TW202142259A - Use of nanoscale silicate platelet (nsp) for interrupting virus infection pathway - Google Patents

Use of nanoscale silicate platelet (nsp) for interrupting virus infection pathway Download PDF

Info

Publication number
TW202142259A
TW202142259A TW109115255A TW109115255A TW202142259A TW 202142259 A TW202142259 A TW 202142259A TW 109115255 A TW109115255 A TW 109115255A TW 109115255 A TW109115255 A TW 109115255A TW 202142259 A TW202142259 A TW 202142259A
Authority
TW
Taiwan
Prior art keywords
sodium
nano
sulfonate
nsp
virus
Prior art date
Application number
TW109115255A
Other languages
Chinese (zh)
Inventor
林江珍
沈聖彥
葉芳宜
Original Assignee
多鏈科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 多鏈科技股份有限公司 filed Critical 多鏈科技股份有限公司
Priority to TW109115255A priority Critical patent/TW202142259A/en
Publication of TW202142259A publication Critical patent/TW202142259A/en

Links

Images

Abstract

The instant invention deals with the uses of nanoscale silicate platelets (NSP) for interrupting virus infection pathway. The high surface area and intensive negative charges on surface renders NSP physical adsorption and chemical charge exchanging neutralization, consequently reducing the virus infection.

Description

以奈米矽片抵抗病毒感染之方法 Methods of resisting viral infections with nano-silicon wafers

本發明係關於一種以奈米矽片抵抗病毒感染的方法,尤其是表面具正電荷的病毒。 The present invention relates to a method for resisting viral infections with nano-silicon wafers, especially viruses with positive charges on the surface.

病毒之基本結構為蛋白質之外殼包覆核糖核酸(RNA)。由於病毒具有快速變異及傳佈的特性,因此可說是人類最大的敵人。以引起COVID-19的新型冠狀病毒為例,其基本結構包括內部的核醣核酸(RNA)及外部的蛋白質。外部的蛋白質中,HIV-1 Gag蛋白解離後帶正電荷,可與帶負電荷的宿主細胞受體結合,造成感染。 The basic structure of a virus is a protein shell coated with ribonucleic acid (RNA). Because the virus has the characteristics of rapid mutation and spread, it can be said to be the greatest enemy of mankind. Take the new type of coronavirus that causes COVID-19 as an example. Its basic structure includes internal ribonucleic acid (RNA) and external protein. Among the external proteins, the HIV-1 Gag protein is positively charged after dissociation and can bind to negatively charged host cell receptors and cause infection.

已有文獻提出使用月桂基磺酸鈉(sodium lauryl sulfonate,SLS)防止HIV-1感染,參見:Piret J.;Désormeaux,A.& Bergeron,M.G.(2002).“Sodium lauryl sulfate,a microbicide effective against enveloped and nonenveloped viruses”.Curr.Drug Targets.3(1):17-30,及Piret J.;Lamontagne,J.;Bestman-Smith,J.;Roy,S.;Gourde,P.;Désormeaux,A.;Omar,R.F.;Juhász,J.& Bergeron,M.G.(2000).“In vitro and in vivo evaluations of sodium lauryl sulfate and dextran sulfate as microbicides against herpes simplex and human immunodeficiency viruses”.J.Clin.Microbiol.38(1):110-119。 The literature has proposed the use of sodium lauryl sulfonate (SLS) to prevent HIV-1 infection, see: Piret J.; Désormeaux, A. & Bergeron, MG (2002). "Sodium lauryl sulfate, a microbicide effective against Enveloped and nonenveloped viruses". Curr. Drug Targets. 3(1): 17-30, and Piret J.; Lamontagne, J.; Bestman-Smith, J.; Roy, S.; Gourde, P.; Désormeaux, A .; Omar, RF; Juhász, J. & Bergeron, MG(2000). "In vitro and in vivo evaluations of sodium lauryl sulfate and dextran sulfate as microbicides against herpes simplex and human immunodeficiency viruses". J.Clin.Microbiol.38 (1): 110-119.

而針對帶正電荷的病毒,亦有文獻提出可使病毒與帶負電荷的十二烷基磺酸鈉(sodium dodecyl sulfonate,SDS)及奈米矽片 (nanoscale silicate platelets,NSP)接觸,並產生電中和作用,藉由阻斷感染途徑,達到防疫的目的。參見:Liang JJ,Wei JC,Lee YL,Hsu SH,Lin JJ,Lin YL.“Surfactant-Modified Nanoclay Exhibits an Antiviral Activity with High Potency and Broad Spectrum”.J Virol.2014 Apr;88(8):4218-28.然而,該文獻認為,在單獨使用奈米矽片(NSP水溶液,0.001wt%)的情況下,無法有效遏止日本腦炎病毒繁殖。 For positively charged viruses, there are also literatures suggesting that the viruses can be combined with negatively charged sodium dodecyl sulfonate (SDS) and nano-silicon wafers. (nanoscale silicate platelets, NSP) contact, and produce electrical neutralization, by blocking the route of infection, to achieve the purpose of epidemic prevention. See: Liang JJ, Wei JC, Lee YL, Hsu SH, Lin JJ, Lin YL. "Surfactant-Modified Nanoclay Exhibits an Antiviral Activity with High Potency and Broad Spectrum". J Virol. 2014 Apr; 88(8): 4218- 28. However, the document believes that the use of nano-silicon wafers (NSP aqueous solution, 0.001 wt%) alone cannot effectively prevent the Japanese encephalitis virus from multiplying.

