TW202133396A - Memory structure and method of manufacturing the same - Google Patents

Memory structure and method of manufacturing the same Download PDF

Info

Publication number
TW202133396A
TW202133396A TW109106571A TW109106571A TW202133396A TW 202133396 A TW202133396 A TW 202133396A TW 109106571 A TW109106571 A TW 109106571A TW 109106571 A TW109106571 A TW 109106571A TW 202133396 A TW202133396 A TW 202133396A
Authority
TW
Taiwan
Prior art keywords
silicon layer
layer
memory structure
floating gate
grain size
Prior art date
Application number
TW109106571A
Other languages
Chinese (zh)
Other versions
TWI717219B (en
Inventor
蔡文傑
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW109106571A priority Critical patent/TWI717219B/en
Application granted granted Critical
Publication of TWI717219B publication Critical patent/TWI717219B/en
Publication of TW202133396A publication Critical patent/TW202133396A/en

Links

Images

Landscapes

  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

A memory structure and its manufacturing method are provided. The memory structure includes a substrate having active regions, wherein adjacent active regions are separated by an isolation structure. The memory structure includes several stacked structures disposed on the active regions, respectively. Each of the stacked structures includes a tunnel dielectric layer on the substrate and a floating gate on the tunnel dielectric layer. The floating gate includes a lower silicon layer and an upper silicon layer, wherein the lower silicon layer includes one or more implants selected from nitrogen gas, carbon or a combination thereof.

Description

記憶體結構及其製造方法Memory structure and manufacturing method thereof

本發明係有關於一種記憶體結構及其製造方法,且特別係有關於一種非揮發性記憶體結構及其製造方法。The present invention relates to a memory structure and a manufacturing method thereof, and particularly relates to a non-volatile memory structure and a manufacturing method thereof.

在非揮發性記憶體中,依據記憶體內的資料能否在使用電腦時隨時改寫,可分為二大類產品,分別為唯讀記憶體(read-only memory, ROM)與快閃記憶體(flash memory)。其中快閃記憶體因成本較低,而逐漸成為非揮發性記憶體的主流技術。In the non-volatile memory, according to whether the data in the memory can be rewritten at any time while using the computer, it can be divided into two categories: read-only memory (ROM) and flash memory (flash). memory). Among them, flash memory has gradually become the mainstream technology of non-volatile memory due to its low cost.

一般而言,一個快閃記憶體包含兩個閘極,第一個閘極為儲存資料的浮置閘極,而第二個閘極為進行資料的輸入和輸出的控制閘極。浮置閘極係位於控制閘極之下方且為「漂浮」的狀態。所謂漂浮係指以絕緣材料環繞且隔離浮置閘極以防止電荷流失。控制閘極係連接至字元線以控制裝置。快閃記憶體的優點之一為可以區塊-區塊抹除資料(block-by-block erasing)。快閃記憶體廣泛地用於企業伺服器、儲存和網路科技,以及廣泛的消費電子產品,例如隨身碟快閃驅動裝置、行動電話、數位相機、平板電腦、筆記型電腦的個人電腦插卡和嵌入式控制器等等。Generally speaking, a flash memory contains two gates, the first gate is a floating gate for storing data, and the second gate is a control gate for data input and output. The floating gate is located below the control gate and is in a "floating" state. The so-called floating refers to the use of insulating materials to surround and isolate the floating gate to prevent charge loss. The control gate is connected to the word line to control the device. One of the advantages of flash memory is that it can block-by-block erasing. Flash memory is widely used in corporate servers, storage and network technology, as well as a wide range of consumer electronics products, such as flash drives for flash drives, mobile phones, digital cameras, tablets, and personal computer cards for notebook computers And embedded controllers and so on.

雖然現存的非揮發性記憶體的形成方法已足夠應付它們原先預定的用途,但它們仍未在各個方面皆徹底的符合要求,因此非揮發性記憶體的技術目前仍有需克服的問題。Although the existing formation methods of non-volatile memory are sufficient for their original intended use, they have not fully met the requirements in all aspects. Therefore, the technology of non-volatile memory still has problems to be overcome.

本發明揭示一種記憶體結構,包括一基底,其中基底包含複數個主動區域,且此些主動區域之間係以一隔離結構相隔開來。記憶體結構還包括複數個堆疊結構分別位於各個主動區域的上方,且各個堆疊結構包含位於基底上的一穿隧介電層以及位於穿隧介電層上的一浮置閘極。浮置閘極包含位於穿隧介電層上的下部矽層及上部矽層,其中下部矽層包含氮氣、碳、或前述之組合的摻質。The present invention discloses a memory structure including a substrate, wherein the substrate includes a plurality of active regions, and the active regions are separated by an isolation structure. The memory structure further includes a plurality of stacked structures respectively located above each active area, and each stacked structure includes a tunneling dielectric layer on the substrate and a floating gate located on the tunneling dielectric layer. The floating gate includes a lower silicon layer and an upper silicon layer on the tunnel dielectric layer, wherein the lower silicon layer contains nitrogen, carbon, or a combination of dopants.

