TW202133027A - Dialogue system and method for human-machine cooperation - Google Patents

Dialogue system and method for human-machine cooperation Download PDF

Info

Publication number
TW202133027A
TW202133027A TW109106513A TW109106513A TW202133027A TW 202133027 A TW202133027 A TW 202133027A TW 109106513 A TW109106513 A TW 109106513A TW 109106513 A TW109106513 A TW 109106513A TW 202133027 A TW202133027 A TW 202133027A
Authority
TW
Taiwan
Prior art keywords
dialogue
reply
vocabulary
sentence
probability
Prior art date
Application number
TW109106513A
Other languages
Chinese (zh)
Other versions
TWI751504B (en
Inventor
楊宗憲
Original Assignee
中華電信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中華電信股份有限公司 filed Critical 中華電信股份有限公司
Priority to TW109106513A priority Critical patent/TWI751504B/en
Publication of TW202133027A publication Critical patent/TW202133027A/en
Application granted granted Critical
Publication of TWI751504B publication Critical patent/TWI751504B/en

Links

Images

Landscapes

  • Machine Translation (AREA)

Abstract

A dialogue system and a dialogue method for human-machine cooperation are provided. The system and the method receive dialog text input by a user and predict the possibility of crisis and the intention and the emotion of the user based on the dialog text. The system and the method automatically determine whether to transfer the dialog to a customer service representative to reply to the user or automatically reply to the user according to the possibility of crisis and the intention and the emotion of the user.

Description

人機協作對話系統與方法 Human-machine cooperation dialogue system and method

本發明係關於自然語言分析,且特別是有關於一種人機協作對話系統與方法。 The present invention relates to natural language analysis, and in particular relates to a human-machine collaborative dialogue system and method.

目前許多產品與服務的提供業者都需要客服系統,以解答用戶的疑問,或協助解決用戶的問題。使用對話機器人可大幅降低文字客服的人力與成本支出,且對話機器人具有即時回覆用戶,同時服務許多用戶,且每天24小時服務全年無休的特點。然而,完全依靠對話機器人進行回答時,常會有答非所問的問題發生,如此,徒增用戶困擾且降低用戶使用意願。因此,如何提升對話機器人的服務品質,是目前業者重視的問題之一。 At present, many product and service providers need a customer service system to answer users' questions or assist in solving users' problems. The use of dialogue robots can greatly reduce the labor and cost expenditure of text customer service, and the dialogue robot has the characteristics of responding to users instantly, serving many users at the same time, and serving 24 hours a day, all year round. However, when completely relying on the dialogue robot to answer, there will often be questions that are not answered. This will increase the user's confusion and reduce the user's willingness to use. Therefore, how to improve the service quality of dialogue robots is one of the issues that the industry pays attention to.

根據過往研究與市面上大部分產品可知,傳統技術大多以對話式文字客服介面提供以下列兩方式作為切換機器人與轉接真人服務之入口:1.於介面上設置專人按鈕,供使用者自行點擊,觸發轉接真人服務;2.於對話過程中提供轉接真人服務連結,詢問使用者是否轉接真人服務。其中,方法1容易造成使用者一進系統即直接點選轉接真人服務,則對話機器人形同虛設,而方法2大多是於對話過程中設定關鍵字偵測方式(如對話過程中出現「我要轉服務人員」 等設定好的語句)或是設定信心度低於某一預設門檻值,則提供轉接真人客服人員的連結。然而上述方法均會造成使用者對於文字客服機器人的使用體驗不佳,認為文字客服機器人無法處理相關的問題因而降低使用意願。 According to past research and most products on the market, most traditional technologies use conversational text customer service interfaces to provide the following two ways to switch robots and transfer real person services: 1. Set up a special button on the interface for users to click on their own , Trigger the transfer to the live service; 2. Provide the transfer to the live service link during the conversation, and ask the user whether to transfer to the live service. Among them, method 1 is likely to cause the user to directly click the transfer to the live service as soon as the user enters the system, and the dialogue robot is useless, and the method 2 is mostly to set the keyword detection method during the dialogue (for example, "I want to transfer" appears during the dialogue. service personnel" Wait for the set sentence) or set the confidence level to be lower than a certain preset threshold, then provide a link to transfer real customer service personnel. However, the above-mentioned methods will cause the users to have a poor experience with the text customer service robot, and they believe that the text customer service robot cannot handle related problems, thereby reducing their willingness to use.

因此,如何做好真人與機器人搭配回應,在一定的使用者滿意度水準下,尋求真人客服投入成本最小化,是目前智慧文字客服機器人系統或對話機器人的目標。 Therefore, it is the goal of the current intelligent text customer service robot system or dialogue robot to achieve a good response by matching real people and robots, and at a certain level of user satisfaction, seeking to minimize the investment cost of real human customer service.

為解決上述問題,本發明提供一種人機協作對話系統,包括文字前處理模組、危機識別模組、意圖分類模組、情緒偵測模組、轉接識別模組、智慧輔助回覆模組與機器人回覆模組。文字前處理模組用於接收用戶輸入的對話文字,擷取對話文字中的對話詞彙,以將對話詞彙轉化為對話向量。危機識別模組用於根據對話詞彙輸出危機信心值機率。意圖分類模組用於根據對話向量輸出意圖分類機率分布。情緒偵測模組用於根據對話向量輸出情緒輪廓機率分布。轉接識別模組用於根據危機信心值機率、意圖分類機率分布與情緒輪廓機率分布輸出轉接客服機率。智慧輔助回覆模組用於在轉接客服機率大於或等於門檻值時,以客服人員輸入的第一回覆語句回覆用戶。機器人回覆模組用於在轉接客服機率小於門檻值時,根據意圖分類機率分布產生第二回覆語句,以第二回覆語句回覆用戶。 In order to solve the above problems, the present invention provides a human-machine collaborative dialogue system, including a text pre-processing module, a crisis recognition module, an intention classification module, an emotion detection module, a transfer recognition module, a smart auxiliary reply module, and Robot reply module. The word pre-processing module is used to receive the dialogue text input by the user, extract the dialogue vocabulary in the dialogue text, and convert the dialogue vocabulary into a dialogue vector. The crisis recognition module is used to output the probability of crisis confidence value according to the dialogue vocabulary. The intention classification module is used to output the probability distribution of intention classification according to the dialogue vector. The emotion detection module is used to output the probability distribution of the emotion contour according to the dialogue vector. The transfer recognition module is used to output the transfer customer service probability according to the probability of crisis confidence value, the probability distribution of intention classification and the probability distribution of emotional profile. The smart auxiliary reply module is used to reply to the user with the first reply sentence entered by the customer service staff when the probability of transferring the customer service is greater than or equal to the threshold value. The robot reply module is used to generate a second reply sentence according to the distribution of the intention classification probability when the probability of transferring the customer service is less than the threshold value, and reply the user with the second reply sentence.

本發明另提供一種人機協作對話方法,包括:接收用戶輸入的對話文字,擷取對話文字中的對話詞彙,以將對話詞彙轉化為對話向量;根據對話詞彙輸出危機信心值機率;根據對話向量輸出意圖分類機率分布;根據對話向量 輸出情緒輪廓機率分布;根據危機信心值機率、意圖分類機率分布與情緒輪廓機率分布輸出轉接客服機率;在轉接客服機率大於或等於門檻值時,以客服人員輸入的第一回覆語句回覆用戶;以及,在轉接客服機率小於門檻值時,根據意圖分類機率分布產生第二回覆語句,以第二回覆語句回覆用戶。 The present invention also provides a human-machine collaborative dialogue method, including: receiving dialogue text input by a user, extracting dialogue vocabulary in the dialogue text to convert the dialogue vocabulary into a dialogue vector; outputting a crisis confidence value probability according to the dialogue vocabulary; and according to the dialogue vector Output intent classification probability distribution; according to dialogue vector Output the probability distribution of emotional profile; output the transfer customer service probability according to the crisis confidence value probability, the intention classification probability distribution and the emotional profile probability distribution; when the transfer customer service probability is greater than or equal to the threshold value, the user will be replied with the first reply sentence input by the customer service staff ; And, when the probability of transferring the customer service is less than the threshold value, a second reply sentence is generated according to the distribution of the intention classification probability, and the second reply sentence is used to reply to the user.