已知奈米矽片(NSP)是一種幾何形狀為片狀的矽酸鹽,同時具有高表面積,以及高密度的負電荷。第1圖為奈米矽片的結構示意圖,其中(≡Si-O)為網狀主架構,(≡SiOH)(siloxanol)的氫鍵具有親水性,(≡SiO-Na+)為陰/陽或負/正離子對。後兩者組成有利於親水性,致使奈米矽片可以分散及浮游於水中,具有吸附病毒之表面能量。奈米矽片可以矽酸鹽黏土為原料製造,因此成本低廉。此外,奈米矽片在水中可以各種濃度形成均勻的分散矽片液,增加了運輸及使用的便利性。最重要的是,奈米矽片不具生物毒性,其對人體細胞毒性的程度大約等於食鹽(老鼠急毒測試LD50>5700mg/kg)。亦即,奈米矽片在抵抗病毒感染方面,仍具有高度潛力及研發價值。因此,發明人進一步根據奈米矽片與病毒的特性,提出本發明方法。 It is known that nano-silicon wafer (NSP) is a kind of silicate with sheet-like geometry, which has a high surface area and a high density of negative charges. Figure 1 is a schematic diagram of the structure of a nano-silicon wafer, where (≡Si-O) is the main network structure, (≡SiOH) (siloxanol) has a hydrophilic hydrogen bond, and (≡SiO - Na + ) is anion/yang Or negative/positive ion pair. The composition of the latter two is conducive to hydrophilicity, so that the nano-silicon wafer can be dispersed and floated in the water, and has the surface energy to adsorb viruses. Nano silicon wafers can be manufactured from silicate clay, so the cost is low. In addition, nano silicon wafers can form a uniformly dispersed silicon wafer liquid in various concentrations in water, which increases the convenience of transportation and use. The most important thing is that nano-silicon wafers are not biologically toxic, and their cytotoxicity to humans is approximately equal to that of table salt (rat acute toxicity test LD 50 > 5700 mg/kg). In other words, nano-silicon wafers still have high potential and R&D value in resisting viral infections. Therefore, the inventor further proposed the method of the present invention based on the characteristics of the nanosilicon wafer and the virus.

本發明的目的在提供一種以奈米矽片抵抗病毒感染的方法,包括下列步驟: The purpose of the present invention is to provide a method for resisting viral infections with nano-silicon wafers, which includes the following steps:

(i)提供一奈米矽片水溶液,奈米矽片的濃度為0.01wt%~10.0wt%,該奈米矽片為完全脫層的矽酸黏土,片徑比為(50~300)×(50~300)×1nm3,表面積為300m2/g~800m2/g,表面 結構包括≡SiOH及≡SiO-Na+,陽離子交換容量為1.0mequiv/g~1.5mequiv/g;及 (i) Provide an aqueous solution of nano-silicon wafers, the concentration of the nano-silicon wafers is 0.01wt%~10.0wt%, the nano-silicon wafers are completely delaminated silicic acid clay, and the wafer diameter ratio is (50~300)× (50~300)×1nm 3 , the surface area is 300m 2 /g~800m 2 /g, the surface structure includes ≡SiOH and ≡SiO - Na + , the cation exchange capacity is 1.0mequiv/g~1.5mequiv/g; and

(ii)使該奈米矽片與帶電荷的病毒接觸,藉由凡德瓦力(van der Waals force)、氫鍵及電價中和之一或多種作用吸附病毒,以中斷病毒之自由移動,阻斷感染途徑,甚至導致病毒失去活性,達到防疫的目的。 (ii) Bring the nanosilicon wafer into contact with the charged virus, and absorb the virus by one or more of van der Waals force, hydrogen bond, and neutralization of electricity, so as to interrupt the free movement of the virus. Blocking the route of infection may even cause the virus to lose its activity and achieve the purpose of epidemic prevention.

