TW202138843A - Antireflection film and image display device that comprises an antireflection layer comprising a plurality of thin films disposed on a film substrate - Google Patents

Antireflection film and image display device that comprises an antireflection layer comprising a plurality of thin films disposed on a film substrate Download PDF

Info

Publication number
TW202138843A
TW202138843A TW110108443A TW110108443A TW202138843A TW 202138843 A TW202138843 A TW 202138843A TW 110108443 A TW110108443 A TW 110108443A TW 110108443 A TW110108443 A TW 110108443A TW 202138843 A TW202138843 A TW 202138843A
Authority
TW
Taiwan
Prior art keywords
layer
refractive index
film
reflection
light
Prior art date
Application number
TW110108443A
Other languages
Chinese (zh)
Inventor
宮本幸大
髙見佳史
梨木智剛
Original Assignee
日商日東電工股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日東電工股份有限公司 filed Critical 日商日東電工股份有限公司
Publication of TW202138843A publication Critical patent/TW202138843A/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133502Antiglare, refractive index matching layers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/50OLEDs integrated with light modulating elements, e.g. with electrochromic elements, photochromic elements or liquid crystal elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Laminated Bodies (AREA)
  • Electroluminescent Light Sources (AREA)
  • Liquid Crystal (AREA)

Abstract

An antireflection film (100) comprises, on a film substrate (1), an antireflection layer (5) that comprises a plurality of thin films. The antireflection layer is a multilayer thin film containing at least one layer of low refractive index layer and one layer of high refractive index layer as thin films. For the antireflection film, the positively reflected light of a D65 light source irradiating on the antireflection layer is preferable when satisfying: (A) luminance reflectance Y2 of positively reflected light of 2DEG incident light and luminance reflectance Y[theta] of positively reflected light of [theta]DEG incident light for any angle [theta] in the range of 5-50DEG being Y[theta]/Y2 ≤ 6.0; and (B) chromaticity index a*2 and b*2 of positively reflected light of 2DEG incident light and chromaticity index a*[theta] and b*[theta] of positively reflected light of [theta]DEG incident light for any angle [theta] in the range of 5-50DEG being {(a*2-a*[theta])<SP>2<SP> + (b*2-b*[theta])<SP>2<SP>}<SP>1/2<SP> ≤ 6.0.

Description

抗反射膜及圖像顯示裝置Anti-reflection film and image display device

本發明係關於一種抗反射膜及圖像顯示裝置。The invention relates to an anti-reflection film and an image display device.

於液晶顯示器、有機EL(Electroluminescence,電致發光)顯示器等圖像顯示裝置之表面,有時為提高顯示圖像之視認性而設置抗反射膜。抗反射膜於膜基材上具備包含折射率不同之複數個薄膜之抗反射層。On the surface of image display devices such as liquid crystal displays and organic EL (Electroluminescence) displays, an anti-reflection film is sometimes provided to improve the visibility of the displayed image. The anti-reflection film is provided with an anti-reflection layer including a plurality of thin films with different refractive indexes on the film substrate.

由抗反射層帶來之光之反射特性通常藉由視感反射率(Y值)來評價。藉由減小比視感度(spectral luminous efficiency)較高之波長550nm附近之反射率,視感反射率變小。對於抗反射膜,不僅要求視感反射率小,還要求反射光色相為中性。The reflection characteristics of light brought by the anti-reflection layer are usually evaluated by the visual reflectance (Y value). By reducing the reflectance near the wavelength of 550nm, which is higher than the spectral luminous efficiency, the visual reflectance becomes smaller. For the anti-reflection film, not only the visual reflectance is required to be small, but also the hue of the reflected light is required to be neutral.

提出了不僅控制了自正面視認時之反射特性,而且控制了傾斜方向之反射光之特性之抗反射膜。例如,專利文獻1中揭示有一種抗反射膜,其對來自5~45°之所有角度之入射光的正反射光之色相處於規定範圍內。專利文獻2中提出了藉由以入射角度20~30°之範圍之色度變得最小之方式進行光學設計,而減小5~45°之範圍內之反射光之色差。 [先前技術文獻] [專利文獻]An anti-reflection film is proposed that not only controls the reflection characteristics when viewed from the front, but also controls the characteristics of the reflected light in the oblique direction. For example, Patent Document 1 discloses an anti-reflection film in which the hue of regular reflection light of incident light from all angles of 5 to 45° is within a predetermined range. Patent Document 2 proposes to reduce the chromatic aberration of reflected light in the range of 5 to 45° by performing optical design in such a way that the chromaticity in the range of incident angle of 20-30° is minimized. [Prior Technical Literature] [Patent Literature]

[專利文獻1]日本專利特開2004-138662號公報 [專利文獻2]日本專利特開2016-177183號公報[Patent Document 1] Japanese Patent Laid-Open No. 2004-138662 [Patent Document 2] Japanese Patent Laid-Open No. 2016-177183

[發明所欲解決之問題][The problem to be solved by the invention]

對於先前之抗反射膜,雖可減小特定之視認方向之反射率,但難以使得在較寬廣之視認方向上反射率之變化較小,並且難以減小反射光之顏色變化。 [解決問題之技術手段]For the previous anti-reflection film, although the reflectance of a specific viewing direction can be reduced, it is difficult to make the change of the reflectance smaller in a wider viewing direction, and it is difficult to reduce the color change of the reflected light. [Technical means to solve the problem]

抗反射膜於膜基材上具備包含複數個薄膜之抗反射層。抗反射層係包含低折射率層及高折射率層各自至少1層作為薄膜之多層薄膜。本發明之抗反射膜中,從抗反射層側照射之D65光源之正反射光滿足規定之特性。The anti-reflection film is provided with an anti-reflection layer including a plurality of thin films on the film substrate. The anti-reflection layer is a multilayer film including at least one of a low refractive index layer and a high refractive index layer as a thin film. In the anti-reflection film of the present invention, the regular reflection light of the D65 light source irradiated from the side of the anti-reflection layer satisfies the specified characteristics.

θ°入射光之正反射光之視感反射率Yθ 較佳為滿足:於5~50°之範圍之任意角度θ中,Yθ /Y2 ≦6.0。Y2 為2°入射光之正反射光之視感反射率。θ°入射光之正反射光之色度指數a* θ 及b* θ 較佳為滿足:於5~50°之範圍之任意角度θ中,由Δa* b* ={(a* 2 -a* θ )2 +(b* 2 -b* θ )21/2 所示之色度差Δa* b* 為Δa* b* ≦6.0。 [發明之效果] The visual reflectivity Y θ of the regular reflection light of the incident light of θ° preferably satisfies: Y θ /Y 2 ≦6.0 at any angle θ in the range of 5 to 50°. Y 2 is the visual reflectivity of the regular reflection of the incident light at 2°. The chromaticity index a * θ and b * θ of the regular reflection light of θ° is preferably satisfied: at any angle θ in the range of 5 to 50°, from Δa * b * = {(a * 2 -a * θ ) 2 +(b * 2 -b * θ ) 2 } The chromaticity difference Δa * b * shown in 1/2 is Δa * b * ≦6.0. [Effects of Invention]

藉由使用本發明之抗反射膜,能夠實現由視認方向引起之反射光之特性變化較少之圖像顯示。By using the anti-reflection film of the present invention, it is possible to realize image display with less changes in the characteristics of reflected light caused by the viewing direction.

[抗反射膜之構成] 圖1係模式性地表示一實施方式之抗反射膜之構成之剖視圖。抗反射膜100於膜基材1上具備抗反射層5。抗反射層5為複數個薄膜之積層體。圖1所示之抗反射層5為包含自膜基材1側起將高折射率層51、53、55與低折射率層52、54、56交替積層而成之6層薄膜之多層膜。[The composition of anti-reflective film] FIG. 1 is a cross-sectional view schematically showing the structure of an anti-reflection film according to an embodiment. The anti-reflection film 100 includes an anti-reflection layer 5 on the film substrate 1. The anti-reflection layer 5 is a laminate of a plurality of thin films. The anti-reflection layer 5 shown in FIG. 1 is a multilayer film including 6 layers of thin films formed by alternately laminating high refractive index layers 51, 53, 55 and low refractive index layers 52, 54, 56 from the film substrate 1 side.

<膜基材> 膜基材1包含撓性之膜10。膜基材1之厚度無特別限定,從強度、處理性等操作性、薄層性等觀點來看,較佳為5~300 μm左右,更佳為10~250 μm,進而較佳為20~200 μm。<Film base material> The film substrate 1 includes a flexible film 10. The thickness of the film substrate 1 is not particularly limited. From the viewpoints of strength, handleability, etc., workability, thin layer properties, etc., it is preferably about 5 to 300 μm, more preferably 10 to 250 μm, and still more preferably 20 to 200 μm.

作為膜10,通常使用透明膜。透明膜之可見光透過率較佳為80%以上,更佳為90%以上。作為構成膜10之樹脂材料,例如,可列舉出透明性、機械強度、及熱穩定性優異之熱塑性樹脂。作為此種熱塑性脂之具體例,可列舉出三乙酸纖維素等纖維素系樹脂、聚酯系樹脂、聚醚碸系樹脂、聚碸系樹脂、聚碳酸酯系樹脂、聚醯胺系樹脂、聚醯亞胺系樹脂、聚烯烴系樹脂、(甲基)丙烯酸系樹脂、環狀聚烯烴系樹脂(降𦯉烯系樹脂)、聚芳酯系樹脂、聚苯乙烯系樹脂、聚乙烯醇系樹脂、及其等之混合物。As the film 10, a transparent film is generally used. The visible light transmittance of the transparent film is preferably 80% or more, more preferably 90% or more. As the resin material constituting the film 10, for example, a thermoplastic resin excellent in transparency, mechanical strength, and thermal stability can be cited. Specific examples of such thermoplastic resins include cellulose-based resins such as cellulose triacetate, polyester-based resins, polyether-based resins, poly-based resins, polycarbonate-based resins, polyamide-based resins, Polyimide resins, polyolefin resins, (meth)acrylic resins, cyclic polyolefin resins (butene resins), polyarylate resins, polystyrene resins, polyvinyl alcohol Resins, and their mixtures.

較佳為於膜10之抗反射層5形成面側設置有硬塗層11。藉由在膜10之表面設置硬塗層11,能夠提高抗反射膜之硬度、彈性模量等機械特性。硬塗層11較佳為表面之硬度高、耐擦傷性優異者。Preferably, a hard coat layer 11 is provided on the side of the film 10 where the anti-reflection layer 5 is formed. By providing the hard coat layer 11 on the surface of the film 10, the mechanical properties such as the hardness and elastic modulus of the anti-reflection film can be improved. The hard coat layer 11 is preferably one having high surface hardness and excellent scratch resistance.

作為固化性樹脂,可列舉出熱固化型樹脂、紫外線固化型樹脂、電子束固化型樹脂等。作為固化性樹脂之種類,可列舉出聚酯系、丙烯酸系、氨基甲酸酯系、丙烯酸類氨基甲酸酯系、醯胺系、有機矽系、矽酸酯系、環氧系、三聚氰胺系、氧雜環丁烷系、丙烯酸類氨基甲酸酯系等各種樹脂。該等固化性樹脂可適宜地選擇一種或兩種以上來使用。Examples of curable resins include thermosetting resins, ultraviolet curing resins, electron beam curing resins, and the like. The types of curable resins include polyester, acrylic, urethane, acrylic urethane, amide, silicone, silicate, epoxy, and melamine. , Oxetane series, acrylic urethane series and other resins. One kind or two or more kinds of these curable resins can be appropriately selected and used.

硬塗層亦可為包含微粒子者。例如,可藉由使硬塗層包含微粒子而於硬塗層11之表面形成凹凸,從而使其具有防眩性。用於賦予防眩性之微粒子較佳為具有μm級之粒徑之微小顆粒。微小顆粒之平均粒徑較佳為0.5~10 μm,更佳為1~5 μm。藉由在硬塗層11之表面形成微細之凹凸,而有與設置於其上之抗反射層5(或底塗層3)之密接性提高之傾向。用於在硬塗層11之表面形成與底塗層3、抗反射層5等薄膜之密接性優異之凹凸之微粒子較佳為具有nm級之粒徑之奈米顆粒。奈米顆粒之平均粒徑較佳為10~150 nm,更佳為20~100 nm,進而較佳為25~80 nm。The hard coat layer may contain fine particles. For example, by making the hard coating layer contain fine particles, irregularities can be formed on the surface of the hard coating layer 11 to provide anti-glare properties. The fine particles used for imparting anti-glare properties are preferably fine particles having a particle size of the μm order. The average particle size of the fine particles is preferably 0.5-10 μm, more preferably 1-5 μm. By forming fine unevenness on the surface of the hard coat layer 11, the adhesion with the anti-reflection layer 5 (or the undercoat layer 3) provided thereon tends to be improved. The fine particles used to form the surface of the hard coat layer 11 with the unevenness of the film such as the primer layer 3 and the anti-reflection layer 5 with excellent adhesion are preferably nano particles having a particle size of the nm order. The average particle size of the nano particles is preferably 10 to 150 nm, more preferably 20 to 100 nm, and still more preferably 25 to 80 nm.

硬塗層11例如可藉由在膜10上塗佈含有固化性樹脂之溶液而形成。較佳為在用於形成硬塗層之溶液中調配有聚合起始劑。為了形成包含微粒子之防眩性硬塗層,較佳為將除固化性樹脂以外亦含有上述微粒子之溶液塗佈於透明膜上。溶液中可含有流平劑、觸變劑、抗靜電劑等添加劑。The hard coat layer 11 can be formed by coating a solution containing a curable resin on the film 10, for example. It is preferable to prepare a polymerization initiator in the solution for forming the hard coat layer. In order to form an anti-glare hard coat layer containing fine particles, it is preferable to apply a solution containing the above fine particles in addition to the curable resin on the transparent film. The solution may contain additives such as leveling agents, thixotropic agents, and antistatic agents.

硬塗層11之厚度無特別限定,為了實現高硬度,較佳為0.5 μm以上,更佳為1 μm以上。若考慮以塗佈方式形成之容易性,則硬塗層之厚度較佳為15 μm以下,更佳為10 μm以下。The thickness of the hard coat layer 11 is not particularly limited. In order to achieve high hardness, it is preferably 0.5 μm or more, and more preferably 1 μm or more. In consideration of the ease of formation by coating, the thickness of the hard coat layer is preferably 15 μm or less, and more preferably 10 μm or less.

