TW202145254A - Information processing system and method - Google Patents

Information processing system and method Download PDF

Info

Publication number
TW202145254A
TW202145254A TW109117919A TW109117919A TW202145254A TW 202145254 A TW202145254 A TW 202145254A TW 109117919 A TW109117919 A TW 109117919A TW 109117919 A TW109117919 A TW 109117919A TW 202145254 A TW202145254 A TW 202145254A
Authority
TW
Taiwan
Prior art keywords
sleep
physiological
training
module
information processing
Prior art date
Application number
TW109117919A
Other languages
Chinese (zh)
Other versions
TWI748485B (en
Inventor
陳濘宏
陳嶽鵬
范佐搖
黃健瑋
戴聞
郭昶甫
林士為
莊立邦
Original Assignee
長庚醫療財團法人林口長庚紀念醫院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 長庚醫療財團法人林口長庚紀念醫院 filed Critical 長庚醫療財團法人林口長庚紀念醫院
Priority to TW109117919A priority Critical patent/TWI748485B/en
Application granted granted Critical
Publication of TW202145254A publication Critical patent/TW202145254A/en
Publication of TWI748485B publication Critical patent/TWI748485B/en

Links

Images

Abstract

An information processing system and method thereof applied in an environment using artificial intelligence to deal with sleep disorders is disclosed.

Description

一種資訊處理系統及其方法 An information processing system and method thereof

本發明係有關於資訊系統及方法,更詳而言之,係有關於一種應用於利用人工智慧處理睡眠疾患的環境中的資訊處理系統及其方法,可經由訓練卷積神經網路CNN(Convolutional Neural Network)方式而產生出估測模型。 The present invention relates to an information system and method, and more specifically, to an information processing system and method used in an environment where artificial intelligence is used to treat sleep disorders. Neural Network) method to generate the estimation model.

現代人因面臨各種生活環境因素,壓力不斷累積,加上需長時間工作並無法藉由旅遊、運動等方式排解壓力,因而常引發失眠或精神渙散等症狀。充足的睡眠亦是另一種有效釋放壓力的方式,其中睡眠品質的好壞將決定睡眠之質量,有好的睡眠品質將會有效提升生活品質。因此,了解自我的睡眠品質及睡眠狀態,進而找出影響睡眠品質與狀態的原因進而改善它,為目前常用的手段。 Faced with various living environment factors, modern people are constantly under pressure, and they have to work for a long time and cannot relieve stress by means of travel, exercise, etc., which often lead to symptoms such as insomnia or mental laxity. Adequate sleep is also another effective way to release stress. The quality of sleep will determine the quality of sleep, and good sleep quality will effectively improve the quality of life. Therefore, to understand the quality of sleep and sleep state of oneself, and then find out the reasons that affect the quality and state of sleep, and then improve it, is a commonly used method at present.

現有辨識睡眠狀態的方式大多利用睡眠多項生理檢查儀PSG(PolySomnoGraphy)。然而,習知的睡眠多項生理檢查儀需由患者至睡眠醫學中心檢查並紀錄睡眠生理數據,紀錄產生約6~8小時資料,後續人力判讀資料需要花費2~4小時,相當耗費人力及時間,且得到的資料往往正確率及敏感性都不足,甚至有錯誤判讀的情形。 Most of the existing methods for identifying sleep states use a sleep multi-physiological examination instrument PSG (PolySomnoGraphy). However, the conventional sleep multi-physiological examination instrument requires the patient to go to the sleep medical center to check and record the sleep physiological data. The record generates about 6-8 hours of data, and the subsequent manual interpretation of the data takes 2-4 hours, which is quite labor-intensive and time-consuming. And the obtained data are often insufficient in accuracy and sensitivity, and even misinterpreted.

台灣公開/公告號M570119「睡眠品質監測與運算分析系統」係揭露一種睡眠品質監測與運算分析系統,該系統透過設於舒眠裝置之複 數動態感測器來感測使用者於睡眠狀態的頭部動態,且所監測之數值經由運算單元進行體動次數、睡眠效率、睡眠飽和度、晚睡程度、入睡程度以及熟睡程度之運算分析,以獲致一睡眠品質評分,藉此,提供使用者簡單易理解之分析結果,並協助使用者進一步提升自身之睡眠品質。 Taiwan Public/Announcement No. M570119 "Sleep Quality Monitoring and Operational Analysis System" discloses a sleep quality monitoring and operation analysis system, which uses a The digital motion sensor is used to sense the head motion of the user in the sleep state, and the monitored value is analyzed by the calculation unit for the number of body movements, sleep efficiency, sleep saturation, late sleep degree, sleep onset degree and deep sleep degree. , in order to obtain a sleep quality score, thereby providing users with easy-to-understand analysis results and helping users to further improve their own sleep quality.

台灣公開/公告號M553614「睡眠監測及輔助系統」係揭露一種睡眠監測及輔助系統,該系統包含結合於睡眠用品之舒眠裝置及偵測模組,且偵測模組具有感測頭部動作之動態感測器,而能偵測身體與枕頭的姿態及壓力分佈變化,且透過不同感測器可結合於睡眠用品與周遭環境上而能感測於睡眠狀態的生理指數、頭部動態以及睡眠環境條件,所監測之數值經由運算單元進行運算分析後,逐步構成睡眠周期特徵模組以提供睡眠建議規劃,並藉舒眠裝置之遠紅外線功能來增進頸部血液循環,藉以提升使用者的睡眠品質,且本系統可驗證中西醫或其他方式對失眠治療的有效性並輔助分析檢討及調整對策。 Taiwan Publication/Announcement No. M553614 "Sleep Monitoring and Assisting System" discloses a sleep monitoring and assisting system. The system includes a sleeping device and a detection module combined with sleep products, and the detection module is capable of sensing head movements. The dynamic sensor can detect changes in the posture and pressure distribution of the body and pillow, and through different sensors can be combined with sleep products and the surrounding environment to sense the physiological index of sleep state, head movement and Sleep environment conditions, after the monitored values are analyzed by the computing unit, a sleep cycle feature module is gradually formed to provide sleep advice and planning, and the far-infrared function of the sleep device is used to improve the blood circulation of the neck, so as to improve the user's health. Sleep quality, and the system can verify the effectiveness of traditional Chinese and Western medicine or other methods for insomnia treatment and assist in analysis, review and adjustment of countermeasures.

台灣公開/公告號I559901「睡眠檢測系統和方法」係揭露一種睡眠檢測系統。此睡眠檢測系統包括:一感測器,用以量測一使用者之一心跳值;一量測裝置,用以接收上述心跳值,並測量上述使用者之一活動量,以及根據上述心跳值、上述活動量以及上述使用者之一個人參數,計算一能量代謝值;以及一接收裝置,用以由上述量測裝置接收上述能量代謝值,並根據上述能量代謝值,產生上述使用者之一睡眠分析結果,並顯示上述睡眠分析結果。 Taiwan Publication/Announcement No. I559901 "Sleep Detection System and Method" discloses a sleep detection system. The sleep detection system includes: a sensor for measuring a heartbeat value of a user; a measuring device for receiving the heartbeat value and measuring an activity level of the user, and according to the heartbeat value , the above-mentioned activity amount and a personal parameter of the above-mentioned user, to calculate an energy metabolism value; and a receiving device for receiving the above-mentioned energy metabolism value from the above-mentioned measuring device, and according to the above-mentioned energy metabolism value, generate a sleep of the above-mentioned user Analyze the results and display the above sleep analysis results.

台灣公開/公告號I571239「睡眠品質偵測裝置」係揭露一種睡眠品質偵測裝置,包括一呼吸氣流感測器及一電路板。該呼吸氣流感測器用以偵測使用者的鼻腔呼吸氣流及口腔呼吸氣流任一者;當該使用者的呼吸氣流是通過鼻腔時,該呼吸氣流感測器偵測鼻腔呼吸氣流,當該使用 者的呼吸氣流是通過口腔時,該呼吸氣流感測器偵測口腔呼吸氣流。該電路板用以處理偵測到的呼吸氣流訊號並儲存該呼吸氣流訊號及處理結果。本發明係將呼吸氣流感測器及電路板整合成為一單一裝置,以避免使用者身體貼附多條電氣連線,進而提高睡眠檢測的舒適度及準確性,並且避免睡眠中電氣連線纏繞所造成的潛在危險。 Taiwan Publication/Announcement No. I571239 "Sleep Quality Detection Device" discloses a sleep quality detection device, including a respiratory air sensor and a circuit board. The respiratory airflow sensor is used to detect any one of the nasal breathing airflow and the oral respiratory airflow of the user; when the user's respiratory airflow passes through the nasal cavity, the respiratory airflow sensor detects the nasal breathing airflow, and when the user's respiratory airflow passes through the nasal cavity When the person's respiratory airflow is passing through the oral cavity, the respiratory airflow sensor detects the oral respiratory airflow. The circuit board is used for processing the detected respiratory airflow signal and storing the respiratory airflow signal and the processing result. The present invention integrates the respiratory airflow sensor and the circuit board into a single device, so as to prevent the user from attaching multiple electrical connections to the body, thereby improving the comfort and accuracy of sleep detection, and avoiding the entanglement of electrical connections during sleep. the potential hazard caused.

台灣公開/公告號I260979「睡眠呼吸障礙之檢測裝置及治療裝置」係揭露一種治療系統,其無需仰賴於設有終夜睡眠腦波室(sleep lab)般大規模設備之設施中的住院睡眠檢查,而可藉確實且簡潔之結構實行選出氧氣療法有效之患者及確認氧氣療法實施後之治療效果,而可作為一使醫療從業人員得知待測患者顯現睡眠呼吸障礙以及因該睡眠呼吸障礙引起之交感神經亢進狀態的檢測裝置及治療系統;其具有生體資訊監視裝置,該裝置係設有主處理裝置及列印器,而可作成一同時印有用以得知發生睡眠呼吸障礙之呼吸氣流變遷圖及交感神經亢進之變遷圖的報告。 Taiwan Publication/Announcement No. I260979 "Detection and Treatment Device for Sleep-disordered Breathing Disorders" discloses a treatment system that does not need to rely on in-hospital sleep examinations in facilities equipped with large-scale equipment such as sleep labs. With a reliable and concise structure, it is possible to select patients who are effective in oxygen therapy and to confirm the therapeutic effect after the implementation of oxygen therapy, which can be used as a means for medical practitioners to know that the patient to be tested has sleep disordered breathing and the symptoms caused by the sleep disordered breathing. A detection device and a treatment system for sympathetic hyperactivity state; it has a biological information monitoring device, the device is provided with a main processing device and a printer, and can be made to simultaneously print a change of respiratory airflow to know the occurrence of sleep disordered breathing Reports of graphs and graphs of changes in sympathetic hyperactivity.

所以如何能解決,目前利用人力花費2~4小時耗費人力及時間來判讀由患者至睡眠醫學中心檢查並紀錄而產生的6~8小時睡眠生理數據資料,且人力判讀出的結果往往正確率及敏感性都不足,甚至有錯誤判讀的情形;如何能利用人工智能以多項生理睡眠檢查來辨識各項睡眠狀態,使用深度學習演算法訓練人工智能模型進行PSG(polysomnography)判讀,並可針對不同任務進行參數優化;如何能利用深度學習演算法經由訓練卷積神經網路CNN(Convolutional Neural Network)方式而產生出估測模型,且深度學習演算法具有特徵搜尋功能,可應用於不同數量PSG通道(channel)進行非線性特徵擷取,擷取後的特徵可用來對目標進行歸納;如何能以最簡單/方便的睡眠狀態檢測型式,讓睡眠檢測者(病患)無須在醫院/醫學中心的睡眠研究/治療中心才能以睡眠多項生理檢查儀PSG來進行睡眠生理多項狀態 的檢測,而是能以可攜式睡眠生理檢測裝置(例如,個人可攜式)及/或居家睡眠檢測(HSAT)裝置即能隨身/居家方便地對睡眠生理多項狀態進行檢測,以提供睡眠生理狀態的判讀所需為較重要而非全部的多項生理訊號通道(channel)的生理訊號;以及,對於PSG生理訊號的處理而言,如何能在,例如,多達十幾項甚或二十項,生理訊號通道(channel)中檢選出對睡眠檢測者睡眠生理狀態進行檢測/判讀時為較重要的一些生理訊號通道並摒除/剔除無貢獻通道,而保留特殊貢獻通道且並未降低睡眠檢測者睡眠生理狀態的判讀準確度,能以較少的生理訊號通道而得出準確的睡眠檢測者睡眠生理狀態判讀結果,能使用深度學習演算法訓練人工智能模型進行PSG(polysomnography)判讀,可以針對不同任務進行參數優化,搜尋通道重要性,可剔除無貢獻通道道,可保留特殊貢獻通道,僅須提供較重要而非全部的生理訊號通道的生理訊號即可以人工智慧之卷積神經網路CNN所產生出的估測模型,並非為利用人力,而能準確判讀並得出睡眠檢測者睡眠生理狀態的判讀結果;在此,以上種種所述,均是待解決的問題。 So how can we solve it? At present, it takes 2~4 hours to interpret the 6~8 hours of sleep physiological data generated by the patient to the sleep medicine center for inspection and recording, and the results of the human interpretation are often accurate. The sensitivity is not enough, and there are even cases of wrong interpretation; how to use artificial intelligence to identify various sleep states with multiple physiological sleep examinations, use deep learning algorithms to train artificial intelligence models for PSG (polysomnography) interpretation, and can target different tasks. Parameter optimization; how to use the deep learning algorithm to generate the estimation model by training the Convolutional Neural Network (CNN), and the deep learning algorithm has the feature search function, which can be applied to different numbers of PSG channels ( channel) for nonlinear feature extraction, and the extracted features can be used to generalize the target; how to use the simplest/convenient type of sleep state detection so that sleep detectors (patients) do not need to sleep in the hospital/medical center The research/treatment center can use the sleep polyphysiology device PSG to perform multiple states of sleep physiology Instead, a portable sleep physiology detection device (for example, a personal portable) and/or a home sleep detection (HSAT) device can be used to conveniently detect multiple states of sleep physiology on the go or at home, so as to provide sleep The interpretation of physiological state requires physiological signals of more important but not all physiological signal channels; and, for the processing of PSG physiological signals, how can there be, for example, as many as a dozen or even twenty items , select some physiological signal channels that are more important when detecting/interpreting the sleep physiological state of sleep detectors from the physiological signal channels, and exclude/eliminate non-contributing channels, while retaining special contributing channels without reducing sleep detectors. The accuracy of interpretation of sleep physiological state can obtain accurate interpretation results of sleep physiological state of sleep monitor with fewer physiological signal channels, and can use deep learning algorithm to train artificial intelligence model for PSG (polysomnography) interpretation. The task is to optimize parameters, search for the importance of channels, eliminate non-contributing channels, and reserve special contribution channels. It is only necessary to provide physiological signals of more important but not all physiological signal channels. The artificial intelligence convolutional neural network CNN The generated estimation model does not use human power, but can accurately interpret and obtain the interpretation result of the sleep physiological state of the sleep monitor. Here, the above mentioned problems are all problems to be solved.