如第1圖所示,每一片NSP表面同時存在三種力量:(1)薄片幾何形狀產生極高之表面積,跟隨的凡德瓦力(van der Waals force),能夠吸附奈米尺寸之任何粒子,包括病毒。(2)≡SiOH的親水性,透過氫鍵水媒介吸附病毒。(3)離子交換化學反應,類似酸鹼中和反應,負離子NSP可強制中和病毒之正價結構,即蛋白質之N+四級胺基。因此,NSP在水中,具有高移動性(high mobility)及活性(activity),可捕捉、吸附及中和病毒,物理性地使其失去原本之感染力。亦即,NSP可阻斷任何病毒進入宿主細胞之感染機制或機率,而對「正價」病毒更是甚之。 As shown in Figure 1, there are three forces on the surface of each piece of NSP at the same time: (1) The flake geometry produces a very high surface area, and the following van der Waals force can adsorb any particles of nanometer size. Including viruses. (2) The hydrophilicity of ≡SiOH, which adsorbs viruses through hydrogen-bonded water media. (3) Ion exchange chemical reaction, similar to acid-base neutralization reaction, negative ion NSP can forcibly neutralize the positive valence structure of the virus, that is, the N + quaternary amino group of the protein. Therefore, NSP has high mobility and activity in water, and can capture, adsorb and neutralize viruses, physically making them lose their original infectivity. In other words, NSP can block the infection mechanism or probability of any virus entering the host cell, and it is even more so for "normal" viruses.

此外,奈米矽片(NSP)抵抗病毒的機制有賴於本身水中的分散性。比較之下,分散性不佳的黏土,較易呈現凝聚(agglomerate)狀態則表面積無法表達,與病毒的親和力(亦即凡得瓦力及離子鍵)下降,不能呈現奈米微觀的效果。相較於層狀黏土,奈米矽片於水中的分散性被顯著改善。NSP表面帶有大量的正電荷(Na+)及負電荷(SiO-),具雙性特性並維持電中性平衡,使其可以分別與陰離子/陽離子分散劑或插層劑進行反應,有助於NSP在水中之分散性。以動態光散射儀(Dynamic Light Scattering,DLS)分析NSP及原料黏土蒙脫土(MMT)在水溶液中的粒徑,結果如表1所示,NSP的粒子變細且分散性提升。 In addition, the anti-virus mechanism of nano-silicon wafers (NSP) depends on its own dispersion in water. In comparison, clay with poor dispersion is more prone to agglomerate state, the surface area cannot be expressed, the affinity with the virus (that is, Van der Waals force and ionic bond) is reduced, and it cannot exhibit nano-microscopic effects. Compared with layered clay, the dispersibility of nano-silicon flakes in water is significantly improved. NSP surface with a large amount of positive charge (Na +) and negative charges (SiO -), with bis characteristics and maintain electrical neutrality of balance, so that it can react with anionic / cationic dispersing agent or intercalant respectively, help For the dispersibility of NSP in water. The particle size of NSP and the raw clay montmorillonite (MMT) in the aqueous solution was analyzed with a dynamic light scattering (DLS). The results are shown in Table 1. The particles of NSP have become finer and have improved dispersibility.

Figure 109115255-A0101-12-0004-1
Figure 109115255-A0101-12-0004-1

本發明方法中,奈米矽片的濃度較佳為0.01wt%~0.1wt%,更佳為0.05wt%~0.1wt%。奈米矽片水溶液尚可包括一陰離子界面活性劑,例如十二烷基/月桂基磺酸鈉(sodium dodecyl/lauryl sulfonate,SDS/SLS)、硬脂酸鈉(sodium octadecanoate)、葡聚糖硫酸(dextran sulfate sodium,DSS)、C12-14烷基乙氧基硫酸鈉鹽((C12-14)alkyl ethoxy sulfate)、C10-16烷基苯磺酸鈉((C10-C16)alkylbenzenesulfonic acid)、十二烷基苯磺酸鈉(sodium dodecylbenzenesulphonate,SDBS)、二甲苯磺酸鈉(sodium xylene sulfonate)、甲苯磺酸鈉(sodium toluene sulfonate)、異丙苯磺酸鈉(sodium cumene sulfonate)、烷基苯磺酸鈣(calcium alkyl benzene sulfonate)、雙萘磺酸鈉(sodium bis-naphthalene sulfonate)等化合物,其中較佳為十二烷基磺酸鈉(SDS)。NSP與陰離子界面活性劑的重量比為10/90~90/10,較佳為10/90~70/30。 In the method of the present invention, the concentration of the nano-silicon wafer is preferably 0.01 wt% to 0.1 wt%, more preferably 0.05 wt% to 0.1 wt%. The aqueous solution of nanosilicon chips can still include an anionic surfactant, such as sodium dodecyl/lauryl sulfonate (SDS/SLS), sodium stearate (sodium octadecanoate), dextran sulfate (dextran sulfate sodium, DSS), C12-14 alkyl ethoxy sulfate ((C12-14)alkyl ethoxy sulfate), C10-16 alkylbenzenesulfonic acid ((C10-C16)alkylbenzenesulfonic acid), ten Sodium dodecylbenzene sulphonate (SDBS), sodium xylene sulfonate (sodium xylene sulfonate), sodium toluene sulfonate (sodium toluene sulfonate), sodium cumene sulfonate (sodium cumene sulfonate), alkylbenzene Compounds such as calcium alkyl benzene sulfonate and sodium bis-naphthalene sulfonate, among which sodium dodecyl sulfonate (SDS) is preferred. The weight ratio of NSP to anionic surfactant is 10/90~90/10, preferably 10/90~70/30.

