TW202142693A - 用於在二氧化碳生物轉換方法中控制有機酸比率之方法 - Google Patents

用於在二氧化碳生物轉換方法中控制有機酸比率之方法 Download PDF

Info

Publication number
TW202142693A
TW202142693A TW110103125A TW110103125A TW202142693A TW 202142693 A TW202142693 A TW 202142693A TW 110103125 A TW110103125 A TW 110103125A TW 110103125 A TW110103125 A TW 110103125A TW 202142693 A TW202142693 A TW 202142693A
Authority
TW
Taiwan
Prior art keywords
sodium
acetic acid
fermentation broth
bioreactor
ratio
Prior art date
Application number
TW110103125A
Other languages
English (en)
Inventor
萊恩 瑟納拉尼
布蘭登 比爾德
Original Assignee
香港商巨鵬生物(香港)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 香港商巨鵬生物(香港)有限公司 filed Critical 香港商巨鵬生物(香港)有限公司
Publication of TW202142693A publication Critical patent/TW202142693A/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/52Propionic acid; Butyric acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/54Acetic acid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

一種方法包括:提供一包含CO2 之氣相基質給一生物反應器;提供一產乙酸菌與培養基給該生物反應器以提供一發酵液;透過一或多種鈉離子源提供鈉離子給該生物反應器;在該發酵液中以該產乙酸菌來發酵該氣相基質以製造一或多種有機酸;以及藉由控制該發酵液的pH值來控制一丁酸與一乙酸之比率。在一方面,當該發酵液的pH值降低,該丁酸與乙酸濃度之比率增加,並且當該發酵液的pH值增加,該丁酸與乙酸濃度之比率降低。該產乙酸菌包括一鈉移位三磷酸腺苷酶,其在生物反應器中的發酵期間是活化的。該鈉離子被提供,使得在培養液中Na+ 被維持在1000至11000 ppm(g/g)之間。