<底塗層> 於膜基材1上亦可設置底塗層3,以提高抗反射層5之密接性等。作為構成底塗層3之材料,例如,可列舉出矽、鎳、鉻、銦、錫、金、銀、鉑、鋅、鈦、鎢、鋁、鋯、鈀等金屬;該等金屬之合金;該等金屬之氧化物、氟化物、硫化物或氮化物等。其中,底塗層之材料較佳為無機氧化物層,亦可為氧量比化學計量組成少之氧化物。<Undercoating> A primer layer 3 can also be provided on the film substrate 1 to improve the adhesion of the anti-reflection layer 5 and the like. As the material constituting the undercoat layer 3, for example, metals such as silicon, nickel, chromium, indium, tin, gold, silver, platinum, zinc, titanium, tungsten, aluminum, zirconium, and palladium; alloys of these metals can be cited; Oxides, fluorides, sulfides or nitrides of these metals. Among them, the material of the undercoat layer is preferably an inorganic oxide layer, and may also be an oxide with less oxygen than the stoichiometric composition.

底塗層3之厚度例如為1~20 nm左右,較佳為2~15 nm,更佳為3~15 nm。只要底塗層之膜厚處於上述範圍,則能夠兼顧密接性提高及透光性。The thickness of the undercoat layer 3 is, for example, about 1-20 nm, preferably 2-15 nm, more preferably 3-15 nm. As long as the film thickness of the undercoat layer is in the above range, it is possible to achieve both improved adhesion and light transmittance.

<抗反射層> 抗反射層5為折射率不同之複數個薄膜之積層體。再者,本說明書中,「折射率」於未特別說明之情況下為波長550 nm下之折射率。<Anti-reflective layer> The anti-reflection layer 5 is a laminate of a plurality of thin films with different refractive indexes. Furthermore, in this specification, the "refractive index" is the refractive index at a wavelength of 550 nm unless otherwise specified.

藉由將折射率不同之複數個薄膜積層,能夠於可見光之寬波帶之波長範圍內減小反射率。作為構成抗反射層5之薄膜,較佳為包含金屬或半金屬之氧化物、氮化物、氟化物等之陶瓷材料。構成抗反射層5之薄膜亦可為藉由使樹脂黏合劑中含有高折射率或低折射率之微粒子而調整了折射率之薄膜。By laminating a plurality of thin films with different refractive indexes, the reflectance can be reduced in the wide wavelength range of visible light. As the thin film constituting the anti-reflection layer 5, a ceramic material containing metal or semi-metal oxide, nitride, fluoride, or the like is preferable. The film constituting the anti-reflection layer 5 may also be a film whose refractive index is adjusted by containing fine particles of high refractive index or low refractive index in the resin adhesive.

低折射率層52、54、56例如折射率為1.6以下,較佳為1.5以下。作為低折射率材料,可列舉出氧化矽、氮化鈦、氟化鎂、氟化鋇、氟化鈣、氟化鉿、氟化鑭等。The low refractive index layers 52, 54, 56 have, for example, a refractive index of 1.6 or less, preferably 1.5 or less. Examples of the low refractive index material include silicon oxide, titanium nitride, magnesium fluoride, barium fluoride, calcium fluoride, hafnium fluoride, and lanthanum fluoride.

高折射率層51、53、53例如折射率為1.8以上,較佳為1.9以上。作為高折射率材料,可列舉出氧化鈦、氧化鈮、氧化鋯、氧化鉭、氧化鋅、氧化銦、氧化銦錫(ITO)、銻摻雜氧化錫(ATO)、氮化矽、氮氧化矽等。The high refractive index layers 51, 53, 53 have, for example, a refractive index of 1.8 or more, preferably 1.9 or more. Examples of high refractive index materials include titanium oxide, niobium oxide, zirconium oxide, tantalum oxide, zinc oxide, indium oxide, indium tin oxide (ITO), antimony-doped tin oxide (ATO), silicon nitride, silicon oxynitride Wait.

抗反射層5較佳為高折射率層與低折射率層之交替積層體。為了降低空氣界面處之反射,作為抗反射層5之最外層(最遠離膜基材1之層)設置之薄膜56較佳為低折射率層。抗反射層除了包含低折射率層及高折射率層以外,還可以包含具有高折射率層與低折射率層之中間折射率之中折射率層。中折射率層之折射率例如為1.6~1.9左右。The anti-reflection layer 5 is preferably an alternate laminate of a high refractive index layer and a low refractive index layer. In order to reduce the reflection at the air interface, the thin film 56 provided as the outermost layer of the anti-reflection layer 5 (the layer farthest from the film substrate 1) is preferably a low refractive index layer. In addition to the low refractive index layer and the high refractive index layer, the anti-reflection layer may also include a middle refractive index layer having a high refractive index layer and a low refractive index layer. The refractive index of the middle refractive index layer is, for example, about 1.6 to 1.9.

高折射率層及低折射率層之膜厚各自為5~200 nm左右,較佳為10~150 nm左右。只要根據折射率、積層構成等,以可見光之反射率變小之方式設計各層之膜厚即可。The film thickness of the high refractive index layer and the low refractive index layer are each about 5 to 200 nm, preferably about 10 to 150 nm. It is only necessary to design the film thickness of each layer in such a way that the reflectance of visible light becomes small according to the refractive index, the build-up layer structure, and the like.

構成抗反射層5之薄膜之成膜方法無特別限定,可為濕塗法、乾塗法中之任一者。從能夠形成膜厚均勻之薄膜之方面來看,較佳為真空蒸鍍、CVD(Chemical Vapor Deposition,化學氣相沈積)、濺射、電子束蒸鍍等乾塗法。其中,從膜厚之均勻性優異之方面來看,較佳為濺射法。The film forming method of the thin film constituting the anti-reflection layer 5 is not particularly limited, and may be either a wet coating method or a dry coating method. In terms of being able to form a thin film with a uniform thickness, dry coating methods such as vacuum evaporation, CVD (Chemical Vapor Deposition), sputtering, and electron beam evaporation are preferred. Among them, the sputtering method is preferred from the viewpoint of excellent film thickness uniformity.

<抗反射層上之附加層> 抗反射膜亦可於抗反射層5上具備附加之功能層。例如,為了防止來自外部環境之污染或容易去除附著之污染物質等,亦可於抗反射層5上設置有防污層(未圖示)。<Additional layer on the anti-reflective layer> The anti-reflection film may also have an additional functional layer on the anti-reflection layer 5. For example, in order to prevent pollution from the external environment or easily remove attached contaminants, an anti-fouling layer (not shown) may be provided on the anti-reflection layer 5.

於抗反射膜之表面設置防污層之情形時,從降低界面處之反射之觀點來看,較佳為抗反射層5之最表面之低折射率層56與防污層之折射率差小。防污層之折射率較佳為1.6以下,更佳為1.55以下。作為防污層之材料,較佳為含氟基之矽烷系化合物、含氟基之有機化合物等。防污層可藉由逆轉塗佈法、模塗法、凹版塗佈法等濕塗法、真空蒸鍍法、CVD法等乾塗法等而形成。防污層之厚度通常為1~100 nm左右,較佳為2~50 nm,更佳為3~30 nm。When an anti-fouling layer is provided on the surface of the anti-reflective film, from the viewpoint of reducing the reflection at the interface, it is preferable that the difference in refractive index between the low-refractive index layer 56 on the outermost surface of the anti-reflective layer 5 and the anti-fouling layer is small . The refractive index of the antifouling layer is preferably 1.6 or less, more preferably 1.55 or less. As the material of the antifouling layer, fluorine-containing silane-based compounds, fluorine-containing organic compounds, etc. are preferred. The antifouling layer can be formed by a wet coating method such as a reverse coating method, a die coating method, and a gravure coating method, a vacuum vapor deposition method, a dry coating method such as a CVD method, or the like. The thickness of the antifouling layer is usually about 1-100 nm, preferably 2-50 nm, more preferably 3-30 nm.

[反射光之特性] 抗反射膜較佳為因視認角度引起之反射光之特性變化較小。光之特性可藉由色相、彩度及亮度這3個指標進行評價。反射光之特性依賴於照射之光之光譜。以下,提及對抗反射膜之抗反射層5側(與膜基材1處於相反側)之面照射了CIE標準光源D65時之反射光之特性。[Characteristics of reflected light] The anti-reflection film preferably has a smaller change in the characteristics of the reflected light caused by the viewing angle. The characteristics of light can be evaluated by the three indicators of hue, chroma and brightness. The characteristics of reflected light depend on the spectrum of the irradiated light. Hereinafter, the characteristics of the reflected light when the surface of the anti-reflection film on the side of the anti-reflection layer 5 (the side opposite to the film base 1) is irradiated with the CIE standard light source D65 will be mentioned.

從抗反射層5側入射光並測定反射光時,背面側(膜基材1與空氣之界面)之可見光之反射率為4%左右,大半為來自背面之反射光。為了排除背面反射之影響,於反射光之特性之評價中使用在膜基材1之背面側(與抗反射層5之形成面為相反側之面)貼合有黑色膜或黑色板之試樣。When light is incident from the side of the anti-reflection layer 5 and the reflected light is measured, the reflectance of visible light on the back side (the interface between the film substrate 1 and the air) is about 4%, and most of it is the reflected light from the back. In order to eliminate the influence of back reflection, a sample with a black film or a black plate attached to the back side of the film substrate 1 (the surface opposite to the surface where the anti-reflection layer 5 is formed) is used in the evaluation of the characteristics of the reflected light .

<視感反射率> 視感反射率Y為表示反射光之亮度之指標,為XYZ表色系統(或Yxy表色系統)中之Y值。視感反射率Y以完全反射體之Y值成為100%之方式被標準化。<Vision reflectivity> The visual reflectance Y is an indicator of the brightness of the reflected light, which is the Y value in the XYZ color system (or Yxy color system). The visual reflectance Y is standardized so that the Y value of the complete reflector becomes 100%.

通常,抗反射膜以從正面照射光時之反射率變小之方式設計,有入射角度θ越大,正反射光之反射率越變大之傾向。從減小伴隨光之入射角度(視認方向)之變化所產生之反射光量之差的觀點來看,較佳為2°入射光之正反射光之視感反射率Y2 與θ°入射光之正反射光之視感反射率Yθ 的比Yθ /Y2 於θ=5~50°之任意入射角度θ下為6.0以下。Yθ /Y2 於θ=5~50°之範圍下更佳為5.5以下,進而較佳為5.0以下,尤佳為4.5以下。Generally, the anti-reflection film is designed in such a way that the reflectance of the light is reduced from the front, and the greater the incident angle θ, the greater the reflectance of the specular reflected light. From the viewpoint of reducing the difference in the amount of reflected light caused by the change in the incident angle (visual recognition direction) of the light, it is preferably the difference between the apparent reflectivity Y 2 of the regular reflection light of the 2° incident light and the θ° incident light The ratio Y θ /Y 2 of the visual reflectance Y θ of regular reflection light is 6.0 or less at any incident angle θ of θ=5-50°. Y θ /Y 2 is more preferably 5.5 or less in the range of θ=5-50°, still more preferably 5.0 or less, and particularly preferably 4.5 or less.

2°入射光之正反射光之視感反射率Y2 較佳為1.0%以下,更佳為0.9%以下,進而較佳為0.8%以下。Y2 較佳為儘可能小,但若以對特定方向之入射光之反射率變小之方式進行光學設計,則有入射角度θ變化時之反射率變化變大之情形。因此,Y2 亦可為0.1%以上、0.2%以上、或0.3%以上。 The visual reflectance Y 2 of the regular reflection light of 2° incident light is preferably 1.0% or less, more preferably 0.9% or less, and still more preferably 0.8% or less. Y 2 is preferably as small as possible. However, if the optical design is performed in such a way that the reflectance of incident light in a specific direction is reduced, the change in reflectance may become larger when the incident angle θ changes. Therefore, Y 2 may be 0.1% or more, 0.2% or more, or 0.3% or more.

從無論視認方向如何均可降低環境光之反射從而提高視認性之觀點來看,θ°入射光之正反射光之視感反射率Yθ 於5~50°之範圍之任意角度θ中較佳為3.0%以下,更佳為2.5%以下。From the viewpoint of reducing the reflection of ambient light and improving visibility regardless of the viewing direction, the visual reflectivity Y θ of the regular reflection light of θ° incident light is preferably at any angle θ in the range of 5-50° It is 3.0% or less, more preferably 2.5% or less.

<色度指數> 於CIELAB色彩空間(L* a* b* 色彩空間)中,用L* 表示亮度,用色度指數a* 及b* 表示色相及彩度。a* 及b* 為0時為無彩色,+a* 表示紅色方向,-a* 表示綠色方向,+b* 表示黃色方向,-b* 表示藍色方向。與圖2所示之a* b* 平面中,半徑方向與彩度相對應,圓周方向與色相相對應。<Chromaticity Index> In the CIELAB color space (L * a * b * color space), L * is used to represent brightness, and chromaticity indices a * and b * are used to represent hue and saturation. When a * and b * are 0, it is achromatic, +a * indicates the red direction, -a * indicates the green direction, +b * indicates the yellow direction, and -b * indicates the blue direction. In the a * b * plane shown in Figure 2, the radial direction corresponds to the chroma, and the circumferential direction corresponds to the hue.

由C* ={(a* )2 +(b* )21/2 所定義之彩度表示著色之程度,C* 為0時為無彩色,C* 越大,著色越大。將色彩空間投影至a* b* 平面空間時之2點間之距離越大,意味著2種光之顏色之差異越大。The chroma defined by C * = {(a * ) 2 +(b * ) 2 } 1/2 indicates the degree of coloring. When C * is 0, it is achromatic. The larger the C *, the greater the coloring. When the color space is projected to a * b * plane space, the greater the distance between two points, the greater the difference between the colors of the two lights.

從減小伴隨光之入射角度(視認方向)之變化所產生之反射光之顏色差異的觀點來看,2°入射光之正反射光之色度指數a* 2 及b* 2 與θ°入射光之正反射光之色度指數a* θ 及b* θ 較佳為於θ=5~50°之範圍之任意角度θ下滿足Δa* b* ≦6.0。如圖2所示,Δa* b* 為2°入射光之正反射光(A)與θ°入射光之正反射光於a* b* 平面中之距離,由Δa* b* ={(a* 2 -a* θ )2 +(b* 2 -b* θ )21/2 表示。以下有時將Δa* b* 稱為「色度差」。色度差Δa* b* 於θ=5~50°之範圍下更佳為5.5以下,進而較佳為5.0以下,尤佳為4.5以下。Δa* b* 亦可為4.0以下、3.5以下或3.0以下。From the viewpoint of reducing the color difference of the reflected light caused by the change of the incident angle of the light (visual recognition direction), the chromaticity index of the regular reflected light of 2° incident light is a * 2 and b * 2 and θ° incident The chromaticity indices a * θ and b * θ of light specular reflection light are preferably satisfying Δa * b * ≦6.0 at any angle θ in the range of θ=5-50°. As shown in Figure 2, Δa * b * is the distance between the regular reflection light (A) of 2° incident light and the regular reflection light of θ° incident light in a * b * plane, which is defined by Δa * b * = {(a * 2 -a * θ ) 2 +(b * 2 -b * θ ) 21/2 . Hereinafter, Δa * b * may be referred to as "chromaticity difference". The chromaticity difference Δa * b * is more preferably 5.5 or less in the range of θ=5-50°, further preferably 5.0 or less, and particularly preferably 4.5 or less. Δa * b * may be 4.0 or less, 3.5 or less, or 3.0 or less.

