TW202131511A - 記憶體裝置 - Google Patents

記憶體裝置 Download PDF

Info

Publication number
TW202131511A
TW202131511A TW109121529A TW109121529A TW202131511A TW 202131511 A TW202131511 A TW 202131511A TW 109121529 A TW109121529 A TW 109121529A TW 109121529 A TW109121529 A TW 109121529A TW 202131511 A TW202131511 A TW 202131511A
Authority
TW
Taiwan
Prior art keywords
layer
phase change
atomic
electrode
memory cell
Prior art date
Application number
TW109121529A
Other languages
English (en)
Inventor
吳昭誼
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Publication of TW202131511A publication Critical patent/TW202131511A/zh

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0004Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising amorphous/crystalline phase transition cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/003Cell access
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0035Evaluating degradation, retention or wearout, e.g. by counting writing cycles
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/30Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8828Tellurides, e.g. GeSbTe
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/79Array wherein the access device being a transistor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)

Abstract

公開相變記憶體裝置及其製造方法,所述記憶體裝置包括:基底;底部電極,設置在所述基底上方;頂部電極,設置在所述底部電極上方;以及相變層,設置在所述頂部電極與所述底部電極之間。所述相變層包含硫族化物Ge-Sb-Te(GST)材料,所述Ge-Sb-Te材料包含至少30原子%的Ge,並且摻雜有包含N、Si、Sc、Ga、C或其任意組合的摻雜劑。

Description

記憶體裝置
本公開關於半導體裝置,且具體來說關於具有改善的資料保持能力(data retention)的相變隨機存取記憶體(phase-change random-access memory,PCM)結構及其形成方法。