Description

用於在二氧化碳生物轉換方法中控制有機酸比率之方法
本件申請案主張於2020年1月29日提申之美國臨時申請案號62/967,220之利益,該案在此以其整體被併入以作為參考資料。
一種用於在二氧化碳生物轉換方法中控制有機酸比率之方法被提供。更具體而言,該方法包括提供一含有二氧化碳之氣相流給產乙酸菌,且維持提供有機酸所欲比率的pH位準。該方法提供高位準的二氧化碳轉換、氫的利用以及包括丁酸的有機酸之生產。
發明背景
二氧化碳生成從自然過程,也從包括燃燒化石燃料(諸如煤炭、石油和天然氣)的工業過程發生。部分起因於工業過程,大氣的二氧化碳濃度持續增加。此二氧化碳濃度的增加可促成大氣變化而導致氣候變遷和全球暖化。二氧化碳因為其高度氧化狀態而難以於生物過程中利用。
除了二氧化碳,許多工業過程也會導致氫的產生。氫具有一高位準的還原勢。然而,氫因為其極易燃性質而難以保存與利用。
細菌發酵系統(其可藉由氫的幫助來轉換二氧化碳至有機酸)對於努力將透過人類活動之二氧化碳釋放至環境降至最低可具有一重大影響。
一種方法包括:提供一包含CO2 之氣相基質給一生物反應器;提供一產乙酸菌與培養基給該生物反應器以提供一發酵液;透過一或多種鈉離子源提供鈉離子給該生物反應器;在該發酵液中以該產乙酸菌來發酵該氣相基質以製造一或多種有機酸;以及藉由控制該發酵液的pH值來控制一丁酸與一乙酸之比率。在一個方面中,當該發酵液的pH值降低,一丁酸與乙酸濃度之比率增加,而當該發酵液的pH值增加,該丁酸與乙酸濃度之比率降低。該產乙酸菌包括一鈉移位三磷酸腺苷酶(sodium translocating ATPase),其在生物反應器中的發酵期間是活化的。該鈉離子被提供,使得在培養液中Na+ 被維持在1000至11000 ppm(g/g)之間。
在另一方面中,一種方法包括:提供一包含CO2 之氣相基質給一生物反應器;提供一產乙酸菌與培養基給該生物反應器以提供一發酵液;透過一或多種鈉離子源提供鈉離子給該生物反應器;在該發酵液中維持一pH值為6或更少;以及在該發酵液中以該產乙酸菌來發酵該氣相基質以製造一或多種有機酸。在一個方面中,在該發酵液中維持一pH值為6或更少提供一丁酸與乙酸濃度之比率為0.2或更高。該產乙酸菌包括一在生物反應器中進行發酵時是活化的一種鈉移位三磷酸腺苷酶。該鈉離子被提供,使得在培養液中Na+ 被維持在1000至11000 ppm (g/g)之間。
在另一方面中,一種方法包括:提供一包含CO2 之氣相基質給一生物反應器;提供一產乙酸菌與培養基給該生物反應器以提供一種發酵液;透過一或多種鈉離子源提供鈉離子給該生物反應器;在該發酵液中維持一pH值為6或更少;以及在該發酵液中以該產乙酸菌來發酵該氣相基質以製造一或多種包含3個或更多個碳原子的有機酸。該產乙酸菌包括一鈉移位三磷酸腺苷酶,其在生物反應器中的發酵期間是活化的。該鈉離子被提供,使得在培養液中Na+ 被維持在1000至11000 ppm(g/g)之間。
詳細說明
以下說明將不被做為限制理解,而是僅用於描述示範性實施例的大致原理之目的而作出。該揭露內容的範圍應參考發明申請專利範圍來決定。 定義
除非另有定義,以下用於本揭露內容的通篇說明書之術語係被如下定義,且可包括如下定義之單種或多種形式的定義內容:
術語「約」修飾任一數量意指在真實世界條件下(例如在實驗室、試驗工廠或生產設施中)所遭遇之該數量上之變動。例如,被使用於一混合物中之一成分或量測之量,或者數量當被「約」修飾時包括:在生產工廠或實驗室中,典型地被使用於一實驗條件測量之變異與關注程度。例如,當一產物的一組分之量被「約」修飾時,包括在工廠或實驗室中多次實驗的批次之間的變異以及於該分析方法中固有的變異。無論有無以「約」修飾,該量包括那些量的等效量。任何於此所述且以「約」修飾的數量也可被使用於本揭露內容中即便該數量未以「約」修飾。
術語「發酵槽」包括由一或多個容器及/或塔器或者配管配置所構成的一發酵裝置/生物反應器,其包括一批式反應器、半批式反應器、連續式反應器、連續攪拌槽反應器(CSTR)、泡塔式反應器、外部循環迴路反應器、內部循環迴路反應器、固定化細胞反應器(ICR)、滴流床反應器(TBR)、流動床生物膜反應器(MBBR)、氣體提升反應器、諸如空心纖維膜反應器(HFMBR)的薄膜反應器、靜態混合器或氣體提升發酵槽,或者適用於氣液接觸的其他容器或其他裝置。
術語「發酵」、「發酵程序」或「發酵反應」及類似用語意圖涵蓋該方法的生長期以及產物生物合成期這兩者。在一個方面中,發酵意指轉換CO2 至乙酸及/或丁酸。
術語「細胞密度」意指每單位體積發酵液的微生物細胞的質量,例如公克/公升。
術語「比碳吸收」意指每單位時間(以分鐘計)被微生物細胞的單位質量(g)消耗之CO及CO2 的數量(以毫莫耳計),即mmole/公克/分鐘。
如此處所用,生產力以STY表示。在此方面中,酒精生產力可被表示為STY(時空產率以g乙醇/(L.天)或(g乙酸/(L.天)或(g丁酸/(L.天)表示。 包含CO2 之氣相基質
在一個方面中,該方法包括提供一包含CO2 之氣相基質給一生物反應器。一包含CO2 之基質可包括任何包括CO2 之氣體。在此方面中,一包含CO2 之氣體可包括工業用氣體、發酵槽氣流(包括,例如發酵槽排氣),以及其等之混合物。在一個相關的方面中,該包含CO2 之基質可包括氫或其可與一氫源調合以提供H2 與CO2 之所欲的位準與比率。
工業用氣體:在一個方面中,該方法包括提供一包含CO2 之氣相基質給一生物反應器,其中該包含CO2 之氣相基質係產生自工業用氣體。工業用氣體的一些範例包括鋼鐵廠煤氣、煙道氣以及焚化爐廢氣。工業用氣體的範例包括在以下期間產生的氣體:鐵類金屬產品製造之期間、非鐵類產品製造之期間、石油純化過程之期間、煤的氣化之期間、生質的氣化之期間、電力生產之期間、碳黑生產之期間、氨生產之期間、甲醇生產之期間以及焦炭製造之期間。氫源可包括化石燃料、蒸氣重組、甲烷的氧化、煤氣化以及水電解。
