TW202146861A - 光學量測系統及方法 - Google Patents

光學量測系統及方法 Download PDF

Info

Publication number
TW202146861A
TW202146861A TW110106485A TW110106485A TW202146861A TW 202146861 A TW202146861 A TW 202146861A TW 110106485 A TW110106485 A TW 110106485A TW 110106485 A TW110106485 A TW 110106485A TW 202146861 A TW202146861 A TW 202146861A
Authority
TW
Taiwan
Prior art keywords
sample
spectral
measurement
electromagnetic field
interference signal
Prior art date
Application number
TW110106485A
Other languages
English (en)
Inventor
吉列德 布拉克
阿米爾 沙亞里
Original Assignee
以色列商諾發股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 以色列商諾發股份有限公司 filed Critical 以色列商諾發股份有限公司
Publication of TW202146861A publication Critical patent/TW202146861A/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70625Dimensions, e.g. line width, critical dimension [CD], profile, sidewall angle or edge roughness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0608Height gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0675Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating using interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02001Interferometers characterised by controlling or generating intrinsic radiation properties
    • G01B9/02007Two or more frequencies or sources used for interferometric measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02041Interferometers characterised by particular imaging or detection techniques
    • G01B9/02044Imaging in the frequency domain, e.g. by using a spectrometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8422Investigating thin films, e.g. matrix isolation method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/56Measuring geometric parameters of semiconductor structures, e.g. profile, critical dimensions or trench depth

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Mathematical Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Holo Graphy (AREA)

Abstract

提供用於光學計量量測的量測系統及方法。該量測系統包含一控制系統,建構用於與量測數據提供者進行數據通信,以接收及處理原始量測數據,其指示對入射至一樣本的頂部且包含該樣本實質上不吸收的至少一光譜範圍之照射電磁場響應之在該樣本上量測的光譜干涉信號。該處理包含:自該原始量測數據,擷取光譜干涉信號的一部分,其描述在干涉量測期間隨光程差(OPD)之變化的信號強度的變異,該等光譜干涉信號的該擷取部分係獨立於對該照射電磁場響應而自該樣本的底部返回的干涉信號;及自該等光譜干涉信號的所擷取部分,直接確定來自該樣本的頂部之該電磁場的反射之光譜振幅及相位,藉此允許確定表徵該樣本之頂部的一量測的光譜特徵。