本發明的人機協作對話系統與方法具備以下特點及功效:1.自動辨別用戶問題意圖,即時轉接真人客服或機器人客服,將制式容易回覆的問題交由機器人回覆,減少客服人員工作量。2.結合危機與情緒偵測功能,相較於完全用機器人制式回應並依照用戶指示轉接真人回應,可提供更有溫度的智慧客服。3.提供客服人員智慧輔助介面,快速有效的掌握用戶問題,可加快客服人員回應速度與品質。 The human-machine collaborative dialogue system and method of the present invention have the following characteristics and effects: 1. Automatically identify the user's problem intention, instantly transfer real-person customer service or robot customer service, and hand over easy-to-reply questions to robots to reply, reducing the workload of customer service staff. 2. Combining crisis and emotion detection functions, it can provide smarter customer service with a warmer temperature compared to completely responding with a robot system and transferring the response from a real person according to the user's instructions. 3. Provide customer service personnel with a smart auxiliary interface to quickly and effectively grasp user problems, which can speed up the response speed and quality of customer service personnel.

10:人機協作對話系統 10: Human-machine collaboration dialogue system

21~29:流程步驟 21~29: Process steps

100:文字前處理模組 100: text pre-processing module

110:對話文字 110: Dialogue text

120:文句正規化器 120: Sentence Regularizer

130:文句斷詞器 130: sentence breaker

140:詞彙向量化器 140: Vocabulary Vectorizer

150:資料庫 150: database

200:危機識別模組 200: Crisis Recognition Module

220:敏感詞庫 220: Sensitive Word Database

230:危機識別器 230: Crisis Recognizer

240:危機信心值機率 240: Crisis confidence check-in rate

300:意圖分類模組 300: Intent Classification Module

320:意圖分類器 320: Intent Classifier

330:意圖分類機率分布 330: Intent Classification Probability Distribution

400:情緒偵測模組 400: Emotion detection module

420:情緒詞庫 420: emotional vocabulary

430:情緒偵測器 430: Mood Detector

440:情緒輪廓機率分布 440: Probability Distribution of Emotional Contours

500:轉接識別模組 500: Transfer identification module

540:轉接識別器 540: Transfer identifier

550:轉接客服機率 550: Probability of transfer to customer service

600:上下文摘要模組 600: Context Summary Module

610:資料庫 610: database

620:上下文摘要器 620: Context Summarizer

630:摘要語句 630: summary sentence

700:智慧輔助回覆模組 700: Smart Assistant Reply Module

705:智慧輔助介面 705: Smart Assistant Interface

710:上下文對話摘要資訊畫面 710: Context dialogue summary information screen

720:機器人輔助語句畫面 720: Robot auxiliary sentence screen

730:回覆語句輸入介面 730: Reply sentence input interface

740:敏感詞顯示畫面 740: Sensitive word display screen

750:用戶情緒顯示燈號 750: User mood indicator light

800:機器人回覆模組 800: Robot Reply Module

830:問答知識庫 830: Q&A Knowledge Base

840:回覆生成器 840: Reply Generator

850:回覆語句 850: reply sentence

第1圖為根據本發明一實施例的一種人機協作對話系統的方塊圖。 Figure 1 is a block diagram of a human-machine collaborative dialogue system according to an embodiment of the present invention.

第2圖為根據本發明一實施例的一種人機協作對話方法的流程圖。 Figure 2 is a flowchart of a method for human-machine collaborative dialogue according to an embodiment of the present invention.

第3圖為第1圖中的文字前處理模組的示意圖。 Figure 3 is a schematic diagram of the word pre-processing module in Figure 1.

第4圖為第1圖中的危機識別模組的示意圖。 Figure 4 is a schematic diagram of the crisis identification module in Figure 1.

第5圖為第1圖中的意圖分類模組的示意圖。 Figure 5 is a schematic diagram of the intention classification module in Figure 1.

第6圖為第1圖中的情緒偵測模組的示意圖。 Figure 6 is a schematic diagram of the emotion detection module in Figure 1.

第7圖為第1圖中的轉接識別模組的示意圖。 Figure 7 is a schematic diagram of the transfer identification module in Figure 1.

第8圖為第1圖中的上下文摘要模組的示意圖。 Figure 8 is a schematic diagram of the context summary module in Figure 1.

第9圖為第1圖中的智慧輔助回覆模組的智慧輔助介面的示意圖。 Figure 9 is a schematic diagram of the smart assistant interface of the smart assistant reply module in figure 1.

第10圖為第1圖中的機器人回覆模組的示意圖。 Figure 10 is a schematic diagram of the robot reply module in Figure 1.

以下藉由特定的具體實施例說明本發明之實施方式,熟悉此技藝之人士可由本說明書所揭示之內容輕易地瞭解本發明之其他優點及功效。 The following specific examples illustrate the implementation of the present invention. Those familiar with the art can easily understand the other advantages and effects of the present invention from the contents disclosed in this specification.

第1圖為根據本發明一實施例的一種人機協作對話系統10的方塊圖。人機協作對話系統10包括文字前處理模組100、危機識別模組200、意圖分類模組300、情緒偵測模組400、轉接識別模組500、上下文摘要模組600、智慧輔助回覆模組700、以及機器人回覆模組800。其中,文字前處理模組100耦接危機識別模組200、意圖分類模組300、以及情緒偵測模組400。轉接識別模組500耦接危機識別模組200、意圖分類模組300、情緒偵測模組400、上下文摘要模組600、智慧輔助回覆模組700、以及機器人回覆模組800。上下文摘要模組600耦接轉接識別模組500、智慧輔助回覆模組700、以及機器人回覆模組800。 FIG. 1 is a block diagram of a human-machine collaborative dialogue system 10 according to an embodiment of the present invention. The human-machine collaborative dialogue system 10 includes a text pre-processing module 100, a crisis recognition module 200, an intention classification module 300, an emotion detection module 400, a transfer recognition module 500, a context summary module 600, and a smart auxiliary reply module. Group 700, and robot reply module 800. Among them, the text pre-processing module 100 is coupled to the crisis recognition module 200, the intention classification module 300, and the emotion detection module 400. The transfer recognition module 500 is coupled to the crisis recognition module 200, the intention classification module 300, the emotion detection module 400, the context summary module 600, the smart assistant reply module 700, and the robot reply module 800. The context summary module 600 is coupled to the transfer recognition module 500, the smart assistant reply module 700, and the robot reply module 800.

在一實施例中,上述的每一個模組皆為硬體,例如具有資料處理能力或程式執行能力的伺服器或其他電子裝置。在另一實施例中,上述的每一個模組皆為軟體或韌體,例如電腦程式,可由單一電子裝置執行,或由多個電子裝置分散執行。在另一實施例中,上述的模組中之有一部分模組為硬體,其餘部分為軟體或韌體。 In one embodiment, each of the above-mentioned modules is hardware, such as a server or other electronic devices with data processing capabilities or program execution capabilities. In another embodiment, each of the aforementioned modules is software or firmware, such as a computer program, which can be executed by a single electronic device or distributed by multiple electronic devices. In another embodiment, some of the above-mentioned modules are hardware, and the rest are software or firmware.

在一實施例中,敏感詞庫220、情緒詞庫420、以及問答知識庫830均為資料庫,這些資料庫可以是人機協作對話系統10的一部分,也可以是獨立的資料庫。 In one embodiment, the sensitive vocabulary 220, the emotional vocabulary 420, and the question-and-answer knowledge base 830 are all databases, and these databases may be part of the human-machine collaborative dialogue system 10, or may be independent databases.