取決於該包含CO2 之基質的組成,在將該包含CO2 之基質導入發酵前處理它亦是所欲的,以移除任何非所欲的雜質,諸如粉塵粒子。例如,該氣相基質可使用已知方法予以過濾或擦洗。再者,取決於該包含CO2 之基質的組成,該方法包括調整該包含CO2 之基質的組成,以增加或降低CO2 及/或H2 之濃度至落入所欲的範圍內。
發酵槽氣流:在一個方面中,該方法包括提供一包含CO2 之基質給一生物反應器,其中該包含CO2 之基質為一發酵槽氣流。發酵槽氣流的一些範例包括在合成氣的發酵中所產生的發酵槽排氣。合成氣發酵的一些範例被描述於2001年7月23日所提申的美國專利號7,285,402中,其被併入此處以作為參考資料。
在一個方面中,該方法具有應用性來支持從氣相基質(諸如高體積包含CO之工業煙道氣)生產酒精。在某些方面中,一包括CO之氣體係衍生自含碳廢棄物(例如工業廢氣)或自其他廢棄物之氣化。該包含CO之氣體的發酵可造成CO2 在發酵槽排氣中。因此,該方法代表用於捕獲碳之有效方法,否則碳將被排進環境中。在此方面中,來自該包含CO之氣體之發酵的排氣可包括約0.5莫耳%至約50莫耳%的CO。在另一方面中,來自該包含CO之氣體之發酵的排氣可包括約10莫耳%至約99.5莫耳%的CO2 ,在另一方面中,約10莫耳%至約90莫耳%的CO2 ,在另一方面中,約10莫耳%至約80莫耳%的CO2 ,在另一方面中,約10莫耳%至約70莫耳%的CO2 ,在另一方面中,約10莫耳%至約50莫耳%的CO2 ,在另一方面中,約10莫耳%至約40莫耳%的CO2 ,在另一方面中,約20莫耳%至約90莫耳%的CO2 ,在另一方面中,約20莫耳%至約80莫耳%的CO2 ,在另一方面中,約20莫耳%至約70莫耳%的CO2 ,在另一方面中,約20莫耳%至約50莫耳%的CO2 ,在另一方面中,約40莫耳%至約90莫耳%的CO2 ,在另一方面中,約40莫耳%至約80莫耳%的CO2 ,在另一方面中,約40莫耳%至約70莫耳%的CO2 ,在另一方面中,約50莫耳%至約90莫耳%的CO2 ,在另一方面中,約50莫耳%至約80莫耳%的CO2
氣流的摻合:根據特定方面,從兩個或更多來源的氣流可被結合及/或摻合以製造一所欲的及/或最佳化的基質流。例如,一包含高濃度CO2 的氣流(諸如來自鋼鐵廠的廢氣)可以與一包含高濃度H2 的氣流(諸如來自一鋼鐵廠煉焦爐的排氣)結合。
取決於該包含CO2 之基質的組成,該包含CO2 之基質可被直接地提供給一發酵程序或者可被進一步修改以包括一適當的H2 對CO2 之莫耳比率。該包含CO2 之基質可包括從約5莫耳%至約90莫耳%的CO2 以及從約5莫耳%至約90莫耳%的H2 。在一個方面中,該包含CO2 之氣流包括約5至約66.6%的CO2
在另一方面中,該包含CO2 之基質可包括從約0莫耳%至約50莫耳%的CO,在另一方面中,約0.5莫耳%至約50莫耳%的CO,在另一方面中,約0.5莫耳%至約5莫耳%的CO,且在另一方面中,約2莫耳%至約5莫耳%的CO。在另一方面中,該氣相基質具有一CO與CO2 之比率小於約2,在另一方面中,小於約1,在另一方面中約0至約2,在另一方面中,小於約0.5,在另一方面中,小於約0.3,在另一方面中,小於約0.2,且在另一方面中,小於約0.1。
在一方面中,該產乙酸菌將具有H2 與CO2 的消耗量之一莫耳比率在約4:1至約1:2。因此,被提供給該生物反應器之包括H2 與CO2 的任何基質氣體可被利用。然而,提供給該生物反應器的氣相基質之最適位準將具有H2 與CO2 之一比率為約4:1至約1:1,在另一方面中,約2:1,且在另一方面中,約3.5:1至約1.5:1。 生物反應器設計及操作
發酵槽設計的說明於以下案件中描述:美國專利申請案號13/471,827與13/471,858 (兩者在2012年5月15日提出申請)、美國專利申請案號13/473,167 (2012年5月16日提出申請),以及美國專利申請案號16/530,481與16/530,502 (兩者在2019年8月2日提出申請),上述全部案件併入此處以作為參考資料。
該發酵所欲地應在適當的條件下進行,以供所欲的發酵發生(例如CO2 至乙酸)。要考量的反應條件包括壓力、溫度、氣體流量率、液體流量率、培養基pH值、攪拌速率(若使用一攪拌反應槽)、接種物位準,以及要避免產物抑制之最大乙酸濃度。在此方面中,該方法包括呈以下範圍的反應條件: 壓力:約0至約500 psi; 溫度:約30°C至約42°C; 培養基pH值:約4至約6.9; 攪拌速率:約100至約2000 rpm; 如此處所述之營養供給。 產乙酸菌
在一個方面中,所利用的微生物包括產乙酸菌,該產乙酸菌包括一鈉幫浦,其亦可被描述為鈉移位三磷酸腺苷酶(對於膜生物能量學而言)。鈉移位移三磷酸腺苷酶係被描述於Muller, “Energy Conservation in Acetogenic Bacteria”, Appl. Environ. Microbiol. November 2003, vol. 69, no. 11, pp. 6345-6353中,其被併入此處以作為參考資料。術語鈉移位三磷酸腺苷酶可與鈉依賴型三磷酸腺苷酶可交換地使用。包括一鈉移位三磷酸腺苷酶的產乙酸菌需要約500 ppm的NaCl在它們的培養基中以供生長。為確定一產乙酸菌是否包括一鈉移位三磷酸腺苷酶,該產乙酸菌被接種至一包含約30至約50 ml的生長培養基(具有約0至約2000 ppm的NaCl)之血清瓶中。在約500 ppm或更高的NaCl濃度之最適生長表示該產乙酸菌包括一鈉移位三磷酸腺苷酶。
在此方面中,適合的微生物包括乙酸桿菌屬(Acetobacterium )細菌、凱伍產乙酸菌(Acetogenium kivui )、潮濕厭氧醋菌(Acetoanaerobium noterae )、伍德乙酸桿菌(Acetobacterium woodii )、巴氏鹼性桿菌(Alkalibaculum bacchi ) CP11 (ATCC BAA-1772)、熱乙酸莫爾氏菌(Moorella thermoacetica )、熱自營莫爾氏菌(Moorella thermoautotrophica )、產硫胃球菌(Ruminococcus productus ),以及其等之組合。在另一方面中,該微生物為伍德乙酸桿菌。 培養基組成物以及培養基進給速率之控制
