TW202201099A - Driving methods for color display device - Google Patents

Driving methods for color display device Download PDF

Info

Publication number
TW202201099A
TW202201099A TW110126419A TW110126419A TW202201099A TW 202201099 A TW202201099 A TW 202201099A TW 110126419 A TW110126419 A TW 110126419A TW 110126419 A TW110126419 A TW 110126419A TW 202201099 A TW202201099 A TW 202201099A
Authority
TW
Taiwan
Prior art keywords
type
pigment particles
particles
pixel
drive
Prior art date
Application number
TW110126419A
Other languages
Chinese (zh)
Other versions
TWI807370B (en
Inventor
怡璋 林
黃若城
陳亨哲
彼得 雷克斯頓
王銘
程秉鉞
宏玫 臧
Original Assignee
美商伊英克加利福尼亞有限責任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/496,604 external-priority patent/US10380931B2/en
Application filed by 美商伊英克加利福尼亞有限責任公司 filed Critical 美商伊英克加利福尼亞有限責任公司
Publication of TW202201099A publication Critical patent/TW202201099A/en
Application granted granted Critical
Publication of TWI807370B publication Critical patent/TWI807370B/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3433Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
    • G09G3/344Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on particles moving in a fluid or in a gas, e.g. electrophoretic devices
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2003Display of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • G09G2310/061Details of flat display driving waveforms for resetting or blanking
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • G09G2310/068Application of pulses of alternating polarity prior to the drive pulse in electrophoretic displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0204Compensation of DC component across the pixels in flat panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0242Compensation of deficiencies in the appearance of colours

Abstract

The present invention is directed to driving methods for a color display device which can display high quality color states. The display device utilizes an electrophoretic fluid which comprises three types of pigment particles having different optical characteristics, and provides for displaying at a viewing surface not only the colors of the three types of particles but also the colors of binary mixtures thereof.

Description

用於彩色顯示裝置之驅動方法Driving method for color display device

[相關申請案的參考資料][References for related applications]

本申請案主張2017年4月25日所申請且公開為美國專利公開第2017/0263176號之美國專利申請案第15/496,604號的優先權。在此將其全部內容以參照的方式併入本文。在此將下面提到的所有其他美國專利及公開申請案的內容以參照的方式併入本文。This application claims priority to US Patent Application Serial No. 15/496,604 filed on April 25, 2017 and published as US Patent Publication No. 2017/0263176. It is hereby incorporated by reference in its entirety. The contents of all other US patents and published applications mentioned below are incorporated herein by reference.

本發明係有關於用於彩色顯示裝置顯示高品質的顏色狀態之驅動方法。The present invention relates to a driving method for a color display device to display high-quality color states.

為了實現彩色顯示,經常使用彩色濾光片。最常見的方法是在像素化顯示器的黑色/白色子像素的上方加入彩色濾光片,以顯示紅色、綠色及藍色。當期望紅色時,綠色及藍色子像素變成黑色狀態,使得唯一顯示的顏色為紅色。當期望藍色時,綠色及紅色子像素變成黑色狀態,使得唯一顯示的顏色為藍色。當期望綠色時,紅色及藍色子像素變成黑色狀態,使得唯一顯示的顏色為綠色。當期望黑色狀態時,所有三個子像素皆變成黑色狀態。當期望白色狀態時,三個子像素分別變成紅色、綠色、藍色,結果,觀看者看到白色狀態。To achieve color display, color filters are often used. The most common method is to add color filters on top of the black/white sub-pixels of a pixelated display to display red, green, and blue. When red is desired, the green and blue sub-pixels become black, so that the only displayed color is red. When blue is desired, the green and red sub-pixels become black, so that the only displayed color is blue. When green is desired, the red and blue subpixels change to a black state, so that the only displayed color is green. When a black state is desired, all three subpixels become black. When a white state is desired, the three sub-pixels become red, green, and blue, respectively, and as a result, the viewer sees a white state.

這樣的技術之最大缺點是,因為每個子像素的反射率約為期望白色狀態的三分之一(1/3),所以白色狀態相當暗淡。為了彌補這一點,可以加入僅能夠顯示黑色及白色狀態的第四子像素,使得白色等級在犧牲紅色、綠色或藍色等級下加倍(其中,每個子像素僅有像素面積的四分之一)。藉由添加來自白色像素的光可以獲得更亮的顏色,但這是在犧牲色域下實現,從而使顏色變得非常亮且不飽和。相似的結果可以藉由減少三個子像素的顏色飽和度來實現。即使使用這些方法,白色等級通常大致低於黑白顯示器的白色等級之一半,使其成為顯示裝置(例如,電子閱讀器或需要良好可讀性的黑白亮度及對比的顯示器)之不可接受的選擇。The biggest disadvantage of such a technique is that the white state is rather dim because the reflectivity of each sub-pixel is about one third (1/3) of the desired white state. To compensate for this, a fourth sub-pixel capable of displaying only black and white states can be added, doubling the white level at the expense of the red, green, or blue level (where each sub-pixel is only a quarter of the pixel area) . Brighter colors can be achieved by adding light from white pixels, but this is achieved at the expense of color gamut, resulting in very bright and unsaturated colors. Similar results can be achieved by reducing the color saturation of the three sub-pixels. Even with these methods, the white level is typically roughly half the white level of a black and white display, making it an unacceptable choice for display devices such as e-readers or displays that require good readability of black and white brightness and contrast.

本發明之第一態樣係有關於一種用於電泳顯示器之驅動方法,該電泳顯示器包括在觀看側之第一表面、在非觀看側之第二表面及電泳流體,該電泳流體包括第一類型的顏料粒子、第二類型的顏料粒子及第三類型的顏料粒子,所有類型的顏料粒子分散在液體中,其中 a)該三種類型的顏料粒子具有彼此不同的光學特性; b)該第一類型的顏料粒子及該第二類型的顏料粒子攜帶相反的電荷極性;以及 c)該第三類型的顏料粒子具有相同於該第二類型的顏料粒子之電荷極性,但是具有較低的ζ電位(zeta potential), 該方法包括下列步驟: (i)施加第一驅動電壓至該電泳顯示器中之像素達第一段時間,該第一驅動電壓具有驅動該第一類型的顏料粒子朝向該第一表面的極性,藉此促使該像素在該第一表面上顯示該第一類型的顏料粒子之光學特性; (ii)施加第二驅動電壓至該像素達第二段時間,該第二驅動電壓具有驅動該第三類型的顏料粒子朝向該第一表面的極性,藉此在該第一表面上驅動該像素朝向該第三類型的顏料粒子之光學特性;以及 重複步驟(i)及(ii)。A first aspect of the present invention relates to a driving method for an electrophoretic display including a first surface on a viewing side, a second surface on a non-viewing side, and an electrophoretic fluid, the electrophoretic fluid comprising a first type Pigment particles of the second type, pigment particles of the second type and pigment particles of the third type, all types of pigment particles dispersed in a liquid, where a) the three types of pigment particles have different optical properties from each other; b) the first type of pigment particles and the second type of pigment particles carry opposite charge polarities; and c) the third type of pigment particles have the same charge polarity as the second type of pigment particles, but with a lower zeta potential, The method includes the following steps: (i) applying a first drive voltage to a pixel in the electrophoretic display for a first period of time, the first drive voltage having a polarity to drive the first type of pigment particles toward the first surface, thereby urging the pixel to operate at the first surface the optical properties of the first type of pigment particles displayed on the first surface; (ii) applying a second driving voltage to the pixel for a second period of time, the second driving voltage having a polarity to drive the third type of pigment particles towards the first surface, thereby driving the pixel on the first surface towards the optical properties of the third type of pigment particles; and Repeat steps (i) and (ii).

在一實施例中,該第一類型的顏料粒子帶負電,而該第二類型的顏料粒子帶正電。在一實施例中,該第二驅動電壓的振幅小於該第一驅動電壓的振幅之50%。在一實施例中,重複步驟(i)及(ii)至少四次。在一實施例中,該方法進一步包括在步驟(i)之前施加一振動波形。在一實施例中,該方法進一步包括在該振動波形之後,但在步驟(i)之前,驅動該像素至該第一類型的顏料粒子之全光學特性。在一實施例中,該第一段時間係40至140毫秒,該第二段時間係大於或等於460毫秒,以及重複步驟(i)及(ii)至少七次。In one embodiment, the first type of pigment particles are negatively charged and the second type of pigment particles are positively charged. In one embodiment, the amplitude of the second driving voltage is less than 50% of the amplitude of the first driving voltage. In one embodiment, steps (i) and (ii) are repeated at least four times. In one embodiment, the method further comprises applying a vibration waveform prior to step (i). In one embodiment, the method further includes driving the pixel to full optical properties of the first type of pigment particles after the vibrational waveform, but before step (i). In one embodiment, the first period of time is 40 to 140 milliseconds, the second period of time is greater than or equal to 460 milliseconds, and steps (i) and (ii) are repeated at least seven times.

本發明之第二態樣係有關於一種用於像上述電泳顯示器之驅動方法,但是該方法包括額外的步驟如下:(iii)在步驟(ii)之後,但在重複步驟(i)及(ii)之前,不施加驅動電壓至該像素達第三段時間;以及重複步驟(i)、(ii)及(iii)。A second aspect of the present invention relates to a driving method for an electrophoretic display like the above, but the method includes additional steps as follows: (iii) after step (ii), but after repeating steps (i) and (ii) ), no driving voltage is applied to the pixel for a third period of time; and steps (i), (ii) and (iii) are repeated.

在一實施例中,該第一類型的顏料粒子帶負電,而該第二類型的顏料粒子帶正電。在一實施例中,該第二驅動電壓的振幅小於該第一驅動電壓的振幅之50%。在一實施例中,重複步驟(i)、(ii)及(iii)至少四次。在一實施例中,該方法進一步包括在步驟(i)之前施加一振動波形。在一實施例中,該方法進一步包括在該振動波形之後,但在步驟(i)之前,達到該第一類型的顏料粒子之全彩狀態的驅動步驟。In one embodiment, the first type of pigment particles are negatively charged and the second type of pigment particles are positively charged. In one embodiment, the amplitude of the second driving voltage is less than 50% of the amplitude of the first driving voltage. In one embodiment, steps (i), (ii) and (iii) are repeated at least four times. In one embodiment, the method further comprises applying a vibration waveform prior to step (i). In one embodiment, the method further includes a driving step to achieve a full color state of the first type of pigment particles after the vibrational waveform, but before step (i).

本發明之第三態樣係有關於一種用於電泳顯示器之驅動方法,該電泳顯示器包括在觀看側之第一表面、在非觀看側之第二表面及電泳流體,該電泳流體包括第一類型的顏料粒子、第二類型的顏料粒子及第三類型的顏料粒子,所有類型的顏料粒子分散在液體中,其中 a)該三種類型的顏料粒子具有彼此不同的光學特性; b)該第一類型的顏料粒子及該第二類型的顏料粒子攜帶相反的電荷極性;以及 c)該第三類型的顏料粒子具有相同於該第二類型的顏料粒子之電荷極性,但是具有較低的ζ電位, 以及該方法具有至少0.7V的電壓不敏感範圍。A third aspect of the present invention relates to a driving method for an electrophoretic display including a first surface on a viewing side, a second surface on a non-viewing side, and an electrophoretic fluid, the electrophoretic fluid comprising a first type Pigment particles of the second type, pigment particles of the second type and pigment particles of the third type, all types of pigment particles dispersed in a liquid, where a) the three types of pigment particles have different optical properties from each other; b) the first type of pigment particles and the second type of pigment particles carry opposite charge polarities; and c) the third type of pigment particles have the same charge polarity as the second type of pigment particles, but with a lower zeta potential, And the method has a voltage insensitive range of at least 0.7V.

本發明之第四態樣係有關於一種根據本發明之第一態樣的用於電泳顯示器之驅動方法,但是包含額外的步驟如下: (iii)在步驟(i)之後,但在步驟(ii)之前,沒有施加驅動電壓至該像素達第三段時間; (iv)在步驟(ii)之後,但在重複該等步驟之前,沒有施加驅動電壓至該像素達第四段時間;以及 重複步驟(i)-(iv)。A fourth aspect of the present invention relates to a driving method for an electrophoretic display according to the first aspect of the present invention, but includes additional steps as follows: (iii) after step (i), but before step (ii), no driving voltage is applied to the pixel for a third period of time; (iv) after step (ii), but before repeating the steps, no driving voltage is applied to the pixel for a fourth period of time; and Repeat steps (i)-(iv).

在一實施例中,該第一類型的顏料粒子可以帶負電,而該第二類型的顏料粒子帶正電。在一實施例中,該第二驅動電壓的振幅小於該第一驅動電壓的振幅之50%。在一實施例中,重複步驟(i)-(iv)至少三次。在一實施例中,該方法進一步包括在步驟(i)之前施加一振動波形。在一實施例中,該方法進一步包括在該振動波形之後,但在步驟(i)之前,驅動該像素至該第一類型的顏料粒子之全彩狀態。In one embodiment, the first type of pigment particles may be negatively charged, while the second type of pigment particles are positively charged. In one embodiment, the amplitude of the second driving voltage is less than 50% of the amplitude of the first driving voltage. In one embodiment, steps (i)-(iv) are repeated at least three times. In one embodiment, the method further comprises applying a vibration waveform prior to step (i). In one embodiment, the method further includes driving the pixel to a full color state of the first type of pigment particles after the vibration waveform, but before step (i).

本發明之第五態樣係有關於一種用於電泳顯示器之驅動方法,該電泳顯示器包括在觀看側之第一表面、在非觀看側之第二表面及電泳流體,該電泳流體夾在一共用電極與一像素電極層之間且包括第一類型的顏料粒子、第二類型的顏料粒子及第三類型的顏料粒子,所有類型的顏料粒子分散在溶劑或溶劑混合物中,其中 a)該三種類型的顏料粒子具有彼此不同的光學特性; b)該第一類型的顏料粒子及該第二類型的顏料粒子攜帶相反的電荷極性;以及 c)該第三類型的顏料粒子具有相同於該第二類型的顏料粒子之電荷極性,但是處於較低的強度, 該方法包括下列步驟: (i)施加第一驅動電壓至該電泳顯示器中之像素達第一段時間,其中,該第一驅動電壓具有相同於該第一類型的顏料粒子之極性,以在該觀看側驅動該像素朝向該第一類型的顏料粒子之顏色狀態; (ii)施加第二驅動電壓至該像素達第二段時間,其中,該第二驅動電壓具有相同於該第二類型的顏料粒子之極性,以在該觀看側驅動該像素朝向該第二類型的顏料粒子之顏色狀態;以及 重複步驟(i)及(ii)。A fifth aspect of the present invention relates to a driving method for an electrophoretic display, the electrophoretic display including a first surface on a viewing side, a second surface on a non-viewing side, and an electrophoretic fluid sandwiched in a common Between the electrode and a pixel electrode layer and including the first type of pigment particles, the second type of pigment particles and the third type of pigment particles, all types of pigment particles are dispersed in a solvent or solvent mixture, wherein a) the three types of pigment particles have different optical properties from each other; b) the first type of pigment particles and the second type of pigment particles carry opposite charge polarities; and c) the third type of pigment particles have the same charge polarity as the second type of pigment particles, but at a lower intensity, The method includes the following steps: (i) applying a first driving voltage to a pixel in the electrophoretic display for a first period of time, wherein the first driving voltage has the same polarity as the first type of pigment particles to drive the pixel toward the viewing side the colour state of the first type of pigment particles; (ii) applying a second driving voltage to the pixel for a second period of time, wherein the second driving voltage has the same polarity as the second type of pigment particles to drive the pixel towards the second type on the viewing side the color state of the pigment particles; and Repeat steps (i) and (ii).

在一實施例中,該方法進一步包括不施加驅動電壓的等待時間。在一實施例中,該第一類型的顏料粒子帶負電,而該第二類型的顏料粒子帶正電。在一實施例中,該第二段時間至少是該第一段時間的兩倍長。在一個實施例中,重複步驟(i)及(ii)至少三次。在一實施例中,該方法進一步包括在步驟(i)之前施加一振動波形。在一實施例中,該方法進一步包括在該振動波形之後,但在步驟(i)之前,驅動該像素至該第二類型的顏料粒子之全彩狀態。In one embodiment, the method further includes a wait time in which the driving voltage is not applied. In one embodiment, the first type of pigment particles are negatively charged and the second type of pigment particles are positively charged. In one embodiment, the second period of time is at least twice as long as the first period of time. In one embodiment, steps (i) and (ii) are repeated at least three times. In one embodiment, the method further comprises applying a vibration waveform prior to step (i). In one embodiment, the method further includes driving the pixel to a full color state of the second type of pigment particles after the vibration waveform, but before step (i).

本發明之第六態樣係有關於一種用於電泳顯示器之驅動方法,該電泳顯示器包括在觀看側之第一表面、在非觀看側之第二表面及電泳流體,該電泳流體夾在一共用電極與一像素電極層之間且包括第一類型的顏料粒子、第二類型的顏料粒子及第三類型的顏料粒子,所有類型的顏料粒子分散在溶劑或溶劑混合物中,其中 a)該三種類型的顏料粒子具有彼此不同的光學特性; b)該第一類型的顏料粒子及該第二類型的顏料粒子攜帶相反的電荷極性;以及 c)該第三類型的顏料粒子具有相同於該第二類型的顏料粒子之電荷極性,但是處於較低的強度, 該方法包括下列步驟: (i)施加第一驅動電壓至該電泳顯示器中之像素達第一段時間,其中,該第一驅動電壓具有相同於該第二類型的顏料粒子之極性,以在該觀看側驅動該像素朝向該第二類型的顏料粒子之顏色狀態; (ii)施加第二驅動電壓至該像素達第二段時間,其中,該第二驅動電壓具有相同於該第一類型的顏料粒子之極性,以在該觀看側驅動該像素朝向該第一類型的顏料粒子之顏色狀態; (iii)沒有施加驅動電壓至該像素達第三段期間;以及 重複步驟(i)、(ii)及(iii)。A sixth aspect of the present invention relates to a driving method for an electrophoretic display, the electrophoretic display including a first surface on a viewing side, a second surface on a non-viewing side, and an electrophoretic fluid sandwiched in a common Between the electrode and a pixel electrode layer and including the first type of pigment particles, the second type of pigment particles and the third type of pigment particles, all types of pigment particles are dispersed in a solvent or solvent mixture, wherein a) the three types of pigment particles have different optical properties from each other; b) the first type of pigment particles and the second type of pigment particles carry opposite charge polarities; and c) the third type of pigment particles have the same charge polarity as the second type of pigment particles, but at a lower intensity, The method includes the following steps: (i) applying a first driving voltage to a pixel in the electrophoretic display for a first period of time, wherein the first driving voltage has the same polarity as the second type of pigment particles to drive the pixel toward the viewing side the color state of the second type of pigment particles; (ii) applying a second driving voltage to the pixel for a second period of time, wherein the second driving voltage has the same polarity as the first type of pigment particles to drive the pixel towards the first type on the viewing side the color state of the pigment particles; (iii) no driving voltage is applied to the pixel for the third period; and Repeat steps (i), (ii) and (iii).

