TW202144510A - Conductive pastes for solar cells - Google Patents

Conductive pastes for solar cells Download PDF

Info

Publication number
TW202144510A
TW202144510A TW110113253A TW110113253A TW202144510A TW 202144510 A TW202144510 A TW 202144510A TW 110113253 A TW110113253 A TW 110113253A TW 110113253 A TW110113253 A TW 110113253A TW 202144510 A TW202144510 A TW 202144510A
Authority
TW
Taiwan
Prior art keywords
metal compound
crystalline metal
calculated
compound powder
mol
Prior art date
Application number
TW110113253A
Other languages
Chinese (zh)
Inventor
奇利爾 亞拉波
強納森 布斯
畢翠斯 席拉
賽蒙 強森
羅蘭德 卡之貝奇
佩翠西亞 安 蘇覃
Original Assignee
英商強生麥特公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英商強生麥特公司 filed Critical 英商強生麥特公司
Publication of TW202144510A publication Critical patent/TW202144510A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/18Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions containing free metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Sustainable Development (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Conductive Materials (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A conductive paste comprising: a solids portion comprising a silver powder and a crystalline metal compound powder; and an organic carrier medium in which the silver powder and crystalline metal compound powder are dispersed, wherein the solids portion has a glass content less than 1 wt%, wherein the crystalline metal compound powder has a lead content less than 0.5 wt% calculated as PbO; wherein the crystalline metal compound powder has a particle size with a D90 ≤ 5 µm and a D50 ≤ 2 µm, and wherein the crystalline metal compound powder has a composition comprising at least: 40 to 60 wt% Te calculated as TeO2 ; 12 to 25 wt% Bi calculated as Bi2 O3 ; and 10 to 25 wt% Zn calculated as ZnO, expressed as percentage weights (wt%) relative to a total weight of the crystalline metal compound powder in the conductive paste excluding any silver compounds, and/or wherein the crystalline metal compound powder has a composition comprising at least: 20 to 40 mol% Te calculated as TeO2 ; 2 to 6 mol% Bi calculated as Bi2 O3 ; and 14 to 29 mol% Zn calculated as ZnO, expressed as mole percentage (mol%) relative to a total of the crystalline metal compound powder in the conductive paste excluding any silver compounds, and/or wherein the crystalline metal compound powder has a composition comprising at least the following components expressed as a molar ratio defined by SUM(all sources of a particular element) / SUM(all sources of Ag): 0.0060 to 0.0090 Te/Ag; 0.0012 to 0.0026 Bi/Ag; and 0.0029 to 0.0074 Zn/Ag.

Description

用於太陽能電池的導電膠Conductive Adhesives for Solar Cells

本發明係關於尤其適用於太陽能電池之導電膠。The present invention relates to conductive pastes particularly suitable for use in solar cells.

網版印刷導電(例如銀)膠通常用作太陽能電池(諸如矽太陽能電池)之導電軌。該等膠通常包含導電(例如銀)粉末、玻璃料及有時一或多種額外添加劑,均分散於有機介質中。玻璃料具有若干作用。在燒製期間,其變為熔融相且因此起到將導電軌黏合至半導體晶圓之作用。然而,玻璃料在蝕刻掉設置於半導體晶圓之表面上的抗反射層或鈍化層(通常為氮化矽),以允許導電軌與半導體之間的直接接觸方面亦為至關重要的。玻璃料通常在與半導體發射極形成歐姆接觸(ohmic contact)方面亦為至關重要的。Screen-printed conductive (eg silver) pastes are commonly used as conductor tracks for solar cells such as silicon solar cells. These glues typically contain conductive (eg, silver) powder, glass frit, and sometimes one or more additional additives, all dispersed in an organic medium. Glass frits serve several functions. During firing, it becomes the molten phase and thus acts to bond the conductor rails to the semiconductor wafer. However, the frit is also critical in etching away an antireflection or passivation layer (usually silicon nitride) disposed on the surface of the semiconductor wafer to allow direct contact between the conductive tracks and the semiconductor. Glass frits are also often critical in forming ohmic contacts with semiconductor emitters.

導電軌與半導體晶圓之間的接觸品質有助於判定最終太陽能電池之效率。最好的玻璃料需要最佳化以在適當溫度下流動,且提供抗反射層之適當蝕刻程度。若提供過少蝕刻,則半導體晶圓與導電軌之間將存在不足的接觸,從而導致高接觸電阻。相反,過度蝕刻可導致半導體中大型銀島狀物之沈積,破壞其p-n接面且藉此降低其將太陽能轉化成電能之能力。The quality of the contact between the conductor rails and the semiconductor wafer helps determine the efficiency of the final solar cell. The best frits need to be optimized to flow at the proper temperature and provide the proper degree of etching of the antireflective layer. If too little etch is provided, there will be insufficient contact between the semiconductor wafer and the conductor tracks, resulting in high contact resistance. Conversely, over-etching can lead to the deposition of large silver islands in the semiconductor, destroying its p-n junction and thereby reducing its ability to convert solar energy into electricity.

仍需要提供良好特性平衡之例如用於太陽能電池之導電膠。特定言之,仍需要提供極佳(降低之)接觸電阻而不會不利地影響太陽能電池之p-n接面的用於太陽能電池之導電膠,且該等導電膠包括在適合之溫度下流動以在製造太陽能電池期間燒製導電膠的玻璃料。最近許多注意力已集中於改良光伏電池之導電膠中包括之玻璃料材料上,以提供良好特性平衡。There remains a need for conductive pastes such as for solar cells that provide a good balance of properties. In particular, there remains a need for conductive pastes for solar cells that provide excellent (reduced) contact resistance without adversely affecting the pn junction of the solar cell, and which conductive pastes include flow at a suitable temperature to The frit of the conductive paste is fired during the manufacture of solar cells. Much attention has recently been focused on improving the frit material included in conductive pastes for photovoltaic cells to provide a good balance of properties.

如上文所概述,用於光伏電池應用之先前技術導電膠組合物通常包含三種主要組分:(i)導電(例如銀)粉末;(ii)玻璃料;及(iii)有機載體介質,其中導電粉末及玻璃料經安置用於印刷導電膠。As outlined above, prior art conductive paste compositions for photovoltaic cell applications typically comprise three main components: (i) conductive (eg, silver) powder; (ii) glass frit; and (iii) an organic carrier medium in which the conductive Powder and frit are placed to print the conductive paste.

本申請人已出乎意料地發現,此類導電膠之玻璃料組分可經若干結晶金屬化合物(例如,金屬氧化物)粒子之混合物置換。此描述於本發明申請人之早期專利申請案中,公開號為WO2017/081448及WO2017/081449。此等導電膠包含:(i)導電(例如銀)粉末;(ii)呈粉末形式之結晶金屬化合物之混合物(而非玻璃料);及(iii)有機載體介質,其中安置有導電粉末及結晶金屬化合物粉末。Applicants have unexpectedly discovered that the frit component of such conductive pastes can be replaced by a mixture of several crystalline metal compound (eg, metal oxide) particles. This is described in the applicant's earlier patent applications with publication numbers WO2017/081448 and WO2017/081449. These conductive pastes comprise: (i) conductive (eg silver) powder; (ii) a mixture of crystalline metal compounds in powder form (rather than glass frits); and (iii) an organic carrier medium in which the conductive powder and crystals are disposed Metal compound powder.

本發明以申請人對於研發用於光伏電池之不含玻璃的導電組合物之先前工作為基礎且特定言之集中於提供具有以下特徵之導電膠:(i)環境友好的;(ii)低成本;(iii)在光伏電池應用中為高效的;及(iv)在與玻璃料組合物相比時,更容易最佳化至新光伏電池設計,使得能夠更快速地創新下一代光伏電池且縮短上市之研發時間。The present invention builds on Applicant's previous work on developing glass-free conductive compositions for photovoltaic cells and focuses in particular on providing conductive pastes that are: (i) environmentally friendly; (ii) low cost (iii) efficient in photovoltaic cell applications; and (iv) easier to optimize to new photovoltaic cell designs when compared to glass frit compositions, enabling faster innovation of next-generation photovoltaic cells and shorter R&D time to market.

(i) 環境考慮因素 使用不同金屬化合物之結晶粒子代替玻璃料之特定優點在於其自製造導電膠之方法中移除玻璃形成步驟。由於其需要將玻璃前驅體加熱至高於用於製造玻璃之結晶材料的熔點之溫度,因此玻璃形成步驟通常具有高能量需求。玻璃由於其相對較低的軟化點及熔點而通常用於導電膠中。通常,用於導電膠中之玻璃在約400-700℃之範圍內的溫度下流動。本發明人已出人意料地發現,儘管本發明之膠中所使用的實質上結晶金屬化合物中之至少一些的熔點相當高,但此等混合物仍展現與玻璃料類似之流動及熔融特性,此使得其能夠與包含玻璃料之膠類似的燒製曲線及製造方法一起使用。 (i) Environmental Considerations A particular advantage of using crystalline particles of different metal compounds in place of glass frit is that it removes the glass forming step from the process of making conductive pastes. The glass formation step typically has high energy demands because it requires heating the glass precursor to a temperature above the melting point of the crystalline material used to make the glass. Glass is commonly used in conductive adhesives due to its relatively low softening and melting point. Typically, glass used in conductive pastes flows at temperatures in the range of about 400-700°C. The inventors have surprisingly discovered that despite the relatively high melting points of at least some of the substantially crystalline metal compounds used in the glues of the present invention, these mixtures exhibit flow and melting characteristics similar to those of glass frits, making them Can be used with similar firing profiles and manufacturing methods for pastes containing frit.

除降低的能量需求以外,本文所描述之導電膠亦意欲自化學觀點來看為環境友好的。就此而言,用於導電膠中之許多先前技術玻璃料包括鉛(Pb)以提供具有用於光伏電池之適合特性(例如,低熔點)的玻璃。然而,鉛為高毒性的。因此,已研發出不含鉛之玻璃組合物。本發明組合物尋求結晶及無鉛以組合低能量需求及低化學毒性之環境優點。In addition to the reduced energy requirements, the conductive adhesives described herein are also intended to be environmentally friendly from a chemical standpoint. In this regard, many prior art glass frits used in conductive pastes include lead (Pb) to provide glasses with suitable properties (eg, low melting point) for use in photovoltaic cells. However, lead is highly toxic. Accordingly, lead-free glass compositions have been developed. The compositions of the present invention seek to be crystalline and lead-free to combine the environmental advantages of low energy requirements and low chemical toxicity.

(ii) 成本考慮因素 藉由避免膠製造方法中之玻璃形成步驟,可降低能源成本。亦減少製造時間,因此減少操作時間成本。就資本投資成本而言,並不需要玻璃形成設備,因此降低對設備之資本投資要求。此外,由於不需要大型玻璃形成設備,因此製造方法所需要的空間較少,因此減少製造佔據面積且減少用於土地及建築空間之資本投資。 (ii) Cost Considerations By avoiding the glass formation step in the glue manufacturing process, energy costs can be reduced. Manufacturing time is also reduced, thus reducing operating time costs. In terms of capital investment costs, glass forming equipment is not required, thus reducing capital investment requirements for equipment. Furthermore, since large glass forming equipment is not required, the manufacturing method requires less space, thus reducing the manufacturing footprint and reducing capital investment for land and building space.

亦應注意,玻璃料形成過程不可避免地將各種雜質引入至組合物中。可藉由利用昂貴的專用玻璃形成設備來減少此類污染。儘管如此,仍不可避免一些污染,且此可影響一致性及最終效能。藉由避免導電膠組合物中對玻璃料之要求,顯著減少其中可能發生污染之生產步驟的數目。It should also be noted that the frit formation process inevitably introduces various impurities into the composition. Such contamination can be reduced by utilizing expensive specialized glass forming equipment. Nonetheless, some contamination is unavoidable, and this can affect consistency and eventual performance. By avoiding the requirement for frit in the conductive adhesive composition, the number of production steps in which contamination may occur is significantly reduced.

(iii) 效能考慮因素 儘管降低成本及環境影響至關重要,但就製造高效光伏電池而言,導電膠當然必須至少與先前技術的基於玻璃料之膠一樣來執行。最佳地,導電膠應根據此類先前技術的基於玻璃料之導電膠的效能特性來改良。就此而言,先前已確認,在玻璃料中提供碲導致光伏電池應用中更佳的功能效能。本申請人已發現,當使用結晶金屬化合物代替玻璃料時,在組合物中提供碲亦為有利的。然而,值得注意的係,當結晶導電膠經沈積且燒製以形成導電組分時,結晶組分不會反應形成先前技術膠中所使用類型之含碲之玻璃。儘管在燒製膠時可形成玻璃相,但形成膠組合物中含有銀的碲合金而非形成先前技術導電膠中所使用類型之碲玻璃。因此,應瞭解,如本文所描述之結晶膠(亦即基於不同結晶金屬化合物之粒子混合物的膠)並不僅僅以與用於先前技術膠組合物中之玻璃料的起始材料相同的比率包含結晶化合物。此外,在燒製時結晶膠藉以反應以形成導電組分之機制與基於玻璃料之膠藉以反應以形成導電組分之機制不同。因此,結晶導電膠對玻璃料導電膠具有不同組成要求以最佳化效能,即使其共用一些常見特徵,諸如使用碲。 (iii) Performance Considerations While reducing cost and environmental impact is critical, conductive pastes must of course perform at least as well as prior art frit-based pastes for the manufacture of high-efficiency photovoltaic cells. Optimally, the conductive paste should be modified according to the performance characteristics of such prior art frit-based conductive pastes. In this regard, it has previously been established that providing tellurium in the frit results in better functional performance in photovoltaic cell applications. The applicant has found that it is also advantageous to provide tellurium in the composition when a crystalline metal compound is used in place of the glass frit. It is worth noting, however, that when a crystalline conductive paste is deposited and fired to form the conductive component, the crystalline component does not react to form tellurium-containing glasses of the type used in prior art pastes. Although a glass phase can be formed when the paste is fired, a tellurium alloy containing silver is included in the paste-forming composition rather than a tellurium glass of the type used in the formation of prior art conductive pastes. Thus, it should be appreciated that crystalline gums as described herein (ie, gums based on particle mixtures of different crystalline metal compounds) do not only comprise the same ratios as the starting materials of the glass frits used in prior art gum compositions Crystalline compounds. Furthermore, the mechanism by which the crystalline paste reacts to form the conductive component upon firing is different from the mechanism by which the frit-based paste reacts to form the conductive component. Therefore, crystalline conductive pastes have different compositional requirements for frit conductive pastes to optimize performance even though they share some common features, such as the use of tellurium.

除不同組成要求以外,亦已發現,結晶金屬化合物粒子應加工成比先前技術組合物中通常使用之玻璃料粒子更小的粒度。因此,為了改良光伏電池應用中之效能,結晶導電膠以兩種不同方式與基於玻璃料之膠不同:(i)結晶金屬化合物粒子經加工成比先前技術組合物中通常使用之玻璃料粒子更小的粒度;及(ii)結晶導電膠具有與基於玻璃料之導電膠不同的化學組成要求,以在光伏電池中實現高效能。In addition to the different compositional requirements, it has also been found that the crystalline metal compound particles should be processed to a smaller particle size than the glass frit particles typically used in prior art compositions. Therefore, in order to improve performance in photovoltaic cell applications, crystalline conductive pastes differ from frit-based pastes in two different ways: (i) crystalline metal compound particles are processed to be more compact than glass frit particles typically used in prior art compositions Small particle size; and (ii) crystalline conductive pastes have different chemical composition requirements than frit-based conductive pastes to achieve high performance in photovoltaic cells.

本說明書之特定關注為描述一種用於太陽能電池應用之導電膠,該導電膠在相較於先前結晶組合物時具有用於改良太陽能電池效能之經改性結晶組合物。A particular focus of this specification is to describe a conductive paste for solar cell applications having a modified crystalline composition for improved solar cell performance when compared to previous crystalline compositions.

