TW202139654A - 以分佈式sfc控制執行區域生命週期管理之方法及裝置 - Google Patents

以分佈式sfc控制執行區域生命週期管理之方法及裝置 Download PDF

Info

Publication number
TW202139654A
TW202139654A TW110107839A TW110107839A TW202139654A TW 202139654 A TW202139654 A TW 202139654A TW 110107839 A TW110107839 A TW 110107839A TW 110107839 A TW110107839 A TW 110107839A TW 202139654 A TW202139654 A TW 202139654A
Authority
TW
Taiwan
Prior art keywords
sfc
controller
sfc controller
service
wtru
Prior art date
Application number
TW110107839A
Other languages
English (en)
Inventor
卡洛斯耶穌 貝納多斯
阿蘭 穆拉德
Original Assignee
美商內數位專利控股公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商內數位專利控股公司 filed Critical 美商內數位專利控股公司
Publication of TW202139654A publication Critical patent/TW202139654A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/002Mutual synchronization
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/302Route determination based on requested QoS
    • H04L45/306Route determination based on the nature of the carried application
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/25Maintenance of established connections

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

揭露了用於執行具有分散式服務功能鏈結(SFC)控制的本地生命週期管理的方法及裝置。在一個範例中,一種用於無線通信的方法包括:在服務功能鏈中,確定一組SFC控制器中的第一SFC控制器是主SFC控制器;確定是否滿足至少一個觸發條件;以及基於滿足該至少一個觸發條件,從該組SFC控制器中選擇第二SFC控制器作為該主SFC控制器以替代該第一SFC控制器。

