TW202135167A - Transducer - Google Patents
Transducer Download PDFInfo
- Publication number
- TW202135167A TW202135167A TW109107832A TW109107832A TW202135167A TW 202135167 A TW202135167 A TW 202135167A TW 109107832 A TW109107832 A TW 109107832A TW 109107832 A TW109107832 A TW 109107832A TW 202135167 A TW202135167 A TW 202135167A
- Authority
- TW
- Taiwan
- Prior art keywords
- electrode
- working structure
- channel
- cavity
- working
- Prior art date
Links
- 239000012528 membrane Substances 0.000 claims abstract description 49
- 238000007789 sealing Methods 0.000 claims abstract description 11
- 239000000758 substrate Substances 0.000 claims description 23
- 239000000463 material Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 6
- 238000005530 etching Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B06—GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
- B06B—METHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
- B06B1/00—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
- B06B1/02—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
- B06B1/06—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
- B06B1/0607—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Transducers For Ultrasonic Waves (AREA)
Abstract
Description
本發明是有關於一種換能器。The present invention relates to a transducer.
超音波換能器包括塊材壓電陶瓷換能器、電容式微機械超音波換能器及壓電式微機械超音波換能器。近幾年,許多廠商及研究單位紛紛投入電容式微機械超音波換能器的開發。此技術利用半導體製程,可使超音波換能器的體積微小化,相較於傳統的塊材壓電材料,更易整合至各種產品上。Ultrasonic transducers include bulk piezoelectric ceramic transducers, capacitive micromechanical ultrasonic transducers and piezoelectric micromechanical ultrasonic transducers. In recent years, many manufacturers and research units have invested in the development of capacitive micromachined ultrasonic transducers. This technology makes use of semiconductor manufacturing processes to miniaturize the size of ultrasonic transducers, and is easier to integrate into various products than traditional bulk piezoelectric materials.
電容式微機械超音波換能器包括第一電極、位於第一電極上方的振盪膜以及位於振盪膜上的第二電極,其中第一電極與振盪膜之間具有一空腔。第一電極與第二電極之間的電場可使振盪膜在空腔中擺動,藉此,便可發出超音波。The capacitive micromachined ultrasonic transducer includes a first electrode, an oscillating membrane above the first electrode, and a second electrode on the oscillating membrane, wherein a cavity is formed between the first electrode and the oscillating membrane. The electric field between the first electrode and the second electrode can cause the oscillating membrane to swing in the cavity, whereby ultrasonic waves can be emitted.
目前製作空腔其中一種方式是:先在基板上形成犧牲圖案層,再形成空腔定義層,以包覆犧牲圖案層;之後,利用蝕刻液去除空腔定義層內的犧牲圖案層;藉此,便可形成多個空腔。然而,當靠近基板邊緣的空腔內的犧牲圖案層去除乾淨時,靠近基板中間的空腔內的犧牲圖案層卻尚未去除乾淨。為使所有空腔內的犧牲圖案層皆去除乾淨,需增加製程時間,而不利於量產。另一方面,若不增加製程時間,殘留在空腔內的犧牲圖案層會造成空腔的均勻性下降,影響電容式微機械超音波換能器的性能。One way to make a cavity at present is to first form a sacrificial pattern layer on the substrate, and then form a cavity definition layer to cover the sacrificial pattern layer; then, use an etching solution to remove the sacrificial pattern layer in the cavity definition layer; thereby , Can form multiple cavities. However, when the sacrificial pattern layer in the cavity near the edge of the substrate is removed, the sacrificial pattern layer in the cavity near the middle of the substrate has not been removed. In order to remove all the sacrificial pattern layers in the cavities cleanly, the process time needs to be increased, which is not conducive to mass production. On the other hand, if the process time is not increased, the sacrificial pattern layer remaining in the cavity will reduce the uniformity of the cavity and affect the performance of the capacitive micromachined ultrasonic transducer.
本發明提供一種換能器,性能佳。The invention provides a transducer with good performance.