(iv) 創新考慮因素 當相較於玻璃料組合物時,如本說明書中所描述之結晶導電膠更易於最佳化至新型光伏電池設計,使得能夠更快速地創新下一代光伏電池且縮短太陽能電池製造商上市之研發時間。此係因為在研發對於新型電池設計最佳化之新型膠時,不需要研發及製造用於引入至導電膠調配物中之新型玻璃組合物。相反,僅需要混合不同金屬化合物組合物。因此,經由不同組成變體迭代來最佳化用於新型電池設計之膠的速率顯著增大。另外,可使用可不考慮及/或將不適用於製造玻璃料之金屬化合物之比率。此具有拓寬可用於導電膠中之組合物的範疇之潛力。因此,考慮到使用結晶導電膠方法應在可研發下一代電池之範疇及速率方面幫助太陽能電池製造商。 (iv) Innovation Considerations When compared to glass frit compositions, crystalline conductive adhesives as described in this specification are easier to optimize to new photovoltaic cell designs, enabling more rapid innovation of next-generation photovoltaic cells and shortening solar energy R&D time for battery manufacturers to go to market. This is because the development and manufacture of new glass compositions for incorporation into conductive adhesive formulations is not required when developing new adhesives optimized for new cell designs. Instead, only the different metal compound compositions need to be mixed. As a result, the rate of optimizing glue for novel battery designs through iterations of different compositional variants increases significantly. Additionally, ratios of metal compounds that may not be considered and/or would not be suitable for making glass frits can be used. This has the potential to broaden the range of compositions that can be used in conductive adhesives. Therefore, it is contemplated that the use of the crystalline conductive paste method should help solar cell manufacturers in the scope and rate at which next-generation cells can be developed.

導電膠組合物 考慮到以上所有內容,本說明書描述具有以下特徵之導電膠:(i)基於精細結晶金屬化合物粉末而非相對粗糙的玻璃料粉末;(ii)不含鉛(Pb);及(iii)具有結晶金屬化合物粉末化學組合物,當相較於先前結晶導電膠時,該結晶金屬化合物粉末化學組合物提供在光伏電池應用中改良的功能性。特定言之,提供一種導電膠,其包含: 固體部分,其包含銀粉及結晶金屬化合物粉末;及 有機載體介質,其中該銀粉及該結晶金屬化合物粉末分散於其中, 其中該固體部分具有小於1 wt%之玻璃含量, 其中該結晶金屬化合物粉末具有以PbO計算之小於0.5 wt%之鉛含量; 其中該結晶金屬化合物粉末具有D90 ≤ 5 µm且D50 ≤ 2 µm之粒度,且 其中該結晶金屬化合物粉末具有至少包含以下之組合物: 以TeO2 計算之40至60 wt% Te; 以Bi2 O3 計算之12至25 wt% Bi;及 以ZnO計算之10至25 wt% Zn, 表示為相對於該導電膠中不包括任何銀化合物之該結晶金屬化合物粉末的總重量之重量百分比(wt%),及/或 其中該結晶金屬化合物粉末具有至少包含以下之組合物: 以TeO2 計算之20至40 mol% Te; 以Bi2 O3 計算之2至6 mol% Bi;及 以ZnO計算之14至29 mol% Zn, 表示為該導電膠中不包括任何銀化合物之該結晶金屬化合物粉末之莫耳百分比(mol%)。 Conductive Adhesive Compositions With all of the above in mind, this specification describes conductive pastes that are: (i) based on finely crystalline metal compound powders rather than relatively coarse frit powders; (ii) lead (Pb) free; and ( iii) Having a crystalline metal compound powder chemical composition that provides improved functionality in photovoltaic cell applications when compared to previous crystalline conductive pastes. In particular, a conductive adhesive is provided, comprising: a solid portion comprising silver powder and crystalline metal compound powder; and an organic carrier medium in which the silver powder and the crystalline metal compound powder are dispersed, wherein the solid portion has less than 1 wt % glass content, wherein the crystalline metal compound powder has a lead content calculated as PbO of less than 0.5 wt%; wherein the crystalline metal compound powder has a particle size of D 90 ≤ 5 µm and D 50 ≤ 2 µm, and wherein the crystalline metal compound powder The compound powder has a composition comprising at least the following: 40 to 60 wt % Te calculated as TeO 2 ; 12 to 25 wt % Bi calculated as Bi 2 O 3 ; and 10 to 25 wt % Zn calculated as ZnO, expressed as The weight percentage (wt %) relative to the total weight of the crystalline metal compound powder not including any silver compound in the conductive paste, and/or wherein the crystalline metal compound powder has a composition comprising at least the following: Calculated as TeO 2 20 to 40 mol % Te; 2 to 6 mol % Bi calculated as Bi 2 O 3 ; and 14 to 29 mol % Zn calculated as ZnO, expressed as the crystalline metal compound powder not including any silver compound in the conductive paste The molar percentage (mol%).

導電膠可包含佔導電膠之85至95 wt%之固體部分以及佔導電膠之5至15 wt%之有機載體。此外,固體部分可包括1至5 wt%結晶金屬化合物粉末及95至99 wt%銀粉。The conductive paste may comprise a solid portion of 85 to 95 wt % of the conductive paste and an organic vehicle of 5 to 15 wt % of the conductive paste. In addition, the solid portion may include 1 to 5 wt % of crystalline metal compound powder and 95 to 99 wt % of silver powder.

較佳地,以TeO2 、Bi2 O3 及ZnO形式提供Te、Bi及Zn,在此情況下,wt%及mol%值對應於結晶金屬化合物粉末中TeO2 、Bi2 O3 及ZnO之量。然而,應注意,Te、Bi及Zn可分別以與TeO2 、Bi2 O3 及ZnO不同之化合物形式提供。在此情況下,應根據化合物提供之金屬的量將彼等不同化合物之wt%及mol%值轉化成TeO2 、Bi2 O3 及ZnO之當量。即使在起始材料可包括其他類型之化合物(諸如碳酸鹽、磷酸鹽等)時,根據其金屬氧化物含量來界定玻璃料組合物為習知的。因此,根據其等效氧化物含量來指定金屬含量為界定無機玻璃料之組成資訊的熟知方法。在某些實例中,結晶金屬化合物各自僅包含一種類型之金屬(例如,通式Mx Oy 之簡單金屬(M)氧化物),儘管亦設想到,結晶化合物中之一或多者可包含超過一種類型之金屬(M1、M2),諸如通式M1x M2y Oz 之複合金屬氧化物。Preferably, Te, Bi and Zn are provided in the form of TeO 2 , Bi 2 O 3 and ZnO, in which case the wt% and mol% values correspond to the ratio of TeO 2 , Bi 2 O 3 and ZnO in the crystalline metal compound powder. quantity. However, it should be noted, Te, Bi and Zn may be respectively provided with TeO 2, Bi 2 O 3 and ZnO different forms of the compounds. In this case, the wt % and mol % values of these different compounds should be converted to equivalents of TeO 2 , Bi 2 O 3 and ZnO depending on the amount of metal provided by the compounds. It is conventional to define glass frit compositions in terms of their metal oxide content, even when the starting materials may include other types of compounds such as carbonates, phosphates, and the like. Therefore, specifying metal content in terms of its equivalent oxide content is a well-known method for defining compositional information for inorganic glass frits. In certain examples, the crystalline metal compounds each include only one type of metal (eg, a simple metal (M) oxide of the general formula M x O y ), although it is also contemplated that one or more of the crystalline compounds may include More than one type of metal (M1, M2), such as complex metal oxides of the general formula M1 x M2 y O z.

此外,應注意,結晶金屬化合物組合物之計算值經定義為不包括任何銀化合物。此係因為可以銀化合物而非金屬銀形式提供膠之一些銀含量。此將有效地稀釋且改變結晶金屬化合物粉末之其他組分的值,同時有效地提供對應膠組合物。因此,當結晶金屬化合物粉末包括一或多種銀化合物時,應自其他組分之wt%或mol%值的計算中排除此等化合物。此類銀化合物可在燒製時分解以產生銀金屬且因此有助於燒製產物之金屬銀組分而非無機氧化物組分。Furthermore, it should be noted that the calculated value of the crystalline metal compound composition is defined as not including any silver compounds. This is because some silver content of the paste can be provided in the form of silver compounds rather than metallic silver. This will effectively dilute and change the values of the other components of the crystalline metal compound powder while effectively providing the corresponding gum composition. Therefore, when the crystalline metal compound powder includes one or more silver compounds, these compounds should be excluded from the calculation of the wt% or mol% values of the other components. Such silver compounds can decompose upon firing to yield silver metal and thus contribute to the metallic silver component of the fired product rather than the inorganic oxide component.

考慮可能存在銀化合物之另一方式為使用銀之濃度(重量、原子或莫耳)作為參考且使用其他元素相對於銀含量之比率來界定膠之組成。作為一說明性實例,若膠包含90 wt%銀及2 wt%結晶金屬氧化物,且結晶金屬氧化物包含50 wt% TeO2 ,則TeO2 /Ag之重量比= 1:90。類似地,莫耳/原子比= 1/160 : 90/108 = 0.00625 : 0.83 = 0.625 : 83。計算可包括特定元素之所有來源。舉例而言,金屬Te、TeO2 、含碲之AgTe2 等等。亦即,比率可表示為SUM(特定元素之所有來源) : SUM(Ag之所有來源)。此方法能夠比較且識別等效膠組合物且意欲本說明書涵蓋此類等效組合物。就此而言,如本文所描述之導電膠包括結晶金屬化合物粉末,該結晶金屬化合物粉末具有至少包含以下組分之組合物,該等組分表示為由SUM(特定元素之所有來源)/SUM(Ag之所有來源)界定之莫耳比:0.0060至0.0090之 Te/Ag;0.0012至0.0026之 Bi/Ag;及0.0029至0.0074 之Zn/Ag。應瞭解,金屬化合物組合物可根據此莫耳比及/或以wt%及/或mol%值形式來界定,且出於清晰性及完整性起見,所有此等值均已包括在本說明書中。Another way to consider the possible presence of silver compounds is to use the concentration of silver (weight, atomic or molar) as a reference and use the ratio of other elements to silver content to define the composition of the glue. As an illustrative example, if the glue comprises 90 wt% of silver and 2 wt% crystalline metal oxides and crystalline metal oxide comprises 50 wt% TeO 2, the TeO 2 / Ag weight ratio = 1:90. Similarly, molar/atomic ratio = 1/160 : 90/108 = 0.00625 : 0.83 = 0.625 : 83. Calculations can include all sources of a particular element. For example, metallic Te, TeO 2 , AgTe 2 containing tellurium, and the like. That is, the ratio can be expressed as SUM(all sources of a specific element):SUM(all sources of Ag). This method enables the comparison and identification of equivalent gum compositions and it is intended that this specification covers such equivalent compositions. In this regard, a conductive paste as described herein includes a crystalline metal compound powder having a composition comprising at least the following components, expressed as SUM(all sources of specific elements)/SUM( All sources of Ag) defined molar ratios: Te/Ag from 0.0060 to 0.0090; Bi/Ag from 0.0012 to 0.0026; and Zn/Ag from 0.0029 to 0.0074. It should be understood that metal compound compositions may be defined in terms of such molar ratios and/or in terms of wt % and/or mol % values, and that all such values have been included in this specification for clarity and completeness middle.

本文所定義之導電膠組合物表示對本申請人之早期專利申請案中所揭示之彼等組合物的改良,公開號為WO2017/081448及WO2017/081449。就此而言,應注意,此等早期申請案含有針對膠之個別組分的廣泛範圍之揭示內容,其可與針對根據本說明書之膠的個別組分指定之範圍重疊。然而,未揭示本發明膠之特徵的特定組合或由本說明書界定之參數空間之區域導致效能之改良。一個主要差異在於如本文所描述之組合物比WO2017/081448及WO2017/081449中揭示之所有例示性組合物具有顯著更多的鋅。亦即,已經例示之先前技術組合物包括顯著低於10 wt%之氧化鋅含量,然而本說明書之組合物具有大於10 wt%,較佳大於13 wt%之氧化鋅,且視情況大於15 wt%。已發現,具有在當前界定範圍中組合之碲、鉍及鋅含量之組合物導致使用此等組合物生產之太陽能電池的更佳功能效能。The conductive adhesive compositions as defined herein represent improvements over those compositions disclosed in the applicant's earlier patent applications, publication numbers WO2017/081448 and WO2017/081449. In this regard, it should be noted that these earlier applications contain broad scope disclosures for the individual components of the glue, which may overlap with the scope specified for the individual components of the glue according to the present specification. However, it is not disclosed that the specific combination of features of the glues of the present invention or the region of the parameter space defined by this specification results in an improvement in performance. One major difference is that the compositions as described herein have significantly more zinc than all the exemplary compositions disclosed in WO2017/081448 and WO2017/081449. That is, the prior art compositions that have been exemplified include zinc oxide levels significantly below 10 wt%, whereas the compositions of the present specification have zinc oxide greater than 10 wt%, preferably greater than 13 wt%, and optionally greater than 15 wt% %. It has been found that compositions with tellurium, bismuth, and zinc contents combined in the currently defined ranges result in better functional performance of solar cells produced using these compositions.

如本文所描述之導電膠為不含鉛的。關於不含鉛,吾人意謂結晶金屬化合物粉末之鉛含量(以PbO計算)小於0.5 wt%、小於0.1 wt%、小於0.05 wt%、小於0.01 wt%或小於0.005 wt%。The conductive paste as described herein is lead free. By lead free, we mean that the lead content (calculated as PbO) of the crystalline metal compound powder is less than 0.5 wt%, less than 0.1 wt%, less than 0.05 wt%, less than 0.01 wt% or less than 0.005 wt%.

如本文所描述之導電膠為不含玻璃的。關於不含玻璃,吾人意謂相對於固體部分之總重量,固體部分之玻璃含量小於1 wt%、小於0.5 wt%、小於0.25 wt%、小於0.1 wt%、小於0.05 wt%、小於、0.01 wt%或小於0.005 wt%。The conductive paste as described herein is glass-free. By glass-free we mean that the glass content of the solid part is less than 1 wt%, less than 0.5 wt%, less than 0.25 wt%, less than 0.1 wt%, less than 0.05 wt%, less than 0.01 wt%, relative to the total weight of the solids part % or less than 0.005 wt%.

以TeO2 (如先前論述不包括銀化合物) wt%計算之結晶金屬化合物粉末的Te (碲)含量為:至少40、42、44、46或48 wt%;不超過60、58、56、54、52或50 wt%;或在由上述下限及上限之任何組合界定之範圍內。替代地,以TeO2 (不包括銀化合物) mol%計算之結晶金屬化合物粉末之Te含量為:至少20、22、24、26、28或30 mol%;不超過40、38、36、34、33或32 mol%;或在由上述下限及上限之任何組合界定之範圍內。又替代地,以由SUM(Te之所有來源)/SUM(Ag之所有來源)界定之莫耳比計算之結晶金屬化合物粉末的Te含量為:至少0.0060、0.0064、0.0068、0.0072或0.0074;不超過0.0090、0.0086、0.0082、0.0078或0.0076;或在由上述下限及上限之任何組合界定之範圍內。Of TeO to (as previously discussed silver compound is not included) calculation of wt% crystalline metal compound powder Te (tellurium) 2 content: 48 wt% or at least 40, 42; 60,58,56,54 no more than , 52 or 50 wt%; or within a range defined by any combination of the above lower and upper limits. Alternatively, to TeO 2 (not including silver compound) Te content of the metal compound powder of the mol% calculated as crystals: at least 20,22,24,26,28 or 30 mol%; no more than 40,38,36,34, 33 or 32 mol %; or within a range bounded by any combination of the above lower and upper limits. Still alternatively, the Te content of the crystalline metal compound powder, calculated as a molar ratio defined by SUM(all sources of Te)/SUM(all sources of Ag), is: at least 0.0060, 0.0064, 0.0068, 0.0072, or 0.0074; not more than 0.0090, 0.0086, 0.0082, 0.0078, or 0.0076; or within a range defined by any combination of the above lower and upper limits.