Description

以分佈式SFC控制執行區域生命週期管理之方法及裝置
相關申請案的交叉參考
本申請案主張在2020年3月6日向美國專利商標局提出的No. 62/986,599美國臨時申請的優先權及益處,其全部內容藉由引用結合於此,如同以下為了所有可應用的目的而被完整地闡述。
本發明主要涉及無線及/或有線通信網路。例如,本文揭露的一或更多實施例涉及用於執行具有分散式服務功能鏈結(SFC)控制的本地生命週期管理的方法及裝置。
在一個實施例中,一種無線通信中的分散式SFC控制的方法包括:在服務功能鏈中,確定一組SFC控制器中的第一SFC控制器是主SFC控制器;確定是否滿足至少一個觸發條件;以及基於滿足該至少一個觸發條件,從該組SFC控制器中選擇/重新選擇第二SFC控制器作為該主SFC控制器以替代該第一SFC控制器。在範例中,基於與以下任一者有關的資訊來選擇第二SFC控制器:服務特定配置或與該主SFC控制器相關聯的網路服務(NS)。在一個實施方案中,該第一SFC控制器以及該第二SFC控制器中的至少一者是分散式SFC偽控制器,及/或該第一SFC控制器以及該第二SFC控制器中的至少一者是集中式SFC控制器。
在以下詳細描述中,闡述了許多具體細節以提供對本文所揭露的實施例及/或範例的透徹理解。然而,將理解,可以在沒有本文闡述的一些或全部具體細節下實踐這樣的實施例及範例。在其它情況下,沒有詳細描述已知的方法、程序、元件及電路,以免混淆下面的描述。此外,本文中沒有具體描述的實施例以及範例可以代替本文中描述、揭露或以其他方式明確地、隱含地及/或固有地(統稱為“提供”)提供的實施例以及其他範例或與其組合地實施。儘管本文描述及/或要求保護各種實施例,其中設備、系統、裝置等及/或其任何元件執行操作、程序、演算法、功能等及/或其任何部分,但是應當理解,本文描述及/或要求保護的任何實施例假定任何設備、系統、裝置等及/或其任何元件被配置為執行任何操作、程序、演算法、功能等及/或其任何部分。通信網路及裝置
本文提供的方法、裝置及系統非常適合於涉及有線及無線網路兩者的通信。有線網路是已知的。參考圖1A至圖1D提供了各種類型的無線裝置及基礎設施的概述,其中該網路的各種元件可以利用、執行這裡提供的方法、裝置及系統、根據這裡提供的方法、裝置及系統來佈置、及/或被適配及/或配置用於這裡提供的方法、裝置及系統。
圖1A是示出了可以實施所揭露的一或更多實施例的範例性通信系統100的示意圖。該通信系統100可以是為複數無線使用者提供例如語音、資料、視訊、訊息傳遞、廣播等內容的多重存取系統。該通信系統100可以經由共用包括無線頻寬的系統資源而使複數無線使用者能夠存取此類內容。舉例來說,通信系統100可以使用一種或多種通道存取方法,例如分碼多重存取(CDMA)、分時多重存取(TDMA)、分頻多重存取(FDMA)、正交FDMA(OFDMA)、單載波FDMA(SC-FDMA)、零尾唯一字DFT-擴展OFDM(ZT UW DTS-s OFDM)、唯一字OFDM(UW-OFDM)、資源塊過濾OFDM以及濾波器組多載波(FBMC)等等。
如圖1A所示,通信系統100可以包括無線傳輸/接收單元(WTRU)102a、102b、102c、102d、RAN 104/113、CN 106/115、公共交換電話網路(PSTN)108、網際網路110以及其他網路112,然而應該瞭解,所揭露的實施例設想了任一數量的WTRU、基地台、網路及/或網路元件。WTRU 102a、102b、102c、102d每一者可以是被配置為在無線環境中操作及/或通信的任何類型的裝置。舉例來說,WTRU 102a、102b、102c、102d任一者都可以被稱為“站”及/或“STA”,其可以被配置為傳輸及/或接收無線信號、並且可以包括使用者設備(UE)、行動站、固定或行動用戶單元、基於訂用的單元、呼叫器、行動電話、個人數位助理(PDA)、智慧型電話、膝上型電腦、小筆電、個人電腦、無線感測器、熱點或Mi-Fi裝置、物聯網(IoT)裝置、手錶或其他可穿戴裝置、頭戴顯示器(HMD)、運載工具、無人機、醫療設備及應用(例如,遠端手術)、工業設備及應用(例如,機器人及/或在工業及/或自動處理鏈環境中操作的其他無線裝置)、消費類電子裝置、以及在商業及/或工業無線網路上操作的裝置等等。WTRU 102a、102b、102c、102d中的任一者可被可交換地稱為UE。
該通信系統100還可以包括基地台114a及/或基地台114b。基地台114a、114b的每一者可以是被配置為與WTRU 102a、102b、102c、102d中的至少一者無線地介接來促使其存取一或更多通信網路(例如,CN 106/115、網際網路110、及/或其他網路112)的任何類型的裝置。例如,基地台114a、114b可以是基地收發站(BTS)、節點B、e節點B、本地節點B、本地e節點B、gNB、新無線電(NR)節點B、站點控制器、存取點(AP)、以及無線路由器等等。雖然基地台114a、114b的每一者都被描述為單一元件,然而應該瞭解,基地台114a、114b可以包括任何數量的互連基地台及/或網路元件。
基地台114a可以是RAN 104/113的一部分,該RAN 104/113還可以包括其他基地台及/或網路元件(未顯示),例如基地台控制器(BSC)、無線電網路控制器(RNC)、中繼節點等等。基地台114a及/或基地台114b可被配置為在稱為胞元(未顯示)的一或更多載波頻率上傳輸及/或接收無線信號。這些頻率可以處於授權頻譜、未授權頻譜或是授權與未授權頻譜的組合中。胞元可以為相對固定或者有可能隨時間變化的特定地理區域提供無線服務覆蓋。胞元可被進一步分成胞元扇區。例如,與基地台114a相關聯的胞元可被分為三個扇區。因此,在一個實施例中,基地台114a可以包括三個收發器,例如,一個收發器都用於胞元的每一個扇區。在實施例中,基地台114a可以使用多輸入多輸出(MIMO)技術、並且可以為胞元的每一個扇區使用複數收發器。例如,波束成形可以用於在預期的空間方向上傳輸及/或接收信號。
基地台114a、114b可以經由空中介面116以與WTRU 102a、102b、102c、102d中的一者或多者進行通信,其中該空中介面116可以是任何適當的無線通信鏈路(例如,射頻(RF)、微波、釐米波、毫米波、紅外線(IR)、紫外線(UV)、可見光等等)。空中介面116可以使用任何適當的無線電存取技術(RAT)來建立。
更具體地,如上所述,通信系統100可以是多重存取系統、並且可以使用一種或多種通道存取方案,例如CDMA、TDMA、FDMA、OFDMA以及SC-FDMA等等。例如,RAN 104/113中的基地台114a與WTRU 102a、102b、102c可以實施例如通用行動電信系統(UMTS)陸地無線電存取(UTRA)之類的無線電技術,其中該技術可以使用寬頻CDMA(WCDMA)來建立空中介面115/116/117。WCDMA可以包括如高速封包存取(HSPA)及/或演進型HSPA(HSPA+)之類的通信協定。HSPA可以包括高速下鏈(DL)封包存取(HSDPA)及/或高速UL封包存取(HSUPA)。
在實施例中,基地台114a以及WTRU 102a、102b、102c可以實施例如演進型UMTS陸地無線電存取(E-UTRA)之類的無線電技術,其中該技術可以使用長期演進(LTE)及/或先進LTE(LTE-A)及/或先進LTE Pro(LTE-A Pro)來建立空中介面116。
在實施例中,基地台114a以及WTRU 102a、102b、102c可以實施可以使用新無線電(NR)建立空中介面116的無線電技術,例如NR無線電存取。
在實施例中,基地台114a以及WTRU 102a、102b、102c可以實施多種無線電存取技術。例如,基地台114a以及WTRU 102a、102b、102c可以一起實施LTE無線電存取以及NR無線電存取(例如,使用雙連接(DC)原理)。因此,WTRU 102a、102b、102c使用的空中介面可以藉由多種類型的無線電存取技術、及/或向/從多種類型的基地台(例如,eNB及gNB)發送的傳輸來表徵。
在其他實施例中,基地台114a以及WTRU 102a、102b、102c可以實施例如IEEE 802.11(例如,無線高保真(WiFi))、IEEE 802.16(例如,全球互通微波存取(WiMAX))、CDMA2000、CDMA2000 1X、CDMA2000 EV-DO、暫行標準2000(IS-2000)、暫行標準95(IS-95)、暫行標準856(IS-856)、全球行動通信系統(GSM)、增強資料率GSM演進(EDGE)、以及GSM EDGE(GERAN)等等的無線電技術。
圖1A中的基地台114b可以例如是無線路由器、本地節點B、本地e節點B或存取點、並且可以使用任何適當的RAT來促成例如營業場所、住宅、運載工具、校園、工業設施、空中走廊(例如,供無人機使用)以及道路等等的局部區域中的無線連接。在一個實施例中,基地台114b與WTRU 102c、102d可以實施例如IEEE 802.11之類的無線電技術來建立無線區域網路(WLAN)。在實施例中,基地台114b與WTRU 102c、102d可以實施例如IEEE 802.15之類的無線電技術來建立無線個人區域網路(WPAN)。在再一個實施例中,基地台114b以及WTRU 102c、102d可使用基於蜂巢的RAT(例如,WCDMA、CDMA2000、GSM、LTE、LTE-A、LTE-A Pro、NR等等)來建立微微胞元或毫微微胞元。如圖1A所示,基地台114b可以直接連接到網際網路110。因此,基地台114b不需要經由CN 106/115來存取網際網路110。
RAN 104/113可以與CN 106/115進行通信,該CN 106/115可以是被配置為向WTRU 102a、102b、102c、102d的一者或多者提供語音、資料、應用及/或網際網路協定語音(VoIP)服務的任何類型的網路。該資料可以具有不同的服務品質(QoS)需求,例如不同的流通量需求、潛時需求、容錯需求、可靠性需求、資料流通量需求、以及移動性需求等等。CN 106/115可以提供呼叫控制、記帳服務、基於移動位置的服務、預付費呼叫、網際網路連接、視訊分發等等、及/或可以執行使用者認證之類的高階安全功能。雖然在圖1A中沒有顯示,然而應該瞭解,RAN 104/113及/或CN 106/115可以直接或間接地與其他那些與RAN 104/113使用相同RAT或不同RAT的RAN進行通信。例如,除了與使用NR無線電技術的RAN 104/113連接之外,CN 106/115還可以與使用GSM、UMTS、CDMA 2000、WiMAX、E-UTRA或WiFi無線電技術的另一RAN(未顯示)通信。
CN 106/115還可以充當供WTRU 102a、102b、102c、102d存取PSTN 108、網際網路110及/或其他網路112的閘道。PSTN 108可以包括提供簡易老式電話服務(POTS)的電路交換電話網路。網際網路110可以包括使用了公共通信協定(例如,傳輸控制協定/網際網路協定(TCP/IP)網際網路協定族中的TCP、使用者資料報協定(UDP)及/或IP)的全球性互連電腦網路裝置系統。該網路112可以包括由其他服務提供方擁有及/或操作的有線或無線通信網路。例如,該其他網路112可以包括與一或更多RAN連接的另一個CN,其中該一或更多RAN可以使用與RAN 104/113相同的RAT、或不同的RAT。
通信系統100中的一些或所有WTRU 102a、102b、102c、102d可以包括多模能力(例如,WTRU 102a、102b、102c、102d可以包括在不同無線鏈路上與不同無線網路通信的複數收發器)。例如,圖1A所示的WTRU 102c可被配置為與可以使用基於蜂巢的無線電技術的基地台114a通信、以及與可以使用IEEE 802無線電技術的基地台114b通信。
圖1B是示出了範例性WTRU 102的系統圖。如圖1B所示,WTRU 102可以包括處理器118、收發器120、傳輸/接收元件122、揚聲器/麥克風124、小鍵盤126、顯示器/觸控板128、非可移記憶體130、可移記憶體132、電源134、全球定位系統(GPS)晶片組136及/或週邊設備138。應該瞭解的是,在保持符合實施例的同時,WTRU 102還可以包括前述元件的任何子組合。
處理器118可以是通用處理器、專用處理器、常規處理器、數位訊號處理器(DSP)、複數微處理器、與DSP核心關聯的一或更多微處理器、控制器、微控制器、專用積體電路(ASIC)、現場可程式閘陣列(FPGA)電路、任何其他類型的積體電路(IC)以及狀態機等等。處理器118可以執行信號編碼、資料處理、功率控制、輸入/輸出處理、及/或能使WTRU 102在無線環境中操作的任何其他功能。處理器118可以耦合至收發器120,收發器120可以耦合至傳輸/接收元件122。雖然圖1B將處理器118及收發器120描述為單獨元件,然而應該瞭解,處理器118及收發器120也可以一起整合在電子元件或晶片中。
傳輸/接收元件122可被配置為經由空中介面116以傳輸信號基地台(例如,基地台114a)或接收基地台(例如,基地台114a)的信號。例如,在一個實施例中,傳輸/接收元件122可以是被配置為傳輸及/或接收RF信號的天線。例如,在另一實施例中,傳輸/接收元件122可以是被配置為傳輸及/或接收IR、UV或可見光信號的放射器/偵測器。在再一個實施例中,傳輸/接收元件122可被配置為傳輸及/或接收RF及光信號。應該瞭解的是,傳輸/接收元件122可以被配置為傳輸及/或接收無線信號的任何組合。
雖然在圖1B中將傳輸/接收元件122描述為單一元件,但是WTRU 102可以包括任何數量的傳輸/接收元件122。更具體地,WTRU 102可以使用MIMO技術。因此,在一個實施例中,WTRU 102可以包括經由空中介面116以傳輸及接收無線信號的兩個或更多個傳輸/接收元件122(例如,複數天線)。
收發器120可被配置為對傳輸/接收元件122要傳送的信號進行調變、以及對傳輸/接收元件122接收的信號進行解調。如上所述,WTRU 102可以具有多模能力。因此,收發器120可以包括使WTRU 102能經由多種RAT(例如,NR及IEEE 802.11)來進行通信的複數收發器。
WTRU 102的處理器118可以耦合到揚聲器/麥克風124、小鍵盤126及/或顯示器/觸控板128(例如,液晶顯示器(LCD)顯示單元或有機發光二極體(OLED)顯示單元)、並且可以接收來自這些元件的使用者輸入資料。處理器118還可以向揚聲器/麥克風124、小鍵盤126及/或顯示器/觸控板128輸出使用者資料。此外,處理器118可以從例如非可移記憶體130及/或可移記憶體132之類的任何適當的記憶體中存取資訊、以及將資料儲存至這些記憶體。非可移記憶體130可以包括隨機存取記憶體(RAM)、唯讀記憶體(ROM)、硬碟或是任何其他類型的記憶儲存裝置。可移記憶體132可以包括用戶身份模組(SIM)卡、記憶條、安全數位(SD)記憶卡等等。在其他實施例中,處理器118可以從那些並非實際位於WTRU 102的記憶體存取資訊、以及將資料儲存至這些記憶體,例如,此類記憶體可以位於伺服器或家用電腦(未顯示)。
處理器118可以接收來自電源134的電力、並且可被配置分發及/或控制用於WTRU 102中的其他元件的電力。電源134可以是為WTRU 102供電的任何適當裝置。例如,電源134可以包括一或更多乾電池組(如鎳鎘(NiCd)、鎳鋅(NiZn)、鎳氫(NiMH)、鋰離子(Li-ion)等等)、太陽能電池以及燃料電池等等。
處理器118還可以耦合到GPS晶片組136,該GPS晶片組136可被配置為提供與WTRU 102的目前位置相關的位置資訊(例如,經度及緯度)。作為來自GPS晶片組136的資訊的補充或替代,WTRU 102可以經由空中介面116接收來自基地台(例如,基地台114a、114b)的位置資訊、及/或根據從兩個或更多個附近基地台接收的信號時序來確定其位置。應該瞭解的是,在保持符合實施例的同時,WTRU 102可以用任何適當的定位方法來獲取位置資訊。
處理器118還可以耦合到其他週邊設備138,其中該週邊設備138可以包括提供附加特徵、功能及/或有線或無線連接的一或更多軟體及/或硬體模組。例如,該週邊設備138可以包括加速度計、電子指南針、衛星收發器、數位相機(用於照片及/或視訊)、通用序列匯流排(USB)埠、振動裝置、電視收發器、免持耳機、藍牙®模組、調頻(FM)無線電單元、數位音樂播放器、媒體播放器、視訊遊戲機模組、網際網路瀏覽器、虛擬實境及/或增強現實(VR/AR)裝置、以及活動追蹤器等等。該週邊設備138可以包括一或更多感測器,該感測器可以是以下的一者或多者:陀螺儀、加速度計、霍爾效應感測器、磁強計、方位感測器、鄰近感測器、溫度感測器、時間感測器、地理位置感測器、高度計、光感測器、觸控感測器、磁力計、氣壓計、手勢感測器、生物測定感測器及/或濕度感測器。
WTRU 102可以包括全雙工無線電裝置,對於該無線電裝置,一些或所有信號(例如,與用於UL(例如,對傳輸而言)及下鏈(例如,對接收而言)的特定子訊框相關聯)的接收或傳輸可以是並行及/或同時的。全雙工無線電裝置可以包括經由硬體(例如,扼流圈)或是經由處理器(例如,單獨的處理器(未顯示)或是經由處理器118)的信號處理來減小及/或基本消除自干擾的干擾管理單元139。在實施例中,WTRU 102可以包括傳送及接收一些或所有信號(例如,與用於UL(例如,對傳輸而言)或下鏈(例如,對接收而言)的特定子訊框相關聯)的半雙工無線電裝置。
圖1C是示出了根據實施例的RAN 104以及CN 106的系統圖。如上所述,RAN 104可以經由空中介面116以使用E-UTRA無線電技術來與WTRU 102a、102b、102c進行通信。該RAN 104還可以與CN 106進行通信。
RAN 104可以包括e節點B 160a、160b、160c,然而應該瞭解,在保持符合實施例的同時,RAN 104可以包括任何數量的e節點B。e節點B 160a、160b、160c每一者都可以包括經由空中介面116以與WTRU 102a、102b、102c通信的一或更多收發器。在一個實施例中,e節點B 160a、160b、160c可以實施MIMO技術。因此,舉例來說,e節點B 160a可以使用複數天線以向WTRU 102a傳輸無線信號、及/或接收來自WTRU 102a的無線信號。
e節點B 160a、160b、160c每一者都可以關聯於一個特定胞元(未顯示)、並且可被配置為處理無線電資源管理決策、切換決策、UL及/或DL中的使用者排程等等。如圖1C所示,e節點B 160a、160b、160c彼此可以經由X2介面進行通信。
圖1C所示的CN 106可以包括移動性管理實體(MME)162、服務閘道(SGW)164以及封包資料網路(PDN)閘道(或PGW)166。雖然每一前述元件都被描述為是CN 106的一部分,然而應該瞭解,這些元件中的任一元件都可以由CN操作者之外的實體擁有及/或操作。
