TW202143668A - 用於通道狀態反饋(csf)學習的可配置神經網路 - Google Patents

用於通道狀態反饋(csf)學習的可配置神經網路 Download PDF

Info

Publication number
TW202143668A
TW202143668A TW110113070A TW110113070A TW202143668A TW 202143668 A TW202143668 A TW 202143668A TW 110113070 A TW110113070 A TW 110113070A TW 110113070 A TW110113070 A TW 110113070A TW 202143668 A TW202143668 A TW 202143668A
Authority
TW
Taiwan
Prior art keywords
neural network
configuration
hyperparameters
base station
csf
Prior art date
Application number
TW110113070A
Other languages
English (en)
Inventor
陳波
帕樊庫馬爾 維泰拉德芙尼
泰尚 柳
納嘉 布桑
傑庫馬 桑達拉拉貞
馬瑞豐
南宮俊
克瑞許納奇藍 穆卡維利
晧 徐
庭方 季
Original Assignee
美商高通公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商高通公司 filed Critical 美商高通公司
Publication of TW202143668A publication Critical patent/TW202143668A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • G06N20/10Machine learning using kernel methods, e.g. support vector machines [SVM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • G06N3/0455Auto-encoder networks; Encoder-decoder networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/09Supervised learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/044Recurrent networks, e.g. Hopfield networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/0464Convolutional networks [CNN, ConvNet]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/048Activation functions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/092Reinforcement learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/098Distributed learning, e.g. federated learning

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Computing Systems (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Computational Linguistics (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一種由使用者設備(UE)進行的無線通訊的方法,包括以下步驟:接收用於通道狀態反饋(CSF)的多個神經網路訓練配置。每個配置對應於不同的神經網路框架。該方法亦包括以下步驟:根據所接收的訓練配置來訓練一組神經網路解碼器/編碼器對之每一者神經網路解碼器/編碼器對。一種由基地站進行的無線通訊的方法包括以下步驟:向使用者設備(UE)傳輸用於通道狀態反饋(CSF)的多個神經網路訓練配置。每個配置對應於不同的神經網路框架。該方法亦包括以下步驟:接收根據該等訓練配置來訓練的神經網路解碼器/編碼器對。

