pixel micro-LED ranges from 1 micron to 100 microns, which has the advantages of high brightness, low power consumption, high reliability, and short response time.

於一實施例中,眼球追蹤結構10還包括光導50(如圖6至8所示)。所述光導50與所述基板11設置有所述紅外微型LED12的一側貼合。所述紅外微型LED12向使用者的眼球發射的紅外光經所述光導50後到達使用者的眼球,被使用者的眼球反射回的紅外光經所述光導50後到達所述微型光學感測元件13。藉此,紅外微型LED12發射的紅外光可藉由光導50耦合至使用者的眼球,被使用者的眼球反射回的紅外光可藉由光導50耦合至微型光學感測元件13。In one embodiment, the eye tracking structure 10 further includes a light guide 50 (as shown in FIGS. 6-8 ). The light guide 50 is attached to the side of the substrate 11 where the infrared micro LEDs 12 are arranged. The infrared light emitted by the infrared micro LED 12 to the user's eyeball passes through the light guide 50 and reaches the user's eyeball, and the infrared light reflected by the user's eyeball passes through the light guide 50 and reaches the micro-optical sensing element 13. Thereby, the infrared light emitted by the infrared micro LED 12 can be coupled to the user's eyeball through the light guide 50 , and the infrared light reflected by the user's eyeball can be coupled to the micro optical sensing element 13 through the light guide 50 .

於一實施例中,眼球追蹤結構10可結合至電子裝置(圖未示)中。該電子裝置包括本體及設置於所述本體上的眼球追蹤結構10。其中,該電子裝置可以為非接觸式智能終端,一方面藉由追蹤使用者的眼球,進行預設的操作,另一方面還兼具虹膜辨識功能。In one embodiment, the eye tracking structure 10 can be incorporated into an electronic device (not shown). The electronic device includes a body and an eye-tracking structure 10 disposed on the body. Wherein, the electronic device may be a non-contact smart terminal, which on the one hand performs preset operations by tracking the user's eyeballs, and on the other hand, also has an iris recognition function.

於一實施例中,電子裝置可以為智能手機,其藉由追蹤使用者的眼球的運動,進行特定的畫面顯示,另還兼具虹膜辨識功能。於一實施例中,該電子裝置亦可以為門禁管制裝置,其可實現無需接觸的情況下,進行眼球追蹤及虹膜辨識。In one embodiment, the electronic device may be a smart phone, which performs a specific screen display by tracking the movement of the user's eyeballs, and also has an iris recognition function. In one embodiment, the electronic device can also be an access control device, which can perform eye tracking and iris recognition without contact.

圖4為本發明另一實施例的眼球追蹤結構20的結構示意圖,其與圖1所示的眼球追蹤結構10區別在於:微型光學感測元件13、紅外微型LED12及微型集成電路14的排列方式不同。眼球追蹤結構20中,複數所述微型光學感測元件13圍繞所述微型集成電路14而構成一內圈,複數所述紅外微型LED12圍繞所述內圈排佈。藉此,進一步提高眼球追蹤的準度與速度。4 is a schematic structural diagram of an eye tracking structure 20 according to another embodiment of the present invention, which is different from the eye tracking structure 10 shown in FIG. different. In the eye tracking structure 20 , a plurality of the micro optical sensing elements 13 surround the micro integrated circuit 14 to form an inner circle, and a plurality of the infrared micro LEDs 12 are arranged around the inner circle. Thereby, the accuracy and speed of eye tracking are further improved.

圖5為本發明一實施例的智能眼鏡100的立體示意圖。如圖5所示,智能眼鏡100包括鏡架30及設置於鏡架30上的鏡片40。鏡架30包括鏡框32、鏡腿34及連接部36。鏡腿34藉由連接部36連接至鏡框32,且可相對所述鏡框32折疊。所述鏡片40上裝設有上述的眼球追蹤結構10(20)。FIG. 5 is a schematic perspective view of the smart glasses 100 according to an embodiment of the present invention. As shown in FIG. 5 , the smart glasses 100 include a frame 30 and a lens 40 disposed on the frame 30 . The frame 30 includes a frame 32 , a temple 34 and a connecting portion 36 . The temple 34 is connected to the frame 32 by the connecting portion 36 , and can be folded relative to the frame 32 . The above-mentioned eye tracking structure 10 ( 20 ) is mounted on the lens 40 .