Description

光學量測系統及方法
本發明屬於對諸如半導體晶圓之類的圖案化結構的光學量測領域,並且對於計量量測特別有用。
廣泛用於半導體計量和製程控制的光學量測方法,傳統上依賴於光譜反射法和/或光譜橢偏法。然而,由於從結構散射的電磁場也包含光譜相位資訊(這對於從量測中提取更多或更準確的資訊可能非常有益),並且在光學頻率下無法對其直接存取,因此使用了光譜干涉法。
一些光譜干涉技術在例如美國專利第10,739,277號和第10,161,885號中進行了描述,這兩個專利均轉讓給本申請案的受讓人。
本領域需要一種新技術,用於在圖案化結構中實施基於紅外光(IR)的光譜干涉量測,允許基於干涉儀的有限時間相干性而分離出來自結構背側的貢獻。
將散射量測的波長範圍朝IR範圍擴展,提供了多種好處,特別是穿透在Vis-UV 範圍內不透明的材料之能力、獨特的敏感性(例如,針對材料特性)、模擬簡單性方面的優勢等。更特別是,當在對某些或所有光學系統操作波長為部分或完全透明的結構(例如,在(標準)Si晶圓上製造的結構)之中進行量測時,入射光不會在結構內受到吸收,而是在結構內繼續傳播,且係自底部(背面)部分地反射回來,並且當通過結構的頂部輸出時,呈現寄生信號,其待由頂表面反射分離出來。對於超過 ~1.1µm 的波長,Si基板變得透明,並且由於來自晶圓背面的反射可能會產生嚴重的污染。由於低再現性/晶圓夾持表面,晶圓的底部反射不穩定。
通常希望使用垂直入射計量,其與斜向入射操作相比具有若干優點。此類優勢的示例涉及硬體簡單性(照明與收集光學器件在光學路徑的顯著部分係常見的)、尺寸緊密性,允許將解決方案整合到小覆蓋面實施方式(例如整合的計量)中,且甚至允許光-物質交互作用的模擬簡單性。
然而,使用IR照明的垂直入射模式不可避免地會導致結構頂部部分(所欲數據)與結構底部部分(污染)的反射收集。 當需要高光譜品質時,如當今計量要求中常見的那樣,這種污染會不利地妨礙對所量測數據的正確解讀。因此需要避免或準確去除這種污染,同時維持其他系統參數,例如光點尺寸和產出量。
有幾種方式可以緩解這個問題。例如,可以藉由共焦光學佈局消除晶圓背面反射(實施共焦佈局允許顯著減少離焦貢獻)。然而,共焦模式對於散射測量是有問題的,因為它對小聚焦誤差導入強敏感性。根據晶圓背面反射的演算法去除,由晶圓背面反射產生的信號的貢獻係加以估計並從量測信號中加以演算法減去。然而,背面反射在晶圓上不同位置之間可能會有所不同(取決於支撐晶圓的下方平台的粗糙度或均勻特性),而且,受測的結構(在晶圓頂部製造的)會影響從背面反射的信號:由於這種結構的變化會影響通過它的整體光傳輸,因此不能將背面反射視為「恆定」貢獻。與背面反射相關聯的預期光譜誤差為百分之幾的量級(或者甚至對於某些光學佈局是小於百分之一),這有時仍然允許具有合理的誤差的定量判讀。然而,對於高端散射測量,其處理先進應用,這樣的誤差是非常不可接受的,且因此不能簡單地忽略背面的貢獻。因此,用於半導體計量的IR散射量測通常基於斜向入射量測。
本發明的技術基於新穎方法,其用於分析原始量測數據,指示針對干涉儀的樣本與參考臂之間的不同光程差在樣本上測得的光譜干涉信號,並利用包括樣本實質上不吸收之波長的操作波長。本發明允許直接擷取樣本的頂部的光譜反射和相位,而不管原始量測數據是否還包括來自非頂部的樣本介面的反射(例如底部反射)。
在本發明中達成以上所述,係藉由從原始量測數據中擷取干涉量測信號部分,其描述信號強度隨樣本與參考臂之間的光程差(OPD)的變化(透過幾個(至少四個)不同的OPD數值)之變異。受測量的光譜干涉信號的這一部分獨立於從樣本的一個或多個內部介面返回的干涉信號,且因此提供從該部分直接確定從樣本頂部返回的信號的光譜振幅和相位。在下面的描述中,這種描述強度(振幅)變異的此信號部分有時稱為透過光程差變異所測得的「信號的AC部分」。
如下所述,發明人已經發現受測信號的所謂「DC部分」(即獨立於OPD的部分)是與來自樣本背面(或其他內部介面)之反射相關的僅有信號部分,而僅信號的交流部分係與頂部反射有關。此條件係在以下假設下加以維持:來自干涉鏡(一般而言,光程差誘導單元)的光場反射,以及來自底面(通常為樣本的內部介面)的光場反射、及來自頂部的光場反射不會在像素光譜帶寬範圍發生變化,因為單一像素的光譜帶寬通常非常窄(通常~1-幾nm)。
應該注意的是,雖然本發明特別適用於矽結構(半導體晶圓)的光學計量,其中使用IR光譜範圍的垂直入射量測係期望的,但本發明的原理既不限於樣本類型,也不限於操作波長的光譜範圍。本發明有利地可用於以下類型的樣本之光譜干涉量測:對施加到頂部的照明之樣本的頂部響應(振幅和相位)係待決定,而該照明包括實質上不由樣本材料所吸收的波長。
因此,根據本發明的一個廣義實施態樣,提供一種用於光學計量量測的量測系統,該量測系統包含建構成一電腦系統的一控制系統,其包括數據輸入設施、記憶體、及數據處理器,且建構用於與量測數據提供者進行數據通信,以接收原始量測數據,該原始量測數據指示對入射至一樣本的頂部且包含該樣本實質上不吸收的至少一光譜範圍之照射電磁場響應而自該樣本返回之量測的光譜干涉信號,該數據處理器包含一分析器設施,其建構並可操作以執行以下操作: 自該原始量測數據,擷取光譜干涉信號的一部分,其描述在干涉量測期間隨光程差OPD之變化的信號強度的變異,該等光譜干涉信號的該部分係獨立於對該照射電磁場響應而自該樣本的底部返回的干涉信號;及 自該等光譜干涉信號的所擷取部分,直接確定來自該樣本的頂部之該照射電磁場的反射之光譜振幅及相位,藉此允許確定表徵該樣本之頂部的一量測的光譜特徵。