請一併參照第1圖和第2圖。第2圖為人機協作對話系統10所執行的人機協作對話方法的流程圖,其中,人機協作對話方法的流程從步驟21開始。 Please refer to Figure 1 and Figure 2 together. Figure 2 is a flowchart of the human-machine collaborative dialogue method executed by the human-machine collaborative dialogue system 10, wherein the flow of the human-machine collaborative dialogue method starts from step 21.

在步驟21,文字前處理模組100接收用戶輸入的對話文字110,擷取對話文字110中的對話詞彙,以將對話詞彙轉化為對話向量。請同時參照第3圖,文字前處理模組100包括文句正規化器120、文句斷詞器130、以及詞彙向量化器140。如同第1圖所示的各模組,文句正規化器120、文句斷詞器130、以及詞彙向量化器140均可為硬體、韌體或軟體。 In step 21, the text pre-processing module 100 receives the dialogue text 110 input by the user, and extracts the dialogue vocabulary in the dialogue text 110 to convert the dialogue vocabulary into a dialogue vector. Please also refer to FIG. 3, the word preprocessing module 100 includes a sentence normalizer 120, a sentence breaker 130, and a vocabulary vectorizer 140. Like the modules shown in FIG. 1, the sentence normalizer 120, sentence breaker 130, and vocabulary vectorizer 140 can be hardware, firmware, or software.

文句正規化器120用於濾除對話文字110中的除了預設語文以外的文字,並濾除對話文字110中的比較不重要的多餘符號。例如,在一個實施例中,人機協作對話系統10的預設語文為中文和英文,則文句正規化器120會濾除對話文字110中除了中文和英文以外的文字,僅保留中文和英文。文句正規化器120也能轉換對話文字110的編碼,例如在繁體中文和簡體中文之間互相轉換。例如,當用戶輸入的對話文字110為簡體中文的「我的帐单扣错款了,真烂@#$@」,經過文句正規化器120的濾除和編碼轉換之後,對話文字110轉為繁體中文的「我的帳單扣錯款了真爛」。 The sentence normalizer 120 is used to filter out the words in the dialogue text 110 other than the preset language, and filter out the less important redundant symbols in the dialogue text 110. For example, in one embodiment, if the default languages of the human-machine collaborative dialogue system 10 are Chinese and English, the sentence normalizer 120 will filter out the dialogue text 110 except for Chinese and English, and only retain Chinese and English. The sentence normalizer 120 can also convert the encoding of the dialogue text 110, for example, between traditional Chinese and simplified Chinese. For example, when the dialogue text 110 entered by the user is in simplified Chinese "My bill is deducted wrong, it’s really bad @#$@", after filtering and encoding conversion by the sentence normalizer 120, the dialogue text 110 is converted to Traditional Chinese "My bill was deducted wrongly, it sucks."

文句斷詞器130用於接收文句正規化器120輸出的對話文字110,然後以詞彙為單位分隔對話文字110,並將對話文字110中列於停止詞表中的詞彙去除。停止詞表中的詞彙均為贅詞,所以文句斷詞器130能去除對話文字110 中的贅詞。例如,文句斷詞器130接收的對話文字為「我的帳單扣錯款了真爛」,分隔後的對話文字110為「我.的.帳單.扣錯.款.了.真爛」,並假設詞彙「我」、「的」跟「了」出現在停止詞表中,所以去除贅詞後的結果為「帳單.扣錯.款.真爛」。上述的對話詞彙為經過文句正規化器120和文句斷詞器130處理後的對話文字110。若延續前面的範例,則對話詞彙為「帳單.扣錯.款.真爛」。 The sentence breaker 130 is configured to receive the dialogue text 110 output by the sentence normalizer 120, and then divide the dialogue text 110 in units of words, and remove the words listed in the stop vocabulary in the dialogue text 110. The words in the stop vocabulary are all redundant words, so the sentence breaker 130 can remove the dialogue text 110 Superfluous words in. For example, the dialogue text received by the sentence word breaker 130 is "My bill is deducted wrongly, really bad", and the separated dialogue text 110 is "My. , And suppose that the words "I", "的" and "了" appear in the stop vocabulary, so the result after removing the redundant words is "Bill. Deduction wrong. Payment. Really bad". The aforementioned dialogue vocabulary is the dialogue text 110 processed by the sentence normalizer 120 and the sentence breaker 130. If the previous example is continued, the dialogue vocabulary is "Bill. Wrong deduction. Payment. Really bad".

詞彙向量化器140用於接收文句斷詞器130輸出的對話詞彙,然後根據詞典將對話詞彙轉化為對話向量。例如,若採用單一位元有效(One-Hot)向量表示法,則每個詞彙的向量的長度為詞典所包含的詞彙數,每個維度代表詞典裡的一個詞彙。每個詞彙的One-Hot向量只有在其唯一代表維度是1,其他維度都是0,例如,根據某一個預設詞典,「帳單」的One-Hot向量表示為[1,0,0,0,0,0,0],「扣錯」的One-Hot向量表示為[0,1,0,0,0,0,0],「款」的One-Hot向量表示為[0,0,1,0,0,0,0],「真爛」的One-Hot向量表示為[0,0,0,1,0,0,0]。上述的對話向量為對話詞彙中每個詞彙轉化的向量所組成的集合。文字前處理模組100最後的輸出為上述的對話詞彙與對話向量。在一實施例中,文字前處理模組100將對話詞彙與對話向量儲存於一個資料庫150,以供其他模組使用。資料庫150可為人機協作對話系統10其中的一部分。 The vocabulary vectorizer 140 is used to receive the dialogue vocabulary output by the sentence breaker 130, and then convert the dialogue vocabulary into a dialogue vector according to the dictionary. For example, if the One-Hot vector representation is adopted, the length of the vector of each vocabulary is the number of vocabulary contained in the dictionary, and each dimension represents a vocabulary in the dictionary. The One-Hot vector of each vocabulary is only if its only representative dimension is 1, and the other dimensions are 0. For example, according to a certain preset dictionary, the One-Hot vector of the "bill" is represented as [1,0,0, 0,0,0,0], the One-Hot vector of "deduction" is represented as [0,1,0,0,0,0,0], and the One-Hot vector of "section" is represented as [0,0 ,1,0,0,0,0], the "really bad" One-Hot vector is represented as [0,0,0,1,0,0,0]. The above-mentioned dialogue vector is a set of vectors for the conversion of each word in the dialogue vocabulary. The final output of the word preprocessing module 100 is the above-mentioned dialogue vocabulary and dialogue vector. In one embodiment, the text pre-processing module 100 stores the dialogue vocabulary and dialogue vectors in a database 150 for use by other modules. The database 150 may be a part of the human-machine collaborative dialogue system 10.