MME 162可以經由S1介面而連接到RAN 104中的e節點B 160a、160b、160c的每一者、並且可以充當控制節點。例如,MME 162可以負責認證WTRU 102a、102b、102c的使用者、執行承載啟動/停用、以及在WTRU 102a、102b、102c的初始連結期間選擇特定的服務閘道等等。MME 162可以提供用於在RAN 104與使用其他無線電技術(例如,GSM及/或WCDMA)的其他RAN(未顯示)之間進行切換的控制平面功能。
SGW 164可以經由S1介面而連接到RAN 104中的e節點B 160a、160b、160c的每一者。SGW 164通常可以路由及轉發使用者資料封包至WTRU 102a、102b、102c/來自WTRU 102a、102b、102c的使用者資料封包。SGW 164還可以執行其他功能,例如在eNB間的切換期間錨定使用者平面、在DL資料可供WTRU 102a、102b、102c使用時觸發傳呼、以及管理並儲存WTRU 102a、102b、102c的上下文等等。
SGW 164可以連接到PGW 166,該PGW 166可以為WTRU 102a、102b、102c提供封包交換網路(例如,網際網路110)存取,以促成WTRU 102a、102b、102c與IP賦能的裝置之間的通信。
CN 106可以促成與其他網路的通信。例如,CN 106可以為WTRU 102a、102b、102c提供對電路切換式網路(例如,PSTN 108)的存取,以促成WTRU 102a、102b、102c與傳統的陸線通信裝置之間的通信。例如,CN 106可以包括IP閘道(例如,IP多媒體子系統(IMS)伺服器)或與之進行通信,並且該IP閘道可以充當CN 106與PSTN 108之間的介面。此外,CN 106可以為WTRU 102a、102b、102c提供針對該其他網路112的存取,該其他網路112可以包括其他服務提供方擁有及/或操作的其他有線及/或無線網路。
雖然在圖1A至圖1D中將WTRU描述為無線終端,然而應該想到的是,在某些代表性實施例中,此類終端可以使用(例如,暫時或永久性)與通信網路的有線通信介面。
在代表性實施例中,該其他網路112可以是WLAN。
採用基礎架構基本服務集合(BSS)模式的WLAN可以具有用於該BSS的存取點(AP)、以及與該AP相關聯的一或更多站(STA)。該AP可以存取或是介接到分散式系統(DS)、或是將訊務攜入及/或攜出BSS的另一類型的有線/無線網路。源自BSS外部且至STA的訊務可以經由AP到達並被遞送至STA。源自STA且至BSS外部的目的地的訊務可被發送至AP,以遞送到各自的目的地。在BSS內的STA之間的訊務可以經由AP來發送,例如其中源STA可以向AP發送訊務並且AP可以將訊務遞送至目的地STA。在BSS內的STA之間的訊務可被認為及/或稱為點到點訊務。該點到點訊務可以在源與目的地STA之間(例如,在其間直接)用直接鏈路建立(DLS)來發送。在某些代表性實施例中,DLS可以使用802.11e DLS或802.11z通道化DLS(TDLS)。使用獨立BSS(IBSS)模式的WLAN不具有AP,並且在該IBSS內或是使用該IBSS的STA(例如,所有STA)彼此可以直接通信。在這裡,IBSS通信模式有時可被稱為“特定(ad-hoc)”通信模式。
在使用802.11ac基礎設施操作模式或類似的操作模式時,AP可以在固定通道(例如,主通道)上傳送信標。該主通道可以具有固定寬度(例如,20 MHz的頻寬)或是經由傳訊動態設定的寬度。主通道可以是BSS的操作通道,並且可被STA用來與AP建立連接。在某些代表性實施例中,可以實施具有衝突避免的載波感測多重存取(CSMA/CA)(例如,在802.11系統中)。對於CSMA/CA,包括AP的STA(例如,每一個STA)可以感測主通道。如果特定STA感測到/偵測到及/或確定主通道繁忙,那麼該特定STA可以退避。在指定的BSS中,一個STA(例如,只有一個站)可以在任何指定時間進行傳輸。
高流通量(HT)STA可以使用40 MHz寬的通道來進行通信(例如,借助於將20 MHz寬的主通道與20 MHz寬的相鄰或不相鄰通道相結合來形成40 MHz寬的通道)。
超高流通量(VHT)STA可以支援20 MHz、40 MHz、80 MHz及/或160 MHz寬的通道。40 MHz及/或80 MHz通道可以藉由組合連續的20 MHz通道來形成。160 MHz通道可以藉由組合8個連續的20 MHz通道或者藉由組合兩個不連續的80 MHz通道(這種組合可被稱為80+80配置)來形成。對於80+80配置,在通道編碼之後,資料可被傳遞並經過分段解析器,該分段解析器可以將資料分成兩個流。在每一個流上可以單獨執行反向快速傅立葉變換(IFFT)處理以及時域處理。該流可被映射在兩個80 MHz通道上,並且資料可以由一傳輸STA來傳送。在一接收STA的接收器上,用於80+80配置的上述操作可以是相反的,並且組合資料可被發送至媒體存取控制(MAC)。
802.11af及802.11ah支援1GHz以下的操作模式。與802.11n及802.11ac的通道操作頻寬及載波相較,在802.11af及802.11ah中使用通道操作頻寬及載波減小。802.11af在TV白空間(TVWS)頻譜中支援5 MHz、10 MHz及20 MHz頻寬,並且802.11ah支援使用非TVWS頻譜的1 MHz、2 MHz、4 MHz、8 MHz及16 MHz頻寬。依照代表性實施例,802.11ah可以支援儀錶類型控制/機器類型通信,例如巨集覆蓋區域中的MTC裝置。MTC裝置可以具有某種能力,例如包含了支援(例如,只支援)某些及/或有限頻寬的受限能力。MTC裝置可以包括電池,並且該電池的電池壽命高於臨界值(例如,用於保持很長的電池壽命)。
可以支援複數通道及通道頻寬的WLAN系統(例如,802.11n、802.11ac、802.11af以及802.11ah)包括了可被指定成主通道的通道。該主通道的頻寬可以等於BSS中的所有STA所支援的最大公共操作頻寬。主通道的頻寬可以由在支援最小頻寬操作模式的BSS中操作的所有STA中的STA設定及/或限制。在802.11ah的範例中,即使BSS中的AP及其他STA支援2 MHz、4 MHz、8 MHz、16 MHz及/或其他通道頻寬操作模式,但對支援(例如,只支援)1 MHz模式的STA(例如,MTC類型的裝置)來說,主通道可以是1 MHz寬。載波感測及/或網路分配向量(NAV)設定可以取決於主通道的狀態。如果主通道繁忙(例如,因為STA(其只支援1 MHz操作模式)對AP進行傳輸),那麼即使大多數的可用頻帶保持空閒並且可供使用,也可以認為整個可用頻帶繁忙。
在美國,可供802.11ah使用的可用頻帶是902 MHz到928 MHz。在韓國,可用頻帶是917.5 MHz到923.5 MHz。在日本,可用頻帶是916.5 MHz到927.5 MHz。依照國家碼,可用於802.11ah的總頻寬是6 MHz到26 MHz。
圖1D是示出了根據實施例的RAN 113以及CN 115的系統圖。如上所述,RAN 113可以經由空中介面116以使用NR無線電技術而與WTRU 102a、102b、102c進行通信。RAN 113還可以與CN 115進行通信。
RAN 113可以包括gNB 180a、180b、180c,但是應該瞭解,在保持符合實施例的同時,RAN 113可以包括任何數量的gNB。gNB 180a、180b、180c每一者都可以包括一或更多收發器,以經由空中介面116而與WTRU 102a、102b、102c通信。在一個實施例中,gNB 180a、180b、180c可以實施MIMO技術。例如,gNB 180a、180b可以使用波束成形以向及/或從gNB 180a、180b、180c傳輸及/或接收信號。因此,舉例來說,gNB 180a可以使用複數天線來向WTRU 102a傳輸無線信號、以及接收來自WTRU 102a的無線信號。在實施例中,gNB 180a、180b、180c可以實施載波聚合技術。例如,gNB 180a可以向WTRU 102a(未顯示)傳送複數分量載波。這些分量載波的子集可以處於未授權頻譜上,而剩餘分量載波則可以處於授權頻譜上。在實施例中,gNB 180a、180b、180c可以實施協作多點(CoMP)技術。例如,WTRU 102a可以接收來自gNB 180a及gNB 180b(及/或gNB 180c)的協作傳輸。
WTRU 102a、102b、102c可以使用與可縮放參數集(numerology)相關聯的傳輸以與gNB 180a、180b、180c進行通信。例如,對於不同的傳輸、不同的胞元及/或不同的無線傳輸頻譜部分,OFDM符號間距及/或OFDM子載波間距可以是不同的。WTRU 102a、102b、102c可以使用具有不同或可縮放長度的傳輸時間間隔(TTI)(例如,包含了不同數量的OFDM符號及/或持續不同的絕對時間長度)或子訊框以與gNB 180a、180b、180c進行通信。
gNB 180a、180b、180c可被配置為與採用獨立配置及/或非獨立配置的WTRU 102a、102b、102c進行通信。在獨立配置中,WTRU 102a、102b、102c可以在不存取其他RAN(例如,e節點B 160a、160b、160c)下與gNB 180a、180b、180c進行通信。在獨立配置中,WTRU 102a、102b、102c可以使用gNB 180a、180b、180c中的一者或多者作為移動性錨點。在獨立配置中,WTRU 102a、102b、102c可以使用未授權頻帶中的信號以與gNB 180a、180b、180c進行通信。在非獨立配置中,WTRU 102a、102b、102c會在與另一RAN(例如,e節點B 160a、160b、160c)進行通信/連接的同時與gNB 180a、180b、180c進行通信/連接。舉例來說,WTRU 102a、102b、102c可以實施DC原理而與一或更多gNB 180a、180b、180c以及一或更多e節點B 160a、160b、160c基本上同時地進行通信。在非獨立配置中,e節點B 160a、160b、160c可以充當WTRU 102a、102b、102c的移動性錨點、並且gNB 180a、180b、180c可以提供附加的覆蓋及/或流通量,以服務WTRU 102a、102b、102c。
gNB 180a、180b、180c每一者都可以關聯於特定胞元(未顯示)、並且可以被配置為處理無線電資源管理決策、切換決策、UL及/或DL中的使用者排程、支援網路截割、雙連接、實施NR與E-UTRA之間的互通、路由使用者平面資料至使用者平面功能(UPF)184a、184b、以及路由控制平面資訊至存取及移動性管理功能(AMF)182a、182b等等。如圖1D所示,gNB 180a、180b、180c彼此可以經由Xn介面通信。
圖1D所示的CN 115可以包括至少一個AMF 182a、182b、至少一個UPF 184a、184b、至少一個對話管理功能(SMF)183a、183b、並且有可能包括資料網路(DN)185a、185b。雖然每一前述元件都被描述為CN 115的一部分,但是應該瞭解,這些元件中的任一元件都可以被CN操作者之外的實體擁有及/或操作。
AMF 182a、182b可以經由N2介面而連接到RAN 113中的gNB 180a、180b、180c的一者或多者、並且可以充當控制節點。例如,AMF 182a、182b可以負責認證WTRU 102a、102b、102c的使用者、支援網路截割(例如,處理具有不同需求的不同PDU對話)、選擇特定的SMF 183a、183b、管理註冊區域、終止NAS傳訊、以及移動性管理等等。AMF 182a、182b可以使用網路截割,以基於WTRU 102a、102b、102c使用的服務類型來定制為WTRU 102a、102b、102c提供的CN支援。例如,針對不同的使用情況,可以建立不同的網路切片,例如依賴於超可靠低潛時 (URLLC)存取的服務、依賴於增強型大規模行動寬頻(eMBB)存取的服務、及/或用於機器類通信(MTC)存取的服務等等。AMF 182可以提供用於在RAN 113與使用其他無線電技術(例如,LTE、LTE-A、LTE-A Pro及/或例如WiFi之類的非3GPP存取技術)的其他RAN(未顯示)之間切換的控制平面功能。
SMF 183a、183b可以經由N11介面而連接到CN 115中的AMF 182a、182b。SMF 183a、183b還可以經由N4介面而連接到CN 115中的UPF 184a、184b。SMF 183a、183b可以選擇及控制UPF 184a、184b、並且可以經由UPF 184a、184b來配置訊務路由。SMF 183a、183b可以執行其他功能,例如管理及分配UE IP位址、管理PDU對話,控制策略實施及QoS、以及提供下鏈資料通知等等。PDU對話類型可以是基於IP的、不基於IP的、以及基於乙太網路的等等。
UPF 184a、184b可以經由N3介面而連接RAN 113中的gNB 180a、180b、180c的一者或多者,這樣可以為WTRU 102a、102b、102c提供對封包交換網路(例如,網際網路110)的存取,以促成WTRU 102a、102b、102c與IP賦能的裝置之間的通信,UPF 184、184b可以執行其他功能,例如路由及轉發封包、實施使用者平面策略、支援多宿主PDU對話、處理使用者平面QoS、快取下鏈封包、以及提供移動性錨定等等。
CN 115可以促成與其他網路的通信。例如,CN 115可以包括充當CN 115與PSTN 108之間的介面的IP閘道(例如,IP多媒體子系統(IMS)伺服器)、或者可以與該IP閘道進行通信。此外,CN 115可以為WTRU 102a、102b、102c提供針對其他網路112的存取,該其他網路112可以包括其他服務提供方擁有及/或操作的其他有線及/或無線網路。在一個實施例中,WTRU 102a、102b、102c可以經由與UPF 184a、184b介接的N3介面以及介於UPF 184a、184b與本地資料網路(DN) 185a、185b之間的N6介面並經由UPF 184a、184b而連接到DN 185a、185b。
鑒於圖1A至圖1D以及圖1A至圖1D的對應描述,在這裡對照以下的一項或多項描述的一或更多或所有功能可以由一或更多仿真裝置(未顯示)來執行:WTRU 102a-d、基地台114a-b、e節點B 160a-c、MME 162、SGW 164、PGW 166、gNB 180a-c、AMF 182a-b、UPF 184a-b、SMF 183a-b、DN 185a-b及/或這裡描述的一或更多其他任何裝置。這些仿真裝置可以是被配置為仿真這裡描述的一或更多或所有功能的一或更多裝置。舉例來說,這些仿真裝置可用於測試其他裝置及/或模擬網路及/或WTRU功能。
該仿真裝置可被設計成在實驗室環境及/或操作者網路環境中實施其他裝置的一項或多項測試。例如,該一或更多仿真裝置可以在被完全或部分作為有線及/或無線通信網路一部分實施及/或部署的同時執行一或更多或所有功能,以測試通信網路內的其他裝置。該一或更多仿真裝置可以在被暫時作為有線及/或無線通信網路的一部分實施或部署的同時執行一或更多或所有功能。該仿真裝置可以直接耦合到另一裝置以執行測試、及/或可以使用空中無線通信來執行測試。
該一或更多仿真裝置可以在未被作為有線及/或無線通信網路一部分實施或部署的同時執行包括所有功能的一或更多功能。例如,該仿真裝置可以在測試實驗室及/或未被部署(例如,測試)的有線及/或無線通信網路的測試場景中使用,以實施一或更多元件的測試。該一或更多仿真裝置可以是測試裝置。該仿真裝置可以使用直接的RF耦合及/或經由RF電路(例如,該電路可以包括一或更多天線)的無線通信來傳輸及/或接收資料。服務功能鏈
服務功能(SF)在許多網路中被廣泛部署並且是必要的。SF可以提供一系列的特徵,例如安全性、廣域網路(WAN)加速及/或伺服器負載平衡。SF可以在網路基礎設施中的一或更多不同點(例如,資料中心、WAN、核心網路(CN)、RAN)處以及在行動節點或裝置 (例如,WTRU或UE) 上被實例化。
SF(也稱為虛擬化網路功能(VNF))或功能被裝載(hosted)在計算、儲存及連網資源上。即使在傳統的封閉環境中,例如現在包括雲本地技術的蜂巢網路中,SF也變得更加普遍。因此,在一些基於5G的系統中,SF可以被稱為網路功能服務(或NF服務),並且這些NF服務可以使用例如超文件傳輸協定(HTTP)之類的主流網際網路協定而被存取。本文揭露的功能的代管(hosting)環境被稱為服務功能提供者或網路功能虛擬化(NFV)基礎設施存在點(NFVI-PoP) (例如,使用ETSI NFV術語)。服務通常被形成為SF (或VNF)的合成,其中每個SF提供整個服務的特定功能。例如,根據ETSI術語,服務也被稱為網路服務(NS)。
隨著虛擬化的到來,服務(例如,NS)的部署模型正在演變為無論網路功能被部署在何處,都經由SF引導訊務。在一些範例中,功能(例如,SF)不需要被部署在訊務路徑中。對於給定服務(例如,NS),所需SF的抽象視圖(以及所需SF應用或將被應用的順序及/或序列)被稱為服務功能鏈(SF鏈) (參見例如參考文獻[1]),其在ETSI中也被稱為網路功能轉發圖(NF-FG)。在SF鏈中,可以經由一組給定的有序SF來發送封包、訊框及/或流。例如,經由選擇一或更多特定網路節點上的特定SF實例以實例化SF鏈,以形成服務圖,其被稱為SF路徑(SFP)。SF可以應用在網路通信協定堆疊內的任何層(例如,網路層、傳輸層及/或應用層)。
在各種實施例中,SFC控制器功能性可由ETSI NFV編排器(NFVO)或由單獨的邏輯實體來邏輯地實現。在各種實施例中定義或揭露的機制(包括傳訊擴展)可以用於或應用於IETF SFC、ETSI NFV及/或由通信網路的標準定義的任何其它適用程序。 (fog) 計算
由於需要處理從終端使用者裝置(例如,WTRU、UE或無人機)產生的資料,霧計算的概念已經由物聯網(IoT)驅動而出現。術語霧是指在事物與雲之間的連續體中的任何連網的計算資源。因此,霧節點可以是基礎設施網路節點(例如e節點B、g節點B/gNB、端點伺服器、客戶駐地設備(CPE))、或者甚至是終端節點(例如WTRU、膝上型電腦、智慧型電話、或車輛、機器人或無人機上的計算單元)。在霧計算中,組成SFC的功能(例如,SF)被代管在固有地異質的、揮發性的及/或移動的資源上,這意味著資源可能出現及消失,並且這些資源之間的連接特性也可能動態地改變。
在一個方面,雖然ETSI多-存取端點計算(MEC)方法經由部署在網路端點處的靜態基體(例如,資料中心或伺服器)而在終端使用者附近提供計算能力,但是霧將此方法擴展為包含並整合進一步分散在靜態端點下方的計算基體,例如在行動終端裝置(例如,WTRU、UE)、CPE或區域伺服器(local server)中。IP 移動性及 SFC 控制
在一些目前的實施中,例如行動IPv6 (參見例如,參考文獻[3])及代理行動IPv6 (參見例如,參考文獻[4])之類的網際網路協定(IP)移動性機制被用於支援IP基礎結構內的主機的移動性。一種IP移動性機制基於具有兩個位址的主機:永久位址(稱為本地位址(HoA))及在行動節點(MN)漫遊的每個受訪網路處獲取的臨時位址(稱為轉交位址(CoA))。每當MN移動到新網路時,MN向位於HoA在拓撲上有效的網路上的路由器發送傳訊訊息(稱為綁定更新或BU)。此路由器被稱為本地代理(HA),其負責將訊務重定向到MN的目前位置(例如,當MN漫遊離開該MN的本地網路時)。該HA向該MN發送回另一個傳訊訊息(稱為綁定確認或BA),其表明該程序是否成功。如果是,則該HA開始將訊務(例如,被定址到MN的HoA並由HA接收的訊務)重定向到HA的目前CoA。該MN遵循針對上鏈訊務的相同方法,例如經由隧道(例如,與HA連接的隧道)向HA發送該上鏈訊務。網路服務標頭 (NSH)