本發明一實施例的換能器,包括多個工作結構。每一工作結構包括第一電極、空腔定義層、第二電極以及多個封止件。空腔定義層設置於第一電極上。空腔定義層具有振盪膜。振盪膜設置於第一電極的上方。振盪膜具有主要部以及由主要部向外延伸的多個輔助部。振盪膜的主要部與第一電極之間具有空腔。振盪膜的多個輔助部與第一電極之間具有多個通道,且振盪膜的多個輔助部分別具有多個貫孔。第二電極設置於振盪膜的主要部上。多個封止件設置於空腔定義層上和多個貫孔中。多個工作結構包括第一工作結構。第一工作結構的多個通道包括多個通道組。每一通道組的多個通道設置於第一工作結構之空腔的相對兩側。位於每一通道組之每一通道上的貫孔設置於第一工作結構的空腔與相鄰之另一工作結構的空腔之間,且第一工作結構之多個通道組是交錯設置。The transducer of an embodiment of the present invention includes a plurality of working structures. Each working structure includes a first electrode, a cavity defining layer, a second electrode, and a plurality of sealing members. The cavity defining layer is disposed on the first electrode. The cavity defining layer has an oscillating membrane. The oscillating membrane is arranged above the first electrode. The oscillating membrane has a main part and a plurality of auxiliary parts extending outward from the main part. There is a cavity between the main part of the oscillating membrane and the first electrode. There are a plurality of channels between the plurality of auxiliary parts of the oscillating membrane and the first electrode, and the plurality of auxiliary parts of the oscillating membrane respectively have a plurality of through holes. The second electrode is arranged on the main part of the oscillating membrane. A plurality of sealing elements are arranged on the cavity defining layer and in the plurality of through holes. The plurality of work structures includes a first work structure. The multiple channels of the first working structure include multiple channel groups. The multiple channels of each channel group are arranged on opposite sides of the cavity of the first working structure. The through holes on each channel of each channel group are arranged between the cavity of the first working structure and the cavity of another adjacent working structure, and the plurality of channel groups of the first working structure are arranged in a staggered manner.
本發明另一實施例的換能器,包括多個工作結構。每一工作結構包括第一電極、空腔定義層、第二電極以及多個封止件。空腔定義層設置於第一電極上。空腔定義層具有振盪膜。振盪膜設置於第一電極的上方。振盪膜具有主要部以及由主要部向外延伸的多個輔助部。振盪膜的主要部與第一電極之間具有空腔。振盪膜的多個輔助部與第一電極之間具有多個通道,且振盪膜的多個輔助部分別具有多個貫孔。第二電極設置於振盪膜的主要部上。多個封止件設置於空腔定義層上和多個貫孔中。多個工作結構包括第一工作結構。第一工作結構的多個通道包括多個通道組。每一通道組的多個通道設置於第一工作結構之空腔的相對兩側。位於每一通道組之每一通道上的貫孔設置於第一工作結構的空腔與相鄰之另一工作結構的空腔之間。The transducer of another embodiment of the present invention includes a plurality of working structures. Each working structure includes a first electrode, a cavity defining layer, a second electrode, and a plurality of sealing members. The cavity defining layer is disposed on the first electrode. The cavity defining layer has an oscillating membrane. The oscillating membrane is arranged above the first electrode. The oscillating membrane has a main part and a plurality of auxiliary parts extending outward from the main part. There is a cavity between the main part of the oscillating membrane and the first electrode. There are a plurality of channels between the plurality of auxiliary parts of the oscillating membrane and the first electrode, and the plurality of auxiliary parts of the oscillating membrane respectively have a plurality of through holes. The second electrode is arranged on the main part of the oscillating membrane. A plurality of sealing elements are arranged on the cavity defining layer and in the plurality of through holes. The plurality of work structures includes a first work structure. The multiple channels of the first working structure include multiple channel groups. The multiple channels of each channel group are arranged on opposite sides of the cavity of the first working structure. The through holes located on each channel of each channel group are arranged between the cavity of the first working structure and the cavity of another adjacent working structure.
現將詳細地參考本發明的示範性實施例,示範性實施例的實例說明於附圖中。只要有可能,相同元件符號在圖式和描述中用來表示相同或相似部分。Reference will now be made in detail to the exemplary embodiments of the present invention, and examples of the exemplary embodiments are illustrated in the accompanying drawings. Whenever possible, the same component symbols are used in the drawings and descriptions to indicate the same or similar parts.