接下來,在步驟22,危機識別模組200根據資料庫150中的對話詞彙輸出危機信心值機率。請同時參照第4圖,危機識別模組200包括危機識別器230。敏感詞庫220儲存預先蒐集好的敏感詞彙。危機識別器230是使用敏感詞庫220中的敏感詞彙預先訓練的人工智慧模型,用於危機識別。使用危機識別器230,危機識別模組200可根據對話詞彙中是否包含敏感詞庫220中的敏感詞彙,以及對話詞彙中包含的敏感詞彙的前綴詞彙是否包含否定詞彙,輸出危機信 心值機率240。例如,當對話詞彙中包含敏感詞庫220中的任一詞彙(例如「投訴」、「態度很差」或「真爛」等等),且其前綴詞彙不包含否定詞彙,則危機識別器230識別為危機。如果對話詞彙中不包含敏感詞彙,或包含敏感詞彙但其前綴詞彙包含否定詞彙,則危機識別器230識別為沒有危機。例如,當用戶輸入的對話文字為「客服態度不會很差」,因具有否定詞彙「不會」,所以不會被識別為危機,危機識別器230會輸出較低的危機信心值機率240。當對話詞彙為「帳單.扣錯.款.真爛」,則會被識別為危機,危機識別器230會輸出較高的危機信心值機率240,例如[0.88]。 Next, in step 22, the crisis identification module 200 outputs the crisis confidence value probability according to the dialogue vocabulary in the database 150. Please also refer to FIG. 4, the crisis recognition module 200 includes a crisis recognizer 230. The sensitive vocabulary 220 stores the pre-collected sensitive vocabulary. The crisis recognizer 230 is an artificial intelligence model pre-trained using sensitive words in the sensitive vocabulary 220 for crisis recognition. Using the crisis recognizer 230, the crisis recognition module 200 can output a crisis letter according to whether the dialogue vocabulary contains the sensitive vocabulary in the sensitive vocabulary 220 and whether the prefix vocabulary of the sensitive vocabulary contained in the dialogue vocabulary contains a negative vocabulary. The heart rate is 240. For example, when the dialogue vocabulary includes any vocabulary in the sensitive vocabulary 220 (such as "complaint", "bad attitude" or "really bad", etc.), and its prefix vocabulary does not include negative vocabulary, then the crisis recognizer 230 Identify as a crisis. If the dialogue vocabulary does not contain sensitive words, or contains sensitive words but its prefix vocabulary contains negative words, the crisis recognizer 230 recognizes that there is no crisis. For example, when the dialogue text input by the user is “customer service attitude will not be bad”, it will not be recognized as a crisis due to the negative word “no”, and the crisis recognizer 230 will output a lower crisis confidence value probability 240. When the dialogue vocabulary is "Bill. Wrong deduction. Payment. Really bad", it will be identified as a crisis, and the crisis recognizer 230 will output a higher probability of crisis confidence value 240, such as [0.88].

接下來,在步驟23,意圖分類模組300根據資料庫150中的對話向量輸出意圖分類機率分布。請同時參照第5圖,意圖分類模組300包括意圖分類器320。意圖分類器320為使用預先蒐集好的意圖標注資料預先訓練的人工智慧模型,用於進行用戶的意圖分類。意圖分類器320根據上述對話向量,透過softmax函數(或稱為歸一化指數函數)輸出意圖分類機率分布330。意圖分類機率分布330包括在多個預設意圖類別中的機率分布。例如,假設有三個預設的意圖類別,分別為「帳單問題」、「手機問題」和「通訊問題」,則意圖分類機率分布330可為3維向量,例如[0.8,0.15,0.05],其中「帳單問題」的機率最高。意圖分類機率分布330其中各維度的機率值的總和為1。 Next, in step 23, the intention classification module 300 outputs an intention classification probability distribution according to the dialogue vector in the database 150. Please also refer to FIG. 5, the intent classification module 300 includes an intent classifier 320. The intent classifier 320 is an artificial intelligence model pre-trained using pre-collected intent annotation data, and is used to classify the user's intent. The intention classifier 320 outputs an intention classification probability distribution 330 through a softmax function (or called a normalized exponential function) according to the above-mentioned dialogue vector. The intention classification probability distribution 330 includes probability distributions in a plurality of preset intention categories. For example, assuming there are three preset intention categories, namely "bill problem", "mobile phone problem" and "communication problem", the probability distribution of intent classification 330 can be a three-dimensional vector, such as [0.8,0.15,0.05], Among them, "bill problems" have the highest probability. In the intention classification probability distribution 330, the sum of the probability values of each dimension is 1.

接下來,在步驟24,情緒偵測模組400根據資料庫150中的對話向量輸出情緒輪廓機率分布。請同時參照第6圖,情緒偵測模組400包括情緒偵測器430。情緒偵測器430為使用預先蒐集好的情緒標注資料預先訓練的人工智慧模型,用於偵測用戶的情緒。另外還可以透過情緒詞庫420其中預先蒐集儲存的情緒詞彙加強情緒偵測器430的偵測能力。情緒偵測器430根據上述的對話 向量,並透過softmax函數,輸出情緒輪廓機率分布440。情緒輪廓機率分布440包括在多個預設情緒指標中的機率分布。例如,假設有六個預設的情緒指標:[開心,害怕,驚訝,生氣,難過,噁心],則情緒輪廓機率分布440為6維向量,例如[0.01,0.1,0.03,0.8,0.02,0.04],其中「生氣」的機率最高。情緒輪廓機率分布440其中各維度的機率值的總和為1。 Next, in step 24, the emotion detection module 400 outputs an emotion profile probability distribution according to the dialogue vector in the database 150. Please also refer to FIG. 6, the emotion detection module 400 includes an emotion detector 430. The emotion detector 430 is an artificial intelligence model pre-trained using pre-collected emotion annotation data to detect the user's emotions. In addition, the emotion vocabulary pre-collected and stored in the emotion vocabulary 420 can be used to enhance the detection capability of the emotion detector 430. The emotion detector 430 based on the above dialogue Vector, and through the softmax function, the emotional contour probability distribution 440 is output. The emotion profile probability distribution 440 includes probability distributions in a plurality of preset emotion indicators. For example, suppose there are six preset emotion indicators: [happy, scared, surprised, angry, sad, nauseous], the probability distribution 440 of the emotional contour is a 6-dimensional vector, for example [0.01,0.1,0.03,0.8,0.02,0.04 ], the probability of being "angry" is the highest. The probability distribution of emotion profile 440 in which the sum of the probability values of each dimension is 1.

接下來,在步驟25,轉接識別模組500根據危機信心值機率240、意圖分類機率分布330、以及情緒輪廓機率分布440輸出轉接客服機率。請同時參照第7圖,轉接識別模組500包括轉接識別器540。轉接識別器540為使用預先蒐集好的資料預先訓練的人工智慧模型。轉接識別模組500將危機識別模組200產生的危機信心值機率240、意圖分類模組300產生的意圖分類機率分佈330、以及情緒偵測模組400產生的情緒輪廓機率分佈440串接成一個長向量輸入轉接識別器540。若延續前面的範例,則危機信心值機率240為1維向量[0.88],意圖分類機率分佈330為3維向量[0.8,0.15,0.05],與情緒輪廓機率分佈440為6維向量[0.01,0.1,0.03,0.8,0.02,0.04],三者串接組成的10維向量[0.88,0.8,0.15,0.05,0.01,0.1,0.03,0.8,0.02,0.04]即為轉接識別器540的輸入。然後轉接識別器540輸出轉接客服機率550,例如其值為[0.68]。 Next, in step 25, the transfer recognition module 500 outputs the transfer customer service probability according to the crisis confidence value probability 240, the intention classification probability distribution 330, and the emotional profile probability distribution 440. Please also refer to FIG. 7, the transfer identification module 500 includes a transfer identifier 540. The transfer recognizer 540 is an artificial intelligence model pre-trained using pre-collected data. The transfer recognition module 500 concatenates the crisis confidence value probability 240 generated by the crisis recognition module 200, the intention classification probability distribution 330 generated by the intention classification module 300, and the emotion profile probability distribution 440 generated by the emotion detection module 400 into A long vector is input to the switch recognizer 540. If the previous example is continued, the probability of crisis confidence value 240 is a 1-dimensional vector [0.88], the probability distribution of intention classification 330 is a 3-dimensional vector [0.8, 0.15, 0.05], and the probability distribution of emotion profile 440 is a 6-dimensional vector [0.01, 0.1,0.03,0.8,0.02,0.04], a 10-dimensional vector composed of the three in series [0.88,0.8,0.15,0.05,0.01,0.1,0.03,0.8,0.02,0.04] is the input of the transfer identifier 540 . Then the transfer identifier 540 outputs the transfer customer service probability 550, for example, its value is [0.68].