本發明揭示一種記憶體結構的製造方法,包括提供包含複數個主動區域的一基底。記憶體結構的製造方法亦包括形成複數個堆疊結構分別位於各個主動區域的上方,其中各個堆疊結構包含位於基底上的一穿隧介電層以及位於穿隧介電層上的一浮置閘極。浮置閘極包含位於穿隧介電層上的下部矽層及上部矽層,其中下部矽層包含氮氣、碳、或前述之組合的摻質。記憶體結構的製造方法更包括形成複數個溝槽分別位於主動區域之間,以及於溝槽中形成隔離結構。The present invention discloses a manufacturing method of a memory structure, which includes providing a substrate including a plurality of active regions. The manufacturing method of the memory structure also includes forming a plurality of stacked structures respectively located above each active area, wherein each stacked structure includes a tunneling dielectric layer on the substrate and a floating gate located on the tunneling dielectric layer . The floating gate includes a lower silicon layer and an upper silicon layer on the tunnel dielectric layer, wherein the lower silicon layer contains nitrogen, carbon, or a combination of dopants. The manufacturing method of the memory structure further includes forming a plurality of trenches respectively located between the active regions, and forming an isolation structure in the trenches.

參照本發明實施例之圖式以更全面地闡述本發明。然而,本發明亦可以各種不同的形式體現,而不應限於本文中所述之實施例。圖式中的層與區域的厚度會為了清楚起見而放大。相同或相似之元件標號表示相同或相似之元件,以下段落將不再一一贅述。為簡化敘述,實施例所配合之圖式係繪製四個包含浮置閘極的堆疊結構於基底上以及延伸於該些浮置閘極上方的控制閘極,以做記憶體結構之示例說明。The present invention will be explained more fully with reference to the drawings of the embodiments of the present invention. However, the present invention can also be embodied in various different forms and should not be limited to the embodiments described herein. The thickness of the layers and regions in the drawing will be exaggerated for clarity. The same or similar element numbers indicate the same or similar elements, and the following paragraphs will not repeat them one by one. In order to simplify the description, the drawings used in the embodiment draw four stacked structures including floating gates on the substrate and the control gates extending above the floating gates to illustrate the memory structure.

第1A-1O圖是根據本發明的一實施例之製造記憶體結構的不同中間階段所對應的剖面示意圖。請參照第1A圖,提供基底10,基底10包含一源極區域和一汲極區域(未示出)。基底10的材料可包含矽、砷化鎵、氮化鎵、矽化鍺、絕緣層上覆矽、其他合適之材料或前述之組合。FIGS. 1A-10 are schematic cross-sectional views corresponding to different intermediate stages of manufacturing a memory structure according to an embodiment of the present invention. Referring to FIG. 1A, a substrate 10 is provided. The substrate 10 includes a source region and a drain region (not shown). The material of the substrate 10 may include silicon, gallium arsenide, gallium nitride, germanium silicide, silicon on an insulating layer, other suitable materials, or a combination of the foregoing.

接著,在基底10上形成穿隧介電材料層11。穿隧介電材料層11例如是氧化矽或高介電常數材料(介電常數例如是大於4)。高介電常數材料例如可包括氧化鉿、氧化鉿矽、氧化鉿鋁或氧化鉿鉭。在一實施例中,穿隧介電材料層11的厚度範圍可為3 nm至10 nm。Next, a tunneling dielectric material layer 11 is formed on the substrate 10. The tunneling dielectric material layer 11 is, for example, silicon oxide or a high dielectric constant material (for example, the dielectric constant is greater than 4). The high dielectric constant material may include, for example, hafnium oxide, hafnium silicon oxide, hafnium aluminum oxide, or hafnium tantalum oxide. In an embodiment, the thickness of the tunneling dielectric material layer 11 may range from 3 nm to 10 nm.

參照第1B圖,在穿隧介電材料層11上方形成矽層12。矽層12例如是非晶矽,且可使用沉積製程形成。在一實施例中,矽層12的厚度範圍可為10 nm至約30 nm,例如約20nm。Referring to FIG. 1B, a silicon layer 12 is formed on the tunneling dielectric material layer 11. The silicon layer 12 is, for example, amorphous silicon, and can be formed by a deposition process. In an embodiment, the thickness of the silicon layer 12 may range from 10 nm to about 30 nm, for example, about 20 nm.

然後,參照第1C圖,進行佈植製程12M,以在矽層12內植入摻質。例如將包含氮氣(N2 )、碳、或前述之組合的摻質植入矽層12中。在一實施例中,將氮氣佈植於矽層12中,氮氣的佈植劑量例如是在1x1015 原子/cm2 至4 x1015 原子/cm2 的範圍內。在一實施例中,氮氣的佈植能量例如是在2 KJ至5 KJ的範圍內,例如3 KJ。此外,在其他實施例中,可在矽層12內植入N型摻質,例如磷(P),使之後製得的浮置閘極為N型導電類型。Then, referring to FIG. 1C, an implantation process 12M is performed to implant dopants in the silicon layer 12. For example, dopants containing nitrogen (N 2 ), carbon, or a combination of the foregoing are implanted in the silicon layer 12. In one embodiment, nitrogen is implanted in the silicon layer 12, and the implantation dose of nitrogen is, for example, in the range of 1×10 15 atoms/cm 2 to 4×10 15 atoms/cm 2. In one embodiment, the implantation energy of nitrogen is, for example, in the range of 2 KJ to 5 KJ, such as 3 KJ. In addition, in other embodiments, N-type dopants, such as phosphorus (P), may be implanted in the silicon layer 12, so that the floating gate produced later has an N-type conductivity.

然後,參照第1D圖,在矽層12上方形成矽層13。矽層13包含多晶矽,且可使用沉積製程形成。在一實施例中,矽層13例如是未摻雜的多晶矽層。在一實施例中,矽層13的厚度範圍可為40 nm至100 nm,例如60nm。Then, referring to FIG. 1D, a silicon layer 13 is formed on the silicon layer 12. The silicon layer 13 includes polysilicon, and can be formed using a deposition process. In one embodiment, the silicon layer 13 is, for example, an undoped polysilicon layer. In an embodiment, the thickness of the silicon layer 13 may range from 40 nm to 100 nm, such as 60 nm.