Description

用於通道狀態反饋(CSF)學習的可配置神經網路
本案內容的各態樣大體而言係關於無線通訊,以及更具體地,係關於用於可配置的5G新無線電(NR)通道狀態反饋(CSF)學習的技術和裝置。
廣泛地部署無線通訊系統以提供諸如電話、視訊、資料、訊息傳遞和廣播的各種電信服務。典型的無線通訊系統可以採用能夠經由共享可用的系統資源(例如,頻寬、傳輸功率等)來支援與多個使用者進行的通訊的多工存取技術。此種多工存取技術的實例包括分碼多工存取(CDMA)系統、分時多工存取(TDMA)系統、分頻多工存取(FDMA)系統、正交分頻多工存取(OFDMA)系統、單載波分頻多工存取(SC-FDMA)系統、分時同步分碼多工存取(TD-SCDMA)系統和長期進化(LTE)。LTE/改進的LTE是對由第三代合作夥伴計畫(3GPP)頒佈的通用行動電信系統(UMTS)行動服務標準的增強的集合。
無線通訊網路可以包括可以支援針對多個使用者設備(UE)進行的通訊的多個基地站(BS)。使用者設備(UE)可以經由下行鏈路和上行鏈路來與基地站(BS)進行通訊。下行鏈路(或前向鏈路)指的是從BS到UE的通訊鏈路,以及上行鏈路(或反向鏈路)指的是從UE到BS的通訊鏈路。如將在本文中更詳細地描述的,BS可以稱為節點B、gNB、存取點(AP)、無線電頭端、傳輸接收點(TRP)、新無線電(NR)BS、5G節點B等。
上文的多工存取技術已經被各種電信標準採納,以提供使得不同的使用者設備能夠在市級、國家級、地區級甚至全球級上通訊的通用協定。新無線電(NR)(其亦可以稱為5G)是對由第三代合作夥伴計畫(3GPP)頒佈的LTE行動服務標準的增強的集合。NR被設計為經由改良頻譜效率、降低成本、改良服務、利用新頻譜以及在下行鏈路(DL)上使用具有循環字首(CP)的正交分頻多工(OFDM)(CP-OFDM)、在上行鏈路(UL)上使用CP-OFDM及/或SC-FDM(例如,亦稱為離散傅裡葉變換擴展OFDM(DFT-s-OFDM))來更好地與其他開放的標準整合,以及支援波束成形、多輸入多輸出(MIMO)天線技術和載波聚合來更好地支援行動寬頻網路存取。然而,隨著針對行動寬頻存取的要求繼續增加,存在針對NR和LTE技術中的進一步改良的需要。較佳地,該等改良應當可適用於其他多工存取技術以及採用該等技術的電信標準。
人工神經網路可以包括互連的人工神經元群組(例如,神經元模型)。人工神經網路可以是計算設備或表示為要由計算設備執行的方法。迴旋神經網路(諸如深度迴旋神經網路)是一類型的前饋人工神經網路。迴旋神經網路可以包括可以配置在平鋪的感受野中的神經元層。將是期望的是,將神經網路處理應用於無線通訊以實現更高的效率。
在本案內容的一個態樣中,一種由使用者設備(UE)進行的無線通訊的方法包括以下步驟:接收用於通道狀態反饋(CSF)的多個神經網路訓練配置。每個配置對應於不同的神經網路框架。該方法亦包括以下步驟:根據所接收的訓練配置來訓練一組神經網路解碼器/編碼器對之每一者神經網路解碼器/編碼器對。
在本案內容的另一態樣中,一種由基地站進行的無線通訊的方法包括以下步驟:向使用者設備(UE)傳輸用於通道狀態反饋(CSF)的多個神經網路訓練配置。每個配置對應於不同的神經網路框架。該方法亦包括以下步驟:接收根據該等訓練配置來訓練的神經網路解碼器/編碼器對。
在本案內容的另一態樣中,UE包括記憶體和操作地耦合到該記憶體的至少一個處理器。該記憶體和該至少一個處理器被配置為:接收用於通道狀態反饋(CSF)的多個神經網路訓練配置。每個配置對應於不同的神經網路框架。該UE亦被配置為:根據所接收的訓練配置來訓練神經網路解碼器/編碼器對的集合之每一者神經網路解碼器/編碼器對。
在本案內容的另一態樣中,基地站包括記憶體和操作地耦合到該記憶體的至少一個處理器。該記憶體和該至少一個處理器被配置為:向使用者設備(UE)傳輸用於通道狀態反饋(CSF)的多個神經網路訓練配置。每個配置對應於不同的神經網路框架。該基地站亦被配置為:接收根據該等訓練配置來訓練的神經網路解碼器/編碼器對。
在本案內容的另一態樣中,UE包括:用於接收用於通道狀態反饋(CSF)的多個神經網路訓練配置的構件。每個配置對應於不同的神經網路框架。該UE亦包括:用於根據所接收的訓練配置來訓練神經網路解碼器/編碼器對的集合之每一者神經網路解碼器/編碼器對的構件。
在本案內容的另一態樣中,一種基地站包括:用於向使用者設備(UE)傳輸用於通道狀態反饋(CSF)的多個神經網路訓練配置的構件。每個配置對應於不同的神經網路框架。該基地站亦包括:用於接收根據該等訓練配置來訓練的神經網路解碼器/編碼器對的構件。
在本案內容的另一態樣中,揭示一種具有記錄在其上的程式碼的非暫時性電腦可讀取媒體。該程式碼是由UE處理器執行的以及包括用於進行以下操作的程式碼:接收用於通道狀態反饋(CSF)的多個神經網路訓練配置。每個配置對應於不同的神經網路框架。該程式碼亦包括用於根據所接收的訓練配置,來訓練一組神經網路解碼器/編碼器對之每一者神經網路解碼器/編碼器對的程式碼。
在本案內容的另一態樣中,揭示一種具有記錄在其上的程式碼的非暫時性電腦可讀取媒體。該程式碼由基地站處理器執行以及包括用於進行以下操作的程式碼:向使用者設備(UE)傳輸用於通道狀態反饋(CSF)的多個神經網路訓練配置。每個配置對應於不同的神經網路框架。該程式碼亦包括用於接收根據該訓練配置來訓練的神經網路解碼器/編碼器對的程式碼。
各態樣通常包括如大體上參照附圖和說明書描述的以及如經由附圖和說明書所示的方法、裝置、系統、電腦程式產品、非暫時性電腦可讀取媒體、使用者設備、基地站、無線通訊設備和處理系統。
上文已經根據本案內容相當廣泛地概述實例的特徵和技術優勢,以便更好地理解在其之後的具體實施方式。下文將描述另外的特徵和優勢。出於實現本案內容的相同的目的,所揭示的概念和具體的實例可以是易於作為用於修改或設計其他結構的基礎來利用的。此種等效的構造不背離所附的申請專利範圍的範疇。當結合附圖考慮時,本文所揭示的概念的特性(無論是其組織還是操作方法兩者)與相關聯的優勢一起將根據以下的描述來更好地理解。附圖之每一者附圖是出於說明和描述的目的提供的,以及不作為對申請專利範圍的界限的限定。
下文參照附圖更充分地描述本案內容的各個態樣。然而,本案內容可以是以多種不同的形式來體現的,以及不應當解釋為受限於遍及本案內容提供的任何特定的結構或功能。準確而言,提供該等態樣使得本案內容將是全面的和完整的,以及將向熟習此項技術者充分地傳達本案內容的範疇。基於本文中的教示,熟習此項技術者應當領會的是,無論是獨立於本案內容的任何其他態樣來實現,還是與本案內容的任何其他態樣組合來實現,本案內容的範疇意欲覆蓋本文所揭示的揭示內容的任何態樣。例如,使用闡述的任意數量的態樣可以實現裝置或者可以實施方法。此外,本案內容的範疇意欲覆蓋使用其他結構、功能,或者除了或不同於闡述的本案內容的各個態樣的結構和功能來實施的此種裝置或方法。應當理解的是,所揭示的揭示內容的任何態樣可以是經由申請專利範圍中的一或多個元素來體現的。
現在將參照各種裝置和技術來提供電信系統的若干態樣。該等裝置和技術將經由各種方塊、模組、元件、電路、步驟、程序、演算法等(統稱為「元素」),在以下具體實施方式中進行描述,以及在附圖中進行圖示。該等元素可以是使用硬體、軟體或其組合來實現的。此種元素是實現為硬體還是軟體,取決於特定的應用以及施加在整體系統上的設計約束。
應當注意的是,儘管各態樣可以是使用與5G和之後的無線技術共同地關聯的術語進行描述的,但是本案內容的各態樣可以應用於其他基於代的通訊系統中,諸如和包括3G及/或4G技術。
圖1是圖示在其中可以實施本案內容的各態樣的網路100的示意圖。網路100可以是5G或NR網路或另一些無線網路,諸如LTE網路。無線網路100可以包括多個BS 110(圖示為BS 110a、BS 110b、BS 110c和BS 110d)和其他網路實體。BS是與使用者設備(UE)進行通訊的實體,以及亦可以稱為基地站、NR BS、節點B、gNB、5G節點B(NB)、存取點、傳輸接收點(TRP)等。每個BS可以為特定的地理區域提供通訊覆蓋。在3GPP中,取決於在其中使用術語的上下文,術語「細胞」可以指的是BS的覆蓋區域及/或為該覆蓋區域服務的BS子系統。
BS可以為巨集細胞、微微細胞、毫微微細胞及/或另一類型的細胞提供通訊覆蓋。巨集細胞可以覆蓋相對大的地理區域(例如,半徑為若干公里),以及可以允許由具有服務訂閱的UE進行的無限制的存取。微微細胞可以覆蓋相對小的地理區域,以及可以允許由具有服務訂閱的UE進行的無限制的存取。毫微微細胞可以覆蓋相對小的地理區域(例如,住宅),以及可以允許由具有與毫微微細胞的關聯的UE(例如,在封閉用戶群組(CSG)中的UE)進行的受限制的存取。用於巨集細胞的BS可以稱為巨集BS。用於微微細胞的BS可以稱為微微BS。用於毫微微細胞的BS可以稱為毫微微BS或家庭BS。在圖1所示的實例中,BS 110a可以是用於巨集細胞102a的巨集BS,BS 110b可以是用於微微細胞102b的微微BS,以及BS 110c可以是用於毫微微細胞102c的毫微微BS。BS可以支援一或多個(例如,三個)細胞。術語「eNB」、「基地站」、「NR BS」、「gNB」、「TRP」、「AP」、「節點B」、「5G NB」和「細胞」可以在本文中可交換地使用。