在一實施例中,該第一類型的顏料粒子帶負電,而該第二類型的顏料粒子帶正電。在一實施例中,重複步驟(i)、(ii)及(iii)至少三次。在一實施例中,該第二驅動電壓的幅度與將該像素從該第一類型的顏料粒子之顏色狀態驅動至該第二類型的顏料粒子之顏色狀態所需的驅動電壓之幅度相同,反之亦然。在一實施例中,該第二驅動電壓的幅度高於將該像素從該第一類型的顏料粒子之顏色狀態驅動至該第二類型的顏料粒之顏色狀態所需的驅動電壓之幅度,反之亦然。在一實施例中,該方法進一步包括施加一振動波形。在一實施例中,該方法進一步包括在該振動波形之後,但在步驟(i)之前,驅動該像素至該第一類型的顏料粒子之全彩狀態。In one embodiment, the first type of pigment particles are negatively charged and the second type of pigment particles are positively charged. In one embodiment, steps (i), (ii) and (iii) are repeated at least three times. In one embodiment, the magnitude of the second drive voltage is the same as the magnitude of the drive voltage required to drive the pixel from the color state of the first type of pigment particles to the color state of the second type of pigment particles, and vice versa The same is true. In one embodiment, the magnitude of the second driving voltage is higher than the magnitude of the driving voltage required to drive the pixel from the color state of the first type of pigment particles to the color state of the second type of pigment particles, and vice versa The same is true. In one embodiment, the method further includes applying a vibration waveform. In one embodiment, the method further includes driving the pixel to a full color state of the first type of pigment particles after the vibration waveform, but before step (i).

本發明之第七態樣係有關於一種用於電泳顯示器之驅動方法,該電泳顯示器包括在觀看側之第一表面、在非觀看側之第二表面及電泳流體,該電泳流體夾在一共用電極與一像素電極層之間且包括第一類型的顏料粒子、第二類型的顏料粒子及第三類型的顏料粒子,所有類型的顏料粒子分散在溶劑或溶劑混合物中,其中 a)該三種類型的顏料粒子具有彼此不同的光學特性; b)該第一類型的顏料粒子及該第二類型的顏料粒子攜帶相反的電荷極性;以及 c)該第三類型的顏料粒子具有相同於該第二類型的顏料粒子之電荷極性,但是處於較低的強度, 該方法包括下列步驟: (i)施加第一驅動電壓至該電泳顯示器中之像素達第一段時間,該第一驅動電壓具有相同於該第二類型的顏料粒子之極性,以驅動該像素朝向該第二類型的顏料粒子之顏色狀態,其中,該第一段時間不足以在該觀看側驅動該像素至該第二類型的顏料粒子之全彩狀態; (ii)施加第二驅動電壓至該像素達第二段時間,該第二驅動電壓具有相同於該第一類型的顏料粒子之極性,以在該觀看側驅動該像素朝向該第一及第二類型的顏料粒子之混合狀態;以及 重複步驟(i)及(ii)。A seventh aspect of the present invention relates to a driving method for an electrophoretic display, the electrophoretic display including a first surface on a viewing side, a second surface on a non-viewing side, and an electrophoretic fluid sandwiched in a common Between the electrode and a pixel electrode layer and including the first type of pigment particles, the second type of pigment particles and the third type of pigment particles, all types of pigment particles are dispersed in a solvent or solvent mixture, wherein a) the three types of pigment particles have different optical properties from each other; b) the first type of pigment particles and the second type of pigment particles carry opposite charge polarities; and c) the third type of pigment particles have the same charge polarity as the second type of pigment particles, but at a lower intensity, The method includes the following steps: (i) applying a first driving voltage to a pixel in the electrophoretic display for a first period of time, the first driving voltage having the same polarity as the second type of pigment particles, to drive the pixel towards the second type of pigment the color state of the particles, wherein the first period of time is insufficient to drive the pixel on the viewing side to the full color state of the second type of pigment particles; (ii) applying a second driving voltage to the pixel for a second period of time, the second driving voltage having the same polarity as the first type of pigment particles, to drive the pixel towards the first and second on the viewing side the mixed state of the types of pigment particles; and Repeat steps (i) and (ii).

在一實施例中,該第一類型的顏料粒子帶負電,而該第二類型的顏料粒子帶正電。在一實施例中,該第二驅動電壓的振幅小於該第一驅動電壓的振幅之50%。在一實施例中,重複步驟(i)及(ii)至少四次。在一實施例中,該方法進一步包括在步驟(i)之前施加一振動波形。在一實施例中,該方法進一步包括在該振動波形之後,但在步驟(i)之前,驅動該像素至該第一類型的顏料粒子之全彩狀態。In one embodiment, the first type of pigment particles are negatively charged and the second type of pigment particles are positively charged. In one embodiment, the amplitude of the second driving voltage is less than 50% of the amplitude of the first driving voltage. In one embodiment, steps (i) and (ii) are repeated at least four times. In one embodiment, the method further comprises applying a vibration waveform prior to step (i). In one embodiment, the method further includes driving the pixel to a full color state of the first type of pigment particles after the vibration waveform, but before step (i).

本發明的第四驅動方法可以應用於處於該第一類型的顏料粒子之顏色狀態的像素,或者可以應用於處於不是該第一類型的顏料粒子之顏色狀態的顏色狀態之像素。The fourth driving method of the present invention can be applied to pixels in a color state of the first type of pigment particles, or can be applied to pixels in a color state other than the color state of the first type of pigment particles.

本發明亦提供顯示前述電泳顯示流體中三種粒子中之兩種粒子的光學特性混合之驅動方法。第一個這樣的「混合特性」方法包括下列步驟: (i)施加第一驅動電壓至該電泳顯示器中之像素達第一段時間,該第一驅動電壓具有驅動該第一類型的顏料粒子朝向該第一表面的極性,藉此促使該像素在該第一表面上顯示該第一類型的顏料粒子之光學特性; (ii)施加第二驅動電壓至該像素達第二段時間,該第二驅動電壓具有驅動該第三類型的顏料粒子朝向該第一表面的極性,藉此在該第一表面上驅動該像素朝向該第三類型的顏料粒子之光學特性;以及 (iii)施加第三驅動電壓達第三段時間,該第三驅動電壓具有相同於該第一驅動電壓的極性,並且該第三段時間比該第一段時間還短,藉此在該觀看面上產生該第一及第三類型的粒子之光學特性的混合。The present invention also provides a driving method for displaying the mixing of optical properties of two of the three particles in the aforementioned electrophoretic display fluid. The first such "mixed properties" method involved the following steps: (i) applying a first drive voltage to a pixel in the electrophoretic display for a first period of time, the first drive voltage having a polarity to drive the first type of pigment particles toward the first surface, thereby urging the pixel to operate at the first surface the optical properties of the first type of pigment particles displayed on the first surface; (ii) applying a second driving voltage to the pixel for a second period of time, the second driving voltage having a polarity to drive the third type of pigment particles towards the first surface, thereby driving the pixel on the first surface towards the optical properties of the third type of pigment particles; and (iii) applying a third driving voltage for a third period of time, the third driving voltage having the same polarity as the first driving voltage, and the third period of time being shorter than the first period of time, whereby in the viewing A mixture of the optical properties of the first and third types of particles is produced on the surface.

在該第一混合特性方法中,該第三段時間的持續時間可以是該第一段時間的持續時間之大約20%至大約80%,並且較佳地,大約20%至大約40%。可以在步驟(i)之前施加一振動波形,並且可以在該振動波形之前施加一驅動該第一類型的顏料粒子朝向該第一表面的驅動電壓。In the first hybrid property method, the duration of the third period of time may be about 20% to about 80% of the duration of the first period of time, and preferably, about 20% to about 40% of the duration of the first period of time. A vibrational waveform may be applied prior to step (i), and a driving voltage for driving the first type of pigment particles towards the first surface may be applied prior to the vibrational waveform.

一第二「混合特性」方法包括下列步驟: (i)施加第一驅動電壓至該電泳顯示器中之像素達第一段時間,該第一驅動電壓具有驅動該第二類型的顏料粒子朝向該第一表面的極性,藉此促使該像素在該第一表面上顯示該第二類型的顏料粒子之光學特性; (ii)施加第二驅動電壓至該像素達第二段時間,該第二驅動電壓具有相同於該第一驅動電壓之極性,但是具有比該第一驅動電壓小的振幅,藉此在該第一表面上驅動該第三類型的顏料粒子,並且在該第一表面上產生該第二及第三類型的粒子之光學特性的混合。A second "mixed property" method includes the following steps: (i) applying a first drive voltage to a pixel in the electrophoretic display for a first period of time, the first drive voltage having a polarity to drive the second type of pigment particles towards the first surface, thereby urging the pixel to operate at the first surface the optical properties of the second type of pigment particles displayed on the first surface; (ii) applying a second driving voltage to the pixel for a second period of time, the second driving voltage having the same polarity as the first driving voltage, but having a smaller amplitude than the first driving voltage, whereby in the first driving voltage The third type of pigment particles are driven on a surface and a mixture of the optical properties of the second and third types of particles is produced on the first surface.

在該第二混合特性方法中,該第二段時間的持續時間可以是該第一段時間的持續時間之大約100%至大約150%。可以在步驟(i)之前施加一振動波形,並且可以在該振動波形之前施加一驅動該第一類型的顏料粒子朝向該第一表面的驅動電壓。In the second hybrid property method, the duration of the second period of time may be about 100% to about 150% of the duration of the first period of time. A vibrational waveform may be applied prior to step (i), and a driving voltage for driving the first type of pigment particles towards the first surface may be applied prior to the vibrational waveform.

一第三「混合特性」方法包括下列步驟: (i)施加第一驅動電壓至該電泳顯示器中之像素達第一段時間,該第一驅動電壓具有驅動該第一類型的顏料粒子朝向該第一表面的極性,藉此促使該像素在該第一表面上顯示該第一類型的顏料粒子之光學特性; (ii)施加第二驅動電壓至該像素達第二段時間,該第二驅動電壓具有驅動該第三類型的顏料粒子朝向該第一表面的極性;以及 重複步驟(i)及(ii), 其中,調整步驟(i)及(ii)的持續時間及其中所施加的電壓之大小,以在該第一表面上產生該第三類型的粒子與該第一及第二類型的粒子中之一種類型的粒子之光學特性的混合。A third "mixed property" method includes the following steps: (i) applying a first drive voltage to a pixel in the electrophoretic display for a first period of time, the first drive voltage having a polarity to drive the first type of pigment particles toward the first surface, thereby urging the pixel to operate at the first surface the optical properties of the first type of pigment particles displayed on the first surface; (ii) applying a second drive voltage to the pixel for a second period of time, the second drive voltage having a polarity to drive the third type of pigment particles toward the first surface; and Repeat steps (i) and (ii), wherein the duration of steps (i) and (ii) and the magnitude of the voltage applied therein are adjusted to generate one of the third type of particles and the first and second types of particles on the first surface A mixture of optical properties of types of particles.

在該第三混合特性方法中,可以在步驟(i)之前施加一振動波形,並且可以在該振動波形之前施加一驅動該第一類型的顏料粒子朝向該第一表面的驅動電壓。In the third hybrid property method, a vibrational waveform may be applied prior to step (i), and a driving voltage for driving the first type of pigment particles toward the first surface may be applied prior to the vibrational waveform.

本發明係有關於用於彩色顯示裝置之驅動方法。The present invention relates to a driving method for a color display device.

裝置使用如第1圖所示的電泳流體。流體包括分散在液體(通常是介電溶劑或溶劑混合物)中之三種類型的顏料粒子。為了方便例示,三種類型的顏料粒子可以稱為白色粒子(11)、黑色粒子(12)及帶色粒子(13)。帶色粒子係非白色的且非黑色的。The device uses the electrophoretic fluid shown in Figure 1. The fluid includes three types of pigment particles dispersed in a liquid (usually a dielectric solvent or solvent mixture). For convenience of illustration, the three types of pigment particles may be referred to as white particles (11), black particles (12), and colored particles (13). Colored particles are non-white and non-black.

然而,理解到,只要三種類型的顏料粒子具有可區分的光學特性,本發明的範圍廣泛地涵蓋任何顏色的顏料粒子。因此,三種類型的顏料粒子亦可以稱為第一類型的顏料粒子、第二類型的顏料粒子及第三類型的顏料粒子。However, it is understood that the scope of the present invention broadly encompasses pigment particles of any color as long as the three types of pigment particles have distinguishable optical properties. Therefore, the three types of pigment particles may also be referred to as the first type of pigment particles, the second type of pigment particles and the third type of pigment particles.

白色粒子(11)可以由像TiO2 、ZrO2 、ZnO、Al2 O3 、Sb2 O3 、BaSO4 、PbSO4 等的無機顏料形成。The white particles ( 11 ) may be formed of inorganic pigments like TiO 2 , ZrO 2 , ZnO, Al 2 O 3 , Sb 2 O 3 , BaSO 4 , PbSO 4 , and the like.

黑色粒子(12)可以是CI顏料黑26(Cl pigment black 26)或28等(例如,鐵錳黑(manganese ferrite black spinel)或銅鉻黑(copper chromite black spinel))或碳黑。The black particles (12) may be CI pigment black 26 or 28, etc. (eg, manganese ferrite black spinel or copper chromite black spinel) or carbon black.

第三類型的粒子可以具有像紅色、綠色、藍色、洋紅色、青色或黃色的顏色。用於這種類型粒子的顏料可以包含但不限於CI pigment PR254、PR122、PR149、PG36、PG58、PG7、PB15:3、PY138、PY150、PY155或PY20。那些是在顏料索引手冊「New Pigment Application Technology」(CMC Publishing Co. Ltd. 1986)及「Printing Ink Technology」(CMC Publishing Co. Ltd. 1984)中所述之常用有機顏料。特定範例包括Clariant Hostaperm Red D3G 70-EDS、Hostaperm Pink E-EDS、PV fast red D3G、Hostaperm red D3G 70、Hostaperm Blue B2G-EDS、Hostaperm Yellow H4G-EDS、Hostaperm Green GNX、BASF Irgazine red L 3630、Cinquasia Red L 4100 HD及Irgazine Red L 3660 HD; Sun Chemical phthalocyanine blue、phthalocyanine green、diarylide yellow或diarylide AAOT yellow。The third type of particles may have a color like red, green, blue, magenta, cyan or yellow. Pigments for this type of particle may include, but are not limited to, CI pigments PR254, PR122, PR149, PG36, PG58, PG7, PB15:3, PY138, PY150, PY155 or PY20. Those are commonly used organic pigments described in the Pigment Index Handbooks "New Pigment Application Technology" (CMC Publishing Co. Ltd. 1986) and "Printing Ink Technology" (CMC Publishing Co. Ltd. 1984). Specific examples include Clariant Hostaperm Red D3G 70-EDS, Hostaperm Pink E-EDS, PV fast red D3G, Hostaperm red D3G 70, Hostaperm Blue B2G-EDS, Hostaperm Yellow H4G-EDS, Hostaperm Green GNX, BASF Irgazine red L 3630, Cinquasia Red L 4100 HD and Irgazine Red L 3660 HD; Sun Chemical phthalocyanine blue, phthalocyanine green, diarylide yellow or diarylide AAOT yellow.

除了顏色之外,第一、第二及第三類型的粒子還可以具有其他不同的光學特性,例如,光透射、反射率及發光亮度,或者在意欲用於機器讀取之顯示器的情況下,在可見範圍外之電磁波波長的反射率之變化的意義上之假色(pseudo-color)。In addition to color, the first, second and third types of particles may also have other different optical properties, such as light transmission, reflectivity and luminous brightness, or in the case of displays intended for machine reading, Pseudo-color in the sense of a change in reflectivity of electromagnetic wave wavelengths outside the visible range.

分散有三種類型的顏料粒子之液體可以是清澈且無色的。為了高粒子遷移率,它較佳地具有低黏度及在約2至約30(較佳地,在約2至約15)之範圍內的介電常數。合適的介電流體之範例包含碳氫化合物(例如,異烷烴類溶劑(Isopar)、十氫萘(decahydronaphthalene,DECALIN)、5-亞乙基-2降冰片烯-(5-ethylidene-2-norbornene)、脂肪油(fatty oils)、石蠟油(paraffin oil)、矽流體(silicon fluids)、芳烴(aromatic hydrocarbons)(例如,甲苯(toluene)、二甲苯(xylene)、苯基二甲基乙烷(phenylxylylethane))、十二基苯(dodecylbenzene)或烷基萘(alkylnaphthalene))、鹵化溶劑(halogenated solvents)(例如,全氟萘烷(perfluorodecalin)、八氟甲苯(perfluorotoluene)、全氟二甲苯(perfluoroxylene)、二氯三氟甲苯(dichlorobenzotrifluoride)、3,4,5-三氯三氟甲苯(3, 4, 5-trichlorobenzotrifluoride)、氯五氟苯(chloropentafluorobenzene)、二氯壬烷(dichlorononane)或五氯苯(pentachlorobenzene))及全氟溶劑(perfluorinated solvents)(例如,來自3M Company, St. Paul MN的FC-43、FC-70或FC-5060))、含低分子量鹵素聚合物(例如,來自TCI America, Portland, Oregon的六氟環氧丙烷的均聚物(poly(perfluoropropylene oxide))、聚(三氟氯乙烯)(poly(chlorotrifluoroethylene))(例如,來自Halocarbon Product Corp., River Edge, NJ的鹵碳油(Halocarbon Oils))、全氟聚烷基醚(perfluoropolyalkylether)(例如,來自Ausimont的Galden或來自DuPont, Delaware的Krytox Oils and Greases K-Fluid Series)、來自Dow-corning之以聚二甲基矽氧烷(polydimethylsiloxane)為基礎的矽油(DC-200)。The liquid in which the three types of pigment particles are dispersed can be clear and colorless. For high particle mobility, it preferably has a low viscosity and a dielectric constant in the range of about 2 to about 30 (preferably, about 2 to about 15). Examples of suitable dielectric fluids include hydrocarbons (eg, Isopar, decahydronaphthalene (DECALIN), 5-ethylidene-2-norbornene ), fatty oils, paraffin oils, silicone fluids, aromatic hydrocarbons (for example, toluene, xylene, phenyldimethylethane ( phenylxylylethane), dodecylbenzene or alkylnaphthalene), halogenated solvents (for example, perfluorodecalin, perfluorotoluene, perfluoroxylene) ), dichlorobenzotrifluoride, 3,4,5-trichlorobenzotrifluoride, chloropentafluorobenzene, dichlorononane or pentachloro pentachlorobenzene) and perfluorinated solvents (eg, FC-43, FC-70, or FC-5060 from 3M Company, St. Paul MN), low molecular weight halogen-containing polymers (eg, from TCI Poly(perfluoropropylene oxide), poly(chlorotrifluoroethylene)) from America, Portland, Oregon (eg, from Halocarbon Product Corp., River Edge, NJ Halocarbon Oils), perfluoropolyalkylethers (eg, Galden from Ausimont or Krytox Oils and Greases K-Fluid Series from DuPont, Delaware), polydimethyl ethers from Dow-corning Silicone oil based on polydimethylsiloxane (DC-200).

使用本發明的顯示流體之顯示層具有兩個表面,在觀看側上的第一表面(16)及在顯示流體層遠離第一表面(16)之相對側上的第二表面(17)。因此,第二表面位於非觀看側。術語「觀看側」意指觀看影像之側。The display layer using the display fluid of the present invention has two surfaces, a first surface (16) on the viewing side and a second surface (17) on the opposite side of the display fluid layer away from the first surface (16). Therefore, the second surface is on the non-viewing side. The term "viewing side" means the side from which the image is viewed.