接下來,在步驟26,上下文摘要模組600節錄和用戶的所有對話內容中的摘要語句。摘要語句只包含重要內容,例如,問候語就會被剔除。上述的所有對話內容也包括對話文字110。對話文字110通常是所有對話內容其中的最近一次對話。請同時參照第8圖,上下文摘要模組600會記錄和用戶的對話過程中的所有對話內容,例如,將這些所有對話內容儲存在資料庫610。資料庫610可以是人機協作對話系統10其中一部分。上下文摘要模組600包括上下文 摘要器620。上下文摘要器620為預先訓練的人工智慧模型,例如,可採用深度學習的序列到序列(sequence to sequence)的訓練方式。訓練時需要收集大量長句與相對應的摘要短句,透過梯度下降法反覆修正權重,以得到上下文摘要器620,可自動將在資料庫610中冗長的所有對話內容轉成簡短的摘要語句630。例如,用戶在輸入「扣錯款了真爛」之前已經輸入過「你好,有個帳單問題要請教」,則上下文摘要器620輸出的摘要語句630可為「帳單扣錯款」。摘要語句630可支援智慧輔助回覆模組700提供給客服人員參考,也可提供給機器人回覆模組800以自動生成回覆語句。 Next, in step 26, the context summary module 600 extracts summary sentences in all conversation content with the user. The summary sentence only contains important content, for example, greetings will be eliminated. All the above-mentioned dialogue content also includes dialogue text 110. The dialogue text 110 is usually the most recent dialogue among all dialogue contents. Please also refer to FIG. 8, the context summary module 600 records all the content of the conversation during the conversation with the user, for example, stores all the content of the conversation in the database 610. The database 610 may be a part of the human-machine collaborative dialogue system 10. The context summary module 600 includes context Summarizer 620. The context summarizer 620 is a pre-trained artificial intelligence model. For example, a sequence to sequence training method of deep learning may be used. During training, a large number of long sentences and corresponding short summary sentences need to be collected, and the weights are revised repeatedly through the gradient descent method to obtain the context summarizer 620, which can automatically convert all the lengthy dialogue content in the database 610 into short summary sentences 630 . For example, if the user has input "Hello, I have a billing question to ask" before inputting "The wrong deduction is bad", then the summary sentence 630 output by the context digester 620 may be "Bill deduction is wrong". The summary sentence 630 may support the intelligent auxiliary reply module 700 to provide customer service personnel for reference, and may also be provided to the robot reply module 800 to automatically generate a reply sentence.

接下來,在步驟27檢查轉接識別模組500輸出的轉接客服機率550是否大於或等於一個預設的門檻值。步驟27可由轉接識別模組500執行,或者也可由智慧輔助回覆模組700和機器人回覆模組800執行。如果轉接客服機率550大於或等於門檻值時,則智慧輔助回覆模組700在步驟28以客服人員輸入的回覆語句回覆用戶,否則機器人回覆模組800在步驟29自動產生回覆語句以回覆用戶。例如,假設轉接客服機率550為[0.68]而且門檻值為0.5,則流程進入步驟28,轉由客服人員和用戶對話。例如,假設轉接客服機率550為[0.68]而且門檻值為0.7,則流程進入步驟29,由機器人回覆模組800自動與用戶對話。 Next, in step 27, it is checked whether the transfer customer service probability 550 output by the transfer identification module 500 is greater than or equal to a preset threshold. Step 27 can be performed by the transfer recognition module 500, or can also be performed by the smart assistant reply module 700 and the robot reply module 800. If the transfer customer service probability 550 is greater than or equal to the threshold, the smart assistant reply module 700 responds to the user with the reply sentence input by the customer service staff in step 28; otherwise, the robot reply module 800 automatically generates a reply sentence in step 29 to reply to the user. For example, suppose that the transfer customer service probability 550 is [0.68] and the threshold value is 0.5, then the process proceeds to step 28, and the customer service personnel and the user dialogue are transferred. For example, assuming that the probability of transferring customer service 550 is [0.68] and the threshold value is 0.7, the process proceeds to step 29, and the robot reply module 800 automatically talks to the user.

請參照第9圖,為了輔助客服人員,智慧輔助回覆模組700可在人機協作對話系統10的一個顯示螢幕上顯示智慧輔助介面705,以供客服人員使用。智慧輔助介面705包括上下文對話摘要資訊畫面710、機器人輔助語句畫面720、回覆語句輸入介面730、敏感詞顯示畫面740和用戶情緒顯示燈號750,用於顯示輔助資訊並接收客服人員輸入的回覆語句。上下文對話摘要資訊畫面 710可顯示上下文摘要模組600提供的摘要語句630,機器人輔助語句畫面720可顯示機器人回覆模組800自動產生的回覆語句850(細節後述),回覆語句輸入介面730可接收客服人員輸入的回覆語句,敏感詞顯示畫面740可顯示對話文字110中的敏感詞彙,用戶情緒顯示燈號750可根據情緒輪廓機率分布440顯示用戶情緒。在另一實施例中,用戶情緒顯示燈號750可改為直接顯示情緒輪廓機率分布440。在另一實施例中,上下文對話摘要資訊畫面710除了顯示摘要語句630,還可以顯示在資料庫610中的所有對話內容。 Please refer to Fig. 9, in order to assist the customer service personnel, the smart assistance reply module 700 can display the smart assistance interface 705 on a display screen of the human-machine collaborative dialogue system 10 for the customer service personnel to use. The smart assistant interface 705 includes a contextual dialogue summary information screen 710, a robot assistant sentence screen 720, a reply sentence input interface 730, a sensitive word display screen 740, and a user emotion display light 750 for displaying auxiliary information and receiving reply sentences input by customer service personnel . Context dialogue summary information screen 710 can display the summary sentence 630 provided by the context summary module 600, the robot auxiliary sentence screen 720 can display the reply sentence 850 automatically generated by the robot reply module 800 (details will be described later), and the reply sentence input interface 730 can receive the reply sentence input by the customer service staff , The sensitive word display screen 740 can display the sensitive words in the dialogue text 110, and the user emotion display light 750 can display the user emotion according to the emotion profile probability distribution 440. In another embodiment, the user emotion display light 750 may be changed to directly display the emotion profile probability distribution 440. In another embodiment, in addition to displaying the summary sentence 630, the context dialogue summary information screen 710 can also display all the dialogue contents in the database 610.

延續前面的範例,若轉接識別模組500產生的轉接客服機率550為[0.68],而且轉接識別模組500預設的門檻值為0.5,則因為轉接客服機率550大於門檻值,此實施例會轉接智慧輔助回覆模組700。為了輔助客服人員,上下文對話摘要資訊畫面710顯示的摘要語句630為「帳單扣錯款」,機器人輔助語句畫面720顯示的機器人回覆模組800自動產生的回覆語句850為「請登入個人帳戶查詢相關扣繳資訊並與客服人員聯繫」,敏感詞顯示畫面740顯示的敏感詞彙為「真爛」,用戶情緒顯示燈號750顯示目前用戶的情緒輪廓為「生氣」指標最高。客服人員利用上述輔助資訊做出判斷,於回覆語句輸入介面730輸入回覆語句「很抱歉造成您的困擾,能否跟您確認個人資料?」。接著客服人員與用戶直接進行身分驗證等確認流程後,可於人機協作對話系統10中查詢用戶的帳單資訊並回覆用戶「請問扣錯的款項是X月X日OO這筆嗎?」。如此可快速的針對相關問題進行回覆並與用戶直接進行相關問題的確認流程。 Continuing the previous example, if the transfer identification module 500 generates a transfer customer service probability 550 of [0.68], and the default threshold of the transfer identification module 500 is 0.5, then the transfer customer service probability 550 is greater than the threshold. In this embodiment, the smart auxiliary reply module 700 is switched. In order to assist the customer service staff, the summary sentence 630 displayed on the context dialogue summary information screen 710 is "Bill deduction", and the reply sentence 850 automatically generated by the robot reply module 800 displayed on the robot assistant sentence screen 720 is "Please log in to your personal account to check Relevant withholding information and contact the customer service staff", the sensitive word display screen 740 displays the sensitive word "really bad", and the user emotion display light 750 shows that the current user's emotional profile is "angry" with the highest indicator. The customer service staff uses the above auxiliary information to make a judgment, and enters the reply sentence "I'm sorry for the trouble, can you confirm your personal information?" in the reply sentence input interface 730. Then, after the customer service personnel directly conduct identity verification and other confirmation procedures with the user, they can query the user's billing information in the human-machine collaboration dialogue system 10 and reply to the user "Is the wrong deduction for X month X day OO?". In this way, you can quickly respond to related issues and directly confirm the process of related issues with users.