然後,參照第1E圖,在矽層13上依序形成氧化層14、罩幕層16、罩幕層17和圖案化光阻18。氧化層14的材料可包括氧化矽或氮氧化矽,且可利用熱氧化法、化學氣相沉積法或前述方式之組合形成。在一實施例中,氧化層14的厚度範圍可為5 nm至15 nm。罩幕層16的材料可包括氮化矽或氮氧化矽,罩幕層17的材料可包括氧化矽,並可經由化學氣相沉積方式形成罩幕層16和17。Then, referring to FIG. 1E, an oxide layer 14, a mask layer 16, a mask layer 17, and a patterned photoresist 18 are sequentially formed on the silicon layer 13. The material of the oxide layer 14 may include silicon oxide or silicon oxynitride, and may be formed by thermal oxidation, chemical vapor deposition, or a combination of the foregoing methods. In an embodiment, the thickness of the oxide layer 14 may range from 5 nm to 15 nm. The material of the mask layer 16 may include silicon nitride or silicon oxynitride, the material of the mask layer 17 may include silicon oxide, and the mask layers 16 and 17 may be formed by chemical vapor deposition.

參照第1F圖,根據圖案化光阻18而移除罩幕層17暴露出的部分,而形成圖案化罩幕層170。可利用非等向性蝕刻,例如是乾式蝕刻,以移除罩幕層17暴露出的部分。Referring to FIG. 1F, the exposed portion of the mask layer 17 is removed according to the patterned photoresist 18 to form a patterned mask layer 170. Anisotropic etching, such as dry etching, can be used to remove the exposed part of the mask layer 17.

參照第1G圖,接著,以圖案化光阻18和圖案化罩幕層170為遮罩移除暴露出的罩幕層16與氧化層14,以形成圖案化罩幕層160與圖案化氧化層140。可利用非等向性蝕刻,例如是乾式蝕刻,而進行前述之移除。至此,形成堆疊結構19於矽層13的上方。此外,在移除部分的氧化層14時,可以矽層13作為蝕刻停止層。雖然在此示例中,圖案化罩幕層170和160構成一圖案化罩幕堆疊(多層結構)HM。但在其他示例中,圖案化罩幕堆疊可為單層結構。Referring to Figure 1G, next, use the patterned photoresist 18 and the patterned mask layer 170 as a mask to remove the exposed mask layer 16 and the oxide layer 14 to form a patterned mask layer 160 and a patterned oxide layer 140. Anisotropic etching, such as dry etching, can be used to perform the aforementioned removal. So far, the stacked structure 19 is formed on the silicon layer 13. In addition, when part of the oxide layer 14 is removed, the silicon layer 13 can be used as an etching stop layer. Although in this example, the patterned mask layers 170 and 160 constitute a patterned mask stack (multi-layer structure) HM. But in other examples, the patterned mask stack may be a single-layer structure.

參照第1H圖,形成堆疊結構19後,在同一道蝕刻步驟中,繼續對矽層13和12進行圖案化,以分別形成浮置閘極FG的上部矽層130和下部矽層120,並在相鄰的堆疊結構19之間和相鄰的浮置閘極FG之間形成開口210。開口210暴露出部分的穿隧介電材料層11。在一實施例中,以乾式蝕刻例如反應性離子蝕刻及/或自對準雙重圖案法對矽層13和12進行圖案化。Referring to Figure 1H, after the stacked structure 19 is formed, in the same etching step, the silicon layers 13 and 12 are patterned to form the upper silicon layer 130 and the lower silicon layer 120 of the floating gate FG, respectively. An opening 210 is formed between adjacent stacked structures 19 and between adjacent floating gates FG. The opening 210 exposes part of the tunneling dielectric material layer 11. In one embodiment, the silicon layers 13 and 12 are patterned by dry etching, such as reactive ion etching and/or self-aligned double patterning.

值得一提的是,由於矽層12中包含氮氣、碳、磷等摻質,因此矽層12的蝕刻速率低於矽層13的蝕刻速率,使蝕刻後形成的下部矽層120的寬度W1大於上部矽層130的寬度W2。It is worth mentioning that since the silicon layer 12 contains nitrogen, carbon, phosphorus and other dopants, the etching rate of the silicon layer 12 is lower than that of the silicon layer 13, so that the width W1 of the lower silicon layer 120 formed after etching is greater than The width W2 of the upper silicon layer 130.

在一實施例中,下部矽層120的寬度W1相對於上部矽層130的寬度W2具有一比值(W1/W2),此比值在大於1到1.5的範圍內,例如約1.1。可根據實際應用需求可調整矽層12中包含氮氣、碳、或前述之組合的摻質的含量,以製得所需的比值。例如,當提高前述摻質的含量,蝕刻矽層12的速率就會變慢,形成的下部矽層120的寬度W1就越大,進而可變化寬度W1/寬度W2的比值。In one embodiment, the width W1 of the lower silicon layer 120 has a ratio (W1/W2) to the width W2 of the upper silicon layer 130, and the ratio is in the range of greater than 1 to 1.5, for example, about 1.1. The content of dopants containing nitrogen, carbon, or the foregoing combination in the silicon layer 12 can be adjusted according to actual application requirements to obtain a desired ratio. For example, when the content of the aforementioned dopants is increased, the etching rate of the silicon layer 12 will be slower, and the width W1 of the lower silicon layer 120 formed will be larger, and the ratio of the width W1/width W2 can be changed.