於一實施例中,所述眼球追蹤結構10(20)位於所述鏡片40內(如圖6所示)、或貼合於所述鏡片40靠近所述使用者的眼球的表面(如圖7所示)、或位於所述鏡片40靠近所述使用者的眼球的一側而不與所述鏡片40進行貼合(如圖8所示)。其中,若眼球追蹤結構10(20)位於所述鏡片40靠近所述使用者的眼球的一側而不與所述鏡片40進行貼合的情況下,眼球追蹤結構10(20)可貼合或裝設於智能眼鏡100的其他元件上。其中,為方便描述,圖6至8中僅示意性畫出了基板11,而省略了位於基板11上的微型光學感測元件13、紅外微型LED12及微型集成電路14等。In one embodiment, the eye tracking structure 10 ( 20 ) is located in the lens 40 (as shown in FIG. 6 ), or attached to the surface of the lens 40 close to the eyeball of the user (as shown in FIG. 7 ) shown), or located on the side of the lens 40 close to the user's eyeball without fitting with the lens 40 (as shown in FIG. 8 ). Wherein, if the eye tracking structure 10 ( 20 ) is located on the side of the lens 40 close to the eyeball of the user and does not fit with the lens 40 , the eye tracking structure 10 ( 20 ) can fit or Installed on other components of the smart glasses 100 . For convenience of description, only the substrate 11 is schematically drawn in FIGS. 6 to 8 , and the micro optical sensing element 13 , the infrared micro LED 12 , and the micro integrated circuit 14 on the substrate 11 are omitted.

如圖6至8所示,當所述眼球追蹤結構10(20)包括光導50時,所述光導50相較於所述基板11更靠近所述使用者的眼球。藉此,光導50可將紅外微型LED12發射的紅外光耦合至使用者的眼球,被使用者的眼球反射的紅外光亦可經光導50被耦合至微型光學感測元件13。另,當眼球追蹤結構10(20)具有顯示功能時,微型像素LED發出的可見光亦可經光導50被耦合至使用者的眼球,以被使用者觀看。As shown in FIGS. 6 to 8 , when the eye tracking structure 10 ( 20 ) includes a light guide 50 , the light guide 50 is closer to the user's eyeball than the substrate 11 . In this way, the light guide 50 can couple the infrared light emitted by the infrared micro LED 12 to the user's eyeball, and the infrared light reflected by the user's eyeball can also be coupled to the micro optical sensing element 13 through the light guide 50 . In addition, when the eye tracking structure 10 ( 20 ) has a display function, the visible light emitted by the micro pixel LED can also be coupled to the user's eyeball through the light guide 50 so as to be viewed by the user.

以上實施方式僅用以說明本發明的技術方案而非限制,儘管參照較佳實施方式對本發明進行了詳細說明,本領域的普通技術人員應當理解,可以對本發明的技術方案進行修改或等同替換,而不脫離本發明技術方案的精神及範圍。The above embodiments are only used to illustrate the technical solutions of the present invention and not to limit them. Although the present invention has been described in detail with reference to the preferred embodiments, those of ordinary skill in the art should understand that the technical solutions of the present invention can be modified or equivalently replaced. without departing from the spirit and scope of the technical solutions of the present invention.

10、20:眼球追蹤結構 11:基板 12:紅外微型LED 13:微型光學感測元件 14:微型集成電路 16:引線 100:智能眼鏡 30:鏡架 32:鏡框 34:鏡腿 36:連接部 40:鏡片 50:光導10, 20: Eye Tracking Architecture 11: Substrate 12: Infrared Micro LED 13: Miniature Optical Sensing Elements 14: Micro integrated circuits 16: Leads 100: Smart Glasses 30: Frames 32: Frame 34: temples 36: Connection part 40: Lens 50: Light guide

圖1為本發明一實施例的眼球追蹤結構的平面示意圖。FIG. 1 is a schematic plan view of an eye tracking structure according to an embodiment of the present invention.