本發明之主要目的便是在於提供一種資訊處理系統及其方法,係應用於利用人工智慧處理睡眠疾患的環境中,利用本發明之資訊處理系統以進行資訊處理方法時,首先,進行訊號接收動作,資訊處理系統之處理模組將接收多筆訓練生理訊號,其中,該些多筆訓練生理訊號係由為睡眠檢測裝置的睡眠多項生理檢查儀PSG(例如,位於醫院睡眠中心)及/或可攜式睡眠生理檢測裝置(例如,個人可攜式)及/或居家睡眠檢測(HSAT)裝置檢測/接收多位睡眠檢測者(患者)的睡眠生理多項狀態所對應生成之;接著,進行睡眠生理資料產生動作,將參考由該處理模組展現於螢幕上的 該些多位睡眠檢測者的該些多筆訓練生理訊號而產生出多筆多項睡眠生理資料;繼而,進行預定訊號處理動作,處理模組將針對該些多筆訓練生理訊號的每一睡眠生理訊號,進行一預定訊號處理;進而,進行估測模型產生動作,該處理模組根據經預定訊號處理動作後的該些多筆訓練生理訊號及該些多筆多項睡眠生理資料,訓練卷積神經網路CNN(Convolutional Neural Network)模組以產生出一估測模型。利用本發明之資訊處理系統及其方法所產生出的估測模型,可估測目標睡眠檢測者(患者)的生理狀態以產生多項對應於睡眠狀態的睡眠相關生理資料,處理模組配合估測模型可判斷出睡眠狀態是否符合一預定警示,若是,則處理模組經由輸出單元輸出訊息,若否,則直接結束處理程序。 The main purpose of the present invention is to provide an information processing system and a method thereof, which are applied to an environment where artificial intelligence is used to treat sleep disorders. When using the information processing system of the present invention to perform the information processing method, first, a signal receiving operation is performed. , the processing module of the information processing system will receive a plurality of training physiological signals, wherein the multiple training physiological signals are obtained by a sleep multi-physiological examination instrument PSG (for example, located in a hospital sleep center) and/or a sleep detection device. A portable sleep physiology detection device (for example, a personal portable device) and/or a home sleep detection (HSAT) device detects/receives multiple sleep physiology states of a plurality of sleep detectors (patients) and generates corresponding sleep physiology states; then, perform sleep physiology The data-generating action will refer to the data displayed on the screen by the processing module The multiple training physiological signals of the multiple sleep detectors generate multiple multiple sleep physiological data; then, a predetermined signal processing action is performed, and the processing module will target each sleep physiological data of the multiple training physiological signals The signal is subjected to a predetermined signal processing; further, the estimation model is performed to generate an action, and the processing module trains the convolutional neural network according to the multiple training physiological signals and the multiple multiple sleep physiological data after the predetermined signal processing action Network CNN (Convolutional Neural Network) module to generate an estimation model. Using the estimation model generated by the information processing system and the method of the present invention, the physiological state of the target sleep monitor (patient) can be estimated to generate a plurality of sleep-related physiological data corresponding to the sleep state, and the processing module cooperates with the estimation The model can determine whether the sleep state complies with a predetermined warning, and if so, the processing module outputs a message through the output unit, and if not, the processing procedure is directly terminated.

本發明之再一目的便是在於提供一種資訊處理系統及其方法,係應用於利用人工智慧處理睡眠疾患的環境中,能利用人工智能以多項生理睡眠檢查來辨識各項睡眠狀態,使用深度學習演算法訓練人工智能模型進行PSG(polysomnography)判讀,並可針對不同任務進行參數優化;以及,能利用深度學習演算法經由訓練卷積神經網路CNN(Convolutional Neural Network)方式而產生出估測模型,且深度學習演算法具有特徵搜尋功能,可應用於不同數量PSG通道(channel)進行非線性特徵擷取,擷取後的特徵可用來對目標進行歸納。 Another object of the present invention is to provide an information processing system and a method thereof, which are applied in an environment where artificial intelligence is used to deal with sleep disorders, which can use artificial intelligence to identify various sleep states with multiple physiological sleep examinations, and use deep learning. The algorithm trains the artificial intelligence model for PSG (polysomnography) interpretation, and can optimize parameters for different tasks; and can use the deep learning algorithm to generate the estimation model by training the convolutional neural network CNN (Convolutional Neural Network) method , and the deep learning algorithm has a feature search function, which can be applied to different numbers of PSG channels for nonlinear feature extraction, and the extracted features can be used to generalize the target.

本發明之另一目的便是在於提供一種資訊處理系統及其方法,係應用於利用人工智慧處理睡眠疾患的環境中,利用人工智能以多項生理睡眠檢查辨識各項睡眠狀態,使用深度學習演算法訓練人工智能模型進行PSG判讀,可以針對不同任務進行參數優化,而臨床應用目標有:呼吸中止症、失眠、以及肢動症,而引入自動判讀演算法可節約人力成本,提升臨床醫師提供的醫療品質,提升睡眠技師的醫療服務。 Another object of the present invention is to provide an information processing system and a method thereof, which are applied in an environment where artificial intelligence is used to treat sleep disorders. Training artificial intelligence models for PSG interpretation can optimize parameters for different tasks, and the clinical application targets are: apnea, insomnia, and limb movement disorders. The introduction of automatic interpretation algorithms can save labor costs and improve the medical treatment provided by clinicians. quality, and improve medical services for sleep technologists.

本發明之又一目的便是在於提供一種資訊處理系統及其方法,係應用於利用人工智慧處理睡眠疾患的環境中,能以最簡單/方便的睡眠狀態檢測型式,讓睡眠檢測者(病患)無須在醫院/醫學中心的睡眠研究/治療中心才能以睡眠多項生理檢查儀PSG來進行睡眠生理多項狀態的檢測,而是能以可攜式睡眠生理檢測裝置(例如,個人可攜式)及/或居家睡眠檢測(HSAT)裝置即能隨身/居家方便地對睡眠生理多項狀態進行檢測,以提供睡眠生理狀態的判讀所需為較重要而非全部的多項生理訊號通道(channel)的生理訊號。 Another object of the present invention is to provide an information processing system and a method thereof, which are used in an environment where artificial intelligence is used to treat sleep disorders, and can use the simplest/convenient sleep state detection method to allow sleep detectors (patients) ) does not need to be in the sleep research/treatment center of a hospital/medical center to use the sleep polyphysiology instrument PSG to detect multiple states of sleep physiology, but can use a portable sleep physiology detection device (for example, a personal portable) and / or Home Sleep Detection (HSAT) device can conveniently detect multiple states of sleep physiology on the go or at home, so as to provide physiological signals of multiple physiological signal channels (channels) that are more important but not all required for the interpretation of sleep physiological state. .

本發明之另一目的便是在於提供一種資訊處理系統及其方法,係應用於利用人工智慧處理睡眠疾患的環境中,對於PSG生理訊號的處理而言,如何能在,例如,多達十幾項甚或二十項,生理訊號通道(channel)中檢選出對睡眠檢測者睡眠生理狀態進行檢測/判讀時為較重要的一些生理訊號通道並摒除/剔除無貢獻通道,而保留特殊貢獻通道且並未降低睡眠檢測者睡眠生理狀態的判讀準確度,能以較少的生理訊號通道而得出準確的睡眠檢測者睡眠生理狀態判讀結果,能使用深度學習演算法訓練人工智能模型進行PSG(polysomnography)判讀,可以針對不同任務進行參數優化,搜尋通道重要性,可剔除無貢獻通道道,可保留特殊貢獻通道,僅須提供較重要而非全部的生理訊號通道的生理訊號即可以人工智慧之卷積神經網路CNN所產生出的估測模型,並非為利用人力,而能準確判讀並得出睡眠檢測者睡眠生理狀態的判讀結果。 Another object of the present invention is to provide an information processing system and a method thereof, which are applied in an environment where artificial intelligence is used to treat sleep disorders. For the processing of PSG physiological signals, how can, for example, as many as ten Items or even 20 items, select some physiological signal channels that are more important when detecting/interpreting the sleep physiological state of the sleep monitor from the physiological signal channels, and exclude/eliminate the non-contributing channels, while retaining the special contributing channels and The accuracy of the interpretation of the sleep physiological state of the sleep monitor is not reduced, and the accurate interpretation of the sleep physiological state of the sleep monitor can be obtained with fewer physiological signal channels, and the deep learning algorithm can be used to train the artificial intelligence model for PSG (polysomnography) Interpretation, parameter optimization can be performed for different tasks, the importance of channels can be searched, non-contributing channels can be eliminated, and special contribution channels can be reserved, and only the physiological signals of more important but not all physiological signal channels can be provided. Convolution of artificial intelligence The estimation model generated by the neural network CNN is not for the use of manpower, but can accurately interpret and obtain the interpretation results of the sleep physiological state of the sleep monitor.

根據以上所述之目的,本發明提供一種資訊處理系統,該資訊處理系統包含處理模組、卷積神經網路CNN(Convolutional Neural Network)模組、以及資料庫。 According to the above-mentioned purpose, the present invention provides an information processing system, which includes a processing module, a Convolutional Neural Network (CNN) module, and a database.

處理模組,該處理模組將接收多筆訓練生理訊號,其中,該些多筆訓練生理訊號係由為睡眠檢測裝置的睡眠多項生理檢查儀(polysomnography)(例如,位於醫院睡眠中心)及/或可攜式睡眠生理檢測裝置(例如,個人可攜式)及/或居家睡眠檢測(HSAT)裝置檢測/接收多位睡眠檢測者(患者)的睡眠生理多項狀態所對應生成之;將參考由該處理模組展現於螢幕上的該些多位睡眠檢測者的該些多筆訓練生理訊號而產生出多筆多項睡眠生理資料;另,該處理模組將針對該些多筆訓練生理訊號的每一睡眠生理訊號,進行一預定訊號處理;再,該處理模組根據經預定訊號處理動作後的該些多筆訓練生理訊號及該些多筆多項睡眠生理資料,訓練卷積神經網路CNN(Convolutional Neural Network)模組以產生出一估測模型。 A processing module, the processing module will receive a plurality of training physiological signals, wherein the multiple training physiological signals are obtained from a sleep polysomnography (for example, in a hospital sleep center) and/or a sleep detection device. Or a portable sleep physiology detection device (for example, personal portable) and/or a home sleep detection (HSAT) device detects/receives the sleep physiology of multiple sleep monitors (patients) corresponding to multiple states; refer to by The processing module displays the multiple training physiological signals of the multiple sleep detectors on the screen to generate multiple multiple sleep physiological data; in addition, the processing module will target the multiple training physiological signals for the multiple training physiological signals. Each sleep physiological signal is subjected to a predetermined signal processing; then, the processing module trains the convolutional neural network CNN according to the multiple training physiological signals and the multiple multiple sleep physiological data after the predetermined signal processing action (Convolutional Neural Network) module to generate an estimated model.

卷積神經網路CNN(Convolutional Neural Network)模組,該卷積神經網路CNN模組使用深度學習演算法訓練人工智能模型進行PSG(polysomnography)判讀,可以針對不同任務進行參數優化;其中,該深度學習演算法具有特徵搜尋功能,可應用於不同數量PSG通道進行非線性特徵擷取,擷取後的特徵用來對目標進行歸納;而臨床應用目標有:呼吸中止症、失眠、肢動症;在此,引入該預估模式的自動判讀演算法可節約人力成本,提升臨床醫師提供的醫療品質,提升睡眠技師的醫療服務;在此,使用卷積神經網路CNN模組(深度學習模型),可辨識PSG整晚睡眠紀錄,可輸出呼吸中止指數apnea hypopnea index(AHI)、睡眠效率sleep efficiency、呼吸障礙指數(RDI)、打鼾數(Snore counts)等等資訊。 Convolutional Neural Network CNN (Convolutional Neural Network) module, the convolutional neural network CNN module uses deep learning algorithms to train artificial intelligence models for PSG (polysomnography) interpretation, and can optimize parameters for different tasks; among them, the The deep learning algorithm has a feature search function, which can be applied to different numbers of PSG channels for nonlinear feature extraction, and the extracted features are used to summarize the target; and the clinical application targets are: apnea, insomnia, limb movement disorder ; Here, the introduction of the automatic interpretation algorithm of this estimation mode can save labor costs, improve the medical quality provided by clinicians, and improve the medical services of sleep technicians; here, the use of convolutional neural network CNN module (deep learning model ), can identify PSG sleep records all night, and can output information such as apnea hypopnea index (AHI), sleep efficiency, breathing disorder index (RDI), snore counts and so on.

以卷積神經網路CNN模組使用深度學習演算法而產生出估測模型而言: In terms of the estimation model generated by the convolutional neural network CNN module using the deep learning algorithm:

1)使用多層卷積層(convolution layers)組成一個密集層(Dense Block),許多密集層可以藉由轉移層(Transition Block)連接,最後經過線性層(Linear Block)輸出,Softmax函數(Softmax regression)運算而輸出。 1) Use multi-layer convolution layers to form a dense layer (Dense Block), many dense layers can be connected by the transition layer (Transition Block), and finally output through the linear layer (Linear Block), Softmax function (Softmax regression) operation And output.

2)資料向前傳遞(Forward-propagation)經過各層可逐漸萃取重要特徵,於密集層時特徵會萃取重要特徵,這些特徵會於轉移層疊加(concatenate),此疊加效果較一般傳統的CNN會保留上游特徵。 2) Forward-propagation of data can gradually extract important features through each layer. In the dense layer, the features will extract important features. These features will be superimposed (concatenate) in the transfer layer, and this superposition effect will be retained compared to the general traditional CNN. upstream features.

3)每次訓練結果會藉由向後傳遞(Back-propagation)更新參數,藉此修正錯誤辨識的參數。 3) Each training result will update the parameters by back-propagation, thereby correcting the wrongly identified parameters.

4)CNN層為單通道特徵萃取,訓練或辨識時會對所有一個以上的通道做特徵萃取。估測模型之模型最後輸出會經過注意力層(Attention)將權重重新分配,增強通道之間與時間序列前後的關聯性。 4) The CNN layer is single-channel feature extraction, and feature extraction is performed for all or more than one channel during training or identification. The final output of the estimation model will go through the Attention layer to redistribute the weights to enhance the correlation between channels and before and after the time series.

5)以正確率(Accuracy),操作特征曲線(ROC),曲線下面積(AUC),F1 Scores,敏感性Sensitivity,特異性(Specificity)為模型衡量標準。 5) Take the accuracy rate (Accuracy), operating characteristic curve (ROC), area under the curve (AUC), F1 Scores, Sensitivity, specificity (Specificity) as the model metrics.

以估測模型之運作而言: In terms of the operation of the estimation model:

1)輸出權重,提供選擇通道道的依據。 1) Output weight, which provides the basis for selecting channels.

2)配合Grad-Cam解釋模型分類依據。 2) Cooperate with Grad-Cam to explain the model classification basis.

3)配合遞減/加方式搜尋通道重要性,可剔除無貢獻通道,可保留特殊貢獻通道。 3) With the decreasing/adding method to search for the importance of the channel, the non-contributing channel can be eliminated, and the special contributing channel can be reserved.

4)針對中止症/失眠/肢動症分類目的選擇重要通道。 4) Select important channels for the purpose of classification of abstinence/insomnia/limb movement disorders.

5)演算機制可容忍資料劇烈縮放(30Hz-512Hz)。 5) The algorithm can tolerate severe scaling of data (30Hz-512Hz).

6)設計了深度學習專用的壓縮法,降低為穿戴裝置的可攜式睡眠生理檢測裝置(例如,個人可攜式)及/或居家睡眠檢測(HSAT)裝置的容量限制與頻寬要求。 6) A compression method dedicated to deep learning is designed to reduce the capacity limitation and bandwidth requirements of portable sleep physiology detection devices (eg, personal portable) and/or home sleep detection (HSAT) devices that are wearable devices.

7)模型訓練依據巨量資料,涵蓋廣泛變異因子。 7) Model training is based on a huge amount of data, covering a wide range of variation factors.

以估測模型功能而言: In terms of estimating model functionality:

1)可判別經典中止症/失眠/肢動症辨識做特化訓練。 1) Can distinguish classic abstinence / insomnia / limb movement disorder and do specialized training.

2)可達成及時偵測,紀錄後偵測。 2) Real-time detection can be achieved, and detection after recording.

3)配合警報系統可設置長期無人自動提醒。 3) With the alarm system, long-term unmanned automatic reminders can be set.

4)模型可調整敏感性sensitivity升高或降低需求。 4) The model can adjust the sensitivity to increase or decrease demand.

