TW202137411A - Via formation for a memory device - Google Patents

Via formation for a memory device Download PDF

Info

Publication number
TW202137411A
TW202137411A TW109143037A TW109143037A TW202137411A TW 202137411 A TW202137411 A TW 202137411A TW 109143037 A TW109143037 A TW 109143037A TW 109143037 A TW109143037 A TW 109143037A TW 202137411 A TW202137411 A TW 202137411A
Authority
TW
Taiwan
Prior art keywords
barrier material
memory cell
top surface
hole
dielectric material
Prior art date
Application number
TW109143037A
Other languages
Chinese (zh)
Other versions
TWI769609B (en
Inventor
大衛 羅斯 依克納米
安德魯 雷斯利 碧莫
Original Assignee
美商美光科技公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/746,645 external-priority patent/US11189662B2/en
Application filed by 美商美光科技公司 filed Critical 美商美光科技公司
Publication of TW202137411A publication Critical patent/TW202137411A/en
Application granted granted Critical
Publication of TWI769609B publication Critical patent/TWI769609B/en

Links

Images

Landscapes

  • Semiconductor Memories (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

Methods, systems, and devices for via formation in a memory device are described. A memory cell stack for a memory array may be formed. In some examples, the memory cell stack may comprise a storage element. A via may also be formed in an area outside of the memory array, and the via may protrude from a material that surrounds the via. A material may then be formed above the memory cell stack and also above the via, and the top surface of the barrier material may be planarized until at least a portion of the via is exposed. A subsequently formed material may thereby be in direct contact with the top of the via, while a portion of the initially formed material may remain above the memory cell stack.

Description

用於記憶體器件之通孔形成Used for through hole formation of memory devices

技術領域係關於用於記憶體器件之通孔形成。The technical field relates to the formation of through holes for memory devices.

以下內容大體上係關於製造呈交叉點記憶體陣列之記憶體單元堆疊且更特定言之係關於用於記憶體器件中之存取線粒度調變及通孔形成的方法。The following content generally relates to the fabrication of memory cell stacks in cross-point memory arrays and more specifically to the methods of access line granularity modulation and via formation used in memory devices.

記憶體器件廣泛地用於在諸如電腦、無線通信器件、攝影機、數位顯示器及其類似者之各種電子器件中儲存資訊。資訊係藉由程式化記憶體器件之不同狀態而進行儲存。舉例而言,二進位器件具有兩個狀態,通常表示為邏輯「1」或邏輯「0」。在其他系統中,可儲存多於兩個狀態。為了存取所儲存之資訊,電子器件之一組件可讀取或感測記憶體器件中的所儲存之狀態。為了儲存資訊,電子器件之一組件可寫入或程式化記憶體器件中之狀態。Memory devices are widely used to store information in various electronic devices such as computers, wireless communication devices, cameras, digital displays, and the like. Information is stored by programming the different states of the memory device. For example, a binary device has two states, which are usually represented as logic "1" or logic "0". In other systems, more than two states can be stored. In order to access the stored information, a component of the electronic device can read or sense the stored state in the memory device. In order to store information, a component of an electronic device can write or program the state in the memory device.

存在各種類型之記憶體器件,包括磁性硬碟機、隨機存取記憶體(RAM)、唯讀記憶體(ROM)、動態RAM (DRAM)、同步動態RAM (SDRAM)、鐵電RAM (FeRAM)、磁性RAM (MRAM)、電阻式RAM (RRAM)、快閃記憶體、相變記憶體(PCM)及其他者。記憶體器件可為揮發性的或非揮發性的。即使在不存在外部電源的情況下,非揮發性記憶體(例如FeRAM)亦可維持其所儲存邏輯狀態歷時擴展之時間段。揮發性記憶體器件(例如,DRAM)隨時間推移可能會失去其儲存狀態,除非其藉由外部電源經週期性地再新。亦存在各種類型的記憶體架構。舉例而言,PCM記憶體單元之陣列可經配置於交叉點架構中以形成交叉點記憶體陣列。There are various types of memory devices, including magnetic hard drives, random access memory (RAM), read-only memory (ROM), dynamic RAM (DRAM), synchronous dynamic RAM (SDRAM), ferroelectric RAM (FeRAM) , Magnetic RAM (MRAM), Resistive RAM (RRAM), flash memory, phase change memory (PCM) and others. The memory device can be volatile or non-volatile. Even in the absence of an external power supply, a non-volatile memory (such as FeRAM) can maintain its stored logic state for an extended period of time. Volatile memory devices (for example, DRAM) may lose their storage state over time, unless they are periodically renewed by an external power source. There are also various types of memory architectures. For example, an array of PCM memory cells can be arranged in a cross-point structure to form a cross-point memory array.

本專利申請案主張2020年1月17日申請的Economy等人之名為「VIA FORMATION FOR A MEMORY DEVICE」的美國專利申請案第16/746,645號之優先權,該美國專利申請案第16/746,645號為2018年8月13日申請的Economy等人之名為「ACCESS LINE GRAIN MODULATION IN A MEMORY DEVICE」的美國專利申請案第16/102,494號之部分接續申請案,並主張美國專利申請案第16/102,494號之優先權,該等案中之每一者讓渡給其受讓人,且其中之每一者以全文引用的方式明確地併入本文中。一些記憶體器件可至少部分藉由形成各種材料之堆疊而形成(可形成例如材料之堆疊且額外處理步驟可應用於堆疊)。在一些情況下,不同堆疊層可依次形成,且因此堆疊之形成可涉及在第一堆疊層之頂部上形成一額外層。第一層之頂面之結構(例如,頂面之表面形態)可導致額外層具有類似結構(例如,表面形態)。舉例而言,若形成與第一層之不平坦(例如,波形)頂面接觸的堆疊之額外層,則第一層之不平坦或波形圖案可向上傳播至額外層,從而亦造成額外層中之不平坦或波形頂面。This patent application claims priority to the U.S. Patent Application No. 16/746,645 named "VIA FORMATION FOR A MEMORY DEVICE" by Economy et al., filed on January 17, 2020. The U.S. Patent Application No. 16/746,645 Part of the continuation of the U.S. Patent Application No. 16/102,494 filed by Economy et al., filed on August 13, 2018, entitled "ACCESS LINE GRAIN MODULATION IN A MEMORY DEVICE", and claimed U.S. Patent Application No. 16 The priority of No. /102,494, each of these cases is assigned to its assignee, and each of them is expressly incorporated herein by reference in its entirety. Some memory devices can be formed at least in part by forming a stack of various materials (for example, a stack of materials can be formed and additional processing steps can be applied to the stack). In some cases, different stacked layers may be formed sequentially, and thus the formation of the stack may involve forming an additional layer on top of the first stacked layer. The structure of the top surface of the first layer (e.g., the surface morphology of the top surface) can result in an additional layer having a similar structure (e.g., surface morphology). For example, if an additional layer of the stack is formed in contact with the top surface of the uneven (e.g., wavy) layer of the first layer, the unevenness or wavy pattern of the first layer can propagate upward to the additional layer, thereby also causing the additional layer The top surface is not flat or wavy.

波形頂面可影響包括一個或兩個層之組件及/或包括在額外層之波形頂面上方或頂部上的其他層之組件的性能。舉例而言,給定層中之材料或整個記憶體器件的性能(例如,與記憶體器件之組件相關聯的電阻性、電流遞送或兩者)可取決於額外層之波形頂面的存在(例如,受該存在影響)。因此,最小化一或多個層之波形可改良某些實施之記憶體器件的效能。The corrugated top surface can affect the performance of components that include one or two layers and/or components that include other layers above or on top of the corrugated top surface of additional layers. For example, the material in a given layer or the performance of the entire memory device (e.g., the resistance associated with the components of the memory device, current delivery, or both) may depend on the presence of the top surface of the waveform of the additional layer ( For example, affected by this existence). Therefore, minimizing the waveform of one or more layers can improve the performance of some implemented memory devices.

根據本文中的教示,製造記憶體單元可包括在形成下一層之前平坦化(例如,拋光或以其他方式平滑)一層。舉例而言,一障壁材料可使用初始地產生障壁材料之波形頂面(例如,厚度或表面形態為波狀或以其他方式不平坦的頂面)的技術來製造。在一些情況下,障壁材料可在障壁材料上方形成金屬層之前被平坦化。在金屬層形成之前平坦化障壁材料可使所得金屬層不具有或至少具有減少之波紋(相對於可能已存在於在無障壁材料之中間平坦化步驟情況下形成的金屬層中的波紋)。因此,金屬層可具有更可預測及均勻性能或以其他方式更所需性能。According to the teachings herein, fabricating a memory cell may include planarizing (e.g., polishing or otherwise smoothing) one layer before forming the next layer. For example, a barrier material can be manufactured using a technique that initially produces a wave-shaped top surface of the barrier material (for example, a top surface that is wavy in thickness or surface morphology or is otherwise uneven). In some cases, the barrier material may be planarized before the metal layer is formed over the barrier material. Planarizing the barrier material before the formation of the metal layer allows the resulting metal layer to have no or at least reduced corrugations (as opposed to corrugations that may already be present in the metal layer formed without the intermediate planarization step of the barrier material). Therefore, the metal layer may have more predictable and uniform performance or otherwise more desirable performance.

舉例而言,金屬層之晶粒大小可增加,從而導致由金屬層形成的存取線中之電阻率減少及在整個記憶體器件中之電流遞送的增加。藉由平坦化障壁材料之頂面而增加金屬層之晶粒大小亦可減少記憶體器件形成的複雜度(例如,蝕刻步驟之複雜度歸因於用於形成存取線之金屬的減少量)。本文中所描述之此等及其他製造技術因此可改良記憶體單元之性能及效能並具有可藉由一般熟習此項技術者瞭解的其他益處。For example, the grain size of the metal layer can be increased, resulting in a decrease in resistivity in the access line formed by the metal layer and an increase in current delivery throughout the memory device. Increasing the grain size of the metal layer by planarizing the top surface of the barrier material can also reduce the complexity of the formation of the memory device (for example, the complexity of the etching step is due to the reduced amount of metal used to form the access line) . These and other manufacturing techniques described herein can therefore improve the performance and performance of memory cells and have other benefits that can be appreciated by those who are generally familiar with the technology.

在一些情況下,通孔亦可形成於記憶體器件內。舉例而言,通孔可由導電材料形成且可將在記憶體器件之一層處的組件(例如,記憶體單元陣列之存取線)耦接至在記憶體器件之較高或較低層處的組件(例如,以存取可能位於記憶體單元下方的線驅動器)。通孔在一些情況下可形成於基板之第一區域上方,該第一區域可被稱作通孔區域、通孔區或插座區,且記憶體陣列可經形成於基板之第二區域上方,該第二區域可被稱作陣列區域或陣列區。通孔區域及陣列區域在一些情況下可不重疊。In some cases, through holes may also be formed in the memory device. For example, vias can be formed of conductive materials and can couple components at one layer of the memory device (for example, the access lines of the memory cell array) to the upper or lower layer of the memory device. Components (for example, to access line drives that may be located underneath the memory cell). In some cases, through holes may be formed over the first area of the substrate. The first area may be referred to as a through hole area, a through hole area or a socket area, and the memory array may be formed over the second area of the substrate. The second area may be referred to as an array area or an array area. The via area and the array area may not overlap in some cases.

在一些情況下,記憶體器件形成之態樣(諸如初始地產生障壁材料之波形頂面的態樣)可產生一通孔,該通孔自環繞該通孔之一或多種材料至少暫時(例如,至少在一個製造級)突出,使得通孔之頂面至少暫時在一或多個周圍材料之頂面上方,其中通孔之一或多個側壁曝露。舉例而言,通孔可藉由介電材料環繞(例如,形成於該介電材料中),且通孔可在介電材料之頂面上方至少暫時突出。In some cases, the state in which the memory device is formed (such as the state in which the wavy top surface of the barrier material is initially generated) can create a through hole at least temporarily from one or more materials surrounding the through hole (for example, (At least at one manufacturing level) protruding such that the top surface of the through hole is at least temporarily above the top surface of one or more surrounding materials, wherein one or more of the side walls of the through hole are exposed. For example, the through hole may be surrounded by a dielectric material (for example, formed in the dielectric material), and the through hole may at least temporarily protrude above the top surface of the dielectric material.

諸如上文所描述之障壁材料的材料可經沈積或以其他方式形成以便在陣列之一或多個記憶體單元上方以及在一或多個通孔上方。材料可當包括於陣列區域中時具有益處(例如,障壁材料可具有對記憶體單元之電流特性的有益之影響,諸如改良之重設電流特性),且出於任何數目個原因(例如,成本、複雜度),僅僅在陣列區域上方形成材料可係不切實際或另外不合需要的。舉例而言,障壁材料可經形成為在包括通孔區域及陣列區域兩者之區域上方及可能在晶粒或晶圓之全部表面上方的毯覆層(薄片)。A material such as the barrier material described above may be deposited or otherwise formed so as to be over one or more memory cells of the array and over one or more through holes. The material may have benefits when included in the array area (for example, the barrier material may have a beneficial effect on the current characteristics of the memory cell, such as improved reset current characteristics), and for any number of reasons (for example, cost , Complexity), just forming the material over the array area may be impractical or otherwise undesirable. For example, the barrier material may be formed as a blanket layer (sheet) over the area including both the via area and the array area, and possibly over the entire surface of the die or wafer.

在材料經形成以使得其初始地覆蓋通孔之頂面(例如,通孔之突出部分)的情況下,在形成額外層之前平坦化材料可自通孔上方有益地移除材料並允許額外層與通孔直接接觸。舉例而言,在障壁材料形成於通孔之突出部分上方情況下,平坦化障壁材料可有益地曝露通孔之至少某一部分(例如,通孔之頂面),使得隨後形成的存取線可與通孔直接接觸。在此實例中,相對於其中障壁材料保持在通孔上方且因此在通孔與存取線之間的實施,平坦化因此可減少通孔與存取線之間的阻抗。另外,此平坦化材料可保持在陣列區域上方(例如,平坦化可移除材料的一部分足以曝露通孔之上表面而留下材料之剩餘下部或較少曝露部分),其可提供如本文所描述或如可另外由一般熟習此項技術者瞭解的一或多個相關聯益處。In the case where the material is formed so that it initially covers the top surface of the through hole (eg, the protruding portion of the through hole), the planarization material can beneficially remove the material from above the through hole and allow the additional layer before forming the additional layer Direct contact with the through hole. For example, in the case where the barrier material is formed above the protruding part of the through hole, the planarized barrier material can beneficially expose at least a part of the through hole (for example, the top surface of the through hole), so that the subsequently formed access line can be Direct contact with the through hole. In this example, with respect to implementations in which the barrier material remains above the via and therefore between the via and the access line, planarization can therefore reduce the impedance between the via and the access line. In addition, the planarization material can remain above the array area (for example, a portion of the planarized removable material is sufficient to expose the upper surface of the through hole while leaving the remaining lower or less exposed portion of the material), which can provide as described herein Describes or as may otherwise be understood by those skilled in the art one or more associated benefits.

上文所介紹的本發明之特徵在圖1至圖4及圖8至圖11之實例製造技術的情形下在下文進一步描述。本發明之此等及其他特徵另外由圖5之實例記憶體陣列及圖6及圖7以及圖12至圖14之關於記憶體單元及器件之製造的流程圖說明並參考該實例記憶體陣列及流程圖來描述。The features of the present invention described above are further described below in the context of the example manufacturing techniques shown in FIGS. 1 to 4 and FIGS. 8 to 11. These and other features of the present invention are additionally illustrated by the example memory array of FIG. 5 and the flowcharts of FIGS. 6 and 7 and FIGS. 12 to 14 regarding the manufacture of memory cells and devices, with reference to the example memory array and Flow chart to describe.

各種技術可用以形成下文1至5中所展示的材料或組件。此等技術可包括例如化學氣相沈積(CVD)、金屬有機氣相沈積(MOCVD)、物理氣相沈積(PVD)、濺鍍沈積、原子層沈積(ALD)或分子束磊晶法(MBE),以及其他薄膜生長技術。可使用數個技術移除材料,該等技術可包括例如化學蝕刻(亦稱作「濕式蝕刻」)、電漿蝕刻(亦稱作「乾式蝕刻」)或化學機械平坦化(CMP)。Various techniques can be used to form the materials or components shown in 1 to 5 below. These techniques may include, for example, chemical vapor deposition (CVD), metal organic vapor deposition (MOCVD), physical vapor deposition (PVD), sputter deposition, atomic layer deposition (ALD) or molecular beam epitaxy (MBE) , And other thin film growth technologies. Several techniques may be used to remove material, and these techniques may include, for example, chemical etching (also known as "wet etching"), plasma etching (also known as "dry etching"), or chemical mechanical planarization (CMP).

1A 及圖 1B 為說明在各製造級製造記憶體單元堆疊之方法的中間記憶體陣列結構之示意性描述。 FIG. 1A and FIG. 1B are schematic descriptions of an intermediate memory array structure illustrating a method of manufacturing a memory cell stack at each manufacturing level.

參看 1A ,根據一些實例,中間陣列結構100-a可包括將經處理以最終形成第一記憶體單元堆疊105-a、第二記憶體單元堆疊105-b及第三記憶體單元堆疊105-c的單元堆疊之態樣,如下文進一步詳述。在一些情況下,包括第一記憶體單元堆疊105-a、第二記憶體單元堆疊105-b及第三記憶體單元堆疊105-c的區可最終經組態(例如,經製造)以包括三個相異記憶體單元(例如,記憶體單元堆疊105內之儲存組件)。因此,儲存於第一記憶體單元中的資料可獨立於儲存於第二及第三記憶體單元中的資料,儲存於第二記憶體單元中的資料可獨立於儲存於第一及第三記憶體單元中的資料,且儲存於第三記憶體單元中的資料可獨立於儲存於第一及第二記憶體單元中的資料。Referring to Figure 1A, in accordance with some examples, the intermediate array structure 100-a may include a first processed to finally form a memory cell stack 105-a, the second memory cell stack 105-b and the third memory cell stack 105- The state of cell stacking of c is described in further detail below. In some cases, the regions including the first memory cell stack 105-a, the second memory cell stack 105-b, and the third memory cell stack 105-c may be finally configured (eg, manufactured) to include Three distinct memory cells (for example, the storage components in the memory cell stack 105). Therefore, the data stored in the first memory unit can be independent of the data stored in the second and third memory units, and the data stored in the second memory unit can be independent of the data stored in the first and third memory. The data in the volume unit, and the data stored in the third memory unit can be independent of the data stored in the first and second memory units.

儘管展示三個記憶體單元堆疊105-a、105-b及105-c,但一般熟習此項技術者應瞭解實務上可形成任何數目個記憶體單元堆疊105。在一些情況下,製造記憶體單元堆疊105可包括在基板(圖中未示)上方形成金屬層110。金屬層110可用以形成一或多個存取線,例如用於包括於記憶體單元堆疊105中之記憶體單元的字元線或位元線。Although three memory cell stacks 105-a, 105-b, and 105-c are shown, those skilled in the art should understand that any number of memory cell stacks 105 can be formed in practice. In some cases, manufacturing the memory cell stack 105 may include forming a metal layer 110 over a substrate (not shown). The metal layer 110 can be used to form one or more access lines, such as word lines or bit lines for memory cells included in the memory cell stack 105.