顯示流體夾在這兩個表面之間。在第一表面(16)側,具有共用電極(14),其為透明電極層(例如,ITO),分佈在顯示層的整個上方。在第二表面(17)側,具有包括複數個像素電極(15a)的電極層(15)。然而,因為如熟知電泳顯示器技術人士所顯而易見,各種粒子(11、12、13)僅對顯示流體層內施加的電場起反應,所以可以使用其他電極配置;例如,共用電極可以由一系列條狀電極或與像素電極(15a)相似的電極矩陣來取代。Shows fluid sandwiched between these two surfaces. On the side of the first surface (16), there is a common electrode (14), which is a transparent electrode layer (eg ITO) distributed over the whole of the display layer. On the side of the second surface (17), there is an electrode layer (15) including a plurality of pixel electrodes (15a). However, since the various particles (11, 12, 13) are only responsive to the electric field applied within the display fluid layer, as will be apparent to those skilled in the art of electrophoretic displays, other electrode configurations may be used; for example, the common electrode may consist of a series of strips electrodes or a matrix of electrodes similar to the pixel electrodes (15a).

顯示流體被填充在顯示單元中。顯示單元可以與像素電極對準或不對準。術語「顯示單元」意指填充有電泳流體的微容器。「顯示單元」的範例可以包含如美國專利第6,930,818號所述的杯狀微單元及如美國專利第5,930,026號所述的微膠囊。微容器可以具有任何形狀或尺寸,所有這些都在本申請案的範圍內。The display fluid is filled in the display cells. The display cells may or may not be aligned with the pixel electrodes. The term "display unit" means a microvessel filled with an electrophoretic fluid. Examples of "display cells" may include cup-shaped microcells as described in US Pat. No. 6,930,818 and microcapsules as described in US Pat. No. 5,930,026. Microcontainers can be of any shape or size, all of which are within the scope of this application.

與一個像素電極相對應的一個區域可以稱為一個像素(或者一個子像素)。對應於一個像素電極的一個區域之驅動藉由在共用電極與像素電極之間施加電位差(或稱為驅動電壓或電場)來實現。One area corresponding to one pixel electrode may be referred to as one pixel (or one sub-pixel). The driving of a region corresponding to a pixel electrode is achieved by applying a potential difference (or referred to as a driving voltage or an electric field) between the common electrode and the pixel electrode.

像素電極被描述於美國專利第7,046,228號中。在此將其整個內容以參照方式併入本文。注意到,雖然對於像素電極層提及使用薄膜電晶體(TFT)背板的主動矩陣驅動,但是只要電極提供期望的功能,本發明的範圍包括其他類型的電極定址。Pixel electrodes are described in US Patent No. 7,046,228. It is hereby incorporated by reference in its entirety. Note that while active matrix drive using a thin film transistor (TFT) backplane is mentioned for the pixel electrode layer, the scope of the present invention includes other types of electrode addressing as long as the electrodes provide the desired function.

兩條垂直虛線之間的空間表示像素(或子像素)。為了簡潔起見,當在驅動方法中提及「像素」時,這個術語亦包含「子像素」。The space between the two vertical dashed lines represents a pixel (or sub-pixel). For the sake of brevity, when referring to a "pixel" in a driving method, the term also includes a "sub-pixel".

三種類型的顏料粒子中之兩種攜帶相反的電荷極性,而第三種類型的顏料粒子稍微帶電。術語「稍微帶電」或「較低電荷強度」意欲提及小於較強帶電粒子的電荷強度有約50%(較佳地,約5%至約30%)的粒子之電荷電平。在一實施例中,電荷強度可以根據ζ電位來測量。在一實施例中,由Colloidal Dynamics AcoustoSizer IIM使用CSPU-100信號處理單元、ESA EN# Attn 流通槽(flow through cell)(K:127)來測定ζ電位。在測試前,輸入像在測試溫度(25o C)下樣品所使用之溶劑的密度、溶劑之介電常數、溶劑中之聲速、溶劑之黏度的儀器常數。顏料樣品分散在溶劑(它通常是具有少於12個碳原子之碳氫化合物流體)中且稀釋成5-10重量百分比。樣品亦包含電荷控制劑(Solsperse 17000,可從Lubrizol Corporation、Berkshire Hathaway company購得,「Solsperse」是註冊商標),電荷控制劑與粒子之重量比為1:10。測定稀釋樣品的質量,然後將樣品裝載入流通槽中,以便測定ζ電位。Two of the three types of pigment particles carry opposite charge polarities, while the third type of pigment particles is slightly charged. The terms "slightly charged" or "lower charge strength" are intended to refer to the charge level of a particle that is about 50% (preferably, about 5% to about 30%) less than the charge strength of the more strongly charged particle. In one embodiment, the charge strength can be measured in terms of zeta potential. In one embodiment, the zeta potential was determined by a Colloidal Dynamics AcoustoSizer IIM using a CSPU-100 signal processing unit, ESA EN# Attn flow through cell (K: 127). Before testing, enter instrument constants like the density of the solvent used in the sample at the test temperature (25 o C), the dielectric constant of the solvent, the speed of sound in the solvent, and the viscosity of the solvent. Pigment samples are dispersed in a solvent (which is usually a hydrocarbon fluid with less than 12 carbon atoms) and diluted to 5-10 weight percent. The samples also contained a charge control agent (Solsperse 17000, available from Lubrizol Corporation, Berkshire Hathaway company, "Solsperse" is a registered trademark) in a 1:10 weight ratio of charge control agent to particles. The mass of the diluted sample was determined and then loaded into the flow cell for zeta potential determination.

例如,如果黑色粒子帶正電,而白色粒子帶負電,則那麼帶色顏料粒子可以稍微帶電。換句話說,在這個範例中,由黑色及白色粒子所攜帶的電荷比由帶色粒子所攜帶的電荷強得多。For example, if the black particles are positively charged and the white particles are negatively charged, then the colored pigment particles may be slightly charged. In other words, in this example, the charges carried by the black and white particles are much stronger than those carried by the colored particles.

此外,攜帶輕微電荷的帶色粒子具有與其他兩種類型的較強帶電粒子中之任一種所攜帶的電荷極性相同之電荷極性。在下文中,將假設帶色粒子(13)攜帶與第二(黑色)粒子(12)相同極性的電荷。Furthermore, the lightly charged colored particles have the same charge polarity as that carried by either of the other two types of strongly charged particles. In the following, it will be assumed that the coloured particles (13) carry a charge of the same polarity as the second (black) particles (12).

值得注意的是,在三種類型的顏料粒子中,稍微帶電的類型之粒子較佳地具有較大的尺寸。Notably, of the three types of pigment particles, the slightly charged type preferably has a larger size.

此外,在本申請案的上下文中,高驅動電壓(VH1 或VH2 )被定義為足以將像素從一極端顏色狀態驅動至另一極端顏色狀態的驅動電壓。如果第一及第二類型的顏料粒子係較高帶電粒子,則高驅動電壓(VH1 或VH2 )意指驅動電壓足以將像素從第一類型的顏料粒子之顏色狀態驅動至第二類型的顏料粒子之顏色狀態,反之亦然。例如,高驅動電壓VH1 意指足以將像素從第一類型的顏料粒子之顏色狀態驅動至第二類型的顏料粒子之顏色狀態的驅動電壓,並且VH2 意指足以將像素從第二類型的顏料粒子之顏色狀態驅動至第一類型的顏料粒子之顏色狀態的驅動電壓。在所述的這種情況下,低驅動電壓(VL )被定義為可以足以將像素從第一類型的顏料粒子之顏色狀態驅動至第三類型的顏料粒子(其具有較少的電荷且其尺寸可以較大)之顏色狀態的驅動電壓。例如,低驅動電壓可以足以驅動至火色粒子的顏色狀態,而在觀看側看不到黑色及白色粒子。Furthermore, in the context of this application, a high drive voltage (V H1 or V H2 ) is defined as a drive voltage sufficient to drive a pixel from one extreme color state to the other extreme color state. If the first and second types of pigment particles are higher charged particles, a high drive voltage (V H1 or V H2 ) means that the drive voltage is sufficient to drive the pixel from the color state of the first type of pigment particles to the second type of The color state of the pigment particles and vice versa. For example, a high drive voltage V H1 means a drive voltage sufficient to drive a pixel from a color state of a first type of pigment particles to a color state of a second type of pigment particle, and V H2 means a drive voltage sufficient to drive a pixel from a second type of pigment particle The driving voltage at which the color state of the pigment particles is driven to the color state of the first type of pigment particles. In the case described, a low drive voltage ( VL ) is defined as being sufficient to drive a pixel from a color state of a first type of pigment particle to a third type of pigment particle (which has less electrical charge and which size can be larger) the driving voltage of the color state. For example, a low drive voltage may be sufficient to drive to the color state of fire-colored particles without black and white particles being visible on the viewing side.

通常,VL 小於VH (例如,VH1 或VH2 )的振幅之50%,或者較佳地,小於40%。Typically, VL is less than 50%, or preferably, less than 40% of the amplitude of VH (eg, VH1 or VH2 ).

下面係例示藉由上述電泳流體如何可以顯示不同顏色狀態的驅動方法之範例。 範例1The following is an example of a driving method illustrating how different color states can be displayed by the above electrophoretic fluid. Example 1

在第2A-2C圖中展示這個範例。白色顏料粒子(21)帶負電,而黑色顏料粒子(22)帶正電,並且兩種類型的顏料粒子皆小於帶色粒子(23)。This example is shown in Figures 2A-2C. The white pigment particles (21) are negatively charged, while the black pigment particles (22) are positively charged, and both types of pigment particles are smaller than the colored particles (23).

帶色粒子(23)具有與黑色粒子相同的電荷極性,但稍微帶電。結果,在某些驅動電壓下,黑色粒子比帶色粒子(23)移動得更快。The colored particles (23) have the same charge polarity as the black particles, but are slightly charged. As a result, at certain driving voltages, the black particles move faster than the colored particles (23).

在第2A圖中,施加的驅動電壓係+15V(亦即,VH1 ,亦即,像素電極相對於共用電極為+15V)。在這種情況下,負白色粒子(21)移動至相對正的像素電極(25)附近或相對正的像素電極(25)處,而正黑色粒子(22)及正帶色粒子(23)移動至相對負的共用電極(24)附近或相對負的共用電極(24)處。結果,在觀看側看到黑色。帶色粒子(23)朝觀看側的共用電極(24)移動;然而,由於它們的電荷密度較低且尺寸較大,它們比黑色粒子移動得慢。In Figure 2A, the applied driving voltage is +15V (ie, V H1 , that is, the pixel electrode is +15V with respect to the common electrode). In this case, the negative white particles (21) move to the vicinity of the relatively positive pixel electrode (25) or at the relatively positive pixel electrode (25), while the positive black particles (22) and the positive colored particles (23) move to the vicinity of the relatively negative common electrode (24) or at the relatively negative common electrode (24). As a result, black is seen on the viewing side. The colored particles (23) move towards the common electrode (24) on the viewing side; however, due to their lower charge density and larger size, they move slower than the black particles.

在第2B圖中,當施加-15V(亦即,VH2 )的驅動電壓時,負白色粒子(21)移動至在觀看側之相對正的共用電極(24)附近或相對正的共用電極(24)處,而正黑色粒子及正帶色粒子移動至相對負的像素電極(25)附近或相對負的像素電極(25)處。結果,在觀看側看到白色。In Figure 2B, when a driving voltage of -15V (ie, VH2 ) is applied, the negative white particles (21) move to the vicinity of the relatively positive common electrode (24) on the viewing side or to the relatively positive common electrode ( 24), and the positive black particles and the positive colored particles move to the vicinity of the relatively negative pixel electrode (25) or at the relatively negative pixel electrode (25). As a result, white is seen on the viewing side.

值得注意的是,VH1 及VH2 具有相反的極性,並且具有相同的振幅或不同的振幅。在第2圖所示的範例中,VH1 係正的(與黑色粒子相同的極性),而VH2 係負的(與白色粒子相同的極性)。Notably, V H1 and V H2 have opposite polarities and have the same amplitude or different amplitudes. In the example shown in Figure 2, VH1 is positive (same polarity as black particles) and VH2 is negative (same polarity as white particles).

從第2B圖的白色狀態驅動至第2C圖的帶色狀態之驅動可以總結如下:The driving from the white state of Figure 2B to the colored state of Figure 2C can be summarized as follows:

一種用於電泳顯示器之驅動方法,電泳顯示器包括在觀看側的第一表面、在非觀看側的第二表面及電泳流體,流體夾在共用電極與像素電極層之間且包括第一類型的顏料粒子(亦即,白色)、第二類型的顏料粒子(亦即,黑色)及第三類型的顏料粒子(亦即,帶色),所有類型的顏料粒子分散在溶劑或溶劑混合物中,其中 a)三種類型的顏料粒子具有彼此不同的光學特性; b)第一類型的顏料粒子及第二類型的顏料粒子攜帶相反的電荷極性;以及 c)第三類型的顏料粒子具有相同於第二類型的顏料粒子之電荷極性,但是處於較低的強度, 所述方法包括藉由施加足以將第三類型的顏料粒子驅動至觀看側的低驅動電壓,同時使第一及第二類型的顏料粒子處於非觀看側,將電泳顯示器中的像素從第一類型的顏料粒子之顏色狀態朝第三類型的顏料粒子之顏色狀態驅動,並且所施加的低驅動電壓之極性與第三類型的顏料粒子之極性相同。A driving method for an electrophoretic display comprising a first surface on a viewing side, a second surface on a non-viewing side, and an electrophoretic fluid sandwiched between a common electrode and a pixel electrode layer and comprising a first type of pigment Particles (ie, white), pigment particles of a second type (ie, black), and pigment particles of a third type (ie, colored), all types of pigment particles dispersed in a solvent or solvent mixture, wherein a) the three types of pigment particles have different optical properties from each other; b) the first type of pigment particles and the second type of pigment particles carry opposite charge polarities; and c) the pigment particles of the third type have the same charge polarity as the pigment particles of the second type, but at a lower intensity, The method includes switching pixels in an electrophoretic display from the first type of display by applying a low drive voltage sufficient to drive the third type of pigment particles to the viewing side while keeping the first and second types of pigment particles on the non-viewing side. The color state of the pigment particles is driven toward the color state of the third type of pigment particles, and the polarity of the applied low driving voltage is the same as that of the third type of pigment particles.

為了將像素驅動至第三類型的顏料粒子之顏色狀態,亦即,紅色(參見第2C圖),所述方法從第一類型的顏料粒子之顏色狀態(亦即,白色(參見第2B圖))開始。In order to drive the pixel to the color state of the third type of pigment particles, ie, red (see Figure 2C), the method starts from the color state of the first type of pigment particles (ie, white (see Figure 2B) )Start.

當在觀看側看到第三種類型的粒子之顏色時,其它兩種類型的粒子可能在非觀看側(觀看側的相對側)混合,導致在第一及第二類型粒子的顏色之間的中間顏色狀態。如果第一及第二類型的粒子係黑色及白色的,並且第三類型的粒子係紅色的,則在第2C圖中,當在觀看側看到紅色時,灰色處於非觀看側。When the color of the third type of particles is seen on the viewing side, the other two types of particles may mix on the non-viewing side (opposite the viewing side), resulting in a difference between the colors of the first and second types of particles Intermediate color state. If the particles of the first and second types are black and white, and the particles of the third type are red, then in Figure 2C, when red is seen on the viewing side, grey is on the non-viewing side.

在第2C圖的情況下,驅動方法將理想地確保顏色亮度(亦即,防止黑色粒子被看到)與顏色純度(亦即,防止白色粒子被看見)。然而,實際上,由於各種原因(包括粒度分佈及粒子電荷分佈)很難達成這種期望的結果。In the case of Figure 2C, the driving method would ideally ensure color brightness (ie, prevent black particles from being seen) and color purity (ie, prevent white particles from being seen). In practice, however, it is difficult to achieve this desired result for various reasons, including particle size distribution and particle charge distribution.

對此的一個解決方法係在從第一類型的顏料粒子之顏色狀態(亦即,白色)驅動至第三類型的顏料粒子之顏色狀態(亦即,紅色)之前使用振動波形。振動波形由重複一對相反的驅動脈衝達多次循環所組成。例如,振動波形可以由20msec的+15V脈衝及20msec的-15V脈衝組成,並且這樣的一對脈衝重複50次。這種振動波形的總時間為2000msec。符號「msec」代表毫秒。One solution to this is to use a vibrational waveform before driving from the color state of the first type of pigment particles (ie, white) to the color state of the third type of pigment particles (ie, red). The vibration waveform consists of repeating a pair of opposing drive pulses for multiple cycles. For example, the vibration waveform may consist of a 20msec +15V pulse and a 20msec -15V pulse, and such a pair of pulses is repeated 50 times. The total time of this vibration waveform was 2000 msec. The symbol "msec" stands for milliseconds.

無論在施加驅動電壓之前的光學狀態(黑色、白色或紅色),可以施加振動波形至像素。在施加振動波形之後,光學狀態將不是純白色、純黑色或純紅色。取而代之的是,顏色狀態將由三種類型的顏料粒子之混合構成。Regardless of the optical state (black, white, or red) prior to applying the drive voltage, a vibrational waveform can be applied to the pixel. After applying the vibrational waveform, the optical state will not be pure white, pure black, or pure red. Instead, the color state will consist of a mixture of three types of pigment particles.

對於上述方法,在將像素驅動至第一類型的顏料粒子之顏色狀態(亦即,白色)之前施加振動波形。有了這種添加的振動波形,即使白色狀態與沒有振動波形的白色狀態在測量上係相同的,第三類型的顏料粒子之顏色狀態(亦即,紅色)在顏色亮度與顏色純度方面將明顯優於沒有振動波形的顏色狀態。這表示白色粒子與紅色粒子有更好的分離,並且黑色粒子與紅色粒子有更好的分離。For the above method, the vibration waveform is applied prior to driving the pixel to the color state (ie, white) of the first type of pigment particles. With this added vibrational waveform, the color state of the third type of pigment particle (ie, red) will be apparent in terms of color brightness and color purity, even though the white state is measurably the same as the white state without the vibrational waveform. Better than color states without vibration waveforms. This means that white particles are better separated from red particles, and black particles are better separated from red particles.

振動波形中的每個驅動脈衝之施加時間不超過從全黑狀態驅動至全白狀態所需的驅動時間之一半,反之亦然。例如,如果需要300msec將像素從全黑狀態驅動至全白狀態,反之亦然,則振動波形可以由正脈衝及負脈衝組成,每個脈衝的施加時間不超過150msec。實際上,較佳的是振動波形脈衝係較短的。The application time of each driving pulse in the vibration waveform does not exceed half of the driving time required to drive from the fully black state to the fully white state, and vice versa. For example, if it takes 300msec to drive a pixel from a fully black state to a fully white state, or vice versa, the vibration waveform can consist of positive and negative pulses, each applied for no more than 150msec. In practice, it is preferred that the vibration waveform pulses be shorter.

值得注意的是,在整個申請案的所有附圖中,振動波形被截斷(亦即,脈衝的數量少於實際數量)。Notably, in all figures throughout the application, the vibration waveform is truncated (ie, the number of pulses is less than the actual number).