圖2為圓環形虹膜辨識區域的示意圖。FIG. 2 is a schematic diagram of an annular iris recognition area.

圖3A為切割圓環形虹膜辨識區域的示意圖。FIG. 3A is a schematic diagram of cutting a circular iris recognition area.

圖3B為矩形虹膜辨識區域的示意圖。FIG. 3B is a schematic diagram of a rectangular iris recognition area.

圖4為本發明另一實施例的眼球追蹤結構的結構示意圖。FIG. 4 is a schematic structural diagram of an eye tracking structure according to another embodiment of the present invention.

圖5為本發明一實施例的智能眼鏡的立體示意圖。FIG. 5 is a schematic perspective view of smart glasses according to an embodiment of the present invention.

圖6為本發明一實施例的智能眼鏡中,鏡片與眼球追蹤結構的位置示意圖。6 is a schematic diagram of the positions of the lenses and the eye tracking structure in the smart glasses according to an embodiment of the present invention.

圖7為本發明另一實施例的智能眼鏡中,鏡片與眼球追蹤結構的位置示意圖。7 is a schematic diagram of the positions of the lenses and the eye tracking structure in the smart glasses according to another embodiment of the present invention.

圖8為本發明再一實施例的智能眼鏡中,鏡片與眼球追蹤結構的位置示意圖。8 is a schematic diagram of the positions of the lenses and the eye tracking structure in the smart glasses according to still another embodiment of the present invention.

10:眼球追蹤結構10: Eye Tracking Architecture

11:基板11: Substrate

12:紅外微型LED12: Infrared Micro LED

13:微型光學感測元件13: Miniature Optical Sensing Elements

14:微型集成電路14: Micro integrated circuits

Claims (10)