在一些情況下,製造記憶體單元堆疊105可包括在金屬層110上方形成第一電極材料115。第一電極材料115可用以形成一或多個底部電極組件,例如分別對應於記憶體單元堆疊105-a、105-b及105-c的底部電極。In some cases, manufacturing the memory cell stack 105 may include forming the first electrode material 115 over the metal layer 110. The first electrode material 115 can be used to form one or more bottom electrode components, such as the bottom electrodes corresponding to the memory cell stacks 105-a, 105-b, and 105-c, respectively.

該方法可包括在第一電極材料115上方形成選擇器材料120。選擇器材料120可用以形成一或多個選擇組件,例如分別對應於記憶體單元堆疊105-a、105-b及105-c之選擇器組件。在一些情況下,選擇器材料120可包含硫族化物材料。The method may include forming a selector material 120 over the first electrode material 115. The selector material 120 can be used to form one or more selection components, such as selector components corresponding to the memory cell stacks 105-a, 105-b, and 105-c, respectively. In some cases, the selector material 120 may include a chalcogenide material.

該方法可包括在選擇器材料120上方形成第二電極材料125。第二電極材料125可用以形成一或多個中間電極組件,例如分別對應於記憶體單元堆疊105-a、105-b及105-c之中間電極。The method may include forming a second electrode material 125 over the selector material 120. The second electrode material 125 can be used to form one or more intermediate electrode assemblies, such as the intermediate electrodes corresponding to the memory cell stacks 105-a, 105-b, and 105-c, respectively.

該方法可包括在第二電極材料125上方形成儲存材料130。儲存材料130可用以形成一或多個儲存組件,例如分別對應於記憶體單元堆疊105-a、105-b及105-c之儲存組件。在一些情況下,儲存材料130可包含硫族化物材料。儲存材料130可與選擇器材料120相同或不同。此外,雖然中間陣列結構100-a之實例將儲存材料130說明為在選擇器材料120上方,但儲存材料130及選擇器材料120之位置在一些實例中可調換。另外,在一些實例中,記憶體單元堆疊105及對應記憶體單元堆疊可不具有單獨選擇器材料120及第二電極材料125,且儲存材料130可自我選擇。The method may include forming a storage material 130 over the second electrode material 125. The storage material 130 can be used to form one or more storage components, such as storage components corresponding to the memory cell stacks 105-a, 105-b, and 105-c, respectively. In some cases, the storage material 130 may include a chalcogenide material. The storage material 130 may be the same as or different from the selector material 120. In addition, although the example of the intermediate array structure 100-a illustrates the storage material 130 as being above the selector material 120, the positions of the storage material 130 and the selector material 120 are interchangeable in some examples. In addition, in some examples, the memory cell stack 105 and the corresponding memory cell stack may not have the individual selector material 120 and the second electrode material 125, and the storage material 130 may be self-selectable.

該方法可包括在儲存材料130上方形成第三電極材料135。第三電極材料135可用以形成一或多個頂部電極組件,例如分別對應於記憶體單元堆疊105-a、105-b及105-c之頂部電極。The method may include forming a third electrode material 135 over the storage material 130. The third electrode material 135 can be used to form one or more top electrode components, for example, corresponding to the top electrodes of the memory cell stacks 105-a, 105-b, and 105-c, respectively.

電極材料115、125及135可各包括碳。在一些情況下,電極材料115、125及135中之一或多者可由兩個子層(圖中未示)組成,且因此由其形成的電極可被稱作雙層電極。在此情況下,至少一個子層可包括碳且可被稱作碳基材料。電極材料115、125及135可例如藉由沈積技術(諸如PVD、CVD或ALD以及其他沈積技術)而形成。The electrode materials 115, 125, and 135 may each include carbon. In some cases, one or more of the electrode materials 115, 125, and 135 may be composed of two sub-layers (not shown in the figure), and thus the electrode formed therefrom may be referred to as a double-layer electrode. In this case, at least one sub-layer may include carbon and may be referred to as a carbon-based material. The electrode materials 115, 125, and 135 may be formed, for example, by deposition techniques such as PVD, CVD or ALD and other deposition techniques.

中間陣列結構100-a之每一層可初始地形成為在整個晶粒或基板(諸如晶圓)之表面區域上的毯覆層。Each layer of the intermediate array structure 100-a may be initially formed as a blanket layer on the surface area of the entire die or substrate (such as a wafer).

現參看 1B 之中間陣列結構100-b,隔離區140-a及140-b可經形成於記憶體單元堆疊105-a及105-b及/或105-b及105-c之間以便將記憶體單元堆疊105彼此分開及隔離。隔離區140-a及140-b可使用各種蝕刻或其他移除技術(其可使用光罩及光微影以視需要界定特徵)形成。Referring now to the intermediate array structure 100-b of FIG. 1B , isolation regions 140-a and 140-b can be formed between the memory cell stacks 105-a and 105-b and/or 105-b and 105-c in order to The memory cell stack 105 is separated and isolated from each other. The isolation regions 140-a and 140-b can be formed using various etching or other removal techniques (which can use photomasks and photolithography to define features as needed).

圖1B說明在一個平面(例如,係x-y平面)中之中間陣列結構100-b的橫截面且因此將隔離區140-a及140-b展示為在一個維度(例如,x維度)中分隔記憶體單元堆疊105-a、105-b及105-c,但一般熟習此項技術者應瞭解類似技術可在另一平面(例如,y-z平面)中應用以便在另一個維度(例如,y維度)中分隔記憶體單元堆疊105-a、105-b及105-c及對應記憶體單元堆疊,使得對應於記憶體單元堆疊105-a、105-b及105-c之記憶體單元堆疊可各包含一柱。另外,一般熟習此項技術者應瞭解,在一些情況下,在圖1B中看起來可能係分隔隔離區140-a及140-b之物可能在不同平面中經結合且因此在一些替代方案中可包含一個連續隔離區140。FIG. 1B illustrates the cross-section of the intermediate array structure 100-b in one plane (for example, the xy plane) and thus shows the isolation regions 140-a and 140-b as separating memories in one dimension (for example, the x dimension) Body unit stacks 105-a, 105-b, and 105-c, but those who are generally familiar with this technology should understand that similar technology can be applied in another plane (for example, yz plane) to be in another dimension (for example, y dimension) The middle partition memory cell stacks 105-a, 105-b, and 105-c and the corresponding memory cell stacks, so that the memory cell stacks corresponding to the memory cell stacks 105-a, 105-b, and 105-c can each include One column. In addition, those who are generally familiar with the technology should understand that, in some cases, what appears to be separating the isolation regions 140-a and 140-b in FIG. 1B may be combined in different planes and therefore in some alternatives. A continuous isolation area 140 may be included.

2A 及圖 2B 為說明製造記憶體單元堆疊之方法的額外中間記憶體陣列結構200之示意性描述。 2A and 2B illustrate additional intermediate is a memory array of the stacked structure producing method of the memory cell 200. schematically described.

2A 之製造中間陣列結構200-a可包括沈積介電材料205。舉例而言,隔離區140-a及140-b可以介電材料205填充。因此,介電材料205可沈積並插入於分隔記憶體單元堆疊之間。在彼情況下,介電材料205可環繞一或多個記憶體單元堆疊105。Manufacturing the intermediate array structure 200-a of FIG. 2A may include depositing a dielectric material 205. For example, the isolation regions 140-a and 140-b can be filled with a dielectric material 205. Therefore, the dielectric material 205 can be deposited and inserted between the stacks of separate memory cells. In that case, the dielectric material 205 may surround one or more memory cell stacks 105.

製造 2B 之中間陣列結構200-b可包括形成波形表面210。在一些實例中,波形表面210可被稱作「包覆」表面形態且可形成於第三電極材料135及介電材料205上方。舉例而言,波形表面210可跨越記憶體單元堆疊105-a、105-b及105-c以及隔離區140-a及140-b中之至少一些(若非全部)延伸。包覆表面形態(其可在波形表面210上方的一或多個層中複製)可在一些情況下改良記憶體單元堆疊105之結構穩定性及記憶體陣列之其他態樣。Fabricating the intermediate array structure 200-b of FIG. 2B may include forming a wavy surface 210. In some examples, the undulating surface 210 may be referred to as a “wrapped” surface morphology and may be formed over the third electrode material 135 and the dielectric material 205. For example, the undulating surface 210 may extend across at least some (if not all) of the memory cell stacks 105-a, 105-b, and 105-c and the isolation regions 140-a and 140-b. The cladding surface morphology (which can be replicated in one or more layers above the wavy surface 210) can in some cases improve the structural stability of the memory cell stack 105 and other aspects of the memory array.

在一些情況下,波形表面210可藉由拋光或蝕刻第三電極材料135之頂面及介電材料205之頂面而形成。在一些實例中,拋光或蝕刻第三電極材料135之頂面及介電材料205之頂面可以不同速率移除第三電極材料135及介電材料205。舉例而言,可以比第三電極材料135更大(更快)之速率移除介電材料205,此可產生波形表面210。因此,在一些實例中,波形表面210可藉由以第一速率移除第三電極材料135及/或以不同於第一速率之第二速率移除介電材料205而形成。In some cases, the waved surface 210 may be formed by polishing or etching the top surface of the third electrode material 135 and the top surface of the dielectric material 205. In some examples, polishing or etching the top surface of the third electrode material 135 and the top surface of the dielectric material 205 can remove the third electrode material 135 and the dielectric material 205 at different rates. For example, the dielectric material 205 can be removed at a greater (faster) rate than the third electrode material 135, which can produce a waved surface 210. Therefore, in some examples, the waved surface 210 may be formed by removing the third electrode material 135 at a first rate and/or removing the dielectric material 205 at a second rate different from the first rate.

在某些實例中,波形表面210可藉由將CMP製程應用於第三電極材料135及介電材料205之頂面而形成。在一些情況下,拋光第三電極材料135之頂面可包括斷開與沈積方法相關聯的真空密封。在此情況下,第三電極材料135可包括氧化碳,此係因為拋光在真空環境外部的中間陣列結構200-b可將第三電極材料135及介電材料205之頂部曝露於氧氣及/或拋光程序本身可引入氧化。在一些其他情況下,製造記憶體單元堆疊可不包括第三電極材料135及介電材料205之拋光,且第三電極材料135可不包括氧化碳。In some examples, the waved surface 210 can be formed by applying a CMP process to the top surface of the third electrode material 135 and the dielectric material 205. In some cases, polishing the top surface of the third electrode material 135 may include breaking the vacuum seal associated with the deposition method. In this case, the third electrode material 135 may include carbon oxide, because the polishing of the intermediate array structure 200-b outside the vacuum environment can expose the top of the third electrode material 135 and the dielectric material 205 to oxygen and/or The polishing procedure itself can introduce oxidation. In some other cases, manufacturing the memory cell stack may not include polishing of the third electrode material 135 and the dielectric material 205, and the third electrode material 135 may not include carbon oxide.

3A 及圖 3B 為說明製造具有障壁材料305之記憶體單元堆疊的方法的額外中間記憶體陣列結構300之示意性描述。在一些情況下,障壁材料305可經形成於中間陣列結構300-a之第三電極材料135及介電材料205上方。 3A and 3B barrier material having a method of memory cell stack 305 is a schematic depiction of a structure 300 with additional intermediate memory array for explaining manufacturing. In some cases, the barrier material 305 may be formed over the third electrode material 135 and the dielectric material 205 of the intermediate array structure 300-a.

3A 之中間陣列結構300-a說明障壁材料305在第三電極材料135之上部表面上方及在介電材料205之上部表面上方的沈積,亦即,障壁材料305在參看圖2B描述之波形表面210上方的沈積。在一些情況下,障壁材料305可與第三電極材料135及介電材料205直接接觸。各種技術可用以沈積障壁材料305。此等技術可包括(但不限於) PVD、CVD、MOCVD、濺鍍沈積、ALD或MBE,以及其他薄膜生長技術。在一些情況下,障壁材料305可包含諸如氮化鎢(WN)之金屬氮化物、諸如矽化鎢(WSix)之金屬矽化物或諸如氮化鎢矽(WSiN)之金屬氮化矽。在一些實例中,障壁材料305可為第三電極材料135之碳與沈積於障壁材料305之頂部上的層(例如,如下文更詳細論述之金屬層)之間的熱障壁的實例。 The intermediate array structure 300-a of FIG. 3A illustrates the deposition of the barrier material 305 on the upper surface of the third electrode material 135 and the upper surface of the dielectric material 205, that is, the barrier material 305 is on the wavy surface described with reference to FIG. 2B 210 deposition above. In some cases, the barrier material 305 may directly contact the third electrode material 135 and the dielectric material 205. Various techniques can be used to deposit the barrier material 305. These techniques may include (but are not limited to) PVD, CVD, MOCVD, sputter deposition, ALD or MBE, and other thin film growth techniques. In some cases, the barrier material 305 may include a metal nitride such as tungsten nitride (WN), a metal silicide such as tungsten silicide (WSix), or a metal silicon nitride such as tungsten silicon nitride (WSiN). In some examples, the barrier material 305 may be an example of a thermal barrier between the carbon of the third electrode material 135 and a layer deposited on top of the barrier material 305 (eg, a metal layer as discussed in more detail below).

當初始形成時,障壁材料305可包括為波形之頂面310。舉例而言,障壁材料305可沈積於波形表面210之頂部上。在一些實例中,當初始形成時,障壁材料305可包括記憶體單元堆疊105-a、105-b及105-c以及隔離區140-a及140-b之均勻厚度且因此可包括具有類似於障壁材料305之底部波形表面(例如,波形表面210)之波形圖案的頂面310。When initially formed, the barrier material 305 may include a top surface 310 that is wavy. For example, the barrier material 305 can be deposited on top of the waved surface 210. In some examples, when initially formed, the barrier material 305 may include the uniform thicknesses of the memory cell stacks 105-a, 105-b, and 105-c and the isolation regions 140-a and 140-b and thus may include uniform thicknesses similar to those of The top surface 310 of the wave pattern of the bottom wave surface (for example, wave surface 210) of the barrier material 305.

儘管為說明清楚及簡易性起見而未圖示,但應理解在一些情況下所說明陣列結構亦可包括沈積於障壁材料305下方的內襯材料。舉例而言,內襯材料可插入於障壁材料305之底面與第三電極材料135之頂面及介電材料205之頂面之間(例如,障壁材料305之底面與波形表面210之間)。Although not shown for the sake of clarity and simplicity, it should be understood that in some cases the illustrated array structure may also include the lining material deposited under the barrier material 305. For example, the lining material may be inserted between the bottom surface of the barrier material 305 and the top surface of the third electrode material 135 and the top surface of the dielectric material 205 (for example, between the bottom surface of the barrier material 305 and the waved surface 210).

3B 之中間陣列結構300-b中所說明,在一些實例中,障壁材料305之頂面310可經平坦化或以其他方式平滑。各種技術可用以平坦化障壁材料305之頂面310。此等技術可包括(但不限於)化學蝕刻、電漿蝕刻或拋光(例如,CMP)。As Figure 3B of intermediate array structure 300-b as described, in some examples, the top surface 310 barrier material 305 may be planarized or otherwise smoothed. Various techniques can be used to planarize the top surface 310 of the barrier material 305. These techniques may include, but are not limited to, chemical etching, plasma etching, or polishing (e.g., CMP).

在一些實例中,處理頂面310可將障壁材料305自具有均勻之厚度改變至具有變化之厚度。舉例而言,在安置於記憶體單元堆疊105-a上方(例如,與記憶體單元堆疊105-a重疊)之區(例如,第二區或第二類型之區)中的障壁材料305之厚度(例如,第二厚度)可小於安置於隔離區140-a上方(例如,與該隔離區重疊)的區(例如,第一區)中之障壁材料305的厚度(例如,第一厚度)。在一些實例中,只要對應於波形表面210之介面被維持,障壁材料305之厚度可不影響記憶體器件之效能。舉例而言,厚度要求或約束條件的缺少可允許平坦化程序的靈活性,如參考圖3B所論述。In some examples, treating the top surface 310 can change the barrier material 305 from having a uniform thickness to having a varying thickness. For example, the thickness of the barrier material 305 in the region (eg, the second region or the second type region) disposed above the memory cell stack 105-a (for example, overlaps the memory cell stack 105-a) The thickness (for example, the second thickness) may be smaller than the thickness (for example, the first thickness) of the barrier material 305 in the region (for example, the first region) disposed above (for example, overlapping with the isolation region) of the isolation region 140-a. In some examples, as long as the interface corresponding to the wavy surface 210 is maintained, the thickness of the barrier material 305 may not affect the performance of the memory device. For example, the lack of thickness requirements or constraints may allow flexibility in the planarization procedure, as discussed with reference to FIG. 3B.

4 可為說明製造具有金屬層405之記憶體單元堆疊之方法的額外中間陣列結構400之示意性描述。在一些情況下,金屬層405可經形成於中間陣列結構400之障壁材料305上方。在一些情況下,金屬層405可與障壁材料305之頂面310 (其可已經平坦化或以其他方式平滑,如本文所描述)直接接觸。 FIG. 4 may be a schematic depiction of an additional intermediate array structure 400 illustrating a method of manufacturing a memory cell stack with a metal layer 405. In some cases, the metal layer 405 may be formed on the barrier material 305 of the intermediate array structure 400. In some cases, the metal layer 405 may be in direct contact with the top surface 310 of the barrier material 305 (which may have been planarized or otherwise smoothed, as described herein).

圖4的中間陣列結構400說明金屬層405在障壁材料305之頂面310上的沈積。各種技術可用以沈積金屬層405。此等技術可包括(但不限於) PVD、CVD、MOCVD、濺鍍沈積、ALD或MBE,以及其他薄膜生長技術。在一些情況下,金屬層405可為存取線(例如,字元線、位元線等)的實例。舉例而言,金屬層405可包含諸如鎢、鉭或鉬之高熔點金屬。在一些情況下,障壁材料305 (例如,包含WN、WSix或WSiN)可在沈積於第三電極材料135 (例如,包含碳)與金屬層405 (例如,包含鎢、鉭或鉬)之間時提供重設電流益處或其他益處。The middle array structure 400 of FIG. 4 illustrates the deposition of the metal layer 405 on the top surface 310 of the barrier material 305. Various techniques can be used to deposit the metal layer 405. These techniques may include (but are not limited to) PVD, CVD, MOCVD, sputter deposition, ALD or MBE, and other thin film growth techniques. In some cases, the metal layer 405 may be an example of access lines (eg, word lines, bit lines, etc.). For example, the metal layer 405 may include a high melting point metal such as tungsten, tantalum, or molybdenum. In some cases, the barrier material 305 (for example, including WN, WSix, or WSiN) may be deposited between the third electrode material 135 (for example, including carbon) and the metal layer 405 (for example, including tungsten, tantalum, or molybdenum). Provide reset current benefits or other benefits.