智慧輔助介面705顯示的所有對話內容、摘要語句、自動回覆語句、敏感詞彙、以及用戶情緒等輔助資訊可幫助客服人員掌握當前重點,迅速且正確地回覆用戶,以提高服務效率。智慧輔助回覆模組700會在步驟28用客服 人員在回覆語句輸入介面730輸入的回覆語句回覆用戶。除了客服人員自行輸入的回覆語句之外,根據客服人員在智慧輔助介面705下達的操作或指令,智慧輔助回覆模組700還可以在步驟28直接用自動回覆語句850回覆用戶,或是用客服人員先行修改後的自動回覆語句850回覆用戶。 All the dialogue content, summary sentences, automatic reply sentences, sensitive vocabulary, and user emotions displayed on the smart assistant interface 705 can help the customer service staff grasp the current key points and respond to users quickly and correctly to improve service efficiency. Smart assistant reply module 700 will use customer service in step 28 The person responds to the user with the reply sentence entered in the reply sentence input interface 730. In addition to the reply sentences input by the customer service personnel, according to the operations or instructions issued by the customer service personnel on the smart assistant interface 705, the smart assistant reply module 700 can directly reply the user with the automatic reply sentence 850 in step 28, or use the customer service personnel The modified automatic reply sentence 850 replies to the user.

在另一實施例中,可以簡化智慧輔助介面705,例如可以省略上述的輔助資訊其中一部分,或是省略上下文對話摘要資訊畫面710、機器人輔助語句畫面720、回覆語句輸入介面730、敏感詞顯示畫面740和用戶情緒顯示燈號750其中至少一者。 In another embodiment, the smart assistant interface 705 can be simplified. For example, part of the above-mentioned assistant information can be omitted, or the context dialogue summary information screen 710, the robot assistant sentence screen 720, the reply sentence input interface 730, and the sensitive word display screen can be omitted. At least one of 740 and the user emotion display light 750.

請參照第10圖,機器人回覆模組800包括回覆生成器840。機器人回覆模組800依據意圖分類機率分佈330選擇其中機率最高的意圖分類,用此意圖分類查詢問答知識庫830以產生候選回覆語句,然後將候選回覆語句和摘要語句630一起輸入回覆生成器840,以產生機器人自動回覆的語句850,然後在步驟29使用回覆語句850回覆用戶。其中,問答知識庫830包括用戶的常見問題與相對應的最佳解答。回覆生成器840為使用預先收集的資料預先訓練的人工智慧模型。回覆生成器840的輸入,除了用戶目前的意圖,還包括和用戶在資料庫610中的所有對話內容的摘要語句630,因此能考量更深遠的背景,提供更具有智慧的回覆。 Please refer to FIG. 10, the robot reply module 800 includes a reply generator 840. The robot reply module 800 selects the intent classification with the highest probability according to the intent classification probability distribution 330, uses this intent classification to query the Q&A knowledge base 830 to generate candidate reply sentences, and then inputs the candidate reply sentences and summary sentences 630 into the reply generator 840 together. To generate a sentence 850 for the robot to automatically reply, and then use the reply sentence 850 to reply to the user in step 29. Among them, the Q&A knowledge base 830 includes user's common questions and corresponding best answers. The response generator 840 is an artificial intelligence model pre-trained using pre-collected data. The input of the response generator 840, in addition to the user's current intention, also includes a summary sentence 630 of all conversations with the user in the database 610, so that a more profound background can be considered and a more intelligent response can be provided.

延續前面的範例,若轉接識別模組500產生的轉接客服機率550為[0.68],而且轉接識別模組500預設的門檻值為0.7,則因為轉接客服機率550小於門檻值,此實施例會轉接機器人回覆模組800。機器人回覆模組800依據意圖分類模組300產生的意圖分類機率分佈330判斷用戶意圖為「帳單問題」,並接收上下文摘要模組600提供的摘要語句630「帳單扣錯款」,以上兩者透過問 答知識庫830和回覆生成器840產生的回覆語句850為「請登入個人帳戶查詢相關扣繳資訊並與客服人員聯繫」。另外,機器人回覆模組800可顯示查詢帳戶之網頁連結或轉接客服人員之提示按鍵,以供用戶選擇後續處理程序。因處理此類帳單問題需先經過用戶個人資料身分驗證的程序,若用戶選擇查詢帳戶之網頁連結,便連接至相關客服網站進行後續認證與查詢動作,而若用戶選擇轉接客服人員提示按鍵,則如前述轉接智慧輔助回覆模組700的流程,由真人客服進行用戶身分驗證並由真人客服進行回覆。 Continuing the previous example, if the transfer identification module 500 generates a transfer customer service probability 550 of [0.68] and the default threshold of the transfer identification module 500 is 0.7, then the transfer customer service probability 550 is less than the threshold. In this embodiment, the robot reply module 800 is transferred. The robot reply module 800 judges that the user’s intention is "bill problem" based on the intention classification probability distribution 330 generated by the intention classification module 300, and receives the summary sentence 630 "Bill deduction wrong" provided by the context summary module 600. The above two By asking Answer The response sentence 850 generated by the knowledge base 830 and the response generator 840 is "Please log in to your personal account to query relevant withholding information and contact customer service personnel." In addition, the robot reply module 800 can display a web page link for inquiring an account or a prompt button for transferring a customer service staff, so that the user can select a subsequent processing procedure. To handle such billing issues, you need to go through the user’s personal data identity verification process. If the user chooses the web link for inquiring about the account, it will connect to the relevant customer service website for subsequent authentication and query actions, and if the user chooses to transfer the customer service staff to prompt the button , As in the aforementioned process of transferring the smart assistant reply module 700, the real customer service performs user identity verification and the real customer service responds.

此外,第2圖所示的某些步驟的執行順序是可調整的。例如,步驟22、23和24這三個步驟之間的執行順序可以任意調整,這三個步驟也可以同時執行。步驟26的執行順序也可以調整,只要在步驟28和步驟29之前執行即可。 In addition, the order of execution of some steps shown in Figure 2 is adjustable. For example, the order of execution among the three steps of steps 22, 23, and 24 can be adjusted arbitrarily, and these three steps can also be executed at the same time. The execution order of step 26 can also be adjusted, as long as it is executed before step 28 and step 29.

在另一實施例中,可以省略上下文摘要模組600、步驟26、以及摘要語句630。在某些實施例中,可以用在資料庫610中的所有對話內容替代摘要語句630。 In another embodiment, the context summary module 600, step 26, and summary sentence 630 may be omitted. In some embodiments, the summary sentence 630 can be replaced with all the conversation content in the database 610.