2°入射光之正反射光之彩度C* 較佳為5.0以下,更佳為4.0以下,進而較佳為3.0以下。2°入射光之正反射光之彩度C* 亦可為2.5以下或2.0以下。 The chroma C* of the regular reflection light of 2° incident light is preferably 5.0 or less, more preferably 4.0 or less, and still more preferably 3.0 or less. The chroma C* of the regular reflection light of 2° incident light can also be 2.5 or less or 2.0 or less.

從無論視認方向如何均能使反射光為中性色從而抑制著色之觀點來看,θ°入射光之正反射光之彩度C* 於5~50°之範圍之任意角度θ中較佳為9.0以下,更佳為7.0以下,尤佳為5.0以下。Regardless of the visual recognition direction can have a neutral color light reflected thereby suppressing the coloration of view, the regular reflection light of incident light θ ° chroma C * of any angle in the range of 5 ~ 50 ° of θ is preferably in the 9.0 or less, more preferably 7.0 or less, and particularly preferably 5.0 or less.

<抗反射層之光學設計> 藉由適當地設計構成抗反射層之薄膜之膜厚,可得到具有上述特性之抗反射膜。反射光之特性(光譜)可藉由光學模型計算來準確地評價。作為藉由光學計算求出多層光學薄膜之反射光譜之方法,已知有對薄膜之各個界面反覆應用薄膜干涉之公式並將經多重反射之波全部相加之方法;及考慮麥克斯韋方程式之邊界條件並藉由傳輸矩陣計算反射光譜之方法等。<Optical design of anti-reflection layer> By appropriately designing the film thickness of the film constituting the anti-reflection layer, an anti-reflection film having the above-mentioned characteristics can be obtained. The characteristics (spectrum) of the reflected light can be accurately evaluated by the calculation of the optical model. As a method for obtaining the reflection spectrum of a multilayer optical film by optical calculation, it is known to repeatedly apply a film interference formula to each interface of the film and add all the multiple reflected waves; and consider the boundary conditions of Maxwell's equation And the method of calculating the reflection spectrum by the transmission matrix, etc.

對複數個入射角度θ計算入射D65光源時之正反射光之反射光譜,對各個θ根據反射光譜算出視感反射率Y、以及色度指數a* 及b* 。藉由在變更構成抗反射層之薄膜之膜厚下反覆實施該等光學計算,可實現薄膜之設定膜厚之最佳化,得到反射光滿足上述特性之抗反射膜。Calculate the reflectance spectrum of the specular reflection light when entering the D65 light source for a plurality of incident angles θ, and calculate the visual reflectance Y and the chromaticity index a * and b * from the reflectance spectrum for each θ. By repeatedly performing these optical calculations while changing the film thickness of the film constituting the anti-reflection layer, the optimization of the set film thickness of the film can be realized, and an anti-reflection film whose reflected light satisfies the above-mentioned characteristics can be obtained.

於構成抗反射層之薄膜數較少之情形時,難以按照於θ=5~50°之任意之範圍下Yθ /Y2 及Δa* b* 之兩者變小之方式設計膜厚。如下述實施例所示,抗反射層之積層數(薄膜之總數)較大之情形時,無論構成抗反射層之材料如何,均可以Yθ /Y2 及Δa* b* 之兩者變小之方式設計薄膜之膜厚。抗反射層較佳為包含低折射率層及高折射率層共計5層以上,較佳為包含3層以上低折射率層。抗反射層更較佳為包含低折射率層及高折射率層共計6層以上。When the number of films constituting the anti-reflection layer is small, it is difficult to design the film thickness in such a way that both Y θ /Y 2 and Δa * b * become smaller in an arbitrary range of θ=5-50°. As shown in the following examples, when the number of layers of the anti-reflection layer (total number of films) is large, regardless of the material constituting the anti-reflection layer, both Y θ /Y 2 and Δa * b * can be reduced The way to design the film thickness of the film. The anti-reflection layer preferably includes a total of five or more layers of a low refractive index layer and a high refractive index layer, and preferably includes three or more low refractive index layers. The anti-reflection layer more preferably includes a total of 6 or more layers of a low refractive index layer and a high refractive index layer.

從減小視感反射率Y之觀點來看,抗反射層較佳為低折射率層與高折射率層之折射率差較大。低折射率層與高折射率層之折射率差較佳為0.30以上,更佳為0.35以上,進而較佳為0.40以上。From the viewpoint of reducing the visual reflectance Y, it is preferable that the anti-reflection layer has a large refractive index difference between the low refractive index layer and the high refractive index layer. The refractive index difference between the low refractive index layer and the high refractive index layer is preferably 0.30 or more, more preferably 0.35 or more, and still more preferably 0.40 or more.

低折射率層之折射率較佳為1.50以下,更佳為1.48以下,進而較佳為1.47以下。低折射率層之折射率通常為1.00以上,亦可為1.20以上、1.30以上或1.35以上。高折射率層之折射率較佳為1.80以上,更佳為1.84以上,進而較佳為1.87以上。高折射率層之折射率通常為3.00以下,亦可為2.50以下、2.40以下或2.30以下。高折射率層之波長400 nm下之折射率較佳為1.84~2.55、更佳為1.88~2.50。高折射率層之波長700 nm下之折射率較佳為1.78~2.35,更佳為1.80~2.30。The refractive index of the low refractive index layer is preferably 1.50 or less, more preferably 1.48 or less, and still more preferably 1.47 or less. The refractive index of the low refractive index layer is usually 1.00 or higher, but may also be 1.20 or higher, 1.30 or higher, or 1.35 or higher. The refractive index of the high refractive index layer is preferably 1.80 or higher, more preferably 1.84 or higher, and still more preferably 1.87 or higher. The refractive index of the high refractive index layer is usually 3.00 or less, and may also be 2.50 or less, 2.40 or less, or 2.30 or less. The refractive index of the high refractive index layer at a wavelength of 400 nm is preferably 1.84-2.55, more preferably 1.88-2.50. The refractive index of the high refractive index layer at a wavelength of 700 nm is preferably 1.78-2.35, more preferably 1.80-2.30.

若減小波長550 nm附近之反射率,則有視感反射率Y變小之傾向。另一方面,有如下傾向:若以波長550 nm附近之反射率成為最小之方式進行光學設計,則其他波長下之反射率變大,反射光之色度指數a* 及/或b* 變大,反射光著色。If the reflectance near the wavelength of 550 nm is reduced, the visual reflectance Y tends to decrease. On the other hand, there is a tendency that if the optical design is performed in such a way that the reflectance near the wavelength of 550 nm is minimized, the reflectance at other wavelengths will increase, and the chromaticity index a * and/or b * of the reflected light will increase. , Reflected light coloring.

為了降低反射光之著色,較佳為於可見光之寬廣波長範圍下反射率相同。構成抗反射層之薄膜之折射率之波長依存小之情形時,有由波長引起之反射率之變化變小,反射光之彩度變小(中性化)之傾向。於使用折射率之波長色散大之材料之情形時,亦能夠以反射光之著色變小之方式實施光學設計,但若薄膜之膜厚稍微不同,則有時會發生反射光之著色。從提高光學設計之自由度、並且確保膜厚之可允許範圍(Process Margin)之觀點來看,構成抗反射層之薄膜較佳為折射率之波長色散(伴隨波長變化所產生之折射率之變化)小。In order to reduce the coloration of the reflected light, it is preferable that the reflectance is the same in a wide wavelength range of visible light. When the wavelength dependence of the refractive index of the film constituting the anti-reflection layer is small, the change in reflectance caused by the wavelength becomes smaller, and the chroma of the reflected light becomes smaller (neutralized). In the case of using materials with large refractive index wavelength dispersion, optical design can also be implemented in a way that the color of the reflected light becomes smaller, but if the film thickness of the film is slightly different, the color of the reflected light may sometimes occur. From the viewpoint of increasing the degree of freedom of optical design and ensuring the allowable range of film thickness (Process Margin), the film constituting the anti-reflection layer is preferably the wavelength dispersion of the refractive index (the change of the refractive index caused by the wavelength change) )small.

高折射率層之阿貝數νD 較佳為20以上,更佳為23以上,進而較佳為25以上。對於阿貝數νD ,使用波長589 nm下之折射率nD 、波長486 nm下之折射率nF 、及波長656 nm下之折射率nC ,由νD =(nD -1)/(nF -nC )表示。阿貝數νD 越大,折射率之波長色散越小。高折射率層之阿貝數νD 之上限無特別限定,就通常之陶瓷材料而言,有阿貝數νD 越大(折射率之波長色散越小),折射率變得越小之傾向。從充分提高高折射率層之折射率從而減小反射率之觀點來看,高折射率層之阿貝數νD 較佳為40以下,更佳為30以下,進而較佳為28以下。 The Abbe number ν D of the high refractive index layer is preferably 20 or more, more preferably 23 or more, and still more preferably 25 or more. The Abbe number ν D, a refractive index n D at the wavelength of 589 nm, a refractive index n F of the wavelength of 486 nm, a refractive index n C, and at a wavelength of 656 nm, the ν D = (n D -1) / (n F -n C ) means. The larger the Abbe number ν D , the smaller the wavelength dispersion of the refractive index. The upper limit of the Abbe number ν D of the high refractive index layer is not particularly limited. For ordinary ceramic materials, the larger the Abbe number ν D (the smaller the wavelength dispersion of the refractive index), the smaller the refractive index becomes. . From the viewpoint of sufficiently increasing the refractive index of the high refractive index layer to reduce the reflectance, the Abbe number ν D of the high refractive index layer is preferably 40 or less, more preferably 30 or less, and even more preferably 28 or less.

對於抗反射層,考慮各個薄膜之折射率、積層數等,以使反射光滿足上述特性之方式來設定各個薄膜之膜厚即可。如上所述,藉由使用光學模型來計算抗反射膜之反射光譜,能夠使抗反射層之膜厚最佳化。For the anti-reflection layer, considering the refractive index of each film, the number of layers, etc., the film thickness of each film may be set so that the reflected light satisfies the above-mentioned characteristics. As described above, by using the optical model to calculate the reflection spectrum of the anti-reflection film, the film thickness of the anti-reflection layer can be optimized.

[抗反射膜之使用形態] 抗反射膜配置於例如液晶顯示器、有機EL顯示器等圖像顯示裝置之表面而使用。例如,藉由在包含液晶單元、有機EL單元等圖像顯示介質之面板之視認側表面配置抗反射膜,能夠降低外部光之反射從而提高圖像顯示裝置之視認性。亦可將抗反射膜與其他膜積層。例如,藉由在膜基材1之與抗反射層形成面相反之側貼合偏光件,能夠形成帶抗反射層之偏光板。[Use form of anti-reflective film] The anti-reflection film is disposed on the surface of image display devices such as liquid crystal displays and organic EL displays for use. For example, by disposing an anti-reflection film on the visible side surface of a panel containing image display media such as liquid crystal cells, organic EL cells, etc., the reflection of external light can be reduced and the visibility of the image display device can be improved. It is also possible to laminate the anti-reflection film with other films. For example, by bonding a polarizer on the side opposite to the surface where the anti-reflection layer of the film base 1 is formed, a polarizing plate with an anti-reflection layer can be formed.

本發明之抗反射膜之由視認方向引起之反射光之特性差較小,因此即使在改變視認方向之情形時,反射光之特性變化亦較小,能夠使圖像顯示裝置均勻化。 [實施例]The anti-reflection film of the present invention has a small difference in the characteristics of the reflected light caused by the viewing direction, so even when the viewing direction is changed, the change in the characteristics of the reflected light is small, and the image display device can be made uniform. [Example]

以下,示出藉由光學模型計算來算出抗反射膜之反射光之各特性之例。Hereinafter, an example of calculating the characteristics of the reflected light of the anti-reflection film by calculation with an optical model is shown.

[反射光之特性之評價方法] 以於波長380~780 nm之範圍之每1 nm為單位,藉由光學模型計算算出對抗反射膜以入射角度θ°入射波長λ之光時之正反射率,求出反射率光譜R(λ)。[Evaluation method of reflected light characteristics] With the unit of 1 nm in the wavelength range of 380 ~ 780 nm, the optical model is used to calculate the normal reflectance of the anti-reflective film when the light of the wavelength λ is incident at the angle of incidence θ°, and the reflectance spectrum R(λ) is calculated .

使得到之正反射率光譜R(λ)乘以CIE標準光源D65之光譜,得到反射光之光譜。根據得到之反射光光譜,算出視感反射率Y、以及CIELAB表色系統之色度指數a* 及b* ,根據a* 及b* 之數值算出彩度C* ={(a* )2 +(b* )21/2Multiply the obtained spectra R(λ) by the spectrum of CIE standard light source D65 to obtain the spectrum of reflected light. The reflected light spectrum obtained, the luminous reflectance was calculated Y, and the color index of the CIELAB color system, a * and b *, chroma calculated C * = {(a *) 2 The values of a * and b * + (b * ) 21/2 .

以入射角2°、及入射角度θ=5~50°之範圍之每5°為單位實施上述之評價,算出2°入射光之正反射光之視感反射率Y2 與θ°入射光之正反射光之視感反射率Yθ 的比Yθ /Y2 、及2°入射光之正反射光與θ°入射光之正反射光於a* b* 平面中之距離Δa* b* ={(a* 2 -a* θ )2 +(b* 2 -b* θ )21/2Carry out the above evaluation with the incident angle of 2° and the incident angle of θ=5~50° in the range of 5° as the unit, and calculate the apparent reflectance Y 2 of the 2 ° incident light and the θ° incident light. The ratio of the apparent reflectance Y θ of the regular reflected light Y θ /Y 2 , and the distance between the regular reflected light of 2° incident light and the regular reflected light of θ° incident light in a * b * plane Δa * b * = {(A * 2 -a * θ ) 2 +(b * 2 -b * θ ) 2 } 1/2 .

<薄膜之折射率> 各實施例及比較例中,使用氧化矽(SiO2 )作為低折射率層,使用氧化鈮(Nb2 O5 )、氧化鈦(TiO2 )、氮化矽(Si3 N4 )、氮氧化矽(SiON)作為高折射率層。對於氮氧化矽,改變濺射成膜時之氧導入量,形成氧量相對較少之SiON(1)及氧量相對較多之SiON(2)之2種薄膜,使用由光譜型橢偏儀測定出之折射率。其以外之薄膜之折射率使用數據庫之值。將各個薄膜於波長400 nm、500 nm及700 nm下之折射率n400 、n550 、n700 、以及阿貝數νD 示於表1。<The refractive index of the thin film> In the examples and comparative examples, silicon oxide (SiO 2 ) was used as the low refractive index layer, and niobium oxide (Nb 2 O 5 ), titanium oxide (TiO 2 ), and silicon nitride (Si 3) were used as the low refractive index layer. N 4 ) and silicon oxynitride (SiON) are used as the high refractive index layer. For silicon oxynitride, the amount of oxygen introduced during sputtering film formation is changed to form two thin films of SiON(1) with relatively small oxygen content and SiON(2) with relatively large oxygen content, using a spectroscopic ellipsometer The measured refractive index. The refractive index of other films uses the value of the database. The refractive index n 400 , n 550 , n 700 and Abbe number ν D of each film at wavelengths of 400 nm, 500 nm, and 700 nm are shown in Table 1.