網路服務標頭(NSH)被用在封包或訊框上以實現服務功能路徑(SFP)。例如,SFP可以是屬於SF鏈的訊務所遵循的路徑。NSH可以提供用於沿著實例化的服務路徑的元資料交換的機制。NSH是支援SFC架構所需的SFC封裝。
該NSH可以包括(或由其組成) 4位元組的基礎標頭、4位元組的服務路徑標頭及/或上下文標頭,如圖2所示,該基礎標頭欄位提供關於該服務標頭及酬載協定的資訊。該服務路徑標頭欄位提供服務路徑(SP)內的位置(一個或複數)及路徑識別(一個或複數)。該上下文標頭欄位攜帶沿著SP的元資料(例如,上下文資料)。
雖然NSH通常用於封裝資料封包,但是NSH也可以用於攜帶在SFP上的元資料,而不需要酬載資料[9]。此機制使得能夠診斷及監視SFP、以及在兩個或更多SFC感知節點之間進行協調。SFC 架構及機制
在一些目前的架構及/或機制中,SFC由集中式控制器/編排器(例如,SFC控制器功能或控制平面)配置及管理。這意味著SFC上的動態改變(例如,組成、功能遷移及/或縮放)只能由該集中式控制器執行,並且該集中式控制器需要與SF的持續連線性及關於代管該SF的所有節點的狀態的更新資訊。此外,複數服務由相同的控制器/編排器管理,即使不同的服務提供具有不同要求的不同功能。
在霧環境中,利用一些目前的管理及編排機制,如果代管功能(例如,SF)的節點從基礎設施斷開,則SFC不能操作。這意味著如果SFC與集中式控制器斷開,則不能管理SFC的生命週期管理,這意味著由於缺少與集中式控制器/編排器的連接,即使在某些情況下連接問題只是暫時的,重要的動作(例如,縮放、遷移功能或更新資料平面)可能不會發生。另外,SFC的生命週期管理需要具有特定於服務的刷新頻率的最新監視資訊、並且可能涉及集中式控制器的非常高的開銷。這嚴重限制了對代管該功能的節點本地的事件進行快速反應的能力,因為SFC不能自主地自編排(例如,決策只能由集中式控制器/編排器來進行)。
行動網路架構正在演進以支援網路虛擬化及服務功能編排。參考圖3,目前3GPP網路架構(例如,5G網路架構)整合有ETSI NFV管理及網路編排(MANO)及IETF SFC堆疊。該3GPP網路架構包括管理平面、控制平面及使用者/資料平面。插入到此3GPP網路架構中的虛擬化使得能夠實例化、連結及適當地編排在網路基礎設施及WTRU處運行的虛擬網路功能(VNF),其涉及ETSI NFV及IETF SFC管理及編排平面,如圖3所示。
如上所述,一些目前的SFC架構依賴於集中式控制器/編排器(C-CTRL),其連接到參與給定SF鏈的所有主機。這些集中式SFC架構在FOG計算環境中造成問題及低效率,尤其是因為一些主機的移動性及揮發性以及相關聯的傳訊開銷(一個或複數)。
在一些實施中,集中式SFC架構可藉由基於SFC偽控制器(P-CTRL)的概念(參見例如參考文獻[5])賦能自主SFC自編排(SOC)來減輕。偽控制器能夠(至少暫時地及/或部分地)替代該集中式控制器。例如,SFC偽控制器可在集中式SFC控制器不能執行其功能的情況下(例如,當集中式SFC控制器與一些主機之間的連接斷開時)替代集中式SFC控制器。
在各種實施例中,可以在參與SF鏈的主機節點中選擇及初始化一或更多SFC偽控制器或P-CTRL (例如,服務特定SFC偽控制器)。在各種實施例中,可使用或賦能一或更多SFC偽控制器或P-CTRL以執行分散式SFC控制。例如,本文揭露的各種SFC機制可以賦能SFC偽控制器觸發、及/或配置一或更多SFC偽控制器以控制NS生命週期管理操作,例如NS功能、鏈或鏈的部分的遷移。
參考圖4,在一個範例中,SF鏈由於移動性而被破壞。在此範例中,主節點(例如,WTRU或UE、或gNB)使用由SF鏈:F1-F2-F3組成的NS。這些SF可以是應用功能、網路功能及/或雲上(over-the-top)功能。這些功能的非限制性範例可以包括下列的任一者:負載平衡器、訊務導向、性能增強代理(PEP)、視訊代碼轉換器、防火牆等(參見例如參考文獻[6])。F1實例在第一節點(節點A或第一WTRU)上運行,F2實例在第二節點(節點B或第二WTRU)上運行,並且F3實例在第三節點(節點D或gNB)上運行。假設SFC偽控制器實例在節點B及節點D上運行。節點A經由裝置到裝置(D2D)通信連接兩個節點:節點B及節點C。如果所有行動節點(例如,節點A、B及C)移出節點D(gNB)的覆蓋範圍,則服務或SF鏈將需要被重新配置以維持服務連續性,因為節點D (gNB)正代管SF鏈的一個功能(F3)並且將變為斷開。因為節點D (gNB)正為所有行動節點(例如,節點A、B及C)提供到網路基礎設施(其中SFC中央控制器被代管)的連接,所以這種類型的事件(例如,節點A、B及C移出節點D的覆蓋範圍)可能不被SFC中央控制器解決,因為代管這些功能的節點(例如,節點A及B)將與該SFC中央控制器斷開。類似的情況可能在高度移動/揮發性及/或潛時要求的場景中出現,在這些場景中,集中式生命週期管理變得不適合。
在各種實施例中,可能希望將在節點D (gNB)運行的SFC偽控制器功能性遷移到參與SF鏈的另一節點。在各種實施例中,當集中式SFC控制器不可用或不能執行給定任務時,SFC偽控制器可(至少暫時地及/或部分地)替代集中式SFC控制器。在各種實施例中,一或更多SFC偽控制器可被賦能以執行NS生命週期管理操作,例如功能、SF鏈或SF鏈的部分的遷移。
在各種實施例中,當集中式SFC控制器(C-CTRL)負責時,在C-CTRL、一或更多SFC偽控制器(P-CTRL)及/或節點(例如,SF鏈中的節點)之間可能需要新的或改進的機制及/或傳訊交換,以促進從C-CTRL到一或更多P-CTRL的無縫轉換(例如,由於觸發/事件,例如C-CTRL的故障)。當P-CTRL接管來自C-CTRL的功能性時,為了在P-CTRL故障的情況下維持無縫轉換,P-CTRL朝向其它P-CTRL可能需要新的或改進的機制及/或傳訊交換。舉例來說,該C-CTRL的功能性可從該故障的P-CTRL移動或移位至另一P-CTRL以維持無縫的轉換。在一些情況下,當C-CTRL回來時(例如,C-CTRL可用或能夠執行給定任務),控制功能性可無縫地從P-CTRL轉移回到C-CTRL。用於分散式 SFC 控制的代表性程序
在各種實施例中,一或更多SFC偽控制器(P-CTRL)可暫時及/或部分地接管來自集中式SFC控制器(C-CTRL)的功能性,以執行NS生命週期管理或管理決策。在各種實施例中,P-CTRL的定義、選擇及初始化可以例如在參考文獻[5]中找到。
參考圖5,提供了執行本地NS生命週期管理的機制。在一個範例中,服務功能(F3)從節點D (例如,gNB)遷移至節點C (例如,第一WTRU),這是由節點A (例如,代管F1的第二WTRU)及節點B (例如,代管F2的第三WTRU)移動離開代管F3的節點D的覆蓋範圍而觸發的。節點B中的P-CTRL可以本地執行操作、管理及維護(OAM)操作、並且可以監視一或更多NS專用服務等級協議(SLA)。在偵測到或預測到在不久的將來可能不滿足一或更多NS特定SLA時,SFC偽控制器(例如,節點B中的P-CTRL)可採取行動以暫時及/或部分地替代集中式SFC控制器(C-CTRL)、並開始執行本地NS生命週期管理操作。例如,因為目前代管節點(即,節點D)被預測為不久將變得對其他節點(例如,節點A、B及/或C)不可達,節點B中的P-CTRL可以實例化節點C上的服務功能F3。
在各種實施例中,所述預測及本地NS生命週期管理操作可能已經由運行在節點D處的P-CTRL執行。在一個範例中,活動的或指定的P-CTRL可能在節點B及/或節點D處運行,這將意味著還需要將活動的P-CTRL角色遷移到節點B。使節點B中的P-CTRL能夠執行本地NS生命週期管理決策(例如,將任何活動的P-CTRL角色從節點D遷移到節點B),當C-CTRL故障或不能到達時,可以繼續該服務/SF。
在各種實施例中,P-CTRL操作的啟動(例如,以執行本地NS生命週期管理)可以僅在C-CTRL不能適當地操作(例如,該C-CTRL從SF鏈斷開、或者未對本地變化的條件足夠快地作出反應)時發生。例如,P-CTRL可以向給定節點發送縮放命令,以使資源適應於目前NS需求。一旦至該C-CTRL之連接被恢復,該P-CTRL也可通知此情況(發送該縮放命令至一給定節點)至該C-CTRL,使得該C-CTRL與該P-CTRL兩者同步。
在各種實施例中,為了支援P-CTRL的操作以補充或取代C-CTRL的管理操作/功能,可執行以下操作中的任一者:
當NS是線上時,C-CTRL可以接收NS描述符(NSD)以及組成該NS的功能的一或更多VNF描述符(VNFD)及操作、管理及維護描述符(OAMD),其包括需要被監視以確保給定SLA的資訊。
當NS被實例化時,除了常規的編排決定(例如,在可用資源上放置功能等)之外,基於其對現有P-CTRL的瞭解,C-CTRL可以決定是否及/或如何執行監視,包括下列的任一者: •          由每個P-CTRL節點監視什麼(例如,vCPU負載、特定鏈路的頻寬等)以及如何監視(例如,主動、被動或混合監視); •          哪些編排器負責收集及處理測量; •          根據需求,某些監視可能僅由在一或更多選定的節點或更接近P-CTRL的節點上運行的P-CTRL執行;及/或 •          出於彈性目的,監視可由複數編排器處理。
如圖3所示,ETSI NFV MANO及IETF SFC堆疊可以例如在5G行動網路架構中直接與3GPP管理平面、控制平面及資料平面交互作用。然而,一些目前實施假設半靜態環境,並且標準化訊息流不支援SFC控制器角色到其他實體的動態遷移。因此,可能期望新的傳訊流,例如,在C-CTRL與P-CTRL之間以及在P-CTRL之間的傳訊流。在各種實施例中,該新的傳訊流可以:(i)允許經由本地監視及/或更快的反應來預測事件,(ii)當該C-CTRL暫時不可達或不可用時,賦能編排,(iii)支援將C-CTRL角色遷移到一或更多P-CTRL (並且由該C-CTRL獲取回控制),及/或(iv)支援在P-CTRL之間遷移P-CTRL角色。
圖6示出了在分散式SFC控制中使用的功能實體與3GPP指定的功能之間的映射的範例。在各種實施例中,本文討論的功能(例如,F1或F2)可以映射到3GPP中的應用功能(AF)或網路功能(NF)。P-CTRL及C-CTRL的行為類似於雲上AF、並且例如可以經由網路暴露功能(NEF)影響或直接影響至所需的控制平面網路功能(NF)的WTRU訊務路由及引導。圖6還示出了所涉及的3GPP及新定義的IETF SFC傳訊機制以賦能本地NS生命週期管理。這些機制將在下面更詳細地描述。
在各種實施例中,提供了用於分散式SFC控制的傳訊程序及機制。舉例來說,P-CTRL可接管C-CTRL、且可在由P-CTRL接管之後使控制反轉(例如,C-CTRL收回控制)。該傳訊程序及機制可以包括下列中的任一者:如何將該控制從一個P-CTRL轉移至另一個P-CTRL (例如,P-CTRL間切換);如何使用帶內擴展NSH執行本地生命週期操作;以及如何執行擴展(帶外)行動IPv6傳訊的功能遷移。
在各種實施例中,一種無線通信中的分散式SFC控制的方法包括:在服務功能鏈中確定一組SFC控制器中的第一SFC控制器是主SFC控制器;確定是否滿足至少一個觸發條件;以及基於滿足該至少一個觸發條件,從該組SFC控制器中選擇/重新選擇第二SFC控制器作為該主SFC控制器以替代該第一SFC控制器。在範例中,基於與服務特定配置或與主SFC控制器相關聯的網路服務(NS)中的任一者有關的資訊來選擇該第二SFC控制器。在一個實施例中,該第一SFC控制器及該第二SFC控制器中的至少一者是分散式SFC偽控制器,及/或該第一SFC控制器及該第二SFC控制器中的至少一者是集中式SFC控制器。在一個範例中,該第一SFC控制器是集中式SFC控制器,並且該第二SFC控制器是分散式SFC偽控制器。在另一個範例中,該第一SFC控制器是分散式SFC偽控制器,並且該第二SFC控制器是集中式SFC控制器。在一些情況下,該第一SFC控制器以及該第二SFC控制器中的每一者是各自的(或不同的)分散式SFC偽控制器。該第二SFC控制器可與該組SFC控制器中的一或更多SFC控制器通信、及/或連續地執行本地監視。
在一個實施例中,該方法包括從該第一SFC控制器接收OAMD、並且基於所接收的OAMD以確定要執行的一或更多服務特定監視動作;及/或基於所接收的OAMD,確定服務特定配置。在一個實施例中,該方法包括基於所接收的OAMD來執行該一或更多服務特定監視動作。該一或更多服務特定監視動作可以包括以下中的任一者:1)服務特定本地OAM監視,或2)獲得一或更多OAM度量。
在各種實施例中,本文討論的觸發條件可以包括以下中的任一者:偵測本地監視事件;確定本地監視事件未被偵測到;偵測該第一SFC控制器的故障;及/或使用本地監視資訊,預測該第一SFC控制器的故障。
在各種實施例中,本文討論的觸發條件可以包括以下中的任一者:第一SFC控制器或第二SFC控制器偵測本地監視事件;第一SFC控制器或第二SFC控制器偵測不到本地監視事件;由第二SFC控制器偵測第一SFC控制器的故障;及/或由第二SFC控制器使用該本地監視資訊來預測第一SFC控制器的故障。
在各種實施例中,該第一SFC控制器的該故障可由該第二SFC控制器基於以下中的任一者來偵測:1)在該第一SFC控制器與該第二SFC控制器之間傳訊一或更多週期性保活訊息;2)允許偵測連接故障的傳輸層機制;及/或觀察在需要編排動作的事件時缺少來自第一SFC控制器的動作。
在一個實施例中,該方法還可包括:藉由該第一SFC控制器確定該第一SFC控制器不能作為主SFC控制器進行操作;由該第一SFC控制器使用SFC網路服務標頭(NSH)擴展以向至少該第二SFC控制器發送通知訊息;在發送該通知訊息之後,由該第一SFC控制器從至少該第二SFC控制器接收回應訊息;以及由第一SFC控制器基於所接收的回應訊息來選擇(或重新選擇)第二SFC控制器作為主SFC控制器。
在各種實施例中,用於無線通信的WTRU (WTRU 102或UE)可以執行這裡討論的分散式SFC控制。例如,WTRU可以被配置為(例如,經由處理器):在服務功能鏈中確定一組服務功能鏈(SFC)控制器中的第一SFC控制器是主SFC控制器;確定是否滿足至少一個觸發條件;以及基於滿足該至少一個觸發條件,從該組SFC控制器中選擇(或重新選擇)第二SFC控制器作為該主SFC控制器以替代該第一SFC控制器。在一個範例中,該第二SFC控制器可基於與以下任一者相關的資訊而被選擇:1)服務特定配置,或2)與該主SFC控制器相關聯的網路服務(NS)。該WTRU可以包括該第一SFC控制器以及該第二SFC控制器中的至少一者。
在一個實施方案中,該第一SFC控制器以及該第二SFC控制器中的至少一者是分散式SFC偽控制器,及/或該第一SFC控制器以及該第二SFC控制器中的至少一者是集中式SFC控制器。在一個範例中,該第一SFC控制器是集中式SFC控制器,並且該第二SFC控制器是分散式SFC偽控制器。在另一個範例中,該第一SFC控制器是分散式SFC偽控制器,並且該第二SFC控制器是集中式SFC控制器。在一些情況下,該第一SFC控制器以及該第二SFC控制器中的每一者是各自的(或不同的)分散式SFC偽控制器。該第二SFC控制器可與該組SFC控制器中的一或更多SFC控制器通信、及/或連續地執行本地監視。
在一個實施例中,WTRU可以被配置(例如,經由接收器)以從第一SFC控制器接收OAMD;並且基於接收的OAMD,確定要執行的一或更多服務特定監視動作及/或該服務特定配置。在一個範例中,WTRU被配置為:基於接收到的OAMD,執行該一或更多服務特定監視動作。該一或更多服務特定監視動作可以包括以下中的任一者:1)服務特定本地OAM監視,或2)獲得一或更多OAM度量。
在各種實施例中,本文討論的觸發條件可以包括以下中的任一者:偵測本地監視事件;確定本地監視事件未被偵測到;偵測該第一SFC控制器的故障;及/或使用本地監視資訊預測第一SFC控制器的故障。
在各種實施例中,本文討論的觸發條件可以包括以下中的任一者:第一SFC控制器或第二SFC控制器偵測到本地監視事件;第一SFC控制器或第二SFC控制器偵測不到本地監視事件;由第二SFC控制器偵測第一SFC控制器的故障;及/或由第二SFC控制器使用本地監視資訊預測到第一SFC控制器的故障。
在各種實施例中,該第一SFC控制器的該故障可由該第二SFC控制器基於以下中的任一者來偵測:1)在該第一SFC控制器與該第二SFC控制器之間傳訊一或更多週期性保活訊息;2)允許偵測連接故障的傳輸層機制;及/或觀察在需要編排動作的事件時缺少來自第一SFC控制器的動作。
在各種實施例中,該WTRU可以被配置為確定第一SFC控制器不能作為主SFC控制器進行操作。回應於該確定,WTRU可以被配置為使用SFC NSH擴展以向至少第二SFC控制器發送通知訊息,並且該WTRU可以被配置為在發送該通知訊息之後從至少第二SFC控制器接收回應訊息。該WTRU還可以被配置為:基於所接收的回應訊息,選擇該第二SFC控制器作為該主SFC控制器。用於 P-CTRL 接管 C-CTRL 的代表性程序
在各種實施例中,存在兩個主要觸發,用於P-CTRL從C-CTRL接管SFC控制及功能(例如,執行本地NS生命週期管理):1)本地監視事件,及2) C-CTRL故障。在以下實施例或範例中指定了這兩個觸發中的每一者的程序。用於由於本地監視事件而接管 C-CTRL P-CTRL 代表性程序
在各種實施例中,該C-CTRL已經將一些監視動作委派給P-CTRL,如由該C-CTRL發送給該P-CTRL的OAMD所表明的。
參考圖7,提供了傳訊流程圖的範例,其詳細描述如下。在此範例中,假設網路服務(NS)已被實例化,並且訊務是F1@A<->F2@B<->F3@D。C-CTRL運行NS的總體OAM監視。例如,藉由聯繫3GPP網路,C-CTRL可以經由NEF獲得不同的網路分析,如圖7中方框A下所示。在一個範例中,NS的總體OAM監視可以遵循3GPP TS 23.288的6.1.1.2節中指定的程序(例如,使用Nnef_AnalyticsExposure_Fetch 訊息)。
在各種實施例中,P-CTRL可以運行服務特定OAM監視動作,如在由C-CTRL發送的OAMD中所表明的(在網路服務實例化程序中),其可能需要傳訊程序,包括以下選項中的任一選項: •          P-CTRL可以藉由網路暴露功能(NEF)直接從不同的網路功能獲得資訊度量。在圖7中的方框B下示出了一範例。 •          P-CTRL可以藉由WTRU上代管的本地AF或NF來間接地獲得該資訊度量,該本地AF或NF與3GPP內部或外部的任何其他實體交互作用 (例如,AF到AF、NF到AF或NF到NF),然後在到P-CTRL的介面上解析這些獲得的資訊度量。如果WTRU上所代管的功能是NF,並且該資訊是關於3GPP網路資料分析的,則NF將從NWDAF獲得一些資料並且在WTRU處本地將這些資料暴露給P-CTRL。在圖7中的方框C下示出了一範例。 •          除了前一種(互斥的)方法之外,獨立的程序可以用於執行本地OAM監視,例如本地OAM監視及使用SFC OAM(參見例如參考文獻[7])。在圖7中的方框D下示出了一範例。