在一些態樣中,細胞可以不一定是靜止的,以及細胞的地理區域可以根據行動BS的位置來移動。在一些態樣中,BS可以使用任何合適的傳輸網路經由各種類型的回載介面(諸如直接實體連接、虛擬網路等)彼此互連,及/或互連到無線網路100中的一或多個其他BS或網路節點(未圖示)。
無線網路100亦可以包括中繼站。中繼站是可以從上游站(例如,BS或UE)接收對資料的傳輸以及向下游站(例如,UE或BS)發送對資料的傳輸的實體。中繼站亦可以是可以對針對其他UE的傳輸進行中繼的UE。在圖1所示的實例中,中繼站110d可以與巨集BS 110a和UE 120d進行通訊,以便促進BS 110a與UE 120d之間的通訊。中繼站亦可以稱為中繼BS、中繼基地站、中繼器等。
無線網路100可以是包括不同類型的BS(例如,巨集BS、微微BS、毫微微BS、中繼BS等)的異質網路。該等不同類型的BS可以具有不同的傳輸功率位準、不同的覆蓋區域和對無線網路100中的干擾的不同的影響。例如,巨集BS可以具有高傳輸功率位準(例如,5瓦特至40瓦特),而微微BS、毫微微BS和中繼BS可以具有低傳輸功率位準(例如,0.1瓦特至2瓦特)。
網路控制器130可以耦合到BS的集合,以及可以為該等BS提供協調和控制。網路控制器130可以經由回載與BS進行通訊。BS亦可以例如經由無線回載或有線回載直接地或間接地互相通訊。
UE 120(例如,UE 120a、UE 120b、UE 120c)可以是遍及無線網路100散佈的,以及每個UE可以是靜止的或行動的。UE亦可以稱為存取終端、終端、行動站、用戶單元、站等。UE可以是蜂巢式電話(例如,智慧型電話)、個人數位助理(PDA)、無線數據機、無線通訊設備、手持設備、筆記型電腦、無線電話、無線區域迴路(WLL)站、平板電腦、照相機、遊戲設備、小筆電、智慧型電腦、超極本、醫療設備或醫療裝備、生物辨識感測器/設備、可穿戴設備(智慧手錶、智慧服裝、智慧眼鏡、智慧腕帶、智慧珠寶(例如,智慧戒指、智慧手鐲))、娛樂設備(例如,音樂設備或視訊設備、或衛星無線電單元)、車輛元件或感測器、智慧型儀器表/感測器、工業製造裝備、全球定位系統設備或被配置為經由無線媒體或有線媒體進行通訊的任何其他合適的設備。
一些UE可以被認為是機器類型通訊(MTC)UE或進化型或增強型機器類型通訊(eMTC)UE。MTC UE和eMTC UE包括例如機器人、無人機、遠端設備、感測器、儀錶、監控器、位置標籤等,其可以與基地站、另一設備(例如,遠端設備)或另一些實體進行通訊。例如,無線節點可以經由有線通訊鏈路或無線通訊鏈路為網路(例如,諸如網際網路或蜂巢網路之類的廣域網路)提供連接或向網路提供連接。一些UE可以被認為是物聯網路(IoT)設備,及/或可以實現為NB-IoT(窄頻物聯網)設備。一些UE可以被認為是客戶駐地設備(CPE)。UE 120可以是包括在容納UE 120的元件(諸如處理器元件、記憶體元件等)的外殼裡面的。
一般而言,任意數量的無線網路可以是部署在給定的地理區域中的。每個無線網路可以支援特定的RAT以及可以在一或多個頻率上操作。RAT亦可以稱為無線電技術、空中介面等。頻率亦可以稱為載波、頻率通道等。每個頻率可以支援給定的地理區域中的單個RAT,以便避免在不同的RAT的無線網路之間的干擾。在一些情況下,可以部署NR或5G RAT網路。
在一些態樣中,(例如,在不使用基地站110作為中介以互相通訊的情況下)兩個或更多個UE 120(例如,圖示為UE 120a和UE 120e)可以使用一或多個側行鏈路通道來直接地進行通訊。例如,UE 120可以使用同級間(P2P)通訊、設備到設備(D2D)通訊、車輛到萬物(V2X)協定(例如,其可以包括車輛到車輛(V2V)協定、車輛到基礎設施(V2I)協定等)、網狀網路等來進行通訊。在此種情況下,UE 120可以執行排程操作、資源選擇操作及/或本文中別處描述為在由基地站110執行的其他操作。
如上文所指示的,圖1僅是作為實例來提供的。其他實例可以不同於相對於圖1所描述的實例。
圖2圖示基地站110和UE 120(其可以是圖1中的基地站中的一個基地站以及UE中的一個UE)的設計200的方塊圖。基地站110可以配備有T個天線234a至234t,以及UE 120可以配備有R個天線252a至252r,其中一般而言,T≧1並且R≧1。
在基地站110處,傳輸處理器220可以從資料來源212接收針對一或多個UE的資料,至少部分地基於從UE接收的通道品質指示符(CQI)來選擇針對每個UE的一或多個調制和譯碼方案(MCS),至少部分地基於為UE選擇的MCS來處理(例如,編碼和調制)針對每個UE的資料,以及為所有UE提供資料符號。傳輸處理器220亦可以處理(例如,針對半靜態資源劃分資訊(SRPI)等的)系統資訊及/或控制資訊(例如,CQI請求、容許、上層信號傳遞等),以及提供管理負擔符號和控制符號。傳輸處理器220亦可以產生針對參考信號(例如,細胞專用參考信號(CRS))和同步信號(例如,主要同步信號(PSS)和次要同步信號(SSS))的參考符號。傳輸(TX)多輸入多輸出(MIMO)處理器230可以對資料符號、控制符號、管理負擔符號及/或參考符號執行空間處理(例如,預編碼)(若可適用的話),以及可以向T個調制器(MOD)232a至232t提供T個輸出符號串流。每個調制器232可以處理各自的輸出符號串流(例如,用於OFDM等)以獲得輸出取樣串流。每個調制器232可以進一步處理(例如,轉換為類比、放大、濾波和升頻轉換)輸出取樣串流以獲得下行鏈路信號。來自調制器232a至232t的T個下行鏈路信號可以是分別經由T個天線234a至234t來傳輸的。根據下文更詳細地描述的各個態樣,同步信號可以是利用位置編碼來產生的以傳達另外的資訊。
在UE 120處,天線252a至252r可以從基地站110及/或其他基地站接收下行鏈路信號,以及可以分別向解調器(DEMOD)254a至254r提供接收的信號。每個解調器254可以調節(例如,濾波、放大、降頻轉換和數位化)接收的信號以獲得輸入取樣。每個解調器254可以進一步處理輸入取樣(例如,用於OFDM等)以獲得接收的符號。MIMO偵測器256可以從所有R個解調器254a至254r獲得接收的符號,對接收的符號執行MIMO偵測(若可適用的話),以及提供偵測的符號。接收處理器258可以處理(例如,解調和解碼)偵測到的符號,將經解碼的針對UE 120的資料提供給資料槽260,以及向控制器/處理器280提供經解碼的控制資訊和系統資訊。通道處理器可以決定參考信號接收功率(RSRP)、接收信號強度指示符(RSSI)、參考信號接收品質(RSRQ)、通道品質指示符(CQI)等。在一些態樣中,UE 120中的一或多個元件可以是包括在外殼中的。
在上行鏈路上,在UE 120處,傳輸處理器264可以接收以及處理來自資料來源262的資料和來自控制器/處理器280的(例如,針對包括RSRP、RSSI、RSRQ、CQI等的報告的)控制資訊。傳輸處理器264亦可以產生針對一或多個參考信號的參考符號。來自傳輸處理器264的符號可以由TX MIMO處理器266進行預編碼(若可適用的話),由調制器254a至254r進一步處理(例如,用於DFT-s-OFDM、CP-OFDM等),以及傳輸給基地站110。在基地站110處,來自UE 120和其他UE的上行鏈路信號可以由天線234接收,由解調器254處理,由MIMO偵測器236偵測(若可適用的話),以及由接收處理器238進一步處理以獲得由UE 120發送的經解碼的資料和控制資訊。接收處理器238可以向資料槽239提供經解碼的資料,以及向控制器/處理器240提供經解碼的控制資訊。基地站110可以包括通訊單元244,以及經由通訊單元244向網路控制器130進行傳送。網路控制器130可以包括通訊單元294、控制器/處理器290和記憶體292。
基地站110的控制器/處理器240、UE 120的控制器/處理器280及/或圖2中的任何其他元件可以執行與可配置的通道狀態資訊(CSI)學習相關聯的一或多個技術,如在別處更詳細地描述的。例如,基地站110的控制器/處理器240、UE 120的控制器/處理器280及/或圖2中的任何其他元件可以執行或導引例如圖7和圖8的程序700、程序800及/或如所描述的其他程序的操作。記憶體242和記憶體282可以分別儲存針對基地站110和UE 120的資料和程式碼。排程器246可以排程UE用於下行鏈路及/或上行鏈路上的資料傳輸。