5)模型參數少佈署容易。 5) It is easy to deploy with few model parameters.

6)回饋使用者判讀依據。 6) Feedback the user's interpretation basis.

另,利用本發明之資訊處理系統及其方法所產生出的估測模型,目標睡眠檢測者(患者)能以可攜式睡眠生理檢測裝置(例如,個人可攜式)及/或居家睡眠檢測(HSAT)裝置對睡眠生理多項狀態進行檢測,提供睡眠生理狀態的判讀所需為較重要而非全部的多項生理訊號通道(channel)的生理訊號,因而,可估測目標睡眠檢測者(患者)的生理狀態而產生多項對應於睡眠狀態的睡眠相關生理資料,處理模組配合估測模型可判斷出睡眠狀態是否符合一預定警示,若是,則處理模組經由輸出單元輸出訊息,若否,則直接結束處理程序。 In addition, using the estimation model generated by the information processing system and the method of the present invention, the target sleep monitor (patient) can use a portable sleep physiological monitoring device (eg, personal portable) and/or home sleep monitoring The (HSAT) device detects multiple states of sleep physiology, and provides physiological signals of multiple physiological signal channels (channels) that are more important but not all required for the interpretation of sleep physiological states. Therefore, the target sleep detector (patient) can be estimated. A plurality of sleep-related physiological data corresponding to the sleep state are generated. The processing module cooperates with the estimation model to determine whether the sleep state conforms to a predetermined warning. If so, the processing module outputs a message through the output unit. If not, then End the handler directly.

資料庫,該資料庫配合處理模組、卷積神經網路CNN模組共同運作,可供處理模組、卷積神經網路CNN模組存取所需的資料/數據。 Database, the database works together with the processing module and the convolutional neural network CNN module, and can be used by the processing module and the convolutional neural network CNN module to access the required data/data.

利用本發明之資訊處理系統以進行資訊處理方法的過程時,首先,進行訊號接收動作,處理模組將接收多筆訓練生理訊號,其中,該些多筆訓練生理訊號係由為睡眠檢測裝置的睡眠多項生理檢查儀(polysomnography)(例如,位於醫院睡眠中心)及/或可攜式睡眠生理檢測裝置(例如,個人可攜式)及/或居家睡眠檢測(HSAT)裝置檢測/接收多位睡眠檢測者(患者)的睡眠生理多項狀態所對應生成之。 When using the information processing system of the present invention to perform the process of the information processing method, firstly, the signal receiving operation is performed, and the processing module will receive multiple training physiological signals, wherein the multiple training physiological signals are generated by the sleep detection device. Sleep polysomnography (eg, in hospital sleep centers) and/or portable sleep physiology detection devices (eg, personal portable) and/or home sleep detection (HSAT) devices detect/receive polysomnography It is generated corresponding to multiple states of sleep physiology of the examiner (patient).

接著,進行睡眠生理資料產生動作,將參考由該處理模組展現於螢幕上的該些多位睡眠檢測者的該些多筆訓練生理訊號而產生出多筆多項睡眠生理資料。 Then, the action of generating sleep physiological data is performed to generate multiple pieces of sleep physiological data with reference to the multiple training physiological signals of the multiple sleep detectors displayed on the screen by the processing module.

繼而,進行預定訊號處理動作,處理模組將針對該些多筆訓練生理訊號的每一睡眠生理訊號,進行一預定訊號處理。 Then, a predetermined signal processing operation is performed, and the processing module will perform a predetermined signal processing for each sleep physiological signal of the plurality of training physiological signals.

進而,進行估測模型產生動作,該處理模組根據經預定訊號處理動作後的該些多筆訓練生理訊號及該些多筆多項睡眠生理資料,訓練卷積神經網路CNN模組以產生出一估測模型。 Then, the estimation model generation action is performed, and the processing module trains the convolutional neural network CNN module according to the multiple training physiological signals and the multiple multiple multiple sleep physiological data after the predetermined signal processing action to generate the output signal. an estimation model.

另,視本發明的實際施行狀況,利用本發明之資訊處理系統及其方法所產生出的估測模型,可進行遠端睡眠狀況檢測流程,首先,進行遠端資料提供動作,目標睡眠檢測者(患者)能以可攜式睡眠生理檢測裝置(例如,個人可攜式)及/或居家睡眠檢測(HSAT)裝置對睡眠生理多項狀態進行檢測,並經由有線或無線網路,將睡眠生理狀態的判讀所需為較重要而非全部的多項生理訊號通道(channel)的生理訊號提供至本發明之資訊處理系統;繼之,進行訊號處理動作,處理模組對待分析的該些生理訊號進行預定訊號處理;進而,進行睡眠資料產生動作,處理模組根據進行過預定處理的待分析的該些生理訊號,使用估測模型估測目標患者的生理狀態以產生多項睡眠生理資料;再之,進行睡眠狀態判斷動作,處理模組判斷睡眠狀態是否符合預定警示條件,若是,則處理模組經由輸出單元輸出訊息,若否,則直接結束處理程序。 In addition, depending on the actual implementation of the present invention, using the estimation model generated by the information processing system and the method of the present invention, the remote sleep state detection process can be performed. (patient) can use a portable sleep physiology detection device (eg, personal portable) and/or a home sleep detection (HSAT) device to detect multiple states of sleep physiology, and through wired or wireless network, sleep physiological state The interpretation needs to provide the physiological signals of more important but not all physiological signal channels to the information processing system of the present invention; then, the signal processing action is performed, and the processing module pre-determines the physiological signals to be analyzed Signal processing; further, performing sleep data generation, the processing module uses an estimation model to estimate the physiological state of the target patient according to the physiological signals to be analyzed that have undergone predetermined processing to generate a plurality of sleep physiological data; and then, performing In the sleep state judging action, the processing module judges whether the sleep state meets the predetermined warning condition. If so, the processing module outputs a message through the output unit. If not, the processing procedure is directly ended.

為使熟悉該項技藝人士瞭解本發明之目的、特徵及功效,茲藉由下述具體實施例,並配合所附之圖式,對本發明詳加說明如後: In order to make those skilled in the art understand the purpose, features and effects of the present invention, the present invention is described in detail as follows by means of the following specific embodiments and in conjunction with the accompanying drawings:

1:資訊處理系統 1: Information processing system

2:處理模組 2: Processing modules

3:卷積神經網路CNN模組 3: Convolutional Neural Network CNN Module

4:資料庫 4: Database

5:電子裝置 5: Electronic device

6:螢幕 6: Screen

7:睡眠生理技師 7: Sleep Physiologist

101 102 103 104:步驟 101 102 103 104: Steps

201 202 203 204:步驟 201 202 203 204: Steps

301 302 303 304:步驟 301 302 303 304: Steps

401 402 403 404:步驟 401 402 403 404: Steps

第1圖為一系統示意圖,用以顯示說明本發明之資訊處理系統之系統架構、以及運作情形; FIG. 1 is a schematic diagram of a system for illustrating the system structure and operation of the information processing system of the present invention;

第2圖為一流程圖,用以顯示說明利用如第1圖中之本發明之資訊處理系統以進行資訊處理方法的流程步驟; FIG. 2 is a flow chart for illustrating the flow steps of the information processing method using the information processing system of the present invention as shown in FIG. 1;

第3圖為一示意圖,用以顯示說明本發明之資訊處理系統的一實施例、以及運作情形; FIG. 3 is a schematic diagram for illustrating an embodiment of the information processing system of the present invention and its operation;

第4圖為訊號示意圖,用以顯示說明於第3圖的實施例中的共為17個通道的各別之生理訊號; FIG. 4 is a schematic diagram of a signal, which is used to display the respective physiological signals of 17 channels in total in the embodiment of FIG. 3;

第5圖為一示意圖,用以顯示說明於第3圖中的實施例的卷積神經網路CNN模組之CNN模型訓練方式及組成; Fig. 5 is a schematic diagram for showing the CNN model training method and composition of the convolutional neural network CNN module of the embodiment described in Fig. 3;

第6圖為一流程圖,用以顯示說明利用如第3圖中之本發明之資訊處理系統的一實施例以進行資訊處理方法的一流程步驟;以及 FIG. 6 is a flowchart for illustrating a process step of an information processing method using an embodiment of the information processing system of the present invention as shown in FIG. 3; and

第7圖為一流程圖,用以顯示說明利用如第3圖中之本發明之資訊處理系統的一實施例以進行資訊處理方法的另一流程步驟。 FIG. 7 is a flowchart for illustrating another process step of an information processing method using an embodiment of the information processing system of the present invention as shown in FIG. 3 .

第1圖為一系統示意圖,用以顯示說明本發明之資訊處理系統之系統架構、以及運作情形。如第1圖中所示之,資訊處理系統1包含處理模組2、卷積神經網路CNN(Convolutional Neural Network)模組3、以及資料庫4。 FIG. 1 is a schematic diagram of a system for illustrating the system structure and operation of the information processing system of the present invention. As shown in FIG. 1 , the information processing system 1 includes a processing module 2 , a Convolutional Neural Network (CNN) module 3 , and a database 4 .

處理模組2,該處理模組2將接收多筆訓練生理訊號,其中,該些多筆訓練生理訊號係由為睡眠檢測裝置的睡眠多項生理檢查儀(polysomnography)(例如,位於醫院睡眠中心)及/或可攜式睡眠生理檢測裝置(例如,個人可攜式)及/或居家睡眠檢測(HSAT)裝置檢測/接收多位睡眠 檢測者(患者)的睡眠生理多項狀態所對應生成之;將參考由該處理模組2展現於螢幕上的該些多位睡眠檢測者的該些多筆訓練生理訊號而產生出多筆多項睡眠生理資料,在此,例如,可由具有睡眠生理知識的技藝人士來予以施行,例如,睡眠生理技師,睡眠障礙診療醫師或其他專業人士等等;另,該處理模組2將針對該些多筆訓練生理訊號的每一睡眠生理訊號,進行一預定訊號處理;再,該處理模組2根據經預定訊號處理動作後的該些多筆訓練生理訊號及該些多筆多項睡眠生理資料,訓練卷積神經網路CNN模組3以產生出一估測模型。 A processing module 2, the processing module 2 will receive a plurality of training physiological signals, wherein the multiple training physiological signals are obtained by a sleep polysomnography (for example, located in a hospital sleep center), which is a sleep detection device. and/or portable sleep physiology detection devices (eg, personal portable) and/or home sleep detection (HSAT) devices to detect/receive multiple sleep The multiple sleep physiological states of the examiner (patient) are correspondingly generated; multiple sleep physiological signals will be generated with reference to the multiple training physiological signals of the multiple sleep examiners displayed on the screen by the processing module 2 Physiological data, for example, can be implemented by skilled persons with knowledge of sleep physiology, such as sleep physiology technicians, sleep disorder physicians or other professionals, etc. In addition, the processing module 2 will target these multiple Each sleep physiological signal of the training physiological signal is subjected to a predetermined signal processing; then, the processing module 2 generates a training volume according to the multiple training physiological signals and the multiple multiple sleep physiological data after the predetermined signal processing action. The neural network CNN module 3 is integrated to generate an estimation model.

卷積神經網路CNN模組3,該卷積神經網路CNN模組3使用深度學習演算法訓練人工智能模型進行PSG(polysomnography)判讀,可以針對不同任務進行參數優化;其中,該深度學習演算法具有特徵搜尋功能,可應用於不同數量PSG通道進行非線性特徵擷取,擷取後的特徵用來對目標進行歸納;而臨床應用目標有:呼吸中止症、失眠、肢動症;在此,引入該預的自動判讀演算法可節約人力成本,提升臨床醫師提供的醫療品質,提升睡眠技師的醫療服務;在此,使用卷積神經網路CNN模組3(深度學習模型),可辨識PSG整晚睡眠紀錄,可輸出呼吸中止指數apnea hypopnea index(AHI)、睡眠效率sleep efficiency、呼吸障礙指數(RDI)、打鼾數(Snore counts)等等資訊。 Convolutional neural network CNN module 3, the convolutional neural network CNN module 3 uses a deep learning algorithm to train an artificial intelligence model for PSG (polysomnography) interpretation, and can optimize parameters for different tasks; among them, the deep learning algorithm The method has a feature search function, which can be applied to different numbers of PSG channels for nonlinear feature extraction, and the extracted features are used to summarize the target; and the clinical application targets are: apnea, insomnia, limb movement disorder; here , the introduction of this pre-automatic interpretation algorithm can save labor costs, improve the medical quality provided by clinicians, and improve the medical services of sleep technicians; here, using convolutional neural network CNN module 3 (deep learning model), can identify PSG sleep records all night, can output apnea hypopnea index (AHI), sleep efficiency, sleep efficiency, breathing disorder index (RDI), snoring counts (Snore counts) and other information.

以卷積神經網路CNN模組3使用深度學習演算法而產生出估測模型而言: As far as the convolutional neural network CNN module 3 uses the deep learning algorithm to generate the estimation model:

(1)使用多層卷積層(convolution layers)組成一個密集層(Dense Block),許多密集層可以藉由轉移層(Transition Block)連接,最後經過線性層(Linear Block)輸出,Softmax函數(Softmax regression)運算而輸出。 (1) Use multi-layer convolution layers to form a dense layer (Dense Block), many dense layers can be connected by the transition layer (Transition Block), and finally output through the linear layer (Linear Block), Softmax function (Softmax regression) operation and output.

(2)資料向前傳遞(Forward-propagation)經過各層可逐漸萃取重要特徵,於密集層時特徵會萃取重要特徵,這些特徵會於轉移層疊加(concatenate),此疊加效果較一般傳統的CNN會保留上游特徵。 (2) Forward-propagation can gradually extract important features through each layer. In the dense layer, the features will extract important features. These features will be concatenated in the transfer layer. Upstream features are preserved.

(3)每次訓練結果會藉由向後傳遞(Back-propagation)更新參數,藉此修正錯誤辨識的參數。 (3) Each training result will update the parameters by back-propagation, thereby correcting the wrongly identified parameters.

(4)CNN層為單通道特徵萃取,訓練或辨識時會對所有一個以上的通道做特徵萃取。估測模型之模型最後輸出會經過注意力層(Attention)將權重重新分配,增強通道之間與時間序列前後的關聯性。 (4) The CNN layer is single-channel feature extraction, and feature extraction is performed on all channels during training or identification. The final output of the estimation model will go through the Attention layer to redistribute the weights to enhance the correlation between channels and before and after the time series.

(5)以正確率(Accuracy),操作特征曲線(ROC),曲線下面積(AUC),F1 Scores,敏感性Sensitivity,特異性(Specificity)為模型衡量標準。 (5) Take the accuracy rate (Accuracy), operating characteristic curve (ROC), area under the curve (AUC), F1 Scores, sensitivity Sensitivity, specificity (Specificity) as model metrics.

以估測模型之運作而言: In terms of the operation of the estimation model:

(1)輸出權重,提供選擇通道道的依據。 (1) The output weight provides the basis for selecting the channel.

(2)配合Grad-Cam解釋模型分類依據。 (2) Cooperate with Grad-Cam to explain the model classification basis.

(3)配合遞減/加方式搜尋通道重要性,可剔除無貢獻通道,可保留特殊貢獻通道。 (3) With the decreasing/adding method to search for the importance of channels, non-contributing channels can be eliminated, and special contributing channels can be reserved.

(4)針對中止症/失眠/肢動症分類目的選擇重要通道。 (4) Select important channels for the purpose of classification of abstinence/insomnia/limb movement disorders.

(5)演算機制可容忍資料劇烈縮放(30Hz-512Hz)。 (5) The algorithm can tolerate severe scaling of data (30Hz-512Hz).

(6)設計了深度學習專用的壓縮法,降低為穿戴裝置的可攜式睡眠生理檢測裝置(例如,個人可攜式)及/或居家睡眠檢測(HSAT)裝置的容量限制與頻寬要求。 (6) A compression method dedicated to deep learning is designed to reduce the capacity limitation and bandwidth requirements of portable sleep physiology detection devices (eg, personal portable) and/or home sleep detection (HSAT) devices that are wearable devices.