仍然參考圖7,在各種實施例中,P-CTRL與運行在WTRU上以獲得OAM度量的SFC功能之間的介面可以是本地API、或類似於IETF SFC OAM的標準介面、或類似於3GPP NWDAF與NWDAF服務消費者之間的介面(參見例如參考文獻[8])。
在各種實施例中,圖7中的程序A到D不是全部相互排斥的。推薦同時使用一個以上以使P-CTRL能夠及時且足夠快速地反應以補充由C-CTRL單獨執行的監視功能。
在各種實施例中,在特定時間點,無法由C-CTRL偵測到的本地監視事件可觸發整個程序。在圖7所示的範例中,P-CTRL@節點B可以偵測WTRU (例如,UE B)正在失去與節點D的連接。
在各種實施例中,P-CTRL基於P-CTRL的本地知識來採取編排決定、並且將該編排決定傳訊給所涉及的節點。該決定在於將F3從節點D遷移/移動到節點C (例如,UE C)。如下所述,可以使用對MIPv6的新擴展(例如,SPU及SPA)。替代地,也可以使用IETF SFC NSH的擴展,如下所述。
在各種實施例中,該P-CTRL可通知該C-CTRL以保持該P-CTRL同步。類似地,如果需要,C-CTRL然後可以更新其它的P-CTRL。如本文所述,可以使用對NSH的新擴展(例如,用於NS生命週期管理)。由於 C-CTRL 故障而用於 P-CTRL 接管 C-CTRL 的代表性程序
在各種實施例中,該P-CTRL可偵測/預測C-CTRL故障(例如,該C-CTRL變成無法到達)。圖8中示出了傳訊訊息流的範例,接下來將對其進行描述。在圖8中,假設NS已被實例化,並且訊務是F1@A<->F2@B<->F3@D。
在各種實施例中,故障可以由P-CTRL經由多種機制來偵測,例如:1)向該C-CTRL發送週期性保活訊息;2)允許偵測連接故障的傳輸層機制;及/或3)在需要編排動作的事件時觀察到缺乏來自C-CTRL的動作。還可藉由使用本地監視資訊由P-CTRL預測故障。
在各種實施例中,當偵測到C-CTRL故障時,所指定的備用P-CTRL藉由以下操作中的任一操作來接管關於該NS的編排: •          通知其它P-CTRL、並選擇新的指定備用P-CTRL;及/或 •          相關資訊(例如,編排資料庫(DB)、描述符等)的同步例如藉由使用新IETF SFC NSH擴展(NS生命週期管理)而與C-CTRL (如果預測到C-CTRL故障)來執行,如本文所述。
然後,P-CTRL可以成為SFC控制器/編排器,並且P-CTRL可以發送編排傳訊。如本文所述,可以使用對IETF NSH或MIPv6的擴展。用於 C-CTRL 獲得回控制的代表性程序
參考圖9,在各種實施例中,C-CTRL可獲得回暫時被委派給P-CTRL的編排控制。例如,當C-CTRL失去與服務或NS中涉及的節點的連接時,C-CTRL可以進入恢復模式,等待恢復連接。C-CTRL可以使用NSH OAM傳訊或來自NEF或者P-CTRL本身的3GPP傳訊而得知已經重新獲得了連線性。當該連線性或控制在P-CTRL處時,該C-CTRL傳訊其可用性,因此該P-CTRL可交回該服務的控制。為此,可以使用IETF SFC NSH擴展(NS生命週期管理),如本文所述。
在各種實施例中,在C-CTRL傳訊其可用性並獲得回控制之後,C-CTRL現在可以變為用於服務的活動SFC控制器/編排器。如本文所述,C-CTRL可以使用IETF SFC NSH擴展(NS生命週期管理)向其他P-CTRL通知C-CTRL回到了對服務的控制。用於無縫 P-CTRL 間切換的代表性程序
在各種實施例中,在沒有C-CTRL可達性的情形中,可能需要從一個P-CTRL轉換到另一個(例如,由於在C-CTRL不可到達時節點的移動性)。反應性轉換如對於C-CTRL故障的情況那樣受支援。主動/無縫轉換被如下處理。
參看圖10,在傳訊流程圖中提供P-CTRL間切換的範例,其如下詳細描述。在此範例中,假設網路服務(NS)已被實例化,並且訊務是F1@A<->F2@B<->F3@D。當該活動(指定) P-CTRL偵測到該活動P-CTRL在不久的將來可能無法操作(例如,缺乏資源、電池、離開等)時,該活動P-CTRL可以使用新的IETF SFC NSH擴展(例如,用於NS生命週期管理)向其他P-CTRL發送通知,如本文所述。接收該通知訊息的每一P-CTRL(其準備好接替該活動P-CTRL的角色)發送訊息(例如,回應訊息)至該目前的P-CTRL,且該目前的/活動的P-CTRL選擇新的P-CTRL (例如,從回應於該通知訊息的P-CTRL中選擇)。新IETF SFC NSH擴展可用於傳送此傳訊。在這一點上,新選擇的P-CTRL可以成為該服務的SFC控制器/編排器。用於帶內本地編排傳訊擴展 NSH 的代表性程序
在各種實施例中,若干NSH (參見例如參考文獻[2])擴展可用於提供帶內NS生命週期管理傳訊。
在一個範例中,新的NSH擴展被用在上述場景中(參考圖4)。在這種場景下,可能沒有移動性,因此行動節點沒有移出gNB節點(例如,節點D)的無線電覆蓋範圍。在這種場景下,在給定的時間點,服務需求可能增加,這要求F2 (其在節點B運行)及F3 (其在節點D運行)具有更多的分配資源,否則服務將不滿足所要求的SLA。所增加的需求由P-CTRL經由服務特定本地OAM監視來偵測。一旦偵測到需要在節點B及D處按比例增加資源,P-CTRL經由在由SF鏈處理的實際資料封包中的帶內傳訊通知這個需要,如圖11所示。在各種實施例中,帶內傳訊的使用可以提供傳遞該傳訊的有效方式、以及支援要在單一訊息中傳遞的複數NS生命週期管理操作(甚至定址不同的節點)。
在各種實施例中,在NSH中傳遞的NS生命週期管理命令可以作為新的NSH元資料(MD)類型(例如,類型3,因為目前的NSH規範僅支援2種類型)來傳輸,如圖12所示。
在各種實施例中,NS生命週期管理命令的新的變數長度欄位(圖13中所示的格式)包括以下任一者: •NS 生命週期 cmd :NS生命週期管理命令,其可以包括以下命令中的任一者:向內縮放(scale in)、向外縮放(scale out)、放大(scale up)、縮小(scale down)、實例化功能、終止功能、配置功能、升級功能、更新功能、線上VNFD、線上OAMD、同步狀態、克服CTRL的請求及/或CTRL啟動。 •類型 :表明所執行的命令的顯式類型。該類型可取決於編排框架實施。 •U ( 未指派的位元 ) :未指派的位元用於將來使用。在各種實施例中,此未指派的位元不被設定、且在接收時將被忽略。 •長度 :以位元組為單位表明可變長度元資料的長度。在元資料長度不是整數個4位元組字的情況下,發送器緊接在最後元資料位元組之後添加填充位元組,以將該元資料擴展到整數個4位元組字。接收器將長度欄位捨入到最接近的4位元組字邊界,以定位及處理該封包中的下一欄位。接收器僅存取由長度欄位(例如,實際位元組數)表明的該元資料中的那些位元組、並忽略直到最近的4位元組字邊界的剩餘位元組。該長度可以是0或更大。帶外功能移動性傳訊擴展行動 IPv6 的代表性程序
在各種實施例中,行動IPv6 (MIPv6)擴展可用於執行功能遷移/移動性。更新給定功能的位置是NS生命週期管理操作的範例、並且可以被認為是功能移動性。該功能移動性(給定功能的位置的更新)可以涉及(或不涉及)該功能的實際遷移。
在各種實施例中,參考圖14,傳訊擴展(例如,MIPv6擴展)用於執行功能遷移/移動性。在一個範例中,功能(其位置被更新)已經在新的目標節點處可用(如果不是,則需要使用現有技術中可用的任何機制來先前或目前遷移該功能)。圖14中表示了用於移動性的程序,其中網路服務(NS) F1<->F2<->F3已經被實例化並運行。在此點活動的僅有的SFC偽控制器(P-CTRL)在節點A (或UE A)處運行,並且在節點B (或UE B)處有候選SFC偽控制器(P-CTRL)。假設節點B正在移出節點D的覆蓋範圍(例如,gNB)。該操作可以包括以下中的任一者: 0.       移動(節點B移出節點D的覆蓋範圍)由在節點A運行的活動的(或指定的)偽控制器(P-CTRL)經由本地監視(例如,服務特定OAM)來偵測。獲得用於本地監視的資訊所需的機制/傳訊程序是在針對“P-CTRL由於本地監視事件而接管C-CTRL”之前所描述的機制/傳訊程序。 1.       該活動的P-CTRL可以向所有受影響的節點(例如節點B (因為節點B由於F3位置更新而需要更新NS路徑)及節點C (因為節點C開始作為SF鏈的一部分而代管F3))發送移動性傳訊。該傳訊訊息是新的移動性訊息,其包括例如服務路徑更新(SPU)訊息及服務路徑確認(SPA)訊息,其可以包含: •          網路服務的識別符(例如,NS_ID),及/或 •          網路服務路徑的更新元素(ID,更新位置)。 •          SPA可用於確認該程序已正確執行。 2.       NS “F1<->F2<->F3”被更新,因此NS路徑現在從先前在節點A、B及D處運行開始在節點A、B及C處運行。 3.       每當與節點D及/或集中式SFC控制器(C-CTRL)的連接回來或被恢復時,偽控制器(P-CTRL)可以發送SPU訊息(其用SPA訊息而被確認)來通知/表明更新的SFC路徑。 以上揭露的功能移動性是SFC偽控制器(P-CTRL)的NS生命週期管理的一個範例,而NS生命週期管理的其他操作或範例可以由C-CTRL及/或一或更多P-CTRL執行,例如:放大/縮小、向內/向外縮放、終止等。 MIPv6 訊息的代表性程序
行動IPv6 (MIPv6)定義了移動性標頭,其由前一標頭中的135的下一標頭值所識別。MIPv6可以具有圖15所示的格式,並且該訊息/格式的欄位可以被定義為如下: •酬載 Proto :8位元選擇器,其識別緊接在該移動性標頭之後的標頭的類型。 •標頭 Len :8位元不帶正負號的整數,表示以8個八位元組為單位的移動性標頭的長度,其不包括前8個八位元組。該移動性標頭的長度是8個八位元組的倍數。 •MH 類型 :識別特定移動性訊息的8位元選擇器。 •被保留 :保留8位元欄位以供將來使用。該值由發送器初始化為零、並且被接收器忽略。 •檢查總和 :16位元不帶正負號的整數。此欄位包含該移動性標頭的檢查總和。 •訊息資料 :變數長度欄位,其包含特定於所指示的移動性標頭(MH)類型的資料。
MIPv6還定義了在這些訊息中使用的數個”移動性選項“。在各種實施例中,可以定義新的移動性選項、服務路徑更新(SPU),並在例如本地生命週期管理和SFC控制中使用。服務路徑更新 (SPU) 的代表性程序
在各種實施例中,服務路徑更新(SPU)訊息由CTRL (例如,C-CTRL或P-CTRL)用來向SF鏈中的節點(例如,服務功能轉發器(SFF))通知存在服務路徑或SF路徑的更新。該服務路徑更新可以使用MH類型值TBD。當在MH類型欄位中表明(或者由CTRL確定)值TBD時,在圖16中示出了移動性標頭中的訊息資料欄位的格式。 參考圖16,該訊息/格式的欄位可以被定義如下: •          確認(A):確認(A)位元由發送行動節點設定,以請求在接收到SPU時返回服務路徑確認(SPA)。 •          被保留:這些欄位未被使用。這些欄位由發送器初始化為零、並被接收器忽略。 •          序列號:16位元不帶正負號的整數,其由接收節點用來對綁定更新排序、並由發送節點用來將返回的SPA與該SPU匹配。 •          生命週期:16位元不帶正負號的整數。這是在服務路徑被認為到期之前剩餘的時間單元的數量。零值表明該服務路徑將被刪除。值0xFFFF表明該服務路徑的無限生命週期。一個時間單位是4秒。 •          移動性選項:變數長度欄位,其長度使得完整的移動性標頭是8個八位元組長的整數倍。該欄位包含零個或更多TLV編碼的移動性選項。接收器忽略並跳過該接收器不理解的任何選項。 •          以下選項在SPU中是有效的: ◦          網路服務ID。 ◦          SFC節點。用於服務路徑確認 (SPA) 的代表性程序
在各種實施例中,服務路徑確認(SPA)訊息被CTRL用來確認所接收到的SPU。SPA可以使用MH類型值TBD。當在MH類型欄位中表明(或者由CTRL確定)該值TBD時,在圖17中示出了移動性標頭中的訊息資料欄位的格式。
參考圖17,該訊息/格式的欄位可以被定義如下: •          被保留:這些欄位未被使用。這些欄位由發送器初始化為零、並被接收器忽略。 •          序列號:16位元不帶正負號的整數,用於將返回的SPA與SPU匹配。 •          生命週期:16位元不帶正負號的整數。這是在服務路徑被認為到期之前剩餘的時間單元的數量。零值表明該服務路徑將被刪除。值0xFFFF表明該服務路徑的無限生命週期。一個時間單位是4秒。 •          移動性選項:變數長度欄位,其長度使得完整的移動性標頭是8個八位元組長的整數倍。該欄位包含零個或更多TLV編碼的移動性選項。接收器忽略並跳過該接收器不理解的任何選項。 •          以下選項在SPA中是有效的:網路服務ID。新移動性選項 - 網路服務 ID 的代表性程序
在各種實施例中,網路服務ID選項可以具有圖18所示的格式。參考圖18,該網路服務ID選項的欄位可以被定義如下: •          選項類型:TBA (由網際網路指派號碼機構(IANA)提供)。 •          選項長度:8位元不帶正負號的整數。該選項的長度(以八位元組為單位)不包括選項類型及選項長度欄位。 •          服務路徑識別符(SPI):唯一地識別服務功能路徑(SFP)。參與節點使用此識別符用於SFP選擇。初始分類器為給定的分類結果設定適當的SPI。 •          服務索引(SI):提供SFP內的位置(一個或複數)。 •          網路服務ID:識別該網路服務的變數長度欄位。新移動性選項 -SFC 節點的代表性程序
在各種實施例中,SFC節點選項可具有圖19中所示的格式。參考圖19,該SFC節點選項的欄位可定義如下: •          選項類型:由IANA進行TBA。 •          選項長度:8位元不帶正負號的整數。選項的長度(以八位元組為單位)不包括選項類型及選項長度欄位。 •          功能ID長度:8位元不帶正負號的整數。以八位元組為單位的功能ID欄位的長度。 •          節點ID長度:8位元不帶正負號的整數。節點ID欄位的長度,以八位元組為單位。 •          功能ID:識別該功能的變數長度欄位。 •          節點ID:識別該節點的變數長度欄位。
在各種實施例中,在服務功能更新訊息中可以有複數SFC節點選項,其按照與SFC/NS相同順序的選項。
以下參考文獻中的每一者都藉由引用而被併入本文:[1] J. Halpern (Ed.), “Service Function Chaining (SFC) Architecture(服務功能鏈結(SFC)架構)”, RFC 7665, 2015年10月;[2] P. Quinn (Ed.), “Network Service Header (NSH)(網路服務標頭(NSH))”, RFC 8300, 2018年1月; [3] C. Perkins (Ed.), “Mobility Support in IPv6(IPv6中的移動性支援)”, RFC 6275, 2011年7月; [4] S. Gundavelli (Ed.), “Proxy Mobile IPv6(代理行動IPv6)”, RFC 5213, 2008年8月; [5] 美國臨時專利申請案No. 62/870,851; [6] W. Haeffner等人, “Service Function Chaining Use Cases in Mobile Networks(行動網路中的服務功能鏈結用例)”, draft-ietf-sfc-use-case-mobility-09, 2019年1月; [7] S. Aldrin (Ed.), “Service Function Chaining (SFC) Operations, Administration and Maintenance (OAM) Framework(服務功能鏈結(SFC)操作、管理及維護(OAM)框架)”, draft-ietf-sfc-oam-framework-11, 2019年9月; [8] 第3代合作夥伴計畫; 技術規範組服務及系統方面; Architecture enhancements for 5G System (5GS) to support network data analytics services (用於支援網路資料分析服務的5G系統(5GS)的架構增強)(版本16), 3GPP TS 23.288 V16.2.0; 以及[9] A. Farrel, J. Drake, “Operating the Network Service Header (NSH) with Next Protocol "None"(操作具有下一協定“無”的網路服務標頭(NSH))”, RFC 8393, 2018年5月。
雖然在上文中描述了採用特定組合的特徵及要素,但是本領域中具有通常知識者將會認識到,每一個特徵或要素可以單獨使用、或以與其他特徵及要素的任何組合來使用。此外,這裡描述的方法可以在引入到電腦可讀媒體中以供電腦或處理器運行的電腦程式、軟體或韌體中實施。非暫時性電腦可讀儲存媒體的範例包括但不限於唯讀記憶體(ROM)、隨機存取記憶體(RAM)、暫存器、快取記憶體、半導體儲存裝置、磁性媒體(例如內部硬碟及可移磁片)、磁光媒體以及光學媒體(例如CD-ROM磁碟及數位多功能磁碟(DVD))。與軟體相關聯的處理器可以用於實施在WTRU 102、UE、終端、基地台、RNC或任何電腦主機中使用的射頻收發器。
此外,在上述實施例中描述了處理平臺、計算系統、控制器以及含有處理器的其他裝置。這些裝置可以包括至少一個中央處理器(“CPU”)及記憶體。依照電腦程式設計領域中具有通常知識者實踐,對於操作或指令的行為或符號性表示的引用可以由不同的CPU及記憶體來執行。此類行為及操作或指令可被稱為“執行”、“電腦執行”或“CPU執行”。
本領域中具有通常知識者將會瞭解,行為以及符號性表示的操作或指令包括由CPU對電子信號的操縱。電子系統代表的是資料位元,該資料位元可能導致電子信號因此變換或還原,以及資料位元在記憶體系統中的記憶體位置的維持,藉以重新配置或以其他方式變更CPU操作以及其他信號處理的資料位元。維持資料位元的記憶體位置是具有與資料位元對應或代表資料位元的特定電、磁、光或有機屬性的實體位置。應該理解的是,這些代表性實施例並不限於上述平臺或CPU,並且其他平臺及CPU可以支援所提供的方法。