以Bi2 O3 (不包括銀化合物) wt%計算之結晶金屬化合物粉末的Bi (鉍)含量為:至少12、13、14或15 wt%;不超過25、23、21、19或17 wt%;或在由上述下限及上限之任何組合界定之範圍內。替代地,以Bi2 O3 (不包括銀化合物) mol%計算之結晶金屬化合物粉末之Bi含量為:至少2.0、2.5、3.0或3.4 mol%;不超過6.0、5.0、4.0或3.8 mol%;或在由上述下限及上限之任何組合界定之範圍內。又替代地,以由SUM(Bi之所有來源)/SUM(Ag之所有來源)界定之莫耳比計算之結晶金屬化合物粉末的Bi含量為:至少0.0012、0.0014、0.0016或0.0018;不超過0.0026、0.0024、0.0022或0.0020;或在由上述下限及上限之任何組合界定之範圍內。The Bi (bismuth) content of the crystalline metal compound powder, calculated as Bi 2 O 3 (excluding silver compounds) wt %: at least 12, 13, 14 or 15 wt %; not more than 25, 23, 21, 19 or 17 wt % %; or within a range defined by any combination of the above lower and upper limits. Alternatively, to Bi 2 O 3 (not including the silver compound) Bi metal compound powder crystallized mol% of the calculated amount of: at least 2.0,2.5,3.0 or 3.4 mol%; 6.0,5.0,4.0 or not more than 3.8 mol%; or within a range defined by any combination of the above lower and upper limits. Still alternatively, the Bi content of the crystalline metal compound powder, calculated as a molar ratio defined by SUM(all sources of Bi)/SUM(all sources of Ag), is: at least 0.0012, 0.0014, 0.0016 or 0.0018; not more than 0.0026, 0.0024, 0.0022 or 0.0020; or within a range defined by any combination of the above lower and upper limits.

以ZnO (不包括銀化合物) wt%計算之結晶金屬化合物粉末的Zn (鋅)含量為:至少10、12、13、14、15或16 wt%;不超過25、23、21、19或18 wt%;或在由上述下限及上限之任何組合界定之範圍內。替代地,以ZnO (不包括銀化合物) mol%計算之結晶金屬化合物粉末之Zn含量為:至少14、16、18、20或21 mol%;不超過29、27、25、24或23 mol%;或在由上述下限及上限之任何組合界定之範圍內。又替代地,以由SUM(Zn之所有來源)/SUM(Ag之所有來源)界定之莫耳比計算之結晶金屬化合物粉末的Zn含量為:至少0.0029、0.0035、0.0040、0.0045或0.0050;不超過0.0074、0.0070、0.0065、0.0060或0.0055;或在由上述下限及上限之任何組合界定之範圍內。Zn (zinc) content of crystalline metal compound powder calculated as wt% of ZnO (excluding silver compound): at least 10, 12, 13, 14, 15 or 16 wt%; not more than 25, 23, 21, 19 or 18 wt%; or within a range defined by any combination of the above lower and upper limits. Alternatively, the Zn content of the crystalline metal compound powder, calculated as mol % of ZnO (excluding silver compounds), is: at least 14, 16, 18, 20 or 21 mol %; not more than 29, 27, 25, 24 or 23 mol % ; or within a range bounded by any combination of the above lower and upper limits. Still alternatively, the Zn content of the crystalline metal compound powder, calculated as a molar ratio defined by SUM(all sources of Zn)/SUM(all sources of Ag), is: at least 0.0029, 0.0035, 0.0040, 0.0045, or 0.0050; not more than 0.0074, 0.0070, 0.0065, 0.0060 or 0.0055; or within a range defined by any combination of the above lower and upper limits.

結晶金屬化合物粉末可進一步包含以LiO2 (不包括銀化合物) wt%計算之以下Li (鋰)含量:至少5、6、7或8 wt%;不超過15、13、11、10或9 wt%;或在由上述下限及上限之任何組合界定之範圍內。替代地,結晶金屬化合物粉末可進一步包含以LiO2 (不包括銀化合物) mol%計算之以下Li含量:至少25、28、29或30 mol%;不超過45、40、35、34、33、32或31 mol%;或在由上述下限及上限之任何組合界定之範圍內。又替代地,以由SUM(Li之所有來源)/SUM(Ag之所有來源)界定之莫耳比計算之結晶金屬化合物粉末的Li含量為:至少0.0080、0.0100、0.0120、0.0140或0.0150;不超過0.0240、0.0220、0.0200、0.0180或0.0170;或在由上述下限及上限之任何組合界定之範圍內。The crystalline metal compound powder may further comprise the following Li (lithium) content calculated as LiO 2 (excluding silver compound) wt %: at least 5, 6, 7 or 8 wt %; not more than 15, 13, 11, 10 or 9 wt % %; or within a range defined by any combination of the above lower and upper limits. Alternatively, the crystalline metal compound powder may further comprise the following Li contents calculated as LiO 2 (excluding silver compounds) mol %: at least 25, 28, 29 or 30 mol %; not more than 45, 40, 35, 34, 33, 32 or 31 mol%; or within a range defined by any combination of the above lower and upper limits. Still alternatively, the Li content of the crystalline metal compound powder, calculated as a molar ratio defined by SUM(all sources of Li)/SUM(all sources of Ag), is: at least 0.0080, 0.0100, 0.0120, 0.0140, or 0.0150; not more than 0.0240, 0.0220, 0.0200, 0.0180, or 0.0170; or within a range defined by any combination of the above lower and upper limits.

Li可以兩種不同化合物(例如Li2 CO3 及Li3 PO4 )形式提供。已發現,儘管可使用其他鋰及磷來源,但自加工觀點來看,Li2 CO3 及Li3 PO4 之混合物為有利的。Li can be provided as two different compounds such as Li 2 CO 3 and Li 3 PO 4 . It has been found, although the use of other sources of phosphorus and lithium, but from the viewpoint of processing, Li 2 CO 3 3 PO and a mixture of Li 4 is advantageous.

結晶金屬化合物粉末可進一步包含以MgO (不包括銀化合物) wt%計算之以下Mg (鎂)含量:至少0.5、1.0、1.5或2.0 wt%;不超過4.0、3.5、3.0或2.8 wt%;或在由上述下限及上限之任何組合界定之範圍內。替代地,結晶金屬化合物粉末可進一步包含以MgO (不包括銀化合物) mol%計算之以下Mg含量:至少2、3、4或5 mol%;不超過10、9、8或7 mol%;或在由上述下限及上限之任何組合界定之範圍內。又替代地,以由SUM(Mg之所有來源)/SUM(Ag之所有來源)界定之莫耳比計算之結晶金屬化合物粉末的Mg含量為:至少0.0003、0.0005、0.0007、0.009或0.0010;不超過0.0024、0.0020、0.0018、0.0016或0.0014;或在由上述下限及上限之任何組合界定之範圍內。The crystalline metal compound powder may further comprise the following Mg (magnesium) content calculated as MgO (excluding silver compounds) wt%: at least 0.5, 1.0, 1.5 or 2.0 wt%; not more than 4.0, 3.5, 3.0 or 2.8 wt%; or Within the range defined by any combination of the above lower and upper limits. Alternatively, the crystalline metal compound powder may further comprise the following Mg content calculated as mol% of MgO (excluding silver compounds): at least 2, 3, 4 or 5 mol%; not more than 10, 9, 8 or 7 mol%; or Within the range defined by any combination of the above lower and upper limits. Still alternatively, the Mg content of the crystalline metal compound powder, calculated as a molar ratio defined by SUM(all sources of Mg)/SUM(all sources of Ag), is: at least 0.0003, 0.0005, 0.0007, 0.009, or 0.0010; not more than 0.0024, 0.0020, 0.0018, 0.0016 or 0.0014; or within a range defined by any combination of the above lower and upper limits.

結晶金屬化合物粉末可進一步包含以P2 O5 (不包括銀化合物) wt%計算之以下P (磷)含量:至少2.0、3.0或4.0 wt%;不超過7.0、6.0或5.0 wt%;或在由上述下限及上限之任何組合界定之範圍內。替代地,結晶金屬化合物粉末可進一步包含以P2 O5 (不包括銀化合物) mol%計算之以下P含量:至少1、2或3 mol%;不超過6、5或4 mol%;或在由上述下限及上限之任何組合界定之範圍內。又替代地,以由SUM(P之所有來源)/SUM(Ag之所有來源)界定之莫耳比計算之結晶金屬化合物粉末的P含量為:至少0.0007、0.0009、0.0011或0.0013;不超過0.0024、0.0022、0.0020或0.0018;或在由上述下限及上限之任何組合界定之範圍內。如先前所論述,磷宜以Li3 PO4 之形式提供。The crystalline metal compound powder may further comprise the following P (phosphorus) content calculated as P 2 O 5 (excluding silver compound) wt %: at least 2.0, 3.0 or 4.0 wt %; not more than 7.0, 6.0 or 5.0 wt %; or at Within the range defined by any combination of the above lower and upper limits. Alternatively, the crystalline metal compound powder may further comprise the following P content calculated as P 2 O 5 (excluding silver compound) mol %: at least 1, 2 or 3 mol %; not more than 6, 5 or 4 mol %; or at Within the range defined by any combination of the above lower and upper limits. Still alternatively, the P content of the crystalline metal compound powder, calculated as a molar ratio defined by SUM(all sources of P)/SUM(all sources of Ag), is: at least 0.0007, 0.0009, 0.0011, or 0.0013; not more than 0.0024, 0.0022, 0.0020, or 0.0018; or within a range defined by any combination of the above lower and upper limits. As previously discussed, it should be provided in a phosphate Li 3 PO 4 of the form.

結晶金屬化合物粉末可進一步包含以Na2 O (不包括銀化合物) wt%計算之以下Na (鈉)含量:至少0.1、0.3、0.5或0.8 wt%;不超過1.5、1.0或0.9 wt%;或在由上述下限及上限之任何組合界定之範圍內。替代地,結晶金屬化合物粉末可進一步包含以Na2 O (不包括銀化合物) mol%計算之以下Na含量:至少0.2、0.5、0.8或1.0 mol%;不超過2.0、1.7、1.5或1.3 mol%;或在由上述下限及上限之任何組合界定之範圍內。又替代地,以由SUM(Na之所有來源)/SUM(Ag之所有來源)界定之莫耳比計算之結晶金屬化合物粉末的Na含量為:至少0.0001、0.0003、0.0005或0.0006;不超過0.0012、0.0010、0.0008或0.0007;或在由上述下限及上限之任何組合界定之範圍內。Crystalline metal compound powder may further contains Na 2 O (not including silver compound) wt% or less of the calculated Na (sodium) content: at least 0.1,0.3,0.5 or 0.8 wt%; not more than 1.5, 1.0 or 0.9 wt%; or Within the range defined by any combination of the above lower and upper limits. Alternatively, the crystalline metal compound powder may further contains Na 2 O (not including silver compound) mol% of the content of Na is calculated: at least 0.2,0.5,0.8 or 1.0 mol%; 2.0,1.7,1.5 or not more than 1.3 mol% ; or within a range bounded by any combination of the above lower and upper limits. Still alternatively, the Na content of the crystalline metal compound powder, calculated as a molar ratio defined by SUM(all sources of Na)/SUM(all sources of Ag), is: at least 0.0001, 0.0003, 0.0005, or 0.0006; not more than 0.0012, 0.0010, 0.0008 or 0.0007; or within a range defined by any combination of the above lower and upper limits.

結晶金屬化合物粉末可進一步包含以WO3 (不包括銀化合物) wt%計算之以下W (鎢)含量:至少1.0、1.3或1.6 wt%;不超過5.0、3.5或2.0 wt%;或在由上述下限及上限之任何組合界定之範圍內。替代地,結晶金屬化合物粉末可進一步包含以WO3 (不包括銀化合物) mol%計算之以下W含量:至少0.2、0.4或0.6 mol%;不超過2.0、1.5或1.0 mol%;或在由上述下限及上限之任何組合界定之範圍內。又替代地,以由SUM(W之所有來源)/SUM(Ag之所有來源)界定之莫耳比計算之結晶金屬化合物粉末的W含量為:至少0.0001、0.0002或0.0003;不超過0.0005或0.0004;或在由上述下限及上限之任何組合界定之範圍內。The crystalline metal compound powder may further comprise the following W (tungsten) content calculated as WO 3 (excluding silver compound) wt %: at least 1.0, 1.3 or 1.6 wt %; not more than 5.0, 3.5 or 2.0 wt %; Within the range defined by any combination of the lower limit and the upper limit. Alternatively, the crystalline metal compound powder may further comprise the following W content calculated as WO 3 (excluding silver compound) mol %: at least 0.2, 0.4 or 0.6 mol %; not more than 2.0, 1.5 or 1.0 mol %; Within the range defined by any combination of the lower limit and the upper limit. Still alternatively, the W content of the crystalline metal compound powder, calculated as a molar ratio defined by SUM(all sources of W)/SUM(all sources of Ag), is: at least 0.0001, 0.0002, or 0.0003; not more than 0.0005 or 0.0004; or within a range defined by any combination of the above lower and upper limits.

結晶金屬化合物粉末可實質上不含硼。舉例而言,結晶金屬化合物粉末可具有以B2 O3 計算的小於0.1 wt%硼、小於0.05 wt%、小於0.01 wt%或小於0.005 wt%之硼含量。The crystalline metal compound powder may be substantially free of boron. For example, the crystalline metal compound powder may have less than 0.1 wt% boron B 2 O 3 is calculated, is less than 0.05 wt%, less than 0.01 wt% or less than 0.005 wt% of boron content.

如先前所指示,導電膠可包含佔導電膠之85至95 wt%之固體部分以及佔導電膠之5至15 wt%之有機載體。此外,固體部分可包括1至5 wt%結晶金屬化合物粉末及95至99 wt%銀粉。此等導電膠組合物在太陽能電池中平衡了膠之印刷特性及燒製膠之電氣效能特性。同樣,銀粉及結晶金屬化合物粉末之wt%可藉由提供至少一部分化合物形式之銀而非金屬元素銀來改變。因此,固體部分可替代地經界定為包含1至5 wt%結晶金屬化合物粉末(不包括銀化合物)及95至99 wt%銀,包括金屬元素銀及銀化合物粉末。又替代地,固體部分之銀及結晶金屬化合物粉末含量可表示為如先前描述之比率。As indicated previously, the conductive paste may comprise a solid portion of 85 to 95 wt% of the conductive paste and an organic vehicle of 5 to 15 wt% of the conductive paste. In addition, the solid portion may include 1 to 5 wt % of crystalline metal compound powder and 95 to 99 wt % of silver powder. These conductive paste compositions balance the printing properties of the paste and the electrical performance characteristics of the fired paste in solar cells. Likewise, the wt % of the silver powder and crystalline metal compound powder can be varied by providing at least a portion of the silver as a compound rather than the metallic element silver. Thus, the solid fraction may alternatively be defined as comprising 1 to 5 wt % crystalline metal compound powder (excluding silver compounds) and 95 to 99 wt % silver, including metallic element silver and silver compound powder. Still alternatively, the silver and crystalline metal compound powder contents of the solid fraction can be expressed as ratios as previously described.