在第3圖中顯示用於驅動顯示器至第2C圖的帶色(紅色)狀態之波形。在這個波形中,在振動波形之後,施加高的負驅動電壓(VH2 ,例如,-15V)達t2的期間,以將像素朝白色狀態驅動。從白色狀態起,可以藉由施加低的正電壓(VL ,例如,+5V)達t3的期間,將像素朝帶色狀態(亦即,紅色)驅動,(亦即,將像素從第2B圖驅動至第2C圖)。The waveform used to drive the display to the colored (red) state of Figure 2C is shown in Figure 3. In this waveform, after the vibration waveform, a high negative drive voltage (V H2 , eg, -15V) is applied for a period of t2 to drive the pixel toward the white state. From the white state, the pixel can be driven toward the colored state (ie, red) by applying a low positive voltage ( VL , eg, +5V) for a period of t3 (ie, driving the pixel from 2B Figure drive to Figure 2C).

驅動期間「t2」係當施加VH2 時足以將像素驅動至白色狀態的期間,而驅動期間「t3」係當施加VL 時足以將像素從白色狀態驅動至紅色狀態的期間。在振動波形之前較佳地施加驅動電壓達t1的期間,以確保直直流平衡。在整個申請案中,術語「直流平衡」意欲表示當對一段時間(例如,整個波形的期間)進行積分時,施加至像素的驅動電壓大致為零。第一驅動方法: The drive period "t2" is a period sufficient to drive the pixel to the white state when V H2 is applied, and the drive period "t3" is a period sufficient to drive the pixel from the white state to the red state when VL is applied. The driving voltage is preferably applied for a period of t1 before the vibration waveform to ensure DC-DC balance. Throughout this application, the term "DC balanced" is intended to mean that the drive voltage applied to the pixel is approximately zero when integrated over a period of time (eg, the duration of the entire waveform). The first drive method:

在第4圖中例示可用於本發明之第一驅動方法中的波形;這個波形可以用來取代第3圖中的驅動期間t3。A waveform that can be used in the first driving method of the present invention is illustrated in FIG. 4; this waveform can be used in place of the driving period t3 in FIG. 3. FIG.

在初始步驟中,施加高的負驅動電壓(VH2 ,例如,-15V),接著施加正驅動電壓(+V'),以將像素朝紅色狀態驅動。+V'的振幅小於VH (例如,VH1 或VH2 )的振幅之50%。In an initial step, a high negative drive voltage ( VH2 , eg, -15V) is applied, followed by a positive drive voltage (+V') to drive the pixel toward the red state. The amplitude of +V' is less than 50% of the amplitude of VH (eg, VH1 or VH2 ).

在這個驅動波形中,施加高的負驅動電壓(VH2 )達期間t4,以將白色粒子推向觀看側,然後施加+V'的正驅動電壓達期間t5,以將白色粒子拉下並將紅色粒子推向觀看側。In this drive waveform, a high negative drive voltage (V H2 ) is applied for period t4 to push the white particles to the viewing side, and then a positive drive voltage of +V' is applied for period t5 to pull the white particles down and Red particles are pushed towards the viewing side.

在一實施例中,t4可以在20-400msec的範圍內,而t5可以大於等於200msec。In one embodiment, t4 may be in the range of 20-400 msec, and t5 may be greater than or equal to 200 msec.

重複第4圖的波形至少四次循環(N≥4),較佳地,至少八次循環。紅色在每個驅動循環後會變得更強烈。The waveform of Figure 4 is repeated for at least four cycles (N≥4), preferably at least eight cycles. The red becomes more intense after each drive cycle.

第4圖的驅動方法可以總結如下:The driving method in Figure 4 can be summarized as follows:

一種用於電泳顯示器之驅動方法,電泳顯示器包括在觀看側之第一表面、在非觀看側之第二表面及電泳流體,電泳流體夾在共用電極與像素電極層之間且包括第一類型的顏料粒子、第二類型的顏料粒子及第三類型的顏料粒子,所有類型的顏料粒子分散在溶劑或溶劑混合物中,其中 a)三種類型的顏料粒子具有彼此不同的光學特性; b)第一類型的顏料粒子及第二類型的顏料粒子攜帶相反的電荷極性;以及 c)第三類型的顏料粒子具有相同於第二類型的顏料粒子之電荷極性,但是處於較低的強度, 所述方法包括下列步驟: (i)施加第一驅動電壓至電泳顯示器中之像素達第一段時間,第一驅動電壓具有相同於第一類型的顏料粒子之極性,以在觀看側驅動像素朝向第一類型的顏料粒子之顏色狀態; (ii)施加第二驅動電壓至像素達第二段時間,第二驅動電壓具有相同於第三類型的顏料粒子之極性,以在觀看側驅動像素朝向第三類型的顏料粒子之顏色狀態;以及 重複步驟(i)及(ii)。A driving method for an electrophoretic display comprising a first surface on a viewing side, a second surface on a non-viewing side, and an electrophoretic fluid sandwiched between a common electrode and a pixel electrode layer and comprising a first type of Pigment particles, pigment particles of the second type and pigment particles of the third type, all types of pigment particles dispersed in a solvent or solvent mixture, wherein a) the three types of pigment particles have different optical properties from each other; b) the first type of pigment particles and the second type of pigment particles carry opposite charge polarities; and c) the pigment particles of the third type have the same charge polarity as the pigment particles of the second type, but at a lower intensity, The method includes the following steps: (i) applying a first driving voltage to the pixels in the electrophoretic display for a first period of time, the first driving voltage having the same polarity as that of the first type of pigment particles, to drive the pixels toward the first type of pigment particles on the viewing side color status; (ii) applying a second driving voltage to the pixel for a second period of time, the second driving voltage having the same polarity as the third type of pigment particles, to drive the pixel towards the color state of the third type of pigment particles on the viewing side; and Repeat steps (i) and (ii).

在一實施例中,第一類型的顏料粒子帶負電,而第二類型的顏料粒子帶正電。In one embodiment, the first type of pigment particles are negatively charged and the second type of pigment particles are positively charged.

在一實施例中,第二驅動電壓的振幅小於第一驅動電壓的振幅之50%。In one embodiment, the amplitude of the second driving voltage is less than 50% of the amplitude of the first driving voltage.

如上所述,第4圖所示的驅動波形可以用於取代第3圖中之驅動期間t3,以及第5圖例示在取代後的組合波形。換句話說,驅動序列可以是:振動波形、接著朝白色狀態驅動達期間t2,然後施加第4圖的波形。As described above, the driving waveform shown in FIG. 4 can be used to replace the driving period t3 in FIG. 3 , and the combined waveform after the replacement is illustrated in FIG. 5 . In other words, the drive sequence may be a vibration waveform, then drive toward the white state for a period t2, and then apply the waveform of FIG. 4 .

在另一實施例中,可以刪除向白色狀態驅動達期間t2的步驟,並且在這種情況下,在施加第4圖的波形之前立即施加振動波形(參見第6圖)。In another embodiment, the step of driving to the white state for the period t2 may be omitted, and in this case, the vibration waveform (see FIG. 6) is applied immediately before the waveform of FIG. 4 is applied.

在一實施例中,第5圖或第6圖的驅動序列係直流平衡的。第二驅動方法: In one embodiment, the drive sequence of Figure 5 or Figure 6 is DC balanced. Second drive method:

在第7圖中例示可用於本發明之第二驅動方法中的波形。這個波形係第4圖的驅動波形之替代,並且亦可以用來取代第3圖中的驅動期間t3。Waveforms that can be used in the second driving method of the present invention are illustrated in FIG. 7 . This waveform is a substitute for the driving waveform in FIG. 4, and can also be used in place of the driving period t3 in FIG. 3. FIG.

在這個替代波形中,在期間t5中的紅色向脈衝(red-going pulse)之後且在期間t4中的白色向脈衝(white-going pulse)前加入等待時間「t6」,並且在期間t5中重複紅色向脈衝。在等待時間期間,不施加驅動電壓。亦重複第7圖的整個波形達多次循環(例如,N≥4)。In this alternate waveform, a waiting time "t6" is added after the red-going pulse in period t5 and before the white-going pulse in period t4, and repeated in period t5 Pulse in red. During the waiting time, no driving voltage is applied. The entire waveform of Figure 7 is also repeated for multiple cycles (eg, N > 4).

第7圖的波形設計成用以釋放儲存在電泳顯示裝置中的介電層中之電荷不平衡,特別是在介電層的電阻值例如在低溫下係高的時候。The waveform of FIG. 7 is designed to relieve charge imbalances stored in the dielectric layer in an electrophoretic display device, especially when the resistance value of the dielectric layer is high, eg, at low temperatures.

在本申請案的上下文中,術語「低溫」意指低於約10℃的溫度。In the context of this application, the term "low temperature" means a temperature below about 10°C.

等待時間據推測可以消除儲存在介電層中的不需要的電荷,並且導致用於驅動像素朝向白色狀態的短脈衝(「t4」)及用於驅動像素朝向紅色狀態的較長脈衝(「t5」)更有效率。結果,這種替代驅動方法造成低帶電顏料粒子與較高帶電顏料粒子有更好的分離。等待時間(「t6」)可以在5-5,000msec的範圍內,這取決於介電層的電阻值。The latency presumably eliminates unwanted charges stored in the dielectric layer and results in a short pulse ("t4") for driving the pixel toward the white state and a longer pulse ("t5") for driving the pixel toward the red state ")more efficient. As a result, this alternative actuation method results in better separation of low-charged pigment particles from higher-charged pigment particles. The waiting time ("t6") can be in the range of 5-5,000 msec, depending on the resistance value of the dielectric layer.

第7圖的驅動方法可以總結如下:The driving method in Figure 7 can be summarized as follows:

一種用於電泳顯示器之驅動方法,電泳顯示器包括在觀看側之第一表面、在非觀看側之第二表面及電泳流體,電泳流體夾在共用電極與像素電極層之間且包括第一類型的顏料粒子、第二類型的顏料粒子及第三類型的顏料粒子,所有類型的顏料粒子分散在溶劑或溶劑混合物中,其中 a)三種類型的顏料粒子具有彼此不同的光學特性; b)第一類型的顏料粒子及第二類型的顏料粒子攜帶相反的電荷極性;以及 c)第三類型的顏料粒子具有相同於第二類型的顏料粒子之電荷極性,但是處於較低的強度, 所述方法包括下列步驟: (i)施加第一驅動電壓至電泳顯示器中之像素達第一段時間,第一驅動電壓具有相同於第一類型的顏料粒子之極性,以在觀看側驅動像素朝向第一類型的顏料粒子之顏色狀態; (ii)施加第二驅動電壓至像素達第二段時間,第二驅動電壓具有相同於第三類型的顏料粒子之極性,以在觀看側驅動像素朝向第三類型的顏料粒子之顏色狀態; (iii)沒有施加驅動電壓至像素達第三段期間;以及 重複步驟(i)、(ii)及(iii)。A driving method for an electrophoretic display comprising a first surface on a viewing side, a second surface on a non-viewing side, and an electrophoretic fluid sandwiched between a common electrode and a pixel electrode layer and comprising a first type of Pigment particles, pigment particles of the second type and pigment particles of the third type, all types of pigment particles dispersed in a solvent or solvent mixture, wherein a) the three types of pigment particles have different optical properties from each other; b) the first type of pigment particles and the second type of pigment particles carry opposite charge polarities; and c) the pigment particles of the third type have the same charge polarity as the pigment particles of the second type, but at a lower intensity, The method includes the following steps: (i) applying a first driving voltage to the pixels in the electrophoretic display for a first period of time, the first driving voltage having the same polarity as that of the first type of pigment particles, to drive the pixels toward the first type of pigment particles on the viewing side color status; (ii) applying a second driving voltage to the pixel for a second period of time, the second driving voltage having the same polarity as the third type of pigment particles, to drive the pixel towards the color state of the third type of pigment particles on the viewing side; (iii) no driving voltage is applied to the pixel for the third period; and Repeat steps (i), (ii) and (iii).

在一實施例中,第一類型的顏料粒子帶負電,而第二類型的顏料粒子帶正電。In one embodiment, the first type of pigment particles are negatively charged and the second type of pigment particles are positively charged.

在一實施例中,第二驅動電壓的振幅小於第一驅動電壓的振幅之50%。In one embodiment, the amplitude of the second driving voltage is less than 50% of the amplitude of the first driving voltage.

如上所述,第7圖所示的驅動波形亦可以用於取代第3圖中之驅動期間t3(參見第8圖)。換句話說,驅動序列可以是:振動波形、接著朝白色狀態驅動達期間t2,然後施加第7圖的波形。As described above, the driving waveform shown in FIG. 7 can also be used instead of the driving period t3 in FIG. 3 (see FIG. 8 ). In other words, the drive sequence may be a vibration waveform, then drive toward the white state for a period t2, and then apply the waveform of FIG. 7 .

在另一實施例中,可以刪除向白色狀態驅動達期間t2的步驟,並且在這種情況下,在施加第7圖的波形之前施加振動波形(參見第9圖)。In another embodiment, the step of driving to the white state for the period t2 may be omitted, and in this case, the vibration waveform (see FIG. 9 ) is applied before the waveform of FIG. 7 is applied.

在另一實施例中,第8圖或第9圖的驅動序列係直流平衡的。In another embodiment, the drive sequence of Figure 8 or Figure 9 is DC balanced.

應該注意的是,在本申請案中所提及的任何驅動期間之長度可能取決於溫度。第三驅動方法: It should be noted that the length of any drive period mentioned in this application may be temperature dependent. The third driving method:

第10A圖根據第3圖的波形展示施加驅動電壓(V')與光學性能之間的關係。如所示,所施加的正驅動電壓V'可能影響上述彩色顯示裝置的紅色狀態性能。利用L*a*b*顏色系統將顯示裝置的紅色狀態性能表示成a*值。FIG. 10A shows the relationship between applied drive voltage (V') and optical performance according to the waveforms of FIG. 3 . As shown, the applied positive drive voltage V' may affect the red state performance of the color display device described above. The red state performance of the display device is expressed as a* value using the L*a*b* color system.

第10A圖中的最大a*出現在第3圖中施加的驅動電壓V'(約為3.8V)處。然而,如果施加的驅動電壓產生±0.5V的變化,則所得到的a*值將約為37,這大約是最大a*的90%,因此仍然是可以接受的。這個容限對於適應由例如顯示裝置的電子組件的變動、電池電壓隨時間的下降、TFT背板的批次變動、顯示裝置的批次變動或溫度和濕度波動所造成之驅動電壓的改變係有利的。The maximum a* in Figure 10A occurs at the applied drive voltage V' (about 3.8V) in Figure 3. However, if the applied drive voltage varies by ±0.5V, the resulting a* value will be about 37, which is about 90% of the maximum a* and thus still acceptable. This tolerance is beneficial for accommodating changes in driving voltage caused by, for example, variations in electronic components of the display device, drop in battery voltage over time, batch variation in TFT backplanes, batch variation in display devices, or fluctuations in temperature and humidity of.

根據第10A圖中所給出的資料,進行研究,以找到可驅動至具有最大a*值的90%以上之紅色狀態的驅動電壓V'之範圍。換句話說,當施加在這個範圍內的任何驅動電壓時,光學性能不會受到顯著影響。因此,這個範圍可以稱為「電壓不敏感」範圍。「電壓不敏感」範圍越寬,驅動方法越能容忍批次變動及環境變化。Based on the data presented in Figure 10A, a study was conducted to find a range of drive voltages V' that could be driven to the red state with more than 90% of the maximum a* value. In other words, the optical performance is not significantly affected when any driving voltage within this range is applied. Therefore, this range can be called the "voltage insensitive" range. The wider the "voltage insensitive" range, the more tolerant the drive method is to batch variations and environmental changes.

在第4圖中,對於本研究需要考量三個參數t4、t5及N。三個參數對電壓不敏感範圍的影響係交互式且非線性的。In Figure 4, three parameters t4, t5 and N need to be considered for this study. The effects of the three parameters on the voltage-insensitive range are interactive and nonlinear.

根據第10A圖的模型,可以找到用於三個參數的最佳值集合,以實現第4圖的波形之最寬電壓不敏感範圍。結果總結於第10B圖中。From the model of Figure 10A, an optimal set of values for the three parameters can be found to achieve the widest voltage insensitivity range of the waveform of Figure 4. The results are summarized in Figure 10B.

當t4在40-140msec之間,t5大於或等於460msec且N大於或等於7時,根據第10B圖的電壓不敏感範圍(亦即3.7V至6.5V)為根據第10A圖的電壓不敏感範圍(亦即,3.3V-4.7V)的兩倍寬。When t4 is between 40-140msec, t5 is greater than or equal to 460msec and N is greater than or equal to 7, the voltage insensitivity range according to Figure 10B (ie 3.7V to 6.5V) is the voltage insensitivity range according to Figure 10A (ie, twice as wide as 3.3V-4.7V).

上面論述的最佳參數亦可適用於本發明的任何驅動方法。The optimal parameters discussed above are also applicable to any driving method of the present invention.

因此,第三驅動方法可以總結如下:Therefore, the third driving method can be summarized as follows:

一種用於電泳顯示器之驅動方法,電泳顯示器包括在觀看側之第一表面、在非觀看側之第二表面及電泳流體,電泳流體夾在共用電極與像素電極層之間且包括第一類型的顏料粒子、第二類型的顏料粒子及第三類型的顏料粒子,所有類型的顏料粒子分散在溶劑或溶劑混合物中,其中 a)三種類型的顏料粒子具有彼此不同的光學特性; b)第一類型的顏料粒子及第二類型的顏料粒子攜帶相反的電荷極性;以及 c)第三類型的顏料粒子具有相同於第二類型的顏料粒子之電荷極性,但是處於較低的強度, 以及所述方法具有至少0.7V的電壓不敏感範圍。A driving method for an electrophoretic display comprising a first surface on a viewing side, a second surface on a non-viewing side, and an electrophoretic fluid sandwiched between a common electrode and a pixel electrode layer and comprising a first type of Pigment particles, pigment particles of the second type and pigment particles of the third type, all types of pigment particles dispersed in a solvent or solvent mixture, wherein a) the three types of pigment particles have different optical properties from each other; b) the first type of pigment particles and the second type of pigment particles carry opposite charge polarities; and c) the pigment particles of the third type have the same charge polarity as the pigment particles of the second type, but at a lower intensity, And the method has a voltage insensitivity range of at least 0.7V.

在這樣的方法中,當施加在這樣的範圍內之驅動電壓時,可達到的顏色狀態之光學品質係最大可接受「a*」值的至少90%。In such a method, the optical quality of the achievable color state is at least 90% of the maximum acceptable "a*" value when driving voltages within such ranges are applied.

亦值得注意的是,第10A及10B圖所示的資料係在環境溫度下收集。第四驅動方法: It is also worth noting that the data shown in Figures 10A and 10B were collected at ambient temperature. Fourth driving method:

在第11圖中例示可用於本發明之第四驅動方法中的波形。這個驅動波形可以用來取代第3圖中的驅動期間t3。Waveforms that can be used in the fourth driving method of the present invention are illustrated in FIG. 11 . This driving waveform can be used in place of the driving period t3 in FIG. 3 .