在一些情況下,記憶體單元堆疊105-a可包括中心點410-a且記憶體單元堆疊105-b可包括中心點410-b。中心點410-a及中心點410-b可為記憶體單元堆疊之中心的實例。距離415可為中心點410-a與中心點410-b之間的距離的實例。舉例而言,距離415可為單元間距距離的實例。In some cases, memory cell stack 105-a may include center point 410-a and memory cell stack 105-b may include center point 410-b. The center point 410-a and the center point 410-b may be examples of the center of the memory cell stack. The distance 415 may be an example of the distance between the center point 410-a and the center point 410-b. For example, the distance 415 may be an example of a cell pitch distance.

在一些情況下,不存在金屬層405之平坦化或其他平滑情況下,金屬層405可具有實質上對應於(例如,實質上等於)距離415的平均晶粒大小。舉例而言,不存在金屬層405之平坦化或其他平滑情況下,金屬層405之平均晶粒大小可實質上對應於波形表面210之表面形態,其可又實質上對應於距離415。In some cases, where there is no planarization or other smoothing of the metal layer 405, the metal layer 405 may have an average grain size substantially corresponding to (eg, substantially equal to) the distance 415. For example, in the absence of planarization or other smoothing of the metal layer 405, the average crystal grain size of the metal layer 405 may substantially correspond to the surface morphology of the corrugated surface 210, which may in turn substantially correspond to the distance 415.

然而,在障壁材料305之頂面310如本文中所描述,經平坦化或以其他方式平滑情況下,金屬層405可具有大於距離415 (例如,大於兩倍距離415)的平均晶粒大小。舉例而言,在障壁材料305之頂面310如本文中所描述經平坦化或以其他方式平滑的情況下,金屬層405之晶粒大小可接近或實質上等於包括於金屬層405中的金屬材料之毯覆膜沈積所觀測的晶粒大小(例如,大致250 nm或在一些情況下高達300 nm或350 nm,其中金屬層405包含鎢、鉭或鉬)。在一些情況下,增加金屬層405之平均晶粒大小可導致記憶體器件中之存取線的減小之阻抗、增加之電流遞送,及減少金屬層405之厚度的機會。在一些情況下,平坦化障壁材料305之頂面310可減少記憶體器件之蝕刻複雜度(例如,因為金屬層405可使用減小之金屬量形成)並增加記憶體器件之結構良率。However, where the top surface 310 of the barrier material 305 is planarized or otherwise smoothed as described herein, the metal layer 405 may have an average grain size greater than the distance 415 (eg, greater than twice the distance 415). For example, in the case where the top surface 310 of the barrier material 305 is planarized or otherwise smoothed as described herein, the grain size of the metal layer 405 may be close to or substantially equal to the metal included in the metal layer 405 The observed grain size of the blanket film deposition of the material (for example, approximately 250 nm or in some cases up to 300 nm or 350 nm, where the metal layer 405 includes tungsten, tantalum, or molybdenum). In some cases, increasing the average grain size of the metal layer 405 can result in reduced resistance of access lines in the memory device, increased current delivery, and opportunities for reducing the thickness of the metal layer 405. In some cases, planarizing the top surface 310 of the barrier material 305 can reduce the etching complexity of the memory device (for example, because the metal layer 405 can be formed using a reduced amount of metal) and increase the structural yield of the memory device.

儘管為說明清楚及簡易性起見而未圖示,但應理解所說明陣列結構可經形成於其他層上方或下方(例如,在基板上方),其他層此外可包括各種周邊及支援電路。舉例而言,互補金屬氧化物半導體(CMOS)電晶體可併入至行及列驅動器電路及感測放大器電路,以及經由上文所描述的行及列將此類電路連接至記憶體陣列的插座及佈線中。另外,其他層可包括一或多個記憶體陣列,或陣列之「平台」(圖1至圖4的實例中所說明之結構)可對應於記憶體陣列之一個平台且可在記憶體陣列之任何數目個額外平台上方或下方。Although not shown for the sake of clarity and simplicity, it should be understood that the illustrated array structure may be formed above or below other layers (for example, above the substrate), and other layers may further include various peripheral and supporting circuits. For example, complementary metal oxide semiconductor (CMOS) transistors can be incorporated into row and column driver circuits and sense amplifier circuits, and such circuits can be connected to the sockets of the memory array via the rows and columns described above And wiring. In addition, other layers may include one or more memory arrays, or the "platform" of the array (the structure illustrated in the examples of FIGS. 1 to 4) may correspond to a platform of the memory array and may be in the memory array. Any number of additional platforms above or below.

儘管為說明清楚及簡易性起見而未圖示,但應理解所說明陣列結構亦可包括鄰近於介電材料205沈積的共形內襯(例如,與介電材料205接觸)。舉例而言,共形內襯可插入於介電材料205之側表面與記憶體單元堆疊之側表面之間。Although not shown for clarity and simplicity of illustration, it should be understood that the illustrated array structure may also include a conformal liner deposited adjacent to the dielectric material 205 (for example, in contact with the dielectric material 205). For example, a conformal liner may be inserted between the side surface of the dielectric material 205 and the side surface of the memory cell stack.

雖然參看圖1至圖4描述僅僅在x-y平面中之處理,但一般熟習此項技術者應瞭解類似處理可在另一方向上繼續類似程序(例如,如將由y-z平面中之橫截面展示)。舉例而言,記憶體陣列形成可繼續正交(例如,y)方向上的堆疊定義以由金屬層405形成存取線以及產生用於每一記憶體單元堆疊105的柱且藉此將來自鄰近記憶體單元堆疊105之電極、選擇器組件及儲存組件彼此隔離(絕緣)。另外,如參看圖1至圖4描述之此類處理步驟可經重複以形成任何數目個記憶體器件層級。Although the processing in the x-y plane is described with reference to FIGS. 1 to 4, those skilled in the art should understand that similar processing can continue similar procedures in the other direction (for example, as will be shown by a cross-section in the y-z plane). For example, the memory array formation can continue to stack definitions in the orthogonal (eg, y) direction to form access lines from the metal layer 405 and generate pillars for each memory cell stack 105 and thereby transfer from adjacent The electrodes, selector components, and storage components of the memory cell stack 105 are isolated (insulated) from each other. In addition, such processing steps as described with reference to FIGS. 1 to 4 can be repeated to form any number of memory device levels.

5 說明根據本發明之各種實例的支援記憶體器件中之存取線粒度調變的實例記憶體陣列500。記憶體陣列500亦可被稱作電子記憶體裝置。記憶體陣列500包括可程式化以儲存不同狀態之記憶體單元堆疊505。每一記憶體單元堆疊505可包括一或多個記憶體單元。在一些情況下,記憶體單元堆疊505可程式化以儲存兩個狀態中的一者,表示邏輯「0」及邏輯「1」。在一些情況下,記憶體單元堆疊505可經組態以儲存多於兩個邏輯狀態中的一者。記憶體單元堆疊505可為如參看圖1至圖4描述之記憶體單元堆疊105之實例。 FIG. 5 illustrates an example memory array 500 that supports granular modulation of access lines in a memory device according to various examples of the present invention. The memory array 500 can also be referred to as an electronic memory device. The memory array 500 includes a memory cell stack 505 that can be programmed to store different states. Each memory cell stack 505 may include one or more memory cells. In some cases, the memory cell stack 505 can be programmed to store one of two states, representing a logical "0" and a logical "1". In some cases, the memory cell stack 505 can be configured to store one of more than two logic states. The memory cell stack 505 may be an example of the memory cell stack 105 as described with reference to FIGS. 1 to 4.

記憶體陣列500可為三維(3D)記憶體陣列,其中二維(2D)記憶體陣列形成於彼此的頂部上。與2D陣列相比,此可增加可形成於單個晶粒或基板上的記憶體單元之數目,其又可減少生產成本或增加記憶體陣列之效能,或兩者。根據圖5中描繪之實例,記憶體陣列500包括記憶體單元堆疊505之兩個層級,且因此可視為三維記憶體陣列;然而,層級之數目不限於二。各層級可經對準或定位以使得記憶體單元堆疊505可跨越各層級彼此大致對準。The memory array 500 may be a three-dimensional (3D) memory array, where two-dimensional (2D) memory arrays are formed on top of each other. Compared with a 2D array, this can increase the number of memory cells that can be formed on a single die or substrate, which can reduce production costs or increase the performance of the memory array, or both. According to the example depicted in FIG. 5, the memory array 500 includes two levels of the memory cell stack 505, and therefore can be regarded as a three-dimensional memory array; however, the number of levels is not limited to two. The levels can be aligned or positioned so that the memory cell stack 505 can be substantially aligned with each other across the levels.

記憶體單元堆疊505之每一列連接至存取線510及存取線515。存取線510及存取線515可為對應金屬層110或金屬層405之實例或由對應金屬層110或金屬層405形成,如參看圖1至圖4所描述。存取線510及存取線515亦可分別地稱為字元線510及位元線515。位元線515亦可稱為數位線515。對字線及位元線,或其類似物之參考係可互換的,而不會損耗理解或操作。Each row of the memory cell stack 505 is connected to the access line 510 and the access line 515. The access line 510 and the access line 515 may be examples of the corresponding metal layer 110 or the metal layer 405 or formed by the corresponding metal layer 110 or the metal layer 405, as described with reference to FIGS. 1 to 4. The access line 510 and the access line 515 may also be referred to as a word line 510 and a bit line 515, respectively. The bit line 515 can also be referred to as a digit line 515. The reference systems for word lines and bit lines, or the like are interchangeable without loss of understanding or manipulation.

字元線510及位元線515可實質上彼此垂直以產生陣列。兩個記憶體單元堆疊505可共用諸如數位線515之共同導電線。亦即,數位線515可與上部記憶體單元堆疊505之底部電極及下部記憶體單元堆疊505之頂部電極電子通信。因此,在一些情況下,單一存取線510、515可充當用於一或多個記憶體單元堆疊505之第一群組(例如,在存取線510、515下方的一或多個記憶體單元堆疊505之群組)的字元線510且可充當用於一或多個記憶體單元堆疊505之第二群組(例如,在存取線510、515上方的一或多個記憶體單元堆疊505之群組)的位元線515。其他組態或許有可能;舉例而言,記憶體單元堆疊505可包括與記憶體儲存元件之不對稱電極介面。在一些實例中,存取線510及515之晶粒大小可藉由平坦化記憶體單元堆疊505內的障壁材料之頂面而增加,如本文中所描述,包括參看圖1至圖4。The word line 510 and the bit line 515 may be substantially perpendicular to each other to create an array. Two memory cell stacks 505 can share a common conductive line such as digit line 515. That is, the digit line 515 can electronically communicate with the bottom electrode of the upper memory cell stack 505 and the top electrode of the lower memory cell stack 505. Therefore, in some cases, a single access line 510, 515 can serve as the first group for one or more memory cell stacks 505 (e.g., one or more memory cells below the access lines 510, 515). The character line 510 of the group of cell stacks 505) and can serve as the second group for one or more memory cell stacks 505 (for example, one or more memory cells above the access lines 510, 515) Stack the bit line 515 of the group 505). Other configurations may be possible; for example, the memory cell stack 505 may include an asymmetric electrode interface with the memory storage device. In some examples, the die size of the access lines 510 and 515 can be increased by planarizing the top surface of the barrier material in the memory cell stack 505, as described herein, including referring to FIGS. 1 to 4.

一般而言,一個記憶體單元堆疊505可位於兩個導電線(諸如字元線510及數位線515)之相交點處。此相交點可被稱作記憶體單元之位址。目標記憶體單元堆疊505可為位於通電字元線510與數位線515之相交點處之記憶體單元堆疊505;亦即,字元線510及數位線515可均經通電以便在其相交點處讀取或寫入包括於記憶體單元堆疊505中的記憶體單元。與相同字元線510或數位線515電子通信(例如,連接至相同字元線510或數位線515)的其他記憶體單元堆疊505可被稱作非目標記憶體單元堆疊505。Generally speaking, a memory cell stack 505 can be located at the intersection of two conductive lines (such as the word line 510 and the digit line 515). This intersection point can be called the address of the memory cell. The target memory cell stack 505 can be the memory cell stack 505 located at the intersection of the energized word line 510 and the digit line 515; that is, both the word line 510 and the digit line 515 can be energized so as to be at their intersection point The memory cells included in the memory cell stack 505 are read or written. Other memory cell stacks 505 that are in electronic communication with the same word line 510 or digit line 515 (eg, connected to the same word line 510 or digit line 515) may be referred to as non-target memory cell stacks 505.

如上文所論述,電極(例如,第三電極材料135及第一電極材料115)可分別地耦接至記憶體單元堆疊505及字元線510或數位線515。術語電極可指電導體,且在一些情況下,可用作至記憶體單元堆疊505之電接點。電極可包括在記憶體陣列500之元件或組件之間提供導電路徑的跡線、電線、導電線、導電層,或其類似者。As discussed above, electrodes (eg, the third electrode material 135 and the first electrode material 115) may be coupled to the memory cell stack 505 and the word line 510 or the digit line 515, respectively. The term electrode may refer to an electrical conductor, and in some cases, may be used as an electrical contact to the memory cell stack 505. The electrodes may include traces, wires, conductive lines, conductive layers, or the like that provide conductive paths between elements or components of the memory array 500.

諸如讀取及寫入之操作可藉由啟動或選擇字元線510及數位線515而在記憶體單元堆疊505上執行,啟動或選擇該字元線及數位線可包括施加電壓或電流至各別線。字元線510及數位線515可由導電材料製成,該導電材料諸如金屬(例如銅(Cu)、鋁(Al)、金(Au)、鎢(W)、鈦(Ti)等)、金屬合金、碳、導電摻雜之半導體或其他導電材料、合金、化合物。Operations such as reading and writing can be performed on the memory cell stack 505 by activating or selecting the word line 510 and digit line 515. Activating or selecting the word line and digit line can include applying voltage or current to each Don't line it. The word line 510 and the digit line 515 may be made of conductive materials such as metals (for example, copper (Cu), aluminum (Al), gold (Au), tungsten (W), titanium (Ti), etc.), metal alloys , Carbon, conductive doped semiconductors or other conductive materials, alloys, and compounds.

存取記憶體單元堆疊505可經由列解碼器520及行解碼器530控制。舉例而言,列解碼器520可自記憶體控制器540接收列位址,且基於所接收列位址啟動適當字元線510。類似地,行解碼器530自記憶體控制器540接收行位址並啟動適當數位線515。因此,藉由啟動字元線510及數位線515,可存取記憶體單元堆疊505。The access memory cell stack 505 can be controlled by the column decoder 520 and the row decoder 530. For example, the column decoder 520 may receive the column address from the memory controller 540, and activate the appropriate word line 510 based on the received column address. Similarly, the row decoder 530 receives the row address from the memory controller 540 and activates the appropriate digit line 515. Therefore, by activating the word line 510 and the digit line 515, the memory cell stack 505 can be accessed.

在存取之後,記憶體單元堆疊505可由感測組件525讀取或感測。舉例而言,感測組件525可經組態以基於藉由存取記憶體單元堆疊505產生的信號判定記憶體單元堆疊505之所儲存邏輯狀態。信號可包括電壓或電流,且感測組件525可包括電壓感測放大器、電流感測放大器或兩者。舉例而言,電壓可施加至記憶體單元堆疊505 (使用對應字元線510及數位線515)且所得電流之量值可取決於記憶體單元堆疊505的電阻,該電阻可反映由記憶體單元堆疊505儲存之邏輯狀態。同樣,電流可施加至記憶體單元堆疊505且用以產生電流的電壓之量值可取決於記憶體單元堆疊505之電阻,該電阻可反映由記憶體單元堆疊505儲存之邏輯狀態。感測組件525可包括各種電晶體或放大器,以便偵測且放大信號,其可被稱作栓鎖。記憶體單元堆疊505的偵測到之邏輯狀態接著可輸出為輸出535。在一些情況下,感測組件525可係行解碼器530或列解碼器520之部分。或者,感測組件525可連接至行解碼器530或列解碼器520,或與其電子通信。After being accessed, the memory cell stack 505 can be read or sensed by the sensing component 525. For example, the sensing component 525 can be configured to determine the stored logic state of the memory cell stack 505 based on a signal generated by accessing the memory cell stack 505. The signal may include voltage or current, and the sensing component 525 may include a voltage sense amplifier, a current sense amplifier, or both. For example, a voltage can be applied to the memory cell stack 505 (using the corresponding word line 510 and digit line 515) and the magnitude of the resulting current can depend on the resistance of the memory cell stack 505, which can reflect the resistance of the memory cell stack 505 Stack 505 the stored logic state. Likewise, current can be applied to the memory cell stack 505 and the magnitude of the voltage used to generate the current can depend on the resistance of the memory cell stack 505, which can reflect the logic state stored by the memory cell stack 505. The sensing component 525 may include various transistors or amplifiers to detect and amplify the signal, which may be called a latch. The detected logic state of the memory cell stack 505 can then be output as an output 535. In some cases, the sensing component 525 may be part of the row decoder 530 or the column decoder 520. Alternatively, the sensing component 525 may be connected to, or electronically communicate with, the row decoder 530 or the column decoder 520.

記憶體控制器540可經由各個組件(例如列解碼器520、行解碼器530及感測組件525)控制記憶體單元堆疊505之操作(讀取、寫入、重新寫入、再新、放電等)。在一些情況下,列解碼器520、行解碼器530及感測組件525中之一或多者可與記憶體控制器540共置。記憶體控制器540可產生列位址信號及行位址信號以便啟動所要的字元線510及數位線515。記憶體控制器540亦可產生且控制在記憶體陣列500之操作期間使用的各種電壓或電流。舉例而言,其可在存取一或多個記憶體單元堆疊505之後將放電電壓施加至字元線510或數位線515。The memory controller 540 can control the operation of the memory cell stack 505 (reading, writing, rewriting, renewing, discharging, etc.) through various components (such as the column decoder 520, the row decoder 530, and the sensing component 525) ). In some cases, one or more of the column decoder 520, the row decoder 530, and the sensing component 525 may be co-located with the memory controller 540. The memory controller 540 can generate a column address signal and a row address signal to activate the desired word line 510 and digit line 515. The memory controller 540 can also generate and control various voltages or currents used during the operation of the memory array 500. For example, it can apply a discharge voltage to the word line 510 or the digit line 515 after accessing one or more memory cell stacks 505.

一般而言,本文所論述之經施加電壓或電流之振幅、形狀或持續時間可經調整或改變且可針對操作記憶體陣列500中論述的各種操作而不同。此外,記憶體陣列500內的一個、多個或全部記憶體單元堆疊505可同時被存取;例如記憶體陣列結構100之多個或全部單元可在一重設操作期間被存取,在該重設操作中全部記憶體單元堆疊505或一組記憶體單元堆疊505經設定成單一邏輯狀態。In general, the amplitude, shape, or duration of the applied voltage or current discussed herein can be adjusted or changed and can be different for the various operations discussed in operating the memory array 500. In addition, one, multiple, or all memory cell stacks 505 in the memory array 500 can be accessed at the same time; for example, multiple or all cells of the memory array structure 100 can be accessed during a reset operation. It is assumed that all memory cell stacks 505 or a group of memory cell stacks 505 are set to a single logic state in operation.