為促進奈米矽片在水中均勻分散,奈米矽片水溶液尚可包括一非離子界面活性劑,例如Triton® X-100(TEDIA公司,辛基苯酚聚氧乙基醇(octylphenol polyethoxylate))、SINOPOL®系列(中日合成化學公司,聚乙二醇醚,polyoxyethylene ether)等。 In order to promote the uniform dispersion of nano-silicon wafers in water, the aqueous solution of nano-silicon wafers can still include a non-ionic surfactant, such as Triton ® X-100 (TEDIA, octylphenol polyethoxylate), SINOPOL ® series (China-Japan Synthetic Chemical Company, polyethylene glycol ether, polyoxyethylene ether), etc.

奈米矽片水溶液可直接,或以噴霧形式與帶電荷的 病毒接觸,或使奈米矽片水溶液先附著於一物體表面,或者均勻分散存在於細胞質之間,捕抓或者中斷病毒入侵與接觸。藉由凡德瓦力、氫鍵及電價中和之一或多種作用,細菌或病毒的活性可被去除或降低,達到防疫的功能。 The nano-silicon wafer aqueous solution can be directly or in the form of spray with the charged Virus contact, or make the nano-silicon wafer aqueous solution first adhere to the surface of an object, or evenly dispersed in the cytoplasm, to catch or interrupt the virus invasion and contact. By one or more of van der Waals force, hydrogen bond and electricity price neutralization, the activity of bacteria or viruses can be removed or reduced to achieve the function of epidemic prevention.

第1圖為奈米矽片的結構示意圖。 Figure 1 is a schematic diagram of the structure of the nano-silicon wafer.

第2圖顯示實施例1中奈米矽片與十二烷基磺酸鈉的實驗結果。 Figure 2 shows the experimental results of the nanosilicon wafer and sodium dodecyl sulfonate in Example 1.

第3圖顯示實施例2中奈米矽片與十二烷基磺酸鈉的實驗結果。 Figure 3 shows the experimental results of nanosilicon wafers and sodium lauryl sulfonate in Example 2.

本發明較佳實施例及比較例使用的材料包括: The materials used in the preferred embodiments and comparative examples of the present invention include:

1.奈米矽片(nanoscale silicate platelets,NSP):為矽酸黏土,如皂土(bentonite)或蒙脫土(montmorillonite),完全脫層形成的片狀結構。幾何外觀具有高片徑比約(50~300)×(50~300)×1nm3,而表面積更可高達720m2/g。表面離子密度約為18,000離子/片,陽離子交換容量約為1.2mequiv/g。奈米矽片的製造方法可參考美國專利第7,022,299B2號、第7,094,815B2號、第7,125,916B2號、及公告第2005-0239943-A1號、及申請號第11/464,495號等之方法。以下為其中一種方法,包括下列步驟: 1. Nanoscale silicate platelets (NSP): Silicate clay, such as bentonite or montmorillonite, is a sheet-like structure formed by complete delamination. The geometric appearance has a high sheet diameter ratio of about (50~300)×(50~300)×1nm 3 , and the surface area can be as high as 720m 2 /g. The surface ion density is about 18,000 ions/sheet, and the cation exchange capacity is about 1.2 mequiv/g. The manufacturing method of the nano-silicon wafer can refer to the methods of US Patent No. 7,022,299B2, No. 7,094,815B2, No. 7,125,916B2, and Announcement No. 2005-0239943-A1, and Application No. 11/464,495. The following is one of the methods, including the following steps:

(a).取蒙脫土(10g)分散於80℃之熱水(1L)中,強力攪拌4小時,使水溶液形成土色之穩定、均勻分散液。 (a). Disperse montmorillonite (10g) in hot water (1L) at 80°C and stir vigorously for 4 hours to make the aqueous solution form a stable and uniform dispersion of earthy color.