相變隨機存取記憶體(PCM或PCRAM)是一種非易失性隨機存取電腦記憶體形式。PCRAM技術基於一種在正常環境溫度下可以是非晶形或晶形的材料。當材料處於非晶態時,材料具有高電阻。當材料處於晶態時,材料具有低電阻。為了控制材料的狀態,可對材料進行加熱及冷卻。通過將材料加熱到高於其結晶點,材料進入其結晶態。可例如通過使電流穿過加熱元件而對材料進行加熱。隨著材料冷卻,所述材料進入非晶態。PCRAM還具有實現多種不同中間狀態的能力,從而具有在單個單元中保持多個位元(bits)的能力,但以這種方式對單元進行程式設計時存在的困難使得這些能力無法在需要相同能力的其他技術(最顯著的是快閃記憶體)中實現。此外,雖然現有的PCRAM一般來說足以滿足其預期目的,但隨著裝置規模的不斷縮小,其並非在所有方面都是完全令人滿意的。
在一些實施例中,本公開提供一種記憶體裝置,包括:基底;底部電極,設置在所述基底上方;頂部電極,設置在所述底部電極上方;以及相變層,設置在所述頂部電極與所述底部電極之間,所述相變層包含硫族化物Ge-Sb-Te材料,所述Ge-Sb-Te材料包含至少30原子%的Ge,並且摻雜有包含N、Si、Sc、Ga、C或其任意組合的摻雜劑。
以下公開內容提供用於實施所提供主題的不同特徵的許多不同實施例或實例。以下闡述元件及排列的具體實例以簡化本公開。當然,這些僅為實例且不旨在進行限制。舉例來說,以下說明中將第一特徵形成在第二特徵上方或第二特徵上可包括其中第一特徵與第二特徵被形成為直接接觸的實施例,且還可包括其中第一特徵與第二特徵之間可形成有附加特徵進而使得所述第一特徵與所述第二特徵可不直接接觸的實施例。另外,本公開可能在各種實例中重複使用參考編號和/或字母。此種重複使用是出於簡潔及清晰的目的,而不是自身表示所論述的各種實施例和/或配置之間的關係。
此外,為易於說明,本文中可能使用例如“位於……之下(beneath)”、“位於……下方(below)”、“下部的(lower)”、“位於……上方(above)”、“上部的(upper)”等空間相對性用語來闡述圖中所示的一個元件或特徵與另一(其他)元件或特徵的關係。所述空間相對性用語旨在除圖中所繪示的定向外亦囊括裝置在使用或操作中的不同定向。設備可具有其他定向(旋轉90度或處於其他定向),且本文中所使用的空間相對性描述語可同樣相應地進行解釋。
範圍在本文中可被表示為從“約”一個特定值和/或到“約”另一個特定值。當表示此種範圍時,實例包括從一個特定值和/或到另一個特定值。類似地,當值被表示為近似值時,通過使用先行詞“約”或“實質上”,將理解特定值形成另一方面。在一些實施例中,“約X”的值可包括+/-1% X的值。還應理解,每個範圍的端點相對於另一端點及獨立於另一端點都是重要的。
相變隨機存取記憶體(PCRAM)是一種非易失性記憶體裝置,其利用不同的電阻相(resistive phase)及相變材料(包括硫族化物及電阻材料)的相之間的熱誘導相變。PCRAM可由許多獨立操作的記憶體單元構成。PCRAM單元可包括加熱器及電阻器。PCRAM單元可作為主要由可逆相變材料製成的資料記憶元件來操作,以便為邏輯“0”狀態及“1”狀態提供至少兩種顯著不同的電阻率。為了從PCRAM單元讀取狀態(資料),在不觸發加熱器產生熱量的情況下向相變材料施加足夠小的電流。如此一來,可測量相變材料的電阻率,並且可讀取代表電阻率的狀態,即代表高電阻率的“0”狀態或代表低電阻率的“1”狀態。
為了在PCRAM單元中寫入狀態(資料),例如,為了寫入代表相變材料的低電阻率相的“1”狀態,可向產生熱量的加熱器施加中等電流,用於在高於結晶溫度但低於相變材料的熔化溫度的溫度下使相變材料退火達一段時間以實現結晶相。當相變材料加熱到高於結晶溫度的溫度時,所述材料可能進入相變材料表現出低電阻的結晶狀態。在低電阻值的情況下,電荷可能流入材料中以建立“1”狀態值。
為了寫入代表相變材料的高電阻率相的“0”狀態,可向加熱器施加非常大的電流以產生熱量,從而在高於相變材料的熔化溫度的溫度下熔化相變材料;並且將電流突然切斷以將溫度降低到相變材料的結晶溫度以下,從而使相變材料的非晶結構淬火及穩定。隨著相變材料進入非晶態,相變材料表現出高電阻值。高電阻值可能會阻止電荷流入材料以建立“0”狀態值。因此,非常大的電流可以是脈衝形式。
圖1是根據實施例構造的PCRAM結構10的示意圖。PCRAM結構10可包括連接在一起的一個相變記憶體單元100及電流控制裝置。相變記憶體單元100包括夾置在兩個電極之間的相變材料層。在一個實施例中,相變層材料的電阻被配置為被調節成分別代表不同邏輯狀態的多個水準。