如上所述,危機識別器230、意圖分類器320、情緒偵測器430、轉接識別器540、上下文摘要器620、以及回覆生成器840均為人工智慧模型。這些人工智慧模型其中的每一個均可使用模式匹配、資訊檢索、規則分析、統計方法、機器學習、以及深度學習其中的個別或組合方式以建構模型。上述的統計方法例如迴歸分析(regression analysis)。上述的機器學習例如可使用支援向量機(support vector machine;簡稱SVM)、類神經網路(neural network)、以及決策樹(decision tree)其中的一種或多種模型。上述的深度學習例如可使用遞歸神經網路(recurrent neural network;簡稱RNN)、長短期記憶模型(long short-term memory; 簡稱LSTM)、深度神經網路(deep neural network;簡稱DNN)、以及卷積神經網路(convolutional neural network;簡稱CNN)其中的一種或多種模型。 As described above, the crisis recognizer 230, the intent classifier 320, the emotion detector 430, the transfer recognizer 540, the context summarizer 620, and the response generator 840 are all artificial intelligence models. Each of these artificial intelligence models can use individual or combination of pattern matching, information retrieval, rule analysis, statistical methods, machine learning, and deep learning to construct a model. The above-mentioned statistical method is, for example, regression analysis. The above-mentioned machine learning can use one or more models of support vector machine (SVM), neural network, and decision tree, for example. The above-mentioned deep learning can use recurrent neural network (recurrent neural network; RNN for short), long short-term memory model (long short-term memory), for example; LSTM for short), deep neural network (DNN for short), and convolutional neural network (CNN for short) one or more models.

本發明的人機協作對話系統與方法具備以下特點及功效:1.自動辨別用戶問題意圖,即時轉接真人客服或機器人客服,將制式容易回覆的問題交由機器人回覆,減少客服人員工作量。2.結合危機與情緒偵測功能,相較於完全用機器人制式回應並依照用戶指示轉接真人回應,可提供更有溫度的智慧客服。3.提供客服人員智慧輔助介面,快速有效的掌握用戶問題,可加快客服人員回應速度與品質。此外,本發明的人機協作對話系統與方法可應用於任何會使用到對話介面與用戶互動的產業與產品。 The human-machine collaborative dialogue system and method of the present invention have the following characteristics and effects: 1. Automatically identify the user's problem intention, instantly transfer real-person customer service or robot customer service, and hand over easy-to-reply questions to robots to reply, reducing the workload of customer service staff. 2. Combining crisis and emotion detection functions, it can provide smarter customer service with a warmer temperature compared to completely responding with a robot system and transferring the response from a real person according to the user's instructions. 3. Provide customer service personnel with a smart auxiliary interface to quickly and effectively grasp user problems, which can speed up the response speed and quality of customer service personnel. In addition, the human-machine collaborative dialogue system and method of the present invention can be applied to any industry and product that uses a dialogue interface to interact with users.

上述實施形態僅例示性說明本發明之原理及其功效,而非用於限制本發明。任何熟習此項技藝之人士均可在不違背本發明之精神及範疇下,對上述實施形態進行修飾與改變。因此,本發明之權利保護範圍,應如後述之申請專利範圍所列。 The above-mentioned embodiments only exemplarily illustrate the principles and effects of the present invention, and are not intended to limit the present invention. Anyone who is familiar with this technique can modify and change the above-mentioned embodiments without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the rights of the present invention should be listed in the scope of patent application described later.

10:人機協作對話系統 10: Human-machine collaboration dialogue system

100:文字前處理模組 100: text pre-processing module

110:對話文字 110: Dialogue text

200:危機識別模組 200: Crisis Recognition Module

220:敏感詞庫 220: Sensitive Word Database

300:意圖分類模組 300: Intent Classification Module

400:情緒偵測模組 400: Emotion detection module

420:情緒詞庫 420: emotional vocabulary

500:轉接識別模組 500: Transfer identification module

600:上下文摘要模組 600: Context Summary Module

700:智慧輔助回覆模組 700: Smart Assistant Reply Module

800:機器人回覆模組 800: Robot Reply Module

830:問答知識庫 830: Q&A Knowledge Base

Claims (10)