在初始步驟中,施加高的負驅動電壓(VH2 ,例如,-15V)至像素達期間t7(參見第4圖之期間t4中的對應脈衝)。這個脈衝之後是等待時間t8,在此期間不施加電壓。在等待時間之後,施加正驅動電壓(V',例如,小於VH1 或VH2 的50%)至像素達期間t9(參見第4圖之期間t5中的對應脈衝)。在t9的脈衝之後,但在重複波形的各個步驟之前,存在第二等待時間t10,在此期間不施加電壓。重複第11圖的波形N次。上述術語「等待時間」意指沒有施加驅動電壓的一段時間。In an initial step, a high negative drive voltage ( VH2 , eg, -15V) is applied to the pixel for period t7 (see corresponding pulse in period t4 of Figure 4). This pulse is followed by a waiting time t8 during which no voltage is applied. After the waiting time, a positive drive voltage (V', eg, less than 50% of VH1 or VH2 ) is applied to the pixel for period t9 (see corresponding pulse in period t5 of FIG. 4). After the pulse of t9, but before repeating the various steps of the waveform, there is a second waiting time t10 during which no voltage is applied. Repeat the waveform in Figure 11 N times. The above term "waiting time" means a period of time during which no driving voltage is applied.

這個驅動方法不僅在低溫下特別有效,而且可以提供顯示裝置在其製造期間所造成之結構變動的更好容限。因此,其效用不限於低溫驅動。This driving method is not only particularly efficient at low temperatures, but can also provide better tolerance for structural variations of the display device during its manufacture. Therefore, its utility is not limited to low temperature driving.

在第11圖的波形中,第一等待時間t8非常短,而第二等待時間t10較長。期間t7亦比期間t9還短。例如,t7可能在20-200msec的範圍內;t8可能小於100msec;t9可能在100-200msec的範圍內;以及t10可能小於1000msec。In the waveform of Fig. 11, the first waiting time t8 is very short, and the second waiting time t10 is long. The period t7 is also shorter than the period t9. For example, t7 may be in the range of 20-200 msec; t8 may be less than 100 msec; t9 may be in the range of 100-200 msec; and t10 may be less than 1000 msec.

第12圖顯示藉由插入第11圖的波形來取代第3圖的期間t3所產生之波形。在第3圖中,在期間t2期間顯示白色狀態。作為一般規則,在此期間的白色狀態越好,在波形的末端所將顯示之紅色狀態越好。FIG. 12 shows the waveform generated by inserting the waveform of FIG. 11 in place of the period t3 of FIG. 3 . In FIG. 3, the white state is displayed during the period t2. As a general rule, the better the white state during this period, the better the red state will be displayed at the end of the waveform.

在振動波形中,較佳地重複正/負脈衝對50-1500次,並且較佳地施加每個脈衝達10msec。In the vibration waveform, the positive/negative pulse pair is preferably repeated 50-1500 times, and each pulse is preferably applied for 10 msec.

在一實施例中,可以刪除向白色狀態驅動達期間t2的步驟,並且在這種情況下,在施加第11圖的波形之前施加振動波形(參見第13圖)。In one embodiment, the step of driving to the white state for the period t2 may be omitted, and in this case, the vibration waveform (see FIG. 13 ) is applied before the waveform of FIG. 11 is applied.

第11圖的第四驅動方法可以總結如下:The fourth driving method of Fig. 11 can be summarized as follows:

一種用於電泳顯示器之驅動方法,電泳顯示器包括在觀看側之第一表面、在非觀看側之第二表面及電泳流體,電泳流體夾在共用電極與像素電極層之間且包括第一類型的顏料粒子、第二類型的顏料粒子及第三類型的顏料粒子,所有類型的顏料粒子分散在溶劑或溶劑混合物中,其中 a)三種類型的顏料粒子具有彼此不同的光學特性; b)第一類型的顏料粒子及第二類型的顏料粒子攜帶相反的電荷極性;以及 c)第三類型的顏料粒子具有相同於第二類型的顏料粒子之電荷極性,但是處於較低的強度, 所述方法包括下列步驟: (i)施加第一驅動電壓至電泳顯示器中之像素達第一段時間,其中,第一驅動電壓具有相同於第一類型的顏料粒子之極性,以在觀看側驅動像素朝向第一類型的顏料粒子之顏色狀態; (ii)不施加驅動電壓至像素達第二段時間; (iii)施加第二驅動電壓至像素達第三段時間,其中,第二驅動電壓具有相同於第三類型的顏料粒子之極性,以在觀看側驅動像素朝向第三類型的顏料粒子之顏色狀態; (iv)不施加驅動電壓至像素達第四段時間;以及 重複步驟(i)-(iv)。A driving method for an electrophoretic display comprising a first surface on a viewing side, a second surface on a non-viewing side, and an electrophoretic fluid sandwiched between a common electrode and a pixel electrode layer and comprising a first type of Pigment particles, pigment particles of the second type and pigment particles of the third type, all types of pigment particles dispersed in a solvent or solvent mixture, wherein a) the three types of pigment particles have different optical properties from each other; b) the first type of pigment particles and the second type of pigment particles carry opposite charge polarities; and c) the pigment particles of the third type have the same charge polarity as the pigment particles of the second type, but at a lower intensity, The method includes the following steps: (i) applying a first driving voltage to the pixels in the electrophoretic display for a first period of time, wherein the first driving voltage has the same polarity as the first type of pigment particles to drive the pixels towards the first type of pigment on the viewing side the color state of the particle; (ii) not applying the driving voltage to the pixel for a second period of time; (iii) applying a second driving voltage to the pixel for a third period of time, wherein the second driving voltage has the same polarity as the third type of pigment particles to drive the pixel towards the color state of the third type of pigment particles on the viewing side ; (iv) not applying the driving voltage to the pixel for a fourth period of time; and Repeat steps (i)-(iv).

在一實施例中,第一類型的顏料粒子帶負電,而第二類型的顏料粒子帶正電。In one embodiment, the first type of pigment particles are negatively charged and the second type of pigment particles are positively charged.

在一實施例中,重複步驟(i)-(iv)至少三次。In one embodiment, steps (i)-(iv) are repeated at least three times.

在一實施例中,第二驅動電壓小於足以將像素從第一類型的顏料粒子之顏色狀態驅動至第二類型的顏料粒子之顏色狀態的驅動電壓之50%,反之亦然。In one embodiment, the second drive voltage is less than 50% of the drive voltage sufficient to drive the pixel from the color state of the first type of pigment particles to the color state of the second type of pigment particles, and vice versa.

在另一實施例中,第12圖或第13圖的驅動序列係直流平衡的。第五驅動方法: In another embodiment, the drive sequence of Figure 12 or Figure 13 is DC balanced. Fifth drive method:

如第2A圖所示,因為黑色粒子及紅色粒子攜帶相同的電荷極性,所以它們傾向於朝相同的方向移動。即使黑色粒子在某些驅動電壓下由於其較高的電荷且亦可能由於其較小的尺寸而比紅色粒子移動得更快,但是一些紅色粒子仍然可能與黑色粒子一起被驅動至觀看側,因而導致黑色狀態降低。As shown in Figure 2A, because the black and red particles carry the same charge polarity, they tend to move in the same direction. Even though black particles move faster than red particles at certain driving voltages due to their higher charge and possibly also due to their smaller size, some red particles may still be driven to the viewing side along with the black particles, so Causes the black state to decrease.

第14圖描繪用於驅動像素朝向黑色狀態的典型波形。包含振動波形(如上所述),以確保顏色亮度及純度。如所示,在振動波形之後施加高的正驅動電壓(VH1 ,例如,+15V)達期間t12,以將像素朝黑色狀態驅動。在振動波形之前施加驅動電壓達期間t11,以確保直流平衡。Figure 14 depicts typical waveforms for driving a pixel towards a black state. Vibration waveforms (described above) are included to ensure color brightness and purity. As shown, a high positive drive voltage (V H1 , eg, +15V) is applied for period t12 following the vibration waveform to drive the pixel toward the black state. The driving voltage is applied for a period t11 before the vibration waveform to ensure DC balance.

第15圖例示可以添加在用於驅動像素朝向黑色狀態之第14圖的波形之末端的波形。組合波形可以進一步提供黑色粒子與紅色粒子有更好的分離,使黑色狀態更飽和,紅色著色更少。Figure 15 illustrates a waveform that may be added to the end of the waveforms of Figure 14 for driving the pixel towards the black state. Combining waveforms can further provide better separation of black particles from red particles, resulting in more saturated black states and less red tinting.

在第15圖中,施加VH2 (負)的短脈衝「t13」,接著是VH1 (正)的長脈衝「t14」及t15的等待時間(0V)。施加這樣的序列至少一次,較佳地,至少三次(亦即,N≥3),更佳地,至少五至七次。In Fig. 15, a short pulse "t13" of V H2 (negative) is applied, followed by a long pulse "t14" of V H1 (positive) and a waiting time (0V) of t15. Such a sequence is applied at least once, preferably, at least three times (ie, N≧3), and more preferably, at least five to seven times.

脈衝「t14」通常至少是脈衝「t13」的兩倍長。Pulse "t14" is usually at least twice as long as pulse "t13".

VH2 的短脈衝「t13」將黑色及紅色粒子推向像素電極,而VH1 的較長脈衝「t14」將它們推向共用電極側(亦即,觀看側)。因為兩個類型的顏料粒子之速度在相同驅動電壓下係不同的,所以這種不對稱的驅動序列對黑色粒子比對紅色粒子更有利。結果,黑色粒子可以更好地與紅色粒子分離。The short pulse "t13" of VH2 pushes the black and red particles toward the pixel electrodes, while the longer pulse "t14" of VH1 pushes them toward the common electrode side (ie, the viewing side). Because the velocities of the two types of pigment particles are different at the same drive voltage, this asymmetric drive sequence is more favorable for black particles than for red particles. As a result, black particles can be better separated from red particles.

等待時間「t15」係任選的,這取決於顯示裝置中的介電層。通常,在較低的溫度下,介電層的電阻值更加明顯,並且在這種情況下,可能需要等待時間來釋放陷入介電層中的電荷。The waiting time "t15" is optional and depends on the dielectric layer in the display device. Generally, at lower temperatures, the resistance value of the dielectric layer is more pronounced, and in this case, a waiting time may be required to release the charges trapped in the dielectric layer.

第15圖之第五驅動方法可以總結如下:The fifth driving method of Fig. 15 can be summarized as follows:

一種用於電泳顯示器之驅動方法,電泳顯示器包括在觀看側之第一表面、在非觀看側之第二表面及電泳流體,電泳流體夾在共用電極與像素電極層之間且包括第一類型的顏料粒子、第二類型的顏料粒子及第三類型的顏料粒子,所有類型的顏料粒子分散在溶劑或溶劑混合物中,其中 a)三種類型的顏料粒子具有彼此不同的光學特性; b)第一類型的顏料粒子及第二類型的顏料粒子攜帶相反的電荷極性;以及 c)第三類型的顏料粒子具有相同於第二類型的顏料粒子之電荷極性,但是處於較低的強度, 所述方法包括下列步驟: (i)施加第一驅動電壓至電泳顯示器中之像素達第一段時間,其中,第一驅動電壓具有相同於第一類型的顏料粒子之極性,以在觀看側驅動像素朝向第一類型的顏料粒子之顏色狀態; (ii)施加第二驅動電壓至像素達第二段時間,其中,第二驅動電壓具有相同於第二類型的顏料粒子之極性,以在觀看側驅動像素朝向第二類型的顏料粒子之顏色狀態; (iii)任選地,沒有施加驅動電壓至像素達第三段時間;以及 重複步驟(i)、(ii)及(iii)(如果存在)。A driving method for an electrophoretic display comprising a first surface on a viewing side, a second surface on a non-viewing side, and an electrophoretic fluid sandwiched between a common electrode and a pixel electrode layer and comprising a first type of Pigment particles, pigment particles of the second type and pigment particles of the third type, all types of pigment particles dispersed in a solvent or solvent mixture, wherein a) the three types of pigment particles have different optical properties from each other; b) the first type of pigment particles and the second type of pigment particles carry opposite charge polarities; and c) the pigment particles of the third type have the same charge polarity as the pigment particles of the second type, but at a lower intensity, The method includes the following steps: (i) applying a first driving voltage to the pixels in the electrophoretic display for a first period of time, wherein the first driving voltage has the same polarity as the first type of pigment particles to drive the pixels towards the first type of pigment on the viewing side the color state of the particle; (ii) applying a second driving voltage to the pixel for a second period of time, wherein the second driving voltage has the same polarity as the second type of pigment particles to drive the pixel towards the color state of the second type of pigment particles on the viewing side ; (iii) optionally, no drive voltage is applied to the pixel for a third period of time; and Repeat steps (i), (ii) and (iii) (if present).

在一實施例中,第一類型的顏料粒子帶負電,而第二類型的顏料粒子帶正電。In one embodiment, the first type of pigment particles are negatively charged and the second type of pigment particles are positively charged.

第16圖顯示組合第14圖的波形與第15圖的波形之複合波形。然而,亦值得注意的是,根據粒子速度及序列的循環數(N),可以縮短「t12」。換句話說,在「t12」的末端處時,像素不必處於全黑狀態。取而代之的是,第15圖的波形只要序列的數目(N)足以在最後將像素驅動至黑色狀態,則可以在從黑色至白色的任何狀態處(包含灰色)開始。Figure 16 shows a composite waveform combining the waveform of Figure 14 with the waveform of Figure 15. However, it is also worth noting that depending on the particle velocity and the number of cycles (N) of the sequence, "t12" can be shortened. In other words, at the end of "t12", the pixel does not have to be completely black. Instead, the waveform of Figure 15 can start at any state from black to white, including gray, as long as the number of sequences (N) is sufficient to drive the pixel to the black state at the end.

第14-16圖所述的方法亦可以用以在低溫下將像素驅動至黑色狀態。在這種情況下,期間t14應該比t13還長,而等待時間t15應該至少為50msec。The methods described in Figures 14-16 can also be used to drive pixels to a black state at low temperatures. In this case, the period t14 should be longer than t13, and the waiting time t15 should be at least 50msec.

在一實施例中,第16圖的驅動序列係直流平衡的。第六驅動方法: In one embodiment, the drive sequence of Figure 16 is DC balanced. Sixth drive method:

第17圖描繪用於將像素驅動至白色狀態的典型波形。包含振動波形(如上所述),以確保顏色亮度及純度。在振動波形之後施加VH2 的驅動電壓達期間t17。在振動波形之前施加VH1 的驅動電壓達期間t16,以確保直流平衡。Figure 17 depicts typical waveforms for driving a pixel to a white state. Vibration waveforms (described above) are included to ensure color brightness and purity. The driving voltage of V H2 is applied for a period t17 after the vibration waveform. The driving voltage of V H1 is applied for a period t16 before the vibration waveform to ensure DC balance.

第18A及18B圖顯示可以用於取代第17圖的波形中之脈衝t17的波形。Figures 18A and 18B show waveforms that can be used to replace pulse t17 in the waveform of Figure 17.

這個驅動方法特別適用於低溫驅動,但不限於低溫驅動。This driving method is particularly suitable for low temperature driving, but is not limited to low temperature driving.

在第18A圖中,施加VH1 (正)的短脈衝「t18」,接著是VH2 (負)的較長脈衝「t19」及t20的等待時間(0V)。如第18B圖所示,在t19期間所施加的負驅動電壓(V")的振幅可以高於VH2 的振幅(例如,-30V而不是-15V)。In Fig. 18A, a short pulse "t18" of V H1 (positive) is applied, followed by a longer pulse "t19" of V H2 (negative) and a waiting time (0V) of t20. As shown in Figure 18B, the amplitude of the negative drive voltage (V") applied during t19 may be higher than the amplitude of VH2 (eg, -30V instead of -15V).

施加這樣的序列至少一次,較佳地,至少三次(亦即,在第18A及18B圖中,N≥3,更佳地,至少五至七次)。Such a sequence is applied at least once, preferably, at least three times (ie, in Figures 18A and 18B, N > 3, more preferably, at least five to seven times).

t19應該比t18還長。例如,t18可能在20-200msec的範圍內,而t19可能小於1000msec。等待時間t20應該至少為50msec。t19 should be longer than t18. For example, t18 may be in the range of 20-200msec, while t19 may be less than 1000msec. The waiting time t20 should be at least 50msec.

第18A及18B圖所示之第六驅動方法可以總結如下:The sixth driving method shown in FIGS. 18A and 18B can be summarized as follows:

一種用於電泳顯示器之驅動方法,電泳顯示器包括在觀看側之第一表面、在非觀看側之第二表面及電泳流體,電泳流體夾在共用電極與像素電極層之間且包括第一類型的顏料粒子、第二類型的顏料粒子及第三類型的顏料粒子,所有類型的顏料粒子分散在溶劑或溶劑混合物中,其中 a)三種類型的顏料粒子具有彼此不同的光學特性; b)第一類型的顏料粒子及第二類型的顏料粒子攜帶相反的電荷極性;以及 c)第三類型的顏料粒子具有相同於第二類型的顏料粒子之電荷極性,但是處於較低的強度, 所述方法包括下列步驟: (i)施加第一驅動電壓至電泳顯示器中之像素達第一段時間,其中,第一驅動電壓具有相同於第二類型的顏料粒子之極性,以在觀看側驅動像素朝向第二類型的顏料粒子之顏色狀態; (ii)施加第二驅動電壓至像素達第二段時間,其中,第二驅動電壓具有相同於第一類型的顏料粒子之極性,以在觀看側驅動像素朝向第一類型的顏料粒子之顏色狀態; (iii)沒有施加驅動電壓至像素達第三段時間;以及 重複步驟(i)及(ii)。A driving method for an electrophoretic display comprising a first surface on a viewing side, a second surface on a non-viewing side, and an electrophoretic fluid sandwiched between a common electrode and a pixel electrode layer and comprising a first type of Pigment particles, pigment particles of the second type and pigment particles of the third type, all types of pigment particles dispersed in a solvent or solvent mixture, wherein a) the three types of pigment particles have different optical properties from each other; b) the first type of pigment particles and the second type of pigment particles carry opposite charge polarities; and c) the pigment particles of the third type have the same charge polarity as the pigment particles of the second type, but at a lower intensity, The method includes the following steps: (i) applying a first driving voltage to the pixels in the electrophoretic display for a first period of time, wherein the first driving voltage has the same polarity as the second type of pigment particles to drive the pixels towards the second type of pigment on the viewing side the color state of the particle; (ii) applying a second driving voltage to the pixel for a second period of time, wherein the second driving voltage has the same polarity as the first type of pigment particles to drive the pixel towards the color state of the first type of pigment particles on the viewing side ; (iii) no driving voltage is applied to the pixel for a third period of time; and Repeat steps (i) and (ii).

在一實施例中,第一類型的顏料粒子帶負電,而第二類型的顏料粒子帶正電。In one embodiment, the first type of pigment particles are negatively charged and the second type of pigment particles are positively charged.

在第18A圖所示的實施例中,第二電壓係將像素從第一類型的顏料粒子之顏色狀態朝第二類型的顏料粒子之顏色狀態驅動所需的驅動電壓,反之亦然。In the embodiment shown in Figure 18A, the second voltage is the driving voltage required to drive the pixel from the color state of the first type of pigment particles to the color state of the second type of pigment particles, and vice versa.