應當理解,當諸如層、膜、區域或基板的元件被稱為在另一元件“上”或“連接到”另一元件時,其可以直接在另一元件上或與另一元件連接,或者中間元件可以也存在。相反,當元件被稱為“直接在另一元件上”或“直接連接到”另一元件時,不存在中間元件。如本文所使用的,“連接”可以指物理及/或電性連接。再者,“電性連接”或“耦合”可以是二元件間存在其它元件。It should be understood that when an element such as a layer, film, region, or substrate is referred to as being "on" or "connected" to another element, it can be directly on or connected to the other element, or Intermediate elements can also be present. In contrast, when an element is referred to as being "directly on" or "directly connected to" another element, there are no intervening elements. As used herein, "connected" can refer to physical and/or electrical connection. Furthermore, "electrically connected" or "coupled" may mean that there are other elements between two elements.
本文使用的“約”、“近似”、或“實質上”包括所述值和在本領域普通技術人員確定的特定值的可接受的偏差範圍內的平均值,考慮到所討論的測量和與測量相關的誤差的特定數量(即,測量系統的限制)。例如,“約”可以表示在所述值的一個或多個標準偏差內,或±30%、±20%、±10%、±5%內。再者,本文使用的“約”、“近似”或“實質上”可依光學性質、蝕刻性質或其它性質,來選擇較可接受的偏差範圍或標準偏差,而可不用一個標準偏差適用全部性質。As used herein, "about", "approximately", or "substantially" includes the stated value and the average value within the acceptable deviation range of the specific value determined by a person of ordinary skill in the art, taking into account the measurement in question and the The specific amount of measurement-related error (ie, the limitation of the measurement system). For example, "about" can mean within one or more standard deviations of the stated value, or within ±30%, ±20%, ±10%, ±5%. Furthermore, "about", "approximately" or "substantially" as used herein can be based on optical properties, etching properties or other properties to select a more acceptable range of deviation or standard deviation, and not one standard deviation can be applied to all properties .
除非另有定義,本文使用的所有術語(包括技術和科學術語)具有與本發明所屬領域的普通技術人員通常理解的相同的含義。將進一步理解的是,諸如在通常使用的字典中定義的那些術語應當被解釋為具有與它們在相關技術和本發明的上下文中的含義一致的含義,並且將不被解釋為理想化的或過度正式的意義,除非本文中明確地這樣定義。Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by those of ordinary skill in the art to which the present invention belongs. It will be further understood that terms such as those defined in commonly used dictionaries should be interpreted as having meanings consistent with their meanings in the context of related technologies and the present invention, and will not be interpreted as idealized or excessive The formal meaning, unless explicitly defined as such in this article.
圖1為本發明一實施例之超音波探頭1的示意圖。FIG. 1 is a schematic diagram of an
圖2為本發明一實施例之換能器10的示意圖。FIG. 2 is a schematic diagram of the
請參照圖1及圖2,在本實施例中,換能器10可包括多個單元100。每一單元100能接收第一電訊號並根據第一電訊號朝外界發射聲波。每一單元100能接收來自於外界的聲波並根據外界聲波轉換出第二電訊號。舉例而言,在本實施例中,換能器10可應用於醫療用的超音波探頭1中,但本發明不以此為限。Please refer to FIG. 1 and FIG. 2, in this embodiment, the
圖3為本發明一實施例之換能器10的一個單元100的上視示意圖。FIG. 3 is a schematic top view of a
請參照圖2及圖3,在本實施例中,換能器10的每一單元100包括多個工作結構U。同一單元100的多個工作結構U的多個第一電極120是彼此電性連接,且同一單元100的多個工作結構U的第二電極150是彼此電性連接。也就是說,同一單元100的多個工作結構U是用以同時發射/接收聲波。2 and 3, in this embodiment, each
請參照圖3,單元100的多個工作結構U設置於基板110上。舉例而言,在本實施例中,基板110的材質可以是玻璃、石英、有機聚合物、或其它可適用的材料。Please refer to FIG. 3, a plurality of working structures U of the
圖4為本發明一實施例之一工作結構U的放大示意圖。FIG. 4 is an enlarged schematic diagram of a working structure U of an embodiment of the present invention.
圖5為本發明一實施例之工作結構U的剖面示意圖。圖5對應圖4的剖線A-A’。FIG. 5 is a schematic cross-sectional view of a working structure U according to an embodiment of the present invention. Fig. 5 corresponds to the section line A-A' of Fig. 4.