該資料位元還可以維持在電腦可讀媒體上,其中該媒體包括磁片、光碟以及其他任何可供CPU讀取的揮發(例如隨機存取記憶體(“RAM”))或非揮發(例如唯讀記憶體(“ROM”))大型儲存系統。電腦可讀媒體可以包括協作或互連的電腦可讀媒體,這些媒體可以單獨存在於處理系統上、或可以分佈在位於處理系統本地或遠端的複數互連處理系統中。可以理解的是,這些代表性實施例並不限於上述記憶體,其他的平臺及記憶體同樣可以支援所描述的方法。
在一個說明性實施例中,這裡描述的任何操作、處理等等的任一者都可以作為儲存在電腦可讀媒體上的電腦可讀指令來實施。該電腦可讀指令可以由行動單元、網路元件及/或其他任何計算裝置的處理器來執行。
在系統的各個方面的硬體與軟體實施方式之間幾乎是沒有區別的。硬體還是軟體的使用通常(例如,但也並不是始終如此,因為在某些上下文中,在硬體與軟體之間的選擇有可能會很重要)是代表了成本與效率之間的取捨的設計選擇。這裡描述的處理及/或系統及/或其他技術可以由各種載體來實施(例如硬體、軟體及/或韌體),並且較佳的載體可以隨著部署程序及/或系統及/或其他技術的上下文而改變。舉例來說,如果實施方案確定速度及精確度是首要的,那麼實施方可以傾向於主要採用硬體及/或韌體載體。如果彈性是首要的,那麼實施方可以傾向於主主要採用軟體的實施方式。替代地,實施方可以選擇硬體、軟體及/或韌體的某種組合。
以上的具體實施方式部分已經使用方塊圖、流程圖及/或範例而對裝置及/或處理的不同實施例進行了描述。就像此類方塊圖、流程圖及/或範例包含了一或更多功能及/或操作那樣,本領域中具有通常知識者將會理解,此類方塊圖、流程圖或範例內的每一個功能及/操作可以單獨及/或共同地由範圍廣泛的硬體、軟體、韌體或者幾乎其任何組合來實施。舉例來說,合適的處理器包括通用處理器、專用處理器、常規處理器、數位訊號處理器(DSP)、複數微處理器、與DSP核心相關聯的一或更多微處理器、控制器、微控制器、專用積體電路(ASIC)、專用標準產品(ASSP);現場可程式閘陣列(FPGA)電路、任何其它類型的積體電路(IC)及/或狀態機。
儘管以上以特定組合提供了特徵及元件,但是本領域中具有通常知識者將理解,每個特徵或元件可以單獨使用或者以與其它特徵及元件的任何組合來使用。本揭露並不限於本申請案中描述的特定實施例,這些實施例旨在對不同的方面進行例證。本領域中具有通常知識者將會瞭解,在不脫離其實質及範圍的情況,眾多的修改及變化都是可行的。除非以顯性地方式提供,否則不應將本申請案的說明書中使用的要素、行為或指令解釋為是對本發明是關鍵或必要的。除了這裡列舉的方法及裝置之外,本領域中具有通常知識者可以從以上描述中清楚瞭解在本揭露的範圍內的功能等價的方法及裝置。此類修改及變化都應該落入所附申請專利範圍的範圍內。本揭露僅僅是依照所附申請專利範圍以及此類申請專利範圍所具有的完整等價範圍限制的。應該理解的是,本揭露並不限於特定的方法或系統。
還應理解,本文所用的術語僅是為了描述具體實施例的目的,而不是旨在限制。如這裡所使用的,當這裡提及時,術語“站”及其縮寫“STA”、“使用者裝置”及其縮寫“UE”時可以表示(i)無線傳輸及/或接收單元(WTRU),例如下面所描述的;(ii)WTRU的複數實施例中的任一個,例如下文所描述的;(iii)一種具有無線能力及/或有線能力(例如,可連接(tetherable))的裝置,其配置有WTRU的一些或所有結構及功能,例如下所述;(iii)一種具有無線能力及/或有線能力的裝置,其被配置為具有少於WTRU的所有結構及功能的結構及功能,例如下所述的;或(iv)類似物。下面參考圖1A至圖1D提供了範例性WTRU的細節,該範例性WTRU可以代表這裡所述的任何UE。
在某些代表性實施例中,這裡描述的主題的若干個部分可以用專用積體電路(ASIC)、現場可程式閘陣列(FPGA)、數位訊號處理器(DSP)及/或其他整合格式來實現。然而,本領域中具有通常知識者將會認識到,這裡揭露的實施例的一些方面可以全部或者部分在積體電路中以等效的方式實施、作為在一或更多電腦上運行的一或更多電腦程式(例如作為在一或更多電腦系統上運行的一或更多程式)來實施、作為在一或更多處理器上運行的一或更多程式(例如作為在一或更多微處理器上運行的一或更多程式)來實施、作為韌體來實施、或者作為幾乎其任何組合來實施,並且依照本揭露,關於軟體及/或韌體的電路設計及/或代碼編寫同樣落入本領域中具有通常知識者的技術範圍內。此外,本領域中具有通常知識者將會瞭解,這裡描述的主題的機制可以作為程式產品而以各種形式分發,並且無論使用了何種特定類型的信號承載媒體來實際執行所述分發,這裡描述的主題的說明性實施例都是適用的。信號承載媒體的範例包括但不限於下列:可記錄型媒體,例如軟碟、硬碟驅動器、CD、DVD、數位磁帶、電腦記憶體等等;以及傳輸類型媒體,例如數位及/或類比通信媒體(例如光纜、波導、有線通信鏈路、無線通信鏈路等等)。
這裡描述的主題有時示出了包含在其他不同元件內或是與其他不同元件連接的不同元件。應該理解的是,以這種方式描述的架構僅僅是一些範例,並且實施相同功能的其他眾多的架構實際上都是可以實施的。從概念上講,實施相同功能的元件的任何佈置都被有效地“關聯”,因此可以實現期望的功能。因此,在這裡組合在一起以實現特定功能的任何兩個組件都可被認為是彼此“關聯”,因此將會實現期望的功能,而不用考慮架構或中間組件。同樣地,以這種方式關聯的任何兩個元件也可以被視為彼此“可操作地連接”或“可操作地耦合”,以實現期望的功能,並且能以這種方式關聯的任何兩個元件也可以被視為彼此“能夠可操作地耦合”,以實現期望的功能。能夠可操作地耦合的特定範例包括但不限於可以在物理上配對及/或在物理上交互作用的元件及/或可無線地交互作用及/或無線地交互作用的元件及/或在邏輯上交互作用及/或可在邏輯上交互作用的元件。
至於在這裡使用了實質上任何的複數及/或單數術語,本領域中具有通常知識者可以根據上下文及/或應用適當地從複數轉換為單數及/或從單數轉換為複數。為了清楚起見,在這裡可以明確地闡述各種單數/複數置換。
本領域中具有通常知識者將會理解,一般來說,在這裡使用的術語以及尤其是所附申請專利範圍(例如所附申請專利範圍的主體)中使用的術語一般是“開放式”術語(舉例來說,術語“包括”應被解釋為“包括但不限於”,術語“具有”被解釋為“至少具有”,術語“包含”應被解釋為“包含但不限於”等等)。本領域中具有通常知識者將會進一步理解,如果所引入的申請專利範圍敘述針對的是特定的數量,那麼在該申請專利範圍中應該明確地敘述這種意圖,並且在沒有這種敘述的情況下,那麼此類意圖是不存在的。舉例來說,如果所預期的是僅僅一個項目,那麼可以使用術語“單一”或類似語言。作為理解輔助,以下的所附申請專利範圍及/或這裡的描述可以包括使用介紹性片語“至少一個”以及“一或更多”來引入申請專利範圍敘述。然而,使用此類片語不應被解釋為是這樣一種申請專利範圍敘述的引入方式,即藉由不定冠詞“一”或“一個”以將包含以這種方式引入的申請專利範圍敘述的任何特定的申請專利範圍限制於只包含一個此類敘述的實施例,即使相同的申請專利範圍包含了介紹性片語“一或更多”或者“至少一個”以及例如“一”或“一個”之類的不定冠詞的時候也是如此(例如,“一”及/或“一個”應該被解釋為是指“至少一個”或者“一或更多”)。對於用於引入申請專利範圍敘述的定冠詞的使用,亦是如此。此外,即使明確敘述了所引入的特定數量的申請專利範圍敘述,本領域中具有通常知識者也會認識到,這種敘述應被解釋為至少是指所敘述的數量(例如在沒有其他修飾語的條件下的關於“兩個敘述”的無修飾敘述意味著至少兩個敘述或是兩個或更多敘述)。
此外,在這些實例中,如果使用了與“A、B及C等等中的至少一者”類似的慣例,那麼此類慣例通常應該具有本領域中具有通常知識者所理解的該慣例的意義(例如,“具有A、B及C中的至少一者的系統”將會包括但不限於只具有A、只具有B、只具有C、具有A及B、具有A及C、具有B及C及/或具有A、B及C等等)。在使用了與“A、B或C等等中的至少一者”相似的慣例的實例中,此類結構通常應該具有本領域中具有通常知識者所理解的所述慣例的意義(舉例來說,“具有A、B或C中的至少一者的系統”包括但不限於只具有A、只具有B、只具有C、具有A及B、具有A及C、具有B及C及/或具有A、B及C等等的系統)。本領域中具有通常知識者會將進一步理解,無論在說明書、申請專利範圍書還是附圖中,提出兩個或更多替代項的幾乎任何分離性的詞語及/或片語都應被理解為預期了包括這些項中的一個、任一者或是所有兩項的可能性。舉例來說,片語“A或B”將被理解為包括“A”或“B”或“A及B”的可能性。此外,這裡使用的跟隨有一系列的複數項目及/或複數項目類別的術語“任一者”旨在包括單獨或與其他項目及/或其他項目類別相結合的項目及/或項目類別中的“任一者”,“任何組合”,“任何複數”及/或“任何複數的組合”。此外,這裡使用的術語“集合”或“群組”應該包括任一數量的項目,其中包括零個。作為補充,這裡使用的術語“數量”旨在包括任一數量,其中包括零。
此外,如果本揭露的特徵或方面是依照馬庫西群組的方式描述的,那麼本領域中具有通常知識者將會認識到,本揭露因此是依照馬庫西群組中的任何單一成員或成員子群組描述的。
本領域中具有通常知識者將會理解,出於任何及所有目的(例如在提供書面描述方面),這裡揭露的所有範圍還包含了任何及所有可能的子範圍以及其子範圍組合。所列出的任何範圍都可以很容易地被認為是充分描述及賦能了被分解成至少兩等分、三等分、四等分、五等分、十等分等等的相同範圍。作為非限制性範例,本文論述的每一個範圍都很容易即可分解成下部的三分之一、中間的三分之一以及上部的三分之一範圍。本領域中具有通常知識者將會理解,例如“至多”、“至少”、“大於”、“小於”等等的所有語言包含了所敘述的數量,並且指代的是隨後可被分解成如上所述的子範圍的範圍。最後,正如本領域中具有通常知識者所理解的那樣,一個範圍會包括每一個單獨的成員。因此,舉例來說,具有1-3個胞元的群組指的是具有1、2或3個胞元的群組。同樣,具有1-5個胞元的群組是指具有1、2、3、4或5個胞元的群組,依此類推。
此外,除非進行說明,申請專利範圍不應該被錯誤地當作僅限於所描述的順序或要素。此外,任何申請專利範圍中使用的術語“用於……的裝置”旨在援引35 U .S .C . §112 , ¶ 6或者意味著“裝置加功能(means-plus-function)”申請專利範圍格式,並且沒有單詞“裝置”的任何申請專利範圍均不具有這種意義。
與軟體關聯的處理器可用於實現射頻收發器,以便在無線傳輸接收單元(WTRU)、使用者設備(UE)、終端、基地台、移動性管理實體(MME)或演進型封包核心(EPC)或任何一種主機電腦中使用。WTRU可以與採用硬體及/或軟體形式實施的模組結合使用,其中該模組包括軟體定義無線電(SDR)以及其他元件,例如相機、攝像機模組、視訊電話、喇叭擴音器、振動裝置、揚聲器、麥克風、電視收發器、免持耳機、小鍵盤、Bluetooth®模組、調頻(FM)無線電單元、近場通信(NFC)模組、液晶顯示器(LCD)顯示單元、有機發光二極體(OLED)顯示單元、數位音樂播放器、媒體播放器、視訊遊戲機模組、網際網路瀏覽器及/或任何一種無線區域網路(WLAN)或超寬頻(UWB)模組。
雖然本發明已經根據通信系統進行了描述,但是可以預期,該系統可以在微處理器/通用電腦(未示出)上以軟體實施。在某些實施例中,各種元件的功能中的一或更多功能可以在控制通用電腦的軟體中實施。
此外,儘管在此參考具體實施例示出及描述了本發明,但是本發明並不限於所示的細節。相反,在申請專利範圍的等同範圍內並且在不背離本發明的情況下,可以對細節進行各種修改。
在整個揭露中,具有通常知識者理解,某些代表性實施例可以替代地或與其它代表性實施例組合地使用。
儘管以上以特定的組合描述了特徵及元件,但是本領域中具有通常知識者將理解,每個特徵或元件可以單獨使用或與其它特徵及元件的任一組合來使用。另外,本文描述的方法可以在電腦程式、軟體或韌體中實施,該電腦程式、軟體或韌體併入電腦可讀媒體中以由電腦或處理器執行。非暫時性電腦可讀儲存媒體的範例包括但不限於唯讀記憶體(ROM)、隨機存取記憶體(RAM)、暫存器、快取記憶體、半導體儲存裝置、磁性媒體(例如,內部硬碟及可移磁片)、磁光媒體以及光學媒體(例如,CD-ROM碟片及數位多功能磁碟(DVD))。與軟體相關聯的處理器可以用於實施在WTRU、UE、終端、基地台、RNC或任何電腦主機中使用的射頻收發器。
此外,在上述實施例中,注意到處理平臺、計算系統、控制器及包含處理器的其它裝置。這些裝置可以包含至少一個中央處理單元(“CPU”)及記憶體。根據電腦程式設計領域中具有通常知識者的實踐,對動作及操作或指令的符號表示的引用可以由各種CPU及記憶體來執行。這樣的動作及操作或指令可以被稱為“被執行”、“被電腦執行”或“被CPU執行”。
本領域中具有通常知識者將理解,動作及符號表示的操作或指令包括由CPU對電信號的操縱。電子系統代表的是資料位元,該資料位元可能導致電子信號因此變換或還原、以及將資料位元維持在記憶體系統中的記憶體位置,因此重新配置或以其他方式變更CPU操作以及其他信號處理的資料位元。保持資料位元的記憶體位置是具有與資料位元對應或代表資料位元的特定電、磁、光或有機屬性的物理位置。
該資料位元還可以保持在電腦可讀媒體上,其中該媒體包括磁片、光碟以及其他任何可供CPU讀取的揮發(例如,隨機存取記憶體(“RAM”))或非揮發(例如,唯讀記憶體(“ROM”))大型儲存系統。該電腦可讀媒體可以包括協作或互連的電腦可讀媒體,這些媒體可以單獨存在於處理系統上、或可以分佈在複數位於處理系統本地或遠端的互連處理系統中。應該理解的是,這些代表性實施例並不限於上述記憶體,其他的平臺及記憶體同樣可以支援所描述的方法。
作為範例,適當的處理器包括通用處理器、專用處理器、常規處理器、數位訊號處理器(DSP)、複數微處理器、與DSP核心相關聯的一或更多微處理器、控制器、微控制器、專用積體電路(ASIC)、專用標準產品(ASSP)、現場可程式閘陣列(FPGA)電路、任何其他類型的積體電路(IC)、及/或狀態機。
雖然已經根據通信系統描述本發明,但是可以預期,該系統可以在微處理器/通用電腦(未示出)上以軟體實施。在某些實施例中,各種元件的功能中的一或更多功能可以在控制通用電腦的軟體中實施。
此外,儘管在此參考具體實施例示出及描述了本發明,但是本發明並不限於所示的細節。相反,在申請專利範圍的等同範圍內並且在不背離本發明下,可以對細節進行各種修改。
100:通訊系統 102、102a、102b、102c、102d、WTRU:無線傳輸/接收單元 104、113:無線電存取網路(RAN) 106、115:核心網路(CN) 108:公共交換電話網路(PSTN) 110:網際網路 112:其他網路 114a、114b:基地台 116:空中介面 118:處理器 120:收發器 122:傳輸/接收元件 124:揚聲器/麥克風 126:小鍵盤 128:顯示器/觸控板 130:非可移記憶體 132:可移記憶體 134:電源 136:全球定位系統(GPS)晶片組 138:週邊設備 160a、160b、160c:e節點B(eNB) 162:移動性管理實體(MME) 164:服務閘道(SGW) 166:封包資料網路(PDN)閘道(或PGW) 180a、180b、180c:gNB 182a、182b:存取及行動性管理功能(AMF) 183a、183b:對話管理功能(SMF) 184a、184b:使用者平面功能(UPF) 185a、185b:資料網路(DN) AF:應用功能 C-CTRL:集中式控制器/編排器 F1、F2、F3:SF鏈 MANO:管理及網路編排 MD:元資料 MIPv6:行動IPv6 N2、N3、N4、N6、N11、S1、X2、Xn:介面 NEF:網路暴露功能 NF:網路功能 NFV:網路功能虛擬化 NFVO:NFV編排器 NS:網路服務 NSH:網路服務標頭 OAM:操作、管理及維護 P-CTRL:偽控制器 SFC:服務功能鏈結 SPA:服務路徑確認 SPI:服務路徑識別符 SPU:服務路徑更新 U:未指派的位元 UE:使用者設備
從以下結合附圖以範例方式給出的詳細描述中可以獲得更詳細的理解。與詳細描述一樣,這些附圖中的圖是範例。因此,附圖以及詳細描述不應被認為是限制性的,並且其它等效的範例是可能的並且是可行的。此外,圖中的相同參考標號指示相同元素,且其中: 圖1A是示出了可以實施所揭露的一或更多實施例的範例性通信系統的系統圖; 圖1B是示出了根據一個實施例的可以在圖1A所示的通信系統內使用的範例性無線傳輸/接收單元(WTRU)的系統圖; 圖1C是示出了根據一個實施例的可以在圖1A所示的通信系統內部使用的範例性無線電存取網路(RAN)以及範例性核心網路(CN)的系統圖; 圖1D是示出了根據一個實施例的可以在圖1A所示的通信系統內部使用的另一個範例性RAN以及另一個範例性CN的系統圖; 圖2是根據一或更多實施例的在服務功能(SF)鏈中使用的網路服務標頭(NSH)的範例的圖; 圖3是示出了根據一或更多實施例的具有整合了ETSI NFV MANO以及IETF SFC堆疊的3GPP網路架構的範例性無線通信系統的系統圖; 圖4是示出了根據一或更多實施例的、具有由於移動性被破壞的SFC的範例性無線通信系統的系統圖; 圖5是示出了根據一或更多實施例的具有本地NS生命週期管理的範例性無線通信系統的系統圖; 圖6是示出了根據一或更多實施例的由一或更多標準指定的功能與功能實體之間的映射及傳訊機制的範例的方塊圖; 圖7是示出了根據一或更多實施例的SFC偽控制器(P-CTRL)由於本地監視事件而接管集中式SFC控制器(C-CTRL)的範例性程序的信號流程圖; 圖8為示出了根據一或更多實施例的P-CTRL由於C-CTRL故障而接管C-CTRL的範例性程序的信號流程圖; 圖9為示出了根據一或更多實施例的C-CTRL從P-CTRL獲得回編排(orchestration)控制的範例性程序的信號流程圖; 圖10是示出了根據一或更多實施例的P-CTRL(一個或複數)間切換的範例性程序的信號流程圖; 圖11是示出了根據一或更多實施例的帶內網路服務(NS)生命週期管理傳訊擴展NSH的傳訊機制的範例的方塊圖; 圖12是示出了根據一或更多實施例的NSH元資料(MD)類型的範例性格式的圖; 圖13是示出了根據一或更多實施例的可變長度NS生命週期管理命令欄位的範例性格式的圖; 圖14是示出了根據一或更多實施例的SFC移動性傳訊的範例性程序的訊息流程圖; 圖15是示出了根據一或更多實施例的行動IPv6中移動性標頭的範例性格式的圖; 圖16是示出了根據一或更多實施例的服務路徑更新(SPU)訊息的範例性格式的圖; 圖17是示出了根據一或更多實施例的服務路徑確認(SPA)訊息的範例性格式的圖; 圖18是示出了根據一或更多實施例的網路服務ID選項的範例性格式的圖;以及 圖19是示出了根據一或更多實施例的SFC節點選項的範例性格式的圖。
AF:應用功能
C-CTRL:集中式控制器/編排器
F1、F2:SF鏈
NEF:網路暴露功能
NF:網路功能
NFV:網路功能虛擬化
NFVO:NFV編排器
MANO:管理及網路編排
P-CTRL:偽控制器
SFC:服務功能鏈結