(b).取對甲酚(27.2g)與D2000(757.6g)以莫耳比2:3,於90℃甲苯中迴流反應3小時,再加入甲醛溶液(37wt%,61.4g),並升溫至130℃反應5小時,形成膠狀後停止反應。所得之產物即插層劑曼尼斯胺(Amine-termination Mannich Oligomer,AMO)。GPC分析得三個波峰位置分別為Mw=3,142、6,221及9,246;胺滴定結果為:一級胺=0.4meq/g,二級胺=0.56meq/g,無三級胺。將AMO溶於水(575g)中,與濃鹽酸(35wt%,36g)於80℃下混合30分鐘,形成酸化之AMO。將酸化之AMO倒入上述之Na+-MMT分散液中,於80℃下強力攪拌5小時,以完成插層反應,得到AMO/Clay混合溶液。 (b). Take p-cresol (27.2g) and D2000 (757.6g) at a molar ratio of 2:3, reflux in toluene at 90°C for 3 hours, then add formaldehyde solution (37wt%, 61.4g), and increase the temperature React at 130°C for 5 hours, and stop the reaction after forming a gel. The resulting product is Amine-termination Mannich Oligomer (AMO). GPC analysis showed that the three peak positions were Mw=3,142, 6,221 and 9,246; the amine titration results were: primary amine=0.4meq/g, secondary amine=0.56meq/g, no tertiary amine. AMO was dissolved in water (575g) and mixed with concentrated hydrochloric acid (35wt%, 36g) at 80°C for 30 minutes to form acidified AMO. Pour the acidified AMO into the above Na + -MMT dispersion and stir vigorously at 80°C for 5 hours to complete the intercalation reaction and obtain an AMO/Clay mixed solution.

(c).於AMO/Clay混合溶液中加入不同pH值的緩衝水溶液,此時AMO/Clay混合溶液會形成淡黃色、乳化狀態的黏稠液體。 (c). Add buffered aqueous solutions of different pH values to the AMO/Clay mixed solution. At this time, the AMO/Clay mixed solution will form a light yellow, emulsified viscous liquid.

(d).於黏稠液體中加入乙醇(7.5L)後過濾之,再將過濾的固體加入乙醇(10L)攪拌均勻並加入當量的NaOH(9.2g)後過濾之,可以得到淡黃色、半透明的AMO/NSP片狀矽酸鹽混合物,此混合物的有機/無機比(organic/inorganic,O/I)約為40/60。 (d). Add ethanol (7.5L) to the viscous liquid and filter it, then add ethanol (10L) to the filtered solid, stir evenly, add the equivalent of NaOH (9.2g) and filter it, you can get a light yellow, translucent AMO/NSP flake silicate mixture, the organic/inorganic ratio (organic/inorganic, O/I) of this mixture is about 40/60.

(e).將上述AMO/NSP混合物加入乙醇(10L)攪拌均勻並當量的NaOH,再加入水(10L)攪拌均勻後,最後加入甲苯(10L)混合均勻。靜置一天後分成三層,最上層是甲苯與AMO(可回收),中間層是乙醇,最下層即為所要的產物NSP懸浮液。 (e). Add the above AMO/NSP mixture to ethanol (10L) and stir evenly and equivalent NaOH, then add water (10L) and stir evenly, and finally add toluene (10L) and mix well. After standing for one day, it is divided into three layers, the top layer is toluene and AMO (recyclable), the middle layer is ethanol, and the bottom layer is the desired product NSP suspension.

2.陰離子界面活性劑:實施例選用十二烷基磺酸鈉(Sodium dodecyl sulfonate,SDS)。 2. Anionic surfactant: Sodium dodecyl sulfonate (SDS) is used in the examples.

i.模擬病毒:以陽離子型界面活性劑模擬表面具有正電荷的病毒,實施例選用鹽酸牛脂烷基胺(tallow alkyl amine+HCl)。其他可使用的陽離子型界面活性劑包括二甲基芐基氯化銨(dimethyl benzyl ammonium chloride)、烷基(C32)三甲基氯化銨(alkyl(C32)trimethyl ammonium chloride)、十六烷基三甲基氯化銨(cetyl trimethyl ammonium chloride)、十二烷基二甲基氯化銨(dodecyl dimethyl ammonium chloride)、SINOTEX ®系列(中日合成化學公司,四級銨鹽,poly(quaternary distearyl amidoammonium chloride))。 i. Simulated virus: A cationic surfactant is used to simulate a virus with a positive charge on the surface. The example uses tallow alkyl amine + HCl . Other cationic surfactants that can be used include dimethyl benzyl ammonium chloride, alkyl(C32)trimethyl ammonium chloride, hexadecyl Trimethyl ammonium chloride (cetyl trimethyl ammonium chloride), dodecyl dimethyl ammonium chloride (dodecyl dimethyl ammonium chloride), SINOTEX ® series (Central Japan Synthetic Chemical Company, quaternary ammonium salt, poly(quaternary distearyl amidoammonium) chloride)).

