TW202146188A - Origin calibration method of manipulator - Google Patents
Origin calibration method of manipulator Download PDFInfo
- Publication number
- TW202146188A TW202146188A TW109119660A TW109119660A TW202146188A TW 202146188 A TW202146188 A TW 202146188A TW 109119660 A TW109119660 A TW 109119660A TW 109119660 A TW109119660 A TW 109119660A TW 202146188 A TW202146188 A TW 202146188A
- Authority
- TW
- Taiwan
- Prior art keywords
- robotic arm
- origin
- calibration method
- dimensional
- robot arm
- Prior art date
Links
Images
Landscapes
- Manipulator (AREA)
- Numerical Control (AREA)
Abstract
Description
本案係關於一種原點校正方法,尤指一種機器手臂的原點校正方法。This case is about an origin calibration method, especially an origin calibration method of a robotic arm.
如今,機器人在各個產業上的應用愈加廣泛。當機器人運作於工作站的過程中,機器人可能因故導致原點移位 (例如斷電或受外力撞擊)。為此,現有應對方式係將機器人撤出工作站,並將機器人移動至原廠或特定環境下進行校正。於機器人完成校正後,再將機器人移動至工作站繼續運作。Today, robots are used more and more widely in various industries. When the robot is operating at the workstation, the robot may shift its origin due to some reasons (such as power failure or external impact). To this end, the existing response method is to withdraw the robot from the workstation and move the robot to the original factory or a specific environment for calibration. After the robot is calibrated, move the robot to the workstation to continue operation.
然而,由於需將機器人移動至原廠或特定環境下方能進行校正,並於校正後再將機器人移回工作站,故移動過程將額外耗費時間及成本,亦導致工作效率降低。再者,當校正後的機器人回到工作站時,需重新對機器人進行教點,同樣將導致工作效率降低。However, since the robot needs to be moved to the original factory or under a specific environment for calibration, and then the robot is moved back to the workstation after calibration, the moving process will take extra time and cost, and also lead to lower work efficiency. Furthermore, when the corrected robot returns to the workstation, it is necessary to re-teach the robot, which will also reduce work efficiency.
因此,如何發展一種可改善上述習知技術之機器手臂的原點校正方法,實為目前迫切之需求。Therefore, it is an urgent need to develop an origin calibration method that can improve the above-mentioned conventional robot arm.
本案之目的在於提供一種機器手臂的原點校正方法,其係於機器手臂的工作環境中設置測量裝置,並利用測量裝置實現對機器手臂的原點校正。因此,於機器手臂的運作過程中,若機器手臂的原點偏移,則可在機器手臂的工作環境中即時對機器手臂進行校正,且在校正完成後無需重新教點。藉此,可節省校正所需的時間及成本,並大幅提升機器手臂的工作效率。The purpose of this case is to provide a method for calibrating the origin of a robotic arm, which is to set a measuring device in the working environment of the robotic arm, and use the measuring device to realize the origin calibration of the robotic arm. Therefore, during the operation of the robot arm, if the origin of the robot arm is offset, the robot arm can be corrected in real time in the working environment of the robot arm, and there is no need to re-teach the point after the calibration is completed. In this way, the time and cost required for calibration can be saved, and the working efficiency of the robot arm can be greatly improved.
為達上述目的,本案提供一種機器手臂的原點校正方法,其中機器手臂運作於工作空間中,工作空間中設置有三維測量裝置,三維測量裝置係架構於測量機器手臂的位置。原點校正方法包含步驟:(a) 依據移動命令控制機器手臂進行移動,並利用三維測量裝置取得機器手臂所到達的複數個參考定位點的三維座標;(b) 在機器手臂的原點產生偏移時,依據移動命令控制機器手臂進行移動,並利用三維測量裝置取得機器手臂所到達的複數個實際定位點的三維座標,並依據複數個實際定位點取得雅可比矩陣;(c) 依據雅可比矩陣、複數個參考定位點的三維座標及複數個實際定位點的三維座標取得機器手臂的轉動角度的偏差量,並依據偏差量取得補正角度值;以及 (d) 依據補正角度值更新機器手臂的轉動角度,以更新機器手臂的原點。To achieve the above purpose, the present application provides a method for calibrating the origin of a robotic arm, wherein the robotic arm operates in a work space, and a three-dimensional measurement device is arranged in the work space, and the three-dimensional measurement device is constructed to measure the position of the robotic arm. The origin calibration method includes steps: (a) controlling the robotic arm to move according to the movement command, and using a three-dimensional measuring device to obtain the three-dimensional coordinates of a plurality of reference positioning points reached by the robotic arm; (b) generating offsets at the origin of the robotic arm. When moving, control the robotic arm to move according to the movement command, and use the three-dimensional measuring device to obtain the three-dimensional coordinates of the multiple actual positioning points reached by the robotic arm, and obtain the Jacobian matrix according to the multiple actual positioning points; (c) According to the Jacobian The matrix, the three-dimensional coordinates of the plurality of reference positioning points and the three-dimensional coordinates of the plurality of actual positioning points obtain the deviation of the rotation angle of the robot arm, and obtain the corrected angle value according to the deviation; and (d) update the rotation angle of the robot arm according to the corrected angle value; Rotate the angle to update the origin of the robotic arm.