接著,參照第1I圖,移除圖案化光阻18,並以圖案化罩幕堆疊HM、圖案化氧化層140以及浮置閘極FG為遮罩對暴露出的穿隧介電材料層11及下方的基底10進行蝕刻,且在基底10中形成溝槽220。如第1I圖所示,相鄰的溝槽220之間的區域可為記憶體結構的主動區域(active area)AA 。再者,穿隧介電材料層11於蝕刻後可形成一介電圖案,以作為記憶體結構的穿隧氧化層(tunnel oxide)110。在一實施例中,下部矽層120的側壁120c與穿隧介電層110的側壁110c大抵共平面。而基底10上方的浮置閘極FG以及穿隧氧化層110則構成堆疊結構20。Next, referring to Figure 11, the patterned photoresist 18 is removed, and the patterned mask stack HM, the patterned oxide layer 140, and the floating gate FG are used as a mask for the exposed tunneling dielectric material layer 11 and The underlying substrate 10 is etched, and a trench 220 is formed in the substrate 10. As shown in FIG. 11, the area between adjacent trenches 220 may be the active area A A of the memory structure. Furthermore, the tunneling dielectric material layer 11 can form a dielectric pattern after etching to serve as a tunnel oxide layer 110 of the memory structure. In one embodiment, the sidewall 120c of the lower silicon layer 120 and the sidewall 110c of the tunneling dielectric layer 110 are substantially coplanar. The floating gate FG and the tunnel oxide layer 110 above the substrate 10 constitute the stacked structure 20.

值得一提的是,由於下部矽層120含有摻植,因此其蝕刻速率會小於下方的基底10。因此,下部矽層120的寬度W1與下方相對應之主動區域AA 的寬度WA 實質上相等,且小於上部矽層130的寬度W2。It is worth mentioning that since the lower silicon layer 120 contains implants, its etching rate will be lower than that of the underlying substrate 10. Thus, the width W1 and below the lower silicon layer 120 corresponding to the active region width W A A A are substantially equal, and the upper silicon layer is smaller than the width W2 130.

參照第1J圖,之後,沉積一隔離材料層24於圖案化罩幕堆疊HM、圖案化氧化層140以及堆疊結構20的上方,且隔離材料層24填入溝槽220以及開口210中。在一實施例中,隔離材料層24可形成至圖案化罩幕堆疊HM的兩側,或者超過圖案化罩幕堆疊HM的頂面(如第1J圖所示)。隔離材料層24的材料包括絕緣材料,例如是氧化矽、氮化矽或其組合,且可利用化學氣相沉積法形成隔離材料層24。Referring to FIG. 1J, afterwards, an isolation material layer 24 is deposited on the patterned mask stack HM, the patterned oxide layer 140 and the stacked structure 20, and the isolation material layer 24 is filled in the trench 220 and the opening 210. In an embodiment, the isolation material layer 24 may be formed to both sides of the patterned mask stack HM, or beyond the top surface of the patterned mask stack HM (as shown in FIG. 1J). The material of the isolation material layer 24 includes an insulating material, such as silicon oxide, silicon nitride, or a combination thereof, and the isolation material layer 24 can be formed by a chemical vapor deposition method.

參照第1K圖,接著,移除部分的隔離材料層24以及圖案化罩幕層170。留下的隔離材料層240例如形成至圖案化罩幕層160的兩側,且隔離材料層240的頂面與圖案化罩幕層160的頂面大抵共平面。在一實施例中,可藉由例如是化學機械研磨法(CMP)的方法來進行此移除步驟。Referring to FIG. 1K, then, part of the isolation material layer 24 and the patterned mask layer 170 are removed. The remaining isolation material layer 240 is formed, for example, to both sides of the patterned mask layer 160, and the top surface of the isolation material layer 240 and the top surface of the patterned mask layer 160 are substantially coplanar. In one embodiment, this removal step can be performed by a method such as chemical mechanical polishing (CMP).

之後,參照第1L圖,進行第一蝕刻步驟以移除部分的隔離材料層240,使隔離材料層240凹陷。留下的隔離材料層於開口210以及溝槽220中形成隔離結構242。此外,進行第一蝕刻步驟時,也一併移除了部分的圖案化罩幕層160。移除部分的隔離材料層240的方法包括非等向性蝕刻,例如是乾式蝕刻。在一實施例中,可控制隔離結構242的頂面242a低於上部矽層130的頂面130a,故可提高浮置閘極FG對於後續形成作為控制閘極的導電層之間的閘極耦合率(Gate-Coupling Ratio;GCR)。此外,可控制隔離結構242的頂面242a高於穿隧介電層110的頂面110a,如此可避免在形成隔離結構242的過程中使穿隧介電層110受到損壞。After that, referring to FIG. 1L, a first etching step is performed to remove part of the isolation material layer 240, so that the isolation material layer 240 is recessed. The remaining isolation material layer forms an isolation structure 242 in the opening 210 and the trench 220. In addition, during the first etching step, part of the patterned mask layer 160 is also removed. The method of removing part of the isolation material layer 240 includes anisotropic etching, such as dry etching. In one embodiment, the top surface 242a of the controllable isolation structure 242 is lower than the top surface 130a of the upper silicon layer 130, so that the gate coupling between the floating gate FG and the conductive layer that is subsequently formed as a control gate can be improved. Rate (Gate-Coupling Ratio; GCR). In addition, the top surface 242a of the isolation structure 242 can be controlled to be higher than the top surface 110a of the tunneling dielectric layer 110, so as to avoid damage to the tunneling dielectric layer 110 during the process of forming the isolation structure 242.