本發明較佳實施例的操作步驟如下。 The operation steps of the preferred embodiment of the present invention are as follows.

實施例1:Example 1:

試管(A):模擬NSP抗病毒試驗 Test tube (A): Simulate NSP anti-virus test

i.配製NSP水溶液(0.05wt%,8mL)。 i. Prepare NSP aqueous solution (0.05wt%, 8mL).

ii.水浴50℃~80℃,加入模擬病毒(20wt%,0.1mL),靜置10分鐘後,以超音波震盪0.5~1.0小時,再靜置10分鐘。 ii. Water bath 50℃~80℃, add simulated virus (20wt%, 0.1mL), let stand for 10 minutes, oscillate with ultrasound for 0.5~1.0 hours, and then stand for 10 minutes.

試管(B):模擬NSP/SDS抗病毒試驗 Test tube (B): Simulate NSP/SDS anti-virus test

i.配製NSP水溶液(0.05wt%,8mL),加入SDS(20wt%,0.1mL), NSP/SDS的重量比為15/85。靜置10分鐘後,以超音波震盪0.5~1.0小時,再靜置10分鐘。 i. Prepare NSP aqueous solution (0.05wt%, 8mL), add SDS (20wt%, 0.1mL), The weight ratio of NSP/SDS is 15/85. After standing for 10 minutes, shake with ultrasound for 0.5 to 1.0 hours, and then stand for 10 minutes.

ii.水浴50℃~80℃,加入模擬病毒(20wt%,0.1mL),靜置10分鐘,以超音波震盪0.5~1.0小時,再靜置10分鐘。 ii. Water bath 50℃~80℃, add simulated virus (20wt%, 0.1mL), let stand for 10 minutes, shake with ultrasound for 0.5~1.0 hours, and then stand for 10 minutes.

實施例2 Example 2

試管(A):純NSP溶液 Test tube (A): pure NSP solution

i.配製NSP水溶液(0.05wt%,10mL)。 i. Prepare NSP aqueous solution (0.05wt%, 10mL).

試管(B):模擬NSP抗病毒試驗 Test tube (B): Simulate NSP anti-virus test

i.配製NSP水溶液(0.05wt%,10mL)。 i. Prepare NSP aqueous solution (0.05wt%, 10mL).

ii.加入模擬病毒(20wt%,60μL),水浴50℃~80℃,超音波震盪0.5~1.0小時。 ii. Add simulated virus (20wt%, 60μL), water bath 50℃~80℃, ultrasonic vibration for 0.5~1.0 hours.

試管(C):模擬NSP/SDS抗病毒試驗 Test tube (C): Simulate NSP/SDS anti-virus test

i.配製NSP水溶液(0.05wt%,500ppm,10mL),加入SDS(20wt%,60μL),NSP/SDS的重量比約為29/71。 i. Prepare NSP aqueous solution (0.05wt%, 500ppm, 10mL), add SDS (20wt%, 60μL), the weight ratio of NSP/SDS is about 29/71.

ii.加入模擬病毒(20wt%,60μL),水浴50℃~80℃,超音波震盪0.5~1.0小時。 ii. Add simulated virus (20wt%, 60μL), water bath 50℃~80℃, ultrasonic vibration for 0.5~1.0 hours.

第2圖顯示實施例1的結果,其中試管(A)的溶液呈現均勻半透明,而試管(B)的上半部呈現白色,下半部則較透明。呈現白色表示奈米矽片與陽離子發生作用,凝聚/固定病毒的移動,因此可預期奈米矽片能有效捕捉病毒,使其失去活性。 Figure 2 shows the result of Example 1, where the solution in the test tube (A) is uniform and translucent, while the upper half of the test tube (B) is white and the lower half is relatively transparent. The white color indicates that the nano-silicon wafer interacts with cations to condense/fix the movement of the virus. Therefore, it can be expected that the nano-silicon wafer can effectively capture the virus and make it inactive.

第3圖顯示實施例2的結果,其中試管(A)的純NSP溶液呈現均勻透明狀態,試管(B)呈現均勻半透明狀態,與實施例1的試管(A)相似,試管 (C)則呈現均勻白色。呈現白色表示為奈米矽片與陽離子發生作用,因此可預期奈米矽片能有效捕捉病毒。 Figure 3 shows the results of Example 2, where the pure NSP solution in the test tube (A) is in a uniform and transparent state, and the test tube (B) is in a uniform and translucent state, similar to the test tube (A) in Example 1. The test tube (C) is uniformly white. The appearance of white indicates that the nano-silicon wafer interacts with cations, so it can be expected that the nano-silicon wafer can effectively capture the virus.