[表1]    折射率 vD n400 n550 n700 低折射率層 SiO2 1.474 1.463 1.459 68.3 高折射率層 Nb2 O5 2.481 2.325 2.271 15.8 TiO2 2.820 2.543 2.467 11.9 Si3 N4 2.001 1.941 1.917 26.0 SiON(1) 1.895 1.845 1.826 27.9 SiON(2) 1.790 1.750 1.734 30.7 [Table 1] Refractive index v D n 400 n 550 n 700 Low refractive index layer SiO 2 1.474 1.463 1.459 68.3 High refractive index layer Nb 2 O 5 2.481 2.325 2.271 15.8 TiO 2 2.820 2.543 2.467 11.9 Si 3 N 4 2.001 1.941 1.917 26.0 SiON(1) 1.895 1.845 1.826 27.9 SiON(2) 1.790 1.750 1.734 30.7

<實施例1> 對抗反射膜實施上述光學模擬,該抗反射膜係於硬塗膜之丙烯酸系硬塗層上具備將8.2 nm之氧化鈮層、42.2 nm之氧化矽層、24.6 nm之氧化鈮層、18.6 nm之氧化矽層、80.8 nm之氧化鈮層、10.8 nm之氧化矽層、25.6 nm之氧化鈮層、及25.6 nm之氧化矽層依次積層而成之8層構成之抗反射層,並於該抗反射層上具備厚度5 nm之由氟系樹脂形成之防污層。硬塗膜(丙烯酸系硬塗層)及包含氟系樹脂之防污層之折射率使用藉由光譜型橢偏儀得到之實測值(硬塗層於波長550 nm下之折射率為1.54,防污層於波長550 nm下之折射率為1.32)。於光學模擬中,為了排除背面反射之影響,將硬塗膜之膜基材之厚度設為∞。<Example 1> The anti-reflective film is implemented with the above-mentioned optical simulation. The anti-reflective film is provided with a 8.2 nm niobium oxide layer, 42.2 nm silicon oxide layer, 24.6 nm niobium oxide layer, and 18.6 nm acrylic hard coat on the hard coat film. A silicon oxide layer, a niobium oxide layer of 80.8 nm, a silicon oxide layer of 10.8 nm, a niobium oxide layer of 25.6 nm, and a silicon oxide layer of 25.6 nm are sequentially stacked to form an 8-layer anti-reflection layer, and the anti-reflection layer An antifouling layer made of fluorine-based resin with a thickness of 5 nm is provided on the layer. The refractive index of the hard coat film (acrylic hard coat) and the antifouling layer containing fluorine resin is measured by a spectroscopic ellipsometer (the refractive index of the hard coat at a wavelength of 550 nm is 1.54, and the antifouling The refractive index of the dirty layer at a wavelength of 550 nm is 1.32). In the optical simulation, in order to eliminate the influence of back reflection, the thickness of the film substrate of the hard coat film is set to ∞.

<實施例2~7、比較例1、2> 對將高折射率層之材料、積層構成(構成抗反射(AR)層之薄膜之總數)及各層之膜厚變更為表2所示那樣之抗反射膜實施與實施例1同樣之光學模擬。<Examples 2-7, Comparative Examples 1, 2> The same optical simulation as in Example 1 was performed on the material of the high refractive index layer, the multilayer structure (the total number of films constituting the anti-reflection (AR) layer), and the film thickness of each layer were changed to the anti-reflection film shown in Table 2.

[評價結果] 將實施例1~7及比較例1、2之抗反射膜之構成及光學模擬之結果示於表2。表2中,各層之厚度之數值單位為 nm,自靠近膜基材之側起記載為第1層、第2層、第3層…。反射光之特性示出了θ=2°(正面)、及θ=20°、40°、50°之結果。[Evaluation results] Table 2 shows the structure of the anti-reflection film of Examples 1 to 7 and Comparative Examples 1 and 2 and the results of optical simulation. In Table 2, the numerical unit of the thickness of each layer is nm, and it is described as the first layer, the second layer, the third layer... from the side close to the film substrate. The characteristics of the reflected light show the results of θ=2° (front side), and θ=20°, 40°, and 50°.

[表2]    積層構成 反射光特性 防污 層 SiO2 高折射 率層 SiO2 高折射 率層 SiO2 高折射 率層 SiO2 高折射 率層 θ (°) Y (%) a* b* C* Yθ /Y2 ∆a*b* 第8層 第7層 第6層 第5層 第4層 第3層 第2層 第1層 實施例1 高折射率層: Nb2 O5 AR 8層 5 87.5 25.6 10.8 80.8 18.6 24.6 42.2 8.2 2 0.50 0.45 0.00 0.45 - - 20 0.52 1.28 0.96 1.60 1.04 1.27 40 1.09 2.44 5.13 5.68 2.19 5.50 50 2.29 0.61 5.50 5.53 4.61 5.50 最大值 4.61 5.50 實施例2 高折射率層: Si3 N4 AR 8層 5 87.3 46.4 4.7 87.6 27.7 26.0 45.0 7.0 2 0.93 0.19 0.17 0.25 - - 20 0.96 -0.05 1.26 1.26 1.03 1.11 40 1.45 -0.79 3.33 3.42 1.55 3.31 50 2.51 -1.16 3.35 3.54 2.68 3.45 最大值 2.68 3.45 實施例3 高折射率層: Nb2 O5 AR 6層 5 - - 103 22.3 39.6 25.5 46.2 10.1 2 0.88 -0.95 1.25 1.57 - - 20 0.90 -2.52 2.80 3.77 1.02 2.20 40 1.29 -4.14 4.03 5.78 1.46 4.23 50 2.26 -2.51 2.54 3.57 2.56 2.02 最大值 2.56 4.23 實施例4 高折射率層: Si3 N4 AR 6層 5 - - 95 43 21 49 36 16 2 0.84 0.50 0.08 0.50 - - 20 0.88 -0.66 1.65 1.78 1.04 1.95 40 1.34 -3.10 3.88 4.97 1.59 5.23 50 2.32 -2.71 2.82 3.91 2.76 4.22 最大值 2.76 5.23 實施例5 高折射率層: SiON(1)AR 6層 5 - - 85.9 69.1 5.0 65.8 29.4 18.2 2 1.10 0.01 0.25 0.25 - - 20 1.14 -0.46 1.22 1.30 1.03 1.08 40 1.61 -1.66 2.71 3.17 1.47 2.97 50 2.61 -1.45 2.16 2.60 2.38 2.41 最大值 2.38 2.97 實施例6 高折射率層: SiON(2)AR 6層 5 - - 86 79 5 65 28 19 2 1.46 -0.14 0.10 0.17 - - 20 1.49 -0.34 0.59 0.68 1.02 0.53 40 1.95 -0.81 1.40 1.62 1.34 1.46 50 2.96 -0.57 1.19 1.32 2.03 1.17 最大值 2.03 1.46 實施例7 高折射率層: TiO2 AR 6層 5 - - 100 19 37 23 44 10 2 0.73 -3.45 2.99 4.57 - - 20 0.73 -5.46 4.48 7.06 1.00 2.50 40 1.10 -7.44 5.16 9.05 1.50 4.54 50 2.09 -3.33 2.48 4.15 2.86 0.52 最大值 2.86 4.54 比較例1 高折射率層:Nb2 O5 AR 4層 9 - - - - 83.5 105 27.5 10.1 2 0.16 1.64 -4.60 4.88 - - 20 0.14 1.51 -2.40 2.84 0.83 2.20 40 0.45 3.28 1.94 3.81 2.73 6.74 50 1.33 5.22 3.48 6.27 8.06 8.84 最大值 8.06 8.84 比較例2 高折射率層: Si3 N4 AR 4層 5 - - - - 101 33.4 38.2 23.4 2 1.06 -3.80 -0.06 3.80 - - 20 1.01 -1.30 -1.60 2.06 0.95 2.94 40 1.32 5.66 -1.80 5.94 1.24 9.62 50 2.34 7.22 1.17 7.31 2.20 11.09 最大值 2.20 11.09 [Table 2] Layered composition Reflected light characteristics Antifouling layer SiO 2 High refractive index layer SiO 2 High refractive index layer SiO 2 High refractive index layer SiO 2 High refractive index layer θ (°) Y (%) a* b* C* Y θ /Y 2 ∆a*b* Layer 8 Layer 7 Level 6 Layer 5 Level 4 Level 3 Level 2 Level 1 Example 1 High refractive index layer: Nb 2 O 5 AR 8 layers 5 87.5 25.6 10.8 80.8 18.6 24.6 42.2 8.2 2 0.50 0.45 0.00 0.45 - - 20 0.52 1.28 0.96 1.60 1.04 1.27 40 1.09 2.44 5.13 5.68 2.19 5.50 50 2.29 0.61 5.50 5.53 4.61 5.50 Maximum value 4.61 5.50 Example 2 High refractive index layer: Si 3 N 4 AR 8 layers 5 87.3 46.4 4.7 87.6 27.7 26.0 45.0 7.0 2 0.93 0.19 0.17 0.25 - - 20 0.96 -0.05 1.26 1.26 1.03 1.11 40 1.45 -0.79 3.33 3.42 1.55 3.31 50 2.51 -1.16 3.35 3.54 2.68 3.45 Maximum value 2.68 3.45 Example 3 High refractive index layer: Nb 2 O 5 AR 6 layers 5 - - 103 22.3 39.6 25.5 46.2 10.1 2 0.88 -0.95 1.25 1.57 - - 20 0.90 -2.52 2.80 3.77 1.02 2.20 40 1.29 -4.14 4.03 5.78 1.46 4.23 50 2.26 -2.51 2.54 3.57 2.56 2.02 Maximum value 2.56 4.23 Example 4 High refractive index layer: Si 3 N 4 AR 6 layers 5 - - 95 43 twenty one 49 36 16 2 0.84 0.50 0.08 0.50 - - 20 0.88 -0.66 1.65 1.78 1.04 1.95 40 1.34 -3.10 3.88 4.97 1.59 5.23 50 2.32 -2.71 2.82 3.91 2.76 4.22 Maximum value 2.76 5.23 Example 5 High refractive index layer: SiON(1)AR 6 layers 5 - - 85.9 69.1 5.0 65.8 29.4 18.2 2 1.10 0.01 0.25 0.25 - - 20 1.14 -0.46 1.22 1.30 1.03 1.08 40 1.61 -1.66 2.71 3.17 1.47 2.97 50 2.61 -1.45 2.16 2.60 2.38 2.41 Maximum value 2.38 2.97 Example 6 High refractive index layer: SiON(2)AR 6 layers 5 - - 86 79 5 65 28 19 2 1.46 -0.14 0.10 0.17 - - 20 1.49 -0.34 0.59 0.68 1.02 0.53 40 1.95 -0.81 1.40 1.62 1.34 1.46 50 2.96 -0.57 1.19 1.32 2.03 1.17 Maximum value 2.03 1.46 Example 7 High refractive index layer: TiO 2 AR 6 layers 5 - - 100 19 37 twenty three 44 10 2 0.73 -3.45 2.99 4.57 - - 20 0.73 -5.46 4.48 7.06 1.00 2.50 40 1.10 -7.44 5.16 9.05 1.50 4.54 50 2.09 -3.33 2.48 4.15 2.86 0.52 Maximum value 2.86 4.54 Comparative Example 1 High refractive index layer: Nb 2 O 5 AR 4 layers 9 - - - - 83.5 105 27.5 10.1 2 0.16 1.64 -4.60 4.88 - - 20 0.14 1.51 -2.40 2.84 0.83 2.20 40 0.45 3.28 1.94 3.81 2.73 6.74 50 1.33 5.22 3.48 6.27 8.06 8.84 Maximum value 8.06 8.84 Comparative Example 2 High refractive index layer: Si 3 N 4 AR 4 layers 5 - - - - 101 33.4 38.2 23.4 2 1.06 -3.80 -0.06 3.80 - - 20 1.01 -1.30 -1.60 2.06 0.95 2.94 40 1.32 5.66 -1.80 5.94 1.24 9.62 50 2.34 7.22 1.17 7.31 2.20 11.09 Maximum value 2.20 11.09

對於抗反射層包含高折射率層及低折射率層各4層之共計包含8層之實施例1及實施例2,可知,Yθ /Y2 之最大值較小,並且Δa* b* 之最大值亦較小。對於抗反射層包含高折射率層及低折射率層各3層之共計包含6層之實施例3~6,亦可知,Yθ /Y2 之最大值較小,並且Δa* b* 之最大值亦較小。對於使用阿貝數νD 較大(折射率之波長色散較小)之SiON(2)作為高折射率層之實施例6,雖然觀察到Δa* b* 變小之傾向,但是從正面視認時之反射率變高。認為這與如下有關聯:高折射率層與低折射率層之折射率差較小,因此無法充分降低反射率。For Example 1 and Example 2 in which the anti-reflection layer includes 4 layers of high refractive index layer and 4 layers of low refractive index layer in total, it can be seen that the maximum value of Y θ /Y 2 is small, and Δa * b * The maximum value is also smaller. For the anti-reflection layer including the high refractive index layer and the low refractive index layer, each of the three layers in the total of Examples 3 to 6 including 6 layers, it can also be seen that the maximum value of Y θ /Y 2 is small, and the maximum value of Δa * b * The value is also smaller. For Example 6 using SiON(2) with a large Abbe number ν D (smaller wavelength dispersion of the refractive index) as the high refractive index layer, although a tendency of Δa * b * to decrease is observed, when viewed from the front The reflectivity becomes higher. This is considered to be related to the fact that the refractive index difference between the high refractive index layer and the low refractive index layer is small, and therefore the reflectance cannot be sufficiently reduced.

對於抗反射層包含高折射率層及低折射率層各2層之共計包含4層之比較例1,正面(2°)之反射率降低了,但Yθ /Y2 之最大值超過了6。另外,對於比較例1、Δa* b* 之最大值亦超過了6之比較例2,Yθ /Y2 之最大值為6以下,但由視認方向引起之反射光之a* 之變化較大,Δa* b* 之最大值約為11。For Comparative Example 1, where the anti-reflection layer includes 2 layers each of the high refractive index layer and the low refractive index layer, which includes 4 layers in total, the reflectivity of the front side (2°) is reduced, but the maximum value of Y θ /Y 2 exceeds 6. . In addition, for Comparative Example 1, the maximum value of Δa * b * also exceeds 6, and the maximum value of Y θ /Y 2 is 6 or less, but the change in a * of reflected light caused by the viewing direction is relatively large. , The maximum value of Δa * b * is about 11.