之後,參照第1M圖,移除前述第一蝕刻步驟進行後所留下的圖案化罩幕層160’。After that, referring to Figure 1M, the patterned mask layer 160' left after the foregoing first etching step is performed is removed.

參照第1N圖,接著,進行第二蝕刻步驟,以進一步蝕刻隔離結構242並移除圖案化氧化層140,而形成隔離結構242-2。可利用乾式蝕刻製程蝕刻隔離結構242和移除圖案化氧化層140。Referring to FIG. 1N, a second etching step is then performed to further etch the isolation structure 242 and remove the patterned oxide layer 140 to form the isolation structure 242-2. A dry etching process can be used to etch the isolation structure 242 and remove the patterned oxide layer 140.

值得一提的是,通過控制矽層12的沉積厚度,可使不同浮置閘極FG的下部矽層120具有均勻一致的高度,進而控制如第1L圖所示的位於浮置閘極FG之間下凹隔離材料層240的深度的均勻性(uniformity),進而使主動區域AA 之間的隔離結構(例如隔離結構242或隔離結構242-2)的頂面高度具有一致性。It is worth mentioning that by controlling the deposition thickness of the silicon layer 12, the lower silicon layer 120 of different floating gates FG can be made to have a uniform height, thereby controlling the position between the floating gates FG as shown in Figure 1L. between depth uniformity (uniformity) recessed insulating material layer 240, thereby enabling the isolation structure between the active region a a (e.g. isolation structure 242, or isolation structures 242-2) having a top surface height consistency.

參照第1O圖,之後,順應性地形成一閘極間介電層27於浮置閘極FG上,以及沉積一導電層28於閘極間介電層27上,以做為記憶體結構的控制閘極。在一實施例中,閘極間介電層27可為單層結構或多層結構,且閘極間介電層27的材料可包括氧化矽、氮化矽或其組合。舉例而言,閘極間介電層27可為氧化矽/氮化矽/氧化矽的結構(ONO結構),或者NONON結構。再者,導電層28可以是單層或多層結構。導電層28的材料包含多晶矽、金屬、金屬矽化物或其他導體材料。舉例而言,金屬可包括鈦、鉭、鎢、鋁或鋯。金屬矽化物可包括矽化鎳、矽化鈦或矽化鎢。至此,完成本實施例的記憶體結構的製作。Referring to Figure 10, afterwards, an inter-gate dielectric layer 27 is conformably formed on the floating gate FG, and a conductive layer 28 is deposited on the inter-gate dielectric layer 27 to serve as a memory structure Control the gate. In one embodiment, the inter-gate dielectric layer 27 may be a single-layer structure or a multi-layer structure, and the material of the inter-gate dielectric layer 27 may include silicon oxide, silicon nitride, or a combination thereof. For example, the inter-gate dielectric layer 27 can be a silicon oxide/silicon nitride/silicon oxide structure (ONO structure), or a NONON structure. Furthermore, the conductive layer 28 may have a single-layer or multi-layer structure. The material of the conductive layer 28 includes polysilicon, metal, metal silicide or other conductive materials. For example, the metal may include titanium, tantalum, tungsten, aluminum, or zirconium. The metal silicide may include nickel silicide, titanium silicide, or tungsten silicide. So far, the fabrication of the memory structure of this embodiment is completed.

值得一提的是,在佈植氮氣於矽層12(如第1C圖)的一實施例中,最終製得的浮置閘極FG的下部矽層120包含摻質氮氣的摻雜濃度例如在1

Figure 02_image001
1020 /cm3 至­­­1
Figure 02_image001
1022 /cm3 的範圍之間。It is worth mentioning that in an embodiment where nitrogen is implanted on the silicon layer 12 (as shown in FIG. 1C), the lower silicon layer 120 of the floating gate FG that is finally produced contains the doping concentration of dopant nitrogen, for example, 1
Figure 02_image001
10 20 /cm 3 to 1
Figure 02_image001
10 22 /cm 3 between the range.

在一實施例中,原本以非晶矽材料形成的矽層12,在製作記憶體結構期間經過熱製程後會轉變為多晶矽。因此,如第1O圖所示之製得的記憶體結構,其浮置閘極FG的下部矽層120和上部矽層130皆包含多晶矽。而矽層12中所包含氮氣、碳、或前述之組合的摻質也使得之後形成的多晶矽的晶粒尺寸較未包含前述摻質的上部矽層130的多晶矽的晶粒尺寸要來得更小。In one embodiment, the silicon layer 12 originally formed of an amorphous silicon material is converted into polysilicon after a thermal process during the manufacturing of the memory structure. Therefore, in the memory structure produced as shown in FIG. 10, the lower silicon layer 120 and the upper silicon layer 130 of the floating gate FG both include polysilicon. The dopants of nitrogen, carbon, or a combination of the foregoing in the silicon layer 12 also make the grain size of the polysilicon to be formed later than that of the polysilicon of the upper silicon layer 130 that does not contain the aforementioned dopants.