一種眼球追蹤結構,其改良在於,包括: 透明的基板; 複數紅外微型LED,陣列排佈於所述基板上; 複數微型光學感測元件,陣列排佈於所述基板上;以及 微型集成電路,設置於所述基板上,所述紅外微型LED與所述微型光學感測元件電性連接所述微型集成電路; 其中,所述紅外微型LED用於向使用者的眼球發射紅外光; 所述微型光學感測元件用於感測被使用者的眼球反射回的紅外光並採集使用者的眼球的圖像; 所述微型集成電路用於根據所述使用者的眼球的圖像確定使用者的眼球轉動的位置以及根據所述使用者的眼球的圖像進行人眼虹膜辨識。An eye-tracking structure is improved by including: transparent substrate; a plurality of infrared micro-LEDs arranged in an array on the substrate; a plurality of miniature optical sensing elements, arrayed on the substrate; and a micro-integrated circuit, disposed on the substrate, the infrared micro-LED and the micro-optical sensing element are electrically connected to the micro-integrated circuit; Wherein, the infrared micro-LED is used to emit infrared light to the user's eyeball; The micro-optical sensing element is used for sensing the infrared light reflected back by the user's eyeball and collecting the image of the user's eyeball; The micro-integrated circuit is used for determining the rotational position of the user's eyeball according to the image of the user's eyeball and performing human iris recognition according to the image of the user's eyeball. 如請求項1所述的眼球追蹤結構,其中,所述微型集成電路能夠根據所述使用者的眼球的圖像獲取圓環形虹膜辨識區域,並將所述圓環形虹膜辨識區域轉換為矩形虹膜辨識區域進行歸一化,然後提取虹膜特徵點、進行編碼以及虹膜匹配。The eye tracking structure according to claim 1, wherein the micro integrated circuit can acquire a circular iris recognition area according to the image of the user's eyeball, and convert the circular iris recognition area into a rectangle The iris recognition area is normalized, and then iris feature points are extracted, encoded and iris matched. 如請求項2所述的眼球追蹤結構,其中,定義所述使用者的雙眼間距為D,所述圓環形虹膜辨識區域的圓心為所述使用者的眼球的圖像中瞳孔的中心,所述圓環形虹膜辨識區域的內圓直徑為0.05D,外圓直徑為0.1D。The eye tracking structure according to claim 2, wherein the distance between the eyes of the user is defined as D, the center of the circular iris recognition area is the center of the pupil in the image of the user's eyeball, The inner diameter of the annular iris identification area is 0.05D, and the outer diameter is 0.1D. 如請求項2所述的眼球追蹤結構,其中,所述微型集成電路獲取所述圓環形虹膜辨識區域之前,還用於根據所述使用者的眼球的圖像進行活體檢測。The eye tracking structure according to claim 2, wherein before the micro integrated circuit acquires the annular iris recognition area, it is further used to perform living body detection according to the image of the user's eyeball. 如請求項1所述的眼球追蹤結構,其中,複數所述微型光學感測元件圍繞所述微型集成電路而構成一內圈,複數所述紅外微型LED圍繞所述微型光學感測元件構成的內圈排佈。The eye-tracking structure according to claim 1, wherein a plurality of the micro-optical sensing elements surround the micro-integrated circuit to form an inner circle, and a plurality of the infrared micro-LEDs surround the inner circle formed by the micro-optical sensing element. Circle arrangement. 如請求項1所述的眼球追蹤結構,其中,還包括陣列排佈於所述基板上的複數像素微型LED,所述像素微型LED電性連接所述微型集成電路,並在所述微型集成電路的控制下進行圖像顯示。The eye-tracking structure according to claim 1, further comprising a plurality of pixel micro-LEDs arranged in an array on the substrate, the pixel micro-LEDs being electrically connected to the micro-integrated circuit, and connected to the micro-integrated circuit. image display under the control of . 如請求項1所述的眼球追蹤結構,其中,還包括光導,所述光導與所述基板設置有所述紅外微型LED的一側貼合,所述紅外微型LED向使用者的眼球發射的紅外光經所述光導後到達使用者的眼球,被使用者的眼球反射回的紅外光經所述光導後到達所述微型光學感測元件。The eye tracking structure according to claim 1, further comprising a light guide, the light guide is attached to the side of the substrate on which the infrared micro LEDs are arranged, and the infrared micro LEDs emit infrared rays to the user's eyeballs. The light reaches the eyeball of the user after passing through the light guide, and the infrared light reflected by the eyeball of the user reaches the micro optical sensing element after passing through the light guide. 一種電子裝置,包括本體以及設置於所述本體上的眼球追蹤結構,其中,所述眼球追蹤結構為如請求項1至7中任意一項所述的眼球追蹤結構。An electronic device includes a body and an eye-tracking structure disposed on the body, wherein the eye-tracking structure is the eye-tracking structure described in any one of claim 1 to 7. 一種智能眼鏡,包括鏡片,其中,所述鏡片上裝設有如請求項1至7中任意一項所述的眼球追蹤結構。A kind of smart glasses, comprising lenses, wherein the eye tracking structure according to any one of claim 1 to 7 is mounted on the lenses. 如請求項9所述的智能眼鏡,其中,所述眼球追蹤結構位於所述鏡片內、或貼合於所述鏡片靠近所述使用者的眼球的表面、或位於所述鏡片靠近所述使用者的眼球的一側而不與所述鏡片進行貼合。The smart glasses according to claim 9, wherein the eye tracking structure is located in the lens, or is attached to the surface of the lens close to the user's eyeball, or is located in the lens close to the user side of the eyeball without fitting with the lens.
TW109123113A 2020-07-01 2020-07-08 Eye tracking structure, electronic device and smart glasses TWI769479B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010619855.8A CN111781722A (en) 2020-07-01 2020-07-01 Eyeball tracking structure, electronic device and intelligent glasses
CN202010619855.8 2020-07-01

Publications (2)

Publication Number Publication Date
TW202202898A true TW202202898A (en) 2022-01-16
TWI769479B TWI769479B (en) 2022-07-01

Family

ID=72760908

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109123113A TWI769479B (en) 2020-07-01 2020-07-08 Eye tracking structure, electronic device and smart glasses

Country Status (2)