根據本發明之另一態樣,提供一種用於製造太陽能電池之表面電極的方法,該方法包含將如上文所定義之導電膠塗覆至半導體基板及燒製該經塗覆之導電膠。該方法可使用燒製曲線,其中經塗覆之導電膠之表面的溫度超過500℃持續兩分鐘或更短、一分鐘或更短、30秒或更短、20秒或更短或10秒或更短之時段。視情況,燒製曲線超過400℃持續兩分鐘或更短、一分鐘或更短、30秒或更短或20秒或更短之時段。視情況,燒製曲線超過300℃持續兩分鐘或更短、一分鐘或更短、30秒或更短或20秒或更短之時段。視情況,燒製曲線超過200℃持續兩分鐘或更短、一分鐘或更短、30秒或更短或25秒或更短之時段。視情況,燒製曲線超過100℃持續兩分鐘或更短、一分鐘或更短或30秒或更短之時段。According to another aspect of the present invention, there is provided a method for fabricating a surface electrode for a solar cell, the method comprising applying a conductive paste as defined above to a semiconductor substrate and firing the coated conductive paste. The method may use a firing profile wherein the temperature of the surface of the coated conductive paste exceeds 500°C for two minutes or less, one minute or less, 30 seconds or less, 20 seconds or less, or 10 seconds or shorter period of time. The firing curve exceeds 400°C for a period of two minutes or less, one minute or less, 30 seconds or less, or 20 seconds or less, as appropriate. The firing curve exceeds 300°C for a period of two minutes or less, one minute or less, 30 seconds or less, or 20 seconds or less, as appropriate. The firing curve exceeds 200°C for a period of two minutes or less, one minute or less, 30 seconds or less, or 25 seconds or less, as appropriate. The firing curve exceeds 100°C for a period of two minutes or less, one minute or less, or 30 seconds or less, as appropriate.

本發明之導電膠包括有機介質及固體部分。固體部分包括導電材料及無機粒子混合物。此等中之每一者均將加以論述,使用其製造導電膠之各種方法亦將加以論述。The conductive adhesive of the present invention includes an organic medium and a solid portion. The solid portion includes a conductive material and a mixture of inorganic particles. Each of these will be discussed, as will various methods of making conductive pastes using them.

無機粒子混合物 - 組成 本文所描述之導電膠的固體部分含有呈粒子形式之實質上結晶無機材料之摻合物。此無機摻合物在本文中有時稱作氧化物粒子混合物。可將如下文所描述之氧化物、碳酸鹽及其他材料混合(例如,藉由共研磨),且接著併入至導電膠中。 Inorganic Particle Mixture - Composition The solid portion of the conductive paste described herein contains a blend of substantially crystalline inorganic materials in particle form. This inorganic blend is sometimes referred to herein as a mixture of oxide particles. Oxides, carbonates, and other materials as described below can be mixed (eg, by co-grinding) and then incorporated into the conductive paste.

一般而言,在本發明之一些態樣中,無機粒子混合物由兩種或更多種不同粒子無機材料(諸如金屬化合物,例如金屬氧化物、金屬碳酸鹽及類似者)製成。該等粒子為實質上結晶的。混合物可含有非氧化物材料且可由不為氧化物之材料形成。In general, in some aspects of the invention, inorganic particle mixtures are made from two or more different particulate inorganic materials, such as metal compounds, eg, metal oxides, metal carbonates, and the like. The particles are substantially crystalline. The mixture may contain non-oxide materials and may be formed from materials that are not oxides.

粒子性質意謂存在各無機組分之離散、分離或個別粒子。此等與先前用於光伏電池應用之導電膠中的玻璃料之熔融非晶形結構不同。由於無機粒子為實質上結晶的,因此其不展現玻璃轉移。By particle nature is meant the presence of discrete, separate or individual particles of each inorganic component. These differ from the molten amorphous structure of glass frits previously used in conductive pastes for photovoltaic cell applications. Since the inorganic particles are substantially crystalline, they do not exhibit glass transition.

在固體部分中,存在導電材料及無機粒子混合物。該等導電材料及無機粒子混合物可能為固體部分之唯一組分。固體部分可因此僅由導電材料及無機粒子混合物組成。In the solid portion, there is a mixture of conductive material and inorganic particles. The conductive material and inorganic particle mixture may be the only components of the solid portion. The solid part may therefore consist only of the conductive material and the mixture of inorganic particles.

因此,在固體部分中,非晶形氧化物材料或玻璃之含量極低。固體部分之玻璃含量可小於1 wt%。舉例而言,相對於固體部分之總重量,固體部分之玻璃含量可小於0.5 wt%、小於0.25 wt%、小於0.1 wt%、小於0.05 wt%、小於0.01 wt%或小於0.005 wt%。固體部分有可能實質上不含玻璃。在一些實施例中,固體部分不包括任何有意添加之玻璃及/或任何有意形成之玻璃相。Therefore, in the solid fraction, the content of amorphous oxide material or glass is extremely low. The glass content of the solid fraction may be less than 1 wt%. For example, the glass content of the solids portion may be less than 0.5 wt%, less than 0.25 wt%, less than 0.1 wt%, less than 0.05 wt%, less than 0.01 wt%, or less than 0.005 wt% relative to the total weight of the solids portion. It is possible that the solid portion is substantially free of glass. In some embodiments, the solid portion does not include any intentionally added glass and/or any intentionally formed glass phase.

熟習此項技術者應理解,玻璃材料並非與非晶形材料,或甚至結晶材料內之非晶形區域同義。玻璃材料展現玻璃轉移。儘管玻璃可包括一些結晶域(其可能並非為完全非晶形的),但此等玻璃仍與本文所描述之離散結晶粒子不同。It will be understood by those skilled in the art that glass materials are not synonymous with amorphous materials, or even amorphous regions within crystalline materials. The glass material exhibits glass transfer. Although glasses may include some crystalline domains (which may not be completely amorphous), these glasses are still distinct from the discrete crystalline particles described herein.

當然,熟習此項技術者將認識到,由於所使用之加工條件之性質,即使當使用實質上結晶原料時,仍可能會形成一些非晶形或玻璃相。在本發明之態樣中,將此降至最低。舉例而言,可能存在由研磨,或來自有機鹽(例如,甲酸鹽及/或乙酸鹽)、金屬有機物及/或有機溶劑之碳的沈積引起之氧化物粒子的一些表面反應。然而,缺乏玻璃轉移(亦即,未展現玻璃轉移)可表徵與玻璃材料之差異。Of course, those skilled in the art will recognize that due to the nature of the processing conditions used, some amorphous or glassy phases may form even when substantially crystalline starting materials are used. In aspects of the present invention, this is minimized. For example, there may be some surface reaction of oxide particles caused by grinding, or deposition of carbon from organic salts (eg, formate and/or acetate), metal organics, and/or organic solvents. However, lack of glass transfer (ie, no glass transfer exhibited) can characterize differences from glass materials.

無機粒子混合物包括不同金屬化合物之實質上結晶粒子。各金屬化合物可例如選自金屬氧化物、金屬碳酸鹽或金屬磷酸鹽。如熟習此項技術者將理解,金屬化合物可包括附帶雜質。此類附帶雜質將以極低量(例如,相對於所述金屬化合物<1 mol%或<0.5 mol%)存在於金屬化合物中。此外,金屬化合物之加工(例如,共研磨)可引起化合物之一定表面改性或反應。然而,在此情況下,各粒子之主體保持為結晶金屬化合物,且仍可藉由已知技術識別。因此,結晶粒子與由展現玻璃轉移溫度及/或實質上非晶形之玻璃材料形成的玻璃粒子不同。相較於展現與晶體平面相關之強而窄的峰之結晶材料,玻璃在X射線繞射(XRD)分析中展現寬且界定不清的特徵。亦即,應注意,某些玻璃材料含有一定比例或組分的處於塊狀非晶相內之結晶相之材料。因此,在XRD中,玻璃展現寬且界定不清之特徵,但亦可展現對應於玻璃內之少量結晶材料之小而窄的峰。玻璃之特徵亦可在於包含多於一種不同類型之金屬的複雜不規則網路,儘管在此類不規則玻璃網路與包含規則晶格(包含氧及多於一種金屬)之複雜結晶金屬氧化物之間加以區分。同樣,此等材料之間的差異在XRD分析中為顯而易見的。另外,其他技術可用於證實材料為玻璃,該等技術包括:擴展X射線吸收精細結構(EXAFS);X射線對分佈函數(X射線PDF);中子對分佈函數(中子PDF);固態核磁共振(NMR);熱解重量分析(TGA);及差熱分析(DTA)。此等技術係此項技術中已知的用於分析玻璃及結晶材料且區分該兩者。The inorganic particle mixture includes substantially crystalline particles of different metal compounds. The individual metal compounds can be selected, for example, from metal oxides, metal carbonates or metal phosphates. As will be understood by those skilled in the art, the metal compound may include incidental impurities. Such incidental impurities will be present in the metal compound in very low amounts (eg, <1 mol% or <0.5 mol% relative to the metal compound). In addition, processing (eg, co-grinding) of the metal compounds can cause some surface modification or reaction of the compounds. In this case, however, the bulk of each particle remains as a crystalline metal compound and can still be identified by known techniques. Thus, crystalline particles are distinct from glass particles formed from glass materials that exhibit a glass transition temperature and/or are substantially amorphous. In contrast to crystalline materials that exhibit strong and narrow peaks associated with crystallographic planes, glasses exhibit broad and poorly defined features in X-ray diffraction (XRD) analysis. That is, it should be noted that some glass materials contain a proportion or composition of material in a crystalline phase within a bulk amorphous phase. Thus, in XRD, the glass exhibits broad and poorly defined features, but may also exhibit small, narrow peaks corresponding to small amounts of crystalline material within the glass. Glass can also be characterized by complex irregular networks containing more than one different type of metal, although in such irregular glass networks and complex crystalline metal oxides containing regular lattices containing oxygen and more than one metal distinguish between. Again, the differences between these materials are evident in the XRD analysis. In addition, other techniques can be used to confirm that the material is glass, these techniques include: Extended X-ray Absorption Fine Structure (EXAFS); X-ray Pair Distribution Function (X-ray PDF); Neutron Pair Distribution Function (Neutron PDF); Solid State NMR Resonance (NMR); Thermogravimetric Analysis (TGA); and Differential Thermal Analysis (DTA). These techniques are known in the art for analyzing glasses and crystalline materials and distinguishing between the two.

根據本說明書之結晶金屬化合物粉末的詳細組成已闡述於發明內容部分中。The detailed composition of the crystalline metal compound powder according to the present specification has been set forth in the Summary of the Invention section.

無機粒子混合物 - 粒度 具有某些粒度分佈之無機粒子混合物為出乎意料地適用。因此,粒度分佈之控制在本發明膠組合物中為重要的。 Mixtures of Inorganic Particles - Particle Size Mixtures of inorganic particles with certain particle size distributions are unexpectedly useful. Therefore, control of particle size distribution is important in the gum composition of the present invention.

無機粒子混合物可具有粒度分佈,其中 (a)    D10 ≤ 0.41 µm; (b)    D50 ≤ 1.6 µm; (c)    D90 ≤ 4.1 µm; (d)    (D50 - D10 ) ≤ 1.15 µm; (e)    (D90 - D50 ) ≤ 2.5 µm; (f)    (D90 - D10 ) ≤ 3.7 µm;及/或 (g)    (D50 /D10 ) ≤ 3.85。The inorganic particle mixture may have a particle size distribution wherein (a) D 10 ≤ 0.41 µm; (b) D 50 ≤ 1.6 µm; (c) D 90 ≤ 4.1 µm; (d) (D 50 - D 10 ) ≤ 1.15 µm; (e) (D 90 - D 50 ) ≤ 2.5 µm; (f) (D 90 - D 10 ) ≤ 3.7 µm; and/or (g) (D 50 /D 10 ) ≤ 3.85.

在根據本說明書之膠之實例中,可滿足此等要求中之一或多者、兩者或更多者、三者或更多者、四者或更多者、五者或更多者或六者或更多者。In an example of a glue according to this specification, one or more, two or more, three or more, four or more, five or more, or six or more.

在一些實例中,滿足要求(a)。在一些實例中,滿足要求(b)。在一些實例中,滿足要求(c)。在一些實例中,滿足要求(d)。在一些實例中,滿足要求(e)。在一些實例中,滿足要求(f)。在一些實例中,滿足要求(g)。此等要求之任何組合可在本發明之實例中得到滿足。In some instances, requirement (a) is satisfied. In some instances, requirement (b) is satisfied. In some instances, requirement (c) is satisfied. In some instances, requirement (d) is satisfied. In some instances, requirement (e) is satisfied. In some instances, requirement (f) is satisfied. In some instances, requirement (g) is satisfied. Any combination of these requirements can be met in the present examples.

關於要求(a),D10 為0.41 µm或更低,例如0.4 µm或更低、0.39 µm或更低、0.35 µm或更低、0.32 µm或更低、0.3 µm或更低、0.28 µm或更低、0.25 µm或更低或0.24 µm或更低。With respect to requirement (a), D 10 is 0.41 µm or less, e.g. 0.4 µm or less, 0.39 µm or less, 0.35 µm or less, 0.32 µm or less, 0.3 µm or less, 0.28 µm or less Low, 0.25 µm or less or 0.24 µm or less.

D10 之值較佳為0.4 µm或更低。The value of D 10 is preferably 0.4 µm or less.

通常,D10 粒度可為至少0.1 µm、至少0.12 µm、至少0.14 µm、至少0.17 µm或至少0.2 µm。Typically, the D 10 particle size may be at least 0.1 µm, at least 0.12 µm, at least 0.14 µm, at least 0.17 µm, or at least 0.2 µm.

因此,在一些實施例中,D10 在0.2 µm ≤ D10 ≤ 0.4 µm範圍內。Thus, in some embodiments, D 10 is in the range of 0.2 μm ≤ D 10 ≤ 0.4 μm.

關於要求(b),無機粒子混合物之D50 較佳小於或等於1.6 µm。D50 可為1.55 µm或更低、1.5 µm或更低、1.45 µm或更低、1.4 µm或更低、1.35 µm或更低、1.3 µm或更低、1.25 µm或更低、1.2 µm或更低、1.15 µm或更低、1.1 µm或更低、1.05 µm或更低、1 µm或更低或0.95 µm或更低。Requests for (b), a mixture of the inorganic particles D 50 is preferably less than or equal to 1.6 μm. D 50 can be 1.55 µm or less, 1.5 µm or less, 1.45 µm or less, 1.4 µm or less, 1.35 µm or less, 1.3 µm or less, 1.25 µm or less, 1.2 µm or less Low, 1.15 µm or lower, 1.1 µm or lower, 1.05 µm or lower, 1 µm or lower, or 0.95 µm or lower.

D50 之值較佳為1.05 µm或更低。The D 50 value is preferably 1.05 μm or less.

通常,D50 粒度可為至少0.1 µm、至少0.3 µm、至少0.5 µm或至少0.8 μm。Typically, D 50 particle size may be at least 0.1 μm, at least 0.3 μm, 0.5 μm, or at least at least 0.8 μm.

因此,在一些實例中,D50 在0.3 µm ≤ D50 ≤ 1.05 µm範圍內。Thus, in some instances, D 50 is in the range of 0.3 μm ≤ D 50 ≤ 1.05 μm.

關於要求(c),無機粒子混合物之D90 較佳小於或等於4.1 µm。D90 可為4 µm或更低、3.8 µm或更低、3.6 µm或更低、3.4 µm或更低、3.2 µm或更低、3 µm或更低、2.8 µm或更低、2.6 µm或更低、2.4 µm或更低、2.2 µm或更低、2.1 µm或更低、2 µm或更低或1.9 µm或更低。Requests for (c), a mixture of the inorganic particles D 90 is preferably less than or equal to 4.1 μm. D 90 can be 4 µm or less, 3.8 µm or less, 3.6 µm or less, 3.4 µm or less, 3.2 µm or less, 3 µm or less, 2.8 µm or less, 2.6 µm or less Low, 2.4 µm or lower, 2.2 µm or lower, 2.1 µm or lower, 2 µm or lower, or 1.9 µm or lower.

D90 之值較佳為2.2 µm或更低。The diameter D 90 of 2.2 μm or less is preferred.

通常,D90 粒度可為至少1 µm、至少1.2 µm、至少1.4 µm或至少1.5 µm。Typically, the D 90 particle size may be at least 1 µm, at least 1.2 µm, at least 1.4 µm, or at least 1.5 µm.