依據一個方面,該發酵程序藉由將一適合的培養基加入該反應器容器中而被起始。該反應器容器中所含之液體可包括任何類型之適合的營養培養基或發酵培養基。該營養培養基將包括對於允許被使用之微生物的生長係有效的維生素與礦物質。滅菌可以非永遠必須。
各種培養基組分之濃度如下:
元素 濃度 mg/L 進給速率 µg/克細胞/分鐘
NH4 + 82-3280 20.5-820
Fe 0.85-34 0.28-8.5
Ni 0.07-2.81 0.023-0.702
Co 0.037-1.49 0.012-0.373
Se 0.027-1.1 0.009-0.274
Zn 0.59-23.8 0.198-5.95
Mo 0.003-0.397 0.003-0.1
螯合劑 2.5-100 0.83-25
W 0.8-32.1 0.26-8.03
K 98-3933 32.77-983.35
Mg 0.71-28.69 0.23-7.18
Na 875-35000 290-8750
S 15-625 2.08-62.5
P 20-805 6.7-201.3
d-生物素 0.016-0.64 0.005-0.16
硫胺素HCl 0.04-1.6 0.01-0.4
鈣-D-泛酸酯 0.02-0.81 0.006-0.202
維生素溶液包含d-生物素、硫胺素HCl以及鈣-D-泛酸酯。
0.5 M的NaOH被用來維持培養物的pH值在約4.5至6。每克細胞每小時的NaOH大約使用量為每克細胞0.1至0.4 ml/min。
程序操作維持一pH值在約4至約6.9的範圍內,在另一方面中,約5至約6.5,在另一方面中約5.1至約6,且在另一方面中,約5.2至約6。該培養基包括小於約0.01 g/L的酵母萃取物以及小於約0.01 g/L的碳水化合物。
該組成物也包括一鈉離子濃度為每公升約40至約500 mmol,在另一方面中,每公升約40至約250 mmol以及在另一方面中,一鈉離子濃度為每公升約50至約200 mmol。在一方面中,該鈉離子濃度係約500 ppm至約8000 ppm,在另一方面中,約1000 ppm至約7000 ppm,在另一方面中,約3000 ppm至約6000 ppm,在另一方面中,約2000 ppm至約5000 ppm Na,且在另一方面中,約3000 ppm至約4000 ppm Na。該鈉離子源係由選自於由以下所組成的群組中的化合物所提供:氯化鈉、氫氧化鈉、磷酸鈉、硫酸鈉、硝酸鈉、碳酸氫鈉、硫酸氫鈉,以及其等之混合物。
該組成物包括一鉬的來源。在此方面中,該鉬濃度係約3.97 µg/L至約396.5 µg/L,且在另一方面中,約7.93 µg/L至約198.25 µg/L。鉬的來源包括Na2 MoO4 、CaMoO4 、FeMoO4 ,以及其等之混合物。
該組成物也可包括一錯合劑。在此方面中,當該組成物具有一pH值為約5.2或更高時,一錯合劑可被包括於該組成物之中。該錯合劑可包括乙二胺四乙酸(EDTA)、乙二胺二乙酸(EDDA)、乙二胺二琥珀酸(EDDS)、氮[基]三醋酸(NTA),以及其等之混合物。
該組成物可包括一或更多個以下之來源:NH4 + 、P、K、Fe、Ni、Co、Se、Zn或Mg。該等元素的各者之來源可為如下。
NH4 + :氮可從選自於由以下所組成的群組中的一氮源所提供:氫氧化銨、氯化銨、磷酸銨、硫酸銨、硝酸銨,以及其等之混合物。
P:磷可從選自於由以下所組成的群組中的一磷源所提供:磷酸、磷酸銨、磷酸鉀,以及其等之混合物。
K:鉀可從選自於由以下所組成的群組中的一鉀源所提供:氯化鉀、磷酸鉀、硝酸鉀、硫酸鉀,以及其等之混合物。
Fe:鐵可從選自於由以下所組成的群組中的一鐵源所提供:氯化亞鐵、硫酸亞鐵,以及其等之混合物。
Ni:鎳可從選自於由以下所組成的群組中的一鎳源所提供:氯化鎳、硫酸鎳、硝酸鎳,以及其等之混合物。
Co:鈷可從選自於由以下所組成的群組中的一鈷源所提供:氯化鈷、氟化鈷、溴化鈷、碘化鈷,以及其等之混合物。
Se:硒可從Na2 SeO3 、C3 H6 NO2 Se,以及其等之混合物所提供。
Zn:鋅可從ZnSO4 所提供。
W:鎢可從選自於由以下所組成的群組中的一鎢源所提供:鎢酸鈉、鎢酸鈣、鎢酸鉀,以及其等之混合物。
Mg:鎂可從選自於由以下所組成的群組中的一鎂源所提供:氯化鎂、硫酸鎂、磷酸鎂,以及其等之混合物。
S:該組成物也可包括硫。硫可從選自於由以下所組成的群組中的一硫源所提供:半胱胺酸、硫化鈉、NaHS、NaH2 S以及其等之混合物。
當接種之時,一初始進給氣體供給率被建立,對於供應微生物的初始群體係有效的。流出氣體被分析以測定該流出氣體之內含物。氣體分析之結果被用來控制進給氣體速率。在此方面中,該方法提供每公升約0.1公克之一最小細胞密度。在另一方面中,該方法提供一經計算的CO2 濃度(mmol/min)與初始細胞密度(g/L)之比率為約0.05至約0.8,且在另一方面中,約0.01至約2。
在一方面中,營養物可被加入該培養物中以增加細胞成長速率。在接種期間適合的營養物可包括酵母菌萃取物的非碳水化合物部分。
當相較於一起始細胞密度,該發酵程序對於增加細胞密度是有效的。當達到所欲的位準,液相及細胞物質從反應器被取出且以培養基予以補充以維持所欲的細胞密度。在此方面中,該程序提供一平均細胞密度為約2至約50公克/公升,在另一方面中,約2至約30公克/公升,在另一方面中,約2至約20公克/公升,在另一方面中,約2至約10公克/公升,且在另一方面中,約2至約6公克/公升。
有機酸的生產:在另一方面中,該方法提供一有機酸的來源。在此方面中,該方法可包括獲取酸產物或來自該發酵液態培養液的產物。在此方面中,提供一比有機酸生產力為約0.02至約50公克有機酸/公升/天/克細胞的,在另一方面中,約0.02至約20公克有機酸/公升/天/克細胞,在另一方面中,約0.02至約10公克有機酸/公升/天/克細胞,在另一方面中,約0.02至約5公克有機酸/公升/天/克細胞,在另一方面中,約0.2至約50公克有機酸/公升/天/克細胞,在另一方面中,約10至約50公克有機酸/公升/天/克細胞,在另一方面中,約14至約30公克有機酸/公升/天/克細胞,在另一方面中,約2至約20公克有機酸/公升/天/克細胞,且在另一方面中,約15至約25公克有機酸/公升/天/克細胞。在一方面中,該有機酸為乙酸或丁酸,或兩者之混合物。