Claims (25)

  1. 一種用於無線通信的方法,包括: 在一服務功能鏈中,確定一組服務功能鏈結(SFC)控制器中的一第一SFC控制器是一主SFC控制器; 確定是否滿足至少一個觸發條件;以及 基於滿足該至少一個觸發條件,從該組SFC控制器中選擇一第二SFC控制器作為該主SFC控制器以替代該第一SFC控制器。
  2. 如請求項1所述的方法,其中所述選擇該第二SFC控制器包括:重新選擇該第二SFC控制器作為該主SFC控制器以替代該第一SFC控制器。
  3. 如請求項1所述的方法,其中該第二SFC控制器是基於與以下中的任一者有關的一資訊而被選擇:1)一服務特定配置,或2)與該主SFC控制器相關聯的一網路服務(NS)。
  4. 如請求項3所述的方法,更包括: 從該第一SFC控制器接收一操作、管理及維護描述符(OAMD);以及 基於所接收的OAMD,確定要執行的一或更多服務特定監視動作及/或該服務特定配置。
  5. 如請求項4所述的方法,更包括: 基於所接收的OAMD,執行該一或更多服務特定監視動作,其中該一或更多服務特定監視動作包括以下中的任一者:1)一服務特定本地操作、管理及維護(OAM)監視,或2)獲得一或更多OAM度量。
  6. 如請求項1所述的方法,其中該至少一個觸發條件包括以下中的任一項: 偵測到一本地監視事件; 確定一本地監視事件未被偵測到; 偵測該第一SFC控制器的一故障;或 使用一本地監視資訊預測該第一SFC控制器的一故障。
  7. 如請求項6所述的方法,其中: 該本地監視事件是藉由該第一SFC控制器或該第二SFC控制器而被偵測; 該本地監視事件未能藉由第一SFC控制器或該第二SFC控制器而被偵測; 該第一SFC控制器的該故障是藉由該第二SFC控制器而被偵測;或 該第一SFC控制器的該故障由該第二SFC控制器使用該本地監視資訊而被預測。
  8. 如請求項6所述的方法,其中該第一SFC控制器的該故障由該第二SFC控制器基於以下中的任一項而被偵測: 在該第一SFC控制器與該第二SFC控制器之間傳訊一或更多週期性保活訊息; 允許偵測連接故障的一傳輸層機制;或 觀察在需要一編排動作的一事件時缺少來自該第一SFC控制器的動作。
  9. 如請求項1所述的方法,其中該第二SFC控制器與該組SFC控制器中的一或更多SFC控制器通信。
  10. 如請求項1所述的方法,其中該第一SFC控制器是一集中式SFC控制器,並且該第二SFC控制器是一分散式SFC偽控制器。
  11. 如請求項1所述的方法,其中該第一SFC控制器以及該第二SFC控制器中的至少一者是一分散式SFC偽控制器。
  12. 如請求項1所述的方法,其中該第一SFC控制器以及該第二SFC控制器中的至少一者是一集中式SFC控制器。
  13. 如請求項1所述的方法,其中該第二SFC控制器連續執行本地監視。
  14. 如請求項1所述的方法,更包括: 由該第一SFC控制器確定該第一SFC控制器不能作為該主SFC控制器進行操作; 由該第一SFC控制器使用一SFC網路服務標頭(NSH)擴展以向至少該第二SFC控制器發送一通知訊息; 在發送該通知訊息之後,由該第一SFC控制器從至少該第二SFC控制器接收一回應訊息;以及 由該第一SFC控制器基於所接收的回應訊息以選擇該第二SFC控制器作為該主SFC控制器。
  15. 一種用於無線通信的無線傳輸/接收單元(WTRU),該WTRU包括: 一處理器,其被配置為: 在一服務功能鏈中,確定一組服務功能鏈結(SFC)控制器中的一第一SFC控制器是一主SFC控制器; 確定是否滿足至少一個觸發條件;以及 基於滿足該至少一個觸發條件,從該組SFC控制器中選擇一第二SFC控制器作為該主SFC控制器以替代該第一SFC控制器。
  16. 如請求項15所述的WTRU,其中該處理器被配置為重新選擇該第二SFC控制器作為該主SFC控制器以替代該第一SFC控制器。
  17. 如請求項15所述的WTRU,其中該處理器被配置為基於與以下任一者有關的一資訊來選擇該第二SFC控制器:1)一服務特定配置,或2)與該主SFC控制器相關聯的一網路服務(NS)。
  18. 如請求項17所述的WTRU,更包括: 一接收器,被配置為從該第一SFC控制器接收一操作、管理及維護描述符(OAMD),其中該處理器被配置為基於所接收的OAMD來確定要執行的一或更多服務特定監視動作、及/或該服務特定配置。
  19. 如請求項18所述的WTRU,其中該處理器被配置為基於所接收的OAMD來執行該一或更多服務特定監視動作,其中該一或更多服務特定監視動作包括以下中的任一者:1)一服務特定本地操作、管理及維護(OAM)監視,或2)獲得一或更多OAM度量。
  20. 如請求項15所述的WTRU,其中該至少一個觸發條件包括以下中的任一者: 偵測到一本地監視事件; 確定一本地監視事件未被偵測到; 偵測該第一SFC控制器的一故障;或 使用一本地監視資訊以預測該第一SFC控制器的一故障。
  21. 如請求項20所述的WTRU,其中: 該本地監視事件藉由該第一SFC控制器或該第二SFC控制器而被偵測; 該本地監視事件未能藉由該第一SFC控制器或該第二SFC控制器而被偵測; 該第一SFC控制器的該故障藉由該第二SFC控制器而被偵測;或 該第一SFC控制器的該故障由該第二SFC控制器使用該本地監視資訊而被預測。
  22. 如請求項20所述的WTRU,其中該第一SFC控制器的該故障由該第二SFC控制器基於以下任一項而被偵測: 在該第一SFC控制器與該第二SFC控制器之間傳訊一或更多週期性保活訊息; 允許偵測連接故障的一傳輸層機制;或 觀察在需要一編排動作的一事件時缺少來自該第一SFC控制器的動作。
  23. 如請求項15所述的WTRU,其中 該第一SFC控制器以及該第二SFC控制器中的至少一者是一分散式SFC偽控制器;或 該第一SFC控制器以及該第二SFC控制器中的至少一者是一集中式SFC控制器。
  24. 如請求項15所述的WTRU,其中該WTRU包括該第一SFC控制器以及該第二SFC控制器中的至少一者。
  25. 如請求項15所述的WTRU,其中 該處理器被配置為確定該第一SFC控制器不能作為該主SFC控制器進行操作, 該WTRU更包括一傳輸器以及一接收器,其中該傳輸器被配置為使用一SFC網路服務標頭(NSH)擴展以向至少該第二SFC控制器發送一通知訊息,並且該接收器被配置為在發送該通知訊息之後從至少該第二SFC控制器接收一回應訊息,以及 該處理器更配置為基於所接收的回應訊息選擇該第二SFC控制器作為該主SFC控制器。
TW110107839A 2020-03-06 2021-03-05 以分佈式sfc控制執行區域生命週期管理之方法及裝置 TW202139654A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202062986599P 2020-03-06 2020-03-06
US62/986,599 2020-03-06