(7)模型訓練依據巨量資料,涵蓋廣泛變異因子。 (7) Model training is based on a huge amount of data, covering a wide range of variation factors.

以估測模型功能而言: In terms of estimating model functionality:

(1)可判別經典中止症/失眠/肢動症辨識做特化訓練。 (1) Specialized training can be used to distinguish classic abstinence/insomnia/extremity movement disorder.

(2)可達成及時偵測,紀錄後偵測。 (2) Real-time detection can be achieved, and detection after recording.

(3)配合警報系統可設置長期無人自動提醒。 (3) With the alarm system, long-term unattended automatic reminders can be set.

(4)模型可調整敏感性sensitivity升高或降低需求。 (4) The model can adjust the sensitivity to increase or decrease demand.

(5)模型參數少佈署容易。 (5) It is easy to deploy with few model parameters.

(6)回饋使用者判讀依據。 (6) Feedback the user's interpretation basis.

另,利用本發明之資訊處理系統1及其方法所產生出的估測模型,目標睡眠檢測者(患者)能以可攜式睡眠生理檢測裝置(例如,個人可攜式)及/或居家睡眠檢測(HSAT)裝置對睡眠生理多項狀態進行檢測,提供睡眠生理狀態的判讀所需為較重要而非全部的多項生理訊號通道(channel)的生理訊號,因而,可估測目標睡眠檢測者(患者)的生理狀態而產生多項對應於睡眠狀態的睡眠相關生理資料,處理模組2配合估測模型可判斷出睡眠狀態是否符合一預定警示,若是,則處理模組2經由輸出單元輸出訊息,若否,則直接結束處理程序,在此,輸出單元係為資訊處理系統1所在之系統/裝置的輸出/顯示裝置,例如,用以顯示輸出訊息之螢幕,可列印輸出訊息的列印裝置,或是其他將輸出訊息予以輸出或顯示或警示的電子輸出/顯示裝置。 In addition, using the estimation model generated by the information processing system 1 and the method thereof of the present invention, the target sleep monitor (patient) can use a portable sleep physiology monitoring device (eg, personal portable) and/or sleep at home The detection (HSAT) device detects multiple states of sleep physiology, and provides physiological signals of a plurality of physiological signal channels (channels) that are more important but not all required for the interpretation of sleep physiological states. ) to generate a plurality of sleep-related physiological data corresponding to the sleep state. The processing module 2 cooperates with the estimation model to determine whether the sleep state conforms to a predetermined warning. If so, the processing module 2 outputs a message through the output unit. If not, the processing procedure is directly ended. Here, the output unit is the output/display device of the system/device where the information processing system 1 is located, for example, a screen for displaying output messages, a printing device for printing output messages, Or other electronic output/display devices that output or display or alert output messages.

資料庫4,該資料庫4配合處理模組2、卷積神經網路CNN模組3共同運作,可供處理模組2、卷積神經網路CNN模組3存取所需的資料/數據。 Database 4, the database 4 works together with the processing module 2 and the convolutional neural network CNN module 3, and can provide the processing module 2 and the convolutional neural network CNN module 3 to access the required data/data .

本發明之資訊處理系統及其方法,能利用人工智能以多項生理睡眠檢查來辨識各項睡眠狀態,使用深度學習演算法訓練人工智能模型進行PSG(polysomnography)判讀,並可針對不同任務進行參數優化;以及,能利用深度學習演算法經由訓練卷積神經網路CNN方式而產生出估測模型,且深度學習演算法具有特徵搜尋功能,可應用於不同數量PSG通道(channel)進行非線性特徵擷取,擷取後的特徵可用來對目標進行歸納。 The information processing system and method of the present invention can use artificial intelligence to identify various sleep states with multiple physiological sleep examinations, use deep learning algorithms to train artificial intelligence models for PSG (polysomnography) interpretation, and can optimize parameters for different tasks ; And, an estimation model can be generated by training a convolutional neural network CNN method using a deep learning algorithm, and the deep learning algorithm has a feature search function, which can be applied to different numbers of PSG channels for nonlinear feature extraction. The extracted features can be used to generalize the target.

再,本發明之資訊處理系統及其方法,利用人工智能以多項生理睡眠檢查辨識各項睡眠狀態,使用深度學習演算法訓練人工智能模型進行PSG判讀,可以針對不同任務進行參數優化,而臨床應用目標有:呼吸中止症、失眠、以及肢動症,而引入自動判讀演算法可節約人力成本,提升臨床醫師提供的醫療品質,提升睡眠技師的醫療服務。 Furthermore, the information processing system and method of the present invention use artificial intelligence to identify various sleep states with multiple physiological sleep examinations, and use deep learning algorithms to train an artificial intelligence model for PSG interpretation, which can optimize parameters for different tasks, and has clinical applications. The goals are: apnea, insomnia, and limb movement disorders, and the introduction of automatic interpretation algorithms can save labor costs, improve the quality of medical care provided by clinicians, and improve the medical services of sleep technicians.

又,本發明之資訊處理系統及其方法,能以最簡單/方便的睡眠狀態檢測型式,讓睡眠檢測者(病患)無須在醫院/醫學中心的睡眠研究/治療中心才能以睡眠多項生理檢查儀PSG來進行睡眠生理多項狀態的檢測,而是能以可攜式睡眠生理檢測裝置(例如,個人可攜式)及/或居家睡眠檢測(HSAT)裝置即能隨身/居家方便地對睡眠生理多項狀態進行檢測,以提供睡眠生理狀態的判讀所需為較重要而非全部的多項生理訊號通道(channel)的生理訊號。 In addition, the information processing system and method of the present invention can use the simplest/convenient sleep state detection type, so that the sleep monitor (patient) does not need to go to the sleep research/treatment center of the hospital/medical center to perform multiple physiological examinations of sleep. The PSG is used to detect multiple states of sleep physiology, but a portable sleep physiology detection device (for example, a personal portable) and/or a home sleep detection (HSAT) device can be used to conveniently carry out the sleep physiology test at home. A plurality of states are detected to provide physiological signals of a plurality of physiological signal channels (channels) that are more important but not all required for the interpretation of the sleep physiological state.

另,本發明之資訊處理系統及其方法,對於PSG生理訊號的處理而言,如何能在,例如,多達十幾項甚或二十項,生理訊號通道(channel)中檢選出對睡眠檢測者睡眠生理狀態進行檢測/判讀時為較重要的一些生理訊號通道並摒除/剔除無貢獻通道,而保留特殊貢獻通道且並未降低睡眠檢測者睡眠生理狀態的判讀準確度,能以較少的生理訊號通道而得出準確的睡眠檢測者睡眠生理狀態判讀結果,能使用深度學習演算法訓練人工智能模型進行PSG(polysomnography)判讀,可以針對不同任務進行參數優化,搜尋通道重要性,可剔除無貢獻通道道,可保留特殊貢獻通道,僅須提供較重要而非全部的生理訊號通道的生理訊號即可以人工智慧之卷積神經網路CNN所產生出的估測模型,並非為利用人力,而能準確判讀並得出睡眠檢測者睡眠生理狀態的判讀結果。 In addition, for the information processing system and method of the present invention, for the processing of PSG physiological signals, how can, for example, as many as a dozen or even twenty physiological signal channels be selected for sleep detectors? When detecting/interpreting sleep physiological state, some physiological signal channels are more important, and non-contributing channels are excluded/excluded, while special contributing channels are reserved and the accuracy of sleep physiological state interpretation of sleep detectors is not reduced. Accurate interpretation results of sleep physiological state of sleep detectors can be obtained by using signal channels. Deep learning algorithms can be used to train artificial intelligence models for PSG (polysomnography) interpretation. Parameters can be optimized for different tasks. The importance of search channels can be eliminated without contribution. Channels, special contribution channels can be reserved, only the physiological signals of the more important but not all physiological signal channels can be provided, and the estimation model generated by the convolutional neural network CNN of artificial intelligence can be obtained. Accurately interpret and obtain the interpretation results of the sleep physiological state of the sleep monitor.

視實施狀況,處理模組2及/或卷積神經網路CNN模組3,係由電子硬體、韌體、以及軟體的至少其中之一所組成,配合資訊處理系統1所在之系統/裝置的處理器(未圖示之)而進行動作;而資料庫4則位於資訊處理系統1所在之系統/裝置的儲存模組(未圖示之)。 Depending on the implementation situation, the processing module 2 and/or the convolutional neural network CNN module 3 are composed of at least one of electronic hardware, firmware, and software, and cooperate with the system/device where the information processing system 1 is located. The processor (not shown) of the data processing system 4 is located in the storage module (not shown) of the system/device where the information processing system 1 is located.

第2圖為一流程圖,用以顯示說明利用如第1圖中之本發明之資訊處理系統以進行資訊處理方法的流程步驟。如第2圖中所示之,首先,於步驟101,首先,進行訊號接收動作;處理模組2將接收多筆訓練生理訊號,其中,該些多筆訓練生理訊號係由為睡眠檢測裝置的睡眠多項生理檢查儀(polysomnography)(例如,位於醫院睡眠中心)及/或可攜式睡眠生理檢測裝置(例如,個人可攜式)及/或居家睡眠檢測(HSAT)裝置檢測/接收多位睡眠檢測者(患者)的睡眠生理多項狀態所對應生成之,並進到步驟102。 FIG. 2 is a flow chart for illustrating the flow steps of an information processing method using the information processing system of the present invention as shown in FIG. 1 . As shown in FIG. 2, firstly, in step 101, first, the signal receiving operation is performed; the processing module 2 will receive multiple training physiological signals, wherein the multiple training physiological signals are generated by the sleep detection device. Sleep polysomnography (eg, in a hospital sleep center) and/or a portable sleep physiology detection device (eg, a personal portable) and/or a home sleep detection (HSAT) device to detect/receive polysomnography The multiple states of sleep physiology of the examiner (patient) are correspondingly generated, and the process proceeds to step 102 .

於步驟102,進行睡眠生理資料產生動作;將參考由該處理模組2展現於螢幕上的該些多位睡眠檢測者的該些多筆訓練生理訊號而產生出多筆多項睡眠生理資料,在此,例如,可由具有睡眠生理知識的技藝人士來予以施行,例如,睡眠生理技師,睡眠障礙診療醫師或其他專業人士等等,並進到步驟103。 In step 102, the action of generating sleep physiological data is performed; multiple pieces of sleep physiological data are generated with reference to the multiple training physiological signals of the multiple sleep detectors displayed on the screen by the processing module 2. This, for example, can be performed by a skilled person with knowledge of sleep physiology, such as a sleep physiology technician, a sleep disorder physician, or other professionals, etc., and proceed to step 103 .

於步驟103,進行預定訊號處理動作;處理模組2將針對該些多筆訓練生理訊號的每一睡眠生理訊號,進行一預定訊號處理,並進到步驟104。 In step 103 , a predetermined signal processing operation is performed; the processing module 2 performs a predetermined signal processing for each sleep physiological signal of the plurality of training physiological signals, and then proceeds to step 104 .

於步驟104,進行估測模型產生動作,該處理模組2根據經預定訊號處理動作後的該些多筆訓練生理訊號及該些多筆多項睡眠生理資料,訓練卷積神經網路CNN模組3以產生出一估測模型。 In step 104, the estimation model generation action is performed, and the processing module 2 trains the convolutional neural network CNN module according to the multiple training physiological signals and the multiple multiple sleep physiological data after the predetermined signal processing action 3 to generate an estimation model.

另,視本發明的實際施行狀況,利用本發明之資訊處理系統1及其方法所產生出的估測模型,可進行遠端睡眠狀況檢測流程,首先,進 行遠端資料提供動作,目標睡眠檢測者(患者)能以可攜式睡眠生理檢測裝置(例如,個人可攜式)及/或居家睡眠檢測(HSAT)裝置對睡眠生理多項狀態進行檢測,並經由有線或無線網路,將睡眠生理狀態的判讀所需為較重要而非全部的多項生理訊號通道(channel)的生理訊號提供至本發明之資訊處理系統1;繼之,進行訊號處理動作,處理模組2對待分析的該些生理訊號進行預定訊號處理;進而,進行睡眠資料產生動作,處理模組2根據進行過預定處理的待分析的該些生理訊號,使用估測模型估測目標患者的生理狀態以產生多項睡眠生理資料;再之,進行睡眠狀態判斷動作,處理模組2判斷睡眠狀態是否符合預定警示條件,若是,則處理模組2經由輸出單元輸出訊息,若否,則直接結束處理程序。 In addition, depending on the actual implementation of the present invention, using the estimation model generated by the information processing system 1 and the method thereof of the present invention, the remote sleep state detection process can be performed. Performing remote data providing actions, the target sleep monitor (patient) can use a portable sleep physiology detection device (for example, a personal portable) and/or a home sleep detection (HSAT) device to detect multiple states of sleep physiology, and Provide physiological signals of a plurality of physiological signal channels (channels) that are more important but not all required for the interpretation of sleep physiological state to the information processing system 1 of the present invention through a wired or wireless network; then, perform signal processing operations, The processing module 2 performs predetermined signal processing on the physiological signals to be analyzed; further, performs sleep data generation, and the processing module 2 uses an estimation model to estimate the target patient according to the physiological signals to be analyzed that have undergone the predetermined processing. The physiological state of the device is used to generate a plurality of sleep physiological data; then, the sleep state judgment action is performed, and the processing module 2 determines whether the sleep state meets the predetermined warning condition. If so, the processing module 2 outputs a message through the output unit, End the handler.

第3圖為一示意圖,用以顯示說明本發明之資訊處理系統的一實施例、以及運作情形。如第3圖中所示之,資訊處理系統1包含處理模組2、卷積神經網路CNN模組3、以及資料庫4,其中,資訊處理系統1係位於,例如,醫院睡眠中心的電子裝置5中,電子裝置5可為,例如,伺服器,處理模組2及/或卷積神經網路CNN模組3,係由電子硬體、韌體、以及軟體的至少其中之一所組成,配合資訊處理系統1所在之電子裝置5的處理器而進行動作,而資料庫4則位於資訊處理系統1所在之電子裝置5的儲存模組。 FIG. 3 is a schematic diagram for illustrating an embodiment of the information processing system of the present invention and its operation. As shown in FIG. 3, the information processing system 1 includes a processing module 2, a convolutional neural network CNN module 3, and a database 4, wherein the information processing system 1 is located in, for example, an electronic device in a hospital sleep center. In the device 5, the electronic device 5 can be, for example, a server, a processing module 2 and/or a convolutional neural network CNN module 3, which is composed of at least one of electronic hardware, firmware, and software. , which cooperates with the processor of the electronic device 5 where the information processing system 1 is located, and the database 4 is located in the storage module of the electronic device 5 where the information processing system 1 is located.