6 展示說明根據本發明之實施例的用於記憶體器件中之存取線粒度調變的方法600之流程圖。方法600之操作可根據如本文所描述的各種製造技術實施。舉例而言,方法600之操作可藉由如參看圖1至圖5所論述之製造技術來實施。 FIG. 6 shows a flowchart illustrating a method 600 for adjusting the granularity of access lines in a memory device according to an embodiment of the present invention. The operations of method 600 may be implemented according to various manufacturing techniques as described herein. For example, the operations of the method 600 can be implemented by manufacturing techniques as discussed with reference to FIGS. 1 to 5.

在605處,可形成呈交叉點記憶體陣列之記憶體單元堆疊。記憶體單元堆疊可包含一儲存元件。605之操作可根據本文所描述之方法來執行。在某些實例中,605之操作的態樣可使用參看圖1至圖5論述之製造技術來執行。At 605, a stack of memory cells in a cross-point memory array can be formed. The memory cell stack may include a storage element. The operation of 605 can be performed according to the method described herein. In some instances, the aspect of operation of 605 can be performed using the manufacturing techniques discussed with reference to FIGS. 1 to 5.

在610處,障壁材料可經形成於記憶體單元堆疊上方。610之操作可根據本文所描述之方法來執行。在某些實例中,610之操作的態樣可使用參看圖1至圖5論述之製造技術來執行。At 610, barrier material may be formed over the stack of memory cells. The operation of 610 can be performed according to the method described herein. In some instances, the aspect of operation of 610 can be performed using the manufacturing techniques discussed with reference to FIGS. 1 to 5.

在615處,障壁材料之頂面可經平坦化。615之操作可根據本文所描述之方法來執行。在某些實例中,615之操作的態樣可使用參看圖1至圖5論述之製造技術來執行。At 615, the top surface of the barrier material may be planarized. The operation of 615 can be performed according to the method described herein. In some instances, the aspect of operation of 615 can be performed using the manufacturing techniques discussed with reference to FIGS. 1 to 5.

在620處,可形成交叉點記憶體陣列之存取線的金屬層。在一些情況下,金屬層可在平坦化之後形成於障壁材料之頂面上。在某些實例中,620之操作的態樣可使用參看圖1至圖5論述之製造技術來執行。At 620, the metal layer of the access line of the cross-point memory array can be formed. In some cases, the metal layer may be formed on the top surface of the barrier material after planarization. In some instances, the aspect of operation of 620 can be performed using the manufacturing techniques discussed with reference to FIGS. 1 to 5.

在一些實例中,裝置可執行上文使用通用或專用硬體描述的製造之態樣。裝置可包括用於形成呈交叉點記憶體陣列之記憶體單元堆疊的特徵、構件或指令,該記憶體單元堆疊包含儲存元件。裝置可進一步包括用於在記憶體單元堆疊上方形成障壁材料的特徵、構件或指令。裝置亦可包括用於平坦化障壁材料之頂面的特徵、構件或指令。裝置可另外包括用於在障壁材料之頂面上形成交叉點記憶體陣列之存取線的金屬層的特徵、構件或指令。In some instances, the device can perform the manufacturing aspects described above using general-purpose or special-purpose hardware. The device may include features, components, or instructions for forming a stack of memory cells in a cross-point memory array, the stack of memory cells including storage elements. The device may further include features, members, or instructions for forming barrier material over the stack of memory cells. The device may also include features, components, or instructions for flattening the top surface of the barrier material. The device may additionally include features, components, or instructions for forming the metal layer of the access lines of the cross-point memory array on the top surface of the barrier material.

在上文所描述的方法及裝置之一些實例中,平坦化障壁材料之頂面可包括將CMP製程應用於障壁材料之頂面。在方法及裝置之一些實例中,形成障壁材料可包括經由PVD程序、CVD程序、ALD程序或其任何組合沈積障壁材料。在一些情況下,形成記憶體單元堆疊可包括形成電極層,其中電極層包含碳。在一些情況下,形成電極層可包括經由PVD程序、CVD程序、ALD程序或其任何組合沈積電極層。In some examples of the methods and devices described above, planarizing the top surface of the barrier material may include applying a CMP process to the top surface of the barrier material. In some examples of the method and apparatus, forming the barrier material may include depositing the barrier material via a PVD process, a CVD process, an ALD process, or any combination thereof. In some cases, forming the memory cell stack may include forming an electrode layer, where the electrode layer includes carbon. In some cases, forming the electrode layer may include depositing the electrode layer via a PVD process, a CVD process, an ALD process, or any combination thereof.

上文所描述的方法及裝置之一些實例可進一步包括用於移除電極層之至少一部分的程序、特徵、構件或指令。在上文所描述的方法及裝置之一些實例中,金屬層與障壁材料之頂面接觸。在一些情況下,形成記憶體單元堆疊可包括沈積介電材料,其中介電材料插入於記憶體單元堆疊與第二記憶體單元堆疊之間。上文所描述的方法及裝置之一些實例可進一步包括用於移除介電材料之一部分及記憶體單元堆疊之電極層的一部分的程序、特徵、構件或指令。Some examples of the methods and devices described above may further include procedures, features, components, or instructions for removing at least a portion of the electrode layer. In some examples of the methods and devices described above, the metal layer is in contact with the top surface of the barrier material. In some cases, forming the memory cell stack may include depositing a dielectric material, where the dielectric material is inserted between the memory cell stack and the second memory cell stack. Some examples of the methods and devices described above may further include procedures, features, components, or instructions for removing a portion of the dielectric material and a portion of the electrode layer of the memory cell stack.

在上文所描述的方法及裝置之一些實例中,電極層之移除以第一速率發生且介電材料之移除以不同於第一速率之第二速率發生,其中移除介電材料之一部分及電極層之一部分形成在障壁材料下方的波形表面。在上文所描述的方法及裝置之一些實例中,障壁材料包含WN、WSix或WSiN且存取線之金屬層包含鎢、鉭或鉬。In some examples of the methods and devices described above, the removal of the electrode layer occurs at a first rate and the removal of the dielectric material occurs at a second rate different from the first rate, wherein the removal of the dielectric material A part and a part of the electrode layer are formed on the corrugated surface under the barrier material. In some examples of the methods and devices described above, the barrier material includes WN, WSix, or WSiN, and the metal layer of the access line includes tungsten, tantalum, or molybdenum.

7 展示說明根據本發明之實施例的用於記憶體器件中之存取線粒度調變的方法700之流程圖。方法700之操作可根據如本文所描述的各種製造技術實施。舉例而言,方法700之操作可藉由如參看圖1至圖5所論述之製造技術來實施。 FIG. 7 shows a flowchart illustrating a method 700 for adjusting the granularity of access lines in a memory device according to an embodiment of the present invention. The operations of method 700 may be implemented according to various manufacturing techniques as described herein. For example, the operations of the method 700 can be implemented by manufacturing techniques as discussed with reference to FIGS. 1 to 5.

在705處,記憶體單元堆疊可經形成。705之操作可根據本文所描述之方法來執行。在某些實例中,705之操作的態樣可使用參看圖1至圖5論述之製造技術來執行。At 705, a stack of memory cells can be formed. The operation of 705 can be performed according to the method described herein. In some instances, the aspect of operation of 705 can be performed using the manufacturing techniques discussed with reference to FIGS. 1 to 5.

在710處,可形成在記憶體單元堆疊上方的具有頂面及底面之障壁材料。710之操作可根據本文所描述之方法來執行。在某些實例中,710之操作的態樣可使用參看圖1至圖5論述之製造技術來執行。At 710, a barrier material with a top surface and a bottom surface can be formed above the memory cell stack. The operation of 710 can be performed according to the method described herein. In some instances, the aspect of operation of 710 can be performed using the manufacturing techniques discussed with reference to FIGS. 1 to 5.

在715處,障壁材料之頂面可藉由拋光障壁材料之頂面而減少。715之操作可根據本文所描述之方法來執行。在某些實例中,715之操作的態樣可使用參看圖1至圖5論述之製造技術來執行。At 715, the top surface of the barrier material can be reduced by polishing the top surface of the barrier material. The operation of 715 can be performed according to the method described herein. In some instances, the aspect of operation of 715 can be performed using the manufacturing techniques discussed with reference to FIGS. 1 to 5.

在720處,用於存取線之金屬層可經形成於障壁材料之頂面上方。720之操作可根據本文所描述之方法來執行。在某些實例中,720之操作的態樣可使用參看圖1至圖5論述之製造技術來執行。At 720, a metal layer for the access line can be formed over the top surface of the barrier material. The operation of 720 can be performed according to the method described herein. In some instances, the aspect of operation of 720 can be performed using the manufacturing techniques discussed with reference to FIGS. 1 to 5.

在一些實例中,裝置可執行使用通用或專用硬體描述的製造之態樣。裝置可包括用於形成記憶體單元堆疊之特徵、構件或指令。裝置可另外包括用於形成在記憶體單元堆疊上方的具有頂面及底面之障壁材料的特徵、構件或指令。裝置可進一步包括用於藉由拋光障壁材料之頂面而減少障壁材料之頂面的特徵、構件或指令。裝置可進一步包括用於形成在障壁材料之頂面上方的存取線之金屬層的特徵、構件或指令。In some instances, the device can perform the manufacturing described using general-purpose or special-purpose hardware. The device may include features, components, or instructions for forming a stack of memory cells. The device may additionally include features, members, or instructions for forming barrier materials with top and bottom surfaces above the stack of memory cells. The device may further include features, members, or instructions for reducing the top surface of the barrier material by polishing the top surface of the barrier material. The device may further include features, components, or instructions for forming the metal layer of the access wire above the top surface of the barrier material.

上文所描述的方法及裝置之一些實例可進一步包括用於蝕刻記憶體單元堆疊之電極層的頂面的程序、特徵、構件或指令。上文所描述的方法及裝置之一些實例可進一步包括用於蝕刻插入於電極層與第二記憶體單元堆疊之間的介電材料之頂面的程序、特徵、構件或指令。上文所描述的方法及裝置之一些實例可進一步包括用於至少部分地基於蝕刻電極層在頂面及蝕刻介電材料之頂面而形成波形表面的程序、特徵、構件或指令。Some examples of the methods and devices described above may further include procedures, features, components, or instructions for etching the top surface of the electrode layer of the memory cell stack. Some examples of the methods and devices described above may further include procedures, features, components, or instructions for etching the top surface of the dielectric material inserted between the electrode layer and the second memory cell stack. Some examples of the methods and devices described above may further include procedures, features, components, or instructions for forming a wave surface based at least in part on etching the electrode layer on the top surface and etching the top surface of the dielectric material.

上文所描述的方法及裝置之一些實例可進一步包括用於在波形表面之頂部上形成障壁材料的程序、特徵、構件或指令。在上文所描述的方法及裝置之一些實例中,形成障壁材料可包括形成記憶體單元堆疊之電極層與障壁材料之底面之間的介面,其中該介面具有波形圖案。在方法及裝置之一些實例中,減少障壁材料之頂面可包括藉由將CMP製程應用於障壁材料之頂面而將障壁材料自具有均勻之厚度改變至具有變化之厚度。Some examples of the methods and devices described above may further include procedures, features, components, or instructions for forming barrier material on top of the wavy surface. In some examples of the methods and devices described above, forming the barrier material may include forming an interface between the electrode layer of the memory cell stack and the bottom surface of the barrier material, wherein the interface has a wave pattern. In some examples of the method and apparatus, reducing the top surface of the barrier material may include changing the barrier material from a uniform thickness to a variable thickness by applying a CMP process to the top surface of the barrier material.

應注意,上文所描述之方法描述可能的實施,且操作及步驟可經重新配置或以其他方式修改,且其他實施係可能的。此外,可組合該等方法中之兩者或大於兩者之實施例。It should be noted that the method described above describes possible implementations, and the operations and steps can be reconfigured or modified in other ways, and other implementations are possible. In addition, two or more embodiments of these methods can be combined.

在一些情況下,根據如本文所描述之各種製造技術製造的器件、系統或裝置可包括呈交叉點記憶體陣列之記憶體單元堆疊、包含儲存元件之記憶體單元堆疊、安置於記憶體單元堆疊上方的障壁材料、包含平坦化頂面之障壁材料,及與障壁材料之平坦化頂面接觸的存取線之金屬層。In some cases, devices, systems, or devices manufactured according to various manufacturing techniques as described herein may include a stack of memory cells in a cross-point memory array, a stack of memory cells containing storage elements, and a stack of memory cells arranged in a memory cell stack. The upper barrier material, the barrier material including the planarized top surface, and the metal layer of the access line contacting the planarized top surface of the barrier material.

在上文所描述的器件、系統或裝置之一些實例中,障壁材料可包含波形底面。在一些情況下,障壁材料可在記憶體單元堆疊上方之第一區中具有第一厚度且障壁材料可在第二區中具有第二厚度,其中第二區插入於第一區與在第二記憶體單元堆疊上方的第三區之間。In some examples of the devices, systems, or devices described above, the barrier material may include a wavy bottom surface. In some cases, the barrier material may have a first thickness in the first area above the memory cell stack and the barrier material may have a second thickness in the second area, where the second area is inserted in the first area and in the second area. Between the third area above the memory cell stack.

在一些實例中,器件、系統或裝置可進一步包括環繞記憶體單元堆疊之介電材料,其中該介電材料具有與障壁材料接觸之頂面,其中第二區係在介電材料上方。在上文所描述的器件、系統或裝置之一些情況下,第二厚度可小於第一厚度。In some examples, the device, system, or apparatus may further include a dielectric material stacked around the memory cell, wherein the dielectric material has a top surface in contact with the barrier material, and the second region is above the dielectric material. In some cases of the devices, systems, or devices described above, the second thickness may be less than the first thickness.

在一些實例中,障壁材料可包含諸如WN之金屬氮化物、諸如WSix之金屬矽化物或諸如WSiN之金屬氮化矽,且金屬層可包含諸如鎢、鉭或鉬的高熔點金屬。器件、系統或裝置亦可包括在記憶體單元堆疊內之電極層,其中電極層具有與障壁材料之底面接觸的頂面,其中電極層之頂面與障壁材料之底面之間的介面與金屬層分開一變化距離。在一些其他實例中,電極層可包含碳。In some examples, the barrier material may include a metal nitride such as WN, a metal silicide such as WSix, or a metal silicon nitride such as WSiN, and the metal layer may include a high melting point metal such as tungsten, tantalum, or molybdenum. The device, system or device may also include an electrode layer in the memory cell stack, wherein the electrode layer has a top surface in contact with the bottom surface of the barrier material, and the interface between the top surface of the electrode layer and the bottom surface of the barrier material and the metal layer Separate a varying distance. In some other examples, the electrode layer may include carbon.

在一些實例中,記憶體單元堆疊之中心可與直接相鄰之記憶體單元堆疊的中心分開一單元間距距離。在一些情況下,金屬層可具有大於單元間距距離兩倍之平均晶粒大小。In some examples, the center of the memory cell stack may be separated from the center of the immediately adjacent memory cell stack by a cell pitch distance. In some cases, the metal layer may have an average grain size greater than twice the cell pitch distance.

8A 8B 為說明用於記憶體器件之製造方法之額外中間記憶體陣列結構的示意性描述。 8A and 8B used for explaining a schematic depiction of an additional intermediate memory array structure manufacturing method of the memory device.

8A 之中間陣列結構800-a可包括如本文參看圖2A所描述的中間陣列結構200-a之態樣。中間陣列結構800-a可進一步包括介電材料805及通孔810。介電材料805可形成於在(例如,鄰近於)任何數目個記憶體單元堆疊105旁邊的區域中。舉例而言,介電材料805可形成於通孔區域中,其可在基板之第一區域上方,且記憶體單元堆疊105可形成於陣列區域中,其可在基板之第二區域上方。在一些情況下,基板之第一區域及第二區域可不重疊。 The intermediate array structure 800-a of FIG. 8A may include the aspect of the intermediate array structure 200-a as described herein with reference to FIG. 2A. The middle array structure 800-a may further include a dielectric material 805 and a through hole 810. The dielectric material 805 may be formed in an area beside (eg, adjacent to) any number of memory cell stacks 105. For example, the dielectric material 805 can be formed in the via area, which can be over the first area of the substrate, and the memory cell stack 105 can be formed in the array area, which can be over the second area of the substrate. In some cases, the first area and the second area of the substrate may not overlap.

藉由介電材料805佔據的記憶體器件內之空間(區)可能先前已包括任何數目個其他材料或結構,諸如包括於記憶體單元堆疊105中的材料中之一些或所有。舉例而言,如本文參看圖1A所描述的中間陣列結構100-a之層可形成為毯覆層或以其他方式可先前已佔據藉由介電材料805佔據的空間。在一些情況下,額外記憶體單元堆疊105可先前形成於藉由介電材料805佔據之空間中。The space (area) in the memory device occupied by the dielectric material 805 may have previously included any number of other materials or structures, such as some or all of the materials included in the memory cell stack 105. For example, the layer of the intermediate array structure 100-a as described herein with reference to FIG. 1A may be formed as a blanket layer or otherwise may have previously occupied the space occupied by the dielectric material 805. In some cases, the additional memory cell stack 105 may be previously formed in the space occupied by the dielectric material 805.

先前在藉由介電材料805佔據之空間內的材料或結構可已被蝕刻掉或以其他方式使用任何合適技術(諸如本文中所描述之各種移除技術)來移除。在一些情況下,先前在藉由介電材料805佔據之空間內的材料或結構可能已基於可被稱作切斷遮罩之遮罩步驟而移除,其可用以界定陣列區域(及因此記憶體陣列)及在陣列區域之間或以其他方式在陣列區域外部的通孔區域之邊界。移除先前在藉由介電材料805佔據之空間內的材料或結構可產生接著可以介電材料805填充的孔隙(例如,溝槽)。介電材料805可能已沈積或以其他方式使用任何合適的技術(諸如本文中所描述之各種形成技術)形成。在一些實例中,介電材料805可為與形成於記憶體單元堆疊105之間的介電材料205相同的材料。在其他實例中,介電材料805可為與形成於記憶體單元堆疊105之間的介電材料205不同的材料。舉例而言,介電材料805可包含氧化物,且介電材料205可包含相同或不同氧化物。The materials or structures previously in the space occupied by the dielectric material 805 may have been etched away or otherwise removed using any suitable technique (such as the various removal techniques described herein). In some cases, the material or structure previously in the space occupied by the dielectric material 805 may have been removed based on a masking step that can be called a cut-off mask, which can be used to define the array area (and therefore the memory Volume array) and the boundary between the array areas or the via areas outside the array areas in other ways. Removal of the material or structure previously in the space occupied by the dielectric material 805 can create pores (eg, trenches) that can then be filled with the dielectric material 805. The dielectric material 805 may have been deposited or otherwise formed using any suitable technique, such as the various formation techniques described herein. In some examples, the dielectric material 805 may be the same material as the dielectric material 205 formed between the memory cell stacks 105. In other examples, the dielectric material 805 may be a different material from the dielectric material 205 formed between the memory cell stacks 105. For example, the dielectric material 805 may include an oxide, and the dielectric material 205 may include the same or different oxides.