圖6為本發明一實施例之工作結構U的剖面示意圖。圖6對應圖4的剖線B-B’。FIG. 6 is a schematic cross-sectional view of a working structure U according to an embodiment of the present invention. Fig. 6 corresponds to the section line B-B' of Fig. 4.
圖7為本發明一實施例之工作結構U的剖面示意圖。圖7對應圖4的剖線C-C’。FIG. 7 is a schematic cross-sectional view of a working structure U according to an embodiment of the present invention. Fig. 7 corresponds to the section line C-C' of Fig. 4.
請參照圖4、圖5及圖6,每一工作結構U包括第一電極120、空腔定義層130、多個封止件140及第二電極150。Please refer to FIG. 4, FIG. 5 and FIG. 6, each working structure U includes a
每一工作結構U的第一電極120設置於基板110上。在本實施例中,第一電極120例如是整面電極,但本發明不以此為限。第一電極120的材質可以是金屬(例如但不限於:鋁)、金屬氧化物(例如但不限於:銦錫氧化物)或其它導電材料。The
每一工作結構U的空腔定義層130設置於第一電極120上。空腔定義層130具有振盪膜131。振盪膜131設置於第一電極120的上方。振盪膜131具有主要部131a以及由主要部131a向外延伸的多個輔助部131b。振盪膜131的主要部131a與第一電極120之間具有空腔V1。振盪膜131的多個輔助部131b與第一電極120之間具有多個通道V2。通道V2的寬度W2小於空腔V1的寬度W11、W12。舉例而言,在本實施例中,通道V2的寬度W2可落在3µm至8µm的範圍,但本發明不以此為限。The
請參照圖4、圖6及圖7,空腔定義層130除了具有振盪膜131外還具有支撐部132。在圖式中,振盪膜131是以密度較低的點表示,而支撐部132是以密度較高的點表示。空腔定義層130的支撐部132設置於第一電極120上;支撐部132的厚度D2大於振盪膜131的厚度D1;振盪膜131連接至支撐部132之遠離第一電極120的一側,以懸掛於第一電極120上方。Please refer to FIG. 4, FIG. 6 and FIG. 7, in addition to the
請參照圖4及圖5,振盪膜131的多個輔助部131b分別具有多個貫孔130h。在本實施例中,振盪膜131的貫孔130h於基板110上的垂直投影可位於通道V2於基板110上的垂直投影以內;也就是說,貫孔130h的直徑r可小於通道V2的寬度W2。然而,本發明不限於此,在其它實施例中,貫孔130h的直徑r也可等於通道V2的寬度W2。4 and 5, the plurality of
在本實施例中,空腔定義層130的材質為一絕緣材料,其可為無機材料(例如:氧化矽、氮化矽、氮氧化矽、或上述至少二種材料的堆疊層)、有機材料或上述之組合。In this embodiment, the material of the
請參照圖4及圖5,每一工作結構U的多個封止件140設置於空腔定義層130上及振盪膜131之多個輔助部131b的多個貫孔130h中。4 and 5, a plurality of sealing
請參照圖4及圖6,空腔定義層130之振盪膜131的主要部131a及空腔定義層130之支撐部132的側壁132a定義出空腔V1。請參照圖4及圖7,空腔定義層130之振盪膜131的輔助部131b及空腔定義層130之支撐部132的側壁132b定義出通道V2。4 and 6, the
在本實施例中,多個封止件140的材質為一絕緣材料,其可為無機材料(例如:氧化矽、氮化矽、氮氧化矽、或上述至少二種材料的堆疊層)、有機材料或上述之組合。In this embodiment, the material of the plurality of sealing
請參照圖4及圖5,每一工作結構U的第二電極150設置於振盪膜131的主要部131a上。在本實施例中,第二電極150位於振盪膜131的輔助部131b外;也就是說,第二電極150不設置於通道V2及貫孔130h上。4 and 5, the
在本實施例中,每一工作結構U的第二電極150具有第一部151和第二部152。第二電極150的第一部151設置於振盪膜131的主要部131a上。第二電極150的第二部152設置於空腔V1外。也就是說,第二電極150的第二部152設置於空腔定義層130的支撐部132上。第二電極150之第二部152在方向x上的寬度L2可小或等於第二電極150之第一部151在方向x上的寬度L1。舉例而言,在本實施例中,0.01≤(L2/L1)≤ 1,但本發明不以此為限。In this embodiment, the