處理模組2,該處理模組2將接收多筆訓練生理訊號,其中,該些多筆訓練生理訊號係由為睡眠檢測裝置的睡眠多項生理檢查儀(polysomnography)(例如,位於醫院睡眠中心)及/或可攜式睡眠生理檢測裝置(例如,個人可攜式)及/或居家睡眠檢測(HSAT)裝置檢測/接收多位睡眠檢測者(患者)的睡眠生理多項狀態所對應生成之;將參考由該處理模組2展現於螢幕6上的該些多位睡眠檢測者的該些多筆訓練生理訊號而產生出多筆多項睡眠生理資料,在此,例如,可由具有睡眠生理知識的技藝人士7 來予以施行,例如,睡眠生理技師,睡眠障礙診療醫師或其他專業人士等等;另,該處理模組2將針對該些多筆訓練生理訊號的每一睡眠生理訊號,進行一預定訊號處理;再,該處理模組2根據經預定訊號處理動作後的該些多筆訓練生理訊號及該些多筆多項睡眠生理資料,訓練卷積神經網路CNN模組3以產生出一估測模型。 A processing module 2, the processing module 2 will receive a plurality of training physiological signals, wherein the multiple training physiological signals are obtained by a sleep polysomnography (for example, in a hospital sleep center), which is a sleep detection device. and/or a portable sleep physiology detection device (for example, a personal portable) and/or a home sleep detection (HSAT) device to detect/receive the sleep physiology of multiple sleep monitors (patients) corresponding to multiple states; Referring to the multiple training physiological signals of the multiple sleep detectors displayed on the screen 6 by the processing module 2 to generate multiple multiple sleep physiological data, here, for example, techniques with knowledge of sleep physiology can be used. Person 7 For example, sleep physiological technicians, sleep disorder physicians or other professionals, etc.; in addition, the processing module 2 will perform a predetermined signal processing for each sleep physiological signal of the multiple training physiological signals; Furthermore, the processing module 2 trains the convolutional neural network CNN module 3 to generate an estimation model according to the multiple training physiological signals and the multiple multiple sleep physiological data after the predetermined signal processing action.

在此,為該些多筆訓練生理訊號及/或為該些多筆多項睡眠生理資料的PSG生理訊號將輸入卷積神經網路CNN模組3。 Here, the multiple training physiological signals and/or the PSG physiological signals for the multiple multiple sleep physiological data will be input to the convolutional neural network CNN module 3 .

以資料結構而言,每個生理訊號來源可稱為通道(channel),例如EEG channels,ECG channels,EMG channels,EOG channels;而每一個通道為單維度資料,以電壓(voltages,是機器收取訊號的方式)為記錄單位,隨時間(time)累積資料量。 In terms of data structure, each source of physiological signals can be called a channel, such as EEG channels, ECG channels, EMG channels, EOG channels; and each channel is a single-dimensional data, with voltages (voltages, is the signal received by the machine) method) is the recording unit, and the amount of data is accumulated over time.

舉例而言,一般圖像為多維度資料(長300像素(pixels)*寬300像素(pixels)*RGB三原色或灰階),因此每個通道為單維度資料(1 channel *time)。 For example, a general image is multi-dimensional data (length 300 pixels (pixels)*width 300 pixels (pixels)*RGB three primary colors or grayscales), so each channel is single-dimensional data (1 channel *time).

例如,以17個通道(channels)而言,CNN之輸入為17channels * time資料,例如,可視為17個單維度資料。 For example, in terms of 17 channels, the input of CNN is 17channels*time data, for example, it can be regarded as 17 single-dimensional data.

而本發明之卷積神經網路CNN模組3可用這樣的資料模式作為訓練用之輸入資料。 And the convolutional neural network CNN module 3 of the present invention can use such a data pattern as input data for training.

例如,以睡眠多項生理檢查儀PSG為17通道而言,記錄睡眠檢測者(患者)整晚約5至7小時的資料量來說,若以30秒做為資料切分大小,則每一筆資料為17通道乘上30秒時間(17 channels * 30 sec),對於5至7小時的時間區段而言,約有720筆資料(ie.(5至7)*60/30)。 For example, taking the sleep multi-physiological examination instrument PSG as 17 channels, the amount of data recorded by the sleep monitor (patient) for about 5 to 7 hours throughout the night, if 30 seconds is used as the data segmentation size, each data Multiplying 17 channels by 30 seconds (17 channels * 30 sec) gives about 720 data (ie. (5 to 7)*60/30) for a time period of 5 to 7 hours.

對於患者的取樣大小而言,例如,取樣超過500位病患做為訓練資料。每一筆30秒資料會由訓練過的技藝人士7使用軟體對呈現於螢幕6上的圖形做判讀,定義出病徵,並非找特徵。 For the sample size of patients, for example, more than 500 patients were sampled as training data. Each 30-second piece of data will be interpreted by a trained artisan 7 using software to interpret the graphics displayed on the screen 6 to define symptoms rather than features.

在此,必須注意的是,卷積神經網路CNN模組3是訓練,例如,17個電壓型態的單維度資料,而不是技藝人士7於螢幕6上以肉眼所見的波形,雖然在卷積神經網路CNN模組3與人腦判斷方式相類似,惟,資料形式是不同。 Here, it must be noted that the convolutional neural network CNN module 3 is trained, for example, the single-dimensional data of 17 voltage patterns, not the waveform seen by the skilled person 7 on the screen 6 with the naked eye, although in the volume The integrated neural network CNN module 3 is similar to the human brain's judgment method, but the data format is different.

例如,對於每個30秒資料,技藝人士7標註之訊息有二:1.有睡眠周期(sleep stages)2.呼吸中止症的發生與否(apnea/hypopnea)。而對於週期,生理睡眠技師7標註1~5。睡眠周期,技藝人士7標註apnea/hypopnea/normal。 For example, for each 30-second data, the information marked by the skilled person 7 is two: 1. the existence of sleep stages (sleep stages) 2. the occurrence of apnea (apnea/hypopnea). For cycles, the physio-sleep technician 7 labels 1-5. Sleep cycle, artisan 7 labels apnea/hypopnea/normal.

卷積神經網路CNN模組3的訓練上,例如,可分為兩個模型,一個是以30秒PSG為輸入,訓練其辨識週期;而另一個則是以30秒PSG為輸入,訓練其辨識呼吸中止症。 For the training of convolutional neural network CNN module 3, for example, it can be divided into two models, one uses 30-second PSG as input to train its recognition cycle; the other uses 30-second PSG as input to train its recognition cycle. Recognize apnea.

在此,如第4圖中所示之,就輸入通道(channels)而言,例如,17個通道,其中各個訊號之表示為: Here, as shown in Figure 4, in terms of input channels (channels), for example, 17 channels, the representation of each signal is:

C3_A2表示腦電波訊號1; C3_A2 represents brain wave signal 1;

C4_A1表示腦電波訊號2; C4_A1 represents brain wave signal 2;

O2_A1表示腦電波訊號3; O2_A1 represents brain wave signal 3;

O1_A2表示腦電波訊號4; O1_A2 represents brain wave signal 4;

LOC_A2表示左眼肌肉訊號偵測眼球轉動; LOC_A2 indicates that the left eye muscle signal detects eye movement;

ROC_A1表示右眼肌肉訊號偵測眼球轉動; ROC_A1 indicates that the right eye muscle signal detects eye movement;

Chin_1_Chin_2表示下巴肌肉偵測嘴動作; Chin_1_Chin_2 indicates that the jaw muscles detect mouth movements;

RIP_ECG表示心電圖測心率; RIP_ECG means heart rate measurement by electrocardiogram;

Nasal_Oral表示呼吸訊號1(呼吸溫度變化); Nasal_Oral represents breathing signal 1 (change in breathing temperature);

Nasal_Pressure表示呼吸訊號2(呼吸壓力變化); Nasal_Pressure represents breathing signal 2 (respiratory pressure change);

Thor_add表示胸部起伏; Thor_add means chest ups and downs;

Abdo_add表示腹部起伏; Abdo_add means abdominal ups and downs;

Leg_R表示右腳動作針測; Leg_R means right foot action needle test;

Leg_L表示左腳動作針測; Leg_L means left foot action needle test;

Mic表示麥克風偵測打呼聲; Mic indicates that the microphone detects snoring;

SpO2表示血液含氧量; SpO2 represents blood oxygen content;

PositionSen表示身體翻身偵測。 PositionSen means body rollover detection.

第4圖為訊號示意圖,用以顯示說明於第3圖的實施例中的共為17個通道的各別之生理訊號。 FIG. 4 is a schematic diagram of a signal for displaying the respective physiological signals of a total of 17 channels in the embodiment illustrated in FIG. 3 .

卷積神經網路CNN模組3,該卷積神經網路CNN模組3使用深度學習演算法訓練人工智能模型進行PSG(polysomnography)判讀,可以針對不同任務進行參數優化;其中,該深度學習演算法具有特徵搜尋功能,可應用於不同數量PSG通道進行非線性特徵擷取,擷取後的特徵用來對目標進行歸納;而臨床應用目標有:呼吸中止症、失眠、肢動症;在此,引入該預的自動判讀演算法可節約人力成本,提升臨床醫師提供的醫療品質,提升睡眠技師的醫療服務;在此,使用卷積神經網路CNN模組3(深度學習模型),可辨識PSG整晚睡眠紀錄,可輸出呼吸中止指數apnea hypopnea index(AHI)、睡眠效率sleep efficiency、呼吸障礙指數(RDI)、打鼾數(Snore counts)等等資訊。 Convolutional neural network CNN module 3, the convolutional neural network CNN module 3 uses a deep learning algorithm to train an artificial intelligence model for PSG (polysomnography) interpretation, and can optimize parameters for different tasks; among them, the deep learning algorithm The method has a feature search function, which can be applied to different numbers of PSG channels for nonlinear feature extraction, and the extracted features are used to summarize the target; and the clinical application targets are: apnea, insomnia, limb movement disorder; here , the introduction of this pre-automatic interpretation algorithm can save labor costs, improve the medical quality provided by clinicians, and improve the medical services of sleep technicians; here, using convolutional neural network CNN module 3 (deep learning model), can identify PSG sleep records all night, can output apnea hypopnea index (AHI), sleep efficiency, sleep efficiency, breathing disorder index (RDI), snoring counts (Snore counts) and other information.

第5圖為一示意圖,用以顯示說明於第3圖中的實施例的卷積神經網路CNN模組之CNN模型訓練方式及組成。 FIG. 5 is a schematic diagram for showing the training method and composition of the CNN model of the convolutional neural network CNN module of the embodiment described in FIG. 3 .

如第5圖中所示之,CNN模型訓練方式及組成為由密集模組(dense module)11、轉移模組(translation module)12、轉移模組(translation module)13、線性層(linear block)14、以及Softmax函數(Softmax regression)15所組成,而輸出為資料分類(Classification)。 As shown in Figure 5, the CNN model training method and composition are composed of a dense module (dense module) 11, a translation module (translation module) 12, a translation module (translation module) 13, a linear layer (linear block) 14, and the Softmax function (Softmax regression) 15, and the output is data classification (Classification).

密集模組11包含二次之批量標準化(Batch Normalization)、線性整流函式ReLU(Rectified Linear Unit)、以及卷積層(Convolution);以及,轉移模組12、以及轉移模組13分別包含批量標準化、線性整流函式ReLU、卷積層、以及池化(polling)層。 The dense module 11 includes a secondary batch normalization (Batch Normalization), a Rectified Linear Unit (ReLU), and a convolution layer (Convolution); and the transfer module 12 and the transfer module 13 respectively include batch normalization, Linear rectification function ReLU, convolutional layer, and pooling layer.

例如,批量標準化算法使得深層神經網絡訓練更加穩定,加快了收斂的速度;而線性整流函式ReLU函數和它的導數計算簡單,在向前傳遞和向後傳遞時都減少了計算量,由於在時函數的導數值為1,可以在一定程度上解決梯度消失問題,訓練時有更快的收斂速度;卷積層可有n個m*p的卷積核,n,m,p為整數,例如,作用於灰度圖像,每個卷積核作用於前一層輸出圖像的部分通道上,產生多張的輸出圖像;以及,池化層作用於卷積層的輸出圖像,執行q*r的池化,q,r為整數,產生多張的輸出圖像。 For example, the batch normalization algorithm makes the training of deep neural networks more stable and accelerates the speed of convergence; while the linear rectification function ReLU function and its derivative are simple to calculate, reducing the amount of calculation in both forward and backward passes. The derivative value of the function is 1, which can solve the problem of gradient disappearance to a certain extent, and has a faster convergence speed during training; the convolution layer can have n convolution kernels of m*p, where n, m, and p are integers, for example, Acting on the grayscale image, each convolution kernel acts on some channels of the output image of the previous layer to generate multiple output images; and, the pooling layer acts on the output image of the convolution layer, executing q*r The pooling, q, r are integers, resulting in multiple output images.

以卷積神經網路CNN模組3使用深度學習演算法而產生出估測模型的CNN模型訓練方法而言,如第5圖中所示之,以17個通道的各別生理訊號當成輸入資料: For the CNN model training method in which the convolutional neural network CNN module 3 uses the deep learning algorithm to generate the estimated model, as shown in Figure 5, the respective physiological signals of 17 channels are used as input data :

(1)使用多層卷積層(convolution layers)組成一個密集層(Dense Block),許多密集層可以藉由轉移層(Transition Block)連接,最後經過線性層(Linear Block)輸出,Softmax函數(Softmax regression)運算而輸出。 (1) Use multi-layer convolution layers to form a dense layer (Dense Block), many dense layers can be connected by the transition layer (Transition Block), and finally output through the linear layer (Linear Block), Softmax function (Softmax regression) operation and output.

(2)資料向前傳遞(Forward-propagation)經過各層可逐漸萃取重要特徵,於密集層時特徵會萃取重要特徵,這些特徵會於轉移層疊加(concatenate),此疊加效果較一般傳統的CNN會保留上游特徵。 (2) Forward-propagation can gradually extract important features through each layer. In the dense layer, the features will extract important features. These features will be concatenated in the transfer layer. Upstream features are preserved.

(3)每次訓練結果會藉由向後傳遞(Back-propagation)更新參數,藉此修正錯誤辨識的參數。 (3) Each training result will update the parameters by back-propagation, thereby correcting the wrongly identified parameters.

(4)CNN層為單通道特徵萃取,訓練或辨識時會對所有一個以上的通道做特徵萃取。估測模型之模型最後輸出會經過注意力層(Attention)將權重重新分配,增強通道之間與時間序列前後的關聯性。 (4) The CNN layer is single-channel feature extraction, and feature extraction is performed on all channels during training or identification. The final output of the estimation model will go through the Attention layer to redistribute the weights to enhance the correlation between channels and before and after the time series.

(5)以正確率(Accuracy),操作特征曲線(ROC),曲線下面積(AUC),F1 Scores,敏感性Sensitivity,特異性(Specificity)為模型衡量標準。 (5) Take the accuracy rate (Accuracy), operating characteristic curve (ROC), area under the curve (AUC), F1 Scores, sensitivity Sensitivity, specificity (Specificity) as model metrics.

以估測模型之運作的訓練後CNN模型的貢獻而言: In terms of the contribution of the post-trained CNN model to estimate the operation of the model:

(1)輸出權重,提供選擇通道道的依據。 (1) The output weight provides the basis for selecting the channel.

(2)配合Grad-Cam解釋模型分類依據;在此,Gran-Cam(Gradient-weighted Class Activation Mapping)為CNN模型輸出的另一種方式。一般模型輸出為分類機率,例如,CNN模型週期輸出有5個,機率分別為,90%,2%,2%,3%,3%,以取決於機率大小,而由於機率為90%,則有很大的機率為第一個類別,因此模型輸出判別為第一類。Gran-Cam的方式是,利用同一個CNN的參數,輸入某一筆30秒資料之後,保留模型傳遞運算值,然後: (2) Cooperate with Grad-Cam to explain the model classification basis; here, Gran-Cam (Gradient-weighted Class Activation Mapping) is another way of CNN model output. The general model output is the classification probability. For example, the CNN model has 5 cycle outputs, the probability is 90%, 2%, 2%, 3%, 3%, depending on the probability, and since the probability is 90%, then There is a high probability of being the first class, so the model output is discriminated as the first class. The Gran-Cam method is to use the parameters of the same CNN, after inputting a certain amount of data for 30 seconds, retain the model to transfer the operation value, and then:

1.取出CNN最後一個特徵層將運算值平均; 1. Take out the last feature layer of CNN and average the operation value;

2.將模型的梯度回推到CNN最上層並取出; 2. Push the gradient of the model back to the top layer of the CNN and take it out;

3.將前二者疊合,做出熱度梯度圖(heat map)。 3. Superimpose the first two to make a heat map.