參照第2圖,其繪示根據本發明的另一實施例中一個記憶體結構的剖面示意圖。如圖所示,浮置閘極FG的下部矽層120具有第一平均晶粒尺寸,上部矽層130具有第二平均晶粒尺寸,第一平均晶粒尺寸小於第二平均晶粒尺寸。在一實施例中,第一平均晶粒尺寸例如是5nm~20nm,第二平均晶粒尺寸例如是50nm~80nm。值得一提的是,當晶粒尺寸愈小、晶界(grain boundaries)越多,可提供電子流動的路徑就越多,因此在記憶體結構進行寫入操作時,所產生的電流就越能越穩定地自主動區域AA 的通道躍過穿隧介電層110注入浮置閘極FG,並可分散電流流經穿隧介電層110的路徑。因此,在經過多次的寫入操作後,可降低穿隧介電層110的損傷,進而使儲存在浮置閘極中的資料更加不易流失(data loss)。Referring to FIG. 2, it shows a schematic cross-sectional view of a memory structure according to another embodiment of the present invention. As shown in the figure, the lower silicon layer 120 of the floating gate FG has a first average crystal grain size, the upper silicon layer 130 has a second average crystal grain size, and the first average crystal grain size is smaller than the second average crystal grain size. In one embodiment, the first average crystal grain size is, for example, 5 nm to 20 nm, and the second average crystal grain size is, for example, 50 nm to 80 nm. It is worth mentioning that the smaller the grain size and the more grain boundaries, the more paths for electrons to flow. Therefore, the current generated during the write operation in the memory structure is more effective. The more stable the channel from the active area A A jumps over the tunneling dielectric layer 110 to inject the floating gate FG, and the path of current flowing through the tunneling dielectric layer 110 can be dispersed. Therefore, after multiple write operations, damage to the tunneling dielectric layer 110 can be reduced, thereby making the data stored in the floating gate more difficult to lose data.

根據上述實施例,本發明可穩定地控制製得的浮置閘極FG的形貌(topology)。詳細而言,通過在矽層12中額外植入氮氣、碳、磷等摻質,可使製得的浮置閘極FG的下部矽層120相較於上部矽層130具有更大的寬度,並使位於浮置閘極FG下方的主動區域AA 的寬度與下部矽層120的寬度實質上相等。對於相鄰的浮置閘極FG而言,相鄰的上部矽層130之間的距離大於相鄰的下部矽層120之間的距離,因此可減少相鄰浮置閘極FG的上部矽層130之間的耦合(FG-FG coupling)。同時,因浮置閘極FG具有較上部矽層130寬的下部矽層120以及主動區域AA ,亦增加了主動區域AA 的通道面積,使更多操作電流可流經通道而注入浮置閘極FG,進而降低操作電壓。再者,由於本發明的下部矽層120具有較小的平均晶粒尺寸及更多晶界,進而使電流能越穩定地注入浮置閘極FG,使電性表現更穩定。According to the above embodiments, the present invention can stably control the topology of the manufactured floating gate FG. In detail, by additionally implanting dopants such as nitrogen, carbon, and phosphorus in the silicon layer 12, the lower silicon layer 120 of the floating gate FG can be made to have a larger width than that of the upper silicon layer 130. and the width of the floating gate FG is located below the active region a a width of the lower silicon layer 120 is substantially equal. For adjacent floating gates FG, the distance between adjacent upper silicon layers 130 is greater than the distance between adjacent lower silicon layers 120, so the upper silicon layer of adjacent floating gates FG can be reduced The coupling between 130 (FG-FG coupling). At the same time, because the floating gate FG has a lower silicon layer 120 wider than the upper silicon layer 130 and an active area A A , the channel area of the active area A A is also increased, so that more operating current can flow through the channel and be injected into the floating Gate FG, thereby reducing the operating voltage. Furthermore, since the lower silicon layer 120 of the present invention has a smaller average grain size and more grain boundaries, the current can be more stably injected into the floating gate FG, so that the electrical performance is more stable.

綜合上述,本發明所提出的記憶體結構及其製造方法,是在穿隧介電層上的浮置閘極的下部矽層中植入包含氮氣、碳、或前述之組合的摻質,此下部矽層於後續製程中形成浮置閘極的下部。根據本發明所提出的記憶體結構之製造方法可穩定地控制製得的浮置閘極FG的形貌(topology),包括控制下部矽層的寬度、主動區域的寬度以及浮置閘極之間的隔離結構的高度。而根據本發明所製得的記憶體結構,至少具有加快寫入速度、降低寫入操作電壓、具有良好的資料保存能力以及穩定的電性表現等許多的益處,進而提高最終產品的良率及可靠度。In summary, the memory structure and manufacturing method proposed by the present invention is to implant dopants containing nitrogen, carbon, or a combination of the foregoing into the lower silicon layer of the floating gate on the tunnel dielectric layer. The lower silicon layer forms the lower part of the floating gate in the subsequent process. The manufacturing method of the memory structure proposed according to the present invention can stably control the topology of the manufactured floating gate FG, including controlling the width of the lower silicon layer, the width of the active area, and the gap between the floating gates. The height of the isolation structure. The memory structure prepared according to the present invention has at least many benefits such as speeding up the writing speed, lowering the writing operation voltage, having good data retention and stable electrical performance, thereby improving the yield and the final product. Reliability.

雖然本發明已以數個較佳實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者在不脫離本發明之精神和範圍內,當可作任意之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in several preferred embodiments as described above, it is not intended to limit the present invention. Anyone with ordinary knowledge in the art can make any changes and modifications without departing from the spirit and scope of the present invention. Retouching, therefore, the scope of protection of the present invention shall be subject to the scope of the attached patent application.