請參照圖3及圖4,多個工作結構U排成一陣列,每一列的多個工作結構U的多個主要部131a在方向x上排列,每一行的多個工作結構U的多個主要部131a在方向y排列,且方向x與方向y相交錯。在本實施例中,同一行的多個工作結構U的多個第二電極150互相連接;特別是,同一行的多個工作結構U的多個第二電極150的多個第一部151(也可稱多個粗部)與多個第二部152(也可稱多個細部)在方向y上交替排列。3 and 4, the multiple working structures U are arranged in an array, the multiple
在本實施例中,第二電極150的材質可以是金屬(例如但不限於:鋁)、金屬氧化物(例如但不限於:銦錫氧化物)或其它導電材料。In this embodiment, the material of the
請參照圖4及圖5,第一電訊號可施加至工作結構U的第一電極120與第二電極150,第一電極120與第二電極150之間的電場可使振盪膜131的主要部131a在空腔V1中擺動,以向外界發出聲波;另一方面,來自於外界的聲波可傳遞至振盪膜131的主要部131a並使振盪膜131的主要部131a擺動,而引起電容變化,根據所述電容變化可獲得與外界聲波對應的第二電訊號。簡言之,包括多個工作結構U的換能器10是一個電容式微機械換能器。4 and 5, the first electrical signal can be applied to the
請參照圖3及圖4,換能器10的多個工作結構U包括第一工作結構U1。第一工作結構U1的多個通道V2包括多個通道組G1、G2、G3,每一通道組G1、G2、G3的多個通道V2-1、V2-2、V2-3設置於第一工作結構U1 之空腔V1的相對兩側。設置於每一通道組G1、G2、G3之每一通道V2-1、V2-2、V2-3上的貫孔130h設置於第一工作結構U1的空腔V1與相鄰之另一工作結構U的空腔V1之間。3 and 4, the multiple working structures U of the
值得注意的是,在換能器10的製造過程中,蝕刻液可從多個通道組G1、G2、G3之多個通道V2-1、V2-2、V2-3上的多個貫孔130h滲入原本設置在多個通道V2-1、V2-2、V2-3中的犧牲圖案層(未繪示),進而移除之;更重要的是,蝕刻液會經由多個通道組G1、G2、G3的多個通道V2-1、V2-2、V2-3快速且充分滲入原本設置於空腔V1中的犧牲圖案層(未繪示)。藉此,能快速地去除空腔V1中的犧牲圖案層,犧牲圖案層不易殘留在空腔V1內,換能器10的製造時間能縮短,且多個空腔V1的均勻性能提升。It is worth noting that during the manufacturing process of the
請參照圖4,在本實施例中,第一工作結構U1的多個通道組G1、G2、G3可交錯設置。請參照圖3及圖4,舉例而言,多個工作結構U排成一陣列,每一列的多個工作結構U的多個空腔V1在方向x排列,每一行的多個工作結構U的多個空腔V1在方向y排列,且方向x與方向y相交錯;第一工作結構U1除了具有在方向x上設置的通道組G1的多個通道V2-1外,還具有在方向d1上設置的通道組G2的多個通道V2-2以及在方向d2上設置的通道組G3的多個通道V2-3,其中方向d1、d2與方向x、y交錯且不垂直於方向x、y。Referring to FIG. 4, in this embodiment, the multiple channel groups G1, G2, G3 of the first working structure U1 can be arranged in a staggered manner. 3 and 4, for example, a plurality of working structures U are arranged in an array, the multiple cavities V1 of the multiple working structures U in each column are arranged in the direction x, and the multiple working structures U in each row are arranged in the direction x. The multiple cavities V1 are arranged in the direction y, and the direction x and the direction y are interlaced; in addition to the multiple channels V2-1 of the channel group G1 arranged in the direction x, the first working structure U1 also has the direction d1 The multiple channels V2-2 of the channel group G2 are set and the multiple channels V2-3 of the channel group G3 are set in the direction d2, where the directions d1 and d2 are staggered with the directions x and y and are not perpendicular to the directions x and y.