為增加NSP在水中的分散性,亦可視情況添加非離子界面活性劑,例如Triton® X-100(TEDIA公司,辛基苯酚聚氧乙基醇(octylphenol polyethoxylate))、SINOPOL®系列(中日合成化學公司,聚乙二醇醚,polyoxyethylene ether)等。 In order to increase the dispersibility of NSP in water, non-ionic surfactants can also be added as appropriate, such as Triton ® X-100 (TEDIA, octylphenol polyethoxylate), SINOPOL ® series (synthesized in China and Japan) Chemical company, polyethylene glycol ether, polyoxyethylene ether), etc.

由於奈米矽片可均勻分散於水中,因此可視情況配置不同濃度。例如:3wt%~10wt%為方便運輸的凝膠狀,而稀釋到0.01wt%~0.1wt%時,則可作為乾洗手或消毒噴劑。 Since nano-silicon wafers can be uniformly dispersed in water, different concentrations can be configured depending on the situation. For example: 3wt%~10wt% is a gel form that is convenient for transportation, and when diluted to 0.01wt%~0.1wt%, it can be used as a dry hand or disinfectant spray.

Claims (12)

一種以奈米矽片抵抗病毒感染的方法,包括步驟: A method for resisting viral infections with nano-silicon wafers, including the following steps: (i)提供一奈米矽片水溶液,奈米矽片的濃度為0.01wt%~10.0wt%,該奈米矽片為完全脫層的矽酸黏土,片徑比為(50~300)×(50~300)×1nm3,表面積為300m2/g~800m2/g,表面結構包括≡SiOH及≡SiO-Na+,陽離子交換容量為1.0mequiv/g~1.5mequiv/g;及 (i) Provide an aqueous solution of nano-silicon wafers, the concentration of the nano-silicon wafers is 0.01wt%~10.0wt%, the nano-silicon wafers are completely delaminated silicic acid clay, and the wafer diameter ratio is (50~300)× (50~300)×1nm 3 , the surface area is 300m 2 /g~800m 2 /g, the surface structure includes ≡SiOH and ≡SiO - Na + , the cation exchange capacity is 1.0mequiv/g~1.5mequiv/g; and (ii)使該奈米矽片與帶電荷的病毒接觸,藉由凡德瓦力(van der Waals force)、氫鍵及電價中和之一或多種作用吸附病毒,以中斷病毒之自由移動,阻斷感染途徑,甚至導致病毒失去活性,達到防疫的目的。 (ii) Bring the nanosilicon wafer into contact with the charged virus, and absorb the virus by one or more of van der Waals force, hydrogen bond, and neutralization of electricity, so as to interrupt the free movement of the virus. Blocking the route of infection may even cause the virus to lose its activity and achieve the purpose of epidemic prevention. 如請求項1所述之方法,其中該病毒帶正電荷。 The method according to claim 1, wherein the virus is positively charged. 如請求項1所述之方法,其中該奈米矽片的濃度為0.01wt%~0.1wt%。 The method according to claim 1, wherein the concentration of the nano-silicon wafer is 0.01 wt% to 0.1 wt%. 如請求項1所述之方法,其中該奈米矽片水溶液尚包括一陰離子界面活性劑。 The method according to claim 1, wherein the aqueous nanosilicon wafer solution further includes an anionic surfactant. 如請求項4所述之方法,其中該陰離子界面活性劑為十二烷基/月桂基磺酸鈉(sodium dodecyl/lauryl sulfonate,SDS/SLS)、硬脂酸鈉(sodium octadecanoate)、葡聚糖硫酸(dextran sulfate sodium,DSS)、C12-14烷基乙氧基硫酸鈉鹽((C12-14)alkyl ethoxy sulfate)、C10-16烷基苯磺酸鈉((C10-C16)alkylbenzenesulfonic acid)、十二烷基苯磺酸鈉(sodium dodecylbenzenesulphonate,SDBS)、二甲苯磺酸鈉(sodium xylene sulfonate)、甲苯磺酸鈉(sodium toluene sulfonate)、異丙苯磺酸鈉(sodium cumene sulfonate)、烷基苯磺酸鈣(calcium alkyl benzene sulfonate)或 雙萘磺酸鈉(sodium bis-naphthalene sulfonate)。 The method according to claim 4, wherein the anionic surfactant is sodium dodecyl/lauryl sulfonate (SDS/SLS), sodium stearate (sodium octadecanoate), dextran Sulfuric acid (dextran sulfate sodium, DSS), C12-14 alkyl ethoxy sulfate ((C12-14)alkyl ethoxy sulfate), C10-16 alkylbenzenesulfonic acid ((C10-C16)alkylbenzenesulfonic acid), Sodium dodecylbenzenesulphonate (SDBS), sodium xylene sulfonate (sodium xylene sulfonate), sodium toluene sulfonate (sodium toluene sulfonate), sodium cumene sulfonate (sodium cumene sulfonate), alkyl Calcium alkyl benzene sulfonate or Sodium bis-naphthalene sulfonate. 如請求項4所述之方法,其中該陰離子界面活性劑為十二烷基磺酸鈉(SDS)。 The method according to claim 4, wherein the anionic surfactant is sodium dodecyl sulfonate (SDS). 如請求項4所述之方法,其中該NSP與該陰離子界面活性劑的重量比為10/90~90/10。 The method according to claim 4, wherein the weight ratio of the NSP to the anionic surfactant is 10/90 to 90/10. 如請求項4所述之方法,其中該NSP與該陰離子界面活性劑的重量比為10/90~70/30。 The method according to claim 4, wherein the weight ratio of the NSP to the anionic surfactant is 10/90~70/30. 如請求項1所述之方法,其中該奈米矽片水溶液尚包括一非離子界面活性劑。 The method according to claim 1, wherein the aqueous nanosilicon wafer solution further includes a non-ionic surfactant. 如請求項1所述之方法,其中該奈米矽片水溶液係直接與帶電荷的細菌或病毒接觸。 The method according to claim 1, wherein the aqueous solution of nano-silicon wafers is in direct contact with charged bacteria or viruses. 如請求項1所述之方法,其中該奈米矽片水溶液係以噴霧形式與帶電荷的細菌或病毒接觸。 The method according to claim 1, wherein the aqueous solution of nano-silicon wafers is contacted with charged bacteria or viruses in a spray form. 如請求項1所述之方法,其中該奈米矽片水溶液係先附著於一物體表面,再與帶電荷的細菌或病毒接觸。 The method according to claim 1, wherein the aqueous solution of nano-silicon wafers is first attached to the surface of an object, and then comes into contact with charged bacteria or viruses.
TW109115255A 2020-05-07 2020-05-07 Use of nanoscale silicate platelet (nsp) for interrupting virus infection pathway TW202142259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109115255A TW202142259A (en) 2020-05-07 2020-05-07 Use of nanoscale silicate platelet (nsp) for interrupting virus infection pathway