該控制系統可更包含一擬合設施,建構成可操作用以對該量測的光譜特徵應用基於模型的處理,以決定受量測的該樣本的一個以上參數。
本發明的技術基本上可用於使用IR光譜或可見光及IR光譜的組合而監測對由矽材料製成的樣本/結構的量測。
在一些實施例中,該原始量測數據包含:指示對包含IR光譜的該照射電磁場響應而自由矽材料製成的該樣本的頂部和底部返回的(以及可能亦自該樣本的一個以上內部介面返回的)該等光譜干涉信號之數據。
在一些實施例中,該量測系統包含一量測單元,建構為該量測數據提供者用於產生及提供該原始量測數據,該量測單元係建構並可操作以使用包含該樣本實質上不吸收的至少一光譜範圍之操作波長而對該樣本執行干涉量測。
舉例來說,光譜干涉量測信號具有信號強度分布,其決定為:
Figure 02_image001
其中:
Figure 02_image003
係來自該頂部的電磁場反射的光譜振幅;
Figure 02_image005
係來自該樣本的底部的電磁場反射的光譜振幅;
Figure 02_image007
係來自一干涉鏡的電磁場反射;
Figure 02_image009
係操作波長;且z係該干涉鏡的位置;且
Figure 02_image011
係該量測的光譜干涉信號的光譜相位。
擷取的信號部分係:
Figure 02_image013
其描述隨該干涉鏡的位置z的變化之信號強度變異,且其係與自該樣本的底部返回的干涉信號獨立。這允許直接確定該頂部的該電磁場反射的光譜振幅及相位。
根據本發明的另一廣義實施態樣,提供一種用於光學計量量測的方法,該方法包含: 提供原始量測數據,其指示對入射至一樣本的頂部且包含該樣本實質上不吸收的至少一光譜範圍之照射電磁場響應而自該樣本返回之量測的光譜干涉信號,及 處理該原始量測數據,該處理步驟包含: 自該原始量測數據,擷取光譜干涉信號的一部分,其描述在干涉量測期間隨光程差OPD之變化的信號強度的變異,該等光譜干涉信號的該部分係獨立於對該照射電磁場響應而自該樣本的底部返回的干涉信號,及 自該等光譜干涉信號的所擷取部分,直接確定來自該樣本的頂部之該照射電磁場的反射之光譜振幅及相位,藉此確定表徵該樣本之頂部的一量測的光譜特徵。
根據本發明的又另一實施態樣,提供一種量測系統,包含: 一量測單元,建構且可操作用於使用包含樣本實質上不吸收的至少一光譜範圍之操作波長,針對介於樣本與參考臂之間的數個不同的光程差(OPD),對一樣本執行垂直入射光譜干涉量測並產生指示在該樣本上量測的光譜干涉信號的原始量測數據;及 一控制系統,建構成且可操作用於執行以下者:自該原始量測數據,擷取光譜干涉信號的一部分,其描述在干涉量測期間隨光程差OPD之變化的信號強度的變異,該等光譜干涉信號的該部分係獨立於對該照射電磁場響應而自該樣本的底部返回的干涉信號;及自該等光譜干涉信號的所擷取部分,直接確定來自該樣本的頂部之該照射電磁場的反射之光譜振幅及相位,藉此允許確定表徵該樣本之頂部的一量測的光譜特徵。
參照圖1,以方塊圖的方式顯示本發明的量測系統10。該系統包括量測單元12和控制系統14。
量測單元12係配置為光譜干涉儀系統,可操作以測量從結構/樣本S(例如,半導體晶圓)返回(反射和/或散射)的光的光譜相位,以能夠確定該結構的一個或多個參數(例如,圖案參數)。量測單元12可以基於一般的光譜反射儀配置,其中樣本反射率係準確地加以測量,並且加以修改用於光譜干涉量測。
出於本發明的目的,使用施加到樣本頂部的垂直入射量測值來量測樣本頂部的光譜特徵,並且操作波長包括樣本實質上不吸收的至少一個光譜範圍。因此,除了有效信號(樣本頂部的反射/散射)之外,原始量測數據不可避免地包括與樣本內部介面(例如樣本底部)的反射/散射相關聯的「寄生」信號分量。
因此,量測單元12包括一垂直入射干涉儀總成,該總成包括:一光源系統16,提供寬帶輸入光Lin (例如,包括IR光譜範圍);一檢測系統18(包括光譜儀);及光引導光學器件20。 光導向光學器件20包括光束分離器/組合器22和24、物鏡單元26(一個或多個透鏡)、及光程差誘導單元28(例如干涉鏡)。
光束分離器/組合器22位於輸入光束Lin 的光學路徑中並且引導(反射)該輸入光Lin 以朝向物鏡單元26傳播,其將輸入光Lin 聚焦到該結構S所位在之一量測平面MP上,並引導(透射)從該量測平面返回的光Lcom 以傳播到檢測系統18。光束分離器24係位於物鏡單元26與量測平面MP之間,且建構成將輸入光Lin 分離成樣本與參考光分量Lsam 和Lref ,其沿著不同的光學路徑分別向量測平面(樣本平面)和光程差誘導單元28傳播,並將樣本和鏡28的反射組合成組合光Lcom 並引導它到達物鏡單元26,其將該光成像到一檢測平面上,干涉圖案係由此產生於該處。
控制系統14係配置為電腦系統,尤其包括數據輸入/輸出設施14A、記憶體14B、及數據處理器14C。在控制系統中還提供了與鏡28相關聯的控制器14D,用於控制鏡位置並因此控制在樣本與參考臂之間的光程差變化。鏡28相對於注目波長範圍的反射率Em i ) 可以加以測量一次並存儲在記憶體14B中。
數據處理器14C係配置並且可操作用於分析由檢測系統18產生的原始量測數據,包括指示量測的光譜干涉信號的數據。根據本發明,數據處理器14C包括分析器30,該分析器包括:一信號部分擷取器設施15,從原始量測數據擷取光譜干涉測量信號的一部分,其描述隨幾個(至少四個)不同的OPD數值之變化的信號強度(振幅)的變異;以及頂部表徵設施17。後者係配置和操作以利用鏡28的預定(一次量測的)反射率,並從干涉信號的擷取部分直接確定樣本頂部的光譜反射Etop i ) 和相位ϕ(λi )