熱度梯度圖可以指出此模型判讀此30秒是依據資料的最依賴的資料位置,可將之稱為最重要的判別特徵。 The heat gradient map can point out that the model interprets the 30 seconds as the most dependent data position based on the data, which can be called the most important discriminant feature.

例如,可訓練CNN判別某一段30秒資料,判別是否發生呼吸中止症,然後用Grad-Cam對此CNN做操作,而發現是Nasal_Oral channel某個時間點熱度特別高,作為此CNN判讀依據。 For example, CNN can be trained to identify a certain period of 30-second data, determine whether apnea occurs, and then use Grad-Cam to operate this CNN, and it is found that the Nasal_Oral channel is particularly hot at a certain point in time, which is used as the basis for interpreting this CNN.

一般分類模型都可以做出此項操作,得到模型判別依據。很多人稱CNN為黑箱作業,主要是訓練過程部難以解析,雖然Grad-cam回溯特徵可以猜測,但其實特徵層非常多,可取最後一層作出解釋,而越上層的特徵層其解析出的特徵非常雜亂無法使用Grad-Cam表示清楚,因此有黑箱之名。 General classification models can do this operation to obtain the basis for model discrimination. Many people call CNN a black box job, mainly because the training process is difficult to parse. Although the Grad-cam retrospective features can be guessed, there are actually many feature layers, and the last layer can be used to explain, and the features parsed from the upper feature layers are very messy. Unable to use Grad-Cam to make it clear, hence the name of the black box.

(3)配合遞減/加方式搜尋通道重要性,可剔除無貢獻通道,可保留特殊貢獻通道; (3) With the decreasing/adding method to search for the importance of channels, non-contributing channels can be eliminated, and special contributing channels can be reserved;

在此,以遞減方式方法而言: Here, in a decreasing fashion method:

首先,依據CNN最後一層全連接層(full connection layer)之權重將通道channel做大小排序,權重較大者對模型貢獻程度較高。 First, the channel channels are sorted in size according to the weight of the last full connection layer of the CNN, and those with larger weights have a higher degree of contribution to the model.

接著,依序拔除通道channel,重新訓練一個CNN模型,觀察對於辨識效果之影響。例如,原本的通道channel有17個,拔除權重最大者後,將剩餘16個,訓練一個新的CNN模型對這16個通道channel做辨識,觀察其辨識準確性。下一階段,於這16個通道channel中,再拔除權重最大者,剩餘15個通道channel,訓練一個新的CNN模型做辨識,觀察其辨識準確性。依此類推進行,重複以上步驟,直至剩餘最後一個通道channel為止。可依據辨識準確性、以及權重大小而選取所需的通道數目。 Then, remove the channels in sequence, retrain a CNN model, and observe the impact on the recognition effect. For example, the original channel has 17 channels. After removing the one with the largest weight, the remaining 16 channels will be trained to train a new CNN model to identify these 16 channel channels and observe the accuracy of the identification. In the next stage, among the 16 channels, the one with the largest weight is removed, and the remaining 15 channels are used to train a new CNN model for identification, and observe its identification accuracy. And so on, repeat the above steps until the last channel channel is left. The required number of channels can be selected according to the identification accuracy and the weight.

以遞加方式而言: In incremental terms:

訓練權重最大的1個通道channel的新CNN模型,觀察其辨識準確率。接著訓練一個新的CNN,使用2個權重排名前二高的通道channels,觀察其辨識準確率。依此類推進行,重複以上步驟,直至重複 到17個通道channnls為止。可依據辨識準確性、以及權重大小而選取所需的通道數目。 Train a new CNN model with one channel with the largest weight, and observe its recognition accuracy. Then train a new CNN, using the 2 channels with the top two highest weights, and observe its recognition accuracy. And so on, repeat the above steps until repeated Up to 17 channel channnls. The required number of channels can be selected according to the identification accuracy and the weight.

此種遞加/遞減方式使用資料操作方法,並未對CNN模型架構進行更動,唯權重會重新訓練,不同的CNN模型彼此表達不互相影響,只比較訓練結果的準確性。準確性的排序與權重大小呈現高度相關性,例如,以17個生理訊號通道(channel)而言,只需要排序較高的8個通道channel就可達到原本17個通道訓練最好的辨識成果。 This increasing/decreasing method uses the data manipulation method, and does not change the CNN model architecture. Only the weights will be retrained. Different CNN models do not affect each other's expressions, but only compare the accuracy of the training results. The ranking of accuracy is highly correlated with the magnitude of the weight. For example, for 17 physiological signal channels, only the 8 channels with higher rankings are required to achieve the best recognition results of the original 17 channel training.

換言之,可檢選出對睡眠檢測者睡眠生理狀態進行檢測/判讀時為較重要的一些生理訊號通道並摒除/剔除無貢獻通道,而保留特殊貢獻通道且並未降低睡眠檢測者睡眠生理狀態的判讀準確度,能以較少的生理訊號通道而得出準確的睡眠檢測者睡眠生理狀態判讀結果,能使用深度學習演算法訓練人工智能模型進行PSG判讀。 In other words, some physiological signal channels that are more important in the detection/interpretation of the sleep physiological state of the sleep monitor can be selected, and the non-contributing channels can be excluded/eliminated, while the special contributing channels are reserved and the interpretation of the sleep physiological state of the sleep monitor is not reduced. Accuracy, which can obtain accurate interpretation results of sleep physiological state of sleep detectors with fewer physiological signal channels, and can use deep learning algorithms to train artificial intelligence models for PSG interpretation.

(4)針對中止症/失眠/肢動症分類目的選擇重要通道。 (4) Select important channels for the purpose of classification of abstinence/insomnia/limb movement disorders.

(5)演算機制可容忍資料劇烈縮放(30Hz-512Hz)。 (5) The algorithm can tolerate severe scaling of data (30Hz-512Hz).

(6)設計了深度學習專用的壓縮法,降低為穿戴裝置的可攜式睡眠生理檢測裝置(例如,個人可攜式)及/或居家睡眠檢測(HSAT)裝置的容量限制與頻寬要求。 (6) A compression method dedicated to deep learning is designed to reduce the capacity limitation and bandwidth requirements of portable sleep physiology detection devices (eg, personal portable) and/or home sleep detection (HSAT) devices that are wearable devices.

(7)模型訓練依據巨量資料,涵蓋廣泛變異因子。 (7) Model training is based on a huge amount of data, covering a wide range of variation factors.

以估測模型功能的訓練後CNN模型作用而言: In terms of the role of the post-training CNN model in estimating the function of the model:

(1)可判別經典中止症/失眠/肢動症辨識做特化訓練。 (1) Specialized training can be used to distinguish classic abstinence/insomnia/extremity movement disorder.

(2)可達成及時偵測,紀錄後偵測。 (2) Real-time detection can be achieved, and detection after recording.

(3)配合警報系統可設置長期無人自動提醒。 (3) With the alarm system, long-term unattended automatic reminders can be set.

(4)模型可調整敏感性sensitivity升高或降低需求。 (4) The model can adjust the sensitivity to increase or decrease demand.

(5)模型參數少佈署容易。 (5) It is easy to deploy with few model parameters.

(6)回饋使用者判讀依據。 (6) Feedback the user's interpretation basis.

另,利用本發明之資訊處理系統1及其方法所產生出的估測模型,目標睡眠檢測者(患者)能以可攜式睡眠生理檢測裝置(例如,個人可攜式)及/或居家睡眠檢測(HSAT)裝置對睡眠生理多項狀態進行檢測,提供睡眠生理狀態的判讀所需為較重要而非全部的多項生理訊號通道(channel)的生理訊號,因而,可估測目標睡眠檢測者(患者)的生理狀態而產生多項對應於睡眠狀態的睡眠相關生理資料,處理模組2配合估測模型可判斷出睡眠狀態是否符合一預定警示,若是,則處理模組2經由輸出單元輸出訊息,若否,則直接結束處理程序,在此,資訊處理系統1係位於,例如,醫院睡眠中心的電子裝置5中,電子裝置5可為,例如,伺服器,而輸出單元係為資訊處理系統1所在之電子裝置5的輸出/顯示裝置,例如,用以顯示輸出訊息之螢幕,可列印輸出訊息的列印裝置,或是其他將輸出訊息予以輸出或顯示或警示的電子輸出/顯示裝置。 In addition, using the estimation model generated by the information processing system 1 and the method thereof of the present invention, the target sleep monitor (patient) can use a portable sleep physiology monitoring device (eg, personal portable) and/or sleep at home The detection (HSAT) device detects multiple states of sleep physiology, and provides physiological signals of a plurality of physiological signal channels (channels) that are more important but not all required for the interpretation of sleep physiological states. ) to generate a plurality of sleep-related physiological data corresponding to the sleep state. The processing module 2 cooperates with the estimation model to determine whether the sleep state conforms to a predetermined warning. If so, the processing module 2 outputs a message through the output unit. If not, the processing procedure is directly ended. Here, the information processing system 1 is located in, for example, the electronic device 5 of the hospital sleep center. The electronic device 5 can be, for example, a server, and the output unit is where the information processing system 1 is located. The output/display device of the electronic device 5, for example, a screen for displaying the output message, a printing device for printing the output message, or other electronic output/display device for outputting or displaying or alerting the output message.

資料庫4,該資料庫4配合處理模組2、卷積神經網路CNN模組3共同運作,可供處理模組2、卷積神經網路CNN模組3存取所需的資料/數據。 Database 4, the database 4 works together with the processing module 2 and the convolutional neural network CNN module 3, and can be used by the processing module 2 and the convolutional neural network CNN module 3 to access the required data/data .

本發明之資訊處理系統及其方法,能利用人工智能以多項生理睡眠檢查來辨識各項睡眠狀態,使用深度學習演算法訓練人工智能模型進行PSG(polysomnography)判讀,並可針對不同任務進行參數優化;以及,能利用深度學習演算法經由訓練卷積神經網路CNN方式而產生出估測模型,且深度學習演算法具有特徵搜尋功能,可應用於不同數量PSG通道(channel)進行非線性特徵擷取,擷取後的特徵可用來對目標進行歸納。 The information processing system and method of the present invention can use artificial intelligence to identify various sleep states with multiple physiological sleep examinations, use deep learning algorithms to train artificial intelligence models for PSG (polysomnography) interpretation, and can optimize parameters for different tasks ; And, an estimation model can be generated by training a convolutional neural network CNN method using a deep learning algorithm, and the deep learning algorithm has a feature search function, which can be applied to different numbers of PSG channels for nonlinear feature extraction. The extracted features can be used to generalize the target.

再,本發明之資訊處理系統及其方法,利用人工智能以多項生理睡眠檢查辨識各項睡眠狀態,使用深度學習演算法訓練人工智能模型 進行PSG判讀,可以針對不同任務進行參數優化,而臨床應用目標有:呼吸中止症、失眠、以及肢動症,而引入自動判讀演算法可節約人力成本,提升臨床醫師提供的醫療品質,提升睡眠技師的醫療服務。 Furthermore, the information processing system and method of the present invention utilizes artificial intelligence to identify various sleep states through multiple physiological sleep examinations, and uses deep learning algorithms to train an artificial intelligence model For PSG interpretation, parameters can be optimized for different tasks, and the clinical application targets are: apnea, insomnia, and limb movement disorders, and the introduction of automatic interpretation algorithms can save labor costs, improve the quality of medical care provided by clinicians, and improve sleep. Technician's medical services.

又,本發明之資訊處理系統及其方法,能以最簡單/方便的睡眠狀態檢測型式,讓睡眠檢測者(病患)無須在醫院/醫學中心的睡眠研究/治療中心才能以睡眠多項生理檢查儀PSG來進行睡眠生理多項狀態的檢測,而是能以可攜式睡眠生理檢測裝置(例如,個人可攜式)及/或居家睡眠檢測(HSAT)裝置即能隨身/居家方便地對睡眠生理多項狀態進行檢測,以提供睡眠生理狀態的判讀所需為較重要而非全部的多項生理訊號通道(channel)的生理訊號。 In addition, the information processing system and method of the present invention can use the simplest/convenient sleep state detection type, so that the sleep monitor (patient) does not need to go to the sleep research/treatment center of the hospital/medical center to perform multiple physiological examinations of sleep. The PSG is used to detect multiple states of sleep physiology, but a portable sleep physiology detection device (for example, a personal portable) and/or a home sleep detection (HSAT) device can be used to conveniently carry out the sleep physiology test at home. Multiple states are detected to provide physiological signals of multiple physiological signal channels which are more important but not all required for the interpretation of sleep physiological state.

另,本發明之資訊處理系統及其方法,對於PSG生理訊號的處理而言,如何能在,例如,多達十幾項甚或二十項,生理訊號通道(channel)中檢選出對睡眠檢測者睡眠生理狀態進行檢測/判讀時為較重要的一些生理訊號通道並摒除/剔除無貢獻通道,而保留特殊貢獻通道且並未降低睡眠檢測者睡眠生理狀態的判讀準確度,能以較少的生理訊號通道而得出準確的睡眠檢測者睡眠生理狀態判讀結果,能使用深度學習演算法訓練人工智能模型進行PSG(polysomnography)判讀,可以針對不同任務進行參數優化,搜尋通道重要性,可剔除無貢獻通道道,可保留特殊貢獻通道,僅須提供較重要而非全部的生理訊號通道的生理訊號即可以人工智慧之卷積神經網路CNN所產生出的估測模型,並非為利用人力,而能準確判讀並得出睡眠檢測者睡眠生理狀態的判讀結果。 In addition, for the information processing system and method of the present invention, for the processing of PSG physiological signals, how can, for example, as many as a dozen or even twenty physiological signal channels be selected for sleep detectors? When detecting/interpreting sleep physiological state, some physiological signal channels are more important, and non-contributing channels are excluded/excluded, while special contributing channels are reserved and the accuracy of sleep physiological state interpretation of sleep detectors is not reduced. Accurate interpretation results of sleep physiological state of sleep detectors can be obtained through signal channels. Deep learning algorithms can be used to train artificial intelligence models for PSG (polysomnography) interpretation. Parameters can be optimized for different tasks. The importance of search channels can be eliminated without contribution. Channels, special contribution channels can be reserved, only the physiological signals of the more important but not all physiological signal channels can be provided, and the estimation model generated by the convolutional neural network CNN of artificial intelligence can be obtained. Accurately interpret and obtain the interpretation results of the sleep physiological state of the sleep monitor.

視實施狀況,處理模組2及/或卷積神經網路CNN模組3,係由電子硬體、韌體、以及軟體的至少其中之一所組成,配合資訊處理系統1 所在之系統/裝置的處理器(未圖示之)而進行動作;而資料庫4則位於資訊處理系統1所在之系統/裝置的儲存模組(未圖示之)。 Depending on the implementation, the processing module 2 and/or the convolutional neural network CNN module 3 is composed of at least one of electronic hardware, firmware, and software, and cooperates with the information processing system 1 The processor (not shown) of the system/device where the information processing system 1 is located is located in the storage module (not shown) of the system/device where the information processing system 1 is located.

於本實施例中,雖資訊處理系統1係位於,例如,醫院睡眠中心的電子裝置5中,電子裝置5可為,例如,伺服器,惟,對於資訊處理系統1位於醫療教學中心/醫院的電子裝置,例如,伺服器,個人PC,而言,其理相同、類似於本實施例中所述之;又,技藝人士7所使用之螢幕6可為電子裝置5(例如,伺服器)的螢幕,惟,對於電子裝置5為筆記型電腦或行動裝置,例如,Androind手機,iPhone,而言,則螢幕6可為該電子裝置5所具有之使用螢幕,其理相同、類似於本實施例中所述之,是故,在此不再贅述。 In this embodiment, although the information processing system 1 is located in, for example, the electronic device 5 of the hospital sleep center, the electronic device 5 may be, for example, a server, but for the information processing system 1 located in the medical teaching center/hospital For electronic devices, such as servers and personal PCs, the principles are the same and similar to those described in this embodiment; in addition, the screen 6 used by the skilled person 7 may be the screen of the electronic device 5 (eg, the server). The screen, however, if the electronic device 5 is a notebook computer or a mobile device, such as an Android mobile phone or an iPhone, the screen 6 can be the use screen of the electronic device 5, and the principle is the same and similar to this embodiment. Therefore, it is not repeated here.