在一方面中,該方法包括在發酵液中維持一pH值為6或更少,以提供丁酸與乙酸濃度之一比率為0.2或更多,在另一方面中,約0.5或更多,且在另一方面中,約0.1或更多。該方法可提供一比丁酸生產力為約0.5至約5公克/公升/天/g細胞,在另一方面中,約0.5至約4公克/公升/天/g細胞,在另一方面中,約1至約3公克/公升/天/g細胞,且在另一方面中,約1至約15公克/公升/天/g細胞。
在另一方面中,該方法包括在該發酵液中維持一pH值為6或更少,以及在該發酵液中以該產乙酸菌發酵該氣相基質以生產含有3個或更多個碳原子的一或多種有機酸。在一方面中,該有機酸為丁酸或為丁酸與丙酸之混合物。該方法可提供一比丁酸生產力為約0.5公克/公升/天/g細胞或更多。在另一方面中,該方法可提供一比丁酸生產力為約0.5至約5公克/公升/天/g細胞之,在另一方面中,約0.5至約4公克/公升/天/g細胞,在另一方面中,約1至約3公克/公升/天/g細胞,且在另一方面中,約1至約15公克/公升/天/g細胞。
CO2 與H2 的轉換:該方法對於提供一CO2 吸收為約0.05至約3 mmol CO2 /分鐘/公克乾燥細胞、一H2 吸收為約0.08至約3 mmol H2 /分鐘/公克乾燥細胞是有效的。該方法對於提供約25至約100%的CO2 轉換是有效的,在另一方面中,約50至約100%的CO2 轉換,且在另一方面中,約75至約100%的CO2 轉換。在另一方面中,該方法對於提供約25至約100%的H2 轉換是有效的,在另一方面中,約50至約100%的H2 轉換,且在另一方面中,約75至約100%的H2 轉換。 實施例 實施例1: 伍德乙酸桿菌的製備
伍德乙酸桿菌的一初始冷凍乾燥粒係獲自德國培養物收集中心DSMZ、菌株ID DSM-1030。培養物最初係使用豐富培養基(果糖與酵母菌萃取物)從冷凍乾燥粒復甦。使用一種適應方法以從血清瓶培養基中移除果糖,其中在生長培養基中果糖之濃度逐步降低75%、50%和10%。生長速率與氣體用量被用來作為適應的一指標(大約五周)。在血清瓶中初步pH適應工作降低所需之pH值從7.4至6.0(三周)。此時,培養物被擴增並且接種至一反應器中。在一反應器中,培養物進一步適應以在較低的pH值(5.2至5.7)中生長。 實施例2:在pH 5.4下以CO2 與H2 所生長之一伍德乙酸桿菌培養物的CSTR反應器實驗
一包含CO2 與H2 的合成氣體連同一含維生素、微量金屬、半胱胺酸(作為硫源)以及鹽類的習知液態營養培養基被持續地引入一含伍德乙酸桿菌的攪拌槽生物反應器中。
一含有營養培養基及活性地生長的伍德乙酸桿菌的New Brunswick Bioflow 310反應器被用於此實驗中。該反應器的攪拌速率被設定在600 rpm。此攪拌速率於整個實驗過程維持不變。給該反應器的進給氣體流從100 ml/min的初始速率增加至108 ml/min。該生物反應器中的溫度於整個實驗過程被維持在33.0ºC。Na+ 位準被保持在約3500至4000 ppm。餵入該生物反應器的合成氣與來自該生物反應器排氣以及在該生物反應器中的發酵液之樣本係間隔地被取出,例如,進給氣體、排氣與發酵液係分別約每天、每兩小時一次與每四小時一次進行取樣。上述樣本係針對各式氣體組分的消耗或生產、培養液乙酸濃度以及該培養物的光密度(細胞密度)進行分析。該反應器之未經擾動的體積於整個實驗過程被維持在1900至2275 ml之間。又,給該反應器的該氣體流係藉由質量流量控制器調控氣流至該反應器而被即時地測量。此實驗的進給氣體組成為70% H2 、25% CO2 以及5% N2
於此實驗中,一細胞回收系統(CRS)在該實驗開始之前被附著於該反應器。至該反應器的營養培養基之流率為5.0 ml/min。營養培養基進給速率於整個實驗過程被維持。
於此實驗中,進給氣體中的H2 及CO2 被固定進細胞材料、乙酸及丁酸。H2 及CO2 之移除藉由比較入口氣體組成與出口氣體組成而被計算。組分氣體吸收可以由細菌所轉換之氣體分子的%來表示。於此實驗中,如下之轉換被達到;H2 :51%-65%、CO2 :61%-75%。於此實驗中,乙酸生產的速率為4.63 g/L/天,而丁酸生產的速率為6.65 g/L/天。
結果可以摘要如下:
平均比CO2 吸收(mmol CO2 /min/公克乾燥細胞) 0.19
平均比乙酸生產力(g/L/天/g細胞) 1.78
平均比丁酸生產力(g/L/天/g細胞) 2.54
平均細胞密度(g/L) 2.63
圖1闡明在pH值5.4下乙酸與丁酸的生產。圖2顯示丁酸濃度與乙酸濃度之比率相對比碳吸收。 實施例3:對帶有在pH 5.4下以CO2 、CO與H2 所生長之一伍德乙酸桿菌培養物的CSTR反應器實驗
一含有CO2 、CO與H2 的合成氣體連同一含維生素、微量金屬、半胱胺酸(作為硫源)以及鹽類的習知液態營養培養基被持續地引入一含伍德乙酸桿菌的攪拌槽生物反應器中。
一含有營養培養基及活性地生長的伍德乙酸桿菌的New Brunswick Bioflow 310反應器被用於此實驗中。該反應器的攪拌速率被設定在600 rpm。此攪拌速率於整個實驗過程維持不變。給該反應器的進給氣體流從87 ml/min的初始速率增加至211 ml/min而。該生物反應器中的溫度於整個實驗過程被維持在33.0ºC。Na+ 位準被保持在約3500至4000 ppm。餵入該生物反應器的合成氣與來自該生物反應器排氣的樣本以及在生物反應器中的發酵液之樣本係間隔地被取出,例如,餵入氣體、排氣與發酵液係分別約每天、每兩小時一次與每四小時一次進行取樣。上述樣本係針對各式氣體組分的消耗或生產、培養液乙酸濃度以及該培養物的光密度(細胞密度)進行分析。該反應器之未經擾動的體積於整個實驗過程被維持在1900至2275 ml之間。又,給該反應器的該氣體流係藉由質量流量控制器調控氣流至該反應器而被即時測量。此實驗的進給氣體組成為62%的H2 、25%的CO2 、8%的CO及5%的N2