頂部表徵設施17還配置為利用頂部的光譜反射和相位,並生成表徵樣本頂部的光譜特徵。
在控制系統14中還提供了擬合設施36。該擬合設施係配置和操作以將基於模型的處理應用於樣本頂部的光譜特徵,並且確定樣本的一個或多個參數。
控制系統14可以或可以不與量測單元12整合在一起。通常,控制系統14可以是一獨立系統,配置用於與量測數據提供者的數據通信,該量測數據提供者可以是量測單元12本身、或存儲此類量測數據的存儲裝置。
根據本發明,樣本頂部光譜反射和相位皆可以從原始量測的光譜干涉信號中直接確定(擷取),而無論原始量測數據是否包括與在樣本中的中間層/介面的反射相關聯的任何污染分量。
光程差誘導元件(例如,干涉儀鏡)不遭受與其背面反射相關的問題。這可以如下方式加以避免:藉由以在測量光譜範圍中不透明的材料製造鏡28(特別是IR範圍,例如藉由使用金屬或金屬塗佈的鏡子);或者使用足夠厚以確保介於其背面與在系統中其他反射之間的時間相干性損失的鏡子。更具體地說,該鏡係由與受測樣本(在半導體晶圓的情況下,通常是Si)不同的材料成分製成,並具有不同的厚度,以消除或至少顯著減少來自樣本與鏡底面的相干反射對受測信號的干涉貢獻。
以下是對本發明原理的解釋。在下面的描述中,頂部有時被稱為「頂表面」。
考慮到僅檢測樣本的頂表面反射的干涉反射量測術的情況(如在可見光波長的情況下),單波長λ干涉方程式為:
Figure 02_image015
(1) 其中: l  Em 是鏡28的電磁場反射率(|Em |2 可以當結構S在物鏡單元26的視場之外時加以量測); l  Ew 是樣本S的電磁場反射率(|Ew |2 可以當鏡28處於其傾斜位置時加以測量,其中從鏡所反射的光沿著不與物鏡單元相交的一軸而傳播); l
Figure 02_image017
lz 是在鏡28平面與樣本平面MP之間的光程差; l
Figure 02_image019
係干涉相位
現在讓我們考慮光譜儀解析度的干涉反射量測術。光譜儀處的每個像素看到有限的光譜寬度。為簡單起見,讓我們考慮每個像素在
Figure 02_image021
的範圍取平均值。干涉方程式為:
Figure 02_image023
(2)
對於光程差(OPD)條件
Figure 02_image025
,干涉方程式為:
Figure 02_image027
(3) 且針對
Figure 02_image029
,具有:
Figure 02_image031
因此,一般而言,在僅檢測樣本的頂表面反射的干涉反射量測術情況下(如在可見光波長的情況下),來自樣本的電磁場反射Ew 可以從干涉信號量測強度的基線或「DC」分量加以擷取,且相位數據可以從量測數據的變化或「AC」分量加以擷取。為此,樣本反射的「參考」量測在沒有鏡貢獻的情況下執行,且接著若干(例如,四個)干涉量測在改變光程差(例如,移動鏡28)的同時加以執行。
發明人已經顯示,當使用寬帶干涉光譜進行操作時,樣本反射的「所欲」分量(即頂表面反射)可以擷取自變化的分量,即在一些干涉量測中(例如,至少四個這樣的測量)隨光程差變化的測得振幅的分布。此技術可用於可見光頻道光譜干涉量測。然而,當使用IR光譜時,這種技術的優勢更為重要,在這種情況下,該技術允許基於干涉儀的有限時間相干性將來自樣本背面的貢獻分離。
下面呈現本發明的用於IR光譜干涉量測的技術之說明。此處,為簡單起見,對樣本和干涉儀鏡的反射特性做了一些假設。然而,應當理解,本發明的原理不依賴於這些假設,且它們僅用於簡化描述。
光譜儀的時間相干性由其光譜解析度決定。為此,讓我們考慮光譜儀上的特定像素,該光譜儀測量
Figure 02_image033
的光譜範圍。此處,λi 是該像素所讀取的中心波長,且δ 確定其光譜帶寬。
針對λi 於像素處的測得強度由以下方程式給出:
Figure 02_image035
量測的干涉強度由干涉儀鏡反射的場Em (λ) 與由樣本反射的場Ew (λ) 之間的干涉加以定義。
干涉儀鏡的材料成分係加以選擇,使其反射率沒有急遽的光譜變化。由於單一像素的光譜帶寬通常非常窄(通常~1-幾nm),因此可以假設該範圍內的鏡反射率是恆定的:
Figure 02_image037
該光譜範圍內的樣本反射率同樣大致恆定(典型樣本也很少在如此窄的光譜範圍內顯示出明顯的光譜變異),除了它由兩個貢獻構成:
Figure 02_image039
第一項Etop (λ) 係與樣本頂部的反射有關。在像素光譜帶寬範圍之(大致)不變的反射率的簡化假設下,可以使用以下條件
Figure 02_image041
第二項
Figure 02_image043
係與樣本底部的反射有關,且包括底部反射率
Figure 02_image045
以及穿過樣本的附加相位
Figure 02_image047
,其相關於該項與頂表面反射之間的相位差,以及當光在樣本內部通過時所穿過的光學路徑z。
在這裡,2h 是總樣本厚度的兩倍,其係光下行至樣本底部並返回到其頂部所經過的路徑。實際上,光可以經歷此二個樣本側之間的多次反射,但為簡單起見,這些項在分析中加以忽略。
類似地,可以做出以下假設:
Figure 02_image049
。然而,應該注意的是,不能假設振盪項
Figure 02_image051