另,於本實施例中,雖係以17個通道(channels)舉例,惟,對於其他數目的通道而言,其理相同、類似於本實施例中所述之;再,於本實施例中,雖是以30秒做為資料切分大小,惟,對於其他資料切分大小的資料而言,其理相同、類似於本實施例中所述之;於本實施例中,技藝人士7標註之訊息:睡眠周期、以及呼吸中止症的發生與否,而對於週期,技藝人士7標註1~5睡眠周期,例如,生理睡眠技師7,標註apnea/hypopnea/normal,惟,對於依其他目的之技藝人士7標註而言,其理相同、類似於本實施例中所述之;於本實施例中,卷積神經網路CNN模組3的訓練上,例如,可分為兩個模型,一個是以30秒PSG為輸入,訓練其辨識週期,而另一個則是以30秒PSG為輸入,訓練其辨識呼吸中止症,惟,對於依其他目的之模型、訓練辨識週期、辨識症狀而言,其理相同、類似於本實施例中所述之;於本實施例中,深度學習演算法具有特徵搜尋功能,可應用於不同數量PSG通道進行非線性特徵擷取,擷取後的特徵用來對目標進行歸納,而臨床應用目標有:呼吸中止症、失眠、肢動症,惟,對於依 其他目的之臨床應用目標而言,其理相同、類似於本實施例中所述之;於本實施例中,可辨識PSG整晚睡眠紀錄,可輸出呼吸中止指數apnea hypopnea index(AHI)、睡眠效率sleep efficiency、呼吸障礙指數(RDI)、打鼾數(Snore counts)等等資訊,惟,對於依其他目的之辨識而言,其理相同、類似於本實施例中所述之;再,於本實施例中,卷積神經網路CNN模組之CNN模型訓練方式及組成,可為不同的型式而適用於其他的CNN模型訓練,其理相同、類似於本實施例中所述之;是故,以上種種,在此,不再贅述之。 In addition, in this embodiment, although 17 channels are used as an example, for other numbers of channels, the principle is the same and similar to that described in this embodiment; , although 30 seconds is used as the data segmentation size, but, for the data of other data segmentation sizes, the principle is the same, similar to that described in this embodiment; in this embodiment, the skilled person 7 marks The information: sleep cycle, and the occurrence of apnea, and for the cycle, the artisan 7 marks 1~5 sleep cycles, for example, the physiological sleep technician 7, marks apnea/hypopnea/normal, but for other purposes As far as the skilled person 7 is concerned, the principle is the same and similar to that described in this embodiment; in this embodiment, the training of the convolutional neural network CNN module 3, for example, can be divided into two models, one One uses 30-second PSG as input to train its recognition cycle, while the other uses 30-second PSG as input to train its recognition of apnea. However, for models based on other purposes, training recognition cycle, and symptom recognition, The principle is the same and similar to that described in this embodiment; in this embodiment, the deep learning algorithm has a feature search function, which can be applied to different numbers of PSG channels for nonlinear feature extraction, and the extracted features are used for The goals are summarized, and the clinical application goals are: apnea, insomnia, limb movement disorder, but, for the dependent For the clinical application targets of other purposes, the principle is the same and similar to that described in this embodiment; in this embodiment, the PSG whole night sleep record can be identified, the apnea index apnea hypopnea index (AHI), sleep apnea index (AHI), sleep Efficiency sleep efficiency, respiratory disorder index (RDI), snoring counts (Snore counts) and other information, but, for the identification according to other purposes, the principle is the same, similar to that described in this embodiment; In the embodiment, the CNN model training method and composition of the convolutional neural network CNN module can be different types and are suitable for other CNN model training, and the principles are the same and similar to those described in this embodiment; , all of the above will not be repeated here.

第4圖為訊號示意圖,用以顯示說明於第3圖的實施例中的共為17個通道的各別之生理訊號。 FIG. 4 is a schematic diagram of a signal for displaying the respective physiological signals of a total of 17 channels in the embodiment illustrated in FIG. 3 .

在此,如第4圖中所示之,就輸入通道(channels)而言,例如,17個通道,其中各個訊號之表示為: Here, as shown in Figure 4, in terms of input channels (channels), for example, 17 channels, the representation of each signal is:

C3_A2表示腦電波訊號1; C3_A2 represents brain wave signal 1;

C4_A1表示腦電波訊號2; C4_A1 represents brain wave signal 2;

O2_A1表示腦電波訊號3; O2_A1 represents brain wave signal 3;

O1_A2表示腦電波訊號4; O1_A2 represents brain wave signal 4;

LOC_A2表示左眼肌肉訊號偵測眼球轉動; LOC_A2 indicates that the left eye muscle signal detects eye movement;

ROC_A1表示右眼肌肉訊號偵測眼球轉動; ROC_A1 indicates that the right eye muscle signal detects eye movement;

Chin_1_Chin_2表示下巴肌肉偵測嘴動作; Chin_1_Chin_2 indicates that the jaw muscles detect mouth movements;

RIP_ECG表示心電圖測心率; RIP_ECG means heart rate measurement by electrocardiogram;

Nasal_Oral表示呼吸訊號1(呼吸溫度變化); Nasal_Oral represents breathing signal 1 (change in breathing temperature);

Nasal_Pressure表示呼吸訊號2(呼吸壓力變化); Nasal_Pressure represents breathing signal 2 (respiratory pressure change);

Thor_add表示胸部起伏; Thor_add means chest ups and downs;

Abdo_add表示腹部起伏; Abdo_add means abdominal ups and downs;

Leg_R表示右腳動作針測; Leg_R means right foot action needle test;

Leg_L表示左腳動作針測; Leg_L means left foot action needle test;

Mic表示麥克風偵測打呼聲; Mic indicates that the microphone detects snoring;

SpO2表示血液含氧量; SpO2 represents blood oxygen content;

PositionSen表示身體翻身偵測。 PositionSen means body rollover detection.

第5圖為一示意圖,用以顯示說明於第3圖中的實施例的卷積神經網路CNN模組之CNN模型訓練方式及組成。 FIG. 5 is a schematic diagram for showing the training method and composition of the CNN model of the convolutional neural network CNN module of the embodiment described in FIG. 3 .

如第5圖中所示之,CNN模型訓練方式及組成為由密集模組(dense module)11、轉移模組(translation module)12、轉移模組(translation module)13、線性層(linear block)14、以及Softmax函數(Softmax regression)15所組成,而輸出為資料分類(Classification)。 As shown in Figure 5, the CNN model training method and composition are composed of a dense module (dense module) 11, a translation module (translation module) 12, a translation module (translation module) 13, a linear layer (linear block) 14, and the Softmax function (Softmax regression) 15, and the output is data classification (Classification).

密集模組11包含二次之批量標準化(Batch Normalization)、線性整流函式ReLU(Rectified Linear Unit)、以及卷積層(Convolution);以及,轉移模組12、以及轉移模組13分別包含批量標準化、線性整流函式ReLU、卷積層、以及池化(polling)層。 The dense module 11 includes a secondary batch normalization (Batch Normalization), a Rectified Linear Unit (ReLU), and a convolution layer (Convolution); and the transfer module 12 and the transfer module 13 respectively include batch normalization, Linear rectification function ReLU, convolutional layer, and pooling layer.

例如,批量標準化算法使得深層神經網絡訓練更加穩定,加快了收斂的速度;而線性整流函式ReLU函數和它的導數計算簡單,在向前傳遞和向後傳遞時都減少了計算量,由於在時函數的導數值為1,可以在一定程度上解決梯度消失問題,訓練時有更快的收斂速度;卷積層可有n個m*p的卷積核,n,m,p為整數,例如,作用於灰度圖像,每個卷積核作用於前一層輸出圖像的部分通道上,產生多張的輸出圖像;以及,池化層作用於卷積層的輸出圖像,執行q*r的池化,q,r為整數,產生多張的輸出圖像。 For example, the batch normalization algorithm makes the training of deep neural networks more stable and accelerates the speed of convergence; while the linear rectification function ReLU function and its derivative are simple to calculate, reducing the amount of calculation in both forward and backward passes. The derivative value of the function is 1, which can solve the problem of gradient disappearance to a certain extent, and has a faster convergence speed during training; the convolution layer can have n convolution kernels of m*p, where n, m, and p are integers, for example, Acting on the grayscale image, each convolution kernel acts on some channels of the output image of the previous layer to generate multiple output images; and, the pooling layer acts on the output image of the convolution layer, executing q*r The pooling, q, r are integers, resulting in multiple output images.

以卷積神經網路CNN模組3使用深度學習演算法而產生出估測模型的CNN模型訓練方法而言,如第5圖中所示之,以17個通道的各別生理訊號當成輸入資料。 For the CNN model training method in which the convolutional neural network CNN module 3 uses the deep learning algorithm to generate the estimated model, as shown in Figure 5, the respective physiological signals of 17 channels are used as input data .

第6圖為一流程圖,用以顯示說明利用如第3圖中之本發明之資訊處理系統的一實施例以進行資訊處理方法的一流程步驟。如第6圖中所示之,首先,於步驟201,進行訊號接收動作;處理模組2將接收多筆訓練生理訊號,其中,該些多筆訓練生理訊號係由為睡眠檢測裝置的睡眠多項生理檢查儀(polysomnography)(例如,位於醫院睡眠中心)及/或可攜式睡眠生理檢測裝置(例如,個人可攜式)及/或居家睡眠檢測(HSAT)裝置檢測/接收多位睡眠檢測者(患者)的睡眠生理多項狀態所對應生成之,並進到步驟202。 FIG. 6 is a flowchart for illustrating a process step of an information processing method using an embodiment of the information processing system of the present invention as shown in FIG. 3 . As shown in FIG. 6, first, in step 201, a signal receiving operation is performed; the processing module 2 will receive multiple training physiological signals, wherein the multiple training physiological signals are derived from the sleep multiples of the sleep detection device. Polysomnography (eg, in a hospital sleep center) and/or a portable sleep physiology monitoring device (eg, a personal portable) and/or a home sleep detection (HSAT) device to detect/receive multiple sleep monitors It is generated corresponding to the multiple states of sleep physiology of the (patient), and the process proceeds to step 202 .

於步驟202,進行睡眠生理資料產生動作;將參考由該處理模組2展現於螢幕6上的該些多位睡眠檢測者的該些多筆訓練生理訊號而產生出多筆多項睡眠生理資料,在此,例如,可由具有睡眠生理知識的技藝人士7來予以施行,例如,睡眠生理技師,睡眠障礙診療醫師或其他專業人士等等,並進到步驟203。 In step 202, the action of generating sleep physiological data is performed; multiple pieces of sleep physiological data are generated with reference to the multiple training physiological signals of the multiple sleep detectors displayed on the screen 6 by the processing module 2, Here, for example, it can be performed by a skilled person 7 with knowledge of sleep physiology, such as a sleep physiology technician, a sleep disorder physician, or other professionals, etc., and proceed to step 203 .

於步驟203,進行預定訊號處理動作;處理模組2將針對該些多筆訓練生理訊號的每一睡眠生理訊號,進行一預定訊號處理,並進到步驟204。 In step 203 , a predetermined signal processing operation is performed; the processing module 2 performs a predetermined signal processing for each sleep physiological signal of the plurality of training physiological signals, and then proceeds to step 204 .

於步驟204,進行估測模型產生動作,該處理模組2根據經預定訊號處理動作後的該些多筆訓練生理訊號及該些多筆多項睡眠生理資料,訓練卷積神經網路CNN模組3以產生出一估測模型。 In step 204, the estimation model generation action is performed, and the processing module 2 trains the convolutional neural network CNN module according to the multiple training physiological signals and the multiple multiple sleep physiological data after the predetermined signal processing action 3 to generate an estimation model.

第7圖為一流程圖,用以顯示說明利用如第3圖中之本發明之資訊處理系統的一實施例以進行資訊處理方法的另一流程步驟。如第7圖中 所示之,首先,於步驟301,進行訊號接收動作;處理模組2將接收多筆訓練生理訊號,其中,該些多筆訓練生理訊號係由為睡眠檢測裝置的睡眠多項生理檢查儀(polysomnography)(例如,位於醫院睡眠中心)及/或可攜式睡眠生理檢測裝置(例如,個人可攜式)及/或居家睡眠檢測(HSAT)裝置檢測/接收多位睡眠檢測者(患者)的睡眠生理多項狀態所對應生成之,並進到步驟302。 FIG. 7 is a flowchart for illustrating another process step of an information processing method using an embodiment of the information processing system of the present invention as shown in FIG. 3 . As in Figure 7 As shown, first, in step 301, a signal receiving operation is performed; the processing module 2 will receive a plurality of training physiological signals, wherein the multiple training physiological signals are obtained by a polysomnography which is a sleep detection device. ) (eg, in a hospital sleep center) and/or a portable sleep physiology detection device (eg, personal portable) and/or a home sleep detection (HSAT) device to detect/receive the sleep of multiple sleep monitors (patients) Physiological multiple states are correspondingly generated, and proceed to step 302 .

於步驟302,進行睡眠生理資料產生動作;將參考由該處理模組2展現於螢幕6上的該些多位睡眠檢測者的該些多筆訓練生理訊號而產生出多筆多項睡眠生理資料,在此,例如,可由具有睡眠生理知識的技藝人士7來予以施行,例如,睡眠生理技師,睡眠障礙診療醫師或其他專業人士等等,並進到步驟303。 In step 302, the action of generating sleep physiological data is performed; multiple pieces of sleep physiological data are generated with reference to the multiple training physiological signals of the multiple sleep detectors displayed on the screen 6 by the processing module 2, Here, for example, it can be performed by a skilled person 7 with knowledge of sleep physiology, such as a sleep physiology technician, a sleep disorder physician, or other professionals, etc., and proceed to step 303 .

於步驟303,進行預定訊號處理動作;處理模組2將針對該些多筆訓練生理訊號的每一睡眠生理訊號,進行一預定訊號處理,並進到步驟304。 In step 303 , a predetermined signal processing operation is performed; the processing module 2 performs a predetermined signal processing for each sleep physiological signal of the plurality of training physiological signals, and then proceeds to step 304 .

於步驟304,進行估測模型產生動作,該處理模組2根據經預定訊號處理動作後的該些多筆訓練生理訊號及該些多筆多項睡眠生理資料,訓練卷積神經網路CNN模組3以產生出一估測模型,並進到遠端睡眠狀況檢測流程。 In step 304, the estimation model generation action is performed, and the processing module 2 trains the convolutional neural network CNN module according to the multiple training physiological signals and the multiple multiple sleep physiological data after the predetermined signal processing action 3 to generate an estimation model and proceed to the remote sleep state detection process.

於遠端睡眠狀況檢測流程的步驟401,利用本發明之資訊處理系統1及其方法所產生出的估測模型,首先,進行遠端資料提供動作;目標睡眠檢測者(患者)能以可攜式睡眠生理檢測裝置(例如,個人可攜式)及/或居家睡眠檢測(HSAT)裝置對睡眠生理多項狀態進行檢測,並經由有線或無線網路,將睡眠生理狀態的判讀所需為較重要而非全部的多項生理訊號 通道(channel)的生理訊號予以傳送,提供至本發明之資訊處理系統1的該處理模組2,並進到步驟402。 In step 401 of the remote sleep state detection process, using the estimation model generated by the information processing system 1 and the method thereof of the present invention, firstly, the remote data providing action is performed; the target sleep detector (patient) can be portable Sleep physiology detection devices (eg, personal portable) and/or home sleep detection (HSAT) devices detect multiple states of sleep physiology, and through wired or wireless networks, the interpretation of sleep physiology states needs to be more important not all multiple physiological signals The physiological signal of the channel is transmitted and provided to the processing module 2 of the information processing system 1 of the present invention, and the process proceeds to step 402 .