10:基底 11:穿隧介電材料層 110:穿隧介電層 12、13:矽層 120:下部矽層 130:上部矽層 12M:佈植製程 14:氧化層 140:圖案化氧化層 16、17:罩幕層 160、160’、170:圖案化罩幕層 18:圖案化光阻 19、20:堆疊結構 210:開口 130b:底面 110a 、120a、130a、242a:頂面 110c、120c、130c:側壁 220:溝槽 24、240:隔離材料層 242、242-2:隔離結構 27:閘極間介電層 28:導電層 HM:圖案化罩幕堆疊 FG:浮置閘極 W1、W2:寬度 AA ~:主動區域10: Substrate 11: Tunneling dielectric material layer 110: Tunneling dielectric layer 12, 13: Silicon layer 120: Lower silicon layer 130: Upper silicon layer 12M: Planting process 14: Oxide layer 140: Patterned oxide layer 16 , 17: mask layer 160, 160', 170: patterned mask layer 18: patterned photoresist 19, 20: stacked structure 210: opening 130b: bottom surface 110a, 120a, 130a, 242a: top surface 110c, 120c, 130c: sidewall 220: trench 24, 240: isolation material layer 242, 242-2: isolation structure 27: inter-gate dielectric layer 28: conductive layer HM: patterned mask stack FG: floating gate W1, W2 : Width A A ~: active area

第1A-1O圖是根據本發明的一實施例之製造記憶體結構的不同中間階段所對應的剖面示意圖。 第2圖是根據本發明的另一實施例中一個記憶體結構的剖面示意圖。FIGS. 1A-10 are schematic cross-sectional views corresponding to different intermediate stages of manufacturing a memory structure according to an embodiment of the present invention. FIG. 2 is a schematic cross-sectional view of a memory structure according to another embodiment of the present invention.

10:基底10: Base

110a、120a、130a、242a:頂面110a, 120a, 130a, 242a: top surface

110:穿隧介電層110: Tunneling dielectric layer

120:下部矽層120: Lower silicon layer

120c、130c:側壁120c, 130c: side wall

130:上部矽層130: upper silicon layer

242-2:隔離結構242-2: Isolation structure

20:堆疊結構20: Stacked structure

FG:浮置閘極FG: floating gate

210:開口210: opening

AA :主動區域A A : Active area

Claims (10)

一種記憶體結構,包括: 一基底,包含複數個主動區域,且相鄰之該些主動區域之間係以一隔離結構相隔開來; 複數個堆疊結構,分別位於該些主動區域上方,且前述各個堆疊結構包含位於該基底上的一穿隧介電層以及位於該穿隧介電層上的一浮置閘極,該浮置閘極包含: 一下部矽層,位於該穿隧介電層上,其中該下部矽層包含氮氣、碳、或前述之組合的摻質;以及 一上部矽層,位於該下部矽層上。A memory structure including: A substrate includes a plurality of active regions, and adjacent active regions are separated by an isolation structure; A plurality of stacked structures are respectively located above the active regions, and each of the foregoing stacked structures includes a tunneling dielectric layer on the substrate and a floating gate on the tunneling dielectric layer, the floating gate Extremely contains: A lower silicon layer on the tunneling dielectric layer, wherein the lower silicon layer contains nitrogen, carbon, or a combination of dopants; and An upper silicon layer is located on the lower silicon layer. 如申請專利範圍第1項所述之記憶體結構,其中該下部矽層包含摻質氮氣的摻雜濃度為­­­1
Figure 03_image001
1020 /cm3 至­­­1
Figure 03_image001
1022 /cm3 範圍之間。
The memory structure described in the first item of the scope of patent application, wherein the lower silicon layer contains dopant nitrogen with a doping concentration of 1
Figure 03_image001
10 20 /cm 3 to 1
Figure 03_image001
Between 10 22 /cm 3 range.
如申請專利範圍第1項所述之記憶體結構,其中該浮置閘極的該下部矽層具有第一平均晶粒尺寸,該上部矽層具有第二平均晶粒尺寸,該第一平均晶粒尺寸小於該第二平均晶粒尺寸。The memory structure described in claim 1, wherein the lower silicon layer of the floating gate has a first average crystal grain size, the upper silicon layer has a second average crystal grain size, and the first average crystal grain size The grain size is smaller than the second average grain size. 一種記憶體結構的製造方法,包括: 提供一基底,該基底包含複數個主動區域; 形成複數個堆疊結構分別位於該些主動區域上方,其中前述各個堆疊結構包含位於該基底上的一穿隧介電層以及位於該穿隧介電層上的一浮置閘極,該浮置閘極包含: 一下部矽層,位於該穿隧介電層上,其中該下部矽層包含氮氣、碳、或前述之組合的摻質;以及 一上部矽層,位於該下部矽層上; 形成複數個溝槽分別位於該些主動區域之間;以及 於該些溝槽中形成隔離結構。A method for manufacturing a memory structure includes: Providing a substrate, the substrate including a plurality of active regions; A plurality of stacked structures are formed respectively above the active regions, wherein each of the foregoing stacked structures includes a tunneling dielectric layer on the substrate and a floating gate on the tunneling dielectric layer, the floating gate Extremely contains: A lower silicon layer on the tunneling dielectric layer, wherein the lower silicon layer contains nitrogen, carbon, or a combination of dopants; and An upper silicon layer located on the lower silicon layer; Forming a plurality of trenches respectively located between the active regions; and An isolation structure is formed in the trenches. 如申請專利範圍第4項所述之記憶體結構的製造方法,其中該下部矽層包含摻質氮氣的摻雜濃度為­­­1
Figure 03_image001
1020 /cm3 至­­­1
Figure 03_image001
1022 /cm3 範圍之間。
According to the manufacturing method of the memory structure described in claim 4, wherein the lower silicon layer contains dopant nitrogen with a doping concentration of 1
Figure 03_image001
10 20 /cm 3 to 1
Figure 03_image001
Between 10 22 /cm 3 range.
如申請專利範圍第4項所述之記憶體結構的製造方法,其中該浮置閘極的該下部矽層具有第一平均晶粒尺寸,該上部矽層具有第二平均晶粒尺寸,該第一平均晶粒尺寸小於該第二平均晶粒尺寸。According to the manufacturing method of the memory structure described in claim 4, the lower silicon layer of the floating gate has a first average grain size, the upper silicon layer has a second average grain size, and the first An average crystal grain size is smaller than the second average crystal grain size. 如申請專利範圍第4項所述之記憶體結構的製造方法,其中形成該浮置閘極包含: 沉積一第一矽層於該穿隧介電層上; 佈植(implant)包含氮氣(N2 )、碳、或前述之組合的摻質於該第一矽層中;以及 沉積一第二矽層於該第一矽層上。According to the method of manufacturing the memory structure described in claim 4, wherein forming the floating gate includes: depositing a first silicon layer on the tunneling dielectric layer; and implanting includes nitrogen (N 2 ) Doping with carbon, or a combination of the foregoing, in the first silicon layer; and depositing a second silicon layer on the first silicon layer. 如申請專利範圍第7項所述之記憶體結構的製造方法,其中佈植氮氣於該第一矽層中,氮氣的佈植劑量在約1x1015 原子/cm2 至約4 x1015 原子/cm2 的範圍內。According to the manufacturing method of the memory structure described in claim 7, wherein nitrogen is implanted in the first silicon layer, and the implantation dose of nitrogen is about 1 ×10 15 atoms/cm 2 to about 4×10 15 atoms/cm Within the range of 2. 如申請專利範圍第7項所述之記憶體結構的製造方法,其中在沉積該第二矽層後,於同一道蝕刻步驟中,對該第二矽層和該第一矽層進行圖案化,以分別形成該上部矽層和該下部矽層。According to the manufacturing method of the memory structure described in claim 7, wherein after the second silicon layer is deposited, the second silicon layer and the first silicon layer are patterned in the same etching step, To form the upper silicon layer and the lower silicon layer respectively. 如申請專利範圍第9項所述之記憶體結構的製造方法,其中該第一矽層的蝕刻速率低於該第二矽層的蝕刻速率。According to the manufacturing method of the memory structure described in the scope of patent application, the etching rate of the first silicon layer is lower than the etching rate of the second silicon layer.
TW109106571A 2020-02-27 2020-02-27 Memory structure and method of manufacturing the same TWI717219B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109106571A TWI717219B (en) 2020-02-27 2020-02-27 Memory structure and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109106571A TWI717219B (en) 2020-02-27 2020-02-27 Memory structure and method of manufacturing the same