通孔810可藉由蝕刻介電材料805以移除介電材料805之一部分而形成。介電材料805之部分可經蝕刻或以其他方式使用任何合適的技術(諸如本文中所描述之各種移除技術)移除。空間(例如,孔、孔隙)藉此可形成於介電材料805內,且通孔材料接著可經沈積或以其他方式形成於該空間中以形成通孔810。通孔810因此可藉由介電材料805環繞。另外,介電材料805 (有可能以及任何數目個其他材料)可在通孔810與記憶體單元堆疊105之間。作為一個實例,通孔材料可為鎢(W)。該空間及因此通孔810可延伸穿過介電材料805。在一些情況下,如初始形成的通孔810之頂面可與介電材料805之頂面相同(或至少實質上相同)的高度。The through hole 810 may be formed by etching the dielectric material 805 to remove a portion of the dielectric material 805. Portions of the dielectric material 805 may be etched or otherwise removed using any suitable technique (such as the various removal techniques described herein). Spaces (eg, holes, pores) can thereby be formed in the dielectric material 805, and the via material can then be deposited or otherwise formed in the space to form the vias 810. The through hole 810 can therefore be surrounded by the dielectric material 805. In addition, a dielectric material 805 (possibly and any number of other materials) may be between the via 810 and the memory cell stack 105. As an example, the via material may be tungsten (W). The space and therefore the through hole 810 may extend through the dielectric material 805. In some cases, the top surface of the through hole 810 that is initially formed may have the same (or at least substantially the same) height as the top surface of the dielectric material 805.

在一些情況下,通孔810可經形成於任何數目其他通孔(為清楚起見而未圖示)上方,該等其他通孔可與通孔810對準(例如,同軸)但包括於在圖8A中展示之彼等層下方的其他層中(例如,延伸穿過其他層)。因此,任何數目個通孔810可經連接以共同地形成通過記憶體器件內之任何數目個層的互連件。In some cases, the through holes 810 may be formed over any number of other through holes (not shown for clarity), and these other through holes may be aligned with the through holes 810 (for example, coaxial) but included in the In other layers below those layers shown in Figure 8A (e.g., extending through other layers). Therefore, any number of vias 810 can be connected to collectively form interconnects through any number of layers within the memory device.

此外,雖然為說明清晰起見展示僅僅一個通孔810,但應理解任何數目個類似或相似通孔可同時形成於介電材料805中。舉例而言,一組通孔可定位於與通孔810相同的通孔區中及定位於記憶體器件(例如,亦形成於介電材料805內)之相同層或層級處。另外,雖然通孔810經描述及說明為形成於介電材料805中並藉由介電材料805環繞,但應理解通孔810可替代地形成於任何其他類型的材料(包括多個材料之集合)中或藉由任何其他類型的材料環繞。In addition, although only one through hole 810 is shown for clarity of illustration, it should be understood that any number of similar or similar through holes can be formed in the dielectric material 805 at the same time. For example, a group of through holes may be located in the same through hole area as the through holes 810 and at the same layer or level of the memory device (for example, also formed in the dielectric material 805). In addition, although the through hole 810 is described and illustrated as being formed in the dielectric material 805 and surrounded by the dielectric material 805, it should be understood that the through hole 810 may alternatively be formed in any other type of material (including a collection of multiple materials). ) Or surrounded by any other type of material.

現參看 8B ,製造中間陣列結構800-b可導致通孔810的一部分自周圍介電材料805突出。在一些情況下,突出部分可源於拋光或蝕刻(例如,應用第一平坦化程序至)中間陣列結構800-a之頂面(且因此介電材料805之頂面及通孔810之頂面)直至通孔810自介電材料805之表面突出為止。在某些實例中,通孔810之突出部分可藉由將CMP製程應用於介電材料805及通孔810之頂面而形成。Referring now to FIG. 8B , manufacturing the intermediate array structure 800-b can cause a portion of the through hole 810 to protrude from the surrounding dielectric material 805. In some cases, the protruding portion may be derived from polishing or etching (for example, applying a first planarization process to) the top surface of the intermediate array structure 800-a (and therefore the top surface of the dielectric material 805 and the top surface of the via 810). ) Until the through hole 810 protrudes from the surface of the dielectric material 805. In some examples, the protruding portion of the through hole 810 can be formed by applying a CMP process to the dielectric material 805 and the top surface of the through hole 810.

舉例而言,拋光或蝕刻介電材料805之頂面及包括於通孔810中的材料之頂面可以不同速率移除介電材料805及包括於通孔810中的材料。舉例而言,介電材料805可以比包括於通孔810中之材料更大(更快)速率移除,其可產生通孔810之突出部分。因此,在一些實例中,通孔810之突出部分可藉由以第一速率移除介電材料805及/或以不同於第一速率之第二速率移除包括於通孔810中的材料而形成。在此情況下,通孔810之頂面的高度(例如,突出部分)可變為大於介電材料805之頂面的高度(例如,此係因為介電材料805之頂面可將基板上方之高度減少相對較大量)。因此,在一些情況下,通孔810之一或多個側壁可被曝露並在介電材料805之頂面上方延伸。For example, polishing or etching the top surface of the dielectric material 805 and the top surface of the material included in the through hole 810 can remove the dielectric material 805 and the material included in the through hole 810 at different rates. For example, the dielectric material 805 can be removed at a greater (faster) rate than the material included in the through hole 810, which can create the protrusion of the through hole 810. Therefore, in some examples, the protruding portion of the through hole 810 may be removed by removing the dielectric material 805 at a first rate and/or removing the material included in the through hole 810 at a second rate different from the first rate. form. In this case, the height of the top surface of the through hole 810 (e.g., the protruding portion) can be made greater than the height of the top surface of the dielectric material 805 (e.g., this is because the top surface of the dielectric material 805 can lie above the substrate The height reduction is relatively large). Therefore, in some cases, one or more of the sidewalls of the through hole 810 may be exposed and extend above the top surface of the dielectric material 805.

在一些實例中,通孔810之突出部分可由於可產生上文參看圖2B所描述的波形表面210及中間陣列結構200-b的相同程序中之一或多者而形成。舉例而言,產生波形表面210的相同CMP製程亦可使通孔810自周圍介電材料805突出。In some examples, the protruding portion of the through hole 810 can be formed due to one or more of the same procedures that can produce the waved surface 210 and the intermediate array structure 200-b described above with reference to FIG. 2B. For example, the same CMP process that produces the wavy surface 210 can also cause the via 810 to protrude from the surrounding dielectric material 805.

雖然圖8B之實例將通孔810之上部表面說明為在記憶體單元堆疊105之最上部部分上方(高於該等最上部部分),但應理解在其他實例中,通孔810之上部表面在記憶體單元堆疊105之最上部部分相同的高度處或在該等最上部部分下方(低於該等最上部部分)。舉例而言,在一些情況下,包括通孔810之通孔區內的介電材料805之上部表面可比隔離區140內的介電材料205之上部表面凹進(凹陷)(例如,歸因於諸如參考圖2B描述之拋光或蝕刻製程的拋光或蝕刻製程)至更大範圍,且因此通孔810可自介電材料805突出而通孔810之上部表面不一定比記憶體單元堆疊105之最上部部分在更大高度處。在一些情況下,通孔810可自介電材料805突出,即使上部表面通孔810與隔離區140之最低部分相比在較低高度處。Although the example of FIG. 8B illustrates the upper surface of the through hole 810 as being above the uppermost part of the memory cell stack 105 (higher than the uppermost parts), it should be understood that in other examples, the upper surface of the through hole 810 is The uppermost parts of the memory cell stack 105 are at the same height or below the uppermost parts (lower than the uppermost parts). For example, in some cases, the upper surface of the dielectric material 805 in the through hole region including the through hole 810 may be recessed (depressed) than the upper surface of the dielectric material 205 in the isolation region 140 (for example, due to The polishing or etching process such as the polishing or etching process described with reference to FIG. 2B) to a wider range, and therefore the through hole 810 can protrude from the dielectric material 805, and the upper surface of the through hole 810 is not necessarily the largest than the memory cell stack 105. The upper part is at a greater height. In some cases, the through hole 810 may protrude from the dielectric material 805 even though the upper surface through hole 810 is at a lower height than the lowest part of the isolation region 140.

9 為說明用於記憶體器件之製造之方法的額外中間陣列結構900-b之示意性描述。在一些情況下,障壁材料305可經形成於中間陣列結構900-b之通孔810上方,及有可能亦形成於如中間陣列結構900-b之實例中所說明的第三電極材料135、介電材料205及介電材料805中之一些或所有上方。因此,在一些情況下,障壁材料305可沈積在參看圖2B及圖8B所描述之波形表面210上方以及介電材料805及通孔810上方。障壁材料305可沈積或以其他方式形成為例如毯覆層,且因此可與第三電極材料135、介電材料205、介電材料805及通孔810之頂面直接接觸。 FIG. 9 is a schematic depiction of an additional intermediate array structure 900-b used in the method of manufacturing a memory device. In some cases, the barrier material 305 may be formed over the through holes 810 of the intermediate array structure 900-b, and may also be formed on the third electrode material 135, the dielectric material as described in the example of the intermediate array structure 900-b Some or all of the electrical material 205 and the dielectric material 805 are above. Therefore, in some cases, the barrier material 305 may be deposited over the waved surface 210 described with reference to FIGS. 2B and 8B and over the dielectric material 805 and the via 810. The barrier material 305 may be deposited or otherwise formed as, for example, a blanket layer, and thus may directly contact the top surfaces of the third electrode material 135, the dielectric material 205, the dielectric material 805, and the through hole 810.

各種技術可用以沈積障壁材料305。此等技術可包括(但不限於) PVD、CVD、MOCVD、濺鍍沈積、ALD或MBE,以及其他薄膜生長技術。在一些情況下,障壁材料305可包含氮化物。舉例而言,障壁材料305可包含諸如氮化鎢(WN)之金屬氮化物、諸如矽化鎢(WSix)之金屬矽化物或諸如氮化鎢矽(WSiN)之金屬氮化矽。然而,應理解障壁材料305可替代地包括任何其他合適之障壁材料。在一些實例中,障壁材料305可為第三電極材料135之碳與沈積於障壁材料305之頂部上的層(例如,如下文更詳細論述之金屬層)之間的熱障壁的實例。Various techniques can be used to deposit the barrier material 305. These techniques may include (but are not limited to) PVD, CVD, MOCVD, sputter deposition, ALD or MBE, and other thin film growth techniques. In some cases, the barrier material 305 may include nitride. For example, the barrier material 305 may include a metal nitride such as tungsten nitride (WN), a metal silicide such as tungsten silicide (WSix), or a metal silicon nitride such as tungsten silicon nitride (WSiN). However, it should be understood that the barrier material 305 may alternatively include any other suitable barrier material. In some examples, the barrier material 305 may be an example of a thermal barrier between the carbon of the third electrode material 135 and a layer deposited on top of the barrier material 305 (eg, a metal layer as discussed in more detail below).

當初始形成時,障壁材料305可包括為波形之頂面310。舉例而言,障壁材料305可沈積於波形表面210之頂部上。在一些實例中,當初始形成時,障壁材料305可包括在記憶體單元堆疊105-a、105-b及105-c、隔離區140-a及140-b、介電材料805及通孔810上方之均勻厚度。因此,當初始形成時,障壁材料305可包括包括類似於障壁材料305之底部波形表面(例如,波形表面210)之波形圖案的頂面310。另外或替代地,障壁材料305之頂面310可為鏡面或另外具有與介電材料805及通孔810 (包括通孔810之突出部分)之頂面之剖面類似的表面形態。舉例而言,障壁材料305可與通孔810之頂面以及通孔之一或多個(例如,所有)側壁兩者接觸,或以其他方式與通孔810之突出部分的所有表面接觸)。When initially formed, the barrier material 305 may include a top surface 310 that is wavy. For example, the barrier material 305 can be deposited on top of the waved surface 210. In some examples, when initially formed, the barrier material 305 may be included in the memory cell stacks 105-a, 105-b, and 105-c, the isolation regions 140-a and 140-b, the dielectric material 805, and the through holes 810. The uniform thickness above. Therefore, when initially formed, the barrier material 305 may include a top surface 310 that includes a wave pattern similar to the bottom wave surface of the barrier material 305 (eg, wave surface 210). Additionally or alternatively, the top surface 310 of the barrier material 305 may be a mirror surface or otherwise have a surface morphology similar to the cross section of the top surface of the dielectric material 805 and the through hole 810 (including the protruding portion of the through hole 810). For example, the barrier material 305 may be in contact with both the top surface of the through hole 810 and one or more (for example, all) sidewalls of the through hole, or in other ways with all surfaces of the protruding portion of the through hole 810).

在陣列區域上方(例如,在記憶體單元堆疊105及隔離區140上方)的障壁材料305之存在可具有如本文中其他地方所描述或如另外可由一般熟習此項技術者瞭解的一個或多個益處。作為一個實例,在陣列區域上方障壁材料305之存在可提供一重設電流益處或與程式化儲存器材料130或以其他方式操作包括記憶體單元堆疊105之記憶體陣列相關的其他電益處。作為另一實例,在陣列區域上方障壁材料305之存在可提供與下部波形表面210及包覆表面形態之使用相關的結構益處。然而,在通孔810上方(例如,在通孔區上方)障壁材料305之存在可具有一個或多個缺點,諸如通孔810與隨後形成於通孔810上方的任何結構(例如,隨後形成的存取線或在記憶體器件之較高層處的其他通孔810)(意謂直接地或間接地與通孔810耦接)之間增加的阻抗。The presence of the barrier material 305 above the array area (for example, above the memory cell stack 105 and the isolation region 140) may have one or more as described elsewhere herein or as otherwise understood by those skilled in the art. benefit. As an example, the presence of the barrier material 305 above the array area may provide a reset current benefit or other electrical benefit associated with programming the memory material 130 or otherwise operating the memory array including the memory cell stack 105. As another example, the presence of barrier material 305 above the array area can provide structural benefits related to the use of the lower wave surface 210 and the cladding surface morphology. However, the presence of the barrier material 305 above the via 810 (e.g., above the via region) may have one or more disadvantages, such as the via 810 and any structure subsequently formed over the via 810 (e.g., subsequently formed The increased impedance between access lines or other vias 810 at higher levels of the memory device (meaning directly or indirectly coupled to vias 810).

10 為說明用於記憶體器件之製造之方法的額外中間陣列結構1000之示意性描述。如中間陣列結構1000中所說明,在一些實例中,在形成障壁材料305之後,障壁材料305之頂面310可經平坦化或以其他方式平滑。各種技術可用以平坦化障壁材料305之頂面310。此等可包括(但不限於) CMP。在一些實例中,障壁材料305之頂面310可使用上文參看圖3B所描述的相同程序中之一或多者及中間陣列結構300-b來平坦化。舉例而言,相同CMP製程可用以平坦化或以其他方式平滑在記憶體單元堆疊105及介電材料205上方(例如,在陣列區域上方)以及在通孔810及介電材料805上方(例如,在通孔區域上方)的障壁材料305之表面310。 FIG. 10 is a schematic depiction of an additional intermediate array structure 1000 used in the method of manufacturing a memory device. As illustrated in the intermediate array structure 1000, in some examples, after the barrier material 305 is formed, the top surface 310 of the barrier material 305 may be planarized or otherwise smoothed. Various techniques can be used to planarize the top surface 310 of the barrier material 305. These may include (but are not limited to) CMP. In some examples, the top surface 310 of the barrier material 305 may be planarized using one or more of the same procedures described above with reference to FIG. 3B and the intermediate array structure 300-b. For example, the same CMP process can be used to planarize or otherwise smooth over the memory cell stack 105 and the dielectric material 205 (e.g., over the array area) and over the via 810 and the dielectric material 805 (e.g., Above the through hole area) the surface 310 of the barrier material 305.

在一些情況下,障壁材料305之頂面可經拋光或以其他方式經處理(例如,移除)直至曝露突出通孔810之至少一頂面為止。障壁材料305可在平坦化程序之後保持在記憶體單元堆疊105及隔離區140上方(例如,在陣列區域上方),且在一些情況下亦在介電材料805上方。舉例而言,障壁材料305可在平坦化程序之後保持在中間陣列結構1000-b之其他態樣上方,此係因為如初始形成的障壁材料305之厚度(例如,如參看圖9所描述)大於通孔810自介電材料805突出的量(例如,大於通孔810之突出部分之一或多個側壁的高度)。In some cases, the top surface of the barrier material 305 may be polished or otherwise processed (eg, removed) until at least one top surface of the protruding through hole 810 is exposed. The barrier material 305 may remain above the memory cell stack 105 and the isolation region 140 (eg, above the array area) after the planarization process, and in some cases also above the dielectric material 805. For example, the barrier material 305 may remain above other aspects of the intermediate array structure 1000-b after the planarization process, because the thickness of the barrier material 305 (for example, as described with reference to FIG. 9) formed initially is greater than The amount of the through hole 810 protruding from the dielectric material 805 (for example, greater than the height of one or more sidewalls of the protruding portion of the through hole 810).

雖然圖10之實例將通孔810之上部表面說明為在記憶體單元堆疊105之最上部部分上方(高於該最上部部分),但應理解在其他實例中,通孔810之上部表面在記憶體單元堆疊105之最上部部分或甚至隔離區140之最下部分的相同高度處或在其下方(低於其),例如如上文參看圖8所解釋。在至少一些此類實例中,障壁材料305之經拋光(平滑)上表面310可並不完全在陣列區域上方及在通孔區域上方同一高度處。Although the example of FIG. 10 illustrates the upper surface of the through hole 810 as being above the uppermost part of the memory cell stack 105 (higher than the uppermost part), it should be understood that in other examples, the upper surface of the through hole 810 is on the memory The uppermost part of the bulk cell stack 105 or even the lowermost part of the isolation region 140 is at the same height or below (below), for example, as explained above with reference to FIG. 8. In at least some such examples, the polished (smoothed) upper surface 310 of the barrier material 305 may not be completely above the array area and at the same height above the via area.

在一些情況下,在平坦化之後,障壁材料305可保持與通孔810之一或多個側壁的至少一部分接觸。舉例而言,通孔810之突出部分之側壁可保持與障壁材料305接觸。障壁材料305亦可保持在介電材料805上方。在此情況下,通孔810之一部分可至少部分藉由障壁材料環繞。雖然圖10之實例將通孔810的頂面展示為與障壁材料305之頂面齊平,但應理解在一些情況下通孔810可經由如關於自參考圖8B之介電材料805突出的通孔810所描述的類似機制自障壁材料305之頂面突出。In some cases, after planarization, the barrier material 305 may remain in contact with at least a portion of one or more sidewalls of the through hole 810. For example, the sidewall of the protruding part of the through hole 810 can be kept in contact with the barrier material 305. The barrier material 305 can also be held above the dielectric material 805. In this case, a part of the through hole 810 may be at least partially surrounded by the barrier material. Although the example of FIG. 10 shows the top surface of the through hole 810 as being flush with the top surface of the barrier material 305, it should be understood that in some cases the through hole 810 may pass through a through hole protruding from the dielectric material 805 in reference to FIG. 8B. The similar mechanism described by the hole 810 protrudes from the top surface of the barrier material 305.