體現本案特徵與優點的一些典型實施例將在後段的說明中詳細敘述。應理解的是本案能夠在不同的態樣上具有各種的變化,其皆不脫離本案之範圍,且其中的說明及圖示在本質上係當作說明之用,而非架構於限制本案。Some typical embodiments embodying the features and advantages of the present case will be described in detail in the description of the latter paragraph. It should be understood that this case can have various changes in different aspects, all of which do not depart from the scope of this case, and the descriptions and diagrams therein are essentially for illustration purposes rather than limiting the present case.
第1圖為本案較佳實施例之機器手臂、工作空間及三維測量裝置的立體結構示意圖,第2圖為第1圖之三維測量裝置的立體結構示意圖。如第1圖及第2圖所示,其中係以工作平台2代表機器手臂1運作過程中所在的工作空間,但工作空間的實際態樣並不以此為限。三維測量裝置3設置於工作平台2上並架構於測量機器手臂1的位置。當然,於實際應用中,工作平台2上亦將設置機器手臂1在運作過程中相互動的元件或裝置,此處為便於說明校正過程而僅於圖中示出工作平台2上之三維測量裝置3。機器手臂1可為例如但不限於六軸型機器手臂或SCARA機器手臂。三維測量裝置3包含球形體31、基座32及三個測量模組33。球形體31可拆卸地組接於機器手臂1,且受機器手臂1帶動而同步移動或轉動。三個測量模組33均設置於基座32上,其中每一測量模組33包含測量結構34及位置感測器。三個測量模組33的三個測量結構34分別於X軸、Y軸及Z軸方向上移動,且均與球形體31接觸。位置感測器係架構於在對應之測量結構34被球形體31推動時感測測量結構34的移動距離,其中位置感測器可為例如但不限於由光學尺所構成。FIG. 1 is a schematic three-dimensional structure diagram of a robot arm, a work space and a three-dimensional measuring device according to a preferred embodiment of the present invention, and FIG. 2 is a three-dimensional structure schematic diagram of the three-dimensional measuring device of FIG. 1 . As shown in FIG. 1 and FIG. 2 , the
在機器手臂1的運作過程中,可能因種種意外狀況導致機器手臂1的原點產生偏移 (例如但不限於斷電或受外力撞擊),在此情況下,係執行第3圖所示之原點校正方法來對機器手臂1進行校正。During the operation of the robot arm 1, the origin of the robot arm 1 may be shifted due to various unexpected conditions (such as but not limited to power failure or impact by external force). The origin calibration method is used to calibrate the robot arm 1.
如第3圖所示,第3圖係為本案較佳實施例之機器手臂的原點校正方法的流程示意圖。首先,依據移動命令控制機器手臂1進行移動,並利用三維測量裝置3取得機器手臂1所到達的複數個參考定位點 (步驟S1),其中,移動命令可例如但不限於包含控制機器手臂1以不同的操作動作進行複數次移動。接著,在機器手臂1的原點產生偏移時,依據移動命令控制機器手臂1進行移動,並利用三維測量裝置3取得機器手臂1所到達的複數個實際定位點 (步驟S2),其中實際定位點的數量與參考定位點的數量相同。而後,依據複數個參考定位點及複數個實際定位點計算取得補正資訊 (步驟S3)。最後,依據補正資訊對機器手臂1的原點進行更新 (步驟S4)。藉此,在機器手臂1運作於工作空間的過程中,若機器手臂1的原點偏移,則可在工作空間中即時對機器手臂1進行校正,且在校正完成後無需重新教點。藉此,可節省校正所需的時間及成本,並大幅提升機器手臂1的工作效率。As shown in FIG. 3 , FIG. 3 is a schematic flowchart of the method for calibrating the origin of the robot arm according to the preferred embodiment of the present invention. First, control the robot arm 1 to move according to the movement command, and use the three-
請再參閱第1至3圖所示,上述三個測量結構34係分別沿對應各個軸向(X軸、Y軸及Z軸)的可移動距離以共同定義測量空間,於原點校正方法之步驟S1及步驟S2中,球形體31受機器手臂1帶動而於測量空間中移動,三個位置感測器的感測結果反映球形體31的三維座標。於一些實施例中,原點校正方法之步驟S1及步驟S2中的參考定位點及實際定位點為三維測量裝置3所測量的球形體31之球心的三維座標。Please refer to FIGS. 1 to 3 again, the above-mentioned three
上述球形體31可拆卸地組接於機器手臂1,因此機器手臂1可僅在有校正需求時組接於球形體31,以執行第3圖所示之原點校正方法。更甚者,機器手臂1可僅在需量測定位點時組接於球形體31,具體而言,機器手臂1可僅於原點校正方法之步驟S1及步驟S2中組接於球形體31。The
於一些實施例中,機器手臂1組接於工具4,工具4係受機器手臂1帶動而運作於工作平台2上,其中,當機器手臂1組接於工具4的情況下,機器手臂1亦可同時組接於三維測量裝置3的球形體31。藉此,當機器手臂1進行校正時,無需在校正前拆除工具4,故在校正完成後,無需重新安裝工具4並進行相應調校,從而可節省校正工序及耗費時間,間接提升機器手臂1的工作效率。In some embodiments, the robotic arm 1 is assembled with the
以下將示例說明如何依據複數個參考定位點及複數個實際定位點取得補正資訊。The following is an example to illustrate how to obtain the correction information according to a plurality of reference positioning points and a plurality of actual positioning points.