在像素的光譜範圍內是恆定的,因為對於某些類型的樣本,因子2nh 可能非常大,例如對於Si,n~4h~700μm
量測的強度係藉由自樣本和鏡所反射的電磁場的干涉加以決定。 鏡28的位置z 係可控地加以掃描經過幾個數值,以提供幾個干涉光譜,從中可以導出反射相位和振幅。
對於特定的鏡位置z ,特定波長λ的強度由以下方程式(4)給出:
Figure 02_image053
對於λi 於像素處的量測的強度由以下方程式給出:
Figure 02_image035
在以上假設下,此強度係由以下給出:
Figure 02_image055
(5)
現在讓我們定義以下者: l
Figure 02_image057
(6) 表示信號貢獻,其與鏡位置z 獨立,並有關於自樣本背面的反射
Figure 02_image059
因此,與使用UV-VIS光譜的量測不同,當使用IR光譜操作時,不能使用量測信號的DC部分
Figure 02_image061
,不能用於擷取頂表面反射
Figure 02_image063
,因為它與
Figure 02_image065
耦合。 l
Figure 02_image067
(7) 相關於從鏡子反射的光與從樣本頂部反射的光之間的干涉,樣本頂部係受干涉量測的實際結構(即所欲的分量)。
上述方程式(7)可以不同方式撰寫:
Figure 02_image069
(8) 這裡,
Figure 02_image011
是來自鏡和樣本頂部的電磁場反射之間的光譜相位。由光譜干涉儀測得的特性包括
Figure 02_image071
Figure 02_image011
。 l
Figure 02_image073
(9) 相關於在來自樣本底面與鏡子的反射之間的干涉。
應該注意的是,鏡位置 (z)通常是量測之波長的數量級,因為它用於測量樣本與鏡之間相位變化的影響。因此,它的典型數值最多為數百nm或幾微米,並且在任何情況下都明顯小於由樣本背面的反射所代表的光學路徑長度,即2nh。
Figure 02_image075
可以從積分提取出來。實際上,
Figure 02_image077
. 重新排列
Figure 02_image079
意指在積分過程中
Figure 02_image081
數值幾乎沒有變化,因此可以從積分中提取出來。
Figure 02_image083
中的積分項係與時間去相干性有關,且反映了來自樣本背面的干涉會產生高振盪信號的事實,該高振盪信號在像素上平均掉。
特別是,對於 n~4、h~700μm 及光譜儀像素的典型光譜響應(例如,光譜帶寬為
Figure 02_image085
)及測量的波長~2000nm,該項表示信號的量級 <10-10 的衰減,有效地從量測中完全消除了這種貢獻。
因此,光譜干涉量測的信號可以表示為:
Figure 02_image087
(10) 這裡,項
Figure 02_image061
包括自樣本背面反射的一些影響,但與干涉儀鏡位置z 獨立。
Figure 02_image071
Figure 02_image011
是反射場振幅和相位,它們是藉由光譜干涉單元的可測量特性,而
Figure 02_image089
是鏡反射率,且z 是鏡位置。
因此表明,雖然z獨立項
Figure 02_image061
受到來自樣本背面的反射所影響,但對z相依項
Figure 02_image091
沒有這種影響。 因此,根據本發明,從z相依(OPD相依)量測的強度分佈中提取所需的頂表面反射
Figure 02_image093
參考圖2、3及4,其舉例說明了根據本發明的量測方案。如圖2中本發明的方法的流程圖100所示,提供量測的數據,包括一次量測的鏡反射率Em (
Figure 02_image095
i ) ,以及在不同鏡位置z 取得的幾次量測
Figure 02_image097
圖3說明了量測強度I(λi ) 隨鏡位置z 的變化之變異。該圖具有AC分量IAC ,即在z掃描期間的強度變異分布。圖4舉例說明針對2 (例如IR光譜的)兩個波長λ 1λ 的類似光譜量測。
根據本發明的技術,原始量測數據的這部分(即描述隨OPD數值變化的強度/振幅變異之干涉信號部分)加以擷取並用於直接確定樣本頂部的光譜反射和相位。為此,具有不同的光程差數值(z數值)的四個以上量測I1 I4 可加以執行。
如上所述(上面的方程式(10)),與樣本底部反射相關的光譜干涉量測信號中的僅有部分是z獨立項。 因此,樣本的頂部反射率
Figure 02_image093
及相位
Figure 02_image011
都可以單獨從振幅變化的信號部分加以擷取,即在z變異範圍測量的信號強度分布。忽略量測數據判讀中的強度平均值會完全消除與(去相干)樣本背面反射相關的任何貢獻。
方程式(10)可表示如下:
Figure 02_image099
(11) 其中A是z獨立的常數(即項
Figure 02_image061
,包括來自樣本背面的反射的一些影響,但與干涉儀鏡位置z獨立);且參數B(即
Figure 02_image101
)和參數C(即,
Figure 02_image103
)可用於量測數據的判讀 ,完全忽略常數A。
例如,光譜振幅和相位可以確定為:
Figure 02_image105
回到圖1,控制系統14例如從光譜干涉量測單元12接收原始量測數據,該原始量測數據指示針對樣本與參考臂之間的光程差的至少4個不同數值(例如,鏡28的不同z位置)所量測的光譜干涉信號。數據處理器14C(其分析器30)操作以從原始量測數據擷取在不同的z值範圍變化的振幅的干涉信號部分,並且從該信號部分直接確定頂表面反射