移除(或至少減少)障壁材料305之上部表面310中之波紋可具有如本文中其他地方所描述或如另外可由一般熟習此項技術者瞭解的一個或多個益處,諸如去除(或至少減少)隨後形成於障壁材料上方的層中之波紋及藉此促進隨後所形成存取線中之較大晶粒大小。另外,自通孔810上方移除障壁材料305可減少通孔810與隨後形成於通孔810 (例如,隨後所形成存取線或其他通孔810)上方的與通孔810直接或間接耦接的任何結構之間的阻抗,同時避免額外成本、複雜度或可與形成障壁材料305相關聯以免初始地覆蓋通孔810的其他缺點。Removing (or at least reducing) the corrugations in the upper surface 310 of the barrier material 305 may have one or more benefits as described elsewhere herein or as otherwise understood by those skilled in the art, such as removing (or at least reducing ) The corrugations subsequently formed in the layer above the barrier material and thereby promote larger grain sizes in the subsequently formed access lines. In addition, removing the barrier material 305 from above the through hole 810 can reduce the direct or indirect coupling between the through hole 810 and the through hole 810 (for example, an access line or other through hole 810 formed subsequently) that is directly or indirectly coupled to the through hole 810. The impedance between any structures of, while avoiding additional cost, complexity, or other shortcomings that can be associated with forming the barrier material 305 so as not to initially cover the via 810.

儘管為說明清楚及簡易性起見而未圖示,但應理解在一些情況下所說明陣列結構亦可包括形成於障壁材料305 (例如,形成為毯覆層)下方的內襯或其他額外材料。舉例而言,內襯材料可插入於障壁材料305之底面與第三電極材料135之頂面及介電材料205之頂面之間(例如,障壁材料305之底面與波形表面210之間)。在一些實例中,當初始形成時,內襯材料可插入於障壁材料305之底面與通孔810之頂面以及介電材料805之頂面之間。內襯材料可使用與針對自通孔之頂面上方移除障壁材料305所描述之處理操作相同或類似的處理操作自通孔810之頂面上方移除。Although not shown for the sake of clarity and simplicity, it should be understood that in some cases the illustrated array structure may also include an inner lining or other additional materials formed under the barrier material 305 (for example, formed as a blanket layer) . For example, the lining material may be inserted between the bottom surface of the barrier material 305 and the top surface of the third electrode material 135 and the top surface of the dielectric material 205 (for example, between the bottom surface of the barrier material 305 and the waved surface 210). In some examples, when initially formed, the lining material may be inserted between the bottom surface of the barrier material 305 and the top surface of the through hole 810 and the top surface of the dielectric material 805. The lining material can be removed from the top surface of the through hole 810 using the same or similar processing operation as that described for removing the barrier material 305 from above the top surface of the through hole.

11 為說明用於記憶體器件之製造之方法的額外中間陣列結構1100之示意性描述。在一些情況下,金屬層405可經形成於障壁材料305上方。舉例而言,金屬層405可與障壁材料305之頂面310 (其可已經平坦化或以其他方式平滑,如本文所描述)直接接觸。在一些實例中,金屬層405可與通孔810直接接觸。舉例而言,金屬層405可自記憶體單元堆疊上方延伸至通孔上方(例如,金屬層405可經沈積或以其他方式形成為毯覆層)。 FIG. 11 is a schematic depiction of an additional intermediate array structure 1100 used in the method of manufacturing a memory device. In some cases, the metal layer 405 may be formed over the barrier material 305. For example, the metal layer 405 may be in direct contact with the top surface 310 of the barrier material 305 (which may have been planarized or otherwise smoothed, as described herein). In some examples, the metal layer 405 may directly contact the via 810. For example, the metal layer 405 may extend from above the memory cell stack to above the through holes (for example, the metal layer 405 may be deposited or otherwise formed as a blanket layer).

在一些此類情況下,歸因於先前已自通孔810之頂面移除障壁材料305,金屬層405可與通孔810之頂面接觸。金屬層405與通孔810之間的直接接觸可支援減少之接觸電阻,藉此改良總記憶體器件效能。舉例而言,存取線(例如,對應於記憶體單元堆疊105-a、105-b及105-c)的記憶體單元之位元線或字元線)可隨後由金屬層405形成,且存取線可與通孔810直接接觸,藉此減少在存取線與通孔810之間及因此在存取線與可與通孔810耦接的任何其他結構(例如,用於存取線之驅動器)之間的阻抗。本文中所描述之此等及其他製造技術因此可改良記憶體單元之性能及效能以及可由一般熟習此項技術者瞭解的其他益處。In some such cases, since the barrier material 305 has been previously removed from the top surface of the through hole 810, the metal layer 405 may be in contact with the top surface of the through hole 810. The direct contact between the metal layer 405 and the via 810 can support reduced contact resistance, thereby improving overall memory device performance. For example, access lines (e.g., bit lines or word lines of memory cells corresponding to the memory cell stacks 105-a, 105-b, and 105-c) can be subsequently formed by the metal layer 405, and The access line can be in direct contact with the through hole 810, thereby reducing the gap between the access line and the through hole 810 and therefore between the access line and any other structure that can be coupled with the through hole 810 (for example, for access line The impedance between the driver). These and other manufacturing techniques described herein can therefore improve the performance and performance of memory cells and other benefits that can be appreciated by those who are generally familiar with the technology.

各種技術可用以形成金屬層405。此等技術可包括(但不限於) PVD、CVD、MOCVD、濺鍍沈積、ALD或MBE,以及其他薄膜生長技術。在一些情況下,金屬層405可包含高熔點金屬,諸如鎢、鉭或鉬。在一些情況下,障壁材料305 (例如,包含WN、WSix或WSiN)可在沈積於第三電極材料135 (例如,包含碳)與金屬層405 (例如,包含鎢、鉭或鉬)之間時提供重設電流益處或其他益處。Various techniques can be used to form the metal layer 405. These techniques may include (but are not limited to) PVD, CVD, MOCVD, sputter deposition, ALD or MBE, and other thin film growth techniques. In some cases, the metal layer 405 may include a high melting point metal, such as tungsten, tantalum, or molybdenum. In some cases, the barrier material 305 (for example, including WN, WSix, or WSiN) may be deposited between the third electrode material 135 (for example, including carbon) and the metal layer 405 (for example, including tungsten, tantalum, or molybdenum). Provide reset current benefits or other benefits.

儘管為說明清楚及簡易性起見而未圖示,但應理解所說明陣列結構可經形成於其他層上方或下方(例如,在基板上方),其此外可包括各種周邊及支援電路;且通孔810可將金屬層405或形成於其中之結構與在較高層或下層處之結構耦接。舉例而言,互補金屬氧化物半導體(CMOS)電晶體可併入至行及列驅動器電路及感測放大器電路中,且通孔810可將形成於金屬層405中之存取線耦接至對應驅動器。另外,其他層可包括一或多個記憶體陣列,或陣列之「平台」(圖8至圖11的實例中所說明之結構)可對應於記憶體陣列之一個平台且可在記憶體陣列之任何數目個額外平台上方或下方。Although not shown for the sake of clarity and simplicity, it should be understood that the illustrated array structure may be formed above or below other layers (for example, above the substrate), and it may also include various peripherals and supporting circuits; and The hole 810 may couple the metal layer 405 or a structure formed therein with a structure at a higher or lower layer. For example, complementary metal oxide semiconductor (CMOS) transistors can be incorporated into row and column driver circuits and sense amplifier circuits, and vias 810 can couple the access lines formed in the metal layer 405 to the corresponding driver. In addition, other layers may include one or more memory arrays, or the "platform" of the array (the structure illustrated in the examples of FIGS. 8 to 11) may correspond to a platform of the memory array and may be located on the memory array. Any number of additional platforms above or below.

12 展示說明根據本發明之態樣的用於記憶體器件之製造之一或多個方法1200的流程圖。方法1200之操作可用以形成記憶體器件或其組件,如本文所描述。舉例而言,方法1200之操作可藉由如參看圖8至圖11描述之製造技術實施。 FIG. 12 shows a flowchart illustrating one or more methods 1200 for manufacturing a memory device according to aspects of the invention. The operations of method 1200 can be used to form a memory device or component thereof, as described herein. For example, the operation of the method 1200 can be implemented by the manufacturing technique as described with reference to FIG. 8 to FIG. 11.

在1205處,包括儲存元件的記憶體單元堆疊可經形成於基板之第一區域上方。1205之操作可根據本文所描述之方法來執行。在一些實例中,1205之操作的態樣可使用如參看圖8至圖11描述之製造技術來執行。At 1205, a stack of memory cells including storage elements may be formed over the first area of the substrate. The operation of 1205 can be performed according to the method described herein. In some examples, the operation aspect of 1205 can be performed using manufacturing techniques as described with reference to FIGS. 8 to 11.

在1210處,延伸穿過介電材料之通孔可經形成於基板之第二區域上方。1210之操作可根據本文所描述之方法來執行。在一些實例中,1210之操作的態樣可使用如參看圖8至圖11描述之製造技術來執行。At 1210, a through hole extending through the dielectric material may be formed over the second area of the substrate. The operation of 1210 can be performed according to the method described herein. In some examples, the operation aspect of 1210 can be performed using manufacturing techniques as described with reference to FIGS. 8-11.

在1215處,障壁材料可經形成於記憶體單元堆疊及通孔上方。1215之操作可根據本文所描述之方法來執行。在一些實例中,1215之操作的態樣可使用如參看圖8至圖11描述之製造技術來執行。At 1215, barrier material can be formed over the memory cell stack and vias. The operation of 1215 can be performed according to the method described herein. In some examples, the operation aspect of 1215 can be performed using manufacturing techniques as described with reference to FIGS. 8-11.

在1220處,障壁材料之頂面可經平坦化。1220之操作可根據本文所描述之方法來執行。在一些實例中,1220之操作的態樣可使用如參看圖1至圖6描述之製造技術來執行。At 1220, the top surface of the barrier material can be planarized. The operation of 1220 can be performed according to the method described herein. In some examples, the aspect of operation of 1220 can be performed using the manufacturing techniques described with reference to FIGS. 1 to 6.

在1225處,用於記憶體陣列之存取線的金屬可形成於障壁材料上方。1225之操作可根據本文所描述之方法來執行。在一些實例中,1225之操作的態樣可使用如參看圖8至圖11描述之製造技術來執行。At 1225, the metal used for the access lines of the memory array can be formed over the barrier material. The operation of 1225 can be performed according to the method described herein. In some examples, the operation aspect of 1225 can be performed using manufacturing techniques as described with reference to FIGS. 8-11.

在一些實例中,如本文所描述之裝置可執行一或多個方法,諸如方法1200。裝置可包括用於執行以下操作之特徵、構件或指令(例如,儲存可由處理器執行之指令的非暫時性電腦可讀媒體):在基板之第一區域上方形成包括儲存元件之記憶體單元堆疊;在基板之第二區域上方形成延伸穿過介電材料之通孔;在記憶體單元堆疊及通孔上方形成障壁材料;平坦化障壁材料之頂面;及在障壁材料上方形成用於記憶體陣列之存取線的金屬。In some examples, a device as described herein may perform one or more methods, such as method 1200. The device may include features, components, or instructions for performing the following operations (for example, a non-transitory computer-readable medium storing instructions executable by a processor): a stack of memory cells including storage elements is formed over the first area of the substrate ; Forming a through hole extending through the dielectric material above the second area of the substrate; forming a barrier material above the memory cell stack and through holes; planarizing the top surface of the barrier material; and forming a memory above the barrier material The metal of the access line of the array.

本文中所描述的方法1200及裝置之一些實例可進一步包括用於至少部分地基於平坦化自通孔上方移除障壁材料的操作、特徵、構件或指令。在本文中所描述的方法1200及裝置之一些實例中,障壁材料可在平坦化之後保持在記憶體單元堆疊上方。在本文中所描述的方法1200及裝置之一些實例中,障壁材料可在平坦化之後保持於通孔之側壁上。在本文中所描述的方法1200及裝置之一些實例中,障壁材料可在平坦化之後保持在介電材料上方。Some examples of the methods 1200 and devices described herein may further include operations, features, components, or instructions for removing barrier material from above the via based at least in part on planarization. In some examples of the method 1200 and apparatus described herein, the barrier material may remain above the stack of memory cells after planarization. In some examples of the method 1200 and the apparatus described herein, the barrier material may remain on the sidewall of the via after planarization. In some examples of the methods 1200 and devices described herein, the barrier material may remain above the dielectric material after planarization.

本文中所描述的方法1200及裝置之一些實例可進一步包括用於基於平坦化自通孔上方移除障壁材料的操作、特徵、構件或指令。在本文中所描述的方法1200及裝置之一些實例中,障壁材料在平坦化之後保持在記憶體單元堆疊上方。在本文中所描述的方法1200及裝置之一些實例中,障壁材料在平坦化之後保持於通孔之側壁上。在本文中所描述的方法1200及裝置之一些實例中,障壁材料在平坦化之後保持在介電材料上方。Some examples of the methods 1200 and devices described herein may further include operations, features, components, or instructions for removing barrier material from above the through holes based on planarization. In some examples of the method 1200 and apparatus described herein, the barrier material remains above the stack of memory cells after planarization. In some examples of the method 1200 and apparatus described herein, the barrier material remains on the sidewall of the via after planarization. In some examples of the methods 1200 and devices described herein, the barrier material remains above the dielectric material after planarization.

本文中所描述的方法1200及裝置之一些實例可進一步包括用於在形成障壁材料之前將第一平坦化程序應用於介電材料之頂面及通孔之頂面的操作、特徵、構件或指令,其中通孔之頂面可在第一平坦化程序之後在介電材料之頂面上方突出。在本文中所描述的方法1200及裝置之一些實例中,第一平坦化程序以比包括於通孔中之材料更快的速率移除介電材料。Some examples of the method 1200 and the apparatus described herein may further include operations, features, components, or instructions for applying a first planarization process to the top surface of the dielectric material and the top surface of the via before forming the barrier material , Wherein the top surface of the through hole can protrude above the top surface of the dielectric material after the first planarization process. In some examples of the method 1200 and devices described herein, the first planarization process removes the dielectric material at a faster rate than the material included in the via.

本文中所描述的方法1200及裝置之一些實例可進一步包括用於在記憶體單元堆疊與第二記憶體單元堆疊之間形成一絕緣區的操作、特徵、構件或指令,其中絕緣區包括第二介電材料,記憶體單元堆疊包括電極,第一平坦化程序應用於電極之頂面及絕緣區之頂面,且第一平坦化程序以比包括於電極中之材料更快的速率移除第二介電材料。Some examples of the method 1200 and the apparatus described herein may further include operations, features, components, or instructions for forming an insulating region between the memory cell stack and the second memory cell stack, wherein the insulating region includes the second The dielectric material, the memory cell stack includes electrodes, the first planarization process is applied to the top surface of the electrode and the top surface of the insulating region, and the first planarization process removes the first planarization process at a faster rate than the material included in the electrode Two dielectric materials.

在本文中所描述的方法1200及裝置之一些實例中,介電材料及第二介電材料可為不同材料。在本文中所描述的方法1200及裝置之一些實例中,金屬可與通孔之頂面接觸。在本文中所描述的方法1200及裝置之一些實例中,在平坦化之後,障壁材料可具有波形下表面及平坦頂面。在本文中所描述的方法1200及裝置之一些實例中,波形下表面可與在障壁材料下方之一或多種材料共形。In some examples of the methods 1200 and devices described herein, the dielectric material and the second dielectric material may be different materials. In some examples of the methods 1200 and devices described herein, the metal may be in contact with the top surface of the via. In some examples of the method 1200 and apparatus described herein, after planarization, the barrier material may have a waved lower surface and a flat top surface. In some examples of the methods 1200 and devices described herein, the waveform lower surface may conform to one or more materials under the barrier material.

在本文中所描述的方法1200及裝置之一些實例中,平坦化障壁材料之頂面可包括用於CMP製程應用於障壁材料之頂面的操作、特徵、構件或指令。In some examples of the method 1200 and the apparatus described herein, planarizing the top surface of the barrier material may include operations, features, components, or instructions for applying a CMP process to the top surface of the barrier material.

13 展示說明根據本發明之態樣的用於記憶體器件之製造之一或多個方法1300的流程圖。方法1300之操作可用以形成記憶體器件或其組件,如本文所描述。舉例而言,方法1300之操作可藉由如參看圖8至圖11描述之製造技術實施。 FIG. 13 shows a flowchart illustrating one or more methods 1300 for manufacturing a memory device according to aspects of the invention. The operations of method 1300 may be used to form a memory device or component thereof, as described herein. For example, the operation of the method 1300 can be implemented by the manufacturing technique as described with reference to FIGS. 8 to 11.

在1305處,包括儲存元件的記憶體單元堆疊可經形成於基板之第一區域上方。1305之操作可根據本文所描述之方法來執行。在一些實例中,1305之操作的態樣可使用如參看圖8至圖11描述之製造技術來執行。At 1305, a stack of memory cells including storage elements may be formed over the first area of the substrate. The operation of 1305 can be performed according to the method described herein. In some examples, the operation aspect of 1305 can be performed using manufacturing techniques as described with reference to FIGS. 8-11.

在1310處,延伸穿過介電材料之通孔可形成於基板之第二區域上方。1310之操作可根據本文所描述之方法來執行。在一些實例中,1310之操作的態樣可使用如參看圖8至圖11描述之製造技術來執行。At 1310, a through hole extending through the dielectric material may be formed over the second area of the substrate. The operation of 1310 can be performed according to the method described herein. In some examples, the state of operation of 1310 can be performed using manufacturing techniques as described with reference to FIGS. 8-11.

在1315處,可形成在記憶體單元堆疊及通孔上方之障壁材料。1315之操作可根據本文所描述之方法來執行。在一些實例中,1315之操作的態樣可使用如參看圖8至圖11描述之製造技術來執行。At 1315, barrier material can be formed over the memory cell stack and vias. The operation of 1315 can be performed according to the method described herein. In some examples, the operation aspect of 1315 can be performed using manufacturing techniques as described with reference to FIGS. 8-11.

在1320處,障壁材料之頂面可經平坦化。1320之操作可根據本文所描述之方法來執行。在一些實例中,1320之操作的態樣可使用如參看圖8至圖11描述之製造技術來執行。At 1320, the top surface of the barrier material may be planarized. The operation of 1320 can be performed according to the method described herein. In some examples, the state of operation of 1320 can be performed using manufacturing techniques as described with reference to FIGS. 8 to 11.

在1325處,可基於平坦化自通孔上方移除障壁材料。1325之操作可根據本文所描述之方法來執行。在一些實例中,1325之操作的態樣可使用如參看圖8至圖11描述之製造技術來執行。At 1325, the barrier material can be removed from above the via based on planarization. The operation of 1325 can be performed according to the method described herein. In some examples, the state of operation of 1325 can be performed using manufacturing techniques as described with reference to FIGS. 8-11.