在第18B圖所示的另一實施例中,第二電壓具有比將像素從第一類型的顏料粒子之顏色狀態朝第二類型的顏料粒子之顏色狀態驅動所需的驅動電壓更高之振幅,反之亦然。In another embodiment shown in Figure 18B, the second voltage has a higher amplitude than the drive voltage required to drive the pixel from the color state of the first type of pigment particles to the color state of the second type of pigment particles ,vice versa.

第19A及19B圖顯示分別組合第17圖的波形與第18A或18B圖的波形之複合波形。Figures 19A and 19B show composite waveforms combining the waveforms of Figure 17 with the waveforms of Figures 18A or 18B, respectively.

在振動波形中,較佳地重複正/負脈衝50-1500次,並且較佳地施加每個脈衝達10msec。In the vibration waveform, the positive/negative pulses are preferably repeated 50-1500 times, and each pulse is preferably applied for 10 msec.

在一實施例中,第19A圖或第19B圖的驅動序列係直流平衡的。第七驅動方法: In one embodiment, the driving sequence of FIG. 19A or FIG. 19B is DC balanced. Seventh drive method:

本發明之第七驅動方法將像素朝中間顏色狀態(例如,灰色)驅動。The seventh driving method of the present invention drives the pixel toward an intermediate color state (eg, gray).

第20A及20B圖例示所涉及的粒子運動。如所示,當施加低的負驅動電壓(VL ,例如,-5V)時,將處於黑色狀態的像素(參見第20A圖)朝灰色狀態驅動。在此過程中,低驅動電壓將紅色粒子推向像素電極,並且在觀看側看到黑色及白色粒子的混合物。Figures 20A and 20B illustrate the particle motion involved. As shown, when a low negative drive voltage ( VL , eg, -5V) is applied, the pixels in the black state (see Figure 20A) are driven toward the gray state. During this process, the low drive voltage pushes the red particles towards the pixel electrodes, and a mixture of black and white particles is seen on the viewing side.

在第21圖中顯示用於此驅動方法的波形。在振動波形之後,施加高的正驅動電壓(VH1 ,例如,+15V)達期間t22,以將像素朝黑色狀態驅動。從黑色狀態,可以藉由施加低的負驅動電壓(VL ,例如,-5V)達期間t23,將像素朝灰色狀態驅動,亦即,從第20A圖驅動至第20B圖。The waveforms used for this driving method are shown in Figure 21. After the vibration waveform, a high positive drive voltage (V H1 , eg, +15V) is applied for period t22 to drive the pixel towards the black state. From the black state, the pixel can be driven toward the gray state, ie, from Figure 20A to Figure 20B, by applying a low negative drive voltage ( VL , eg, -5V) for period t23.

驅動期間t22係當施加VH1 時足以將像素驅動至黑色狀態的期間,而t23係當施加VL 時足以將像素從黑色狀態驅動至灰色狀態的期間。在振動波形之前,較佳地施加 VH2 的脈衝達期間t21,以確保直流平衡。The drive period t22 is a period sufficient to drive the pixel to the black state when V H1 is applied, and t23 is a period sufficient to drive the pixel from the black state to the gray state when VL is applied. Before the vibration waveform, a pulse of V H2 is preferably applied for a period t21 to ensure DC balance.

第22圖例示可以用來取代第21圖中之脈衝t23的驅動波形。在初始步驟中,施加高的正驅動電壓(VH1 ,例如,+15V)達短期間t24,以將黑色粒子推向觀看側,但是t24不足以將像素驅動至全黑狀態,然後施加低的負驅動電壓(VL ,例如,-5V)達期間t25,以將像素朝灰色狀態驅動。VL 的振幅小於VH (例如,VH1 或VH2 )的50%。Fig. 22 illustrates a drive waveform that can be used in place of the pulse t23 in Fig. 21. In an initial step, a high positive drive voltage (V H1 , eg, +15V) is applied for a short period of t24 to push the black particles to the viewing side, but t24 is not enough to drive the pixel to full black, then a low A negative drive voltage ( VL , eg, -5V) is applied for period t25 to drive the pixel toward the gray state. The amplitude of VL is less than 50% of VH (eg, VH1 or VH2 ).

重複第22圖的波形至少四次循環(N≥4),較佳地,至少八次循環。The waveform of Figure 22 is repeated for at least four cycles (N > 4), preferably at least eight cycles.

在環境溫度下,期間t24小於約100msec,而t25通常大於100msec。At ambient temperature, the period t24 is less than about 100 msec, while t25 is typically greater than 100 msec.

第22圖所示的第七驅動方法可以總結如下:The seventh driving method shown in FIG. 22 can be summarized as follows:

一種用於電泳顯示器之驅動方法,電泳顯示器包括在觀看側之第一表面、在非觀看側之第二表面及電泳流體,電泳流體夾在共用電極與像素電極層之間且包括第一類型的顏料粒子、第二類型的顏料粒子及第三類型的顏料粒子,所有類型的顏料粒子分散在溶劑或溶劑混合物中,其中 a)三種類型的顏料粒子具有彼此不同的光學特性; b)第一類型的顏料粒子及第二類型的顏料粒子攜帶相反的電荷極性;以及 c)第三類型的顏料粒子具有相同於第二類型的顏料粒子之電荷極性,但是處於較低的強度, 所述方法包括下列步驟: (i)施加第一驅動電壓至電泳顯示器中之像素達第一段時間,第一驅動電壓具有相同於第二類型的顏料粒子之極性,以驅動像素朝向第二類型的顏料粒子之顏色狀態,其中,第一段時間不足以在觀看側將像素驅動至第二類型的顏料粒子之全色狀態; (ii)施加第二驅動電壓至像素達第二段時間,第二驅動電壓具有相同於第一類型的顏料粒子之極性,以在觀看側驅動像素朝向第一及第二類型的顏料粒子之混合狀態;以及 重複步驟(i)及(ii)。A driving method for an electrophoretic display comprising a first surface on a viewing side, a second surface on a non-viewing side, and an electrophoretic fluid sandwiched between a common electrode and a pixel electrode layer and comprising a first type of Pigment particles, pigment particles of the second type and pigment particles of the third type, all types of pigment particles dispersed in a solvent or solvent mixture, wherein a) the three types of pigment particles have different optical properties from each other; b) the first type of pigment particles and the second type of pigment particles carry opposite charge polarities; and c) the pigment particles of the third type have the same charge polarity as the pigment particles of the second type, but at a lower intensity, The method includes the following steps: (i) applying a first driving voltage to the pixels in the electrophoretic display for a first period of time, the first driving voltage having the same polarity as the second type of pigment particles to drive the pixels towards the color state of the second type of pigment particles, wherein the first period of time is insufficient to drive the pixel to the full color state of the second type of pigment particles on the viewing side; (ii) applying a second driving voltage to the pixel for a second period of time, the second driving voltage having the same polarity as the first type of pigment particles to drive the pixel towards the mixture of the first and second type of pigment particles on the viewing side status; and Repeat steps (i) and (ii).

如上所述,在這個方法中,第二驅動電壓係第一驅動電壓的約50%。As mentioned above, in this method, the second driving voltage is about 50% of the first driving voltage.

第23圖顯示組合第21圖的波形及第22圖的波形之複合波形,其中以第22圖的波形來取代第21圖中的驅動期間t23。這個複合波形由四個階段所組成。第一階段係直流平衡階段(t21);第二階段係振動步驟;以及第三階段將像素驅動至黑色狀態(t22)。在第三階段中所使用的波形可以是將像素驅動至良好黑色狀態的任何波形。第四階段包括短期間t24之高的正驅動電壓,然後是較長期間t25對低的負驅動電壓。重複所述第四階段數次。FIG. 23 shows a composite waveform combining the waveform of FIG. 21 and the waveform of FIG. 22 , wherein the driving period t23 of FIG. 21 is replaced by the waveform of FIG. 22 . This composite waveform consists of four stages. The first stage is the DC balance stage (t21); the second stage is the vibration step; and the third stage drives the pixel to the black state (t22). The waveform used in the third stage can be any waveform that drives the pixel to a good black state. The fourth phase includes a short period of t24 with a high positive drive voltage followed by a longer period of t25 with a low negative drive voltage. Repeat the fourth stage several times.

值得注意的是,在第23圖中t22可以是任選的。Notably, in Figure 23 t22 may be optional.

可以藉由改變低的負電壓(VL ),將灰色狀態調變成更亮或更暗。換句話說,波形序列及形狀可以保持不變;但是VL 的振幅可變化(例如,-4V、-5V、-6V或-7V),以導致顯示不同的灰階。這個特徵可以潛在地減少驅動電路中查找表所需的空間,因而降低成本。所述驅動方法如例示可以產生(第一類型的顏料粒子及第二類型的顏料粒子的)高品質之中間狀態,並且具有來自第三類型的顏料粒子之非常小的顏色干涉。The gray state can be tuned brighter or darker by changing the low negative voltage (V L ). In other words, the waveform sequence and shape can remain the same; but the amplitude of VL can be varied (eg, -4V, -5V, -6V, or -7V) to cause different grayscales to be displayed. This feature can potentially reduce the space required for look-up tables in the driver circuit, thereby reducing cost. The actuation method as exemplified can produce a high quality intermediate state (of the first type of pigment particles and the second type of pigment particles) with very little color interference from the third type of pigment particles.

在一實施例中,第23圖的驅動序列係直流平衡的。第八驅動方法: In one embodiment, the drive sequence of Figure 23 is DC balanced. Eighth driving method:

第24圖例示在本發明之第八驅動方法中所使用的波形。此波形意欲被施加至不是處於白色狀態(亦即,第一類型的顏料粒子之顏色狀態)的像素。FIG. 24 illustrates waveforms used in the eighth driving method of the present invention. This waveform is intended to be applied to pixels that are not in the white state (ie, the color state of the first type of pigment particles).

在初始步驟中,施加高的負驅動電壓(VH2 ,例如,-15V)達期間t26,接著是等待時間t27。在等待時間之後,施加正驅動電壓(V',例如,小於VH1 或VH2 的50%)達期間t28,接著是第二等待時間t29。重複第24的波形N次。上述術語「等待時間」意指沒有施加驅動電壓的一段時間。In an initial step, a high negative drive voltage ( VH2 , eg, -15V) is applied for a period of t26, followed by a waiting period of t27. After the waiting time, a positive drive voltage (V', eg, less than 50% of VH1 or VH2) is applied for a period of t28 , followed by a second waiting time t29. Repeat the 24th waveform N times. The above term "waiting time" means a period of time during which no driving voltage is applied.

這個驅動方法在低溫下是特別有效,並且亦可以縮短至紅色狀態的整體驅動時間。This driving method is particularly effective at low temperatures and can also shorten the overall driving time to the red state.

值得注意的是,期間t26相當短,其通常在從全黑狀態驅動至全白狀態所需的時間之大約50%的範圍內,因此其不足以將像素驅動至全白色狀態。期間t27可能小於100msec;期間t28可能在100-200msec的範圍內;以及期間t29可能小於1000msec。Notably, the period t26 is rather short, typically in the range of about 50% of the time required to drive from the full black state to the full white state, so it is not sufficient to drive the pixel to the full white state. Period t27 may be less than 100 msec; period t28 may be in the range of 100-200 msec; and period t29 may be less than 1000 msec.

除第11圖的波形將被施加至處於白色狀態(亦即,第一類型的顏料粒子之顏色)的像素,而第24圖的波形意欲被施加至非處於白色狀態的像素之外,第24圖的波形相似於第11圖的波形。Except that the waveform of Figure 11 is to be applied to pixels that are in the white state (ie, the color of the pigment particles of the first type), and the waveform of Figure 24 is intended to be applied to pixels that are not in the white state, the 24 The waveform of the figure is similar to that of Figure 11.

第25圖係一個範例,其中,將第24圖的波形施加至處於黑色狀態(亦即,第二類型的顏料粒子之顏色狀態)的像素。Figure 25 is an example in which the waveform of Figure 24 is applied to a pixel in the black state (ie, the color state of the second type of pigment particles).

在振動波形中,較佳地重複正/負脈衝對50-1500次,並且較佳地施加每一個脈衝達10msec。In the vibration waveform, the positive/negative pulse pair is preferably repeated 50-1500 times, and each pulse is preferably applied for 10 msec.

像第11圖的驅動方法,第24圖的第八驅動方法可以總結如下:Like the driving method of Fig. 11, the eighth driving method of Fig. 24 can be summarized as follows:

一種用於電泳顯示器之驅動方法,電泳顯示器包括在觀看側之第一表面、在非觀看側之第二表面及電泳流體,電泳流體夾在共用電極與像素電極層之間且包括第一類型的顏料粒子、第二類型的顏料粒子及第三類型的顏料粒子,所有類型的顏料粒子分散在溶劑或溶劑混合物中,其中 a)三種類型的顏料粒子具有彼此不同的光學特性; b)第一類型的顏料粒子及第二類型的顏料粒子攜帶相反的電荷極性;以及 c)第三類型的顏料粒子具有相同於第二類型的顏料粒子之電荷極性,但是處於較低的強度, 所述方法包括下列步驟: (i)施加第一驅動電壓至電泳顯示器中之像素達第一段時間,其中,第一驅動電壓具有相同於第一類型的顏料粒子之極性,以在觀看側驅動像素朝向第一類型的顏料粒子之顏色狀態; (ii)不施加驅動電壓至像素達第二段時間; (iii)施加第二驅動電壓至像素達第三段時間,其中,第二驅動電壓具有相同於第三類型的顏料粒子之極性,以在觀看側驅動像素朝向第三類型的顏料粒子之顏色狀態; (iv)不施加驅動電壓至像素達第四段時間;以及 重複步驟(i)-(iv)。A driving method for an electrophoretic display comprising a first surface on a viewing side, a second surface on a non-viewing side, and an electrophoretic fluid sandwiched between a common electrode and a pixel electrode layer and comprising a first type of Pigment particles, pigment particles of the second type and pigment particles of the third type, all types of pigment particles dispersed in a solvent or solvent mixture, wherein a) the three types of pigment particles have different optical properties from each other; b) the first type of pigment particles and the second type of pigment particles carry opposite charge polarities; and c) the pigment particles of the third type have the same charge polarity as the pigment particles of the second type, but at a lower intensity, The method includes the following steps: (i) applying a first driving voltage to the pixels in the electrophoretic display for a first period of time, wherein the first driving voltage has the same polarity as the first type of pigment particles to drive the pixels towards the first type of pigment on the viewing side the color state of the particle; (ii) not applying the driving voltage to the pixel for a second period of time; (iii) applying a second driving voltage to the pixel for a third period of time, wherein the second driving voltage has the same polarity as the third type of pigment particles to drive the pixel towards the color state of the third type of pigment particles on the viewing side ; (iv) not applying the driving voltage to the pixel for a fourth period of time; and Repeat steps (i)-(iv).

在一實施例中,第一類型的顏料粒子帶負電,而第二類型的顏料粒子帶正電。In one embodiment, the first type of pigment particles are negatively charged and the second type of pigment particles are positively charged.

在一實施例中,重複步驟(i)-(iv)至少三次。In one embodiment, steps (i)-(iv) are repeated at least three times.

在一實施例中,第二驅動電壓小於足以將像素從第一類型的顏料粒子之顏色狀態驅動至第二類型的顏料粒子之顏色狀態的驅動電壓之50%,反之亦然。In one embodiment, the second drive voltage is less than 50% of the drive voltage sufficient to drive the pixel from the color state of the first type of pigment particles to the color state of the second type of pigment particles, and vice versa.

在一實施例中,第25圖的驅動序列係直流平衡的。中間顏色的產生: In one embodiment, the drive sequence of Figure 25 is DC balanced. Generation of intermediate colors:

有利的是,除了單種粒子的顏色之外,本發明的驅動方法還能夠顯示中間顏色(亦即,兩種粒子的顏色之混合)。在許多情況下,要求使用本方法的顯示器顯示需要顯示器的區域調變(areal modulation)之灰階影像。這樣的區域調變增加可以顯示的顏色數量,但代價係降低顯示器的解析度,因為顯示器的多個像素受到區域調變,以形成一個灰階「超像素」。提供顯示器的每一個像素有顯示中間顏色的能力及增加每一個像素可以顯示的中間顏色之數量可減少每一個超像素中所必須使用的像素之數量,並且因而增加灰階顯示的解析度。Advantageously, the driving method of the present invention is capable of displaying intermediate colors (ie, a mixture of the colors of two particles) in addition to the color of a single particle. In many cases, a display using this method is required to display a grayscale image that requires area modulation of the display. Such regional modulation increases the number of colors that can be displayed, but at the cost of reducing the resolution of the display because multiple pixels of the display are regionally modulated to form a grayscale "superpixel". Providing each pixel of the display with the ability to display intermediate colors and increasing the number of intermediate colors that each pixel can display can reduce the number of pixels that must be used in each superpixel, and thus increase the resolution of grayscale displays.

上面已參考第20A及20B圖論述一種用於中間灰色(亦即,黑色與白色粒子的顏色之混合)之產生的方法。藉由先將像素驅動至黑色或白色狀態(分別為第2A圖或第2B圖),然後施加±15V的高驅動電壓,以分別驅動像素朝向白色或黑色狀態,但在達到白色或黑色狀態之前終止此驅動電壓,從而產生灰色狀態,這樣亦可以產生灰色。然而,應該注意的是,在本方法中使用的三種粒子體系中,由於將參考第26A-26D圖所說明的理由,使用從白色狀態開始而不是從黑色狀態開始的方法來產生灰色狀態係有利的。A method for the generation of mid-grey (ie, a mixture of the colors of black and white particles) has been discussed above with reference to Figures 20A and 20B. By first driving the pixel to a black or white state (Figure 2A or 2B, respectively), then applying a high drive voltage of ±15V to drive the pixel towards the white or black state, respectively, but before reaching the white or black state Terminating this drive voltage produces a gray state, which also produces gray. It should be noted, however, that of the three particle systems used in this method, it is advantageous to use a method starting from the white state rather than the black state to produce the grey state for reasons that will be explained with reference to Figures 26A-26D of.

第26A及26B圖例示從白色狀態開始來產生灰色狀態。第26A圖(其實質上與第2B圖相同)例示藉由施加高的負驅動電壓(-15V,VH2 )來產生白色狀態,高的負驅動電壓將白色粒子21驅動至觀看側,而將黑色粒子22及紅色粒子23朝像素電極驅動。從第26A圖的白色狀態開始,高的正電壓(+15V,VH1 )之短暫驅動脈衝驅動白色粒子朝向像素電極,而驅動黑色及紅色粒子朝向觀看側。在白色及黑色粒子在觀看側附近混合時終止短暫的驅動脈衝。因為紅色粒子具有比黑色粒子還低的電泳遷移率,所以紅色粒子比較緩慢地移動離開像素電極,因而其在灰色狀態下被黑色及白色粒子遮蔽而不被觀看者看到,其中,黑色及白色粒子位於紅色粒子與觀看面之間。於是,第26B圖呈現「明亮」灰色,其僅由黑色及白色粒子的顏色之混合所組成且沒有受紅色粒子的顏色之污染。Figures 26A and 26B illustrate starting from a white state to produce a gray state. Figure 26A (which is substantially the same as Figure 2B) illustrates the creation of the white state by applying a high negative drive voltage (-15V, VH2 ) that drives the white particles 21 to the viewing side, while the The black particles 22 and the red particles 23 are driven toward the pixel electrodes. Starting from the white state of Figure 26A, a brief drive pulse of a high positive voltage (+15V, VH1 ) drives the white particles towards the pixel electrode and the black and red particles towards the viewing side. The brief drive pulse is terminated when the white and black particles mix near the viewing side. Because the red particles have a lower electrophoretic mobility than the black particles, the red particles move away from the pixel electrode relatively slowly, so they are hidden from the viewer in the gray state by the black and white particles, where the black and white The particle is located between the red particle and the viewing surface. As a result, Figure 26B presents a "bright" gray, which consists only of a mixture of the colors of black and white particles and is not contaminated by the color of the red particles.