在一些態樣中,UE 120可以包括:用於接收的構件、用於傳輸的構件、用於指示的構件以及用於訓練的構件。此種構件可以包括結合圖2所描述的UE 120或基地站110的一或多個元件。
如上文所指示的,圖2僅是作為實例來提供的。其他實例可以與相對於圖2所描述的實例不同。
在一些情況下,支援不同類型的應用及/或服務的不同類型的設備可以在細胞中共存。不同類型的設備的實例包括UE手持設備、客戶駐地設備(CPE)、車輛、物聯網路(IoT)設備等。不同類型的應用的實例包括超可靠低延時通訊(URLLC)應用、大規模機器類型通訊(mMTC)應用、增強型行動寬頻(eMBB)應用、車輛到萬物(V2X)應用等。此外,在一些情況下,單個設備可以同時地支援不同的應用或服務。
圖3圖示根據本案內容的某些態樣的晶片上系統(SOC)300的示例性實現方式,該SOC 300可以包括被配置用於通道狀態資訊(CSI)學習的中央處理單元(CPU)302或多核心CPU。SOC 300可以是包括在基地站110或UE 120中的。變數(例如,神經信號和突觸權重)、與計算設備(例如,具有權重的神經網路)相關聯的系統參數、延遲、頻段資訊和任務資訊可以儲存在與神經處理單元(NPU)308相關聯的記憶體區塊中、與CPU 302相關聯的記憶體區塊中、與圖形處理單元(GPU)304相關聯的記憶體區塊中、與數位信號處理器(DSP)306相關聯的記憶體區塊中、記憶體區塊318中或者可以是跨越多個區塊分佈的。在CPU 302處執行的指令可以從與CPU 302相關聯的程式記憶體載入或者可以從記憶體區塊318載入。
SOC 300亦可以包括針對特定的功能定製的另外的處理區塊,諸如GPU 304、DSP 306、連接區塊310(其可以包括第五代(5G)連接、第四代長期進化(4G LTE)連接、Wi-Fi連接、USB連接、藍芽連接等)以及可以例如偵測和辨識手勢的多媒體處理器312。在一個實現方式中,NPU是在CPU、DSP及/或GPU中實現的。SOC 300亦可以包括感測器處理器314、圖像信號處理器(ISP)316及/或導航模組320(其可以包括全球定位系統)。
SOC 300可以是基於ARM指令集。在本案內容的一態樣中,載入到通用處理器302中的指令可以包括用於傳輸的代碼、用於接收的代碼和用於訓練的代碼。
深度學習架構可以經由學習在每個層中在連續地較高的抽象級別上表示輸入來執行物件辨識任務,從而建立對輸入資料的有用的特徵表示。用此種方法,深度學習解決了傳統的機器學習的主要瓶頸。在深度學習出現之前,物件辨識問題的機器學習方法可能在很大程度上依賴於人類工程特徵,可能與淺分類器組合。淺分類器可以是兩類線性分類器,例如,在其中可以將特徵向量分量的加權和與閾值進行比較來預測輸入屬於何類。人類工程特徵可以是由具有領域專業知識的工程師針對特定的問題領域定製的範本或核心。相比之下,深度學習架構可以學習表示與人類工程師可能設計的特徵相似的特徵,但是要經由訓練。此外,深度網路可以學習表示和辨識人類可能未考慮過的新類型的特徵。
深度學習架構可以學習特徵的層次。例如,若呈現視覺資料,則第一層可以學習辨識輸入串流中的相對簡單的特徵,諸如邊緣。在另一實例中,若呈現聽覺資料,則第一層可以學習辨識特定的頻率中的頻譜功率。將第一層的輸出作為輸入的第二層可以學習辨識特徵的組合,諸如用於視覺資料的簡單的形狀或用於聽覺資料的聲音的組合。例如,較高層可以學習在視覺資料中表示複雜的形狀,或者在聽覺資料中表示詞語。更高層可以學習辨識常見的視覺物件或口語短語。
深度學習架構可能在應用於具有自然層次結構的問題時執行得特別好。例如,對機動車輛的分類可以受益於首先學習辨識車輪、擋風玻璃和其他特徵。該等特徵可以以不同的方式在較高層處組合,以辨識汽車、卡車和飛機。
神經網路可以被設計具有各種連接性模式。在前饋網路中,資訊從較低層傳遞到較高層,其中給定層之每一者神經元向較高層中的神經元進行傳送。可以在前饋網路的連續層中建立分層表示,如上文所描述的。神經網路亦可以具有循環或反饋(亦稱為自頂向下)連接。在循環連接中,來自給定層中的神經元的輸出可以傳送給同一層中的另一神經元。循環架構可以有助於辨識橫跨輸入資料區塊中的多於一個的輸入資料區塊的模式,該等輸入資料區塊按順序遞送給神經網路。從給定層中的神經元到較低層中的神經元的連接稱為反饋(或自頂向下)連接。當對高級概念的辨識可以輔助區分輸入的特定的低級特徵時,具有許多反饋連接的網路可能是有幫助的。
神經網路的層之間的連接可以是完全連接的或局部連接的。圖4A圖示完全連接的神經網路402的實例。在完全連接的神經網路402中,第一層中的神經元可以將其輸出傳送給第二層之每一者神經元,使得第二層之每一者神經元將接收來自第一層之每一者神經元的輸入。圖4B圖示局部連接的神經網路404的實例。在局部連接的神經網路404中,第一層中的神經元可以連接到第二層中的有限數量的神經元。更通常地,局部連接的神經網路404的局部連接的層可以被配置為使得層之每一者神經元將具有相同或類似的連接性模式,但是其中連接強度可以具有不同的值(例如,410、412、414和416)。局部連接的連接性模式可以在較高層中產生空間上不同的感受野,此情形是因為給定的區域中的較高層神經元可以接收經由訓練調諧至到網路的總輸入的受限制的部分的屬性的輸入。
局部連接的神經網路的一個實例是迴旋神經網路。圖4C圖示迴旋神經網路406的實例。迴旋神經網路406可以被配置為使得與針對第二層之每一者神經元的輸入相關聯的連接強度被共享(例如,408)。迴旋神經網路可能非常適合在其中輸入的空間位置是有意義的問題。
一種類型的迴旋神經網路是深度迴旋網路(DCN)。圖4D圖示DCN 400的詳細的實例,該DCN 400被設計為從來自圖像擷取設備430(諸如車載照相機)的輸入的圖像426中辨識視覺特徵。可以訓練當前的實例的DCN 400來辨識交通標誌和交通標誌上提供的數值。當然,DCN 400可以被訓練用於其他任務,諸如辨識車道標線或辨識交通燈。
DCN 400可以是利用監督學習來訓練的。在訓練期間,可以向DCN 400呈現諸如限速標誌的圖像426的圖像,以及可以接著計算前向傳遞(forward pass)以產生輸出422。DCN 400可以包括特徵提取部分和分類部分。在接收到圖像426之後,迴旋層432可以將迴旋核心(未圖示)應用於圖像426以產生第一特徵圖集合418。作為一實例,針對迴旋層432的迴旋核心可以是產生28x28特徵圖的5x5核心。在本實例中,因為四個不同的特徵圖是在第一特徵圖集合418中產生的,所以在迴旋層432處將四個不同的迴旋核心應用於圖像426。迴旋核心亦可以稱為濾波器或迴旋濾波器。
第一特徵圖集合418可以由最大池層(未圖示)進行二次取樣以產生第二特徵圖集合420。最大池層減少第一特徵圖集合418的大小。亦即,第二特徵圖集合420的大小(諸如14x14)小於第一特徵圖集合418的大小(諸如28x28)。減少的大小向隨後的層提供類似的資訊,同時減少記憶體消耗。第二特徵圖集合420可以經由一或多個隨後的迴旋層(未圖示)來進一步地進行迴旋,以產生一或多個隨後的特徵圖集合(未圖示)。
在圖4D的實例中,對第二特徵圖集合420進行迴旋以產生第一特徵向量424。此外,進一步對第一特徵向量424進行迴旋以產生第二特徵向量428。第二特徵向量428的每個特徵可以包括對應於圖像426的可能的特徵的數值(諸如「標誌」、「60」和「100」)。softmax函數(未圖示)可以將第二特徵向量428中的數值轉換為概率。照此,DCN 400的輸出422是圖像426包括一或多個特徵的概率。
在本實例中,輸出422中針對「標誌」和「60」的概率比輸出422的其他項(諸如「30」、「40」、「50」、「70」、「80」、「90」和「100」)的概率要高。在訓練之前,由DCN 400產生的輸出422很可能不正確。因此,可以計算輸出422與目標輸出之間的誤差。目標輸出是圖像426的基本真值(例如,「標誌」和「60」)。可以接著調整DCN 400的權重,使得DCN 400的輸出422與目標輸出更緊密地對準。
為了調整權重,學習演算法可以計算針對權重的梯度向量。梯度可以指示若調整權重,則誤差將增加或減少的量。在頂層處,梯度可以直接地對應於連接倒數第二層中的啟用神經元和輸出層中的神經元的權重的值。在較低層中,梯度可以取決於權重的值和較高層的計算的誤差梯度。可以接著調整權重以減少誤差。此種調整權重的方式可以稱為「反向傳播」,因為其涉及經由神經網路的「後向傳遞(backward pass)」。
在實踐中,可以在少量實例之上計算權重的誤差梯度,使得計算的梯度近似於真實的誤差梯度。此種近似方法可以稱為隨機梯度下降。可以重複隨機梯度下降,直到整個系統的可實現的誤差率已經停止下降為止或者直到誤差率已經達到目標水平為止。在學習之後,可以向DCN呈現新圖像(例如,圖像426的限速標誌),以及經由網路的前向傳遞可以產出可以被認為是對DCN的推斷或預測的輸出422。