Publications (2)

Publication Number Publication Date
TWI717219B TWI717219B (en) 2021-01-21
TW202133396A true TW202133396A (en) 2021-09-01

Family

ID=75237150

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109106571A TWI717219B (en) 2020-02-27 2020-02-27 Memory structure and method of manufacturing the same

Country Status (1)

Country Link
TW (1) TWI717219B (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI582963B (en) * 2015-08-28 2017-05-11 旺宏電子股份有限公司 Memory device and method for fabricating the same

Also Published As

Publication number Publication date
TWI717219B (en) 2021-01-21

Similar Documents

Publication Publication Date Title
US10586807B2 (en) Arrays of elevationally-extending strings of memory cells having a stack comprising vertically-alternating insulative tiers and wordline tiers and horizontally-elongated trenches in the stacks
US9659946B2 (en) Self-aligned source for split-gate non-volatile memory cell
US7468299B2 (en) Non-volatile memory cells and methods of manufacturing the same
US8816424B2 (en) Nonvolatile memory device
US7300843B2 (en) Method of fabricating flash memory device
TWI726125B (en) Semiconductor device and method of manufacturing the same
US20070018207A1 (en) Split gate storage device including a horizontal first gate and a vertical second gate in a trench
US7768061B2 (en) Self aligned 1 bit local SONOS memory cell
US20050167729A1 (en) Self-aligned split-gate nonvolatile memory structure and a method of making the same
US7589374B2 (en) Semiconductor device and related fabrication method
KR20060114508A (en) Method for forming a insulating structure and method for manufacturing a semiconductor device using the same
US7049189B2 (en) Method of fabricating non-volatile memory cell adapted for integration of devices and for multiple read/write operations
JP2006228844A (en) Nonvolatile semiconductor memory device and its manufacturing method
JP2007507875A (en) 2-transistor memory cell and manufacturing method thereof
KR100439025B1 (en) A method for forming a floating electrode of flash memory
US6362045B1 (en) Method to form non-volatile memory cells
JP2011029576A (en) Nonvolatile semiconductor memory device and manufacturing method thereof
US20220328519A1 (en) Memory Arrays Comprising Strings Of Memory Cells And Methods Used In Forming A Memory Array Comprising Strings Of Memory Cells
US6355527B1 (en) Method to increase coupling ratio of source to floating gate in split-gate flash
US20160043096A1 (en) Method for manufacturing a floating gate memory element
JP4502801B2 (en) Method for manufacturing nonvolatile memory element
KR100603930B1 (en) Methods of forming non-volatile memory device having floating gate
TWI717219B (en) Memory structure and method of manufacturing the same
CN111863708A (en) Semiconductor device and forming method
US20220093619A1 (en) Memory structure and method of manufacturing the same