一種人機協作對話系統,包括: A human-machine collaborative dialogue system includes: 文字前處理模組,用於接收用戶輸入的對話文字,擷取該對話文字中的對話詞彙,以將該對話詞彙轉化為對話向量; The word pre-processing module is used to receive the dialogue text input by the user, extract the dialogue vocabulary in the dialogue text, and convert the dialogue vocabulary into a dialogue vector; 危機識別模組,用於根據該對話詞彙輸出危機信心值機率; The crisis recognition module is used to output the probability of crisis confidence value according to the dialogue vocabulary; 意圖分類模組,用於根據該對話向量輸出意圖分類機率分布; The intention classification module is used to output the probability distribution of intention classification according to the dialogue vector; 情緒偵測模組,用於根據該對話向量輸出情緒輪廓機率分布; The emotion detection module is used to output the probability distribution of the emotion contour according to the dialogue vector; 轉接識別模組,用於根據該危機信心值機率、該意圖分類機率分布與該情緒輪廓機率分布輸出轉接客服機率; The transfer recognition module is used to output the transfer probability of customer service according to the probability of the crisis confidence value, the probability distribution of the intention classification, and the probability distribution of the emotional profile; 智慧輔助回覆模組,用於在該轉接客服機率大於或等於門檻值時,以客服人員輸入的第一回覆語句回覆該用戶;以及 The smart auxiliary reply module is used to reply to the user with the first reply sentence entered by the customer service staff when the probability of the customer service transfer is greater than or equal to the threshold; and 機器人回覆模組,用於在該轉接客服機率小於該門檻值時,根據該意圖分類機率分布產生第二回覆語句,以該第二回覆語句回覆該用戶。 The robot reply module is used to generate a second reply sentence according to the intention classification probability distribution when the probability of transferring customer service is less than the threshold value, and reply the user with the second reply sentence. 如申請專利範圍第1項所述之人機協作對話系統,該文字前處理模組復包括: For example, the human-computer collaboration dialogue system described in item 1 of the scope of patent application, the text pre-processing module includes: 文句正規化器,用於濾除該對話文字中除了預設語文以外的文字,並濾除該對話文字中的多餘符號; The sentence regularizer is used to filter out the text in the dialog text except the default language, and filter out the redundant symbols in the dialog text; 文句斷詞器,用於以詞彙為單位分隔該對話文字,並將該對話文字中列於停止詞表中的詞彙去除,其中,該對話詞彙為經過該文句正規化器和該文句斷詞器處理後的該對話文字;以及 The sentence word breaker is used to separate the dialogue text by vocabulary unit, and remove the words listed in the stop vocabulary in the dialogue text, where the dialogue vocabulary passes through the sentence normalizer and the sentence word breaker The processed text of the dialogue; and 詞彙向量化器,用於根據詞典將該對話詞彙轉化為該對話向量。 The vocabulary vectorizer is used to convert the dialogue vocabulary into the dialogue vector according to the dictionary. 如申請專利範圍第1項所述之人機協作對話系統,其中,該危機識別模組根據該對話詞彙中是否包含敏感詞庫中的敏感詞彙,以及該敏感詞彙的前綴詞彙是否包含否定詞彙,輸出該危機信心值機率。 For example, in the human-machine collaborative dialogue system described in item 1 of the scope of patent application, the crisis identification module is based on whether the dialogue vocabulary contains sensitive vocabulary in the sensitive vocabulary and whether the prefix vocabulary of the sensitive vocabulary contains negative vocabulary, Output the confidence value probability of the crisis. 如申請專利範圍第1項所述之人機協作對話系統,該意圖分類機率分布復包括在多個預設意圖類別中的機率分布,而且該情緒輪廓機率分布包括在多個預設情緒指標中的機率分布。 For the human-machine collaborative dialogue system described in the first item of the patent application, the probability distribution of the intention classification is included in the probability distribution of a plurality of preset intention categories, and the probability distribution of the emotion profile is included in a plurality of preset emotion indicators Probability distribution. 如申請專利範圍第1項所述之人機協作對話系統,復包括: For example, the human-machine collaboration dialogue system described in item 1 of the scope of patent application includes: 上下文摘要模組,用於節錄和該用戶的所有對話內容中的摘要語句,其中,該所有對話內容包括該對話文字。 The context summary module is used for extracting summary sentences in all dialogue contents of the user, wherein the all dialogue contents include the dialogue text. 如申請專利範圍第5項所述之人機協作對話系統,該智慧輔助回覆模組進一步用於顯示智慧輔助介面,以及在該智慧輔助介面中顯示輔助資訊並接收該第一回覆語句,其中,該輔助資訊包括該摘要語句、該第二回覆語句、該對話文字中的敏感詞彙與該情緒輪廓機率分布其中至少一者。 For example, in the human-machine collaboration dialogue system described in item 5 of the scope of patent application, the smart auxiliary reply module is further used to display a smart auxiliary interface, and display auxiliary information in the smart auxiliary interface and receive the first reply sentence, wherein, The auxiliary information includes at least one of the summary sentence, the second reply sentence, the sensitive words in the dialogue text, and the probability distribution of the emotional contour. 如申請專利範圍第5項所述之人機協作對話系統,該機器人回覆模組進一步用於根據該意圖分類機率分布、問答知識庫與該摘要語句產生該第二回覆語句。 For example, in the human-machine collaborative dialogue system described in item 5 of the scope of patent application, the robot reply module is further used to generate the second reply sentence according to the intent classification probability distribution, the question and answer knowledge base, and the summary sentence. 一種人機協作對話方法,包括: A human-machine collaborative dialogue method includes: 接收用戶輸入的對話文字,擷取該對話文字中的對話詞彙,以將該對話詞彙轉化為對話向量; Receiving the dialogue text input by the user, extracting the dialogue vocabulary in the dialogue text, so as to convert the dialogue vocabulary into a dialogue vector; 根據該對話詞彙輸出危機信心值機率,根據該對話向量輸出意圖分類機率分布,以及根據該對話向量輸出情緒輪廓機率分布; According to the probability of outputting the crisis confidence value of the dialogue vocabulary, the probability distribution of outputting the intention classification according to the dialogue vector, and the probability distribution of outputting the emotional contour according to the dialogue vector; 根據該危機信心值機率、該意圖分類機率分布與該情緒輪廓機率分布輸出轉接客服機率; According to the probability of the crisis confidence value, the probability distribution of the intention classification, and the probability distribution of the emotional profile, the probability of switching to the customer service is output; 在該轉接客服機率大於或等於門檻值時,以客服人員輸入的第一回覆語句回覆該用戶;以及 When the probability of transferring customer service is greater than or equal to the threshold, reply to the user with the first reply sentence entered by the customer service staff; and 在該轉接客服機率小於該門檻值時,根據該意圖分類機率分布產生第二回覆語句,以該第二回覆語句回覆該用戶。 When the probability of transferring customer service is less than the threshold value, a second reply sentence is generated according to the intention classification probability distribution, and the second reply sentence is used to reply to the user. 如申請專利範圍第8項所述之人機協作對話方法,復包括: For example, the human-machine collaborative dialogue method described in item 8 of the scope of patent application includes: 節錄和該用戶的所有對話內容中的摘要語句,其中,該所有對話內容包括該對話文字;以及 Excerpts and summary sentences in all dialogue contents of the user, wherein all dialogue contents include the dialogue text; and 顯示智慧輔助介面,以在該智慧輔助介面中顯示輔助資訊並接收該第一回覆語句,其中,該輔助資訊包括該摘要語句、該第二回覆語句、該對話文字中的敏感詞彙與該情緒輪廓機率分布其中至少一者。 Display a smart auxiliary interface to display auxiliary information in the smart auxiliary interface and receive the first reply sentence, wherein the auxiliary information includes the summary sentence, the second reply sentence, the sensitive words in the dialogue text, and the emotional outline Probability distribution at least one of them. 如申請專利範圍第8項所述之人機協作對話方法,復包括: For example, the human-machine collaborative dialogue method described in item 8 of the scope of patent application includes: 節錄和該用戶的所有對話內容中的摘要語句,其中,該所有對話內容包括該對話文字;以及 Excerpts and summary sentences in all dialogue contents of the user, wherein all dialogue contents include the dialogue text; and 根據該意圖分類機率分布、問答知識庫與該摘要語句產生該第二回覆語句。 The second reply sentence is generated according to the probability distribution of the intention classification, the Q&A knowledge base, and the summary sentence.
TW109106513A 2020-02-27 2020-02-27 Dialogue system and method for human-machine cooperation TWI751504B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109106513A TWI751504B (en) 2020-02-27 2020-02-27 Dialogue system and method for human-machine cooperation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109106513A TWI751504B (en) 2020-02-27 2020-02-27 Dialogue system and method for human-machine cooperation

Publications (2)

Publication Number Publication Date
TW202133027A true TW202133027A (en) 2021-09-01
TWI751504B TWI751504B (en) 2022-01-01

Family

ID=78777609

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109106513A TWI751504B (en) 2020-02-27 2020-02-27 Dialogue system and method for human-machine cooperation

Country Status (1)

Country Link
TW (1) TWI751504B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114722839A (en) * 2022-06-01 2022-07-08 阿里巴巴达摩院(杭州)科技有限公司 Man-machine collaborative dialogue interaction system and method
TWI833678B (en) * 2023-09-19 2024-02-21 英業達股份有限公司 Generative chatbot system for real multiplayer conversational and method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103593340B (en) * 2013-10-28 2017-08-29 余自立 Natural expressing information processing method, processing and response method, equipment and system
CN107590159A (en) * 2016-07-08 2018-01-16 阿里巴巴集团控股有限公司 The method and apparatus that robot customer service turns artificial customer service
CN109614895A (en) * 2018-10-29 2019-04-12 山东大学 A method of the multi-modal emotion recognition based on attention Fusion Features

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114722839A (en) * 2022-06-01 2022-07-08 阿里巴巴达摩院(杭州)科技有限公司 Man-machine collaborative dialogue interaction system and method
TWI833678B (en) * 2023-09-19 2024-02-21 英業達股份有限公司 Generative chatbot system for real multiplayer conversational and method thereof

Also Published As

Publication number Publication date
TWI751504B (en) 2022-01-01

Similar Documents

Publication Publication Date Title
US10402501B2 (en) Multi-lingual virtual personal assistant
WO2020206957A1 (en) Intention recognition method and device for intelligent customer service robot
WO2019153522A1 (en) Intelligent interaction method, electronic device, and storage medium
WO2021042904A1 (en) Conversation intention recognition method, apparatus, computer device, and storage medium
CN109460457A (en) Text sentence similarity calculating method, intelligent government affairs auxiliary answer system and its working method
CN110175229B (en) Method and system for on-line training based on natural language
CN105589844A (en) Missing semantic supplementing method for multi-round question-answering system
US20230394247A1 (en) Human-machine collaborative conversation interaction system and method
CN111179935B (en) Voice quality inspection method and device
CN104462600A (en) Method and device for achieving automatic classification of calling reasons
CN110610705A (en) Voice interaction prompter based on artificial intelligence
CN109857865B (en) Text classification method and system
CN111475633B (en) Speech support system based on seat voice
CN111429157A (en) Method, device and equipment for evaluating and processing complaint work order and storage medium
CN112632244A (en) Man-machine conversation optimization method and device, computer equipment and storage medium
CN112699686A (en) Semantic understanding method, device, equipment and medium based on task type dialog system
CN116600053B (en) Customer service system based on AI large language model
TWI751504B (en) Dialogue system and method for human-machine cooperation
CN110046232A (en) Natural expression processing method, response method, equipment and the system of natural intelligence
CN110059166A (en) Natural expression processing method, response method, equipment and the system of natural intelligence
CN112632248A (en) Question answering method, device, computer equipment and storage medium
CN106776557B (en) Emotional state memory identification method and device of emotional robot
CN110059167A (en) Natural expression processing method, response method, equipment and the system of natural intelligence
KR102240910B1 (en) Korean Customer Service Associate Assist System based on Machine Learning
CN117272977A (en) Character description sentence recognition method and device, electronic equipment and storage medium