深度信任網路(DBN)是包括隱藏節點的多個層的概率模型。DBN可以用於提取訓練資料集合的分層表示。DBN可以是經由將受限玻爾茲曼機(RBM)的層疊加來獲得的。RBM是一類型的人工神經網路,其可以學習在輸入集合之上的概率分佈。由於RBM可以在缺少關於每個輸入應當分類到的類的資訊時學習概率分佈,因此RBM經常用於無監督學習。使用混合的無監督範式和有監督範式,DBN的底部RBM可以以無監督的方式進行訓練以及可以用作特徵提取器,以及頂部RBM可以(基於對來自先前層的輸入和目標類的聯合分佈)以有監督的方式進行訓練以及可以用作分類器。
深度迴旋網路(DCN)是迴旋網路的網路,其被配置具有另外的池和正規化層。DCN已經在許多任務上實現了最先進的效能。可以使用有監督學習來訓練DCN,在其中輸入和輸出目標兩者對於許多範例而言是已知的以及用於經由利用梯度下降方法來修改網路的權重。
DCN可以是前饋網路。此外,如上文所描述的,從DCN的第一層中的神經元到下一較高層中的一組神經元的連接是跨越第一層中的神經元來共享的。DCN的前饋連接和共享連接可以用於快速處理。DCN的計算負擔可能比例如包括循環連接或反饋連接的類似大小的神經網路的計算負擔要小得多。
對迴旋網路的每個層的處理可以被認為是空間上不變的範本或基投影。若首先將輸入分解為多個通道,諸如彩色圖像的紅色通道、綠色通道和藍色通道,則在該輸入上訓練的迴旋網路可以被認為是三維的,具有沿著圖像的軸的兩個空間維度和擷取顏色資訊的第三維度。迴旋連接的輸出可以被認為在隨後的層中形成特徵圖,其中特徵圖的每個元素(例如,220)接收來自先前層(例如,特徵圖218)中的一系列神經元和來自多個通道之每一者通道的輸入。特徵圖中的值可以是利用非線性(諸如整流、max(0,x))來進一步處理的。來自鄰近的神經元的值(其對應於下取樣)可以是進一步彙集的,以及可以提供另外的局部不變性和降維。正規化(其對應於白化)亦可以是經由特徵圖中的神經元之間的橫向抑制來應用的。
隨著更多標記資料點變得可用或隨著計算能力的提高,深度學習架構的效能可以提高。現代的深度神經網路是利用比對於僅僅15年前的典型的研究人員而言可用的計算資源要大上數千倍的計算資源來進行一般地訓練的。新的架構和訓練範式可能進一步提升深度學習的效能。整流線性單元可以減少稱為消失梯度的訓練問題。新的訓練技術可以減少過擬合,並且因此使得更大的模型能夠實現更好的泛化。封裝技術可以在給定的感受野中抽象化資料,以及進一步提升整體效能。
圖5是圖示深度迴旋網路550的方塊圖。深度迴旋網路550可以包括基於連接性和權重共享的多種不同類型的層。如圖5所示,深度迴旋網路550包括迴旋區塊554A、迴旋區塊554B。迴旋區塊554A、迴旋區塊554B之每一者迴旋區塊可以被配置具有迴旋層(CONV)356、正規化層(LNorm)558和最大池層(MAX POOL)560。
迴旋層556可以包括一或多個迴旋濾波器,其可以應用於輸入資料以產生特徵圖。儘管圖示迴旋區塊554A、迴旋區塊554B中的僅兩個迴旋區塊,但是本案內容不是如此有限的,以及替代地,可以根據設計偏好在深度迴旋網路550中包括任意數量的迴旋區塊554A、迴旋區塊554B。正規化層558可以對迴旋濾波器的輸出進行正規化。例如,正規化層558可以提供白化或橫向抑制。最大池層560可以提供空間上的下取樣聚集用於局部不變性和降維。
例如,深度迴旋網路的並行濾波器組可以載入在SOC 300的CPU 302或GPU 304上,以實現高效能和低功耗。在替代的實施例中,並行濾波器組可以載入在SOC 300的DSP 306或ISP 316上。此外,深度迴旋網路550可以存取SOC 300上可能存在的其他處理區塊,諸如分別專用於感測器和導航的感測器處理器314和導航模組320。
深度迴旋網路550亦可以包括一或多個完全連接的層562(FC1和FC2)。深度迴旋網路550可以進一步包括邏輯回歸(LR)層564。在深度迴旋網路550的每個層556、558、560、562、564之間是要更新的權重(未圖示)。層(例如,556、558、560、562、564)之每一者層的輸出可以用作深度迴旋網路550中的層(例如,556、558、560、562、564)中的接著的一個層的輸入,以從在迴旋區塊554A中的第一迴旋區塊處供應的輸入資料552(例如,圖像、音訊、視訊、感測器資料及/或其他輸入資料)中學習分層特徵表示。深度迴旋網路550的輸出是針對輸入資料552的分類得分566。分類得分566可以是概率集合,其中每個概率是輸入資料(包括來自特徵集合的特徵)的概率。
如上文所指示的,圖3-圖5是作為實例來提供的。其他實例可以與相對於圖3-圖5所描述的實例不同。
在基於機器學習(ML)的通道狀態資訊(CSI)壓縮和反饋中,使用者設備(UE)訓練編碼器/解碼器神經網路(NN)對以及將經訓練的解碼器模型發送給基地站(例如,gNB)。UE使用編碼器NN來建立和反饋通道狀態反饋(CSF)。編碼器NN可以採用原始的通道作為輸入。基地站使用解碼器NN來從CSF中恢復原始通道。UE使用某種損失度量來訓練編碼器/解碼器NN。
圖6是圖示根據本案內容的各態樣的示例性自動編碼器600的方塊圖。自動編碼器600包括具有神經網路(NN)的編碼器610。編碼器610接收通道實現及/或干擾實現作為輸入,以及壓縮通道/干擾實現。通道實現亦可以稱為通道估計。干擾實現亦可以稱為干擾估計。干擾取決於環境,以及可以解決MIMO場景中的上行鏈路干擾或串流間干擾。
經壓縮的通道狀態反饋是從編碼器610輸出的。自動編碼器600亦具有解碼器620,其接收從編碼器610輸出的經壓縮的通道狀態反饋。解碼器620經由完全連接層和一系列迴旋層來傳遞接收到的資訊以恢復通道狀態(例如,近似的通道狀態)。
UE訓練編碼器610和解碼器620,以及偶爾向基地站傳輸解碼器係數。在較高的頻率處,UE向基地站發送編碼器610的輸出(例如,編碼器610的通道狀態反饋或經壓縮的輸出)。當UE從一個位置移動到另一位置時,解碼器620的權重可能改變。亦即,當通道環境改變時,解碼器權重(例如,係數)可能改變。可以從而從UE向基地站反饋經更新的解碼器係數以反映變化的環境。換言之,UE可以基於現有的環境來訓練解碼器,而不僅僅訓練編碼器。係數可以是根據由無線電資源控制(RRC)信號傳遞配置的等時線來從UE發送的。在一種配置中,發送係數的頻率低於發送通道狀態反饋的頻率。
圖7是圖示根據本案內容的各個態樣的例如由UE執行的示例性程序700的示意圖。示例性程序700是接收和訓練用於通道狀態反饋(CSF)學習的可配置的神經網路的實例。
如圖7所示,在一些態樣中,程序700可以包括:接收用於通道狀態反饋(CSF)的多個神經網路訓練配置,每個配置對應於不同的神經網路框架(方塊702)。例如,UE(例如,使用天線252、DEMOD 254、MIMO偵測器256、接收處理器258、控制器/處理器280、記憶體282等)可以接收神經網路訓練配置。
如圖7所示,在一些態樣中,程序700可以包括:根據所接收的訓練配置來訓練一組神經網路解碼器/編碼器對之每一者神經網路解碼器/編碼器對(方塊704)。例如,UE(例如,使用控制器/處理器280、記憶體282等)可以訓練每個神經網路解碼器/編碼器對。
圖8是圖示根據本案內容的各個態樣的例如由基地站執行的示例性程序800的示意圖。示例性程序800是處理用於通道狀態反饋(CSF)學習的可配置的神經網路的實例。
如圖8所示,在一些態樣中,程序800可以包括:向使用者設備(UE)傳輸用於通道狀態反饋(CSF)的多個神經網路訓練配置,每個配置對應於不同的神經網路框架(方塊802)。例如,基地站(例如,使用天線234、MOD 232、TX MIMO處理器230、傳輸處理器220、控制器/處理器240、記憶體242等)可以傳輸神經網路訓練配置。
如圖8所示,在一些態樣中,程序800可以包括:接收根據訓練配置來訓練的神經網路解碼器/編碼器對(方塊804)。例如,基地站(例如,使用天線234、DEMOD 232、MIMO偵測器236、接收處理器238、控制器/處理器240、記憶體242等)可以接收神經網路解碼器/編碼器對。
在基線聯合學習中,基地站維持針對每個UE的編碼器/解碼器NN。UE下載在基地站處維持的模型。另外地,UE基於在UE處觀察到的通道/干擾實現來訓練和更新模型。UE接著將編碼器和解碼器網路發送給gNB。gNB接著對來自多個UE的模型進行聚合,以及產生針對UE的新模型。接著重複該程序。
UE可以根據基地站打算如何使用CSF,使用不同的編碼器/解碼器神經網路框架(例如,架構)來執行用於通道狀態反饋(CSF)的神經網路訓練。例如,不同的基地站天線結構(諸如1D/2D交叉極化或1D/2D垂直/水平極化)將受益於具有不同的框架的不同的神經網路。類似地,不同的UE行動性場景(諸如低都卜勒(例如,3 km/hr、30 km/hr)或高都卜勒(例如,120 km/hr或更高的速度))可以受益於不同的框架。針對不同的神經網路框架的其他原因包括:支援不同的計算複雜度(例如,用於CSF的淺度神經網路或深度神經網路)的不同的UE;及不同的CSF數量,諸如原始通道、通道品質指示符(CQI)/秩指示符(RI)或干擾。