PCRAM結構10中的電流控制裝置可以是可操作以在操作期間控制流經相變記憶體單元100的電流的裝置。在本實施例中,電流控制裝置是電晶體(或選擇器電晶體),例如場效應電晶體(field effect transistor,FET)。舉例來說,FET 700可以是金屬氧化物半導體(metal-oxide-semiconductor,MOS)FET。FET 700包括源極(S)、汲極(D)及閘極(G)。源極S及汲極D可以被不對稱地設計,使得在形成操作期間FET上的電壓降及斷開狀態洩漏電流(off-state leakage current)可被共同優化。源極S及汲極D可單獨形成,使得源極S及汲極D可被獨立地調整以實現不對稱結構。更具體來說,源極S及汲極D可在摻雜濃度方面彼此不同。在各種實施例中,源極及汲極在摻雜濃度、摻雜分佈曲線(doping profile)及摻雜種類中的至少一者方面可為不同的。
FET 700可與記憶體單元100電耦合。在本實例中,記憶體單元100的一個電極連接到FET 700的汲極D。FET 700的閘極G可連接到字元線,並且記憶體單元100的另一電極可連接到位元線,如關於圖3所詳細論述。
如圖1所示,FET 700的閘極(G)、源極(S)、汲極(D)及主體分別被標記為G、S、D及B。閘極、源極、汲極及基底在操作期間的相應電壓分別被標記為Vg、Vs、Vd及Vb。此外,在操作期間,通過記憶體單元100的電流被標記為Id,並且從位元線施加到記憶體單元100的一個電極的電壓被標記為Vp。
在一個實施例中,PCRAM結構10可以是雙端子記憶體結構(two terminal memory structure),其中FET 700的閘極作為第一端子運作,而記憶體單元100的一個電極作為第二端子運作。第一端子由從字元線施加到FET 700的閘極G的第一電壓控制,而第二端子由從位元線施加到相變記憶體單元的一個電極的第二電壓控制。在一個實例中,源極接地,並且FET 700的主體接地或浮置(floating)。
在另一實施例中,PCRAM結構10可以是三端子記憶體結構,其中三個端子包括FET 700的閘極作為第一端子、記憶體單元100的電極(不與電晶體的汲極直接連接的電極)作為第二端子、以及FET 700的源極作為第三端子。具體來說,在相變記憶體單元100的操作期間,第一端子(閘極)可由來自字元線的第一電壓控制,第二端子可由來自位元線的第二電壓控制,並且第三端子可由來自源極線(source line)的第三電壓控制。在一個實例中,源極接地。在替代實例中,第二端子接地。FET 700的基底(或主體)可接地或浮置。
圖2是具有根據本公開的各種實施例構造的多個相變記憶體單元100的記憶體結構20的示意圖。相變記憶體單元100可被配置成與多條字元線24及多條位元線26耦合的陣列。在一個實施例中,字元線24及位元線26可交叉配置(cross-configured)。此外,相變記憶體單元100中的每一者都可操作以實現多個電阻水準,且因此實現多位元存儲(multiple bit storage)。在本實施例中,源極線28被配置為分別連接到記憶體單元100的源極。源極線28可被配置成使得一條源極線28與一個相應的相變記憶體單元100耦合。作為另外一種選擇,一條源極線可與記憶體結構20中的相變記憶體單元100的子集耦合。
圖3是根據本公開各種實施例的記憶體裝置200的剖視圖。參照圖3,記憶體裝置200包括設置在基底30上的一個或多個相變記憶體單元100及對應的場效應電晶體(FET)700。記憶體裝置200可包括以1T1R配置(即,一個存取電晶體連接到一個電阻記憶體單元的配置)排列的二維記憶體單元陣列。
基底30可以是半導體基底,例如可商購獲得的矽基底。作為另外一種選擇或另外,基底30可包含元素半導體材料、化合物半導體材料和/或合金半導體材料。元素半導體材料的實例可以是但不限於晶體矽、多晶矽、非晶矽、鍺和/或金剛石。化合物半導體材料的實例可以是但不限於碳化矽、砷化鎵、磷化鎵、磷化銦、砷化銦和/或銻化銦。合金半導體材料的實例可以是但不限於SiGe、GaAsP、AlInAs、AlGaAs、GaInAs、GaInP和/或GaInAsP。也可使用本公開的設想範圍內的其他合適的材料。