因此,在一些實例中,D90 在1.4 µm ≤ D90 ≤ 2.2 µm範圍內。Thus, in some instances, D 90 is in the range of 1.4 μm ≤ D 90 ≤ 2.2 μm.

關於要求(d),(D50 - D10 )為1.15 µm或更低,例如1.1 µm或更低、1 µm或更低、0.8 µm或更低、0.6 µm或更低、0.59 µm或更低、0.58 µm或更低、0.57 µm或更低、0.56 µm或更低、0.55 µm或更低、0.54 µm或更低或0.53 µm或更低。Regarding requirement (d), (D 50 - D 10 ) is 1.15 µm or less, e.g. 1.1 µm or less, 1 µm or less, 0.8 µm or less, 0.6 µm or less, 0.59 µm or less , 0.58 µm or lower, 0.57 µm or lower, 0.56 µm or lower, 0.55 µm or lower, 0.54 µm or lower, or 0.53 µm or lower.

(D50 - D10 )之值較佳為0.6 µm或更低。The value of (D 50 - D 10 ) is preferably 0.6 µm or less.

通常,D50 與D10 之間的差值可為至少0.1 µm、至少0.2 µm、至少0.3 µm或至少0.35 µm。Typically, the difference between D 50 and D 10 may be at least 0.1 µm, at least 0.2 µm, at least 0.3 µm, or at least 0.35 µm.

因此,在一些實例中,(D50 - D10 )在0.3 µm ≤ (D50 - D10 ) ≤ 0.6 µm範圍內。Thus, in some examples, (D 50 - D 10 ) is in the range of 0.3 μm ≤ (D 50 - D 10 ) ≤ 0.6 μm.

關於要求(e),(D90 - D50 )為2.5 µm或更低,例如2 µm或更低、1.75 µm或更低、1.5 µm或更低、1.25 µm或更低、1.15 µm或更低、1.1 µm或更低、1.05 µm或更低、1 µm或更低或0.95 µm或更低。Regarding requirement (e), (D 90 - D 50 ) is 2.5 µm or less, e.g. 2 µm or less, 1.75 µm or less, 1.5 µm or less, 1.25 µm or less, 1.15 µm or less , 1.1 µm or less, 1.05 µm or less, 1 µm or less, or 0.95 µm or less.

(D90 - D50 )之值較佳為1.15 µm或更低。The value of (D 90 - D 50 ) is preferably 1.15 µm or less.

通常,D90 與D50 之間的差值可為至少0.5 µm、至少0.6 µm、至少0.7 µm或至少0.75 µm。Typically, the difference between D 90 and D 50 may be at least 0.5 µm, at least 0.6 µm, at least 0.7 µm, or at least 0.75 µm.

因此,在一些實例中,(D90 - D50 )在0.6 µm ≤ (D90 - D50 ) ≤ 1.15 µm範圍內。Thus, in some instances, (D 90 - D 50 ) is in the range of 0.6 µm ≤ (D 90 - D 50 ) ≤ 1.15 µm.

關於要求(f),(D90 - D10 ),亦即D90 與D10 之間的差值較佳小於或等於3.7 µm。(D90 - D10 )之值可為3.5 µm或更低、3 µm或更低、2.5 µm或更低、2 µm或更低、1.8 µm或更低、1.6 µm或更低、1.5 µm或更低、1.45 µm或更低、1.4 µm或更低或1.35 µm或更低。Regarding requirement (f), (D 90 - D 10 ), that is , the difference between D 90 and D 10 is preferably less than or equal to 3.7 µm. (D 90 - D 10 ) can be 3.5 µm or less, 3 µm or less, 2.5 µm or less, 2 µm or less, 1.8 µm or less, 1.6 µm or less, 1.5 µm or less lower, 1.45 µm or lower, 1.4 µm or lower, or 1.35 µm or lower.

(D90 - D10 )之值較佳為1.8 µm或更低。The value of (D 90 - D 10 ) is preferably 1.8 µm or less.

通常,D90 與D10 之間的差值可為至少1 µm、至少1.1 µm、至少1.2 µm或至少1.3 µm。Typically, the difference between D 90 and D 10 may be at least 1 µm, at least 1.1 µm, at least 1.2 µm, or at least 1.3 µm.

因此,在一些實例中,(D90 - D10 )在1.1 µm ≤ (D90 - D10 ) ≤ 1.8 µm範圍內。Thus, in some instances, (D 90 - D 10 ) is in the range of 1.1 µm ≤ (D 90 - D 10 ) ≤ 1.8 µm.

關於要求(g),(D50 /D10 ),亦即藉由使D50 除以D10 獲得之值小於或等於3.85。(D50 /D10 )之值可為3.8或更低、3.7或更低、3.6或更低、3.5或更低、3.4或更低、3.3或更低、3.2或更低、3.1或更低、3或更低、2.8或更低或2.6或更低。Regarding requirement (g), (D 50 /D 10 ), that is, the value obtained by dividing D 50 by D 10 is less than or equal to 3.85. Value (D 50 / D 10) of 3.8 or less may be 3.7 or less, 3.6 or less, 3.5 or less, 3.4 or less, 3.3 or less, 3.2 or less, 3.1 or less , 3 or lower, 2.8 or lower, or 2.6 or lower.

(D50 /D10 )之值較佳為3.6或更低。The value of (D 50 /D 10 ) is preferably 3.6 or less.

通常,D50 與D10 之間的比率可為至少1、至少1.5、至少2或至少2.3 µm。Typically, the ratio between D 50 and D 10 may be at least 1, at least 1.5, at least 2, or at least 2.3 μm.

因此,在一些實例中,(D50 /D10 )在2.2 ≤ (D50 /D10 ) ≤ 3.6範圍內。Thus, in some examples, (D 50 /D 10 ) is in the range of 2.2≦(D 50 /D 10 )≦3.6.

可使用雷射繞射法(例如使用馬爾文粒度分析儀2000 (Malvern Mastersizer 2000))來測定本文所描述之粒度及分佈。The particle sizes and distributions described herein can be determined using laser diffraction methods, eg, using a Malvern Mastersizer 2000.

無機粒子混合物 - 製備 無機粒子混合物可藉由混合所需金屬化合物之原料來製備。彼等原料可為上文所論述之氧化物、碳酸鹽等等。混合可以已知方式來執行。通常,不對無機粒子混合物進行熔融、淬火或其他玻璃製造技術。 Inorganic Particle Mixtures - Preparation Inorganic particle mixtures can be prepared by mixing the raw materials of the desired metal compound. These raw materials may be oxides, carbonates, etc. discussed above. Blending can be performed in a known manner. Typically, the inorganic particle mixture is not melted, quenched or other glass making techniques.

混合或摻合上述材料可產生適用於本發明之無機粒子混合物。可以實質上結晶形式使用彼等原料。Mixing or blending the above materials can produce inorganic particle mixtures suitable for use in the present invention. These starting materials can be used in substantially crystalline form.

混合或摻合技術為此技術領域中所熟知的。本發明人已發現,共研磨技術在製備適合的無機(例如氧化物)粒子混合物中尤其有效。在不希望受理論束縛的情況下,咸信此係由於其對減小粒度及/或提供窄粒度分佈之影響。替代地,可單獨研磨(或視需要,以其他方式加工以提供所需粒度及/或粒度分佈)無機粒子混合物之各組分,隨後加以合併以提供無機粒子混合物。Mixing or blending techniques are well known in the art. The inventors have found that co-milling techniques are particularly effective in preparing suitable inorganic (eg oxide) particle mixtures. Without wishing to be bound by theory, it is believed that this is due to its effect on reducing particle size and/or providing a narrow particle size distribution. Alternatively, the components of the inorganic particle mixture may be milled separately (or otherwise processed to provide the desired particle size and/or particle size distribution, if desired), and then combined to provide the inorganic particle mixture.

混合(例如,共研磨)無機粒子混合物之原料之後可例如以任何次序將所得摻合物與有機介質及導電材料混合。共研磨可為對無機粒子混合物之原料進行的唯一加工。舉例而言,可不進行玻璃製造方法。應理解,替代地,可將無機粒子混合物之各組分分別添加至導電材料及有機介質中,以便獲得本發明之導電膠。Mixing (eg, co-milling) the raw materials of the inorganic particle mixture can be followed by mixing the resulting blend with the organic medium and conductive material, eg, in any order. Co-milling may be the only processing performed on the feedstock of the inorganic particle mixture. For example, the glass manufacturing method may not be performed. It should be understood that, alternatively, each component of the inorganic particle mixture can be separately added to the conductive material and the organic medium, so as to obtain the conductive adhesive of the present invention.

舉例而言,可摻合上文所論述之氧化物、碳酸鹽等等。接著,接著可研磨或不研磨所得混合物。當研磨時,可例如在行星式研磨機中進行該方法以提供如上文所論述之所需粒度分佈。可在有機溶劑,諸如二乙二醇丁醚中進行濕磨。接著可乾燥所得摻合粉末。可進行篩分以進一步調節粒度分佈。For example, the oxides, carbonates, etc. discussed above can be blended. Next, the resulting mixture may or may not be milled. When milling, the process can be carried out, for example, in a planetary mill to provide the desired particle size distribution as discussed above. Wet milling can be carried out in an organic solvent such as diethylene glycol butyl ether. The resulting blended powder can then be dried. Sieving can be performed to further adjust the particle size distribution.

導電膠 導電膠適合於在基板上形成導電軌或塗層。其尤其適用於在半導體基板上(例如太陽能電池中)形成表面電極。導電膠亦適合於在薄膜太陽能電池上形成電極。導電膠可為前側導電膠。 Conductive Paste Conductive paste is suitable for forming conductive tracks or coatings on substrates. It is particularly suitable for forming surface electrodes on semiconductor substrates, such as in solar cells. The conductive paste is also suitable for forming electrodes on thin film solar cells. The conductive adhesive may be the front-side conductive adhesive.

導電膠可包含佔導電膠之85至95 wt%之固體部分以及佔導電膠之5至15 wt%之有機載體。此外,固體部分可包括1至5 wt%結晶金屬化合物粉末及95至99 wt%銀粉。此等導電膠組合物在太陽能電池中平衡了膠之印刷特性及燒製膠之電氣效能特性。如發明內容部分中所描述,銀含量之一部分可以化合物形式而非元素金屬銀粉末形式提供。The conductive paste may comprise a solid portion of 85 to 95 wt % of the conductive paste and an organic vehicle of 5 to 15 wt % of the conductive paste. In addition, the solid portion may include 1 to 5 wt % of crystalline metal compound powder and 95 to 99 wt % of silver powder. These conductive paste compositions balance the printing properties of the paste and the electrical performance characteristics of the fired paste in solar cells. As described in the Summary of the Invention, a portion of the silver content may be provided in the form of compounds rather than elemental metallic silver powder.

銀用作膠中之導電材料。此在太陽能電池應用中,例如在意欲使膠與太陽能電池之n型發射極接觸之情況下為尤佳的。在一些實例中,尤其在意欲使膠與太陽能電池之p型發射極接觸之情況下,導電材料可包含鋁,例如,其可為銀與鋁之摻合物。Silver is used as the conductive material in the glue. This is especially preferred in solar cell applications, such as where it is intended to bring the glue into contact with the n-type emitter of the solar cell. In some examples, especially where the glue is intended to be in contact with the p-type emitter of the solar cell, the conductive material may comprise aluminum, for example, it may be a blend of silver and aluminum.

可以粒子(例如金屬粒子)之形式提供導電材料。粒子形式不受特定限制,但可呈片狀、球形粒子、顆粒、晶體、粉末或其他不規則粒子或其混合物之形式。The conductive material may be provided in the form of particles, such as metal particles. The particle form is not particularly limited, but may be in the form of flakes, spherical particles, granules, crystals, powders, or other irregular particles or mixtures thereof.

通常,導電材料之D50 粒度為至少0.1 μm、至少0.5 μm或至少1 μm。D50 粒度可為15 μm或更小、10 μm或更小、5 μm或更小、4 μm或更小、3 μm或更小或2 μm或更小。可使用雷射繞射法(例如使用馬爾文粒度分析儀2000)來測定粒度。Typically, D 50 particle size of the electrically conductive material is at least 0.1 μm, 0.5 μm, or at least at least 1 μm. D 50 particle size may be 15 μm or less, 10 μm or less, 5 μm or less, 4 μm or less, 3 μm or less, or 2 μm or less. Particle size can be determined using laser diffraction methods (eg using a Malvern Particle Size Analyzer 2000).

導電材料之表面積可為至少0.1 m2 /g、至少0.2 m2 /g、至少0.3 m2 /g、至少0.4 m2 /g或至少0.5 m2 /g。舉例而言,其可為5 m2 /g或更小、3 m2 /g或更小、2 m2 /g或更小、1 m2 /g或更小、0.8 m2 /g或更小或0.7 m2 /g或更小。The conductive material may have a surface area of at least 0.1 m 2 /g, at least 0.2 m 2 /g, at least 0.3 m 2 /g, at least 0.4 m 2 /g, or at least 0.5 m 2 /g. For example, it may be 5 m 2 /g or less, 3 m 2 /g or less, 2 m 2 /g or less, 1 m 2 /g or less, 0.8 m 2 /g or less Small or 0.7 m 2 /g or less.

有機介質 導電膠之固體部分分散於有機介質中。固體部分可佔導電膠之85至95 wt%且有機載體可佔導電膠之5至15 wt%。有機介質通常包含其中溶解或分散有一或多種添加劑之有機溶劑。通常選擇有機介質之組分來提供適合之稠度及流變特性,以准許將導電膠印刷至半導體基板上且使膠在運輸及儲存期間穩定。 Organic Medium The solid portion of the conductive adhesive is dispersed in the organic medium. The solid portion may account for 85 to 95 wt% of the conductive paste and the organic vehicle may account for 5 to 15 wt% of the conductive paste. The organic medium typically contains an organic solvent in which one or more additives are dissolved or dispersed. The components of the organic medium are typically selected to provide suitable consistency and rheological properties to permit printing of conductive pastes onto semiconductor substrates and to stabilize the paste during shipping and storage.

有機介質之適合溶劑的實例包括一或多種選自由以下組成之群的溶劑:二乙二醇丁醚、二乙二醇丁醚乙酸酯、萜品醇、二烷二醇烷基醚(諸如,二乙二醇二丁醚及三丙二醇單甲醚)、酯醇(諸如Texanol ®)、2-(2-甲氧基丙氧基)-1-丙醇及其混合物。Examples of suitable solvents for organic media include one or more solvents selected from the group consisting of diethylene glycol butyl ether, diethylene glycol butyl ether acetate, terpineol, dialkylene glycol alkyl ethers such as , diethylene glycol dibutyl ether and tripropylene glycol monomethyl ether), ester alcohols (such as Texanol®), 2-(2-methoxypropoxy)-1-propanol, and mixtures thereof.

適合添加劑之實例包括用於輔助固體部分分散於膠中之彼等分散劑、黏度/流變改質劑、搖變性改質劑、濕潤劑、增稠劑、穩定劑及界面活性劑。Examples of suitable additives include dispersants, viscosity/rheology modifiers, thixotropy modifiers, wetting agents, thickeners, stabilizers and surfactants to aid in the dispersion of the solid portion in the gum.

舉例而言,有機介質可包含一或多種選自由以下組成之群的組分:松香(松香樹脂(kollophonium resin))、丙烯酸系樹脂(例如,Neocryl ®)、聚羧酸聚合物之烷基銨鹽(例如,Dysperbik ® 110或111)、聚醯胺蠟(諸如Thixatrol Plus ®或Thixatrol Max ®)、硝化纖維素、乙基纖維素、羥丙基纖維素及卵磷脂。For example, the organic medium may comprise one or more components selected from the group consisting of: rosin (kollophonium resin), acrylic resin (eg, Neocryl®), alkylammonium polycarboxylate polymer Salts (eg, Dysperbik® 110 or 111), polyamide waxes (such as Thixatrol Plus® or Thixatrol Max®), nitrocellulose, ethylcellulose, hydroxypropylcellulose, and lecithin.