於此實驗中,一細胞回收系統(CRS)在該實驗開始之前被附著於反應器。至該反應器的營養培養基之流率為5.0 ml/min。營養培養基進給率於整個實驗過程被維持。
於此實驗中,進給氣體中的H2 、CO及CO2 被固定進細胞材料、乙酸及丁酸。H2 、CO及CO2 之移除藉由比較入口氣體組成與出口氣體組成而被計算。組分氣體吸收可以由細菌所轉換之氣體分子的%表示。於此實驗中,如下之轉換被達到;H2 :35%-63%、CO:84%-95%、CO2 :16%-50%。於此實驗中,乙酸生產的速率為3.13 g/L/天,而丁酸生產的速率為3.18 g/L/天。
結果可以摘要如下:
平均比CO2 吸收(mmol CO2 /min/公克乾燥細胞) 0.10
平均比CO吸收(mmol CO/min/公克乾燥細胞) 0.14
平均比乙酸生產力(g/L/天/g細胞) 1.12
平均比丁酸生產力(g/L/天/g細胞) 1.57
平均細胞密度(g/L) 2.78
圖3闡明在pH 5.4下乙酸與丁酸的生產。圖4顯示該丁酸濃度與該乙酸濃度之比率相對比碳吸收。 實施例4: 在pH 6.1下生長之一伍德乙酸桿菌培養物的CSTR反應器實驗
一含有CO2 與H2 的合成氣體連同一含維生素、微量金屬、半胱胺酸(作為硫源)以及鹽類的習知液態營養培養基被持續地引入進一含伍德乙酸桿菌的攪拌槽生物反應器中。
一含有營養培養基及活性地生長的伍德乙酸桿菌的New Brunswick Bioflow 310反應器被用於此實驗中。該反應器的攪拌速率被設定在600 rpm。此攪拌速率於整個實驗過程維持不變。給該反應器的進給氣體流從97 ml/min的初始速率增加至123 ml/min。該生物反應器中的溫度於整個實驗過程被維持在33.0ºC。Na+ 位準被保持在約3500至4000 ppm。餵入該生物反應器的合成氣與來自從該生物反應器排氣的樣本以及在生物反應器中的發酵液係間隔地被取出,例如,餵入氣體、排氣與發酵液係分別約每天、每兩小時一次與每四小時一次進行取樣。上述樣本係針對各式氣體組分的消耗或產出、培養液乙酸濃度以及該培養物的光密度(細胞密度)進行分析。該反應器之未經擾動的體積於整個實驗過程被維持在1900至2275 ml之間。又,該給該反應器的該氣體流係藉由質量流量控制器調控氣流入該反應器而被即時測量。此實驗的進給氣體組成為70%的H2 、25%的CO2 及5%的N2
於此實驗中,一細胞回收系統(CRS)在該實驗開始之前被附著於反應器。至該反應器的營養培養基之流率為3.5至5.0 ml/min。營養培養基進給率於整個實驗過程被維持。
於此實驗中,進給氣體中的H2 及CO2 被固定進細胞材料、乙酸及丁酸。H2 及CO2 之移除藉由比較入口氣體組成與出口氣體組成而被計算。組分氣體吸收可以由細菌所轉換之氣體分子的%表示。於此實驗中,如下之轉換被達到;H2 :29%-70%、CO2 :40%-86%。於此實驗中,乙酸生產的速率為22.8 g/L/天,而丁酸生產的速率為2.67 g/L/天。
結果可以摘要如下:
平均比CO2 吸收(mmol CO2 /min/公克乾燥細胞) 0.23
平均比乙酸生產力(g/L/天/g細胞) 7.93
平均比丁酸生產力(g/L/天/g細胞) 0.21
平均細胞密度(g/L) 3.00
圖5闡明在pH 6.1下乙酸與丁酸的生產。圖6顯示該丁酸濃度與該乙酸濃度之比率相對比碳吸收。
圖7顯示該丁酸濃度與該乙酸濃度之比率相對pH值。圖7中每筆數據點為pH值vs.丁酸對乙酸的比率之測量的一平均。該中線係由下列公式來表示:y = 428.8 - 211.64x + 34.989x2 – 1.9366x3 ,其中x = pH值,而y為該丁酸對乙酸之比率。如外側線所闡明,y可呈一範圍,其中y = 1.65*(428.8 - 211.64x + 34.989x2 – 1.9366x3 )至y = 0.35*(428.8 - 211.64x + 34.989x2 – 1.9366x3 )。此y的偏差可與不同的細菌菌種、菌株以及對宿主細胞的基因改造有關聯。又,不同的反應器條件像是溫度和壓力可影響y之數值。
下表載述用於圖7之數據。
pH值範圍 平均pH值 平均比率([HBu]/[HAc]) 測量次數
5.38至5.48 5.42 1.205 77
5.52至5.6 5.57 0.823 23
5.66至5.75 5.71 0.574 5
6.06至6.33 6.17 0.086 36
儘管此處所揭示之揭露內容已藉由特定具體例、實施例與其等之應用進行描述,熟習此領域者可以在不偏離該申請專利範圍中所載述的揭露內容之範疇內對其作出許多修改及變化。
上面所簡要概括之此揭露內容的一更特定描述可通過參考實施例而得之,其中一些實施例係在隨文檢附的圖式中予以闡明,以此方式使得本揭露內容的上述特徵可被充分瞭解。然而,要注意的是,該等隨文檢附的圖式只闡明此揭露內容的典型實施例,因此並非要被認為限制其範疇,對於該揭露內容可承認其他等效實施例。
圖1闡明透過伍德乙酸桿菌(Acetobacterium woodii )在pH 5.4下使用CO2 與H2 生產的乙酸與丁酸。
圖2顯示透過伍德乙酸桿菌在pH 5.4下使用CO2 與H2 ,一該丁酸濃度與該乙酸濃度之比率相對碳吸收(specific carbon uptake)。
圖3描述透過伍德乙酸桿菌在pH 5.4下使用CO2 、CO與H2 生產的乙酸與丁酸。
圖4顯示透過伍德乙酸桿菌在pH 5.4下使用CO2 、CO與H2 ,一該丁酸濃度與該乙酸濃度之比率相對比碳吸收。
圖5描述透過伍德乙酸桿菌在pH6.1下生產的乙酸與丁酸。
圖6顯示透過伍德乙酸桿菌在pH 6.1下,一該丁酸濃度與該乙酸濃度之比率相對比碳吸收。
圖7闡明一該丁酸濃度與該乙酸濃度之比率相對培養物pH。