相反地,第26C及26D圖例示從黑色狀態開始來產生灰色狀態。第26C圖(其實質上與第2A圖相同)例示藉由施加高的正驅動電壓(+15V,VH1 )來產生黑色狀態,高的正驅動電壓將黑色粒子22及紅色粒子23朝觀看側驅動,而將白色粒子21驅動成鄰近像素電極。從第26C圖的黑色狀態開始,負電壓(-15V,VH2 )的短暫驅動脈衝驅動白色粒子朝向觀看側,而驅動黑色及紅色粒子朝向像素電極。在白色及黑色粒子在觀看側附近混合時終止短暫驅動脈衝。然而,因為紅色粒子具有比黑色粒子還低的電泳遷移率,所以紅色粒子比較緩慢地移動離開觀看側,因而在灰色狀態下與黑色及白色粒子混合;實際上,紅色粒子可能傾向於比黑色粒子更接近觀看側。於是,第26D圖呈現「暗淡」灰色,其中,黑色及白色粒子的顏色之混合受紅色粒子的顏色顯著污染。Conversely, Figures 26C and 26D illustrate starting from a black state to produce a gray state. Figure 26C (which is substantially the same as Figure 2A) illustrates the creation of the black state by applying a high positive drive voltage (+15V, VH1 ) which directs black particles 22 and red particles 23 to the viewing side drive, and the white particles 21 are driven to be adjacent to the pixel electrodes. Starting from the black state of Figure 26C, a brief drive pulse of negative voltage (-15V, VH2 ) drives the white particles towards the viewing side and the black and red particles towards the pixel electrodes. The brief drive pulse is terminated when the white and black particles mix near the viewing side. However, because red particles have a lower electrophoretic mobility than black particles, red particles move more slowly away from the viewing side and thus mix with black and white particles in the gray state; in fact, red particles may tend to be more closer to the viewing side. As a result, Figure 26D presents a "dull" gray, where the mixture of colors of the black and white particles is significantly contaminated by the color of the red particles.

如上所述,可以從黑色狀態或白色狀態開始來產生像素的灰色狀態。同樣地,可以從紅色狀態或白色狀態開始來產生淺紅色狀態(白色及紅色粒子的顏色之混合)。在前者情況下,先驅動到全紅色狀態(參見第2C圖),然後施加高的負驅動電壓(-15V,VH2 )達不足以達到第2B圖的白色狀態之一段短暫時間。高的負驅動電壓導致白色粒子21快速地朝觀看側移動,黑色粒子22快速地朝像素電極移動,並且紅色粒子23比較緩慢地朝像素電極移動。當白色及紅色粒子混合時,終止驅動電壓,因而在觀看側留下可見的淺紅色。黑色粒子位於像素電極附近,因而其被白色及紅色粒子遮蔽而不被觀看者看到。在後者情況下,先驅動至全白狀態(參見第2B圖),並且施加低的正驅動電壓(+5V,VL )達不足以達到第2C圖的紅色狀態之一段時間。低的正驅動電壓使白色粒子21朝像素電極移動,並且紅色粒子朝觀看側移動,因而再次產生紅色及白色粒子的混合以及淺紅色的顯示。取代使用連續的低的正驅動電壓,從白色狀態至淺紅色狀態的轉換可以使用如第5、6、8或9圖所例示的推挽波形(push-pull waveform)來實現。As described above, the gray state of a pixel can be generated starting from a black state or a white state. Likewise, the reddish state (a mixture of the colors of the white and red particles) can be produced starting from the red state or the white state. In the former case, drive to the full red state (see Figure 2C) and then apply a high negative drive voltage (-15V, VH2 ) for a brief period of time that is insufficient to reach the white state of Figure 2B. A high negative drive voltage causes the white particles 21 to move rapidly toward the viewing side, the black particles 22 to move rapidly toward the pixel electrode, and the red particles 23 to move more slowly toward the pixel electrode. When the white and red particles mix, the drive voltage is terminated, thus leaving a visible light red color on the viewing side. The black particles are located near the pixel electrodes, so they are hidden from the viewer by the white and red particles. In the latter case, first drive to the full white state (see Figure 2B), and apply a low positive drive voltage (+5V, VL ) for a period of time insufficient to reach the red state of Figure 2C. The low positive drive voltage moves the white particles 21 towards the pixel electrode and the red particles towards the viewing side, thus again producing a mixture of red and white particles and a reddish display. Instead of using a continuous low positive drive voltage, the transition from the white state to the light red state can be achieved using a push-pull waveform as illustrated in Figures 5, 6, 8 or 9.

根據經驗發現,由紅色狀態產生的淺紅色狀態比由白色狀態產生的淺紅色狀態更不均勻。雖然沒有完全了解這種均勻性差異的原因,但是相信與微膠囊(如果存在的話)內各種粒子的位置之變動以及個別粒子的電泳遷移率及電泳顯示器的各種部件之變動有關。並且,似乎從紅色狀態用於驅動的低驅動電壓比受電源變動的高驅動電壓影響更大。It has been empirically found that the reddish state produced from the red state is more heterogeneous than the reddish state produced from the white state. Although the reasons for this uniformity difference are not fully understood, it is believed to be related to variations in the positions of the various particles within the microcapsules (if any) as well as variations in the electrophoretic mobility of individual particles and various components of the electrophoretic display. Also, it seems that the low drive voltage used for driving from the red state is more affected than the high drive voltage by power supply fluctuations.

第27圖例示用於經由白色狀態將顯示器驅動至淺紅色狀態的波形。在第27圖的波形中,施加高的負驅動電壓(VH2 ,例如,-15V)達期間t31,以將像素朝白色狀態驅動。從白色狀態開始,藉由施加低的正電壓(VL ,例如,+5V)達期間t32,將像素朝紅色狀態驅動,從而將像素從第2B圖的狀態驅動至第2C圖的狀態。最後,藉由施加高的負驅動電壓(VH2 ,例如,-15V)達期間t33,將像素從紅色狀態驅動至淺紅色狀態,其中,期間t33比期間t31還短且不足以將像素驅動至全白狀態。希望在期間t31中的白色向脈衝之前施加振動波形,並且較佳地,在振動波形之前施加負驅動電壓(例如,VH2 ,例如,-15V)達期間t30,以確保直流平衡。將可看到,第27圖的波形基本上是第3圖的波型,但是在期間t33中添加有白色向脈衝。藉由調整期間t33的持續時間可以改變所獲得的淺紅色之確切色調,期間t33通常在約20-300msec(一般是20-100msec)的範圍內。期間t33的持續時間通常是期間t31的持續時間之約10%至約60%。Figure 27 illustrates the waveform for driving the display to the reddish state via the white state. In the waveform of Figure 27, a high negative drive voltage ( VH2 , eg, -15V) is applied for period t31 to drive the pixel toward the white state. Starting from the white state, the pixel is driven toward the red state by applying a low positive voltage ( VL , eg, +5V) for period t32, thereby driving the pixel from the state of Figure 2B to the state of Figure 2C. Finally, the pixel is driven from the red state to the reddish state by applying a high negative drive voltage (V H2 , eg, -15V) for a period t33 , which is shorter than period t31 and insufficient to drive the pixel to All white state. It is desirable to apply a vibration waveform before the white pulse in period t31, and preferably, a negative drive voltage (eg, VH2 , eg, -15V) is applied for period t30 before the vibration waveform to ensure DC balance. It will be seen that the waveform of Fig. 27 is basically the waveform of Fig. 3, but with the addition of a white directional pulse in the period t33. The exact hue of reddish obtained can be varied by adjusting the duration of period t33, which is typically in the range of about 20-300 msec (typically 20-100 msec). The duration of period t33 is typically about 10% to about 60% of the duration of period t31.

達到深紅色狀態(亦即,黑色及紅色粒子的顏色之混合)比達到淺紅色狀態困難得多,因為黑色及紅色粒子攜帶相同極性的電荷,並且因此傾向於以相似的方式對施加的電場作出反應。例如,如果先將像素驅動至第2C圖的紅色狀態,然後藉由施加用於驅動像素至第2A的黑色狀態之高正驅動電壓(+15V,VH1 )來試圖產生紅色及黑色粒子的混合,則紅色粒子(如第2C圖所示,已經與前電極相鄰)將保持與前電極相鄰並且不會移動到旁邊,以容納到達的黑色粒子。結果是,甚至在已施加高正驅動電壓達一段長時間(其比將像素從第2B圖的白色狀態驅動至第2A圖的黑色狀態所需的時間還更長)之後,所得到的「深紅色」狀態實際上將僅比先前的紅色狀態稍深。Achieving a deep red state (i.e., a mixture of the colors of black and red particles) is much more difficult than reaching a light red state, because black and red particles carry charges of the same polarity and therefore tend to react in similar ways to an applied electric field. reaction. For example, if the pixel is first driven to the red state of Figure 2C, then an attempt is made to produce a mix of red and black particles by applying the high positive drive voltage (+15V, VH1 ) used to drive the pixel to the black state of Figure 2A , the red particles (already adjacent to the front electrode as shown in Figure 2C) will remain adjacent to the front electrode and will not move aside to accommodate the arriving black particles. The result is that even after a high positive drive voltage has been applied for an extended period of time, which is longer than the time required to drive the pixel from the white state of Fig. 2B to the black state of Fig. 2A, the resulting "deep" The "red" state will actually be only slightly darker than the previous red state.

已經發現到有兩種方法可以達到令人滿意的深紅色狀態。第一種方法使用如第28圖所例示的波形,並且實質上從深灰色狀態開始。如圖所示,這個波形先施加高的正驅動電壓(+15V,VH1 ),以將像素驅動至深灰色狀態(不是全黑狀態)。在這個高的正驅動電壓之後,施加低的正驅動電壓(VL ,例如,+5V)達期間t36,期間t36通常會比t35長得多,以將像素驅動至深紅色狀態。基於上述原因,在期間t35中的高正驅動脈衝之前可任選地係振動波形及/或期間t34的高負驅動電壓脈衝(VH2 ,例如。-15V)。t36的持續時間可以變化很大,但通常可以是約300-2000msec,更通常是500-1000msec;產生的深紅色之暗度可以藉由改變t36的持續時間來改變,較長的持續時間傾向於增加所產生之顏色的發紅。It has been found that there are two ways to achieve a satisfactory deep red state. The first method uses a waveform as illustrated in Figure 28 and essentially starts from a dark grey state. As shown, this waveform first applies a high positive drive voltage (+15V, V H1 ) to drive the pixel to a dark gray state (not a full black state). Following this high positive drive voltage, a low positive drive voltage ( VL , eg, +5V) is applied for a period t36, which is typically much longer than t35, to drive the pixel to the deep red state. For the above reasons, the high positive drive pulse in period t35 may optionally be preceded by a vibration waveform and/or a high negative drive voltage pulse (V H2 , eg -15V) in period t34 . The duration of t36 can vary widely, but can typically be around 300-2000msec, more typically 500-1000msec; the resulting dark red shade can be altered by varying the duration of t36, longer durations tend to Increases the redness of the resulting color.

達成令人滿意的深紅色狀態之第二種方法使用如第29圖所例示的波形,第29圖實質上與第5圖相同,但是由於下面所論述的原因,第29圖所示的各種驅動脈衝之持續時間將不同於第5圖之驅動脈衝的那些持續時間。將從上面第5圖的討論中回想到,相關波形的主要部分包括表示為第29圖中的持續時間t39之低正驅動電壓(VL ,例如,+5V)的紅色向脈衝,其與表示為第29圖中的持續時間t40之高負驅動電壓(VH2 ,例如,-15V)的白色向脈衝交替。在這個交替脈衝的序列之前可以係下列中一個或多個:(a)意欲用於直流平衡之持續時間t37的高負驅動電壓(VH2 ,例如,-15V)之白色向脈衝;(b)振動波形;以及(c)持續時間t38之高負驅動電壓(VH2 ,例如,-15V)的白色向脈衝,其可以與已提及之後面白色向脈衝的持續時間t40不同或相同。A second method of achieving a satisfactory deep red state uses waveforms as illustrated in Figure 29, which is substantially the same as Figure 5, but for reasons discussed below, the various drives shown in Figure 29 The durations of the pulses will be different from those of the drive pulses of FIG. 5 . Recalling from the discussion of Figure 5 above, the major portion of the relevant waveform consists of a red-going pulse of a low positive drive voltage ( VL , eg, +5V) of duration t39 represented in Figure 29, which is associated with the White-going pulses of high negative drive voltage (V H2 , eg, -15V) of duration t40 in FIG. 29 alternate. This sequence of alternating pulses may be preceded by one or more of the following: (a) a white-going pulse of a high negative drive voltage (V H2 , eg, -15V) of duration t37 intended for DC balancing; (b) vibration waveform; and (c) a white-going pulse of high negative drive voltage ( VH2 , eg, -15V) of duration t38, which may be different or the same as the duration t40 of the later-faced white-going pulse already mentioned.

第5圖的波形在上面被描述為產生純紅色狀態。然而,根據經驗發現到,藉由調整第29圖中的持續時間t39及t40及/或藉由調整在這些期間所施加的驅動電壓V'及VH2 ,這種類型的波形不僅可以產生純紅色狀態,而且可以產生深紅色及淺紅色狀態。如果增加V'的大小,則紅色變得較深,然而如果減少V'的大小,則紅色變得較淺。同樣地,如果相對於t39增加t40的持續時間,則將產生較淺的紅色,然而如果相對於t40增加t39的持續時間,則將產生較深的紅色。顯然,可以使用驅動電壓與持續時間的變化之組合。t39及t40的持續時間可以在很寬大的範圍內變化;例如,在25℃下,t40可以從60msec下降至20msec,而t39可以從300msec上升至600msec。在像0°C的低溫下,甚至可能期望更寬的範圍;例如,在這個溫度下,t40可以是60msec,而t39係3000msec。範例 2 The waveform of Figure 5 was described above as producing a pure red state. However, it has been found empirically that by adjusting the durations t39 and t40 in Figure 29 and/or by adjusting the driving voltages V' and VH2 applied during these periods, this type of waveform can not only produce pure red state, and can produce dark red and light red states. If the size of V' is increased, the red becomes darker, whereas if the size of V' is decreased, the red becomes lighter. Likewise, if the duration of t40 is increased relative to t39, a lighter red will be produced, whereas if the duration of t39 is increased relative to t40, a darker red will be produced. Obviously, a combination of driving voltage and duration changes can be used. The durations of t39 and t40 can vary widely; for example, at 25°C, t40 can decrease from 60msec to 20msec, and t39 can increase from 300msec to 600msec. At low temperatures like 0°C, even wider ranges may be desired; for example, at this temperature, t40 may be 60msec, while t39 is 3000msec. Example 2

藉由在異烷烴溶劑(isoparaffin solvent)中混合30個重量百分比的塗有聚合物之二氧化鈦粒子(白色)、8個重量百分比的塗有聚合物之混合金屬氧化物粒子(黑色)及7個重量百分比的紅色顏料粒子並添加電荷控制劑(Solsperse 19000)來製備大致如上面參考第1圖所述的電泳介質。白色粒子帶負電荷,而黑色及紅色粒子帶正電荷,但是紅色粒子具有比黑色粒子還低的電荷密度。將得到的電泳介質裝載至具有實質透明的前電極之標準測試單元中且驅動至上面分別參考第2A、2B、2C及26B圖所述的白色、黑色、紅色及灰色狀態。使用標準技術測量所有四種帶色狀態的L*、a*及b*值,結果如下:By mixing 30 weight percent polymer-coated titanium dioxide particles (white), 8 weight percent polymer-coated mixed metal oxide particles (black), and 7 weight percent in isoparaffin solvent percent red pigment particles and adding a charge control agent (Solsperse 19000) to prepare an electrophoretic medium substantially as described above with reference to Figure 1. White particles are negatively charged, while black and red particles are positively charged, but red particles have a lower charge density than black particles. The resulting electrophoretic medium was loaded into a standard test cell with a substantially transparent front electrode and driven to the white, black, red and grey states described above with reference to Figures 2A, 2B, 2C and 26B, respectively. The L*, a*, and b* values for all four colored states were measured using standard techniques and the results were as follows:

surface 11 顏色color L*L* a*a* b*b* 白色White 60.260.2 -1.0-1.0 -1.4-1.4 黑色black 12.612.6 7.77.7 -0.8-0.8 紅色Red 27.027.0 37.937.9 17.617.6 灰色grey 38.438.4 -1.0-1.0 -4.0-4.0

灰色狀態的反射率Y為10.3%。從這些結果可以看出,本發明的實驗介質能夠顯示良好的白色、黑色及紅色狀態,並且亦能夠顯示灰色狀態。The reflectance Y in the gray state was 10.3%. From these results, it can be seen that the experimental medium of the present invention can display good white, black and red states, and can also display a gray state.

雖然已參考本發明的具體實施例來描述本發明,但是熟悉該項技藝者應該理解,在不脫離本發明的真實精神及範圍的情況下可以進行各種變更並且可以用均等物代替。此外,可以對本發明的目的及範圍進行許多修改,以適應特定情況、材料、組成、製程、製程步驟。所有這些修改意欲在所附請求項的範圍內。While the invention has been described with reference to specific embodiments thereof, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the true spirit and scope of the invention. In addition, many modifications may be made to adapt the object and scope of the invention to a particular situation, material, composition, process, process step. All such modifications are intended to be within the scope of the appended claims.

10:電泳顯示流體 11:白色粒子 12:黑色粒子 13:帶色粒子 14:共用電極 15:電極層 15a:像素電極 16:第一表面 17:第二表面 21:白色顏料粒子 22:黑色顏料粒子 23:帶色粒子 24:共用電極 25:像素電極10: Electrophoretic display fluid 11: White particles 12: Black particles 13: Colored particles 14: Common electrode 15: Electrode layer 15a: Pixel electrode 16: First Surface 17: Second Surface 21: White Pigment Particles 22: Black Pigment Particles 23: Colored particles 24: Common electrode 25: Pixel electrode

第1圖係通過可用於本發明之驅動方法中的電泳顯示流體之示意剖面。Figure 1 is a schematic cross-section of a display fluid through electrophoresis that can be used in the driving method of the present invention.

第2A、2B及2C圖係相似於第1圖的示意剖面,其分別顯示處於顯示流體的黑色、白色及紅色(著色)狀態之粒子的位置。Figures 2A, 2B and 2C are schematic cross-sections similar to Figure 1 showing the positions of particles in the black, white and red (colored) states of the display fluid, respectively.

第3圖例示用於將像素從第2B圖的白色狀態驅動至第2C圖的紅色狀態之典型波形。Figure 3 illustrates a typical waveform for driving a pixel from the white state of Figure 2B to the red state of Figure 2C.