[抗反射層之膜厚之變更] <實施例1A> 逐層改變實施例1之抗反射膜中構成抗反射層之8層薄膜之膜厚並實施同樣之模擬。將各個抗反射膜中之抗反射層之膜厚、2°正反射光之特性、及θ=5~45°之範圍下之Yθ /Y2 及Δa* b* 之最大值示於表3。表3中,No.1之抗反射膜與實施例1相同。No.2~5變更了第1層(高折射率層)之厚度,No.6~9變更了第2層(低高折射率層)之厚度,No.10~13變更了第3層(高折射率層)之厚度,No.14~17變更了第4層(低高折射率層)之厚度,No.18~21變更了第5層(高折射率層)之厚度,No.22~25變更了第6層(低高折射率層)之厚度,No.26~29變更了第7層(高折射率層)之厚度,No.30~33變更了第8層(低高折射率層)之厚度。[Change of film thickness of anti-reflection layer] <Example 1A> The film thickness of the eight films constituting the anti-reflection layer in the anti-reflection film of Example 1 was changed layer by layer, and the same simulation was performed. The film thickness of the anti-reflection layer in each anti-reflection film, the characteristics of 2° regular reflection light, and the maximum values of Y θ /Y 2 and Δa * b * in the range of θ=5~45° are shown in Table 3. . In Table 3, the anti-reflection film of No. 1 is the same as that of Example 1. No. 2 to 5 changed the thickness of the first layer (high refractive index layer), No. 6 to 9 changed the thickness of the second layer (low high refractive index layer), and No. 10 to 13 changed the third layer ( The thickness of the high refractive index layer), No.14-17 changed the thickness of the fourth layer (low high refractive index layer), No.18-21 changed the thickness of the fifth layer (high refractive index layer), No.22 ~25 changed the thickness of the sixth layer (low high refractive index layer), No.26-29 changed the thickness of the seventh layer (high refractive index layer), and No.30~33 changed the eighth layer (low high refractive index) Rate layer) thickness.

[表3]    第8層 第7層 第6層 第5層 第4層 第3層 第2層 第1層 2°正反射光 最大值 SiO2 Nb2 O5 SiO2 Nb2 O5 SiO2 Nb2 O5 SiO2 Nb2 O5 Y a* b* C* Yθ /Y2 ∆a*b* 1 87.5 25.6 10.8 80.8 18.6 24.6 42.2 8.2 0.5 0.45 0.00 0.45 4.6 5.5 2 87.5 25.6 10.8 80.8 18.6 24.6 42.2 7.4 0.5 3.34 -1.13 3.53 4.8 9.4 3 7.8 0.5 1.86 -0.54 1.94 4.7 7.2 4 9.0 0.5 -1.13 0.57 1.26 4.2 5.4 5 11.0 0.6 -10.26 3.31 10.78 3.1 15.5 6 87.5 25.6 10.8 80.8 18.6 24.6 38.0 8.2 0.4 2.54 -4.14 4.86 5.4 8.8 7 40.1 0.5 1.39 -1.90 2.35 5.0 7.0 8 44.3 0.5 -0.26 1.56 1.58 4.2 5.1 9 50.0 0.7 -1.02 3.95 4.08 3.3 8.4 10 87.5 25.6 10.8 80.8 18.6 18.0 42.2 8.2 1.1 -14.76 9.22 17.40 2.0 16.3 11 22.1 0.7 -2.41 2.68 3.61 3.3 4.3 12 25.8 0.4 3.28 -3.08 4.50 5.4 9.6 13 27.0 0.4 6.06 -6.53 8.91 6.2 13.9 14 87.5 25.6 10.8 80.8 16.7 24.6 42.2 8.2 0.6 1.51 2.75 3.14 4.3 7.3 15 17.7 0.5 1.01 1.41 1.73 4.5 6.1 16 19.5 0.5 -0.18 -1.46 1.47 4.6 5.8 17 20.5 0.5 -0.87 -2.97 3.10 4.6 6.7 18 87.5 25.6 10.8 72.7 18.6 24.6 42.2 8.2 0.4 0.38 -3.45 3.47 4.9 7.7 19 76.8 0.5 0.31 -1.72 1.75 4.7 6.5 20 88.9 0.5 0.82 1.61 1.80 4.6 5.8 21 99.0 0.6 3.85 5.00 6.31 4.9 7.7 22 87.5 25.6 9.7 80.8 18.6 24.6 42.2 8.2 0.4 1.74 -1.92 2.59 5.6 8.3 23 10.2 0.4 1.09 -0.95 1.45 5.1 6.9 24 15.0 1.0 -4.28 6.85 8.08 2.6 5.8 25 16.0 1.0 -4.28 6.85 8.08 2.6 6.1 26 87.5 23.0 10.8 80.8 18.6 24.6 42.2 8.2 0.5 0.72 -5.64 5.69 4.4 8.9 27 24.3 0.5 0.52 -2.69 2.74 4.5 7.1 28 28.1 0.6 0.53 2.41 2.46 4.6 5.0 29 38.0 1.0 7.48 9.36 11.98 3.8 13.0 30 70.0 25.6 10.8 80.8 18.6 24.6 42.2 8.2 1.4 0.94 4.58 4.68 2.9 2.2 31 78.7 0.8 0.55 2.96 3.01 4.0 2.0 32 91.9 0.5 0.40 -3.85 3.87 4.0 7.7 33 96.2 0.6 0.39 -8.44 8.45 2.9 9.7 [table 3] Layer 8 Layer 7 Level 6 Layer 5 Level 4 Level 3 Level 2 Level 1 2° regular reflection light Maximum value SiO 2 Nb 2 O 5 SiO 2 Nb 2 O 5 SiO 2 Nb 2 O 5 SiO 2 Nb 2 O 5 Y a* b* C* Y θ /Y 2 ∆a*b* 1 87.5 25.6 10.8 80.8 18.6 24.6 42.2 8.2 0.5 0.45 0.00 0.45 4.6 5.5 2 87.5 25.6 10.8 80.8 18.6 24.6 42.2 7.4 0.5 3.34 -1.13 3.53 4.8 9.4 3 7.8 0.5 1.86 -0.54 1.94 4.7 7.2 4 9.0 0.5 -1.13 0.57 1.26 4.2 5.4 5 11.0 0.6 -10.26 3.31 10.78 3.1 15.5 6 87.5 25.6 10.8 80.8 18.6 24.6 38.0 8.2 0.4 2.54 -4.14 4.86 5.4 8.8 7 40.1 0.5 1.39 -1.90 2.35 5.0 7.0 8 44.3 0.5 -0.26 1.56 1.58 4.2 5.1 9 50.0 0.7 -1.02 3.95 4.08 3.3 8.4 10 87.5 25.6 10.8 80.8 18.6 18.0 42.2 8.2 1.1 -14.76 9.22 17.40 2.0 16.3 11 22.1 0.7 -2.41 2.68 3.61 3.3 4.3 12 25.8 0.4 3.28 -3.08 4.50 5.4 9.6 13 27.0 0.4 6.06 -6.53 8.91 6.2 13.9 14 87.5 25.6 10.8 80.8 16.7 24.6 42.2 8.2 0.6 1.51 2.75 3.14 4.3 7.3 15 17.7 0.5 1.01 1.41 1.73 4.5 6.1 16 19.5 0.5 -0.18 -1.46 1.47 4.6 5.8 17 20.5 0.5 -0.87 -2.97 3.10 4.6 6.7 18 87.5 25.6 10.8 72.7 18.6 24.6 42.2 8.2 0.4 0.38 -3.45 3.47 4.9 7.7 19 76.8 0.5 0.31 -1.72 1.75 4.7 6.5 20 88.9 0.5 0.82 1.61 1.80 4.6 5.8 twenty one 99.0 0.6 3.85 5.00 6.31 4.9 7.7 twenty two 87.5 25.6 9.7 80.8 18.6 24.6 42.2 8.2 0.4 1.74 -1.92 2.59 5.6 8.3 twenty three 10.2 0.4 1.09 -0.95 1.45 5.1 6.9 twenty four 15.0 1.0 -4.28 6.85 8.08 2.6 5.8 25 16.0 1.0 -4.28 6.85 8.08 2.6 6.1 26 87.5 23.0 10.8 80.8 18.6 24.6 42.2 8.2 0.5 0.72 -5.64 5.69 4.4 8.9 27 24.3 0.5 0.52 -2.69 2.74 4.5 7.1 28 28.1 0.6 0.53 2.41 2.46 4.6 5.0 29 38.0 1.0 7.48 9.36 11.98 3.8 13.0 30 70.0 25.6 10.8 80.8 18.6 24.6 42.2 8.2 1.4 0.94 4.58 4.68 2.9 2.2 31 78.7 0.8 0.55 2.96 3.01 4.0 2.0 32 91.9 0.5 0.40 -3.85 3.87 4.0 7.7 33 96.2 0.6 0.39 -8.44 8.45 2.9 9.7

根據表3所示之結果可知,第1層(Nb2 O5 )之厚度為8~10 nm、第2層(SiO2 )之厚度為41~45 nm、第3層(Nb2 O5 )之厚度為21~25 nm、第4層(SiO2 )之厚度為18~20 nm、第5層(Nb2 O5 )之厚度為77~95 nm、第6層(SiO2 )之厚度為10.5~15 nm、第7層(Nb2 O5 )之厚度為25~30 nm、第8層(SiO2 )之厚度為60~89 nm左右之範圍時,可得到θ=5~45°之範圍下之Yθ /Y2 為6%以下、並且Δa* b* 為6以下之抗反射膜。According to the results shown in Table 3, the thickness of the first layer (Nb 2 O 5 ) is 8-10 nm, the thickness of the second layer (SiO 2 ) is 41-45 nm, and the third layer (Nb 2 O 5 ) The thickness is 21-25 nm, the thickness of the fourth layer (SiO 2 ) is 18-20 nm, the thickness of the fifth layer (Nb 2 O 5 ) is 77-95 nm, and the thickness of the sixth layer (SiO 2 ) is When the thickness of the 7th layer (Nb 2 O 5 ) is 25-30 nm, and the thickness of the 8th layer (SiO 2 ) is in the range of about 60 to 89 nm, 10.5~15 nm, θ=5~45° can be obtained. The Y θ /Y 2 in the range is 6% or less, and Δa * b * is an anti-reflection film of 6 or less.

<實施例2A> 逐層改變實施例2之抗反射膜中構成抗反射層之8層薄膜之膜厚並實施同樣之模擬。將各層之膜厚及評價結果示於表4。<Example 2A> The thickness of the eight films constituting the anti-reflection layer in the anti-reflection film of Example 2 was changed layer by layer and the same simulation was performed. Table 4 shows the film thickness of each layer and the evaluation results.

[表4]    第8層 第7層 第6層 第5層 第4層 第3層 第2層 第1層 2°正反射光 最大值 SiO2 Si3 N4 SiO2 Si3 N4 SiO2 Si3 N4 SiO2 Si3 N4 Y a* b* C* Yθ /Y2 ∆a*b* 1 87.3 46.4 4.7 87.6 27.7 26.0 45.0 7.0 0.9 0.19 0.17 0.25 2.7 3.5 2 87.3 46.4 4.7 87.6 27.7 26.0 45.0 4.0 0.9 6.37 -2.41 6.81 3.0 13.7 3 6.5 0.9 1.27 -0.30 1.30 2.7 5.1 4 7.5 0.9 -0.92 0.65 1.13 2.6 2.0 5 11.0 1.1 -9.41 4.45 10.41 2.1 12.5 6 87.3 46.4 4.7 87.6 27.7 26.0 35.0 7.0 0.8 0.88 -5.68 5.75 2.9 7.3 7 41.8 0.9 0.10 -1.31 1.31 2.7 3.9 8 48.1 1.0 0.57 1.39 1.50 2.6 4.5 9 55.0 1.1 2.37 2.87 3.73 2.5 9.2 10 87.3 46.4 4.7 87.6 27.7 20.0 45.0 7.0 1.4 -11.24 11.59 16.15 1.9 14.2 11 24.2 1.0 -3.18 4.10 5.19 2.4 2.0 12 27.8 0.8 3.41 -4.08 5.32 3.0 8.8 13 31.0 0.7 8.65 -12.30 15.04 3.6 18.1 14 87.3 46.4 4.7 87.6 21.0 26.0 45.0 7.0 1.1 2.38 7.66 8.03 2.6 12.7 15 25.8 1.0 1.07 2.32 2.55 2.7 4.8 16 29.6 0.9 -0.87 -1.80 2.00 2.6 3.5 17 35.0 0.9 -4.79 -7.42 8.83 2.3 9.3 18 87.3 46.4 4.7 73.0 27.7 26.0 45.0 7.0 0.7 2.93 -9.59 10.03 3.1 11.5 19 81.4 0.8 1.02 -4.14 4.27 2.8 6.6 20 102.0 1.1 0.88 8.96 9.00 2.7 3.5 21 118.0 1.1 6.29 12.20 13.73 3.0 11.3 22 87.3 46.4 1.0 87.6 27.7 26.0 45.0 7.0 0.7 3.36 -8.74 9.37 3.3 11.9 23 3.0 0.8 1.60 -3.91 4.23 2.9 7.3 24 6.0 1.0 -0.79 3.19 3.28 2.5 1.3 25 10.0 1.4 -3.39 12.22 12.68 2.2 8.0 26 87.0 36.0 4.7 87.6 27.7 26.0 45.0 7.0 0.8 1.64 -11.56 11.68 2.6 11.1 27 43.2 0.9 0.33 -2.98 3.00 2.6 5.1 28 58.0 1.0 2.35 8.74 9.05 3.0 7.4 29 62.0 1.0 4.07 9.98 10.78 3.1 9.7 30 74.2 46.4 4.7 87.6 27.7 26.0 45.0 7.0 1.4 -0.59 5.72 5.75 2.5 2.1 31 84.0 1.0 -0.12 2.56 2.56 2.7 1.9 32 90.0 0.9 0.44 -1.92 1.97 2.6 4.9 33 102.0 1.2 1.23 -9.50 9.58 1.7 7.8 [Table 4] Layer 8 Layer 7 Level 6 Layer 5 Level 4 Level 3 Level 2 Level 1 2° regular reflection light Maximum value SiO 2 Si 3 N 4 SiO 2 Si 3 N 4 SiO 2 Si 3 N 4 SiO 2 Si 3 N 4 Y a* b* C* Y θ /Y 2 ∆a*b* 1 87.3 46.4 4.7 87.6 27.7 26.0 45.0 7.0 0.9 0.19 0.17 0.25 2.7 3.5 2 87.3 46.4 4.7 87.6 27.7 26.0 45.0 4.0 0.9 6.37 -2.41 6.81 3.0 13.7 3 6.5 0.9 1.27 -0.30 1.30 2.7 5.1 4 7.5 0.9 -0.92 0.65 1.13 2.6 2.0 5 11.0 1.1 -9.41 4.45 10.41 2.1 12.5 6 87.3 46.4 4.7 87.6 27.7 26.0 35.0 7.0 0.8 0.88 -5.68 5.75 2.9 7.3 7 41.8 0.9 0.10 -1.31 1.31 2.7 3.9 8 48.1 1.0 0.57 1.39 1.50 2.6 4.5 9 55.0 1.1 2.37 2.87 3.73 2.5 9.2 10 87.3 46.4 4.7 87.6 27.7 20.0 45.0 7.0 1.4 -11.24 11.59 16.15 1.9 14.2 11 24.2 1.0 -3.18 4.10 5.19 2.4 2.0 12 27.8 0.8 3.41 -4.08 5.32 3.0 8.8 13 31.0 0.7 8.65 -12.30 15.04 3.6 18.1 14 87.3 46.4 4.7 87.6 21.0 26.0 45.0 7.0 1.1 2.38 7.66 8.03 2.6 12.7 15 25.8 1.0 1.07 2.32 2.55 2.7 4.8 16 29.6 0.9 -0.87 -1.80 2.00 2.6 3.5 17 35.0 0.9 -4.79 -7.42 8.83 2.3 9.3 18 87.3 46.4 4.7 73.0 27.7 26.0 45.0 7.0 0.7 2.93 -9.59 10.03 3.1 11.5 19 81.4 0.8 1.02 -4.14 4.27 2.8 6.6 20 102.0 1.1 0.88 8.96 9.00 2.7 3.5 twenty one 118.0 1.1 6.29 12.20 13.73 3.0 11.3 twenty two 87.3 46.4 1.0 87.6 27.7 26.0 45.0 7.0 0.7 3.36 -8.74 9.37 3.3 11.9 twenty three 3.0 0.8 1.60 -3.91 4.23 2.9 7.3 twenty four 6.0 1.0 -0.79 3.19 3.28 2.5 1.3 25 10.0 1.4 -3.39 12.22 12.68 2.2 8.0 26 87.0 36.0 4.7 87.6 27.7 26.0 45.0 7.0 0.8 1.64 -11.56 11.68 2.6 11.1 27 43.2 0.9 0.33 -2.98 3.00 2.6 5.1 28 58.0 1.0 2.35 8.74 9.05 3.0 7.4 29 62.0 1.0 4.07 9.98 10.78 3.1 9.7 30 74.2 46.4 4.7 87.6 27.7 26.0 45.0 7.0 1.4 -0.59 5.72 5.75 2.5 2.1 31 84.0 1.0 -0.12 2.56 2.56 2.7 1.9 32 90.0 0.9 0.44 -1.92 1.97 2.6 4.9 33 102.0 1.2 1.23 -9.50 9.58 1.7 7.8