Figure 02_image093
及相位
Figure 02_image011
應當理解,本發明雖然適用於用以從數據分析直接濾除來自非頂部之樣本介面的反射分量之任何光譜干涉系統,但特別有用於IR量測的判讀,若非本發明其不能夠直接擷取頂部響應。
參考圖5,其示意性地顯示利用本發明的量測系統200的特定但非限制性示例。系統200係配置成大致類似於上述圖1的系統10,即包括光譜干涉量測單元12和控制系統14。相同的參考符號用於指示在兩個示例中共用的系統組件。
系統200包括:光源系統216,其在本示例中提供視覺光譜和IR光譜中的寬帶輸入光;檢測系統218,其在本示例中包括用於生成入射在其上的光的光譜數據的光譜儀(光譜光度計)18,並且還包括用於導航到結構上的量測部位及/或收集干涉條紋圖案的成像檢測器19;及一光學系統20,配置為一導光裝置,用於將來自光源216的光引導朝向位於樣本支架上的受測量的樣本/結構S,並導向光程差誘導機構28(例如,在此非限制性例子中的平面參考鏡),並將返回的光引導至檢測系統218。檢測系統218的輸出被傳送(通過有線或無線信號通信)到控制系統14。
光學系統20係配置為定義用於將輸入光Lin 從光源216向量測平面MP(結構平面)傳播的一照明通道,以及用於將受測量的光Lcom 傳播到檢測系統218的一檢測通道。輸入光Lin 係藉由光束分離器/組合器22引導(反射)往物鏡單元26,物鏡單元26將該光引導到光束分離器/組合器24,其將輸入光Lin 分離成樣本和參考光束Lsam 和Lref 。這些光束Lsam 和Lref 分別與樣本S和光程差誘導單元28交互作用,並且各自的反射(散射)L'sam 及L’ref 係藉由分離器/組合器24加以組合成組合光束Lcom 。後者係藉由物鏡單元26和光束分離器/組合器22導向往檢測系統218的檢測單元18和19。為此,光學系統20還包括光束分離器/組合器29,其將返回光束分成(Lcom )1 及(Lcom )2 ,它們分別受導向至成像檢測器19 和光譜感測器(光譜儀)18。
在此非限制性示例中,導光裝置20還選用性地包括:在照明通道中的準直透鏡21,其處於從光源216向光束分離器/組合器22傳播的輸入光Lin 的光學路徑中;以及鏡筒透鏡23,位在檢測通道中,處於傳播到檢測單元18的受測光的光學路徑中。
此外,在該非限制性示例中,光學系統20包括分別位於照明通道和檢測通道中的偏光器32和34。更特別是,輸入光Lin 在其來自光源216的路徑中穿過偏光器32,並且特定偏極化的(例如,線性偏極化)輸入光係藉由光束分離器/組合器22引導至物鏡26,物鏡26將光引導至光束分離器/組合器24。後者將偏極化輸入光分割成樣本和參考偏極化光束Lsam 和 Lref ,並將它們分別引導到結構S和參考鏡28。來自結構和鏡的反射係藉由光束分離器/組合器24組合成具有該特定偏極化的一組合光束Lcom ,其穿過物鏡26和光束分離器/組合器24而至偏光器34,偏光器34僅允許該特定偏極化的光傳播到檢測系統。該組合偏極化光束係藉由光束分離器29分成光部分(Lcom )1 和 (Lcom )2 ,它們分別被引導到成像檢測器19和光譜儀18。光譜儀18分別測量每個波長的強度,且因此由光譜儀產生的測得數據對應於光譜干涉圖案(其也可以由成像檢測器19加以檢測)。
系統200還包括驅動單元33,該驅動單元33係與鏡28和樣本支架其中一者或二者相關聯,用於沿著光軸(即z軸)可控制地移動它/它們,從而引起造成光譜干涉圖案的時間變異之光程差。 需要說明的是,雖然圖1中沒有特別顯示,但是圖1的量測單元12也可以包括類似的驅動單元。
應當理解,使用如上所述所容納和定向的偏光器32和34實際上提供了交叉偏極化方案,這導致了暗場量測模式。還應當理解,當鏡28係不使用時(即,加以移出入射光的光學路徑或藉由使用適當的光閘而加以停用),量測單元12可以作為光譜反射儀操作。因此,相同的量測單元12可以在兩種不同的操作模式之間切換,如光譜干涉儀和光譜反射儀。
控制系統14通常是如上文參考圖1和2所述配置和操作的電腦系統。
應當注意,關於圖1和5的兩個例子,雖然在這些示例中繪示折射光學器件,但可以使用部分或完全反射性的光學器件(基於鏡子)。在寬範圍 IR 的情況下,反射光學器件可能是較佳的。
10:量測系統 12:量測單元 14:控制系統 14A:數據輸入/輸出設施 14B:記憶體 14C:數據處理器 14D:控制器 15:信號部分擷取器設施 16:光源系統 17:頂部表徵設施 18:檢測系統 19:成像檢測器 20:光引導光學器件(光學系統) 21:準直透鏡 22,24:光束分離器/組合器 26:物鏡單元 28:光程差誘導單元(鏡) 29:光束分離器/組合器 30:分析器 36:擬合設施 32,34:偏光器 200:量測系統 216:光源系統 218:檢測系統 220:光學系統
為了更好地理解這裡揭露的申請標的並舉例說明它實際上可以如何執行,現在將參考隨附圖式以非限制性示例為目的來描述實施例,其中:
圖1係與光譜干涉量測單元相關聯的本發明的控制系統的方塊圖;
圖2是本發明的方法的流程圖,用於針對相對於照明的樣本響應的振幅與相位的直接擷取之光譜干涉數據的數據判讀;
圖3和4舉例說明了本發明的原理;及
圖5是本發明的量測系統的具體例子。