通常,藉由以任何次序將導電材料、無機粒子混合物之組分及有機介質之組分混合在一起來製備導電膠。Typically, the conductive paste is prepared by mixing together the conductive material, the components of the inorganic particle mixture, and the components of the organic medium in any order.

製造表面電極及太陽能電池 熟習此項技術者熟悉用於製造太陽能電池之表面電極的適合方法。類似地,熟習此項技術者熟悉用於製造太陽能電池之適合方法。 Fabrication of Surface Electrodes and Solar Cells Those skilled in the art are familiar with suitable methods for fabricating surface electrodes for solar cells. Similarly, those skilled in the art are familiar with suitable methods for fabricating solar cells.

用於製造太陽能電池之表面電極的方法通常包含將導電膠塗覆至半導體基板之表面上及燒製經塗覆之導電膠。可藉由任何適合之方法塗覆導電膠。舉例而言,可藉由印刷,諸如藉由網板印刷或噴墨印刷來塗覆導電膠。可將導電膠塗覆於半導體基板上以形成太陽能電池之光接收表面電極。替代地,可將導電膠塗覆於半導體基板上以形成太陽能電池之背側表面電極。太陽能電池可為n型或p型太陽能電池。可將膠塗覆至n型發射極(在p型太陽能電池中)上或塗覆至p型發射極(在n型太陽能電池中)上。一些太陽能電池稱為背接面電池(back junction cell)。在此情況下,可較佳將本發明之導電膠塗覆至太陽能電池之半導體基板的背面表面。與塗覆至太陽能電池之光接收表面的抗反射塗層類似,此類背側表面通常覆蓋有絕緣鈍化層(例如,SiN層)。替代地,可將導電膠塗覆至薄膜太陽能電池或可將導電膠塗覆至除太陽能電池以外的電子裝置之基板。Methods for fabricating surface electrodes for solar cells typically include applying a conductive paste onto the surface of a semiconductor substrate and firing the coated conductive paste. The conductive adhesive can be applied by any suitable method. For example, the conductive paste can be applied by printing, such as by screen printing or ink jet printing. The conductive paste can be coated on the semiconductor substrate to form the light-receiving surface electrode of the solar cell. Alternatively, a conductive paste can be coated on the semiconductor substrate to form the backside surface electrode of the solar cell. The solar cells can be n-type or p-type solar cells. The glue can be applied to the n-type emitter (in p-type solar cells) or to the p-type emitter (in n-type solar cells). Some solar cells are called back junction cells. In this case, the conductive adhesive of the present invention can preferably be applied to the back surface of the semiconductor substrate of the solar cell. Similar to anti-reflective coatings applied to the light-receiving surfaces of solar cells, such backside surfaces are typically covered with an insulating passivation layer (eg, a SiN layer). Alternatively, the conductive paste can be applied to thin film solar cells or the conductive paste can be applied to substrates of electronic devices other than solar cells.

熟習此項技術者瞭解用於燒製經塗覆之導電膠的適合技術。實例燒製曲線展示於圖1中。典型燒製過程持續大約30秒,其中電極表面達至約800℃之峰溫度。通常,爐溫將更高以實現此表面溫度。燒製經塗覆之導電膠可使用其中經塗覆之導電膠的表面溫度超過500℃持續兩分鐘或更短之時段的燒製曲線。本文所描述之膠的燒製曲線之較佳特徵展示於圖1中且描述於發明內容部分中。Those skilled in the art know suitable techniques for firing the coated conductive paste. Example firing curves are shown in FIG. 1 . A typical firing process lasts about 30 seconds, with the electrode surface reaching a peak temperature of about 800°C. Typically, the furnace temperature will be higher to achieve this surface temperature. Firing the coated conductive paste may use a firing profile in which the surface temperature of the coated conductive paste exceeds 500°C for a period of two minutes or less. Preferred characteristics of the firing profiles of the glues described herein are shown in Figure 1 and described in the Summary of the Invention section.

電極之半導體基板可為矽基板。舉例而言,其可為單晶半導體基板或多晶半導體基板。替代性基板包括CdTe。半導體可例如為p型半導體或n型半導體。The semiconductor substrate of the electrode may be a silicon substrate. For example, it may be a single crystal semiconductor substrate or a polycrystalline semiconductor substrate. Alternative substrates include CdTe. The semiconductor may be, for example, a p-type semiconductor or an n-type semiconductor.

半導體基板可在其表面上包含絕緣層。通常,將本說明書之導電膠塗覆於絕緣層之頂部上以形成電極。通常,絕緣層將為非反射的。適合的絕緣層為SiNx (例如,SiN)。其他適合之絕緣層包括Si3 N4 、SiO2 、Al2 O3 及TiO2The semiconductor substrate may include an insulating layer on its surface. Typically, the conductive paste of this specification is applied on top of the insulating layer to form the electrodes. Typically, the insulating layer will be non-reflective. A suitable insulating layer is SiNx (eg, SiN). The other suitable insulating layer comprises Si 3 N 4, SiO 2, Al 2 O 3 and TiO 2.

用於製造p型太陽能電池之方法可包含將背側導電膠(例如,包含鋁)塗覆至半導體基板之表面及燒製背側導電膠以形成背側電極。通常將背側導電膠塗覆至半導體基板與光接收表面電極之相對面。Methods for fabricating p-type solar cells may include applying a backside conductive paste (eg, comprising aluminum) to the surface of a semiconductor substrate and firing the backside conductive paste to form a backside electrode. The backside conductive paste is usually applied to the opposite side of the semiconductor substrate and the light-receiving surface electrode.

在製造p型太陽能電池中,通常將背側導電膠塗覆至半導體基板之背側(非光接收側)且在基板上乾燥,其後將前側導電膠塗覆至半導體基板之前側(光接收側)且在基板上乾燥。替代地,可首先塗覆前側膠,隨後塗覆背側膠。通常共燒製導電膠(亦即,燒製具有塗覆於其上之前側膠及背側膠的基板),以形成包含前側及背側導電軌之太陽能電池。In the manufacture of p-type solar cells, a backside conductive paste is usually applied to the backside (non-light receiving side) of a semiconductor substrate and dried on the substrate, after which the frontside conductive paste is applied to the front side (light receiving side) of the semiconductor substrate side) and dried on the substrate. Alternatively, the front side glue can be applied first, followed by the back side glue. The conductive paste is typically cofired (ie, the substrate with the front and back pastes coated thereon is fired) to form solar cells that include front and back conductive tracks.

太陽能電池之效率可藉由在基板之背側上提供鈍化層來提高。適合之材料包括SiNx (例如,SiN)、Si3 N4 、SiO2 、Al2 O3 及TiO2 。通常,局部移除(例如藉由雷射切除)鈍化層之區域以准許半導體基板與背側導電軌之間的接觸。替代地,在將本說明書之膠塗覆至背側的情況下,膠可用以蝕刻鈍化層,以使得能夠在半導體基板與導電軌之間形成電接觸。The efficiency of solar cells can be improved by providing a passivation layer on the backside of the substrate. Suitable materials include, of an SiNx (e.g., SiN), Si 3 N 4 , SiO 2, Al 2 O 3 and TiO 2. Typically, regions of the passivation layer are partially removed (eg, by laser ablation) to permit contact between the semiconductor substrate and the backside conductive rails. Alternatively, where the glue of this specification is applied to the backside, the glue can be used to etch the passivation layer to enable electrical contact to be made between the semiconductor substrate and the conductive tracks.

在導電軌形成於除太陽能電池之半導體基板以外的基板上之情況下,將導電膠塗覆至基板之方式不受特定限制。舉例而言,可將導電膠印刷(例如噴墨印刷或網版印刷)至基板上,或可將其塗佈(例如浸塗)至基板上。燒製條件亦不受特定限制,但可類似於上文關於形成太陽能電池之表面電極所描述的彼等。In the case where the conductive track is formed on a substrate other than the semiconductor substrate of the solar cell, the manner of applying the conductive paste to the substrate is not particularly limited. For example, the conductive paste can be printed (eg, ink jet printing or screen printing) onto the substrate, or it can be coated (eg, dip-coated) onto the substrate. The firing conditions are also not particularly limited, but may be similar to those described above with respect to forming the surface electrodes of the solar cell.

在本文中指定範圍之情況下,意欲該範圍之各端點為獨立的。因此,經明確考慮範圍之各所述上端點可獨立地與各所述下端點組合,且反之亦然。Where ranges are specified herein, it is intended that each endpoint of the range be independent. Thus, each such upper endpoint of an expressly contemplated range can be independently combined with each such lower endpoint, and vice versa.

實例example 無機摻合物Inorganic blends

藉由根據本說明書之一系列組成製備結晶金屬化合物粉末。各實例之組成資訊提供於下表中。表1及表2給出根據其氧化物當量wt% (表1)或mol% (表2)計算之各結晶金屬化合物組分之組成。在實例中,以其結晶氧化物形式提供Te、Bi、Zn及Ce組分,以碳酸鹽及磷酸鹽(其亦提供磷組分)之混合物形式提供Li,以碳酸鹽形式提供Mg、K及Na,且以H2 WO4 形式提供W組分。 組分 實例1 實例2 實例3 實例4 實例5 實例6 實例7 實例8 實例9 實例10 實例11 wt% wt% wt% wt% wt% wt% wt% wt% wt% wt% wt% TeO2 53.9 51.0 51.2 49.6 49.2 49.0 49.1 48.9 50.6 50.8 48.9 Li2O 8.6 8.1 8.2 9.3 9.0 9.0 9.0 8.8 9.2 9.2 8.8 ZnO 12.1 11.4 10.4 15.0 14.9 14.8 14.8 14.8 15.3 15.4 17.2 Bi2O3 15.8 20.9 21.1 17.1 17.0 16.9 17.0 16.9 16.2 16.2 15.6 P2O5 4.4 4.1 4.2 4.3 4.2 4.2 4.2 4.2 4.7 4.7 4.6 MgO 1.8 1.2 1.7 1.0 1.0 1.0 1.0 1.0 1.3 1.3 2.6 WO3 3.1 2.9 2.9 3.3 3.3 3.3 3.3 3.3 1.7 1.7 1.6 K2O 0.0 0.0 0.0 0.0 0.0 0.9 0.7 1.2 1.0 0.0 0.0 Ce2O3 0.0 0.0 0.0 0.0 0.9 0.9 0.9 0.9 0.0 0.0 0.0 Na2O 0.3 0.3 0.3 0.3 0.6 0.0 0.0 0.0 0.0 0.7 0.7 1 以對應氧化物之 wt% 計算之結晶金屬化合物粉末組合物 組分 實例1 實例2 實例3 實例4 實例5 實例6 實例7 實例8 實例9 實例10 實例11 mol% mol% mol% mol% mol% mol% mol% mol% mol% mol% mol% TeO2 37.4 37.4 37.4 33.9 33.9 33.9 33.9 33.9 34.1 34.1 31.9 Li2O 31.8 31.9 31.9 33.8 33.0 33.1 33.4 32.8 32.9 32.9 30.8 ZnO 16.4 16.4 14.9 20.1 20.1 20.1 20.1 20.1 20.2 20.2 22.0 Bi2O3 3.8 5.3 5.3 4.0 4.0 4.0 4.0 4.0 3.7 3.7 3.5 P2O5 3.4 3.4 3.4 3.3 3.3 3.3 3.3 3.3 3.6 3.6 3.4 MgO 5.1 3.5 5.0 2.7 2.7 2.7 2.7 2.7 3.5 3.5 6.6 WO3 1.5 1.5 1.5 1.6 1.6 1.6 1.6 1.6 0.8 0.8 0.7 K2O 0.0 0.0 0.0 0.0 0.0 1.1 0.8 1.4 1.2 0.0 0.0 Ce2O3 0.0 0.0 0.0 0.0 0.3 0.3 0.3 0.3 0.0 0.0 0.0 Na2O 0.6 0.6 0.6 0.6 1.1 0.0 0.0 0.0 0.0 1.2 1.1 2 以對應氧化物之 mol% 計算之結晶金屬化合物粉末組合物 Crystalline metal compound powders were prepared by a series of compositions according to the present specification. Compositional information for each example is provided in the table below. Tables 1 and 2 give the composition of each crystalline metal compound component calculated in terms of its oxide equivalent wt% (Table 1) or mol% (Table 2). In the example, the Te, Bi, Zn and Ce components are provided as their crystalline oxides, the Li is provided as a mixture of carbonate and phosphate (which also provides the phosphorus component), and the Mg, K, and na, and to provide a W component in the form of H 2 WO 4. component Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Example 8 Example 9 Example 10 Example 11 wt% wt% wt% wt% wt% wt% wt% wt% wt% wt% wt% TeO2 53.9 51.0 51.2 49.6 49.2 49.0 49.1 48.9 50.6 50.8 48.9 Li2O 8.6 8.1 8.2 9.3 9.0 9.0 9.0 8.8 9.2 9.2 8.8 ZnO 12.1 11.4 10.4 15.0 14.9 14.8 14.8 14.8 15.3 15.4 17.2 Bi2O3 15.8 20.9 21.1 17.1 17.0 16.9 17.0 16.9 16.2 16.2 15.6 P2O5 4.4 4.1 4.2 4.3 4.2 4.2 4.2 4.2 4.7 4.7 4.6 MgO 1.8 1.2 1.7 1.0 1.0 1.0 1.0 1.0 1.3 1.3 2.6 WO3 3.1 2.9 2.9 3.3 3.3 3.3 3.3 3.3 1.7 1.7 1.6 K2O 0.0 0.0 0.0 0.0 0.0 0.9 0.7 1.2 1.0 0.0 0.0 Ce2O3 0.0 0.0 0.0 0.0 0.9 0.9 0.9 0.9 0.0 0.0 0.0 Na2O 0.3 0.3 0.3 0.3 0.6 0.0 0.0 0.0 0.0 0.7 0.7 Table 1 : Crystalline Metal Compound Powder Composition in wt% of Corresponding Oxides component Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Example 8 Example 9 Example 10 Example 11 mol% mol% mol% mol% mol% mol% mol% mol% mol% mol% mol% TeO2 37.4 37.4 37.4 33.9 33.9 33.9 33.9 33.9 34.1 34.1 31.9 Li2O 31.8 31.9 31.9 33.8 33.0 33.1 33.4 32.8 32.9 32.9 30.8 ZnO 16.4 16.4 14.9 20.1 20.1 20.1 20.1 20.1 20.2 20.2 22.0 Bi2O3 3.8 5.3 5.3 4.0 4.0 4.0 4.0 4.0 3.7 3.7 3.5 P2O5 3.4 3.4 3.4 3.3 3.3 3.3 3.3 3.3 3.6 3.6 3.4 MgO 5.1 3.5 5.0 2.7 2.7 2.7 2.7 2.7 3.5 3.5 6.6 WO3 1.5 1.5 1.5 1.6 1.6 1.6 1.6 1.6 0.8 0.8 0.7 K2O 0.0 0.0 0.0 0.0 0.0 1.1 0.8 1.4 1.2 0.0 0.0 Ce2O3 0.0 0.0 0.0 0.0 0.3 0.3 0.3 0.3 0.0 0.0 0.0 Na2O 0.6 0.6 0.6 0.6 1.1 0.0 0.0 0.0 0.0 1.2 1.1 Table 2 : Crystalline Metal Compound Powder Composition in mol% of Corresponding Oxides

藉由使用實驗室混合器混合結晶金屬化合物以產生混合材料,隨後在二丙二醇單甲醚中濕磨混合材料以產生共研磨材料來製備無機摻合物。接著在盤式乾燥器中乾燥所得分散液且篩分以產生摻合粉末。Inorganic blends were prepared by mixing the crystalline metal compounds using a laboratory mixer to produce a mixed material, followed by wet milling the mixed material in dipropylene glycol monomethyl ether to produce a co-milled material. The resulting dispersion was then dried in a tray dryer and sieved to yield a blended powder.