根據表4所示之結果可知,第1層(Si3 N4 )之厚度為5~10 nm、第2層(SiO2 )之厚度為48~60 nm、第3層(Si3 N4 )之厚度為23~27 nm、第4層(SiO2 )之厚度為23~32 nm、第5層(Si3 N4 )之厚度為85~105 nm、第6層(SiO2 )之厚度為4~7 nm、第7層(Si3 N4 )之厚度為40~50 nm、第8層(SiO2 )之厚度為70~95 nm左右之範圍時,可得到θ=5~45°之範圍下之Yθ /Y2 為6%以下、並且Δa* b* 為6以下之抗反射膜。According to the results shown in Table 4, the thickness of the first layer (Si 3 N 4 ) is 5-10 nm, the thickness of the second layer (SiO 2 ) is 48-60 nm, and the thickness of the third layer (Si 3 N 4 ) The thickness is 23-27 nm, the thickness of the fourth layer (SiO 2 ) is 23-32 nm, the thickness of the fifth layer (Si 3 N 4 ) is 85-105 nm, and the thickness of the sixth layer (SiO 2 ) is 4-7 nm, the thickness of the seventh layer (Si 3 N 4 ) is 40-50 nm, and the thickness of the eighth layer (SiO 2 ) is in the range of 70-95 nm, θ=5~45° can be obtained The Y θ /Y 2 in the range is 6% or less, and Δa * b * is an anti-reflection film of 6 or less.

<實施例3A> 逐層改變實施例3之抗反射膜中構成抗反射層之6層薄膜之膜厚並實施同樣之模擬。將各層之膜厚及評價結果示於表5。<Example 3A> The film thickness of the six films constituting the anti-reflection layer in the anti-reflection film of Example 3 was changed layer by layer and the same simulation was performed. Table 5 shows the film thickness of each layer and the evaluation results.

[表5]    第6層 第5層 第4層 第3層 第2層 第1層 2°正反射光 最大值 SiO2 Nb2 O5 SiO2 Nb2 O5 SiO2 Nb2 O5 Y a* b* C* Yθ /Y2 ∆a*b* 1 103.1 22.3 39.6 25.5 46.2 10.1 0.9 -0.95 1.25 1.57 2.6 4.2 2 103.1 22.3 39.6 25.5 46.2 7.0 1.0 -10.93 -1.05 10.98 1.8 14.1 3 9.4 0.9 -3.32 1.26 3.55 2.4 1.8 4 10.8 0.9 1.70 0.92 1.94 2.7 9.8 5 13.0 0.9 10.35 -2.07 10.55 3.1 23.2 6 103.1 22.3 39.6 25.5 39.3 10.1 1.3 -10.34 13.84 17.28 1.9 14.7 7 42.0 1.0 -3.87 5.91 7.06 2.3 4.0 8 49.4 0.7 3.13 -6.05 6.81 3.0 9.7 9 54.5 0.6 8.66 -19.10 20.97 3.6 21.7 10 103.1 22.3 39.6 21.6 46.2 10.1 0.7 6.61 -1.65 6.81 3.6 16.0 11 23.7 0.8 2.57 0.05 2.57 3.0 10.3 12 27.2 1.1 -4.02 2.07 4.52 2.1 2.5 13 29.3 1.3 -6.82 2.46 7.25 1.8 6.5 14 103.1 22.3 33.6 25.5 46.2 10.1 0.5 5.71 -19.11 19.94 3.2 19.6 15 36.8 0.7 1.84 -7.73 7.95 2.8 9.5 16 41.4 1.0 -2.46 6.69 7.12 2.4 3.8 17 45.5 1.4 -4.88 16.89 17.58 2.1 11.3 18 103.1 18.9 39.6 25.5 46.2 10.1 1.2 -2.90 -4.71 5.53 1.8 1.8 19 20.7 1.0 -2.19 -1.36 2.57 2.2 2.7 20 23.8 0.8 0.77 2.77 2.87 3.0 7.7 21 25.6 0.6 3.28 2.72 4.26 3.7 11.1 22 87.6 22.3 39.6 25.5 46.2 10.1 1.4 -4.22 9.57 10.46 2.3 9.4 23 95.8 1.0 -2.81 6.90 7.44 2.6 4.7 24 110.3 1.0 1.14 -5.47 5.58 2.1 8.1 25 118.5 1.3 2.75 -10.71 11.06 1.6 11.1 [table 5] Level 6 Layer 5 Level 4 Level 3 Level 2 Level 1 2° regular reflection light Maximum value SiO 2 Nb 2 O 5 SiO 2 Nb 2 O 5 SiO 2 Nb 2 O 5 Y a* b* C* Y θ /Y 2 ∆a*b* 1 103.1 22.3 39.6 25.5 46.2 10.1 0.9 -0.95 1.25 1.57 2.6 4.2 2 103.1 22.3 39.6 25.5 46.2 7.0 1.0 -10.93 -1.05 10.98 1.8 14.1 3 9.4 0.9 -3.32 1.26 3.55 2.4 1.8 4 10.8 0.9 1.70 0.92 1.94 2.7 9.8 5 13.0 0.9 10.35 -2.07 10.55 3.1 23.2 6 103.1 22.3 39.6 25.5 39.3 10.1 1.3 -10.34 13.84 17.28 1.9 14.7 7 42.0 1.0 -3.87 5.91 7.06 2.3 4.0 8 49.4 0.7 3.13 -6.05 6.81 3.0 9.7 9 54.5 0.6 8.66 -19.10 20.97 3.6 21.7 10 103.1 22.3 39.6 21.6 46.2 10.1 0.7 6.61 -1.65 6.81 3.6 16.0 11 23.7 0.8 2.57 0.05 2.57 3.0 10.3 12 27.2 1.1 -4.02 2.07 4.52 2.1 2.5 13 29.3 1.3 -6.82 2.46 7.25 1.8 6.5 14 103.1 22.3 33.6 25.5 46.2 10.1 0.5 5.71 -19.11 19.94 3.2 19.6 15 36.8 0.7 1.84 -7.73 7.95 2.8 9.5 16 41.4 1.0 -2.46 6.69 7.12 2.4 3.8 17 45.5 1.4 -4.88 16.89 17.58 2.1 11.3 18 103.1 18.9 39.6 25.5 46.2 10.1 1.2 -2.90 -4.71 5.53 1.8 1.8 19 20.7 1.0 -2.19 -1.36 2.57 2.2 2.7 20 23.8 0.8 0.77 2.77 2.87 3.0 7.7 twenty one 25.6 0.6 3.28 2.72 4.26 3.7 11.1 twenty two 87.6 22.3 39.6 25.5 46.2 10.1 1.4 -4.22 9.57 10.46 2.3 9.4 twenty three 95.8 1.0 -2.81 6.90 7.44 2.6 4.7 twenty four 110.3 1.0 1.14 -5.47 5.58 2.1 8.1 25 118.5 1.3 2.75 -10.71 11.06 1.6 11.1

根據表5所示之結果可知,第1層(Nb2 O5 )之厚度為9~10.5 nm、第2層(SiO2 )之厚度為41~47 nm、第3層(Nb2 O5 )之厚度為25~28 nm、第4層(SiO2 )之厚度為39~42 nm、第5層(Nb2 O5 )之厚度為17~23 nm、第6層(SiO2 )之厚度為90~106 nm左右之範圍時,可得到θ=5~45°之範圍下之Yθ /Y2 為6%以下、並且Δa* b* 為6以下之抗反射膜。According to the results shown in Table 5, the thickness of the first layer (Nb 2 O 5 ) is 9 to 10.5 nm, the thickness of the second layer (SiO 2 ) is 41 to 47 nm, and the thickness of the third layer (Nb 2 O 5 ) The thickness is 25-28 nm, the thickness of the fourth layer (SiO 2 ) is 39-42 nm, the thickness of the fifth layer (Nb 2 O 5 ) is 17-23 nm, and the thickness of the sixth layer (SiO 2 ) is In the range of about 90 to 106 nm, an anti-reflection film with Y θ /Y 2 in the range of θ=5 to 45° of 6% or less and Δa * b * of 6 or less can be obtained.

<實施例4A> 逐層改變實施例4之抗反射膜中構成抗反射層之6層薄膜之膜厚並實施同樣之模擬。將各層之膜厚及評價結果示於表6。<Example 4A> The film thickness of the six films constituting the anti-reflection layer in the anti-reflection film of Example 4 was changed layer by layer and the same simulation was performed. Table 6 shows the film thickness of each layer and the evaluation results.

[表6]    第6層 第5層 第4層 第3層 第2層 第1層 2°正反射光 最大值 SiO2 Si3 N4 SiO2 Si3 N4 SiO2 Si3 N4 Y a* b* C* Yθ /Y2 ∆a*b* 1 95.0 43.0 21.0 49.0 36.0 16.0 0.8 0.50 0.08 0.50 2.8 5.2 2 95.0 43.0       36.0 11.0 1.2 -11.80 5.27 12.92 1.8 14.2 3 13.6 1.0 -5.52 3.23 6.40 2.2 5.1 4 17.1 0.8 3.35 -1.79 3.80 3.0 8.9 5 18.4 0.7 6.63 -4.23 7.86 3.4 13.9 6 95.0 43.0 21.0 49.0 30.6 16.0 1.1 -3.03 9.52 9.99 2.3 6.9 7 33.5 1.0 -0.98 4.62 4.72 2.6 4.8 8 38.5 0.8 1.67 -4.62 4.92 2.9 7.0 9 41.4 0.7 2.62 -10.14 10.48 3.0 10.6 10 95.0 43.0 21.0 41.7 36.0 16.0 0.6 6.26 -6.93 9.33 5.2 26.3 11 45.6 0.7 3.15 -3.35 4.59 3.2 9.3 12 52.4 1.0 -1.98 3.66 4.16 2.4 2.4 13 58.0 1.3 -5.40 9.49 10.92 2.1 8.3 14 95.0 43.0 16.0 49.0 36.0 16.0 0.6 4.13 -16.07 16.59 3.0 15.7 15 19.5 0.8 1.40 -4.41 4.63 2.8 7.0 16 22.5 0.9 -0.25 4.34 4.34 2.7 4.2 17 26.0 1.2 -1.40 13.44 13.52 2.5 8.7 18 95.0 33.0 21.0 49.0 36.0 16.0 1.0 -0.04 -11.20 11.20 1.9 6.4 19 36.6 1.0 -0.38 -7.26 7.27 2.2 5.1 20 46.0 0.8 1.66 2.60 3.08 3.1 8.2 21 50.0 0.7 3.91 3.98 5.58 3.6 11.5 22 80.8 43.0 21.0 49.0 36.0 16.0 1.4 -2.15 8.43 8.70 2.4 6.2 23 88.4 1.0 -0.86 5.21 5.28 2.7 2.5 24 101.7 0.9 1.89 -6.80 7.06 2.4 9.4 25 109.3 1.2 2.70 -10.70 11.03 1.8 10.4 [Table 6] Level 6 Layer 5 Level 4 Level 3 Level 2 Level 1 2° regular reflection light Maximum value SiO 2 Si 3 N 4 SiO 2 Si 3 N 4 SiO 2 Si 3 N 4 Y a* b* C* Y θ /Y 2 ∆a*b* 1 95.0 43.0 21.0 49.0 36.0 16.0 0.8 0.50 0.08 0.50 2.8 5.2 2 95.0 43.0 36.0 11.0 1.2 -11.80 5.27 12.92 1.8 14.2 3 13.6 1.0 -5.52 3.23 6.40 2.2 5.1 4 17.1 0.8 3.35 -1.79 3.80 3.0 8.9 5 18.4 0.7 6.63 -4.23 7.86 3.4 13.9 6 95.0 43.0 21.0 49.0 30.6 16.0 1.1 -3.03 9.52 9.99 2.3 6.9 7 33.5 1.0 -0.98 4.62 4.72 2.6 4.8 8 38.5 0.8 1.67 -4.62 4.92 2.9 7.0 9 41.4 0.7 2.62 -10.14 10.48 3.0 10.6 10 95.0 43.0 21.0 41.7 36.0 16.0 0.6 6.26 -6.93 9.33 5.2 26.3 11 45.6 0.7 3.15 -3.35 4.59 3.2 9.3 12 52.4 1.0 -1.98 3.66 4.16 2.4 2.4 13 58.0 1.3 -5.40 9.49 10.92 2.1 8.3 14 95.0 43.0 16.0 49.0 36.0 16.0 0.6 4.13 -16.07 16.59 3.0 15.7 15 19.5 0.8 1.40 -4.41 4.63 2.8 7.0 16 22.5 0.9 -0.25 4.34 4.34 2.7 4.2 17 26.0 1.2 -1.40 13.44 13.52 2.5 8.7 18 95.0 33.0 21.0 49.0 36.0 16.0 1.0 -0.04 -11.20 11.20 1.9 6.4 19 36.6 1.0 -0.38 -7.26 7.27 2.2 5.1 20 46.0 0.8 1.66 2.60 3.08 3.1 8.2 twenty one 50.0 0.7 3.91 3.98 5.58 3.6 11.5 twenty two 80.8 43.0 21.0 49.0 36.0 16.0 1.4 -2.15 8.43 8.70 2.4 6.2 twenty three 88.4 1.0 -0.86 5.21 5.28 2.7 2.5 twenty four 101.7 0.9 1.89 -6.80 7.06 2.4 9.4 25 109.3 1.2 2.70 -10.70 11.03 1.8 10.4