請參照圖3及圖4,在本實施例中,擬直線K通過第一工作結構U1之通道組G2之多個通道V2-2上的多個貫孔130h,第一工作結構U1之第二電極150的第二部152的延伸方向y與擬直線K具有一夾角θ,且10o
≤θ≤80o
。3 and 4, in this embodiment, the pseudo-line K passes through the multiple through
請參照圖3及圖4,舉例而言,在本實施例中,一空腔V1在方向x上的寬度W11可為20µm,一空腔V1在方向y上的寬度W12可為20µm;一通道V2的寬度W2可為6µm,多個空腔V1在方向x以一間距(pitch)P1排列,多個空腔V1在方向y以一間距P2排列,P1=P2=40µm;一封止件140在方向x上的寬度W3可為10µm;第二電極150的第一部151在方向x上具有寬度L1,L1=14µm,第二電極150的第二部152在方向x上具有寬度L2,L2=8µm;但本發明不以此為限。3 and 4, for example, in this embodiment, the width W11 of a cavity V1 in the direction x may be 20 µm, and the width W12 of a cavity V1 in the direction y may be 20 µm; The width W2 can be 6μm, the multiple cavities V1 are arranged at a pitch P1 in the direction x, and the multiple cavities V1 are arranged at a pitch P2 in the direction y, P1=P2=40μm; the
此外,在本實施例中,工作結構U的空腔V1於基板110上的垂直投影大致上呈正方形,工作結構U的通道V2於基板110上的垂直投影大致上呈長條狀。然而,本發明不限於此,在其它實施例中,工作結構U的空腔V1及/或通道V2也可視實際需求設計為其它形狀。In addition, in this embodiment, the vertical projection of the cavity V1 of the working structure U on the
請參照圖4及圖6,換能器10發出之聲波的頻率f與工作結構U的構造具有下列關係:
在上式中,f為換能器10發出之聲波的頻率,λ為工作結構U之空腔V1的形狀因子,D1為工作結構U之振盪膜131的厚度,W11為工作結構U之空腔V1的寬度(或稱,直徑),E為工作結構U之振盪膜131的楊氏係數,d為工作結構U之振盪膜131的單位面積質量,ν為工作結構U之振盪膜131的浦松比。4 and 6, the frequency f of the sound wave emitted by the
請參照圖4,第一工作結構U1的空腔V1於基板110上具有一空腔投影面積A1,第一工作結構U1的多個通道V2-1、V2-2、V2-3於基板110上具有多個通道投影面積,所述多個通道投影面積的和為A2,所述多個通道投影面積的和與空腔投影面積的比例(A2/A1)與換能器10發出之聲波的頻率f相關。Please refer to FIG. 4, the cavity V1 of the first working structure U1 has a cavity projection area A1 on the
舉例而言,假設工作結構U不具任何通道V2,換能器10所發出之聲波的頻率為f;若工作結構U具有通道V2,且A2/A1=1/4,則換能器10所發出之聲波的頻率f下降為0.95f;若工作結構U具有通道V2,且A2/A1=1/2,則換能器10所發出之聲波的頻率f下降為0.8f;若工作結構U具有通道V2,且A2/A1=1,則換能器10所發出之聲波的頻率f下降為0.5f。在本實施例中,0.1≤(A2/A1)≤ 1。For example, if the working structure U does not have any channel V2, the frequency of the sound wave emitted by the
在此必須說明的是,下述實施例沿用前述實施例的元件標號與部分內容,其中採用相同的標號來表示相同或近似的元件,並且省略了相同技術內容的說明。關於省略部分的說明可參考前述實施例,下述實施例不再重述。It must be noted here that the following embodiments use the element numbers and part of the content of the foregoing embodiments, wherein the same numbers are used to represent the same or similar elements, and the description of the same technical content is omitted. For the description of the omitted parts, reference may be made to the foregoing embodiments, and the following embodiments will not be repeated.