在步驟S1中,係利用三維測量裝置3測量取得參考定位點的三維座標。在步驟S2中,係利用三維測量裝置3取得實際定位點的三維座標,並依據該複數個實際定位點取得雅可比 (Jacobian) 矩陣。由於機器手臂1的原點產生偏移,對應導致機器手臂1的轉動角度產生偏差,因此當機器手臂1受相同的移動命令控制而進行移動時,所到達的實際定位點會與原先的參考定位點不同,其中,參考定位點、實際定位點及機器手臂1的轉動角度的偏差量之間的關係如等式 (1) 所示。(1)
其中,P
代表實際定位點的三維座標,代表參考定位點的三維座標,i
代表機器手臂1依據移動命令所執行的操作動作的次序,代表雅可比矩陣,代表機器手臂1的轉動角度θ
的偏差量。根據等式 (1) 變化可取得等式 (2)。(2)
因此,在步驟S3中,根據參考定位點的三維座標、實際定位點的三維座標及雅可比矩陣,可計算取得機器手臂1的轉動角度的偏差量,並進一步通過該偏差量取得補正資訊的補正角度值。藉此,在步驟S4中,即可依據補正角度值更新機器手臂1的轉動角度,從而更新機器手臂1的原點,使機器手臂1的參考定位點與實際定位點一致,實現對機器手臂1的校正。In step S1, the three-
綜上所述,本案提供一種機器手臂的原點校正方法,其係於機器手臂的工作環境中設置測量裝置,並利用測量裝置實現對機器手臂的原點校正。因此,於機器手臂的運作過程中,若機器手臂的原點偏移,則可在機器手臂的工作環境中即時對機器手臂進行校正,且在校正完成後無需重新教點。藉此,可節省校正所需的時間及成本,並大幅提升機器手臂的工作效率。另外,在機器手臂組接於工具的情況下,機器手臂亦可同時組接於三維測量裝置的球形體。藉此,當機器手臂進行校正時,無需在校正前拆除工具,故在校正完成後,無需重新安裝工具對進行相應調校,從而可節省校正工序及耗費時間,間接提升機器手臂的工作效率。To sum up, the present application provides a method for calibrating the origin of a robotic arm, which is based on setting a measuring device in the working environment of the robotic arm, and using the measuring device to realize the origin calibration of the robotic arm. Therefore, during the operation of the robot arm, if the origin of the robot arm is offset, the robot arm can be corrected in real time in the working environment of the robot arm, and there is no need to re-teach the point after the calibration is completed. In this way, the time and cost required for calibration can be saved, and the working efficiency of the robot arm can be greatly improved. In addition, when the robot arm is connected to the tool, the robot arm can also be connected to the spherical body of the three-dimensional measuring device at the same time. In this way, when the robot arm is calibrated, it is not necessary to remove the tool before calibration. Therefore, after the calibration is completed, there is no need to reinstall the tool to adjust accordingly, which can save the calibration process and time-consuming, and indirectly improve the work efficiency of the robot arm.
須注意,上述僅是為說明本案而提出之較佳實施例,本案不限於所述之實施例,本案之範圍由如附專利申請範圍決定。且本案得由熟習此技術之人士任施匠思而為諸般修飾,然皆不脫如附專利申請範圍所欲保護者。It should be noted that the above-mentioned preferred embodiments are only proposed to illustrate the present case, and the present case is not limited to the described embodiments, and the scope of the present case is determined by the scope of the appended patent application. And this case can be modified by Shi Jiangsi, a person who is familiar with this technology, but none of them can be protected as attached to the scope of the patent application.