根據表6所示之結果可知,第1層(Si3 N4 )之厚度為13~16.5 nm、第2層(SiO2 )之厚度為32~40 nm、第3層(Si3 N4 )之厚度為47~55 nm、第4層(SiO2 )之厚度為20.5~24 nm、第5層(Si3 N4 )厚度為34~44.5 nm、第6層(SiO2 )之厚度為82~98 nm左右之範圍時,可得到θ=5~45°之範圍下之Yθ /Y2 為6%以下、並且Δa* b* 為6以下之抗反射膜。According to the results shown in Table 6, the thickness of the first layer (Si 3 N 4 ) is 13 to 16.5 nm, the thickness of the second layer (SiO 2 ) is 32 to 40 nm, and the thickness of the third layer (Si 3 N 4 ) The thickness of the fourth layer (SiO 2 ) is 20.5-24 nm, the thickness of the fifth layer (Si 3 N 4 ) is 34-44.5 nm, and the thickness of the sixth layer (SiO 2 ) is 82 In the range of ~98 nm, an anti-reflection film with Y θ /Y 2 in the range of θ=5 to 45° of 6% or less and Δa * b * of 6 or less can be obtained.

<實施例5A> 逐層改變實施例5之抗反射膜中構成抗反射層之6層薄膜之膜厚並實施同樣之模擬。將各層之膜厚及評價結果示於表7。<Example 5A> The film thickness of the six films constituting the anti-reflection layer in the anti-reflection film of Example 5 was changed layer by layer and the same simulation was performed. Table 7 shows the film thickness of each layer and the evaluation results.

[表7]    第6層 第5層 第4層 第3層 第2層 第1層 2°正反射光 最大值 SiO2 SiON SiO2 SiON SiO2 SiON Y a* b* C* Yθ /Y2 a*b* 1 85.9 69.1 5.0 65.8 29.4 18.2 1.1 0.01 0.25 0.25 2.4 3.0 2 85.9 69.1 5.0 65.8 65.8 14.0 1.3 -5.80 4.61 7.41 1.9 7.0 3 16.9 1.2 -1.83 1.75 2.53 2.2 0.9 4 19.5 1.0 1.91 -1.38 2.35 2.5 5.4 5 22.0 0.9 5.79 -4.90 7.58 2.9 11.5 6 85.9 69.1 5.0 65.8 23.0 18.2 1.3 -0.68 8.10 8.13 2.3 5.4 7 27.3 1.1 -0.02 2.48 2.48 2.4 3.5 8 35.0 1.0 -0.75 -5.14 5.19 2.3 4.8 9 37.0 1.0 -1.34 -6.72 6.85 2.3 6.0 10 85.9 69.1 5.0 54.0 65.8 18.2 0.8 3.71 -8.84 9.59 2.8 10.9 11 61.2 1.0 1.15 -3.03 3.24 2.5 5.0 12 70.4 1.2 -0.71 3.65 3.71 2.3 1.9 13 75.6 1.3 -1.33 8.35 8.45 2.3 4.7 14 85.9 69.1 1.0 65.8 65.8 18.2 1.0 1.00 -7.89 7.95 2.3 6.9 15 3.0 1.0 0.40 -3.90 3.92 2.4 4.6 16 7.0 1.2 -0.19 4.97 4.97 2.4 2.5 17 9.0 1.3 -0.17 9.32 9.32 2.4 5.1 18 85.9 55.0 5.0 65.8 29.4 18.2 0.9 1.92 -8.54 8.76 2.4 7.8 19 64.2 1.0 0.28 -2.83 2.85 2.4 3.8 20 73.9 1.1 0.16 3.23 3.24 2.4 2.9 21 92.0 1.2 5.27 9.53 10.89 2.8 8.4 22 73.0 69.1 5.0 65.8 29.4 18.2 1.5 -0.66 5.11 5.15 2.2 2.6 23 79.9 1.2 -0.41 3.52 3.54 2.4 1.3 24 91.9 1.1 0.51 -3.73 3.76 2.2 5.1 25 98.8 1.3 0.94 -7.66 7.72 1.8 6.8 [Table 7] Level 6 Layer 5 Level 4 Level 3 Level 2 Level 1 2° regular reflection light Maximum value SiO 2 SiON SiO 2 SiON SiO 2 SiON Y a* b* C* Y θ /Y 2 a*b* 1 85.9 69.1 5.0 65.8 29.4 18.2 1.1 0.01 0.25 0.25 2.4 3.0 2 85.9 69.1 5.0 65.8 65.8 14.0 1.3 -5.80 4.61 7.41 1.9 7.0 3 16.9 1.2 -1.83 1.75 2.53 2.2 0.9 4 19.5 1.0 1.91 -1.38 2.35 2.5 5.4 5 22.0 0.9 5.79 -4.90 7.58 2.9 11.5 6 85.9 69.1 5.0 65.8 23.0 18.2 1.3 -0.68 8.10 8.13 2.3 5.4 7 27.3 1.1 -0.02 2.48 2.48 2.4 3.5 8 35.0 1.0 -0.75 -5.14 5.19 2.3 4.8 9 37.0 1.0 -1.34 -6.72 6.85 2.3 6.0 10 85.9 69.1 5.0 54.0 65.8 18.2 0.8 3.71 -8.84 9.59 2.8 10.9 11 61.2 1.0 1.15 -3.03 3.24 2.5 5.0 12 70.4 1.2 -0.71 3.65 3.71 2.3 1.9 13 75.6 1.3 -1.33 8.35 8.45 2.3 4.7 14 85.9 69.1 1.0 65.8 65.8 18.2 1.0 1.00 -7.89 7.95 2.3 6.9 15 3.0 1.0 0.40 -3.90 3.92 2.4 4.6 16 7.0 1.2 -0.19 4.97 4.97 2.4 2.5 17 9.0 1.3 -0.17 9.32 9.32 2.4 5.1 18 85.9 55.0 5.0 65.8 29.4 18.2 0.9 1.92 -8.54 8.76 2.4 7.8 19 64.2 1.0 0.28 -2.83 2.85 2.4 3.8 20 73.9 1.1 0.16 3.23 3.24 2.4 2.9 twenty one 92.0 1.2 5.27 9.53 10.89 2.8 8.4 twenty two 73.0 69.1 5.0 65.8 29.4 18.2 1.5 -0.66 5.11 5.15 2.2 2.6 twenty three 79.9 1.2 -0.41 3.52 3.54 2.4 1.3 twenty four 91.9 1.1 0.51 -3.73 3.76 2.2 5.1 25 98.8 1.3 0.94 -7.66 7.72 1.8 6.8

根據表7所示之結果可知,第1層(SiON)之厚度為13~16.5 nm、第2層(SiO2 )之厚度為22~37 nm、第3層(SiON)之厚度為58~80 nm、第4層(SiO2 )之厚度為2~10 nm、第5層(SiON)厚度為59~85 nm、第6層(SiO2 )之厚度為65~95 nm左右之範圍時,可得到θ=5~45°之範圍下之Yθ /Y2 為6%以下、並且Δa* b* 為6以下之抗反射膜。According to the results shown in Table 7, the thickness of the first layer (SiON) is 13 to 16.5 nm, the thickness of the second layer (SiO 2 ) is 22 to 37 nm, and the thickness of the third layer (SiON) is 58 to 80 nm, the thickness of the fourth layer (SiO 2 ) is 2-10 nm, the thickness of the fifth layer (SiON) is 59-85 nm, and the thickness of the sixth layer (SiO 2 ) is in the range of 65-95 nm. An anti-reflection film in which Y θ /Y 2 in the range of θ=5 to 45° is 6% or less and Δa * b * is 6 or less is obtained.

<比較例1A> 逐層改變比較例1之抗反射膜中構成抗反射層之4層薄膜之膜厚並實施同樣之模擬。將各層之膜厚及評價結果示於表8。<Comparative Example 1A> The film thickness of the four films constituting the anti-reflection layer in the anti-reflection film of Comparative Example 1 was changed layer by layer and the same simulation was performed. Table 8 shows the film thickness of each layer and the evaluation results.

[表8]    第4層 第3層 第2層 第1層 2°正反射光 最大值 SiO2 Nb2 O5 SiO2 Nb2 O5 Y a* b* C* Yθ /Y2 ∆a*b* 1 83.5 105.0 27.5 10.1 0.2 1.64 -4.60 4.88 8.1 8.8 2 83.5 105.0 27.5 9.4 0.2 0.23 -2.60 2.61 6.0 7.5 3 10.8 0.1 3.06 -6.60 7.27 11.1 11.3 4 83.5 105.0 25.6 10.1 0.2 1.49 -4.20 4.46 7.8 7.4 5 29.4 0.2 1.70 -5.00 5.28 7.5 10.2 6 83.5 97.7 27.5 10.1 0.3 5.97 -8.90 10.72 4.2 17.0 7 112.4 0.2 0.75 -2.60 2.71 8.5 8.8 8 77.7 105.0 27.5 10.1 0.1 1.26 0.24 1.28 15.1 6.8 9 89.3 1.2 2.98 -10.10 10.53 2.4 11.9 [Table 8] Level 4 Level 3 Level 2 Level 1 2° regular reflection light Maximum value SiO 2 Nb 2 O 5 SiO 2 Nb 2 O 5 Y a* b* C* Y θ /Y 2 ∆a*b* 1 83.5 105.0 27.5 10.1 0.2 1.64 -4.60 4.88 8.1 8.8 2 83.5 105.0 27.5 9.4 0.2 0.23 -2.60 2.61 6.0 7.5 3 10.8 0.1 3.06 -6.60 7.27 11.1 11.3 4 83.5 105.0 25.6 10.1 0.2 1.49 -4.20 4.46 7.8 7.4 5 29.4 0.2 1.70 -5.00 5.28 7.5 10.2 6 83.5 97.7 27.5 10.1 0.3 5.97 -8.90 10.72 4.2 17.0 7 112.4 0.2 0.75 -2.60 2.71 8.5 8.8 8 77.7 105.0 27.5 10.1 0.1 1.26 0.24 1.28 15.1 6.8 9 89.3 1.2 2.98 -10.10 10.53 2.4 11.9

<比較例2A> 逐層改變比較例2之抗反射膜中構成抗反射層之4層薄膜之膜厚並實施同樣之模擬。將各層之膜厚及評價結果示於表9。<Comparative Example 2A> The film thickness of the four films constituting the anti-reflection layer in the anti-reflection film of Comparative Example 2 was changed layer by layer and the same simulation was performed. Table 9 shows the film thickness of each layer and the evaluation results.

[表9]    第4層 第3層 第2層 第1層 2°正反射光 最大值 SiO2 Si3 N4 SiO2 Si3 N4 Y a* b* C* Yθ /Y2 ∆a*b* 1 101.5 33.4 38.2 23.4 1.1 -3.80 -0.06 3.80 2.2 11.1 2 101.5 33.4 38.2 21.7 0.9 -1.20 8.46 8.54 2.5 11.7 3 25.0 1.2 -6.00 0.99 6.08 1.9 12.8 4 101.5 33.4 35.5 23.4 0.9 -2.20 -4.80 5.28 2.3 12.3 5 40.9 1.2 -4.80 4.62 6.66 2.1 10.9 6 101.5 31.1 38.2 23.4 1.2 -3.80 -2.30 4.44 2.0 11.6 7 35.7 1.0 -3.40 1.85 3.87 2.4 10.2 8 94.3 33.4 38.2 23.4 1.1 -0.48 1.41 1.49 2.5 8.7 9 108.6 1.2 -6.00 -1.90 6.29 1.7 12.0 [Table 9] Level 4 Level 3 Level 2 Level 1 2° regular reflection light Maximum value SiO 2 Si 3 N 4 SiO 2 Si 3 N 4 Y a* b* C* Y θ /Y 2 ∆a*b* 1 101.5 33.4 38.2 23.4 1.1 -3.80 -0.06 3.80 2.2 11.1 2 101.5 33.4 38.2 21.7 0.9 -1.20 8.46 8.54 2.5 11.7 3 25.0 1.2 -6.00 0.99 6.08 1.9 12.8 4 101.5 33.4 35.5 23.4 0.9 -2.20 -4.80 5.28 2.3 12.3 5 40.9 1.2 -4.80 4.62 6.66 2.1 10.9 6 101.5 31.1 38.2 23.4 1.2 -3.80 -2.30 4.44 2.0 11.6 7 35.7 1.0 -3.40 1.85 3.87 2.4 10.2 8 94.3 33.4 38.2 23.4 1.1 -0.48 1.41 1.49 2.5 8.7 9 108.6 1.2 -6.00 -1.90 6.29 1.7 12.0

如表8、9所示,構成抗反射層之薄膜之數量為4層之情形時,即使變更薄膜之厚度,亦無法得到對θ=5~45°之範圍之任意θ而言Yθ /Y2 為6%以下、並且Δa* b* 為6以下之抗反射膜。As shown in Tables 8 and 9, when the number of films constituting the anti-reflection layer is 4, even if the thickness of the film is changed, Y θ /Y cannot be obtained for any θ in the range of θ=5~45° 2 is an anti-reflection film with 6% or less and Δa * b * of 6 or less.