圖8為本發明一實施例之換能器的一個單元100A的上視示意圖。FIG. 8 is a schematic top view of a
圖8的單元100A與圖3的單元100類似,兩者的差異在於:在圖3的實施例中,第一工作結構U1的通道V2與相鄰之另一工作結構U的通道V2直接地連接;但在圖8的實施例中,第一工作結構U1的通道V2與相鄰之另一工作結構U的通道V2彼此分離。具體而言,在圖8的實施例中,第一工作結構U1的多個通道V2與相鄰之另一工作結構U的多個通道V2是被空腔定義層130的支撐部132隔開而彼此獨立。The
圖9為本發明一實施例之換能器的一個單元100B的上視示意圖。FIG. 9 is a schematic top view of a
圖9的單元100B與圖3的單元100類似,兩者的差異在於:在圖3的實施例中,第一工作結構U1的通道V2與位於其四周所有工作結構U的通道V2均直接連接;在圖9的實施例中,第一工作結構U1的通道V2與位於同一行及同一列上且相鄰的其它多個工作結構U的通道V2是直接連接,但第一工作結構U1的通道V2與位於其右上方、右下方、左上方及左下方之其它工作結構U1的通道V2並非直接連接。The
圖10為本發明一實施例之換能器的一個單元100C的上視示意圖。FIG. 10 is a schematic top view of a
圖10的單元100C與圖3的單元100類似,兩者的差異在於:在圖3的實施例中,第一工作結構U1的所有通道V2與位於其四周所有多個工作結構U的通道V2均直接連接;在圖10的實施例中,第一工作結構U1之多個通道V2的一通道V2-2與相鄰之另一工作結構U(例如:位於第一工作結構U1之左下方的工作結構U)的一通道V2直接地連接,且第一工作結構U1之多個通道V2的一通道V2-3與相鄰之再一工作結構U(例如:位於第一工作結構U1之右下方的工作結構U)的一通道V2彼此分離。The
圖11為本發明一實施例之換能器的一個單元100D的上視示意圖。FIG. 11 is a schematic top view of a
圖11的單元100D與圖3的單元100類似,兩者的差異在於:圖11之工作結構U的空腔V1及通道V2的形態與圖3之工作結構U的空腔V1及通道V2的形態不同。在圖11的實施例中,工作結構U之空腔V1於基板110上的垂直投影可呈長方形,工作結構U之至少一通道V2於基板110上的垂直投影可呈彎曲狀。The
圖12為本發明一實施例之換能器的一個單元100E的上視示意圖。FIG. 12 is a schematic top view of a
圖12的單元100E與圖10的單元100D類似,兩者的差異在於:在圖11的實施例中,第一工作結構U1的通道V2與位於其四周的所有多個工作結構U的通道V2均直接連接;在圖12的實施例中,第一工作結構U1的通道V2與位於同一行且相鄰之其它工作結構U1的通道V2直接連接,但第一工作結構U1的通道V2與位於同一列且相鄰之其它工作結構U1的通道V2彼此分離。The
1:超音波探頭
10:換能器
100、100A、100B、100C、100D、100E:單元
110:基板
120:第一電極
130:空腔定義層
130h:貫孔
131:振盪膜
131a:主要部
131b:輔助部
132:支撐部
132a、132b:側壁
140:封止件
150:第二電極
151:第一部
152:第二部
A-A’:剖線
B-B’:剖線
C-C’:剖線
D1、D2:厚度
G1、G2、G3:通道組
K:擬直線
P1、P2:間距
r:直徑
U:工作結構
U1:第一工作結構
V1:空腔
V2、V2-1、V2-2、V2-3:通道
W11、W12、W2、W3、L1、L2:寬度
x、y、d1、d2:方向
θ:夾角1: Ultrasonic probe
10:
圖1為本發明一實施例之超音波探頭1的示意圖。
圖2為本發明一實施例之換能器10的示意圖。
圖3為本發明一實施例之換能器10的一個單元100的上視示意圖。
圖4為本發明一實施例之一工作結構U的放大示意圖。
圖5為本發明一實施例之工作結構U的剖面示意圖。
圖6為本發明一實施例之工作結構U的剖面示意圖。
圖7為本發明一實施例之工作結構U的剖面示意圖。
圖8為本發明一實施例之換能器的一個單元100A的上視示意圖。
圖9為本發明一實施例之換能器的一個單元100B的上視示意圖。
圖10為本發明一實施例之換能器的一個單元100C的上視示意圖。
圖11為本發明一實施例之換能器的一個單元100D的上視示意圖。
圖12為本發明一實施例之換能器的一個單元100E的上視示意圖。FIG. 1 is a schematic diagram of an
100:單元100: unit
110:基板110: substrate
120:第一電極120: first electrode
130:空腔定義層130: Cavity definition layer
130h:貫孔130h: Through hole
131:振盪膜131: Oscillating Film
131a:主要部131a: main part
131b:輔助部131b: Auxiliary Department
132:支撐部132: Support
140:封止件140: Seal
150:第二電極150: second electrode
151:第一部151: Part One
152:第二部152: The second part
K:擬直線K: quasi-straight line
P1、P2:間距P1, P2: pitch
U:工作結構U: Work structure
U1:第一工作結構U1: The first working structure
V1:空腔V1: Cavity
V2:通道V2: Channel
W3:寬度W3: width
x、y、d1、d2:方向x, y, d1, d2: direction
θ:夾角θ: included angle
Claims (18)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109107832A TWI740410B (en) | 2020-03-10 | 2020-03-10 | Transducer |
CN202011089455.7A CN112221918B (en) | 2020-03-10 | 2020-10-13 | Energy converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109107832A TWI740410B (en) | 2020-03-10 | 2020-03-10 | Transducer |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202135167A true TW202135167A (en) | 2021-09-16 |
TWI740410B TWI740410B (en) | 2021-09-21 |
Family
ID=74112375
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109107832A TWI740410B (en) | 2020-03-10 | 2020-03-10 | Transducer |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112221918B (en) |