在1330處,用於記憶體陣列之存取線的金屬可經形成於障壁材料上方。1330之操作可根據本文所描述之方法來執行。在一些實例中,1330之操作的態樣可使用如參看圖8至圖11描述之製造技術來執行。At 1330, the metal used for the access lines of the memory array may be formed over the barrier material. The operation of 1330 can be performed according to the method described herein. In some examples, the state of operation of 1330 can be performed using manufacturing techniques as described with reference to FIGS. 8 to 11.

14 展示說明根據本發明之態樣的用於記憶體器件之製造之一或多個方法1400的流程圖。方法1400之操作可用以形成記憶體器件或其組件,如本文所描述。舉例而言,方法1400之操作可藉由如參看圖8至圖11描述之製造技術實施。 FIG. 14 shows a flowchart illustrating one or more methods 1400 for manufacturing a memory device according to aspects of the invention. The operations of method 1400 can be used to form a memory device or component thereof, as described herein. For example, the operation of the method 1400 can be implemented by manufacturing techniques as described with reference to FIGS. 8-11.

在1405處,可形成記憶體單元堆疊之集合,記憶體單元堆疊各包括各別儲存元件及在該各別儲存元件上方之各別電極。1405之操作可根據本文所描述之方法來執行。在一些實例中,1405之操作的態樣可使用如參看圖8至圖11描述之製造技術來執行。At 1405, a collection of memory cell stacks can be formed, each of the memory cell stacks including a respective storage element and a respective electrode above the respective storage element. The operation of 1405 can be performed according to the method described herein. In some examples, the operation aspect of 1405 can be performed using manufacturing techniques as described with reference to FIGS. 8-11.

在1410處,可形成介電材料。1410之操作可根據本文所描述之方法來執行。在一些實例中,1410之操作的態樣可使用如參看圖8至圖11描述之製造技術來執行。At 1410, a dielectric material can be formed. The operation of 1410 can be performed according to the method described herein. In some examples, the aspect of operation of 1410 can be performed using manufacturing techniques as described with reference to FIGS. 8-11.

在1415處,可形成與介電材料接觸之通孔,其中介電材料係在通孔與記憶體單元堆疊之集合之間。1415之操作可根據本文所描述之方法來執行。在一些實例中,1415之操作的態樣可使用如參看圖8至圖11描述之製造技術來執行。At 1415, a through hole in contact with a dielectric material can be formed, wherein the dielectric material is between the through hole and the stack of memory cells. The operation of 1415 can be performed according to the method described herein. In some examples, the operation aspect of 1415 can be performed using manufacturing techniques as described with reference to FIGS. 8-11.

在1420處,障壁材料可形成於記憶體單元堆疊之集合及通孔上方。1420之操作可根據本文所描述之方法來執行。在一些實例中,1420之操作的態樣可使用如參看圖8至圖11描述之製造技術來執行。At 1420, barrier material can be formed over the collection of memory cell stacks and the through holes. The operation of 1420 can be performed according to the method described herein. In some examples, the aspect of operation of 1420 can be performed using manufacturing techniques as described with reference to FIGS. 8 to 11.

在1425處,障壁材料的一部分可經移除以曝露通孔之頂面。1425之操作可根據本文所描述之方法來執行。在一些實例中,1425之操作的態樣可使用如參看圖8至圖11描述之製造技術來執行。At 1425, a portion of the barrier material can be removed to expose the top surface of the through hole. The operation of 1425 can be performed according to the method described herein. In some examples, the mode of operation of 1425 can be performed using manufacturing techniques as described with reference to FIGS. 8-11.

在1430處,可形成與通孔之頂面及與障壁材料接觸的金屬。1430之操作可根據本文所描述之方法來執行。在一些實例中,1430之操作的態樣可使用如參看圖8至圖11描述之製造技術來執行。At 1430, a metal that contacts the top surface of the through hole and the barrier material can be formed. The operation of 1430 can be performed according to the method described herein. In some examples, the aspect of operation of 1430 can be performed using manufacturing techniques as described with reference to FIGS. 8 to 11.

在一些實例中,如本文所描述之裝置可執行一或多個方法,諸如方法1400。裝置可包括用於執行以下操作的特徵、構件或指令(例如,儲存可由處理器執行之指令的非暫時性電腦可讀媒體):形成記憶體單元堆疊之集合,記憶體單元堆疊各包括各別儲存元件及在該各別儲存元件上方之各別電極;形成一介電材料;形成與介電材料接觸之通孔,其中介電材料係在通孔與記憶體單元堆疊之集合之間;形成在記憶體單元堆疊之集合及通孔上方的障壁材料;移除障壁材料的一部分以曝露通孔之頂面;及形成與通孔之頂面及與障壁材料接觸的金屬。In some instances, a device as described herein may perform one or more methods, such as method 1400. The device may include features, components, or instructions (for example, a non-transitory computer-readable medium storing instructions executable by a processor) for performing the following operations: forming a collection of memory cell stacks, each of which includes a separate A storage element and a respective electrode above the respective storage element; forming a dielectric material; forming a through hole in contact with the dielectric material, wherein the dielectric material is between the through hole and the stack of memory cells; forming The barrier material above the assembly of the memory cell stack and the through hole; removing a part of the barrier material to expose the top surface of the through hole; and forming the metal that is in contact with the top surface of the through hole and the barrier material.

在本文中所描述的方法1400及裝置之一些實例中,移除障壁材料之部分可包括用於拋光障壁材料之頂面直至通孔之頂面曝露為止的操作、特徵、構件或指令。In some examples of the methods 1400 and devices described herein, removing the portion of the barrier material may include operations, features, components, or instructions for polishing the top surface of the barrier material until the top surface of the through hole is exposed.

本文中所描述的方法1400及裝置之一些實例可進一步包括用於在形成障壁材料之前拋光介電材料之頂面直至通孔自介電材料突出為止的操作、特徵、構件或指令。Some examples of the methods 1400 and devices described herein may further include operations, features, components, or instructions for polishing the top surface of the dielectric material before forming the barrier material until the vias protrude from the dielectric material.

應注意,本文所描述之方法係可能的實施,且操作及步驟可經重新配置或以其他方式修改,且其他實施係可能的。此外,可組合該等方法中之兩者或大於兩者之部分。It should be noted that the method described herein is a possible implementation, and the operations and steps can be reconfigured or modified in other ways, and other implementations are possible. In addition, two or more of these methods can be combined.

描述一種裝置。裝置可包括:記憶體單元堆疊之一集合,記憶體單元堆疊各包括一各別儲存元件;一介電材料,其安置於記憶體單元堆疊之該集合與延伸穿過該介電材料之通孔之間;一障壁材料,其安置於記憶體單元堆疊之該集合及該介電材料上方;及一存取線,其自記憶體單元堆疊之該集合上方延伸至該通孔上方,其中該存取線與該障壁材料之一頂面及該通孔之一頂面接觸。Describe a device. The device may include: a set of memory cell stacks, each of which includes a respective storage element; a dielectric material disposed on the set of memory cell stacks and through holes extending through the dielectric material Between; a barrier material, which is arranged above the set of memory cell stacks and the dielectric material; and an access line, which extends from the set of memory cell stacks to above the through hole, wherein the storage The wire is in contact with a top surface of the barrier material and a top surface of the through hole.

在一些實例中,障壁材料可與通孔之側壁接觸。在一些實例中,通孔之側壁在介電材料之頂面上方延伸。在一些實例中,通孔的一部分可藉由障壁材料環繞。在一些實例中,障壁材料之頂面可為平坦的且障壁材料之底面的至少一部分可為共形且波形的。在一些實例中,障壁材料之底面亦可與在障壁材料下方的一或多種材料共形。In some examples, the barrier material may be in contact with the sidewall of the through hole. In some examples, the sidewalls of the vias extend above the top surface of the dielectric material. In some examples, a part of the through hole may be surrounded by a barrier material. In some examples, the top surface of the barrier material may be flat and at least a portion of the bottom surface of the barrier material may be conformal and wavy. In some examples, the bottom surface of the barrier material may also conform to one or more materials below the barrier material.

在一些實例中,集合之記憶體單元堆疊包括電極,且電極的一部分可在障壁材料之一部分上方。裝置之一些實例可包括安置於集合之記憶體單元堆疊之間的第二介電材料,其中障壁材料可與第二介電材料接觸。In some examples, the collective memory cell stack includes electrodes, and a portion of the electrode may be over a portion of the barrier material. Some examples of devices may include a second dielectric material disposed between a stack of assembled memory cells, where the barrier material may be in contact with the second dielectric material.

在一些實例中,各別儲存元件包括硫族化物材料。在一些實例中,障壁材料包括氮化物。在一些實例中,障壁材料包括氮化鎢矽,且存取線包括鎢。In some examples, the individual storage elements include chalcogenide materials. In some examples, the barrier material includes nitride. In some examples, the barrier material includes tungsten silicon nitride, and the access line includes tungsten.

本文所使用之術語「層」係指幾何結構之一層或薄片。每一層可具有三維(例如,高度、寬度及深度),且可覆蓋表面中之一些或全部。舉例而言,層可為一三維結構,其中兩個維度大於第三維度,例如薄膜。層可包括不同元件、組件及/或材料。在一些情況下,一個層可由兩個或多於兩個子層構成。在一些隨附圖中,出於說明之目的描繪三維層之兩個維度。然而,熟習此項技術者將認識到該等層實際上係三維的。The term "layer" as used herein refers to a layer or sheet of a geometric structure. Each layer can have three dimensions (e.g., height, width, and depth), and can cover some or all of the surface. For example, the layer may be a three-dimensional structure in which two dimensions are greater than the third dimension, such as a film. Layers can include different elements, components, and/or materials. In some cases, a layer may be composed of two or more sub-layers. In some accompanying figures, the two dimensions of the three-dimensional layer are depicted for illustrative purposes. However, those skilled in the art will recognize that the layers are actually three-dimensional.

如本文所使用,術語「電極」可指一電導體,且在一些情況下可被用作至記憶體單元或記憶體陣列之其他組件的電接點。電極可包括提供記憶體陣列之元件或組件之間的導電路徑之跡線、電線、導電線、導電層或其類似者。As used herein, the term "electrode" can refer to an electrical conductor, and in some cases can be used as an electrical contact to a memory cell or other components of a memory array. The electrodes may include traces, wires, conductive lines, conductive layers, or the like that provide conductive paths between elements or components of the memory array.

術語「電子通信」、「導電接觸」、「連接」及「耦接」可指支援在組件之間信號流動的組件之間的關係。若在組件之間存在可在任何時間支援組件之間信號流動的任何導電路徑,則組件被認為彼此電子通信(或彼此導電接觸或彼此連接或彼此耦接)。在任何給定時間,彼此電子通信(或彼此導電接觸或彼此連接或彼此耦接)的組件之間的導電路徑基於包括所連接組件之器件之操作而可為開路或閉路。所連接組件之間的導電路徑可為組件之間的直接導電路徑,或所連接組件之間的導電路徑可為可包括中間組件,諸如開關、電晶體或其他組件的間接導電路徑。在一些實例中,可例如使用諸如開關或電晶體之一或多個中間組件將所連接組件之間的信號流動中斷一段時間。The terms "electronic communication", "conductive contact", "connection" and "coupling" can refer to the relationship between components that support the flow of signals between components. If there are any conductive paths between the components that can support the flow of signals between the components at any time, the components are considered to be in electronic communication with each other (or in conductive contact with each other or connected to or coupled to each other). At any given time, the conductive paths between components that are in electronic communication with each other (or are in conductive contact with each other or connected to each other or coupled to each other) may be open or closed based on the operation of the device including the connected components. The conductive path between the connected components may be a direct conductive path between the components, or the conductive path between the connected components may be an indirect conductive path that may include intermediate components, such as switches, transistors, or other components. In some instances, one or more intermediate components such as switches or transistors may be used to interrupt the signal flow between connected components for a period of time, for example.

如本文所用,術語「實質上」意謂經修飾之特性(例如藉由術語實質上修飾之動詞或形容詞)不必係絕對值但足夠接近以便達成特性之優點。As used herein, the term "substantially" means that the modified characteristic (for example, a verb or adjective substantially modified by the term) need not be an absolute value but close enough to achieve the advantage of the characteristic.

本文中所論述之切換組件或電晶體可表示場效電晶體(FET)且包含包括源極、汲極及閘極之三個端子器件。端子可經由導電材料(例如,金屬)連接至其他電子元件。源極及汲極可為導電的且可包含大量摻雜之(例如,簡併)半導體區。源極與汲極可藉由輕微摻雜之半導體區或通道分隔。若通道為n型(亦即,大多數載波為電子),則FET可被稱為n型FET。若通道為p型(亦即,大多數載波為電洞),則FET可被稱為p型FET。該通道可藉由一絕緣閘極氧化物覆蓋。可藉由將電壓施加至閘極來控制通道導電性。舉例而言,將正電壓或負電壓分別施加至n型FET或p型FET可導致通道變得導電。當將大於或等於電晶體之臨限電壓的電壓施加至電晶體閘極時,電晶體可「接通」或「啟動」。當將小於電晶體之臨限電壓的一電壓施加至電晶體閘極時,電晶體可「斷開」或「去啟動」。The switching elements or transistors discussed herein may refer to field effect transistors (FETs) and include three terminal devices including source, drain, and gate. The terminals may be connected to other electronic components via conductive materials (for example, metal). The source and drain may be conductive and may include heavily doped (e.g., degenerate) semiconductor regions. The source and drain can be separated by lightly doped semiconductor regions or channels. If the channel is n-type (that is, most of the carrier is electrons), the FET can be referred to as an n-type FET. If the channel is p-type (that is, most of the carriers are holes), the FET can be called a p-type FET. The channel can be covered by an insulating gate oxide. The channel conductivity can be controlled by applying voltage to the gate. For example, applying a positive voltage or a negative voltage to an n-type FET or a p-type FET, respectively, can cause the channel to become conductive. When a voltage greater than or equal to the threshold voltage of the transistor is applied to the gate of the transistor, the transistor can be "turned on" or "started". When a voltage less than the threshold voltage of the transistor is applied to the gate of the transistor, the transistor can be "disconnected" or "deactivated".

本文中所使用之術語「例示性」意謂「充當實例、例子或說明」,且並不意謂「較佳」或「優於其他實例」。The term "exemplary" as used herein means "serving as an example, example, or illustration" and does not mean "better" or "better than other examples."

硫族化物材料可為包括元素S、Se及Te中之至少一者的材料或合金。本文所論述之相變材料可為硫族化物材料。硫族化物材料可包括以下各者之合金:S、Se、Te、Ge、As、Al、Sb、Au、銦(In)、鎵(Ga)、錫(Sn)、鉍(Bi)、鈀(Pd)、鈷(Co)、氧(O)、銀(Ag)、鎳(Ni)或鉑(Pt)。實例硫族化物材料及合金可包括(但不限於):Ge-Te、In-Se、Sb-Te、Ga-Sb、In-Sb、As-Te、Al-Te、Ge-Sb-Te、Te-Ge-As、In-Sb-Te、Te-Sn-Se、Ge-Se-Ga、Bi-Se-Sb、Ga-Se-Te、Sn-Sb-Te、In-Sb-Ge、Te-Ge-Sb-S、Te-Ge-Sn-O、Te-Ge-Sn-Au、Pd-Te-Ge-Sn、In-Se-Ti-Co、Ge-Sb-Te-Pd、Ge-Sb-Te-Co、Sb-Te-Bi-Se、Ag-In-Sb-Te、Ge-Sb-Se-Te、Ge-Sn-Sb-Te、Ge-Te-Sn-Ni、Ge-Te-Sn-Pd或Ge-Te-Sn-Pt。如本文中所使用,加連字符化學組成物標記指示包括於特定化合物或合金中的元素且意欲表示涉及所指示元素之所有化學計量。舉例而言,Ge-Te可包括Gex Tey ,其中x及y可為任何正整數。可變電阻材料之其他實例可包括二元金屬氧化物材料或包括兩個或大於兩個金屬(例如,過渡金屬、鹼土金屬及/或稀土金屬)之混合價氧化物。實施例不限於特定可變電阻材料或與記憶體單元之記憶體元件相關聯的材料。舉例而言,可變電阻材料之其他實例可用以形成記憶體元件且可包括硫族化物材料、巨大磁阻式材料或基於聚合物之材料外加其他。The chalcogenide material may be a material or alloy including at least one of the elements S, Se, and Te. The phase change materials discussed herein can be chalcogenide materials. Chalcogenide materials may include alloys of the following: S, Se, Te, Ge, As, Al, Sb, Au, indium (In), gallium (Ga), tin (Sn), bismuth (Bi), palladium ( Pd), cobalt (Co), oxygen (O), silver (Ag), nickel (Ni) or platinum (Pt). Example chalcogenide materials and alloys may include (but are not limited to): Ge-Te, In-Se, Sb-Te, Ga-Sb, In-Sb, As-Te, Al-Te, Ge-Sb-Te, Te -Ge-As, In-Sb-Te, Te-Sn-Se, Ge-Se-Ga, Bi-Se-Sb, Ga-Se-Te, Sn-Sb-Te, In-Sb-Ge, Te-Ge -Sb-S, Te-Ge-Sn-O, Te-Ge-Sn-Au, Pd-Te-Ge-Sn, In-Se-Ti-Co, Ge-Sb-Te-Pd, Ge-Sb-Te -Co, Sb-Te-Bi-Se, Ag-In-Sb-Te, Ge-Sb-Se-Te, Ge-Sn-Sb-Te, Ge-Te-Sn-Ni, Ge-Te-Sn-Pd Or Ge-Te-Sn-Pt. As used herein, a hyphenated chemical composition label indicates an element included in a particular compound or alloy and is intended to indicate all stoichiometry related to the indicated element. For example, Ge-Te can include Ge x Te y , where x and y can be any positive integers. Other examples of variable resistance materials may include binary metal oxide materials or mixed valence oxides including two or more metals (for example, transition metals, alkaline earth metals, and/or rare earth metals). The embodiments are not limited to specific variable resistance materials or materials associated with the memory elements of the memory cell. For example, other examples of variable resistance materials can be used to form memory devices and can include chalcogenide materials, giant magnetoresistive materials, or polymer-based materials plus others.

本文所論述之器件可經形成於半導體基板(諸如矽、鍺、矽-鍺合金、砷化鎵、氮化鎵等)上。在一些情況下,基板為半導體晶圓。在其他情況下,基板可為絕緣層上矽(SOI)基板,諸如玻璃上矽(SOG)或藍寶石上矽(SOP),或另一基板上之半導體材料的磊晶層。可經由使用包括但不限於磷、硼或砷之各種化學物質摻雜而控制基板或基板之子區的導電性。可藉由離子植入或藉由任何其他摻雜構件在基板之初始形成或生長期間執行摻雜。The devices discussed herein can be formed on semiconductor substrates (such as silicon, germanium, silicon-germanium alloy, gallium arsenide, gallium nitride, etc.). In some cases, the substrate is a semiconductor wafer. In other cases, the substrate may be a silicon-on-insulator (SOI) substrate, such as silicon-on-glass (SOG) or silicon-on-sapphire (SOP), or an epitaxial layer of semiconductor material on another substrate. The conductivity of the substrate or sub-regions of the substrate can be controlled by doping with various chemical substances including but not limited to phosphorus, boron or arsenic. The doping can be performed during the initial formation or growth of the substrate by ion implantation or by any other doping means.