根據上述之結果可知,藉由使構成抗反射膜之薄膜之數量為5層以上、較佳為6層以上,能實現更緻密之光學設計,可得到改變視認方向時之反射光之特性變化較小之抗反射膜。According to the above results, it can be seen that by making the number of films constituting the anti-reflection film 5 layers or more, preferably 6 layers or more, a denser optical design can be realized, and the characteristic change of the reflected light can be obtained when the viewing direction is changed. Small anti-reflective film.

薄膜之膜厚之最佳值根據構成薄膜之材料之折射率等而不同,因此難以一概地規定。另一方面,如表3~7所示,藉由變更構成抗反射膜之薄膜之厚度並反覆進行光學模擬,能夠找到Yθ /Y2 、Δa* b* 更小之條件。因此,於使用了上述實施例中所示之材料以外之薄膜之情形時,亦能夠設計改變視認方向時之反射光之特性變化較小之抗反射膜。The optimal value of the film thickness of the film differs according to the refractive index of the material constituting the film, etc., so it is difficult to uniformly specify. On the other hand, as shown in Tables 3-7, by changing the thickness of the film constituting the anti-reflective film and repeatedly performing optical simulations, it is possible to find conditions where Y θ /Y 2 and Δa * b * are smaller. Therefore, when a thin film other than the material shown in the above-mentioned embodiment is used, it is also possible to design an anti-reflection film with a small change in the characteristics of reflected light when the viewing direction is changed.

[底塗層之插入] <實施例1B> 於實施例1之抗反射膜中,在硬塗膜之丙烯酸系硬塗層與抗反射層(第1層之Nb2 O5 層)之間追加厚度3 nm之SiOx底塗層(x=0.65、波長550 nm下之折射率為1.72),實施同樣之模擬。將實施例1B之光學模擬之結果與實施例1之結果一起示於表10。[Insertion of undercoat layer] <Example 1B> In the anti-reflective film of Example 1 , add between the acrylic hard coat of the hard coat film and the anti-reflective layer (the Nb 2 O 5 layer of the first layer) The SiOx primer layer with a thickness of 3 nm (x=0.65, the refractive index at a wavelength of 550 nm is 1.72), and the same simulation is performed. The results of the optical simulation of Example 1B and the results of Example 1 are shown in Table 10.

[表10]    積層構成 反射光特性 防污 層 SiO2 Nb2 O5 SiO2 Nb2 O5 SiO2 Nb2 O5 SiO2 Nb2 O5 SiOx 底塗 θ (°) Y (%) a* b* C* Yθ /Y2 ∆a*b* 第8層 第7層 第6層 第5層 第4層 第3層 第2層 第1層 實施例1 無底塗層 5 87.5 25.6 10.8 80.8 18.6 24.6 42.2 8.2 - 2 0.50 0.45 0.00 0.45 - - 20 0.52 1.28 0.96 1.60 1.04 1.27 40 1.09 2.44 5.13 5.68 2.19 5.50 50 2.29 0.61 5.50 5.53 4.61 5.50 最大值 4.61 5.50 實施例1B 追加 SiOx 底塗層 5 87.5 25.6 10.8 80.8 18.6 24.6 42.2 8.2 3.0 2 0.51 -1.66 0.69 1.80 - - 20 0.51 -0.43 1.06 1.14 1.01 1.28 40 1.03 2.36 3.64 4.34 2.03 4.99 50 2.21 1.27 4.10 4.29 4.35 4.49 最大值 4.35 4.99 [Table 10] Layered composition Reflected light characteristics Antifouling layer SiO 2 Nb 2 O 5 SiO 2 Nb 2 O 5 SiO 2 Nb 2 O 5 SiO 2 Nb 2 O 5 SiO x primer θ (°) Y (%) a* b* C* Y θ /Y 2 ∆a*b* Layer 8 Layer 7 Level 6 Layer 5 Level 4 Level 3 Level 2 Level 1 Example 1 No primer 5 87.5 25.6 10.8 80.8 18.6 24.6 42.2 8.2 - 2 0.50 0.45 0.00 0.45 - - 20 0.52 1.28 0.96 1.60 1.04 1.27 40 1.09 2.44 5.13 5.68 2.19 5.50 50 2.29 0.61 5.50 5.53 4.61 5.50 Maximum value 4.61 5.50 Example 1B Additional SiO x primer layer 5 87.5 25.6 10.8 80.8 18.6 24.6 42.2 8.2 3.0 2 0.51 -1.66 0.69 1.80 - - 20 0.51 -0.43 1.06 1.14 1.01 1.28 40 1.03 2.36 3.64 4.34 2.03 4.99 50 2.21 1.27 4.10 4.29 4.35 4.49 Maximum value 4.35 4.99

實施例1B中,正反射光之色度指數a* 2 及b* 2 相對於實施例1稍微變化,但對於作為改變角度θ時之反射光特性之變化之指標之Yθ /Y2 及Δa* b* 之數值,未觀察到與實施例1之明顯之差異。根據該結果可知,於膜基材與抗反射層之間設置底塗層之情形時,藉由與上述各實施例同樣地調整抗反射層之積層構成及膜厚,亦可得到改變視認方向時之反射光之特性變化較小之抗反射膜。In Example 1B, the chromaticity indices a * 2 and b * 2 of the specular reflected light are slightly changed from those in Example 1, but for Y θ /Y 2 and Δa which are indicators of changes in the reflected light characteristics when the angle θ is changed The value of * b * is not significantly different from that of Example 1. From this result, it can be seen that when a primer layer is provided between the film base material and the anti-reflection layer, by adjusting the build-up structure and film thickness of the anti-reflection layer in the same manner as in the above-mentioned embodiments, it is also possible to change the direction of visibility. Anti-reflective film with small changes in the characteristics of reflected light.

1:膜基材 3:底塗層 5:抗反射層 10:膜 11:硬塗層 51,53,55:低折射率層 52,54,56:高折射率層 100:抗反射膜1: Film substrate 3: Undercoat 5: Anti-reflective layer 10: Membrane 11: Hard coating 51,53,55: low refractive index layer 52,54,56: high refractive index layer 100: Anti-reflective film

圖1係表示抗反射膜之積層形態之剖視圖。 圖2係用以對彩度C* 及色度差Δa* b* 進行說明之圖。Fig. 1 is a cross-sectional view showing the laminated form of the anti-reflection film. Fig. 2 is a diagram for explaining the chromaticity C * and the chromaticity difference Δa * b *.

1:膜基材 1: Film substrate

3:底塗層 3: Undercoat

5:抗反射層 5: Anti-reflective layer

10:膜 10: Membrane

11:硬塗層 11: Hard coating

51,53,55:低折射率層 51,53,55: low refractive index layer

52,54,56:高折射率層 52,54,56: high refractive index layer

100:抗反射膜 100: Anti-reflective film

Claims (11)

一種抗反射膜,其於膜基材上具備包含複數個薄膜之抗反射層, 上述抗反射層包含低折射率層及具有較所述低折射率層高之折射率之高折射率層作為上述薄膜, 從上述抗反射層側照射之D65光源之正反射光滿足下述之特性(A)及(B): (A)2°入射光之正反射光之視感反射率Y2 與θ°入射光之正反射光之視感反射率Yθ 於5~50°之範圍之任意角度θ下為Yθ /Y2 ≦6.0 (B)2°入射光之正反射光之色度指數a* 2 及b* 2 與θ°入射光之正反射光之色度指數a* θ 及b* θ 於5~50°之範圍之任意角度θ下為{(a* 2 -a* θ )2 +(b* 2 -b* θ )21/2 ≦6.0。An anti-reflection film comprising an anti-reflection layer comprising a plurality of thin films on a film substrate, the anti-reflection layer comprising a low refractive index layer and a high refractive index layer having a higher refractive index than the low refractive index layer as the For the film, the regular reflection light of the D65 light source irradiated from the side of the anti-reflection layer satisfies the following characteristics (A) and (B): (A) The apparent reflectivity of the regular reflection light of 2° incident light Y 2 and θ° The visual reflectivity Y θ of the regular reflection light of the incident light is Y θ /Y 2 ≦6.0 at any angle θ in the range of 5-50° (B) The chromaticity index of the regular reflection light of the 2° incident light a * 2 and b * 2 and the chromaticity index of the regular reflection light of θ° a * θ and b * θ at any angle θ in the range of 5 to 50° is {(a * 2 -a * θ ) 2 + (b * 2 -b * θ ) 2 } 1/2 ≦6.0. 如請求項1之抗反射膜,其中上述高折射率層於波長550 nm下之折射率為1.80以上, 上述低折射率層於波長550 nm下之折射率為1.50以下。Such as the anti-reflection film of claim 1, wherein the refractive index of the high refractive index layer at a wavelength of 550 nm is above 1.80, The refractive index of the low refractive index layer at a wavelength of 550 nm is 1.50 or less. 如請求項1或2之抗反射膜,其中上述高折射率層於波長400 nm下之折射率為1.84~2.55,於波長700 nm下之折射率為1.78~2.35。The anti-reflection film of claim 1 or 2, wherein the high refractive index layer has a refractive index of 1.84-2.55 at a wavelength of 400 nm and a refractive index of 1.78-2.35 at a wavelength of 700 nm. 如請求項1或2之抗反射膜,其中上述高折射率層之阿貝數νD 為20以上。The anti-reflection film of claim 1 or 2, wherein the Abbe number ν D of the high refractive index layer is 20 or more. 如請求項1或2之抗反射膜,其中上述抗反射層包含上述低折射率層及上述高折射率層共計5層以上。The anti-reflection film of claim 1 or 2, wherein the anti-reflection layer includes the low-refractive index layer and the high-refractive index layer totaling 5 or more layers. 如請求項1或2之抗反射膜,其中2°入射光之正反射光之視感反射率Y2 為1.0%以下。Such as the anti-reflection film of claim 1 or 2, wherein the visual reflectivity Y 2 of the regular reflection light of 2° incident light is 1.0% or less. 如請求項1或2之抗反射膜,其中θ°入射光之正反射光之視感反射率Yθ 於5~50°之範圍之任意角度θ下為3.0%以下。Such as the anti-reflection film of claim 1 or 2, wherein the visual reflectance Y θ of the regular reflection light of θ° incident light is 3.0% or less at any angle θ in the range of 5-50°. 如請求項1或2之抗反射膜,其中2°入射光之正反射光之色度指數a* 2 及b* 2 滿足{(a* )2 +(b* 2 )21/2 ≦5.0。Such as the anti-reflection film of claim 1 or 2, in which the chromaticity index a * 2 and b * 2 of the 2° incident light of the regular reflection light satisfy {(a * ) 2 +(b * 2 ) 2 } 1/2 ≦ 5.0. 如請求項1或2之抗反射膜,其中θ°入射光之正反射光之色度指數a* θ 及b* θ 於5~50°之範圍之任意角度θ下滿足{(a* θ )2 +(b* θ )21/2 ≦9.0。Such as the anti-reflective film of claim 1 or 2, wherein the chromaticity index a * θ and b * θ of the regular reflection light of θ° incident light satisfies {(a * θ ) at any angle θ in the range of 5-50° 2 +(b * θ ) 2 } 1/2 ≦9.0. 如請求項1或2之抗反射膜,其中構成上述抗反射層之複數個薄膜均為陶瓷薄膜。The anti-reflection film of claim 1 or 2, wherein the plurality of thin films constituting the anti-reflection layer are all ceramic thin films. 一種圖像顯示裝置,其於圖像顯示介質之視認側表面配置有如請求項1至10中任一項之抗反射膜。An image display device, which is provided with an anti-reflection film as in any one of Claims 1 to 10 on the visible side surface of an image display medium.
TW110108443A 2020-03-13 2021-03-10 Antireflection film and image display device that comprises an antireflection layer comprising a plurality of thin films disposed on a film substrate TW202138843A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-044632 2020-03-13
JP2020044632A JP7488671B2 (en) 2020-03-13 2020-03-13 Anti-reflection film and image display device

Publications (1)

Publication Number Publication Date
TW202138843A true TW202138843A (en) 2021-10-16

Family

ID=77617477

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110108443A TW202138843A (en) 2020-03-13 2021-03-10 Antireflection film and image display device that comprises an antireflection layer comprising a plurality of thin films disposed on a film substrate

Country Status (4)

Country Link
JP (2) JP7488671B2 (en)
KR (1) KR20210116284A (en)
CN (1) CN113391380A (en)
TW (1) TW202138843A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200408954A1 (en) * 2018-03-02 2020-12-31 Corning Incorporated Anti-reflective coatings and articles and methods of forming the same
JP2024084335A (en) * 2022-12-13 2024-06-25 東山フイルム株式会社 Anti-reflective film

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004138662A (en) 2002-10-15 2004-05-13 Fuji Photo Film Co Ltd Anti-reflection coating, anti-reflection film, and image display device
FR2898295B1 (en) * 2006-03-10 2013-08-09 Saint Gobain TRANSPARENT ANTIREFLECTION SUBSTRATE WITH NEUTRAL COLOR IN REFLECTION
CN101750641A (en) * 2008-12-15 2010-06-23 鸿富锦精密工业(深圳)有限公司 Broadband AR (anti-reflection)-film and optical element with broadband AR-film
JP6561519B2 (en) 2015-03-20 2019-08-21 大日本印刷株式会社 Antireflection film, display device using the antireflection film, and method for selecting antireflection film
CN106113787B (en) 2015-05-07 2018-12-07 黄河科技学院 A kind of high light transmission electro-conductive glass and preparation method thereof

Also Published As

Publication number Publication date
KR20210116284A (en) 2021-09-27
JP2024061739A (en) 2024-05-08
JP7488671B2 (en) 2024-05-22
JP2021144201A (en) 2021-09-24
CN113391380A (en) 2021-09-14

Similar Documents

Publication Publication Date Title
TWI787766B (en) Optical laminate and article
CN111183374B (en) Hard coating film, optical laminate, and image display device
TW201919865A (en) Anti-reflection film
JP2013156523A (en) Substrate
JP2024061739A (en) Anti-reflection film and image display device
KR102197745B1 (en) Anti-reflection film and production method therefor
JP2019012294A (en) Antireflection film and manufacturing method thereof
JP2022002903A5 (en)
WO2018180504A1 (en) Anti-reflection film
WO2013088836A1 (en) Antireflective member
JP7349235B2 (en) anti-reflection film
US20240019605A1 (en) Optical laminate and article
TWI537141B (en) Transparent conductive optical sheet having high invisibility of pattern
TW202223443A (en) Antireflection film and image display device
JP2003255104A (en) Transparent multilayer film and method for manufacturing the same
KR102687832B1 (en) Optical laminate and article
WO2024066880A1 (en) S-polarized light transflective film, windshield window, display apparatus, and transportation device
WO2022080137A1 (en) Polarizing plate provided with antireflective layer, and image display device
WO2019031325A1 (en) Anti-reflection film
TW202413077A (en) Optical laminate and article
JPH0394201A (en) Front plate for optical display device