第4圖例示可以用以取代第3圖的波形在期間t3中之部分來實現本發明的第一驅動方法之波形。FIG. 4 illustrates a waveform that can be used to replace the portion of the waveform of FIG. 3 in the period t3 to implement the first driving method of the present invention.

第5及6圖描繪為了實現本發明的第一驅動方法以第4圖的部分波形修改第3圖的波形所產生之波形。FIGS. 5 and 6 depict waveforms generated by modifying the waveforms of FIG. 3 with partial waveforms of FIG. 4 in order to implement the first driving method of the present invention.

第7圖例示可以用以取代第3圖的波形在期間t3中之部分來實現本發明的第二驅動方法之第二波形。FIG. 7 illustrates a second waveform that can be used to replace the portion of the waveform of FIG. 3 in the period t3 to implement the second driving method of the present invention.

第8及9圖描繪為了實現本發明的第二驅動方法以第7圖的部分波形修改第3圖的波形所產生之波形。FIGS. 8 and 9 depict waveforms generated by modifying the waveforms of FIG. 3 with some of the waveforms of FIG. 7 in order to implement the second driving method of the present invention.

第10A及10B圖例示由本發明的第三驅動方法所產生之光學結果。第10A圖根據第3圖的波形展示施加的驅動電壓與光學狀態性能(a*)的關係,以及第10B圖根據以第4圖的部分波形所修改之第3圖的波形展示施加的驅動電壓與光學狀態性能(a*)的關係。Figures 10A and 10B illustrate the optical results produced by the third driving method of the present invention. Fig. 10A shows the applied drive voltage versus optical state performance (a*) based on the waveforms of Fig. 3, and Fig. 10B shows the applied drive voltages based on the waveforms of Fig. 3 modified with some of the waveforms of Fig. 4 Relationship to Optical State Performance (a*).

第11圖例示可以用以取代第3圖的波形在期間t3中之部分來實現本發明的第四驅動方法之波形。FIG. 11 illustrates a waveform that can be used to replace the portion of the waveform of FIG. 3 in the period t3 to implement the fourth driving method of the present invention.

第12及13圖描繪為了實現本發明的第四驅動方法藉由以第11圖的部分波形修改第3圖的波形所產生之波形。FIGS. 12 and 13 depict waveforms generated by modifying the waveforms of FIG. 3 with partial waveforms of FIG. 11 in order to implement the fourth driving method of the present invention.

第14圖描繪用於將像素從第2B圖的白色狀態驅動至第2A圖的黑色狀態之典型波形。Figure 14 depicts a typical waveform for driving a pixel from the white state of Figure 2B to the black state of Figure 2A.

第15圖例示可以添加在第14圖的波形之末端來實現本發明的第五驅動方法之波形。FIG. 15 illustrates waveforms that can be added to the end of the waveforms of FIG. 14 to implement the fifth driving method of the present invention.

第16圖例示組合第14及15圖的波形來實現本發明的第五驅動方法之複合波形。FIG. 16 illustrates a composite waveform combining the waveforms of FIGS. 14 and 15 to implement the fifth driving method of the present invention.

第17圖描繪用於驅動像素至第2B圖的白色狀態之典型波形。Figure 17 depicts typical waveforms for driving a pixel to the white state of Figure 2B.

第18A及18B圖例示可以用以取代第17圖的波形在期間t17中之部分來實現本發明的第六驅動方法之兩個波形。Figures 18A and 18B illustrate two waveforms that can be used to replace the part of the waveform of Figure 17 in the period t17 to implement the sixth driving method of the present invention.

第19A及19B圖描繪為了實現本發明的第六驅動方法分別以第18A或18B圖的部分波形修改第17圖的波形所產生之波形。FIGS. 19A and 19B depict waveforms generated by modifying the waveforms of FIG. 17 with partial waveforms of FIGS. 18A or 18B, respectively, in order to implement the sixth driving method of the present invention.

第20A及20B係相似於第1圖的示意剖面,其分別顯示處於顯示流體的黑色及灰色狀態之粒子的位置。20A and 20B are schematic cross-sections similar to Figure 1 showing the positions of particles in the black and grey states of the display fluid, respectively.

第21圖例示用於驅動像素至第20B圖的灰色狀態之典型波形。Figure 21 illustrates a typical waveform for driving a pixel to the gray state of Figure 20B.

第22圖例示可以用以取代第21圖的波形在期間t23中之部分來實現本發明的第七驅動方法之波形。FIG. 22 illustrates a waveform that can be used to replace the portion of the waveform of FIG. 21 in the period t23 to implement the seventh driving method of the present invention.

第23圖例示組合第21及22圖的波形來實現本發明的第七驅動方法之複合波形。Fig. 23 illustrates a composite waveform of combining the waveforms of Figs. 21 and 22 to realize the seventh driving method of the present invention.

第24圖例示在本發明的第八驅動方法中所使用之波形。FIG. 24 illustrates waveforms used in the eighth driving method of the present invention.

第25圖例示組合第14及24圖的波形來實現本發明的第八驅動方法之複合波形。Fig. 25 illustrates a composite waveform of combining the waveforms of Figs. 14 and 24 to realize the eighth driving method of the present invention.

第26A及26B圖例示從像素的白色狀態開始的像素的灰色狀態的產生。Figures 26A and 26B illustrate the generation of the gray state of a pixel starting from the white state of the pixel.

第26C及26D圖例示從像素的黑色狀態開始的像素的灰色狀態的產生。Figures 26C and 26D illustrate the generation of the gray state of a pixel starting from the black state of the pixel.

第27圖例示可用於在本發明的第一混合特性驅動方法中經由白色狀態驅動顯示器至淺紅色狀態之波形。Figure 27 illustrates waveforms that can be used to drive a display to a reddish state via a white state in the first hybrid characteristic driving method of the present invention.

第28圖例示可用於在本發明的第二混合特性驅動方法中驅動顯示器至深紅色狀態之波形。Figure 28 illustrates waveforms that can be used to drive a display to a deep red state in the second hybrid characteristic driving method of the present invention.

第29圖例示可用於在本發明的第三混合特性驅動方法中驅動顯示器至深紅色狀態之第二波形。Figure 29 illustrates a second waveform that can be used to drive the display to the deep red state in the third hybrid characteristic driving method of the present invention.

10:電泳顯示流體 10: Electrophoretic display fluid

11:白色粒子 11: White particles

12:黑色粒子 12: Black particles

13:帶色粒子 13: Colored particles

14:共用電極 14: Common electrode

15:電極層 15: Electrode layer

15a:像素電極 15a: Pixel electrode

16:第一表面 16: First Surface

17:第二表面 17: Second Surface

Claims (7)

一種用於電泳顯示器之驅動方法,該電泳顯示器包括在觀看側之第一表面、在非觀看側之第二表面及電泳流體,該電泳流體包括第一類型的粒子、第二類型的粒子及第三類型的粒子,所有類型的粒子分散在液體中,其中 a)該三種類型的顏料粒子具有彼此不同的光學特性; b)該第一類型的顏料粒子及該第二類型的顏料粒子攜帶相反的電荷極性;以及 c)該第三類型的顏料粒子具有相同於該第二類型的顏料粒子之電荷極性,但是具有較低的ζ電位, 該方法包括下列步驟: (i)施加第一驅動電壓至該電泳顯示器中之像素達第一段時間,該第一驅動電壓具有驅動該第二類型的顏料粒子朝向該第一表面的極性,藉此促使該像素在該第一表面上顯示該第二類型的顏料粒子之光學特性;以及 (ii)施加第二驅動電壓至該像素達第二段時間,該第二驅動電壓具有相同於該第一驅動電壓之極性,但是具有比該第一驅動電壓小的振幅,藉此在該第一表面上驅動該第三類型的顏料粒子,並且在該第一表面上產生該第二及第三類型的粒子之光學特性的混合。A driving method for an electrophoretic display, the electrophoretic display comprising a first surface on a viewing side, a second surface on a non-viewing side, and an electrophoretic fluid, the electrophoretic fluid comprising particles of a first type, particles of a second type, and a first Three types of particles, all types of particles dispersed in a liquid, wherein a) the three types of pigment particles have different optical properties from each other; b) the first type of pigment particles and the second type of pigment particles carry opposite charge polarities; and c) the third type of pigment particles have the same charge polarity as the second type of pigment particles, but with a lower zeta potential, The method includes the following steps: (i) applying a first drive voltage to a pixel in the electrophoretic display for a first period of time, the first drive voltage having a polarity to drive the second type of pigment particles towards the first surface, thereby urging the pixel to operate at the first surface the optical properties of the second type of pigment particles displayed on the first surface; and (ii) applying a second driving voltage to the pixel for a second period of time, the second driving voltage having the same polarity as the first driving voltage, but having a smaller amplitude than the first driving voltage, whereby in the first driving voltage The third type of pigment particles are driven on a surface and a mixture of the optical properties of the second and third types of particles is produced on the first surface. 如請求項1之方法,其進一步包括在步驟(i)之前施加一振動波形。The method of claim 1, further comprising applying a vibration waveform prior to step (i). 如請求項1之方法,其中該第二驅動電壓的振幅小於該第一驅動電壓的振幅之一半。The method of claim 1, wherein the amplitude of the second driving voltage is less than half of the amplitude of the first driving voltage. 如請求項1之方法,其中該第一類型的顏料粒子帶負電,而該第二類型的顏料粒子帶正電。The method of claim 1, wherein the first type of pigment particles are negatively charged and the second type of pigment particles are positively charged. 一種用於電泳顯示器之驅動方法,該電泳顯示器包括在觀看側之第一表面、在非觀看側之第二表面及電泳流體,該電泳流體包括第一類型的顏料粒子、第二類型的顏料粒子及第三類型的顏料粒子,所有類型的顏料粒子分散在液體中,其中 a)該三種類型的顏料粒子具有彼此不同的光學特性; b)該第一類型的顏料粒子及該第二類型的顏料粒子攜帶相反的電荷極性;以及 c)該第三類型的顏料粒子具有相同於該第二類型的顏料粒子之電荷極性,但是具有較低的ζ電位, 該方法包括下列步驟: (i)施加第一驅動電壓至該電泳顯示器中之像素達第一段時間,該第一驅動電壓具有驅動該第一類型的顏料粒子朝向該第一表面的極性,藉此促使該像素在該第一表面上顯示該第一類型的顏料粒子之光學特性;及 (ii) 施加第二驅動電壓至該像素達第二段時間,該第二驅動電壓具有驅動該第三類型的顏料粒子朝向該第一表面的極性;以及 重複步驟(i)及(ii), 其中調整步驟(i)及(ii)的持續時間及其中所施加的電壓之振幅,以在該第一表面上產生該第三類型的粒子與該第一及第二類型的粒子中之一種類型的粒子之光學特性的混合。A driving method for an electrophoretic display, the electrophoretic display comprising a first surface on a viewing side, a second surface on a non-viewing side, and an electrophoretic fluid comprising a first type of pigment particles, a second type of pigment particles and a third type of pigment particles, all types of pigment particles dispersed in a liquid, wherein a) the three types of pigment particles have different optical properties from each other; b) the first type of pigment particles and the second type of pigment particles carry opposite charge polarities; and c) the third type of pigment particles have the same charge polarity as the second type of pigment particles, but with a lower zeta potential, The method includes the following steps: (i) applying a first drive voltage to a pixel in the electrophoretic display for a first period of time, the first drive voltage having a polarity to drive the first type of pigment particles toward the first surface, thereby urging the pixel to operate at the first surface the optical properties of the first type of pigment particles displayed on the first surface; and (ii) applying a second drive voltage to the pixel for a second period of time, the second drive voltage having a polarity to drive the third type of pigment particles toward the first surface; and Repeat steps (i) and (ii), wherein the duration of steps (i) and (ii) and the amplitude of the voltage applied therein are adjusted to produce on the first surface the third type of particles and one of the first and second types of particles a mixture of the optical properties of the particles. 如請求項5之方法,其進一步包括在步驟(i)之前施加一振動波形。The method of claim 5, further comprising applying a vibration waveform prior to step (i). 如請求項5之方法,其中該第一類型的顏料粒子帶負電,而該第二類型的顏料粒子帶正電。The method of claim 5, wherein the first type of pigment particles are negatively charged and the second type of pigment particles are positively charged.
TW110126419A 2017-04-25 2018-04-23 Driving methods for color display device TWI807370B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/496,604 2017-04-25
US15/496,604 US10380931B2 (en) 2013-10-07 2017-04-25 Driving methods for color display device

Publications (2)

Publication Number Publication Date
TW202201099A true TW202201099A (en) 2022-01-01
TWI807370B TWI807370B (en) 2023-07-01

Family

ID=63920021

Family Applications (3)

Application Number Title Priority Date Filing Date
TW110126419A TWI807370B (en) 2017-04-25 2018-04-23 Driving methods for color display device
TW107113671A TWI700679B (en) 2017-04-25 2018-04-23 Driving methods for color display device
TW109125554A TWI734572B (en) 2017-04-25 2018-04-23 Driving methods for color display device

Family Applications After (2)

Application Number Title Priority Date Filing Date
TW107113671A TWI700679B (en) 2017-04-25 2018-04-23 Driving methods for color display device
TW109125554A TWI734572B (en) 2017-04-25 2018-04-23 Driving methods for color display device

Country Status (7)

Country Link
EP (1) EP3616188A4 (en)
JP (2) JP6967082B2 (en)
KR (1) KR102373217B1 (en)
CN (1) CN110366747B (en)
CA (1) CA3051003C (en)
TW (3) TWI807370B (en)
WO (1) WO2018200252A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111402818A (en) 2020-03-31 2020-07-10 重庆京东方智慧电子系统有限公司 Driving method of color electronic paper and color electronic paper
CN111508442B (en) * 2020-05-20 2021-03-26 重庆京东方智慧电子系统有限公司 Control method and display control device of electronic ink screen and electronic ink display device
EP4158614A1 (en) * 2020-05-31 2023-04-05 E Ink Corporation Electro-optic displays, and methods for driving same
US11699406B2 (en) 2020-10-29 2023-07-11 Chongqing Boe Smart Electronics System Co., Ltd. Control method of e-ink screen, and display control apparatus
CN117396804A (en) * 2021-05-25 2024-01-12 伊英克公司 Synchronous drive waveforms for four-particle electrophoretic displays
CN113376920B (en) * 2021-05-26 2022-09-30 中山职业技术学院 Three-color electrophoresis electronic paper particle quick response method and display screen
CN113539190A (en) * 2021-06-18 2021-10-22 江西兴泰科技有限公司 Electronic paper multicolor display method
CN113707100B (en) * 2021-07-20 2023-04-18 中山职业技术学院 Driving method for eliminating color ghost of three-color electrophoretic electronic paper

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5930026A (en) 1996-10-25 1999-07-27 Massachusetts Institute Of Technology Nonemissive displays and piezoelectric power supplies therefor
US6930818B1 (en) 2000-03-03 2005-08-16 Sipix Imaging, Inc. Electrophoretic display and novel process for its manufacture
US6870661B2 (en) * 2001-05-15 2005-03-22 E Ink Corporation Electrophoretic displays containing magnetic particles
JP4061863B2 (en) * 2001-06-20 2008-03-19 富士ゼロックス株式会社 Image display device and display driving method
TW550529B (en) 2001-08-17 2003-09-01 Sipix Imaging Inc An improved electrophoretic display with dual-mode switching
JP2004271610A (en) * 2003-03-05 2004-09-30 Canon Inc Color electrophoresis display device
US8643595B2 (en) * 2004-10-25 2014-02-04 Sipix Imaging, Inc. Electrophoretic display driving approaches
KR100731863B1 (en) * 2005-11-07 2007-06-25 엘지전자 주식회사 Electrophoretic Display Device
KR101232146B1 (en) * 2006-02-17 2013-02-12 엘지디스플레이 주식회사 Electrophoretic Display Device
US7349147B2 (en) * 2006-06-23 2008-03-25 Xerox Corporation Electrophoretic display medium containing solvent resistant emulsion aggregation particles
JP5135771B2 (en) * 2006-11-17 2013-02-06 富士ゼロックス株式会社 Display device, writing device, and display program
US8243013B1 (en) * 2007-05-03 2012-08-14 Sipix Imaging, Inc. Driving bistable displays
JP5169029B2 (en) * 2007-06-05 2013-03-27 富士ゼロックス株式会社 Image display medium, image display device, and image display program
JP2009244635A (en) * 2008-03-31 2009-10-22 Brother Ind Ltd Particle movement type display device and image display device with the particle movement type display device
JP2011237770A (en) * 2010-04-12 2011-11-24 Seiko Epson Corp Electrophoresis display device, driving method of the same and electronic equipment
TWI598672B (en) * 2010-11-11 2017-09-11 希畢克斯幻像有限公司 Driving method for electrophoretic displays
JP5888554B2 (en) 2011-02-08 2016-03-22 Nltテクノロジー株式会社 Image display device having memory characteristics
JP5796766B2 (en) * 2011-04-07 2015-10-21 Nltテクノロジー株式会社 Image display device having memory characteristics
US20140293398A1 (en) * 2013-03-29 2014-10-02 Sipix Imaging, Inc. Electrophoretic display device
US9759980B2 (en) * 2013-04-18 2017-09-12 Eink California, Llc Color display device
PL2997568T3 (en) 2013-05-17 2019-07-31 E Ink California, Llc Color display device
TWI550332B (en) * 2013-10-07 2016-09-21 電子墨水加利福尼亞有限責任公司 Driving methods for color display device
ES2793903T3 (en) * 2014-01-14 2020-11-17 E Ink California Llc Procedure for activating a color display layer
US9541814B2 (en) * 2014-02-19 2017-01-10 E Ink California, Llc Color display device
TWI591412B (en) * 2014-09-10 2017-07-11 電子墨水股份有限公司 Colored electrophoretic displays and method of driving the same
CN107003583B (en) 2014-11-17 2020-10-20 伊英克加利福尼亚有限责任公司 Color display device
US9640119B2 (en) 2014-11-17 2017-05-02 E Ink California, Llc Driving methods for color display devices
WO2016196564A1 (en) * 2015-06-01 2016-12-08 E Ink California, Llc Color display device and driving methods therefor

Also Published As

Publication number Publication date
CN110366747B (en) 2022-10-18
EP3616188A1 (en) 2020-03-04
TW202117691A (en) 2021-05-01
KR20190101488A (en) 2019-08-30
JP2021107936A (en) 2021-07-29
WO2018200252A1 (en) 2018-11-01
EP3616188A4 (en) 2021-04-21
TWI807370B (en) 2023-07-01
JP2020513114A (en) 2020-04-30
CA3051003C (en) 2023-01-24
TW201843669A (en) 2018-12-16
CA3051003A1 (en) 2018-11-01
TWI700679B (en) 2020-08-01
TWI734572B (en) 2021-07-21
CN110366747A (en) 2019-10-22
KR102373217B1 (en) 2022-03-10
JP6967082B2 (en) 2021-11-17

Similar Documents

Publication Publication Date Title
JP7174115B2 (en) color display device
TWI807370B (en) Driving methods for color display device
KR102324574B1 (en) Driving methods for color display device
US10380931B2 (en) Driving methods for color display device
US9640119B2 (en) Driving methods for color display devices
US11217145B2 (en) Driving methods to produce a mixed color state for an electrophoretic display
TWI810579B (en) Driving method for driving a pixel of an electrophoretic display
CN111149149B (en) Method for driving a four-particle electrophoretic display