Claims (28)

  1. 一種方法包含: 提供一包含CO2 之氣相基質給一生物反應器; 提供一產乙酸菌與培養基給該生物反應器以提供一發酵液; 透過一或多種鈉離子源提供鈉離子給該生物反應器; 在該發酵液中以該產乙酸菌來發酵該氣相基質以製造一或多種有機酸;及 藉由控制該發酵液的pH值來控制一丁酸與一乙酸之比率; 其中,當該發酵液的pH值降低,該丁酸與乙酸濃度之一比率增加,當該發酵液的pH值增加,該丁酸與乙酸濃度之一比率降低; 其中,該產乙酸菌包括一鈉移位三磷酸腺苷酶(sodium translocating ATPase),其在生物反應器中的發酵期間是活化的,及 其中該鈉離子被提供,使得在培養液中Na+ 被維持在1000至11000 ppm(g/g)之間。
  2. 如請求項1之方法,其中該氣相基質包含CO與CO2 之一混合物。
  3. 如請求項1之方法,其中該氣相基質具有一小於約2的CO與CO2 之比率。
  4. 如請求項1之方法,其中該方法包括在該發酵液中維持一pH值為6或更少,以提供一丁酸與乙酸之比率為0.2或更高。
  5. 如請求項1之方法,其中該丁酸與乙酸之比率係根據下列一公式來決定:y = 428.8 - 211.64x + 34.989x2 – 1.9366x3 ,其中x = pH值,而y為該丁酸與乙酸之比率,其中y在一範圍內,其中y = 1.65*(428.8 - 211.64x + 34.989x2 – 1.9366x3 )至y = 0.35*(428.8 - 211.64x + 34.989x2 – 1.9366x3 )。
  6. 如請求項1之方法,其中該產乙酸菌係選自於由以下所組成的群組:乙酸桿菌屬(Acetobacterium )細菌、凱伍產乙酸菌(Acetogenium kivui )、潮濕厭氧醋菌(Acetoanaerobium noterae )、伍德乙酸桿菌(Acetobacterium woodii )、巴氏鹼性桿菌(Alkalibaculum bacchi ) CP11 (ATCC BAA-1772)、熱乙酸莫爾氏菌(Moorella thermoacetica )、熱自營莫爾氏菌(Moorella thermoautotrophica )、產硫胃球菌(Ruminococcus productus ),以及其等之組合。
  7. 如請求項1之方法,其中該產乙酸菌係伍德乙酸桿菌。
  8. 如請求項1之方法,其中該鈉離子源係由一選自於由以下所組成的群組中的化合物所提供:氯化鈉、氫氧化鈉、磷酸鈉、硫酸鈉、硝酸鈉、碳酸氫鈉、硫酸氫鈉,以及其等之混合物。
  9. 如請求項1之方法,其中該發酵液包括每公升少於約0.01克的酵母萃取液,以及每公升少於約0.01克的碳水化合物。
  10. 一種方法包含: 提供一包含CO2 之氣相基質給一生物反應器; 提供一產乙酸菌與培養基給該生物反應器以提供一發酵液; 透過一或多種鈉離子源提供鈉離子給該生物反應器; 在該發酵液中維持一pH值為6或更少;以及 在該發酵液中以該產乙酸菌來發酵該氣相基質以製造一或多種有機酸; 其中,在提供一丁酸與乙酸濃度之比率為0.2或更高的發酵液中,維持一pH值為6或更少, 其中,該產乙酸菌包括一鈉移位三磷酸腺苷酶,其在生物反應器中的發酵期間是活化的,及 其中該鈉離子被提供,使得在培養液中Na+ 被維持在1000至11000 ppm(g/g)之間。
  11. 如請求項10之方法,其中該氣相基質係選自於由以下所組成的群組:工業用氣體、發酵槽氣流,以及其等之混合物。
  12. 如請求項10之方法,其中該氣相基質包含CO與CO2 之一混合物。
  13. 如請求項12之方法,其中該氣相基質具有一小於約2的CO與CO2 之比率。
  14. 如請求項10之方法,其中該產乙酸菌係選自於由以下所組成的群組:乙酸桿菌屬細菌、凱伍產乙酸菌、潮濕厭氧醋菌、伍德乙酸桿菌、巴氏鹼性桿菌CP11 (ATCC BAA-1772)、熱乙酸莫爾氏菌、熱自營莫爾氏菌、產硫胃球菌,以及其等之組合。
  15. 如請求項14之方法,其中該產乙酸菌係伍德乙酸桿菌。
  16. 如請求項10之方法,其中該鈉離子源係由一選自於由以下所組成的群組中的化合物所提供:氯化鈉、氫氧化鈉、磷酸鈉、硫酸鈉、硝酸鈉、碳酸氫鈉、硫酸氫鈉,以及其等之混合物。
  17. 如請求項10之方法,其中該發酵液包括每公升少於約0.01克的酵母萃取液,以及每公升少於約0.01克的碳水化合物。
  18. 如請求項10之方法,其中該丁酸與乙酸之比率係根據下列一公式來決定:y = 428.8 - 211.64x + 34.989x2 – 1.9366x3 ,其中x = pH值,而y為該丁酸與乙酸比率,其中y在一範圍內:y = 1.65*(428.8 - 211.64x + 34.989x2 – 1.9366x3 )至y = 0.35*(428.8 - 211.64x + 34.989x2 – 1.9366x3 )。
  19. 如請求項10之方法,其中該方法提供一約0.5克/公升/天/g的細胞或更多的丁酸生產量。
  20. 一種方法包含: 提供一包含CO2 之氣相基質給一生物反應器; 提供一產乙酸菌與培養基給該生物反應器以提供一發酵液; 透過一或多種鈉離子源提供鈉離子給該生物反應器; 在該發酵液中維持一pH值為6或更少;以及 在該發酵液中以該產乙酸菌來發酵該氣相基質以製造一或多種包含3個或更多個碳原子的有機酸; 其中,該產乙酸菌包括一鈉移位三磷酸腺苷酶,其在生物反應器中的發酵期間是活化的,及 其中該鈉離子被提供,使得在培養液中Na+ 被維持在1000至11000 ppm(g/g)之間。
  21. 如請求項20中之方法,其中該氣相基質係選自於由以下所組成的群組:工業用氣體、發酵槽氣流,以及其等之混合物。
  22. 如請求項20之方法,其中該氣相基質包含CO與CO2 之一混合物。
  23. 如請求項20之方法,其中該氣相基質具有一小於約2的CO與CO2 之比率。
  24. 如請求項20之方法,其中該產乙酸菌係選自於由以下所組成的群組:乙酸桿菌屬細菌、凱伍產乙酸菌、潮濕厭氧醋菌、伍德乙酸桿菌、巴氏鹼性桿菌CP11 (ATCC BAA-1772)、熱乙酸莫爾氏菌、熱自營莫爾氏菌、產硫胃球菌,以及其等之組合。
  25. 如請求項24之方法,其中該產乙酸菌係伍德乙酸桿菌。
  26. 如請求項20之方法,其中該鈉離子源係由一選自於由以下所組成的群組中的化合物所提供:氯化鈉、氫氧化鈉、磷酸鈉、硫酸鈉、硝酸鈉、碳酸氫鈉、硫酸氫鈉,以及其等之混合物。
  27. 如請求項20之方法,其中該有機酸為丁酸或丁酸與丙酸之混合物。
  28. 如請求項20之方法,其中該發酵液包括每公升少於約0.01克的酵母萃取液,以及每公升少於約0.01克的碳水化合物。
TW110103125A 2020-01-29 2021-01-27 用於在二氧化碳生物轉換方法中控制有機酸比率之方法 TW202142693A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202062967220P 2020-01-29 2020-01-29
US62/967,220 2020-01-29