於步驟402,進行訊號處理動作;處理模組2對待分析的該些生理訊號進行預定訊號處理,並進到步驟403。 In step 402 , a signal processing operation is performed; the processing module 2 performs predetermined signal processing on the physiological signals to be analyzed, and then proceeds to step 403 .

於步驟403,進行睡眠資料產生動作;處理模組2根據進行過預定處理的待分析的該些生理訊號,使用估測模型估測目標患者的生理狀態以產生多項睡眠生理資料,並進到步驟404。 In step 403, a sleep data generation action is performed; the processing module 2 uses an estimation model to estimate the physiological state of the target patient according to the physiological signals to be analyzed that have undergone predetermined processing to generate a plurality of sleep physiological data, and then proceeds to step 404 .

於步驟404,進行睡眠狀態判斷動作;處理模組2判斷睡眠狀態是否符合預定警示條件,若是,則處理模組2經由輸出單元輸出訊息,若否,則直接結束處理程序。 In step 404, a sleep state judgment action is performed; the processing module 2 judges whether the sleep state meets the predetermined warning condition, if yes, the processing module 2 outputs a message via the output unit, and if not, directly ends the processing procedure.

綜合以上之該些實施例,我們可以得到一種資訊處理系統及其方法,係應用於利用人工智慧處理睡眠疾患的環境中,利用本發明之資訊處理系統以進行資訊處理方法時,首先,進行訊號接收動作,資訊處理系統之處理模組將接收多筆訓練生理訊號,其中,該些多筆訓練生理訊號係由為睡眠檢測裝置的睡眠多項生理檢查儀PSG(例如,位於醫院睡眠中心)及/或可攜式睡眠生理檢測裝置(例如,個人可攜式)及/或居家睡眠檢測(HSAT)裝置檢測/接收多位睡眠檢測者(患者)的睡眠生理多項狀態所對應生成之;接著,進行睡眠生理資料產生動作,睡眠生理技師將參考由該處理模組展現於螢幕上的該些多位睡眠檢測者的該些多筆訓練生理訊號而產生出多筆多項睡眠生理資料;繼而,進行預定訊號處理動作,處理模組將針對該些多筆訓練生理訊號的每一睡眠生理訊號,進行一預定訊號處理;進而,進行估測模型產生動作,該處理模組根據經預定訊號處理動作後的該些多筆訓練生理訊號及該些多筆多項睡眠生理資料,訓練卷積神經網路CNN(Convolutional Neural Network)模組以產生出一估測模型。利用本發 明之資訊處理系統及其方法所產生出的估測模型,可估測目標睡眠檢測者(患者)的生理狀態以產生多項對應於睡眠狀態的睡眠相關生理資料,處理模組配合估測模型可判斷出睡眠狀態是否符合一預定警示,若是,則處理模組經由輸出單元輸出訊息,若否,則直接結束處理程序。 Combining the above embodiments, we can obtain an information processing system and a method thereof, which are applied to an environment where artificial intelligence is used to treat sleep disorders. When using the information processing system of the present invention to perform the information processing method, first, the signal is processed. In the receiving action, the processing module of the information processing system will receive multiple training physiological signals, wherein the multiple training physiological signals are obtained from the sleep multiple physiological examination instrument PSG (for example, located in the hospital sleep center) and/or the sleep detection device. Or a portable sleep physiology detection device (for example, a personal portable) and/or a home sleep detection (HSAT) device detects/receives the sleep physiology of multiple sleep monitors (patients) and generates correspondingly multiple states; then, perform The sleep physiological data is generated, and the sleep physiological technician will generate multiple pieces of sleep physiological data with reference to the multiple training physiological signals of the multiple sleep detectors displayed on the screen by the processing module; then, make a reservation In the signal processing action, the processing module will perform a predetermined signal processing for each sleep physiological signal of the plurality of training physiological signals; The multiple training physiological signals and the multiple multiple sleep physiological data are used to train a Convolutional Neural Network (CNN) module to generate an estimation model. Use this invention The estimation model generated by Mingzhi's information processing system and method can estimate the physiological state of the target sleep monitor (patient) to generate a plurality of sleep-related physiological data corresponding to the sleep state. The processing module cooperates with the estimation model to determine Whether the sleep state complies with a predetermined warning, if yes, the processing module outputs a message via the output unit, if not, the processing procedure is directly ended.

以上所述僅為本發明之較佳實施例而已,並非用以限定本發明之範圍;凡其它未脫離本發明所揭示之精神下所完成之等效改變或修飾,均應包含在下述之專利範圍內。 The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the scope of the present invention; all other equivalent changes or modifications made without departing from the spirit disclosed in the present invention shall be included in the following patents within the range.

101 102 103 104:步驟 101 102 103 104: Steps

Claims (10)

一種資訊處理方法,係應用於利用人工智慧處理睡眠疾患的環境中,包含以下程序: An information processing method, which is applied to an environment where artificial intelligence is used to deal with sleep disorders, includes the following procedures: 進行訊號接收動作;接收多位睡眠檢測者的多筆訓練生理訊號; Perform signal receiving actions; receive multiple training physiological signals from multiple sleep detectors; 進行睡眠生理資料產生動作;將參考該些多位睡眠檢測者的該些多筆訓練生理訊號而產生出多筆多項睡眠生理資料; performing the action of generating sleep physiological data; generating multiple pieces of sleep physiological data with reference to the multiple training physiological signals of the multiple sleep detectors; 進行預定訊號處理動作;將針對該些多筆訓練生理訊號的每一睡眠生理訊號,進行一預定訊號處理;以及 performing a predetermined signal processing action; performing a predetermined signal processing for each sleep physiological signal of the plurality of training physiological signals; and 進行估測模型產生動作;根據經該預定訊號處理動作後的該些多筆訓練生理訊號及該些多筆多項睡眠生理資料,以卷積神經網路CNN以產生出一估測模型。 performing an estimation model to generate an action; according to the plurality of training physiological signals and the plurality of sleep physiological data after the predetermined signal processing action, a convolutional neural network CNN is used to generate an estimation model. 如申請專利範圍第1項所述之資訊處理方法,其中,復包含遠端睡眠狀況檢測流程,該遠端睡眠狀況檢測流程,包含以下程序: The information processing method described in item 1 of the scope of the application, further comprising a remote sleep state detection process, and the remote sleep state detection process includes the following procedures: 進行遠端資料提供動作;目標睡眠檢測者能以一裝置對睡眠生理多項狀態進行檢測,並經由有線或無線網路,將睡眠生理狀態的判讀所需為較重要的多項生理訊號通道的生理訊號予以傳送; Perform remote data provisioning; the target sleep monitor can use a device to detect multiple states of sleep physiology, and through wired or wireless networks, the interpretation of sleep physiology states needs to be the physiological signals of a number of more important physiological signal channels be transmitted; 進行訊號處理動作;對待分析的該些生理訊號進行預定訊號處理; Perform signal processing actions; perform predetermined signal processing on the physiological signals to be analyzed; 進行睡眠資料產生動作;根據進行過預定處理的待分析的該些生理訊號,使用該估測模型估測該目標睡眠檢測者的生理狀態以產生多項睡眠生理資料;以及 performing a sleep data generating action; using the estimation model to estimate the physiological state of the target sleep monitor according to the physiological signals to be analyzed that have undergone predetermined processing to generate multiple pieces of sleep physiological data; and 進行睡眠狀態判斷動作。 The sleep state judgment operation is performed. 如申請專利範圍第2項所述之資訊處理方法,其中,判斷該睡眠狀態為符合預定警示條件,經由輸出單元輸出訊息。 The information processing method as described in item 2 of the scope of the patent application, wherein it is determined that the sleep state is in compliance with a predetermined warning condition, and a message is output through the output unit. 如申請專利範圍第2項所述之資訊處理方法,其中,判斷 該睡眠狀態為不符合預定警示條件,直接結束處理程序。 The information processing method as described in Item 2 of the scope of the application, wherein the judgment The sleep state is that the predetermined warning condition is not met, and the processing program is directly ended. 如申請專利範圍第2項或第3項或第4項所述之資訊處理方法,其中,該裝置為可攜式睡眠生理檢測裝置、以及居家睡眠檢測(HSAT)裝置的至少其中之一。 The information processing method according to item 2 or item 3 or item 4 of the claimed scope, wherein the device is at least one of a portable sleep physiology detection device and a home sleep detection (HSAT) device. 一種資訊處理系統,係應用於利用人工智慧處理睡眠疾患的環境中,包含: An information processing system, which is applied in an environment that uses artificial intelligence to deal with sleep disorders, includes: 卷積神經網路CNN模組; Convolutional Neural Network CNN module; 處理模組,處理模組將接收多位睡眠檢測者的多筆訓練生理訊號;將參考由該處理模組展現於螢幕上的該些多位睡眠檢測者的該些多筆訓練生理訊號而產生出多筆多項睡眠生理資料;該處理模組將針對該些多筆訓練生理訊號的每一睡眠生理訊號,進行一預定訊號處理;以及,該處理模組根據經該預定訊號處理動作後的該些多筆訓練生理訊號及該些多筆多項睡眠生理資料,訓練該卷積神經網路CNN模組以產生出一估測模型;以及 a processing module, the processing module will receive a plurality of training physiological signals of a plurality of sleep detectors; and will be generated with reference to the plurality of training physiological signals of the plurality of sleep detectors displayed on the screen by the processing module A plurality of pieces of sleep physiological data are generated; the processing module will perform a predetermined signal processing for each sleep physiological signal of the plurality of training physiological signals; and, the processing module according to the predetermined signal processing action the plurality of training physiological signals and the plurality of multiple sleep physiological data, training the convolutional neural network CNN module to generate an estimation model; and 資料庫,該資料庫配合該處理模組、該卷積神經網路CNN模組共同運作,可供該處理模組、該卷積神經網路CNN模組存取所需的資料/數據,以便產生出該估測模型。 Database, the database cooperates with the processing module and the convolutional neural network CNN module to operate together, and can provide the processing module and the convolutional neural network CNN module to access the required data/data, so as to The estimated model is generated. 如申請專利範圍第6項所述之資訊處理系統,其中,目標睡眠檢測者能以一裝置對睡眠生理多項狀態進行檢測,並經由有線或無線網路,將睡眠生理狀態的判讀所需為較重要的多項生理訊號通道的生理訊號予以傳送至該處理模組;該處理模組對待分析的該些生理訊號進行預定訊號處理;該處理模組根據進行過預定處理的待分析的該些生理訊號,使用由該卷積神經網路CNN模組所產生出的該估測模型估測該目標睡眠檢測者的生理狀態以產生多項睡眠生理資料;以及,該處理模組進行睡眠狀 態判斷。 The information processing system described in claim 6, wherein the target sleep monitor can use a device to detect multiple states of sleep physiology, and interpret the sleep physiology state as required by a wired or wireless network. The physiological signals of a plurality of important physiological signal channels are sent to the processing module; the processing module performs predetermined signal processing on the physiological signals to be analyzed; the processing module performs predetermined processing on the physiological signals to be analyzed. , using the estimation model generated by the convolutional neural network CNN module to estimate the physiological state of the target sleep monitor to generate a plurality of sleep physiological data; state judgment. 如申請專利範圍第7項所述之資訊處理系統,其中,判斷該睡眠狀態為符合預定警示條件,經由輸出單元輸出訊息。 The information processing system according to claim 7, wherein the sleep state is determined to meet the predetermined warning condition, and a message is output through the output unit. 如申請專利範圍第7項所述之資訊處理系統,其中,判斷該睡眠狀態為不符合預定警示條件,直接結束處理程序。 The information processing system according to item 7 of the scope of the application, wherein it is determined that the sleep state does not meet the predetermined warning condition, and the processing procedure is directly ended. 如申請專利範圍第7項或第8項或第9項所述之資訊處理系統,其中,該裝置為可攜式睡眠生理檢測裝置、以及居家睡眠檢測(HSAT)裝置的至少其中之一。 The information processing system as described in item 7 or item 8 or item 9 of the claimed scope, wherein the device is at least one of a portable sleep physiology detection device and a home sleep detection (HSAT) device.
TW109117919A 2020-05-28 2020-05-28 Information processing system and method TWI748485B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109117919A TWI748485B (en) 2020-05-28 2020-05-28 Information processing system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109117919A TWI748485B (en) 2020-05-28 2020-05-28 Information processing system and method

Publications (2)

Publication Number Publication Date
TW202145254A true TW202145254A (en) 2021-12-01
TWI748485B TWI748485B (en) 2021-12-01

Family

ID=80680937

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109117919A TWI748485B (en) 2020-05-28 2020-05-28 Information processing system and method

Country Status (1)

Country Link
TW (1) TWI748485B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI812404B (en) * 2022-08-16 2023-08-11 國立陽明交通大學 Emotion recognition system based on real-time physiological signals

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM376265U (en) * 2009-06-17 2010-03-21 chang-an Zhou Wireless multiple sleep physiological examination system
US20170020440A1 (en) * 2015-07-24 2017-01-26 Johnson & Johnson Vision Care, Inc. Biomedical devices for biometric based information communication and sleep monitoring
TWI602143B (en) * 2016-08-30 2017-10-11 華邦電子股份有限公司 Fatigue detection apparatus and a fatigue detection method
CN110051347A (en) * 2019-03-15 2019-07-26 华为技术有限公司 A kind of user's sleep detection method and system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI812404B (en) * 2022-08-16 2023-08-11 國立陽明交通大學 Emotion recognition system based on real-time physiological signals

Also Published As

Publication number Publication date
TWI748485B (en) 2021-12-01

Similar Documents

Publication Publication Date Title
US11147463B2 (en) Method and apparatus for high accuracy photoplethysmogram based atrial fibrillation detection using wearable device
Shahriari et al. Electrocardiogram signal quality assessment based on structural image similarity metric
Oresko et al. A wearable smartphone-based platform for real-time cardiovascular disease detection via electrocardiogram processing
US9833184B2 (en) Identification of emotional states using physiological responses
EP2698112B1 (en) Real-time stress determination of an individual
CN110811547A (en) Multi-guide sleep monitor and sleep monitoring method
Zaman et al. Estimating reliability of signal quality of physiological data from data statistics itself for real-time wearables
WO2023012818A1 (en) A non-invasive multimodal screening and assessment system for human health monitoring and a method thereof
Rescio et al. Ambient and wearable system for workers’ stress evaluation
TWI748485B (en) Information processing system and method
EP4124287A1 (en) Regularized multiple-input pain assessment and trend
TWI756793B (en) A channel information processing system
TWI777650B (en) A method of monitoring apnea and hypopnea events based on the classification of the descent rate of heartbeat intervals
Locharla et al. EEG-based deep learning neural net for apnea detection
CN113647973A (en) Portable nondestructive testing device based on convolutional neural network
CN210494064U (en) Dynamic electrocardio, respiration and motion monitoring equipment
Cho et al. Instant Automated Inference of Perceived Mental Stress through Smartphone PPG and Thermal Imaging
Pantelopoulos et al. A formal language approach for multi-sensor wearable health-monitoring systems
Zaman et al. Generalization of Data Reliability Metric (DReM) Mechanism for Pulsatile Bio-signals
TWI772086B (en) A method of monitoring apnea and hypopnea events by using fully convolutional networks
Vyas et al. Sleep Stage Classification Using Non-Invasive Bed Sensing and Deep Learning
TW202004773A (en) System for diagnosing cognitive function for providing fitness correction program and method thereof
Baran Thermal imaging of stress: a review
TWI783343B (en) A channel information processing system for identifying neonatal epileptic seizures
Su et al. An Automatic Sleep Arousal Detection Method by Enhancing U-Net with Spatial-channel Attention