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109115255A TW202142259A (en) 2020-05-07 2020-05-07 Use of nanoscale silicate platelet (nsp) for interrupting virus infection pathway

Publications (1)

Publication Number Publication Date
TW202142259A true TW202142259A (en) 2021-11-16

Family

ID=80783273

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109115255A TW202142259A (en) 2020-05-07 2020-05-07 Use of nanoscale silicate platelet (nsp) for interrupting virus infection pathway

Country Status (1)

Country Link
TW (1) TW202142259A (en)

Similar Documents

Publication Publication Date Title
US8653147B2 (en) Inorganic/organic dispersant and application thereof
US8629200B2 (en) Organic/inorganic compositive dispersant including inorganic clay and organic surfactant
JP5452966B2 (en) Virus inactivating agent
US20120052300A1 (en) Process for producing a particulate nanocomposite material
Siddiquie et al. Surface alterations to impart antiviral properties to combat COVID-19 transmission
TW200932832A (en) High negative zeta potential polyhedral silsesquioxane composition and method for damage free semiconductor wet clean
CN107267007A (en) A kind of haze sealing wax and preparation method thereof
Čepin et al. Amino-and ionic liquid-functionalised nanocrystalline ZnO via silane anchoring–an antimicrobial synergy
TW202142259A (en) Use of nanoscale silicate platelet (nsp) for interrupting virus infection pathway
JP2007503520A5 (en)
Jabeen et al. Effect of single and binary mixed surfactant impregnation on the adsorption capabilities of chitosan hydrogel beads toward rhodamine B
CN1302997C (en) Nanometer titanium dioxide powder dispersion method
CN114436616B (en) Inorganic exterior wall mildew-proof stone-like paint
CN106746950B (en) A kind of sustainability purifies the diatom ooze material of formaldehyde in air for a long time
Beisebekov et al. Interactions of bentonite clay in composite gels of non-ionic polymers with cationic surfactants and heavy metal ions
CN100545095C (en) A kind of sewage-treating agent
TWI812612B (en) High specific surface area material and its preparation method
CN113387610B (en) Montmorillonite substrate layer material with function of improving fracture resistance of cement mortar and preparation method thereof
CN108404809A (en) A kind of application of star-like carboxylic acid group's zwitterionic surfactant as dispersant
RU2009135835A (en) PIGMENT COMPOSITION
JP2013519506A5 (en)
CN112680192A (en) Dust suppressant for road dust control
Rakhnyanskaya et al. Controlled adsorption-desorption of cationic polymers on the surface of anionic latex particles
Abhinayaa et al. Effect of Surfactant modified Halloysite nanotube on growth and biofilm formation of gram positive bacteria
CN106118596A (en) A kind of novel nano carbon crystalline substance lapping liquid and preparation method thereof