Claims (17)

  1. 一種用於光學計量量測的量測系統,該量測系統包含建構成一電腦系統的一控制系統,其包括數據輸入設施、記憶體、及數據處理器,且建構用於與量測數據提供者進行數據通信,以接收原始量測數據,該原始量測數據指示對入射至一樣本的頂部且包含該樣本實質上不吸收的至少一光譜範圍之照射電磁場響應而自該樣本返回之量測的光譜干涉信號,該數據處理器包含一分析器設施,其建構並可操作以執行以下操作: 自該原始量測數據,擷取光譜干涉信號的一部分,其描述在干涉量測期間隨光程差OPD之變化的信號強度的變異,光譜干涉信號的該部分係獨立於對該照射電磁場響應而自該樣本的底部返回的干涉信號;及 自光譜干涉信號的所擷取部分,直接確定來自該樣本的頂部之該照射電磁場的反射之光譜振幅及相位,藉此允許確定 表徵該樣本之頂部的一量測的光譜特徵。
  2. 如請求項1之用於光學計量量測的量測系統,其中該原始量測數據包含:指示對包含IR光譜之該照射電磁場響應而從由矽材料製成的該樣本的頂部及底部返回的光譜干涉信號之數據。
  3. 如請求項1之用於光學計量量測的量測系統,其中該原始量測數據包含:指示對包含IR光譜的該照射電磁場響應而自該樣本的頂部和底部以及一個以上內部介面返回的光譜干涉信號之數據。
  4. 如請求項1之用於光學計量量測的量測系統,包含一量測單元,建構為該量測數據提供者用於產生及提供該原始量測數據,該量測單元係建構並可操作以使用包含該樣本實質上不吸收的至少一光譜範圍之操作波長而對該樣本執行光譜干涉量測。
  5. 如請求項4之用於光學計量量測的量測系統,其中該操作波長包含IR光譜。
  6. 如請求項1之用於光學計量量測的量測系統,其中該控制系統更包含一擬合設施,建構成可操作用以對該量測的光譜特徵應用基於模型的處理,以決定受量測的該樣本的一個以上參數。
  7. 如請求項2之用於光學計量量測的量測系統,其中該控制系統更包含一擬合設施,建構成可操作用以對該量測的光譜特徵應用基於模型的處理,以決定受量測的該樣本的一個以上參數。
  8. 如請求項4之用於光學計量量測的量測系統,其中該控制系統更包含一擬合設施,建構成可操作用以對該量測的光譜特徵應用基於模型的處理,以決定受量測的該樣本的一個以上參數。
  9. 如請求項1之用於光學計量量測的量測系統,其中該原始量測數據包含具有以如下者決定之信號強度分布的光譜干涉量測信號:
    Figure 03_image001
    其中:
    Figure 03_image093
    係來自該頂部的電磁場反射的光譜振幅;
    Figure 03_image005
    係來自該樣本的底部的電磁場反射的光譜振幅;
    Figure 03_image007
    係來自一干涉鏡的電磁場反射;
    Figure 03_image009
    係操作波長;且z係該干涉鏡的位置;且
    Figure 03_image011
    係該量測的光譜干涉信號的光譜相位,該分析器設施係建構成可操作用以擷取干涉信號部分
    Figure 03_image107
    其描述隨該干涉鏡的位置z的變化之信號強度變異,且其係與自該樣本的底部返回的干涉信號獨立,藉此允許直接確定該頂部的該電磁場反射的光譜振幅及相位。
  10. 一種用於光學計量量測的方法,該方法包含: 提供原始量測數據,其指示對入射至一樣本的頂部且包含該樣本實質上不吸收的至少一光譜範圍之照射電磁場響應而自該樣本返回之量測的光譜干涉信號,及 處理該原始量測數據,該處理步驟包含: 自該原始量測數據,擷取光譜干涉信號的一部分,其描述在干涉量測期間隨光程差OPD之變化的信號強度的變異,光譜干涉信號的該部分係獨立於對該照射電磁場響應而自該樣本的底部返回的干涉信號,及 自光譜干涉信號的所擷取部分,直接確定來自該樣本的頂部之該照射電磁場的反射之光譜振幅及相位,藉此確定 表徵該樣本之頂部的一量測的光譜特徵。
  11. 如請求項10之用於光學計量量測的方法,其中該原始量測數據包含:指示對包含IR光譜的該照射電磁場響應而從由矽材料製成的該樣本的頂部及底部返回的光譜干涉信號之數據。
  12. 如請求項10之用於光學計量量測的方法,其中該原始量測數據包含:指示對包含IR光譜的該照射電磁場響應而自該樣本的頂部和底部以及一個以上內部介面返回的光譜干涉信號之數據。
  13. 如請求項10之用於光學計量量測的方法,其中該處理步驟更包含對該量測的光譜特徵應用基於模型的擬合,以決定受量測的該樣本的一個以上參數。
  14. 如請求項10之用於光學計量量測的方法,包含:使用包含該樣本實質上不吸收的至少一光譜範圍的操作波長,對樣本執行光譜干涉量測。
  15. 如請求項14之用於光學計量量測的方法,其中該操作波長包含IR光譜。
  16. 如請求項10之用於光學計量量測的方法,其中該樣本係矽結構。
  17. 如請求項10之用於光學計量量測的方法,其中該原始量測數據包含具有以如下者決定之信號強度分布的光譜干涉量測信號:
    Figure 03_image109
    其中:
    Figure 03_image093
    係來自該頂部的電磁場反射的光譜振幅;
    Figure 03_image005
    係來自該樣本的底部的電磁場反射的光譜振幅;
    Figure 03_image007
    係來自一干涉鏡的電磁場反射;
    Figure 03_image009
    係操作波長;且z係該干涉鏡的位置;且
    Figure 03_image011
    係該量測的光譜干涉信號的光譜相位,干涉信號的所擷取部分係
    Figure 03_image013
    其描述隨該干涉鏡的位置z的變化之信號強度變異,且其係與自該樣本的底部返回的干涉信號獨立,藉此允許直接確定該頂部的電磁場反射的光譜振幅及相位。
TW110106485A 2020-02-24 2021-02-24 光學量測系統及方法 TW202146861A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202062980451P 2020-02-24 2020-02-24
US62/980,451 2020-02-24