Publications (1)

Publication Number Publication Date
TW202139654A true TW202139654A (zh) 2021-10-16

Family

ID=75267587

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110107839A TW202139654A (zh) 2020-03-06 2021-03-05 以分佈式sfc控制執行區域生命週期管理之方法及裝置

Country Status (5)

Country Link
US (1) US20230107614A1 (zh)
EP (1) EP4115567A1 (zh)
CN (1) CN115428410A (zh)
TW (1) TW202139654A (zh)
WO (1) WO2021178487A1 (zh)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9306801B2 (en) * 2014-04-24 2016-04-05 Aruba Networks, Inc. Select on of anchor controllers for client devices within a network environment

Also Published As

Publication number Publication date
CN115428410A (zh) 2022-12-02
WO2021178487A1 (en) 2021-09-10
EP4115567A1 (en) 2023-01-11
US20230107614A1 (en) 2023-04-06

Similar Documents

Publication Publication Date Title
CN111837371A (zh) 基于增强mptcp的应用移动性
KR20220054820A (ko) 에지 레졸루션 기능을 위한 방법들, 장치 및 시스템들
US12095848B2 (en) Transparent relocation of MEC application instances between 5G devices and MEC hosts
EP4104416A1 (en) Methods and apparatuses for enabling multi-host multipath secure transport with quic
US20230224778A1 (en) Methods, apparatuses and systems directed to a change of wtru to wtru relay
EP4132100A1 (en) Method and device for providing local data network information to terminal in wireless communication system
US20210266254A1 (en) Device to device forwarding
WO2019014426A1 (en) COMMUNICATION PATH MANAGEMENT
US20240251342A1 (en) Methods, architectures, apparatuses and systems for multiaccess edge computing applications on wireless transmit-receive units
US20230262117A1 (en) Methods, apparatus, and systems for enabling wireless reliability and availability in multi-access edge deployments
CN109314918B (zh) 通信系统中的寻呼系统和方法
KR20230150971A (ko) 다중 액세스 에지 컴퓨팅 시스템에서 제약된 다중 액세스 에지 컴퓨팅 호스트를 통합하기 위한 방법들, 장치들 및 시스템들
EP4315918A1 (en) Method and apparatus for efficient handling of the updates of serving/neighbor cell information
TW202139654A (zh) 以分佈式sfc控制執行區域生命週期管理之方法及裝置
WO2022006125A1 (en) Methods and devices for handling virtual domains
US20210243568A1 (en) Methods and apparatus for layer-2 forwarding of multicast packets
WO2020185588A1 (en) Methods and apparatuses for supporting resource mobility and volatility in fog environments
KR20240004739A (ko) 단말 기능 분배를 위한 방법 및 장치
WO2023215575A1 (en) Enabling xr service proxies
WO2022098804A1 (en) Methods, architectures, apparatuses and systems for service continuity for premises networks
WO2024148161A1 (en) Method and apparatus for edge group management
WO2022133076A1 (en) Methods, apparatuses and systems directed to wireless transmit/receive unit based joint selection and configuration of multi-access edge computing host and reliable and available wireless network
WO2021231760A1 (en) Methods and apparatus for transparent switching of service function identifiers
WO2023192310A1 (en) Methods and apparatus for mobility procedures for highly directional systems