FET 700可提供操作記憶體單元100所需的功能。具體來說,FET 700可被配置為控制記憶體單元100的程式設計操作、擦除操作及感測(讀取)操作。在一些實施例中,記憶體裝置200可在基底30上包括感測電路和/或頂部電極偏置電路(top electrode bias circuitry)。FET 700可包括互補金屬氧化物半導體(complementary metal-oxide-semiconductor,CMOS)電晶體。基底30可視情況包括附加的半導體裝置(例如,電阻器、二極體、電容器等)。
包含例如氧化矽等介電材料的淺溝槽隔離結構720可形成在基底30的上部中。可在由淺溝槽隔離結構720的連續部分橫向包圍的每個區域內形成合適的摻雜半導體阱,例如p型阱及n型阱。因此,FET 700可形成在基底30上位於隔離結構720之間,使得FET 700可通過隔離結構720彼此電隔離。
每個FET 700可包括源極區732、汲極區738、在源極區732與汲極區738之間延伸的包括基底30的表面部分的半導體通道區735、以及閘極結構750。每個閘極結構750可包含閘極介電質752、閘極電極754、閘極帽介電質(gate cap dielectric)758及介電閘極間隔件756。可在每個源極區732上形成源極側金屬半導體合金區742,並且可在每個汲極區738上形成汲極側金屬半導體合金區748。
在一些實施例中,通道區735可摻雜有第一類型的摻雜劑,且源極區732及汲極區738可摻雜有與第一類型相反的第二類型的摻雜劑。在本實例中,FET 700可以是n型FET(n-type FET,nFET)。因此,通道區735可以是p型通道。
在一個實施例中,源極區732可通過第一離子植入製程形成,且汲極區738可通過第二離子植入製程形成。第二離子植入製程可在摻雜劑量、植入角度及摻雜劑(摻雜種類)中的至少一者方面不同於第一離子植入製程。在一個實施例中,第一離子植入製程包括:在基底上形成第一圖案化罩幕、以及使用第一圖案化罩幕作為植入罩幕將第一離子植入應用到基底。第一圖案化罩幕可包括開口,使得用於源極的基底區域因此未被覆蓋。第一圖案化罩幕可以是通過光刻製程形成的圖案化光致抗蝕劑層,或者作為另外一種選擇,是通過光刻製程及蝕刻形成的圖案化硬罩幕。類似地,第二離子植入製程可包括:在基底上形成第二圖案化罩幕、以及使用第二圖案化罩幕作為植入罩幕將第二離子植入應用到基底。第二圖案化罩幕可包括開口,使得用於汲極的基底區域因此未被覆蓋。在形成及組成方面,第二圖案化罩幕可類似於第一圖案化罩幕。
在介電材料層660中形成的各種金屬互連結構680可形成在基底30及在基底30上形成的裝置(例如,FET 700)上方。介電材料層可包括例如接觸層介電材料層(contact-level dielectric material layer)(介電層601)、第一金屬線層介電材料層(first metal-line-level dielectric material layer)(介電層610)、第二線及通孔層介電材料層(second line-and-via-level dielectric material layer)(介電層620)、第三線及通孔層介電材料層(介電層630)、第四線及通孔層介電材料層(介電層640)及第五線及通孔層介電材料層(介電層650)。
金屬互連結構680可通過執行例如以下任何合適的沉積製程來形成:化學氣相沉積(chemical vapor deposition,CVD)製程、物理氣相沉積(physical vapor deposition,PVD)製程、原子層沉積(atomic layer deposition,ALD)製程、高密度電漿化學氣相沉積(high density plasma CVD,HDPCVD)製程、金屬有機化學氣相沉積(metal organic CVD,MOCVD)製程、電鍍製程或電漿增強化學氣相沉積(plasma enhanced CVD,PECVD)製程。