Country Link
CN (1) CN111781722A (en)
TW (1) TWI769479B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI768623B (en) * 2020-12-28 2022-06-21 財團法人工業技術研究院 Head-mounted eye tracking system
CN114690403B (en) * 2020-12-28 2024-07-23 财团法人工业技术研究院 Head-wearing eye movement tracking system
CN113514955A (en) * 2021-04-29 2021-10-19 业成科技(成都)有限公司 AR optical system and AR display device
CN113486847A (en) * 2021-07-27 2021-10-08 中国银行股份有限公司 Eyeball tracking-based in vivo detection method and device
CN113589940B (en) * 2021-08-17 2023-11-14 业成科技(成都)有限公司 Eye tracking system and virtual reality display device
CN114252998B (en) * 2022-03-02 2022-07-12 北京灵犀微光科技有限公司 Near-to-eye display device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6175945B2 (en) * 2013-07-05 2017-08-09 ソニー株式会社 Gaze detection apparatus and gaze detection method
TWI533224B (en) * 2013-11-14 2016-05-11 原相科技股份有限公司 Eye detecting device and methodes of detecting pupil and identifying iris
CN109919117B (en) * 2013-11-25 2024-05-03 原相科技股份有限公司 Eyeball detection device and pupil detection method
CN103777354A (en) * 2014-02-25 2014-05-07 北京大学东莞光电研究院 LED array video glasses
EP3449337B1 (en) * 2016-04-29 2023-01-04 Tobii AB Eye-tracking enabled wearable devices
LU100354B1 (en) * 2017-08-01 2019-02-06 Starbreeze Ip Lux Ii S A R L Eye tracking system for head-mounted display
CN107515466B (en) * 2017-08-14 2019-11-26 华为技术有限公司 A kind of eyeball tracking system and eyeball tracking method
CN107633240B (en) * 2017-10-19 2021-08-03 京东方科技集团股份有限公司 Sight tracking method and device and intelligent glasses
US10845872B2 (en) * 2018-02-09 2020-11-24 Ricoh Company, Ltd. Eye-gaze tracker, eye-gaze tracking method, and recording medium
CN108646413A (en) * 2018-05-13 2018-10-12 深圳纬目信息技术有限公司 A kind of headset equipment of the eyeball tracking device of the optical waveguide of free form surface containing multilayer
TWM588840U (en) * 2019-08-14 2020-01-01 兆豐國際商業銀行股份有限公司 Financial service device for providing identity verification function

Also Published As

Publication number Publication date
TWI769479B (en) 2022-07-01
CN111781722A (en) 2020-10-16

Similar Documents

Publication Publication Date Title
TWI769479B (en) Eye tracking structure, electronic device and smart glasses
Kar et al. A review and analysis of eye-gaze estimation systems, algorithms and performance evaluation methods in consumer platforms
US11513593B2 (en) Systems and methods for anatomy-constrained gaze estimation
Hansen et al. In the eye of the beholder: A survey of models for eyes and gaze
KR101890542B1 (en) System and method for display enhancement
TWI505260B (en) Head-mount eye tracking system
CN116615686A (en) Goggles for speech translation including sign language
WO2015176657A1 (en) Iris recognition device, manufacturing method therefor, and application thereof
JP2024116205A (en) Display and vision correction system with removable lenses
Zhang et al. Eye center localization and gaze gesture recognition for human–computer interaction
EP3987380B1 (en) Systems and methods for determining one or more parameters of a user's eye
WO2021095277A1 (en) Line-of-sight detection method, line-of-sight detection device, and control program
CN112014975A (en) Head-mounted display
JP3808014B2 (en) Eye image pickup device and individual authentication device
Heo et al. Object recognition and selection method by gaze tracking and SURF algorithm
CN113826141A (en) Image processing method, image processing apparatus, and image processing program
CN207623978U (en) Image collecting device and terminal
US12026980B2 (en) Pupil ellipse-based, real-time iris localization
KR101796961B1 (en) Device for iris recognition and method using the same
TWM514608U (en) Intelligent glasses with fingerprint identification function
Taba Improving eye-gaze tracking accuracy through personalized calibration of a user's aspherical corneal model
CN218413524U (en) Eye tracking device and intelligent glasses
CN214839402U (en) Terminal integrating multiple biological feature recognition
TWI856932B (en) Electronic device and physiological state detection device and method applied to electronic device
Brousseau Infrared Model-based Eye-tracking for Smartphones