根據本案內容的各態樣,基地站可以將UE配置具有用於CSF的編碼器/解碼器神經網路訓練的多個神經網路框架。每個配置可以與參考信號集合相關聯,以及可以指定一或多個報告數量。配置可以是經由較高層訊息、動態信號傳遞等諸如利用下行鏈路控制資訊(DCI)、無線電資源控制(RRC)信號傳遞及/或利用媒體存取控制-控制元素(MAC-CE)來指示的。
可以針對不同的編碼器/解碼器神經網路配置來配置不同的超參數。針對不同的UE的超參數可以是基於期望的反饋精度、反饋管理負擔、UE計算能力和基地站天線配置。不同的超參數可以指示神經網路中的層的數量、層的類型(例如,迴旋層或完全連接)、針對核心的每個層/維度的隱藏單元的數量(例如,核心的大小)及/或神經網路的損失函數/損失度量。例如,不同的損失度量可以是針對不同的CSI數量(例如RI、CQI、干擾等)來預先定義的和配置的。
超參數亦可以指定針對每個層的啟用函數(例如sigmoid、ReLU、tanh等)及/或壓縮比。例如,針對完全連接層,可以定義輸出層中的神經元的數量與輸入層中的神經元的數量的比率。超參數可以指定學習速率配置和最佳化器配置,諸如隨機梯度下降、ADAM、Adadelta等。
超參數可以進一步指示相對於不同的神經網路框架的通道取樣的期望的結構。例如,具有在基地站上利用2D部署的16個交叉極化(+-45°)TxRU(4個在垂直方向上和4個在水平方向上,4X4=16),則總數是2X16=32個天線,其中極化為+45或者-45。若在時域中僅考慮32個分接點,則用於訓練的通道取樣的大小可以是[I/Q][Pol][V][H][tap]=2X2X4X4X32(針對每個極化天線為複值,針對實部和虛部分別為I/Q)。通道取樣的結構亦可以是[I/Q][ant][tap]=2X32X32。以及接著將不同的輸入取樣與不同的神經網路框架一起使用。
超參數亦可以指示是否發生單時間步分析或是多時間步分析。例如,神經網路可以考慮無線通道的時域相關性。亦即,超參數可以指定是否是獨立地還是跨越不同的時槽聯合地學習每個通道取樣。
在本案內容的一些態樣中,超參數劃分為多個子集。一些子集包括UE共用/CSF數量共用的超參數。其他子集包括特定於UE/特定於CSF數量的超參數。
根據本案內容的進一步的態樣,基地站經由RRC訊息向UE指示具有不同的神經網路框架的不同的CSF配置。該訊息可以包括要在UE處訓練的神經網路對的數量,以及何者對要用於特定的CSI數量反饋例子。該訊息亦可以指示具有用於針對每個CSI學習例子的CSF訓練的超參數的神經網路架構。
在本案內容的另一態樣中,引入新的UE能力,用於支援最大數量的神經網路用於同時的進行通道狀態壓縮和反饋。
前述的揭示內容提供說明和描述,但是不意欲是詳盡的或將各態樣限制為所揭示的精確的形式。可以根據上文的揭示內容做出修改和改變,或者修改和改變可以是從對各態樣的實施來獲取的。
如本文所使用的,術語「元件」意欲廣義地解釋為硬體、韌體及/或硬體和軟體的組合。如本文所使用的,處理器是在硬體、韌體及/或硬體和軟體的組合中實現的。
一些態樣是在本文中結合閾值描述的。如本文所使用的,取決於上下文,滿足閾值可以指的是大於閾值、大於或等於閾值、小於閾值、小於或等於閾值、等於閾值、不等於閾值等的值。
將顯而易見的是,本文所描述的系統及/或方法可以是以硬體、韌體及/或硬體和軟體的組合的不同的形式來實現的。用於實現該等系統及/或方法的實際的專門的控制硬體或軟體代碼不是對各態樣的限制。因此,系統及/或方法的操作和行為是在不參照特定的軟體代碼的情況下在本文中進行描述的—要理解的是,軟體和硬體可以被設計為至少部分地基於本文中的描述來實現系統及/或方法。
即使特徵的特定組合是在申請專利範圍中記載的及/或在說明書中揭示的,但是該等組合不意欲限制各個態樣的揭示內容。事實上,該等特徵中的許多特徵可以是以在申請專利範圍中未明確記載的及/或在說明書中未揭示的方式組合的。儘管下文列出的每個從屬請求項可能直接地取決於僅一個請求項,但是各個態樣的揭示內容包括與在請求項集合之每一者其他請求項相組合的每個從屬請求項。稱為條目列表「中的至少一個」的短語指的是該等條目的任何組合,包括單個成員。舉例而言,「a、b或c中的至少一個」意欲於覆蓋:a、b、c、a-b、a-c、b-c和a-b-c,以及與倍數的相同的元素的任何組合(例如,a-a、a-a-a、a-a-b、a-a-c、a-b-b、a-c-c、b-b、b-b-b、b-b-c、c-c以及c-c-c或a、b和c的任何其他排序)。
除非明確地描述為此,否則本文所使用的元素、動作或指令不應當解釋為決定性的或必不可少的。另外,如本文所使用的,冠詞「一(a)」和「一個(an)」意欲包括一或多個條目,以及可以與「一或多個」可交換地使用。此外,如本文所使用的,術語「集合」和「群組」意欲包括一或多個條目(例如,相關的條目、不相關的條目、相關的條目和不相關的條目的組合等),以及可以與「一或多個」可交換地使用。在意指僅一個條目的地方,使用短語「僅一個」或類似的語言。另外,如本文所使用的,術語「具有(has)」、「具有(have)」、「具有(having)」等意欲是開放式的術語。進一步地,除非另有明確地規定,否則短語「基於」意欲意指「至少部分地基於」。
100:網路 102a:巨集細胞 102b:微微細胞 102c:毫微微細胞 110:BS 110a:BS 110b:BS 110c:BS 110d:BS 120:UE 120a:UE 120b:UE 120c:UE 120d:UE 120e:UE 130:網路控制器 200:設計 212:資料來源 220:傳輸處理器 230:傳輸(TX)多輸入多輸出(MIMO)處理器 232a:調制器/解調器 232t:調制器/解調器 234a:天線 234t:天線 236:MIMO偵測器 238:接收處理器 239:資料槽 240:控制器/處理器 242:記憶體 244:通訊單元 246:排程器 252a:天線 252r:天線 254a:解調器/調制器 254r:解調器/調制器 256:MIMO偵測器 258:接收處理器 260:資料槽 262:資料來源 264:傳輸處理器 266:TX MIMO處理器 280:控制器/處理器 282:記憶體 290:控制器/處理器 292:記憶體 294:通訊單元 300:晶片上系統(SOC) 302:中央處理單元(CPU) 304:圖形處理單元(GPU) 306:數位信號處理器(DSP) 308:神經處理單元(NPU) 310:連接區塊 312:多媒體處理器 314:感測器處理器 316:圖像信號處理器(ISP) 318:記憶體區塊 320:導航模組 400:DCN 402:完全連接的神經網路 404:局部連接的神經網路 406:迴旋神經網路 408:元件符號 410:元件符號 412:元件符號 414:元件符號 416:元件符號 418:第一特徵圖集合 420:第二特徵圖集合 422:輸出 424:第一特徵向量 426:圖像 428:第二特徵向量 430:圖像擷取設備 432:迴旋層 550:深度迴旋網路 552:輸入資料 554A:迴旋區塊 554B:迴旋區塊 556:迴旋層 558:正規化層(LNorm) 560:最大池層(MAX POOL) 562:完全連接的層 564:邏輯回歸(LR)層 566:分類得分 600:自動編碼器 610:編碼器 620:解碼器 700:程序 702:方塊 704:方塊 800:程序 802:方塊 804:方塊
為了可以詳細地理解本案內容的上述的特徵,可以參考各態樣對上文簡要概括的內容進行更詳細的描述,該等態樣中的一些態樣是在附圖中圖示的。然而,要注意的是,附圖僅圖示本案內容的某些典型的態樣,以及因此不被認為是對其範疇的限制,因為說明書可以承認其他等同地有效的態樣。在不同的附圖中的相同的元件符號可以辨識相同的或者相似的元素。
圖1是概念性地圖示根據本案內容的各個態樣的無線通訊網路的實例的方塊圖。
圖2是概念性地圖示根據本案內容的各個態樣的基地站與無線通訊網路中的使用者設備(UE)相通訊的實例的方塊圖。
圖3圖示根據本案內容的某些態樣的使用包括通用處理器的晶片上系統(SOC)來設計神經網路的示例性實現方式。
圖4A、圖4B和圖4C是圖示根據本案內容的各態樣的神經網路的示意圖。
圖4D是圖示根據本案內容的各態樣的示例性深度迴旋網路(DCN)的示意圖。
圖5是圖示根據本案內容的各態樣的示例性深度迴旋網路(DCN)的方塊圖。
圖6是圖示根據本案內容的各態樣的示例性自動編碼器的方塊圖。
圖7是圖示根據本案內容的各個態樣的例如由使用者設備(UE)執行的示例性程序的示意圖。
圖8是圖示根據本案內容的各個態樣的例如由基地站執行的示例性程序的示意圖。
700:程序
702:方塊
704:方塊