Publications (1)

Publication Number Publication Date
TW202146861A true TW202146861A (zh) 2021-12-16

Family

ID=77490752

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110106485A TW202146861A (zh) 2020-02-24 2021-02-24 光學量測系統及方法

Country Status (7)

Country Link
US (1) US11868054B2 (zh)
JP (1) JP2023514421A (zh)
KR (1) KR20220142499A (zh)
CN (1) CN115176147B (zh)
IL (1) IL295619A (zh)
TW (1) TW202146861A (zh)
WO (1) WO2021171293A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024003758A1 (en) * 2022-06-29 2024-01-04 Nova Ltd. Optical critical dimensions (ocd) metrology for thick stacks

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3288672B2 (ja) * 2000-02-17 2002-06-04 科学技術振興事業団 試料の物理的性質の測定装置
US6924898B2 (en) * 2000-08-08 2005-08-02 Zygo Corporation Phase-shifting interferometry method and system
US6888639B2 (en) * 2001-09-24 2005-05-03 Applied Materials, Inc. In-situ film thickness measurement using spectral interference at grazing incidence
US7324214B2 (en) * 2003-03-06 2008-01-29 Zygo Corporation Interferometer and method for measuring characteristics of optically unresolved surface features
US7084984B2 (en) * 2003-07-07 2006-08-01 Zetetic Institute Apparatus and method for high speed scan for detection and measurement of properties of sub-wavelength defects and artifacts in semiconductor and mask metrology
EP1839012B1 (en) * 2005-01-20 2014-05-07 Duke University Methods, systems and computer program products for characterizing structures based on interferometric phase data
US7889355B2 (en) * 2007-01-31 2011-02-15 Zygo Corporation Interferometry for lateral metrology
CN102089616B (zh) * 2008-06-03 2013-03-13 焕·J·郑 干涉缺陷检测和分类
KR102414277B1 (ko) * 2014-04-07 2022-06-29 노바 엘티디. 광학 위상 측정 방법 및 시스템
TWI823344B (zh) * 2015-12-15 2023-11-21 以色列商諾威股份有限公司 用於測量圖案化結構之特性的系統
FR3045813B1 (fr) * 2015-12-22 2020-05-01 Unity Semiconductor Dispositif et procede de mesure de hauteur en presence de couches minces
US10384824B2 (en) 2017-12-21 2019-08-20 Milacron Llc Container and method of manufacturing the same
CN109781015B (zh) * 2019-01-03 2020-04-28 西安交通大学 一种光谱共焦线扫描快速测量物体表面台阶的方法

Also Published As

Publication number Publication date
US11868054B2 (en) 2024-01-09
KR20220142499A (ko) 2022-10-21
US20230124422A1 (en) 2023-04-20
CN115176147B (zh) 2024-05-10
JP2023514421A (ja) 2023-04-05
CN115176147A (zh) 2022-10-11
IL295619A (en) 2022-10-01
WO2021171293A1 (en) 2021-09-02

Similar Documents

Publication Publication Date Title
US11029258B2 (en) Optical phase measurement method and system
US7884947B2 (en) Interferometry for determining characteristics of an object surface, with spatially coherent illumination
TWI428582B (zh) 用於檢測物體表面之特性的干涉裝置以及干涉方法
US20090303493A1 (en) Interferometry for lateral metrology
US10054423B2 (en) Optical method and system for critical dimensions and thickness characterization
US11460415B2 (en) Optical phase measurement system and method
KR101987402B1 (ko) 편광픽셀어레이를 이용한 박막과 후막의 두께 및 삼차원 표면 형상 측정 광학 장치
TW202146861A (zh) 光學量測系統及方法
WO2008151266A2 (en) Interferometry for determining characteristics of an object surface, with spatially coherent illumination
US20230098439A1 (en) Systems and methods for concurrent measurements of interferometric and ellipsometric signals of multi-layer thin films
US20200182607A1 (en) Dual-sensor arrangment for inspecting slab of material
WO2023170692A1 (en) System and method for determining parameters of patterned structures from optical data