膠製備 使用市售銀粉(如本文所描述之無機摻合物),其餘為標準有機介質來製備包含實質上結晶無機粒子混合物之導電銀膠。藉由預混合所有組分且在三輥研磨機中通過數次來製備膠,從而產生均質膠。 Paste Preparation A conductive silver paste comprising a mixture of substantially crystalline inorganic particles was prepared using commercially available silver powder (inorganic blend as described herein), with the remainder being a standard organic medium. The glue was prepared by premixing all components and passing several times in a three-roll mill, resulting in a homogeneous glue.

太陽能電池形成 將薄層電阻為130 Ohm/sq,大小為6吋之單晶PERC晶圓用可商購鋁膠網版印刷至其背側上,在IR質量帶式乾燥器中乾燥且隨機分組。用前側銀膠網版印刷此等組中之每一者,該前側銀膠為本文所描述之導電膠中之一者且更詳細地闡述於上文中。 Solar cell formation Monocrystalline PERC wafers with sheet resistance of 130 Ohm/sq, size 6 inches were screen printed on their backsides with commercially available aluminum, dried in an IR quality belt dryer and randomly grouped . Each of these sets is screen printed with a front-side silver paste, which is one of the conductive pastes described herein and described in more detail above.

用於前側膠之網版具有50 µm之指開口(finger opening)。在印刷前側之後,將電池在IR質量帶式乾燥器中乾燥,且在Despatch帶式爐中進行燒製。Despatch爐具有六個含有上部及下部加熱器之燒製區域。將前三個區域程式化為約500℃以燃燒來自膠之黏合劑,第四及第五區域處於較高溫度下,最終區域中之最高溫度為840℃ (爐溫)。此實驗之爐帶速度為490 cm/min。藉由使用熱電偶量測在燒製過程期間太陽能電池之表面的溫度來測定所記錄之溫度。太陽能電池之表面的溫度不超過800℃。此對於包含玻璃之膠所採用之燒製溫度為典型的,該玻璃通常具有約600℃之軟化點。出人意料地,對於本說明書之結晶無機粒子混合物而言,觀測到此類良好流動行為及接觸形成。The stencil used for the front glue had a finger opening of 50 µm. After printing the front side, the cells were dried in an IR quality belt dryer and fired in a Despatch belt oven. The Despatch furnace has six firing zones with upper and lower heaters. The first three zones were programmed to about 500°C to burn the adhesive from the glue, the fourth and fifth zones were at higher temperatures, with a maximum temperature of 840°C (furnace temperature) in the final zone. The belt speed for this experiment was 490 cm/min. The recorded temperature was determined by measuring the temperature of the surface of the solar cell during the firing process using a thermocouple. The temperature of the surface of the solar cell does not exceed 800°C. This is typical of the firing temperatures employed for pastes comprising glass, which typically has a softening point of about 600°C. Surprisingly, such good flow behavior and contact formation were observed for the crystalline inorganic particle mixtures of the present specification.

冷卻之後,在來自Halm的型號為cetisPV-CTL1之I-V曲線跟蹤器中測試所燒製之太陽能電池。由I-V曲線跟蹤器藉由直接量測或使用其內部軟體之計算來提供結果。After cooling, the fired solar cells were tested in an I-V curve tracer model cetisPV-CTL1 from Halm. Results are provided by the I-V curve tracer by direct measurements or calculations using its internal software.

為使接觸面積之影響最小化,使用相同印刷用網版及相同膠流變學來製備各實驗組(下表3中之實驗A、B、C及D)中所製備之電池。此確保所比較之膠之線寬實質上相同且對量測無影響。To minimize the effect of contact area, the cells prepared in each experimental group (Experiments A, B, C and D in Table 3 below) were prepared using the same printing screen and the same glue rheology. This ensures that the line widths of the glues being compared are substantially the same and have no effect on the measurements.

太陽能電池效能 填充因子(FF)指示太陽能電池相對於理論上理想(0電阻)系統之效能。填充因子與接觸電阻相關-接觸電阻愈低,填充因子將愈高。但若導電膠之無機添加劑侵蝕性過強,則其可能損壞半導體之pn接面。在此情況下,接觸電阻將較低,但由於pn接面之損壞(重組效應及較低分流電阻),因此將出現較低填充因子。因此,高填充因子指示在矽晶圓與導電軌之間存在低接觸電阻,且半導體上之膠的燒製不會不利地影響半導體之pn接面(亦即,分流電阻較高)。 Solar Cell Performance The fill factor (FF) indicates the performance of a solar cell relative to a theoretically ideal (0 resistance) system. Fill factor is related to contact resistance - the lower the contact resistance, the higher the fill factor will be. However, if the inorganic additive of the conductive adhesive is too aggressive, it may damage the pn junction of the semiconductor. In this case, the contact resistance will be lower, but a lower fill factor will occur due to damage to the pn junction (recombination effects and lower shunt resistance). Thus, a high fill factor indicates that there is a low contact resistance between the silicon wafer and the conductive tracks, and the firing of the paste on the semiconductor does not adversely affect the pn junction of the semiconductor (ie, higher shunt resistance).

pn接面之品質可藉由量測偽填充因子(SunsVocFF)來測定。此為與因電池中電阻所致的損耗無關之填充因子。因此,接觸電阻愈低且SunsVoc FF愈高,所得填充因子將愈高。熟習此項技術者熟悉用於測定SunsVoc FF之方法,例如如參考文獻1中所描述。SunsVoc FF係在開路條件下量測的,且與串聯電阻效應無關。The quality of the pn junction can be determined by measuring the pseudo fill factor (SunsVocFF). This is the fill factor independent of losses due to resistance in the battery. Therefore, the lower the contact resistance and the higher the SunsVoc FF, the higher the resulting fill factor will be. Those skilled in the art are familiar with methods for determining SunsVoc FF, eg as described in ref. SunsVoc FF is measured under open circuit conditions and is independent of series resistance effects.

基於太陽能輸入與電能輸出之比較來計算太陽能電池之效率。應注意,即使極小效率變化在市售太陽能電池中仍可為極寶貴的。The efficiency of the solar cell is calculated based on the comparison of solar energy input and electrical energy output. It should be noted that even very small changes in efficiency can still be extremely valuable in commercially available solar cells.

執行用於量測開路電壓(Uoc)及串聯電阻之其他測試。Perform other tests to measure open circuit voltage (Uoc) and series resistance.

若干實例之太陽能電池測試結果概述於表3中: 組成 最大效率 Uoc (V) FF (%) SunsVoc_FF(%) 效率(%) 串聯電阻(Ohm•cm2 ) 實驗A 實例1 20.63 0.6724 76.03 83.41 20.03 0.00547 實例2 19.61 0.6713 73.23 83.68 19.52 0.00783 實例3 19.47 0.6691 71.12 83.72 18.77 0.00943 實例4 20.63 0.6718 76.42 83.47 20.22 0.00536 實例5 20.99 0.6731 78.25 83.42 20.89 0.00388 實例6 20.93 0.6740 78.33 83.49 20.84 0.00384 實例7 21.11 0.6734 76.85 83.59 20.57 0.00502 實例8 17.81 0.6706 66.96 83.77 17.79 0.01236 實驗B 實例5 21.14 0.6686 79.18 83.29 21.05 0.00300 實例9 21.35 0.6710 78.95 83.32 21.20 0.00316 實驗C 實例9 21.51 0.6689 79.80 83.00 21.23 0.00230 實例10 21.48 0.6707 79.70 83.23 21.31 0.00254 實驗D 實例10 21.51 0.6706 80.11 83.32 21.41 0.00232 實例11 21.51 0.6726 80.07 83.48 21.45 0.00252 3 :太陽能電池測試結果 Solar cell test results for several examples are summarized in Table 3: composition maximum efficiency Uoc (V) FF (%) SunsVoc_FF (%) Efficiency (%) Series resistance (Ohm•cm 2 ) Experiment A Example 1 20.63 0.6724 76.03 83.41 20.03 0.00547 Example 2 19.61 0.6713 73.23 83.68 19.52 0.00783 Example 3 19.47 0.6691 71.12 83.72 18.77 0.00943 Example 4 20.63 0.6718 76.42 83.47 20.22 0.00536 Example 5 20.99 0.6731 78.25 83.42 20.89 0.00388 Example 6 20.93 0.6740 78.33 83.49 20.84 0.00384 Example 7 21.11 0.6734 76.85 83.59 20.57 0.00502 Example 8 17.81 0.6706 66.96 83.77 17.79 0.01236 Experiment B Example 5 21.14 0.6686 79.18 83.29 21.05 0.00300 Example 9 21.35 0.6710 78.95 83.32 21.20 0.00316 Experiment C Example 9 21.51 0.6689 79.80 83.00 21.23 0.00230 Example 10 21.48 0.6707 79.70 83.23 21.31 0.00254 Experiment D Example 10 21.51 0.6706 80.11 83.32 21.41 0.00232 Example 11 21.51 0.6726 80.07 83.48 21.45 0.00252 Table 3 : Solar Cell Test Results

可注意,儘管此等組合物尚未針對當前電池類型充分最佳化,但其仍展示等效於當前基於玻璃料之導電膠的功能效能特徵。It may be noted that although these compositions have not been fully optimized for current cell types, they still exhibit functional performance characteristics equivalent to current frit-based conductive pastes.

儘管本發明已參考某些實施例進行特定展示及描述,但熟習此項技術者應理解,在不脫離如由隨附申請專利範圍界定之本發明之範疇的情況下,可進行形式及細節之各種改變。Although the present invention has been particularly shown and described with reference to certain embodiments, it will be understood by those skilled in the art that changes in form and detail may be made without departing from the scope of the invention as defined by the scope of the appended claims. Various changes.

參考文獻 1.     A. McEvoy, T. Markvart, L. Castaner. Solar cells: Materials, Manufacture and Operation. Academic Press, second edition, 2013. Reference 1. A. McEvoy, T. Markvart, L. Castaner. Solar cells: Materials, Manufacture and Operation. Academic Press, second edition, 2013.

為了更好地理解本發明且為了展示本發明可如何實行,現將僅藉助於實例參考附圖來描述本發明之某些實施例,其中: 圖1展示如本文所描述之膠組合物的燒製曲線之實例。For a better understanding of the invention and to demonstrate how the invention may be practiced, certain embodiments of the invention will now be described, by way of example only, with reference to the accompanying drawings, wherein: Figure 1 shows an example of a firing profile for a glue composition as described herein.

Claims (17)