1:機器手臂 2:工作平台 3:三維測量裝置 31:球形體 32:基座 33:測量模組 34:測量結構 4:工具 S1、S2、S3、S4:原點校正方法的步驟1: Robot arm 2: Work Platform 3: 3D measuring device 31: Sphere 32: Pedestal 33: Measurement module 34: Measuring Structure 4: Tools S1, S2, S3, S4: Steps of the origin calibration method
第1圖為本案較佳實施例之機器手臂、工作空間及三維測量裝置的立體結構示意圖。FIG. 1 is a schematic three-dimensional structure diagram of a robot arm, a work space and a three-dimensional measurement device according to a preferred embodiment of the present invention.
第2圖為第1圖之三維測量裝置的立體結構示意圖。FIG. 2 is a schematic three-dimensional structure diagram of the three-dimensional measuring device of FIG. 1 .
第3圖係為本案較佳實施例之機器手臂的原點校正方法的流程示意圖。FIG. 3 is a schematic flowchart of a method for calibrating the origin of a robot arm according to a preferred embodiment of the present invention.
S1、S2、S3、S4:原點校正方法的步驟S1, S2, S3, S4: Steps of the origin calibration method
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109119660A TWI746004B (en) | 2020-06-11 | 2020-06-11 | Origin calibration method of manipulator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109119660A TWI746004B (en) | 2020-06-11 | 2020-06-11 | Origin calibration method of manipulator |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI746004B TWI746004B (en) | 2021-11-11 |
TW202146188A true TW202146188A (en) | 2021-12-16 |
Family
ID=79907439
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109119660A TWI746004B (en) | 2020-06-11 | 2020-06-11 | Origin calibration method of manipulator |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI746004B (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006086021A2 (en) * | 2004-10-25 | 2006-08-17 | University Of Dayton | Method and system to provide improved accuracies in multi-jointed robots through kinematic robot model parameters determination |
JP4298757B2 (en) * | 2007-02-05 | 2009-07-22 | ファナック株式会社 | Robot mechanism calibration apparatus and method |
JP6487385B2 (en) * | 2016-07-20 | 2019-03-20 | ファナック株式会社 | Robot origin position calibration apparatus and method |
-
2020
- 2020-06-11 TW TW109119660A patent/TWI746004B/en active
Also Published As
Publication number | Publication date |
---|---|
TWI746004B (en) | 2021-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109794938B (en) | Robot hole-making error compensation device and method suitable for curved surface structure | |
US9517560B2 (en) | Robot system and calibration method of the robot system | |
JP5670416B2 (en) | Robot system display device | |
CN112105484B (en) | Robot kinematics parameter self-calibration method, system and storage device | |
EP2350750B1 (en) | A method and an apparatus for calibration of an industrial robot system | |
US9002516B2 (en) | Calibration method for tool center point of a robot manipulator | |
US11273554B2 (en) | Method and device for evaluating calibration precision | |
CN109822577A (en) | A kind of mobile robot's high-precision processing method of view-based access control model servo | |
JP2013218684A (en) | Device for correcting error for cnc (computer numerical control) machine tool | |
US20220105640A1 (en) | Method Of Calibrating A Tool Of An Industrial Robot, Control System And Industrial Robot | |
US7957834B2 (en) | Method for calculating rotation center point and axis of rotation, method for generating program, method for moving manipulator and positioning device, and robotic system | |
US11745349B2 (en) | Origin calibration method of manipulator | |
TWI708667B (en) | Method and device and system for calibrating position and orientation of a motion manipulator | |
JP7097722B2 (en) | How to restore the location information of the robot | |
CN112762822B (en) | Mechanical arm calibration method and system based on laser tracker | |
TWI710441B (en) | Coordinate calibration method of manipulator | |
JP2002096232A (en) | Controlling method for machine tool | |
TWI746004B (en) | Origin calibration method of manipulator | |
CN113799115B (en) | Coordinate correction method of robot arm | |
JP7496936B2 (en) | Optimizing calibration using constraints between different coordinate frames. | |
KR100499090B1 (en) | Device and Method for Kinematic Calibration of Robots | |
CN112276942B (en) | Consistency compensation method for robot arm | |
US20200171666A1 (en) | Mechanism-parameter-calibration method for robotic arm system | |
Kong et al. | An experimental comparison for the accuracy improvement of a 6-PSS parallel manipulator by choosing different sets of measurement data | |
CN115122316A (en) | Calibration method and calibration system for tool center point of robot |