TW (1) | TWI740410B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI789229B (en) * | 2022-01-28 | 2023-01-01 | 友達光電股份有限公司 | Transducer and manufacturing method thereof |
TWI847381B (en) * | 2022-11-22 | 2024-07-01 | 友達光電股份有限公司 | Ultrasonic transducing device |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5160870A (en) * | 1990-06-25 | 1992-11-03 | Carson Paul L | Ultrasonic image sensing array and method |
US5381386A (en) * | 1993-05-19 | 1995-01-10 | Hewlett-Packard Company | Membrane hydrophone |
JP5377066B2 (en) * | 2009-05-08 | 2013-12-25 | キヤノン株式会社 | Capacitive electromechanical transducer and method for producing the same |
CN101712028B (en) * | 2009-11-13 | 2012-02-01 | 中国科学院声学研究所 | Thin-film ultrasonic transducer and preparation method thereof |
JP5778914B2 (en) * | 2010-11-04 | 2015-09-16 | キヤノン株式会社 | Method for manufacturing electromechanical transducer |
JP5855050B2 (en) * | 2013-07-10 | 2016-02-09 | キヤノン株式会社 | Transducer, subject information acquisition device |
CN209735992U (en) * | 2019-03-12 | 2019-12-06 | 重庆大学 | Piezoelectric ultrasonic transducer |
CN110217753B (en) * | 2019-05-16 | 2022-02-01 | 西安交通大学 | Through-hole capacitive micro-machined ultrasonic transducer and preparation method thereof |
-
2020
- 2020-03-10 TW TW109107832A patent/TWI740410B/en active
- 2020-10-13 CN CN202011089455.7A patent/CN112221918B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN112221918A (en) | 2021-01-15 |
CN112221918B (en) | 2021-12-10 |
TWI740410B (en) | 2021-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9493338B2 (en) | Capacitance type sensor and method of manufacturing the same | |
TWI740410B (en) | Transducer | |
US6969942B2 (en) | Piezoelectric electroacoustic transducer | |
JP5436013B2 (en) | Mechanical electrical change element | |
TWI789229B (en) | Transducer and manufacturing method thereof | |
CN110187538B (en) | Display device | |
US20150230011A1 (en) | Acoustic transducer | |
CN110149582B (en) | Preparation method of MEMS structure | |
CN110149574A (en) | A kind of MEMS structure | |
CN110113700A (en) | A kind of MEMS structure | |
TW200901803A (en) | Diaphragm structure and acoustic sensor | |
CN1127208C (en) | Piezoelectric resonator and making method thereof | |
TWI404428B (en) | Acoustics transducer | |
JP2016005222A (en) | Ultrasonic probe | |
WO2022110420A1 (en) | Piezoelectric mems microphone, and array thereof and preparation method therefor | |
TWI797475B (en) | Capacitive transducer and manufacturing method thereof | |
JP2009089100A (en) | Vibrating transducer | |
CN209748811U (en) | MEMS structure | |
JP4592585B2 (en) | Acoustic sensor | |
CN103471760B (en) | Manufacturing method of force sensing resonant element | |
TWI714516B (en) | Capacitive transducer and manufacturing method thereof | |
US20220306455A1 (en) | Microelectromechanical system and process of making it | |
CN209608857U (en) | A kind of MEMS structure | |
TWI835661B (en) | Transducer and manufacturing thereof | |
TWI757845B (en) | Ultrasonic transducer and method for manufacturing the same |