Publications (1)

Publication Number Publication Date
TW202142693A true TW202142693A (zh) 2021-11-16

Family

ID=74673362

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110103125A TW202142693A (zh) 2020-01-29 2021-01-27 用於在二氧化碳生物轉換方法中控制有機酸比率之方法

Country Status (6)

Country Link
US (1) US11981950B2 (zh)
EP (1) EP4097241A1 (zh)
CN (1) CN115210383A (zh)
BR (1) BR112022014752A2 (zh)
TW (1) TW202142693A (zh)
WO (1) WO2021154826A1 (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA03000711A (es) 2000-07-25 2003-06-04 Bioengineering Resources Inc Metodos para incrementar la produccion de etanol de una fermentacion microbiana.
ATE534744T1 (de) * 2008-03-11 2011-12-15 Ineos Bio Ltd Verfahren zur herstellung von ethanol
DE102009002583A1 (de) * 2009-04-23 2010-10-28 Evonik Degussa Gmbh Zellen und Verfahren zur Herstellung von Aceton
US11773416B2 (en) * 2018-08-08 2023-10-03 Jupeng Bio, Inc. Carbon dioxide bioconversion process
WO2020104411A1 (en) * 2018-11-20 2020-05-28 Evonik Operations Gmbh Production and extraction of alkanoic acids

Also Published As

Publication number Publication date
US11981950B2 (en) 2024-05-14
EP4097241A1 (en) 2022-12-07
CN115210383A (zh) 2022-10-18
WO2021154826A1 (en) 2021-08-05
BR112022014752A2 (pt) 2022-10-11
US20210230647A1 (en) 2021-07-29

Similar Documents

Publication Publication Date Title
US11773416B2 (en) Carbon dioxide bioconversion process
US10760101B2 (en) Process and medium for reducing selenium levels in biomass from fermentation of co-containing gaseous substrates
TW202142693A (zh) 用於在二氧化碳生物轉換方法中控制有機酸比率之方法
Kim et al. Long-term operation of continuous culture of the hyperthermophilic archaeon, Thermococcus onnurineus for carbon monoxide-dependent hydrogen production
TWI835833B (zh) 二氧化碳之生物轉換方法
TWI835832B (zh) 一氧化碳及二氧化碳之生物轉換方法
CN112689680B (zh) 一氧化碳和二氧化碳生物转化方法
US20220177932A1 (en) Process and composition for controlling ethanol production
Wan et al. Bio-hydrogen production from carbon monoxide by microbial water-gas shift reaction of the hyperthermophilic archaeon
Boiko et al. The technology of the second generation of bioethanol