Claims (68)

  1. 一種由一使用者設備(UE)進行的無線通訊的方法,包括以下步驟: 接收用於通道狀態反饋(CSF)的複數個神經網路訓練配置,每個配置對應於一不同的神經網路框架;及 根據所接收的該等訓練配置來訓練複數個神經網路解碼器/編碼器對之每一者神經網路解碼器/編碼器對。
  2. 根據請求項1之方法,其中每個配置與一參考信號集合相關聯。
  3. 根據請求項1之方法,其中每個配置與報告的一數量相關聯。
  4. 根據請求項1之方法,其中每個配置對應於一不同的超參數集合。
  5. 根據請求項4之方法,其中每個超參數集合是基於期望的反饋精度、反饋管理負擔、UE計算能力和基地站天線配置的。
  6. 根據請求項4之方法,其中該等超參數包括神經網路層的一數量、每個神經網路層的一類型、針對一核心的每個層/維度的隱藏單元的一數量及/或針對每個層的啟用函數。
  7. 根據請求項4之方法,其中該等超參數包括一壓縮比、一學習速率配置、一最佳化器配置及/或與一CSI數量相關聯的一損失度量。
  8. 根據請求項4之方法,其中該等超參數指示一編碼器/解碼器對的一結構是否是基於一天線部署特徵的,及/或是否要考慮一無線通道的一時域相關性。
  9. 根據請求項4之方法,其中該等超參數集合包括第一複數個子集和第二複數個子集,該第一複數個子集包括UE共用/CSF共用超參數,該第二複數個子集包括特定於UE/特定於CSF數量的超參數。
  10. 根據請求項1之方法,亦包括以下步驟:接收一訊息,該訊息指示/啟用/停用要訓練的神經網路對的一數量以及何者神經網路對要用於一特定的CSI數量。
  11. 根據請求項1之方法,亦包括以下步驟:指示所支援的神經網路的一最大數量。
  12. 一種由一基地站進行的無線通訊的方法,包括以下步驟: 向一使用者設備(UE)傳輸用於通道狀態反饋(CSF)的複數個神經網路訓練配置,每個配置對應於一不同的神經網路框架;及 接收根據該等神經網路訓練配置來訓練的一神經網路解碼器/編碼器對。
  13. 根據請求項12之方法,其中每個配置與一參考信號集合相關聯。
  14. 根據請求項12之方法,其中每個配置與報告的一數量相關聯。
  15. 根據請求項12之方法,其中每個配置對應於一不同的超參數集合。
  16. 根據請求項15之方法,其中每個超參數集合是基於期望的反饋精度、反饋管理負擔、UE計算能力和基地站天線配置的。
  17. 根據請求項15之方法,其中該等超參數包括神經網路層的一數量、每個神經網路層的一類型、針對一核心的每個層/維度的隱藏單元的一數量及/或針對每個層的啟用函數。
  18. 根據請求項15之方法,其中該等超參數包括一壓縮比、一學習速率配置、一最佳化器配置及/或與一CSI數量相關聯的一損失度量。
  19. 根據請求項15之方法,其中該等超參數指示一編碼器/解碼器對的一結構是否是基於一天線部署特徵的,及/或是否要考慮一無線通道的一時域相關性。
  20. 根據請求項15之方法,其中該等超參數集合包括第一複數個子集和第二複數個子集,該第一複數個子集包括UE共用/CSF共用超參數,該第二複數個子集包括特定於UE/特定於CSF數量的超參數。
  21. 根據請求項12之方法,亦包括以下步驟:傳輸一訊息,該訊息指示/啟用/停用要訓練的神經網路對的一數量以及何者神經網路對要用於一特定的CSI數量。
  22. 根據請求項12之方法,亦包括以下步驟:接收對所支援的神經網路的一最大數量的一指示。
  23. 一種用於無線通訊的UE(使用者設備),包括: 一記憶體,以及 至少一個處理器,其操作地耦合到該記憶體,該記憶體和該至少一個處理器被配置為進行以下操作: 接收用於通道狀態反饋(CSF)的複數個神經網路訓練配置,每個配置對應於一不同的神經網路框架;及 根據所接收的該等訓練配置來訓練每個神經網路解碼器/編碼器對。
  24. 根據請求項23之UE,其中每個配置與一參考信號集合相關聯。
  25. 根據請求項23之UE,其中每個配置與報告的一數量相關聯。
  26. 根據請求項23之UE,其中每個配置對應於一不同的超參數集合。
  27. 根據請求項26之UE,其中每個超參數集合是基於期望的反饋精度、反饋管理負擔、UE計算能力和基地站天線配置的。
  28. 根據請求項26之UE,其中該等超參數包括神經網路層的一數量、每個神經網路層的一類型、針對一核心的每個層/維度的隱藏單元的一數量及/或針對每個層的啟用函數。
  29. 根據請求項26之UE,其中該等超參數包括一壓縮比、一學習速率配置、一最佳化器配置及/或與一CSI數量相關聯的一損失度量。
  30. 根據請求項26之UE,其中該等超參數指示一編碼器/解碼器對的一結構是否是基於一天線部署特徵的,及/或是否要考慮一無線通道的一時域相關性。
  31. 根據請求項26之UE,其中該等超參數集合包括第一複數個子集和第二複數個子集,該第一複數個子集包括UE共用/CSF共用超參數,該第二複數個子集包括特定於UE/特定於CSF數量的超參數。
  32. 根據請求項23之UE,其中該至少一個處理器亦被配置為:接收一訊息,該訊息指示/啟用/停用要訓練的神經網路對的一數量以及何者神經網路對要用於一特定的CSI數量。
  33. 根據請求項23之UE,其中該至少一個處理器亦被配置為:指示所支援的神經網路的一最大數量。
  34. 一種用於無線通訊的基地站,包括: 一記憶體,以及 至少一個處理器,其操作地耦合到該記憶體,該記憶體和該至少一個處理器被配置為進行以下操作: 向一使用者設備(UE)傳輸用於通道狀態反饋(CSF)的複數個神經網路訓練配置,每個配置對應於一不同的神經網路框架;及 接收根據該等神經網路訓練配置來訓練的一神經網路解碼器/編碼器對。
  35. 根據請求項34之基地站,其中每個配置與一參考信號集合相關聯。
  36. 根據請求項34之基地站,其中每個配置與報告的一數量相關聯。
  37. 根據請求項34之基地站,其中每個配置對應於一不同的超參數集合。
  38. 根據請求項37之基地站,其中每個超參數集合是基於期望的反饋精度、反饋管理負擔、UE計算能力和基地站天線配置的。
  39. 根據請求項37之基地站,其中該等超參數包括神經網路層的一數量、每個神經網路層的一類型、針對一核心的每個層/維度的隱藏單元的一數量及/或針對每個層的啟用函數。
  40. 根據請求項37之基地站,其中該等超參數包括一壓縮比、一學習速率配置、一最佳化器配置及/或與一CSI數量相關聯的一損失度量。
  41. 根據請求項37之基地站,其中該等超參數指示一編碼器/解碼器對的一結構是否是基於一天線部署特徵的,及/或是否要考慮一無線通道的一時域相關性。
  42. 根據請求項37之基地站,其中該等超參數集合包括第一複數個子集和第二複數個子集,該第一複數個子集包括UE共用/CSF共用超參數,該第二複數個子集包括特定於UE/特定於CSF數量的超參數。
  43. 根據請求項34之基地站,其中該至少一個處理器亦被配置為:傳輸一訊息,該訊息指示/啟用/停用要訓練的神經網路對的一數量以及何者神經網路對要用於一特定的CSI數量。
  44. 根據請求項34之基地站,其中該至少一個處理器亦被配置為:接收對所支援的神經網路的一最大數量的一指示。
  45. 一種用於無線通訊的UE(使用者設備),包括: 用於接收用於通道狀態反饋(CSF)的複數個神經網路訓練配置的構件,每個配置對應於一不同的神經網路框架;及 用於根據所接收的該等訓練配置來訓練每個神經網路解碼器/編碼器對的構件。
  46. 根據請求項45之UE,其中每個配置與一參考信號集合相關聯。
  47. 根據請求項45之UE,其中每個配置與報告的一數量相關聯。
  48. 根據請求項45之UE,其中每個配置對應於一不同的超參數集合。
  49. 根據請求項48之UE,其中每個超參數集合是基於期望的反饋精度、反饋管理負擔、UE計算能力和基地站天線配置的。
  50. 根據請求項48之UE,其中該等超參數包括神經網路層的一數量、每個神經網路層的一類型、針對一核心的每個層/維度的隱藏單元的一數量及/或針對每個層的啟用函數。
  51. 根據請求項48之UE,其中該等超參數包括一壓縮比、一學習速率配置、一最佳化器配置(例如,隨機梯度下降、ADAM)及/或與一CSI數量相關聯的一損失度量。
  52. 根據請求項48之UE,其中該等超參數指示一編碼器/解碼器對的一結構是否是基於一天線部署特徵的,及/或是否要考慮一無線通道的一時域相關性。
  53. 根據請求項48之UE,其中該等超參數集合包括第一複數個子集和第二複數個子集,該第一複數個子集包括UE共用/CSF共用超參數,該第二複數個子集包括特定於UE/特定於CSF數量的超參數。
  54. 根據請求項45之UE,亦包括:用於接收一訊息的構件,該訊息指示/啟用/停用要訓練的神經網路對的一數量以及何者神經網路對要用於一特定的CSI數量。
  55. 根據請求項45之UE,亦包括:用於指示所支援的神經網路的一最大數量的構件。
  56. 一種用於無線通訊的基地站,包括: 用於向一使用者設備(UE)傳輸用於通道狀態反饋(CSF)的複數個神經網路訓練配置的構件,每個配置對應於一不同的神經網路框架;及 用於接收根據該等神經網路訓練配置來訓練的一神經網路解碼器/編碼器對的構件。
  57. 根據請求項56之基地站,其中每個配置與一參考信號集合相關聯。
  58. 根據請求項56之基地站,其中每個配置與報告的一數量相關聯。
  59. 根據請求項56之基地站,其中每個配置對應於一不同的超參數集合。
  60. 根據請求項59之基地站,其中每個超參數集合是基於期望的反饋精度、反饋管理負擔、UE計算能力和基地站天線配置的。
  61. 根據請求項59之基地站,其中該等超參數包括神經網路層的一數量、每個神經網路層的一類型、針對一核心的每個層/維度的隱藏單元的一數量及/或針對每個層的啟用函數。
  62. 根據請求項59之基地站,其中該等超參數包括一壓縮比、一學習速率配置、一最佳化器配置及/或與一CSI數量相關聯的一損失度量。
  63. 根據請求項59之基地站,其中該等超參數指示一編碼器/解碼器對的一結構是否是基於一天線部署特徵的,及/或是否要考慮一無線通道的一時域相關性。
  64. 根據請求項59之基地站,其中該等超參數集合包括第一複數個子集和第二複數個子集,該第一複數個子集包括UE共用/CSF共用超參數,該第二複數個子集包括特定於UE/特定於CSF數量的超參數。
  65. 根據請求項56之基地站,亦包括:用於傳輸一訊息的構件,該訊息指示/啟用/停用要訓練的神經網路對的一數量以及何者神經網路對要用於一特定的CSI數量。
  66. 根據請求項56之基地站,亦包括:用於接收對所支援的神經網路的一最大數量的一指示的構件。
  67. 一種非暫時性電腦可讀取媒體,其具有記錄在其上的程式碼,該程式碼由一UE(使用者設備)執行以及包括: 用於接收用於通道狀態反饋(CSF)的複數個神經網路訓練配置的程式碼,每個配置對應於一不同的神經網路框架;及 用於根據所接收的該等訓練配置來訓練每個神經網路解碼器/編碼器對的程式碼。
  68. 一種非暫時性電腦可讀取媒體,其具有記錄在其上的程式碼,該程式碼由一基地站執行以及包括: 用於向一使用者設備(UE)傳輸用於通道狀態反饋(CSF)的複數個神經網路訓練配置的程式碼,每個配置對應於一不同的神經網路框架;及 用於接收根據該等神經網路訓練配置來訓練的一神經網路解碼器/編碼器對的程式碼。
TW110113070A 2020-04-17 2021-04-12 用於通道狀態反饋(csf)學習的可配置神經網路 TW202143668A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/085301 WO2021208061A1 (en) 2020-04-17 2020-04-17 Configurable neural network for channel state feedback (csf) learning
WOPCT/CN2020/085301 2020-04-17