一種導電膠,其包含: 固體部分,其包含銀粉及結晶金屬化合物粉末;及 有機載體介質,其中該銀粉及該結晶金屬化合物粉末分散於其中, 其中該固體部分具有小於1 wt%之玻璃含量, 其中該結晶金屬化合物粉末具有以PbO計算之小於0.5 wt%之鉛含量; 其中該結晶金屬化合物粉末具有D90 ≤ 5 µm且D50 ≤ 2 µm之粒度,且 其中該結晶金屬化合物粉末具有至少包含以下之組合物: 以TeO2 計算之40至60 wt% Te; 以Bi2 O3 計算之12至25 wt% Bi;及 以ZnO計算之10至25 wt% Zn, 表示為相對於該導電膠中不包括任何銀化合物之該結晶金屬化合物粉末的總重量之重量百分比(wt%),及/或 其中該結晶金屬化合物粉末具有至少包含以下之組合物: 以TeO2 計算之20至40 mol% Te; 以Bi2 O3 計算之2至6 mol% Bi;及 以ZnO計算之14至29 mol% Zn, 表示為該導電膠中不包括任何銀化合物之該結晶金屬化合物粉末的莫耳百分比(mol%),及/或 其中該結晶金屬化合物粉末具有至少包含以下組分之組合物,該等組分表示為由SUM(特定元素之所有來源)/SUM(Ag之所有來源)界定之莫耳比: 0.0060至0.0090之Te/Ag; 0.0012至0.0026之 Bi/Ag;及 0.0029至0.0074 之Zn/Ag。A conductive adhesive comprising: a solid portion comprising silver powder and crystalline metal compound powder; and an organic carrier medium in which the silver powder and the crystalline metal compound powder are dispersed, wherein the solid portion has a glass content of less than 1 wt %, wherein the crystalline metal compound powder has a lead content calculated as PbO of less than 0.5 wt%; wherein the crystalline metal compound powder has a particle size of D 90 ≤ 5 µm and D 50 ≤ 2 µm, and wherein the crystalline metal compound powder has at least a The following composition: 40 to 60 wt % Te calculated as TeO 2 ; 12 to 25 wt % Bi calculated as Bi 2 O 3 ; and 10 to 25 wt % Zn calculated as ZnO, expressed relative to the conductive paste weight percent (wt%) does not include any of the crystalline metal compound is a silver compound of powder of the total weight of, and / or wherein the crystalline metal compound powder having at least the following of the composition: 20 to 40 mol to TeO 2 calculation of% Te; 2 to 6 mol % Bi calculated as Bi 2 O 3 ; and 14 to 29 mol % Zn calculated as ZnO, expressed as the molar percentage of the crystalline metal compound powder in the conductive paste excluding any silver compound ( mol%), and/or wherein the crystalline metal compound powder has a composition comprising at least the following components expressed as moles defined by SUM(all sources of specific elements)/SUM(all sources of Ag) Ratios: Te/Ag of 0.0060 to 0.0090; Bi/Ag of 0.0012 to 0.0026; and Zn/Ag of 0.0029 to 0.0074. 如請求項1之導電膠, 其中以TeO2 wt%計算之該結晶金屬化合物粉末的Te含量為:至少42、44、46或48 wt%;不超過58、56、54、52或50 wt%;或在由上述下限及上限之任何組合界定之範圍內,及/或 其中以TeO2 mol%計算之該結晶金屬化合物粉末的Te含量為:至少22、24、26、28或30 mol%;不超過38、36、34、33或32 mol%;或在由上述下限及上限之任何組合界定之範圍內,及/或 其中以由SUM(Te之所有來源)/SUM(Ag之所有來源)界定之莫耳比計算之該結晶金屬化合物粉末的Te含量為:至少0.0064、0.0068、0.0072或0.0074;不超過0.0086、0.0082、0.0078或0.0076;或在由上述下限及上限之任何組合界定之範圍內。The conductive adhesive of claim 1, wherein the Te content of the crystalline metal compound powder calculated as TeO 2 wt % is: at least 42, 44, 46 or 48 wt %; not more than 58, 56, 54, 52 or 50 wt % ; or within a range defined by any combination of the above lower and upper limits, and/or wherein the Te content of the crystalline metal compound powder, calculated as TeO 2 mol %, is: at least 22, 24, 26, 28 or 30 mol %; Not more than 38, 36, 34, 33 or 32 mol%; or within the range defined by any combination of the above lower and upper limits, and/or where the sum is determined by SUM(all sources of Te)/SUM(all sources of Ag) The Te content of the crystalline metal compound powder, calculated as a defined molar ratio, is: at least 0.0064, 0.0068, 0.0072, or 0.0074; not more than 0.0086, 0.0082, 0.0078, or 0.0076; or within a range defined by any combination of the above lower and upper limits . 如請求項1或2之導電膠, 其中以Bi2 O3 wt%計算之該結晶金屬化合物粉末的Bi含量為:至少13、14或15 wt%;不超過23、21、19或17 wt%;或在由上述下限及上限之任何組合界定之範圍內,及/或 其中以Bi2 O3 mol%計算之該結晶金屬化合物粉末的Bi含量為:至少2.5、3.0或3.4 mol%;不超過5.0、4.0或3.8 mol%;及/或在由上述下限及上限之任何組合界定之範圍內,及/或 其中以由SUM(Bi之所有來源)/SUM(Ag之所有來源)界定之莫耳比計算之該結晶金屬化合物粉末的Bi含量為:至少0.0014、0.0016或0.0018;不超過0.0024、0.0022或0.0020;或在由上述下限及上限之任何組合界定之範圍內。The conductive adhesive of claim 1 or 2, wherein the Bi content of the crystalline metal compound powder calculated as Bi 2 O 3 wt % is: at least 13, 14 or 15 wt %; not more than 23, 21, 19 or 17 wt % ; or within the range defined by any combination of the above lower and upper limits, and/or wherein the Bi content of the crystalline metal compound powder, calculated as Bi 2 O 3 mol %, is: at least 2.5, 3.0 or 3.4 mol %; not more than 5.0, 4.0 or 3.8 mol%; and/or within the range defined by any combination of the above lower and upper limits, and/or in which the molars defined by SUM(all sources of Bi)/SUM(all sources of Ag) The ratio-calculated Bi content of the crystalline metal compound powder is: at least 0.0014, 0.0016, or 0.0018; not more than 0.0024, 0.0022, or 0.0020; or within a range defined by any combination of the above lower and upper limits. 如請求項1或2之導電膠, 其中以ZnO wt%計算之該結晶金屬化合物粉末的Zn含量為:至少12、13、14、15或16 wt%;不超過23、21、19或18 wt%;或在由上述下限及上限之任何組合界定之範圍內,及/或 其中以ZnO mol%計算之該結晶金屬化合物粉末之該Zn含量為:至少16、18、20或21 mol%;不超過27、25、24或23 mol%;或在由上述下限及上限之任何組合界定之範圍內,及/或 其中以由SUM(Zn之所有來源)/SUM(Ag之所有來源)界定之莫耳比計算之該結晶金屬化合物粉末的Zn含量為:至少0.0035、0.0040、0.0045或0.0050;不超過0.0070、0.0065、0.0060或0.0055;或在由上述下限及上限之任何組合界定之範圍內。If the conductive adhesive of claim 1 or 2, wherein the Zn content of the crystalline metal compound powder calculated as ZnO wt% is: at least 12, 13, 14, 15 or 16 wt%; not more than 23, 21, 19 or 18 wt%; within the bounds of any combination, and/or wherein the Zn content of the crystalline metal compound powder calculated as ZnO mol % is: at least 16, 18, 20 or 21 mol %; not more than 27, 25, 24 or 23 mol %; or within any of the above lower and upper limits within the bounds of the portfolio, and/or wherein the Zn content of the crystalline metal compound powder, calculated as the molar ratio defined by SUM(all sources of Zn)/SUM(all sources of Ag), is: at least 0.0035, 0.0040, 0.0045 or 0.0050; not more than 0.0070, 0.0065, 0.0060 or 0.0055; or within the range defined by any combination of the above lower and upper limits. 如請求項1或2之導電膠, 其中該結晶金屬化合物粉末進一步包含以LiO2 wt%計算之以下Li含量:至少5、6、7或8 wt%;不超過15、13、11、10或9 wt%;或在由上述下限及上限之任何組合界定之範圍內,及/或 其中該結晶金屬化合物粉末進一步包含以LiO2 mol%計算之以下Li含量:至少25、28、29或30 mol%;不超過45、40、35、34、33、32或31 mol%;或在由上述下限及上限之任何組合界定之範圍內,及/或 其中,以由SUM(Li之所有來源)/SUM(Ag之所有來源)界定之莫耳比計算之該結晶金屬化合物粉末的Li含量為:至少0.0080、0.0100、0.0120、0.0140或0.0150;不超過0.0240、0.0220、0.0200、0.0180或0.0170;或在由上述下限及上限之任何組合界定之範圍內。The conductive paste of claim 1 or 2, wherein the crystalline metal compound powder further comprises the following Li content calculated as LiO 2 wt %: at least 5, 6, 7 or 8 wt %; not more than 15, 13, 11, 10 or 9 wt %; or within the range defined by any combination of the above lower and upper limits, and/or wherein the crystalline metal compound powder further comprises the following Li content calculated as LiO 2 mol %: at least 25, 28, 29 or 30 mol %; not more than 45, 40, 35, 34, 33, 32, or 31 mol%; or within the range defined by any combination of the above lower and upper limits, and/or wherein, to be determined by SUM (all sources of Li)/ The Li content of the crystalline metal compound powder, calculated as a molar ratio defined by SUM (all sources of Ag), is: at least 0.0080, 0.0100, 0.0120, 0.0140, or 0.0150; not more than 0.0240, 0.0220, 0.0200, 0.0180, or 0.0170; or Within the range defined by any combination of the above lower and upper limits. 如請求項5之導電膠, 其中該Li係以兩種不同化合物形式提供。If the conductive adhesive of claim 5, Wherein the Li system is provided in the form of two different compounds. 如請求項6之導電膠, 其中該Li係以Li2 CO3 及Li3 PO4 形式提供。The conductive adhesive of claim 6, wherein the Li is provided in the form of Li 2 CO 3 and Li 3 PO 4 . 如請求項1或2之導電膠, 其中該結晶金屬化合物粉末進一步包含以MgO wt%計算之以下Mg含量:至少0.5、1.0、1.5或2.0 wt%;不超過4.0、3.5、3.0或2.8 wt%;或在由上述下限及上限之任何組合界定之範圍內,及/或 其中該結晶金屬化合物粉末進一步包含以MgO mol%計算之以下Mg含量:至少2、3、4或5 mol%;不超過10、9、8或7 mol%;或在由上述下限及上限之任何組合界定之範圍內,及/或 其中以由SUM(Mg之所有來源)/SUM(Ag之所有來源)界定之莫耳比計算之該結晶金屬化合物粉末的Mg含量為:至少0.0003、0.0005、0.0007、0.009或0.0010;不超過0.0024、0.0020、0.0018、0.0016或0.0014;或在由上述下限及上限之任何組合界定之範圍內。If the conductive adhesive of claim 1 or 2, wherein the crystalline metal compound powder further comprises the following Mg content calculated as MgO wt%: at least 0.5, 1.0, 1.5 or 2.0 wt%; not more than 4.0, 3.5, 3.0 or 2.8 wt%; or at any of the lower and upper limits set forth above within the bounds of the portfolio, and/or wherein the crystalline metal compound powder further comprises the following Mg content calculated as MgO mol %: at least 2, 3, 4 or 5 mol %; not more than 10, 9, 8 or 7 mol %; or at any of the above lower and upper limits within the bounds of the portfolio, and/or wherein the Mg content of the crystalline metal compound powder, calculated as the molar ratio defined by SUM(all sources of Mg)/SUM(all sources of Ag), is: at least 0.0003, 0.0005, 0.0007, 0.009 or 0.0010; not more than 0.0024, 0.0020, 0.0018, 0.0016 or 0.0014; or within a range defined by any combination of the above lower and upper limits. 如請求項1或2之導電膠, 其中該結晶金屬化合物粉末進一步包含以P2 O5 wt%計算之以下P含量:至少2.0、3.0或4.0 wt%;不超過7.0、6.0或5.0 wt%;或在由上述下限及上限之任何組合界定之範圍內,及/或 其中該結晶金屬化合物粉末進一步包含以P2 O5 mol%計算之以下P含量:至少1、2或3 mol%;不超過6、5或4 mol%;或在由上述下限及上限之任何組合界定之範圍內,及/或 其中以由SUM(P之所有來源)/SUM(Ag之所有來源)界定之莫耳比計算之該結晶金屬化合物粉末的P含量為:至少0.0007、0.0009、0.0011或0.0013;不超過0.0024、0.0022、0.0020或0.0018;或在由上述下限及上限之任何組合界定之範圍內。The conductive paste of claim 1 or 2, wherein the crystalline metal compound powder further comprises the following P content calculated as P 2 O 5 wt %: at least 2.0, 3.0 or 4.0 wt %; not more than 7.0, 6.0 or 5.0 wt %; or within a range defined by any combination of the above lower and upper limits, and/or wherein the crystalline metal compound powder further comprises the following P content, calculated as P 2 O 5 mol %: at least 1, 2 or 3 mol %; not more than 6, 5 or 4 mol %; or within the range defined by any combination of the above lower and upper limits, and/or where calculated as a molar ratio defined by SUM(all sources of P)/SUM(all sources of Ag) The P content of the crystalline metal compound powder is: at least 0.0007, 0.0009, 0.0011 or 0.0013; not more than 0.0024, 0.0022, 0.0020 or 0.0018; or within a range defined by any combination of the above lower and upper limits. 如請求項1或2之導電膠, 其中該結晶金屬化合物粉末進一步包含以Na2 O wt%計算之以下Na含量:至少0.1、0.3、0.5或0.8 wt%;不超過1.5、1.0或0.9 wt%;或在由上述下限及上限之任何組合界定之範圍內,及/或 其中該結晶金屬化合物粉末進一步包含以Na2 O mol%計算之以下Na含量:至少0.2、0.5、0.8或1.0 mol%;不超過2.0、1.7、1.5或1.3 mol%;或在由上述下限及上限之任何組合界定之範圍內,及/或 其中以由SUM(Na之所有來源)/SUM(Ag之所有來源)界定之莫耳比計算之該結晶金屬化合物粉末的Na含量為:至少0.0001、0.0003、0.0005或0.0006;不超過0.0012、0.0010、0.0008或0.0007;或在由上述下限及上限之任何組合界定之範圍內。The conductive paste of claim 1 or 2, wherein the crystalline metal compound powder further comprises the following Na content calculated as Na 2 O wt %: at least 0.1, 0.3, 0.5 or 0.8 wt %; not more than 1.5, 1.0 or 0.9 wt % ; or within a range defined by any combination of the above lower and upper limits, and/or wherein the crystalline metal compound powder further comprises the following Na content, calculated as Na 2 O mol %: at least 0.2, 0.5, 0.8 or 1.0 mol %; Not more than 2.0, 1.7, 1.5 or 1.3 mol%; or within the range defined by any combination of the above lower and upper limits, and/or within the range defined by SUM(all sources of Na)/SUM(all sources of Ag) The Na content of the crystalline metal compound powder, calculated on a molar ratio, is: at least 0.0001, 0.0003, 0.0005, or 0.0006; not more than 0.0012, 0.0010, 0.0008, or 0.0007; or within a range defined by any combination of the foregoing lower and upper limits. 如請求項1或2之導電膠, 其中該結晶金屬化合物粉末進一步包含以WO3 wt%計算之以下W含量:至少1.0、1.3或1.6 wt%;不超過5.0、3.5或2.0 wt%;或在由上述下限及上限之任何組合界定之範圍內,及/或 其中該結晶金屬化合物粉末進一步包含以WO3 mol%計算之以下W含量:至少0.2、0.4或0.6 mol%;不超過2.0、1.5或1.0 mol%;或在由上述下限及上限之任何組合界定之範圍內,及/或 其中以由SUM(W之所有來源)/SUM(Ag之所有來源)界定之莫耳比計算之該結晶金屬化合物粉末的W含量為:至少0.0001、0.0002或0.0003;不超過0.0005或0.0004;或在由上述下限及上限之任何組合界定之範圍內。The conductive paste of claim 1 or 2, wherein the crystalline metal compound powder further comprises the following W content calculated as WO 3 wt %: at least 1.0, 1.3 or 1.6 wt %; not more than 5.0, 3.5 or 2.0 wt %; or in Within the range defined by any combination of the above lower and upper limits, and/or wherein the crystalline metal compound powder further comprises the following W content calculated as WO 3 mol %: at least 0.2, 0.4 or 0.6 mol %; not more than 2.0, 1.5 or 1.0 mol%; or within the range defined by any combination of the above lower and upper limits, and/or in which the crystalline metal is calculated as a molar ratio defined by SUM (all sources of W)/SUM (all sources of Ag) The W content of the compound powder is: at least 0.0001, 0.0002, or 0.0003; not more than 0.0005 or 0.0004; or within a range defined by any combination of the above lower and upper limits. 如請求項1或2之導電膠, 其中以PbO計算之該結晶金屬化合物粉末的鉛含量小於0.1 wt%、小於0.05 wt%、小於0.01 wt%或小於0.005 wt%。If the conductive adhesive of claim 1 or 2, wherein the lead content of the crystalline metal compound powder calculated as PbO is less than 0.1 wt %, less than 0.05 wt %, less than 0.01 wt % or less than 0.005 wt %. 如請求項1或2之導電膠, 其中相對於該固體部分之總重量,該固體部分之玻璃含量小於0.5 wt%、小於0.25 wt%、小於0.1 wt%、小於0.05 wt%、小於0.01 wt%或小於0.005 wt%。If the conductive adhesive of claim 1 or 2, wherein the solid portion has a glass content of less than 0.5 wt%, less than 0.25 wt%, less than 0.1 wt%, less than 0.05 wt%, less than 0.01 wt%, or less than 0.005 wt% relative to the total weight of the solids portion. 如請求項1或2之導電膠, 其中該固體部分佔該導電膠之85至95 wt%且該有機載體佔該導電膠之5至15 wt%。If the conductive adhesive of claim 1 or 2, Wherein the solid portion accounts for 85 to 95 wt % of the conductive adhesive and the organic vehicle accounts for 5 to 15 wt % of the conductive adhesive. 如請求項1或2之導電膠, 其中該固體部分包括1至5 wt%之結晶金屬化合物粉末及95至99 wt%之銀粉。If the conductive adhesive of claim 1 or 2, Wherein the solid portion includes 1 to 5 wt % of crystalline metal compound powder and 95 to 99 wt % of silver powder. 一種用於製造太陽能電池之表面電極之方法, 該方法包含將如請求項1至15中任一項所定義之導電膠塗覆至半導體基板及燒製該經塗覆之導電膠。A method for making a surface electrode for a solar cell, The method comprises applying a conductive paste as defined in any one of claims 1 to 15 to a semiconductor substrate and firing the applied conductive paste. 如請求項16之方法, 其中燒製該經塗覆之導電膠使用其中該經塗覆之導電膠的表面溫度超過500℃持續兩分鐘或更短之時段的燒製曲線。As in the method of claim 16, Wherein firing the coated conductive paste uses a firing profile in which the surface temperature of the coated conductive paste exceeds 500°C for a period of two minutes or less.
TW110113253A 2020-05-27 2021-04-13 Conductive pastes for solar cells TW202144510A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB2007908.3A GB202007908D0 (en) 2020-05-27 2020-05-27 Conductive pastes for solar cells
GB2007908.3 2020-05-27

Publications (1)

Publication Number Publication Date
TW202144510A true TW202144510A (en) 2021-12-01

Family

ID=71406315

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110113253A TW202144510A (en) 2020-05-27 2021-04-13 Conductive pastes for solar cells

Country Status (3)

Country Link
GB (2) GB202007908D0 (en)
TW (1) TW202144510A (en)
WO (1) WO2021240124A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8512463B2 (en) * 2011-04-05 2013-08-20 E I Du Pont De Nemours And Company Thick film paste containing bismuth-tellurium-oxide and its use in the manufacture of semiconductor devices
GB201520060D0 (en) 2015-11-13 2015-12-30 Johnson Matthey Plc Conductive paste and conductive track or coating
GB201520077D0 (en) * 2015-11-13 2015-12-30 Johnson Matthey Plc Conductive track or coating
US20170144920A1 (en) * 2015-11-20 2017-05-25 Giga Solar Materials Corp. Crystalline oxides, preparation thereof and conductive pastes containing the same

Also Published As

Publication number Publication date
GB202103910D0 (en) 2021-05-05
GB2595554A (en) 2021-12-01
WO2021240124A1 (en) 2021-12-02
GB202007908D0 (en) 2020-07-08

Similar Documents

Publication Publication Date Title
US10829407B2 (en) Conductive paste, method, electrode and solar cell
US20170044050A1 (en) Conductive paste, electrode and solar cell
US20210050462A1 (en) Conductive Paste And Conductive Track Or Coating
US11171251B2 (en) Process for forming conductive track or coating
US20210017067A1 (en) Conductive paste, method, electrode and solar cell
US20200152810A1 (en) Conductive paste, electrode and solar cell
TW202144510A (en) Conductive pastes for solar cells
EP3289592B1 (en) Conductive paste, electrode and solar cell
KR20230055847A (en) Glass frit composition for forming solar cell electrode, solar cell electrode formed by using the same glass composition, and solar cell including the same electrode