本文中結合附圖闡述之描述描述實例組態,且並不表示可實施或在申請專利範圍之範疇內的所有實例。詳細描述包括出於提供對所描述技術之理解之目的之具體細節。然而,可在無此等具特定細節的情況下實踐此等技術。在一些情況下,以方塊圖形式展示熟知結構及器件以免混淆所描述實例之概念。The description set forth herein in conjunction with the accompanying drawings describes example configurations, and does not mean all examples that can be implemented or are within the scope of the patent application. The detailed description includes specific details for the purpose of providing an understanding of the described technology. However, these techniques can be practiced without these specific details. In some cases, well-known structures and devices are shown in block diagram form so as not to obscure the concepts of the described examples.

在附圖中,類似組件或特徵可具有相同參考標記。此外,可藉由在參考標記之後加上破折號及在類似組件之間進行區分之第二標記來區分相同類型之各種組件。若在說明書中僅使用第一參考標記,則描述適用於具有相同第一參考標記而與第二參考標記無關的類似組件中之任一者。In the drawings, similar components or features may have the same reference label. In addition, various components of the same type can be distinguished by adding a dash after the reference mark and a second mark that distinguishes between similar components. If only the first reference sign is used in the specification, the description is applicable to any one of the similar components having the same first reference sign regardless of the second reference sign.

如本文中所使用(包括在申請專利範圍中),「或」在用於項目清單(例如,以諸如「中之至少一者」或「中之一或多者」之片語作為結尾之項目清單)中時指示包括性清單,使得(例如) A、B或C中之至少一者之清單意謂A或B或C或AB或AC或BC或ABC (亦即,A及B及C)。此外,如本文中所使用,片語「基於」不應被認作對封閉條件集合之參考。舉例而言,在不脫離本發明之範疇的情況下,經描述為「基於條件A」之例示性步驟可基於條件A及條件B兩者。換言之,如本文中所使用,應以與片語「至少部分地基於」相同之方式來解釋片語「基於」。As used herein (including in the scope of the patent application), "or" is used in a list of items (for example, items ending with phrases such as "at least one of" or "one or more of" List) indicates an inclusive list, so that (for example) a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (ie, A and B and C) . In addition, as used in this article, the phrase "based on" should not be considered as a reference to a closed set of conditions. For example, without departing from the scope of the present invention, the exemplary steps described as "based on condition A" can be based on both condition A and condition B. In other words, as used in this article, the phrase "based on" should be interpreted in the same way as the phrase "based on".

提供本文中之描述以使得熟習此項技術者能夠製造或使用本發明。對本發明之各種修改對於熟習此項技術者而言將為顯而易見的,且可在不脫離本發明之精神或範疇的情況下將本文中所定義之一般原理應用於其他變體。因此,本發明並不限於本文中所描述之實例及設計,而是應符合與本文中所揭示之原理及新穎特徵相一致的最廣範疇。The description herein is provided to enable those skilled in the art to make or use the present invention. Various modifications to the present invention will be obvious to those skilled in the art, and the general principles defined herein can be applied to other variations without departing from the spirit or scope of the present invention. Therefore, the present invention is not limited to the examples and designs described in this article, but should conform to the broadest scope consistent with the principles and novel features disclosed in this article.

100-a:中間陣列結構 100-b:中間陣列結構 105-a:第一記憶體單元堆疊 105-b:第二記憶體單元堆疊 105-c:第三記憶體單元堆疊 110:金屬層 115:第一電極材料 120:選擇器材料 125:第二電極材料 130:儲存材料 135:第三電極材料 140-a:隔離區 140-b:隔離區 200:記憶體陣列結構 200-a:中間陣列結構 200-b:中間陣列結構 205:沈積介電材料 210:波形表面 300:記憶體陣列結構 300-a:中間陣列結構 300-b:中間陣列結構 305:障壁材料 310:頂面 400:額外中間陣列結構 405:金屬層 410-a:中心點 410-b:中心點 415:距離 500:記憶體陣列 505:記憶體單元堆疊 510:存取線 515:存取線 520:列解碼器 525:感測組件 530:行解碼器 535:輸出 540:記憶體控制器 600:方法 605:步驟 610:步驟 615:步驟 620:步驟 700:方法 705:步驟 710:步驟 715:步驟 720:步驟 800-a:中間陣列結構 800-b:中間陣列結構 805:介電材料 810:通孔 900-b:中間陣列結構 1000:額外中間陣列結構 1100:額外中間陣列結構 1200:方法 1205:步驟 1210:步驟 1215:步驟 1220:步驟 1225:步驟 1300:方法 1305:步驟 1310:步驟 1315:步驟 1320:步驟 1325:步驟 1330:步驟 1400:方法 1405:步驟 1410:步驟 1415:步驟 1420:步驟 1425:步驟 1430:步驟100-a: Intermediate array structure 100-b: Intermediate array structure 105-a: first memory cell stack 105-b: second memory cell stack 105-c: third memory cell stack 110: Metal layer 115: first electrode material 120: Selector material 125: second electrode material 130: storage materials 135: Third electrode material 140-a: Quarantine 140-b: Quarantine 200: Memory array structure 200-a: Intermediate array structure 200-b: Intermediate array structure 205: Depositing dielectric materials 210: Wave surface 300: Memory array structure 300-a: Intermediate array structure 300-b: Intermediate array structure 305: Barrier Material 310: top surface 400: Additional intermediate array structure 405: Metal layer 410-a: center point 410-b: center point 415: distance 500: memory array 505: Memory cell stacking 510: Access Line 515: Access Line 520: column decoder 525: Sensing component 530: Line decoder 535: output 540: Memory Controller 600: method 605: step 610: Step 615: step 620: step 700: method 705: step 710: step 715: step 720: step 800-a: Intermediate array structure 800-b: Intermediate array structure 805: Dielectric material 810: Through hole 900-b: Intermediate array structure 1000: Additional intermediate array structure 1100: Additional intermediate array structure 1200: method 1205: Step 1210: Step 1215: step 1220: step 1225: step 1300: method 1305: step 1310: step 1315: step 1320: step 1325: step 1330: step 1400: method 1405: step 1410: step 1415: step 1420: step 1425: step 1430: step

圖1A及圖1B說明根據本發明之實施例的製造技術之實例。FIG. 1A and FIG. 1B illustrate an example of a manufacturing technique according to an embodiment of the present invention.

圖2A及圖2B說明根據本發明之實施例的製造技術之實例。2A and 2B illustrate an example of manufacturing technology according to an embodiment of the present invention.

圖3A及圖3B說明根據本發明之實施例的製造技術之實例。3A and 3B illustrate an example of manufacturing technology according to an embodiment of the present invention.

圖4說明根據本發明之實施例的製造技術之實例。Figure 4 illustrates an example of a manufacturing technique according to an embodiment of the present invention.

圖5說明根據本發明之實例的支援記憶體器件中之存取線粒度調變的實例記憶體陣列。FIG. 5 illustrates an example memory array that supports granularity modulation of access lines in a memory device according to an example of the present invention.

圖6及圖7說明根據本發明之實施例的用於記憶體器件中之存取線粒度調變的一或多個方法。6 and 7 illustrate one or more methods for adjusting the granularity of access lines in a memory device according to an embodiment of the present invention.

圖8A及圖8B說明根據本發明之實施例的製造技術之實例。8A and 8B illustrate an example of a manufacturing technique according to an embodiment of the present invention.

圖9說明根據本發明之實施例的製造技術之實例。Fig. 9 illustrates an example of a manufacturing technique according to an embodiment of the present invention.

圖10說明根據本發明之實施例的製造技術之實例。Fig. 10 illustrates an example of a manufacturing technique according to an embodiment of the present invention.

圖11說明根據本發明之實施例的製造技術之實例。FIG. 11 illustrates an example of a manufacturing technique according to an embodiment of the present invention.

圖12至圖14展示說明根據如本文所揭示之實例的存取記憶體器件中之線粒度調變的一或多個方法的流程圖。12 to 14 show flowcharts illustrating one or more methods for accessing line-granularity modulation in a memory device according to examples as disclosed herein.

105-a:第一記憶體單元堆疊 105-a: first memory cell stack

105-b:第二記憶體單元堆疊 105-b: second memory cell stack

105-c:第三記憶體單元堆疊 105-c: third memory cell stack

115:第一電極材料 115: first electrode material

120:選擇器材料 120: Selector material

125:第二電極材料 125: second electrode material

130:儲存材料 130: storage materials

135:第三電極材料 135: Third electrode material

140-a:隔離區 140-a: Quarantine

140-b:隔離區 140-b: Quarantine

205:沈積介電材料 205: Depositing dielectric materials

210:波形表面 210: Wave surface

305:障壁材料 305: Barrier Material

310:頂面 310: top surface

405:金屬層 405: Metal layer

805:介電材料 805: Dielectric material

810:通孔 810: Through hole

1100:額外中間陣列結構 1100: Additional intermediate array structure

Claims (25)

一種方法,其包含: 在一基板之一第一區域上方形成包含一儲存元件的一記憶體單元堆疊; 在該基板之一第二區域上方形成延伸穿過一介電材料之一通孔; 在該記憶體單元堆疊及該通孔上方形成一障壁材料; 平坦化該障壁材料之一頂面;及 在該障壁材料上方形成用於一記憶體陣列之一存取線的金屬。A method that includes: Forming a memory cell stack including a storage element over a first area of a substrate; Forming a through hole extending through a dielectric material above a second area of the substrate; Forming a barrier material above the memory cell stack and the through hole; Flattening one of the top surfaces of the barrier material; and A metal for an access line of a memory array is formed above the barrier material. 如請求項1之方法,其進一步包含: 至少部分地基於該平坦化自該通孔上方移除該障壁材料。Such as the method of claim 1, which further includes: The barrier material is removed from above the through hole based at least in part on the planarization. 如請求項2之方法,其中該障壁材料在該平坦化之後保持在該記憶體單元堆疊上方。The method of claim 2, wherein the barrier material remains above the memory cell stack after the planarization. 如請求項2之方法,其中該障壁材料在該平坦化之後保持在該通孔之一側壁上。The method of claim 2, wherein the barrier material remains on one of the sidewalls of the through hole after the planarization. 如請求項2之方法,其中該障壁材料在該平坦化之後保持在該介電材料上方。The method of claim 2, wherein the barrier material remains above the dielectric material after the planarization. 如請求項1之方法,其進一步包含: 在形成該障壁材料之前,將一第一平坦化程序應用於該介電材料之一頂面及該通孔之一頂面,其中該通孔之該頂面在該第一平坦化程序之後在該介電材料之該頂面上方突出。Such as the method of claim 1, which further includes: Before forming the barrier material, a first planarization process is applied to a top surface of the dielectric material and a top surface of the through hole, wherein the top surface of the through hole is after the first planarization process The dielectric material protrudes above the top surface. 如請求項6之方法,其中該第一平坦化程序以比包括於該通孔中的一材料快的一速率移除該介電材料。The method of claim 6, wherein the first planarization process removes the dielectric material at a faster rate than a material included in the through hole. 如請求項6之方法,其進一步包含: 在該記憶體單元堆疊與一第二記憶體單元堆疊之間形成一絕緣區,其中; 該絕緣區包含一第二介電材料; 該記憶體單元堆疊包含一電極; 該第一平坦化程序被應用於該電極之一頂面及該絕緣區之一頂面;且 該第一平坦化程序以比包括於該電極中之一材料快的一速率移除該第二介電材料。Such as the method of claim 6, which further includes: An insulating region is formed between the memory cell stack and a second memory cell stack, wherein; The insulating region includes a second dielectric material; The memory cell stack includes an electrode; The first planarization process is applied to a top surface of the electrode and a top surface of the insulating region; and The first planarization process removes the second dielectric material at a rate faster than a material included in the electrode. 如請求項8之方法,其中該介電材料及該第二介電材料係不同材料。The method of claim 8, wherein the dielectric material and the second dielectric material are different materials. 如請求項1之方法,其中該金屬與該通孔之一頂面接觸。The method of claim 1, wherein the metal is in contact with a top surface of the through hole. 如請求項1之方法,其中在該平坦化之後,該障壁材料具有一波形下表面及一平坦頂面。The method of claim 1, wherein after the planarization, the barrier material has a wave-shaped lower surface and a flat top surface. 如請求項1之方法,其中平坦化該障壁材料之該頂面包含: 將一化學機械平坦化(CMP)程序應用於該障壁材料之該頂面。The method of claim 1, wherein flattening the top surface of the barrier material includes: A chemical mechanical planarization (CMP) process is applied to the top surface of the barrier material. 一種裝置,其包含: 複數個記憶體單元堆疊,其各包含一各別儲存元件; 一介電材料,其安置於該複數個記憶體單元堆疊與延伸穿過該介電材料的一通孔之間; 一障壁材料,其安置於該複數個記憶體單元堆疊及該介電材料上方;及 一存取線,其自該複數個記憶體單元堆疊上方延伸至該通孔上方,其中該存取線與該障壁材料之一頂面及該通孔之一頂面接觸。A device comprising: A plurality of memory cells are stacked, each of which includes a separate storage element; A dielectric material disposed between the plurality of memory cell stacks and a through hole extending through the dielectric material; A barrier material arranged on the plurality of memory cell stacks and the dielectric material; and An access line extends from above the plurality of memory cell stacks to above the through hole, wherein the access line is in contact with a top surface of the barrier material and a top surface of the through hole. 如請求項13之裝置,其中該障壁材料與該通孔之一側壁接觸。The device of claim 13, wherein the barrier material is in contact with a side wall of the through hole. 如請求項14之裝置,其中該通孔之該側壁在該介電材料之一頂面上方延伸。The device of claim 14, wherein the sidewall of the through hole extends above a top surface of the dielectric material. 如請求項13之裝置,其中該通孔之一部分係藉由該障壁材料環繞。Such as the device of claim 13, wherein a part of the through hole is surrounded by the barrier material. 如請求項13之裝置,其中該障壁材料之該頂面係平坦的且該障壁材料之一底面的至少一部分係共形且波形的。The device of claim 13, wherein the top surface of the barrier material is flat and at least a part of a bottom surface of the barrier material is conformal and wavy. 如請求項13之裝置,其中: 該複數個記憶體單元堆疊中之一記憶體單元堆疊包含一電極;且 該電極之一部分係在該障壁材料之一部分上方。Such as the device of claim 13, where: One of the memory cell stacks in the plurality of memory cell stacks includes an electrode; and A part of the electrode is over a part of the barrier material. 如請求項13之裝置,其進一步包含: 一第二介電材料,其安置於該複數個之記憶體單元堆疊之間,其中該障壁材料與該第二介電材料接觸。Such as the device of claim 13, which further includes: A second dielectric material is arranged between the plurality of memory cell stacks, wherein the barrier material is in contact with the second dielectric material. 如請求項13之裝置,其中該各別儲存元件包含硫族化物材料。Such as the device of claim 13, wherein the respective storage element includes a chalcogenide material. 如請求項13之裝置,其中該障壁材料包含氮化物。The device of claim 13, wherein the barrier material includes nitride. 如請求項21之裝置,其中: 該障壁材料包含氮化鎢矽;且 該存取線包含鎢。Such as the device of claim 21, where: The barrier material includes tungsten silicon nitride; and The access line contains tungsten. 一種方法,其包含: 形成複數個記憶體單元堆疊,該複數個記憶體單元堆疊各包含一各別儲存元件及在該各別儲存元件上方之一各別電極; 形成一介電材料; 形成與該介電材料接觸的一通孔,其中該介電材料係在該通孔與該複數個記憶體單元堆疊之間; 在該複數個記憶體單元堆疊及該通孔上方形成一障壁材料; 移除該障壁材料之一部分以曝露該通孔之一頂面;及 形成與該通孔之該頂面及與該障壁材料接觸的一金屬。A method that includes: Forming a plurality of memory cell stacks, each of the plurality of memory cell stacks including a respective storage element and a respective electrode above the respective storage element; Forming a dielectric material; Forming a through hole in contact with the dielectric material, wherein the dielectric material is between the through hole and the plurality of memory cell stacks; Forming a barrier material above the plurality of memory cell stacks and the through hole; Removing a part of the barrier material to expose a top surface of the through hole; and A metal contacting the top surface of the through hole and the barrier material is formed. 如請求項23之方法,其中移除該障壁材料之該部分包含: 拋光該障壁材料之一頂面直至該通孔之該頂面曝露為止。Such as the method of claim 23, wherein removing the part of the barrier material includes: Polishing a top surface of the barrier material until the top surface of the through hole is exposed. 如請求項23之方法,其進一步包含: 在形成該障壁材料之前拋光該介電材料之一頂面直至該通孔自該介電材料突出為止。Such as the method of claim 23, which further includes: Before forming the barrier material, a top surface of the dielectric material is polished until the through hole protrudes from the dielectric material.
TW109143037A 2020-01-17 2020-12-07 Via formation for a memory device TWI769609B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/746,645 US11189662B2 (en) 2018-08-13 2020-01-17 Memory cell stack and via formation for a memory device
US16/746,645 2020-01-17

Publications (2)

Publication Number Publication Date
TW202137411A true TW202137411A (en) 2021-10-01
TWI769609B TWI769609B (en) 2022-07-01

Family

ID=79601392

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109143037A TWI769609B (en) 2020-01-17 2020-12-07 Via formation for a memory device

Country Status (1)

Country Link
TW (1) TWI769609B (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10658297B2 (en) * 2018-06-30 2020-05-19 Intel Corporation Metal-nitride-free via in stacked memory
US10600844B2 (en) * 2018-09-28 2020-03-24 Intel Corporation Memory structures having reduced via resistance

Also Published As

Publication number Publication date
TWI769609B (en) 2022-07-01

Similar Documents

Publication Publication Date Title
KR102568279B1 (en) Via Formation for Memory Devices
KR102236746B1 (en) Self-selecting memory cell with dielectric barrier
CN111868927B (en) Self-selecting memory array with horizontal access lines
US7582889B2 (en) Electrically rewritable non-volatile memory element and method of manufacturing the same
US8133758B2 (en) Method of fabricating phase-change memory device having TiC layer
CN110828462B (en) Access line die modulation in memory devices
US8686393B2 (en) Integrated circuit semiconductor devices including channel trenches and related methods of manufacturing
US8012789B2 (en) Nonvolatile memory device and method of manufacturing the same
US11764147B2 (en) Slit oxide and via formation techniques
US20220367799A1 (en) Low resistance via contacts in a memory device
US12022666B2 (en) Memory cell stack and via formation for a memory device
TWI755123B (en) Memory device and method for manufacturing the same
TWI769609B (en) Via formation for a memory device
US20090200533A1 (en) Resistive Memory Element and Method of Fabrication
KR20210000730A (en) Fabrication of electrodes for memory cells
US20220165791A1 (en) Semiconductor device and manufacturing method of the semiconductor device
TW202221919A (en) Memory with optimized resistive layers
CN114005852A (en) Efficient fabrication of memory structures