Publications (1)

Publication Number Publication Date
TW202143668A true TW202143668A (zh) 2021-11-16

Family

ID=78083503

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110113070A TW202143668A (zh) 2020-04-17 2021-04-12 用於通道狀態反饋(csf)學習的可配置神經網路

Country Status (7)

Country Link
US (1) US11984955B2 (zh)
EP (1) EP4136765A4 (zh)
KR (1) KR20230002385A (zh)
CN (1) CN115443614A (zh)
BR (1) BR112022020225A2 (zh)
TW (1) TW202143668A (zh)
WO (1) WO2021208061A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115606157A (zh) * 2020-05-14 2023-01-13 诺基亚技术有限公司(Fi) 天线阵列的信道估计
US20220067509A1 (en) * 2020-09-02 2022-03-03 Alibaba Group Holding Limited System and method for learning from partial compressed representation
US20230021835A1 (en) * 2021-07-26 2023-01-26 Qualcomm Incorporated Signaling for additional training of neural networks for multiple channel conditions
WO2023087235A1 (en) * 2021-11-19 2023-05-25 Apple Inc. Artificial intelligence based channel state information framework
WO2023102706A1 (zh) * 2021-12-07 2023-06-15 Oppo广东移动通信有限公司 信息指示方法、信息处理方法和设备
WO2023113668A1 (en) * 2021-12-15 2023-06-22 Telefonaktiebolaget Lm Ericsson (Publ) Communications nodes and methods for proprietary machine learning-based csi reporting
WO2023197187A1 (zh) * 2022-04-12 2023-10-19 北京小米移动软件有限公司 一种信道状态信息的处理方法及装置
WO2023224533A1 (en) * 2022-05-16 2023-11-23 Telefonaktiebolaget Lm Ericsson (Publ) Nodes and methods for ml-based csi reporting
WO2024028700A1 (en) * 2022-08-03 2024-02-08 Lenovo (Singapore) Pte. Ltd. Artificial intelligence for channel state information
WO2024031420A1 (en) * 2022-08-10 2024-02-15 Qualcomm Incorporated Remote offline sequential network node encoder training
WO2024031662A1 (en) * 2022-08-12 2024-02-15 Google Llc Csi reports based on ml techniques
CN115372928B (zh) * 2022-10-21 2023-02-28 成都信息工程大学 一种基于i/q数据的dcnn电磁干扰识别方法及装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10217047B2 (en) * 2017-05-03 2019-02-26 Virginia Tech Intellectual Properties, Inc. Learning and deployment of adaptive wireless communications
CN113283571A (zh) 2017-06-19 2021-08-20 弗吉尼亚科技知识产权有限公司 使用多天线收发器无线传输的信息的编码和解码
CN108390706B (zh) 2018-01-30 2020-10-27 东南大学 一种基于深度学习的大规模mimo信道状态信息反馈方法
CN108847876B (zh) * 2018-07-26 2021-03-02 东南大学 一种大规模mimo时变信道状态信息压缩反馈及重建方法
CN109672464B (zh) * 2018-12-13 2021-09-03 西安电子科技大学 基于fcfnn的大规模mimo信道状态信息反馈方法
TWI687063B (zh) * 2019-01-04 2020-03-01 財團法人工業技術研究院 基於深度學習與通道狀態資訊之通訊系統及編解碼方法
WO2020171803A1 (en) * 2019-02-19 2020-08-27 Nokia Solutions And Networks Oy Configuration of a neural network for a radio access network (ran) node of a wireless network
US11509363B2 (en) * 2019-03-06 2022-11-22 Telefonaktiebolaget Lm Ericsson (Publ) Compression and decompression of downlink channel estimates
US10785681B1 (en) * 2019-05-31 2020-09-22 Huawei Technologies Co., Ltd. Methods and apparatuses for feature-driven machine-to-machine communications
US11700518B2 (en) * 2019-05-31 2023-07-11 Huawei Technologies Co., Ltd. Methods and systems for relaying feature-driven communications
US11689940B2 (en) * 2019-12-13 2023-06-27 Google Llc Machine-learning architectures for simultaneous connection to multiple carriers

Also Published As

Publication number Publication date
EP4136765A4 (en) 2024-01-10
CN115443614A (zh) 2022-12-06
US20230084164A1 (en) 2023-03-16
KR20230002385A (ko) 2023-01-05
US11984955B2 (en) 2024-05-14
EP4136765A1 (en) 2023-02-22
WO2021208061A1 (en) 2021-10-21
BR112022020225A2 (pt) 2022-11-22

Similar Documents

Publication Publication Date Title
US11653228B2 (en) Channel state information (CSI) learning
TW202143668A (zh) 用於通道狀態反饋(csf)學習的可配置神經網路
US20210326701A1 (en) Architecture for machine learning (ml) assisted communications networks
US20220116764A1 (en) User equipment (ue) capability report for machine learning applications
TW202135499A (zh) 用於聯合收發機神經網路訓練的梯度回饋框架
CN115136730A (zh) 广播已知数据来训练人工神经网络
US11863495B2 (en) Signaling for a channel state information reference signal (CSI-RS)
US11456834B2 (en) Adaptive demodulation reference signal (DMRS)
US11502915B2 (en) Transmission of known data for cooperative training of artificial neural networks
TW202308343A (zh) 經由基於模型的神經網路的通道特徵提取
CN115136534A (zh) 用于训练人工神经网络的已知数据的指示触发传输
US20220335294A1 (en) Reporting for machine learning model updates
US20230021835A1 (en) Signaling for additional training of neural networks for multiple channel conditions
WO2023019380A1 (en) Physical downlink control channel (pdcch) to indicate machine learning (ml) model group switching
WO2022225627A1 (en) Reporting for machine learning model updates
CN117157647A (zh) 机器学习模型更新的报告