金屬互連結構可包括形成在接觸層介電材料層(介電層601)中並且接觸FET 700各自的元件的裝置接觸通孔結構612、形成在第一金屬線層介電材料層(介電層610)中的第一金屬線618、形成在第二線及通孔層介電材料層(介電層620)的下部中的第一金屬通孔結構622、形成在第二線及通孔層介電材料層(介電層620)的上部中的第二金屬線628、形成在第三線及通孔層介電材料層(介電層630)的下部中的第二金屬通孔結構632、形成在第三線及通孔層介電材料層(介電層630)的上部中的第三金屬線638、形成在第四線及通孔層介電材料層(介電層640)的下部中的第三金屬通孔結構642、形成在第四線及通孔層介電材料層(介電層640)的上部中的第四金屬線648、形成在第五線及通孔層介電材料層(介電層650)的下部中的第四金屬通孔結構652、以及形成在第五線及通孔層介電材料層(介電層650)的上部中的第五金屬線658。在一個實施例中,金屬互連結構680可包括連接到記憶體元件陣列的源極側電源的源極線。由源極線提供的電壓可通過在記憶體陣列區(記憶體單元100)中提供的存取電晶體施加到底部電極。
每個介電層(601、610、620、630、640、650)可包含介電材料,例如未經摻雜的矽酸鹽玻璃、經摻雜的矽酸鹽玻璃、有機矽酸鹽玻璃、無定形氟化碳、其多孔變體、或其組合。每個金屬互連結構(612、618、622、628、632、638、642、648、658)可包含至少一種導電材料,所述導電材料可以是金屬襯墊層(例如金屬氮化物或金屬碳化物)及金屬填充材料的組合。每個金屬襯墊層可包含TiN、TaN、WN、TiC、TaC及WC,且每個金屬填充材料部分可包含W、Cu、Al、Co、Ru、Mo、Ta、Ti、其合金和/或其組合。也可使用本公開的設想範圍內的其他合適的材料。在一個實施例中,第一金屬通孔結構612及第一金屬線618可通過雙鑲嵌製程形成為集成線及通孔結構,第二金屬通孔結構622及第二金屬線628可通過雙鑲嵌製程形成為集成線及通孔結構,第三金屬通孔結構632及第三金屬線638可通過雙鑲嵌製程形成為集成線及通孔結構,第四金屬通孔結構642及第四金屬線648可通過雙鑲嵌製程形成為集成線及通孔結構,和/或第五金屬通孔結構652及第四金屬線648可通過雙鑲嵌製程形成為集成線及通孔結構。
在一些實施例中,記憶體單元100可設置在第五介電材料層(介電層650)內,並且每個記憶體單元100可電連接到相應的第四金屬線648及第五金屬線658。然而,本公開並不限於記憶體單元100的任何特定位置。舉例來說,記憶體單元100可設置在任何介電材料層660內。
金屬互連結構680可被配置為將每個記憶體單元100連接到相應的FET 700,並將FET 700連接到相應的信號線。舉例來說,FET 700的汲極區738可通過例如金屬通孔結構(612,622,632,642)的子集及金屬線(618,628,638,648)的子集電連接到記憶體單元100的底部電極(參見圖4A到圖4D)。每個汲極區738可經由金屬互連結構680的相應子集連接到相應記憶體單元100的第一節點(例如,底部節點)。每個FET 700的閘極電極754可電連接到字元線,所述字元線可實施為金屬互連結構680的子集。每個記憶體單元100的頂部電極(參見圖4A到圖4D)可電連接到相應的位元線,所述位元線被實施為金屬互連結構的相應子集。每個源極區732可電連接到相應的源極線,所述源極線被實施為金屬互連結構的相應子集。雖然圖3中僅示出了五層金屬線,但應理解,在圖3所示的層之上可形成更多的金屬線層。此外,應理解,可基於設計參數來選擇其中形成有源極線、字元線及位元線的各層。
圖4A是根據本公開的各種實施例,可包括在圖3的PCRAM裝置200中的相變記憶體單元100A的剖視圖。參照圖3及圖4A,記憶體單元100A可設置在兩條重疊的導線(例如,金屬線648與金屬線658)之間。相對於記憶體單元100A,導線(金屬線648及658)可在本文中分別被稱為底部導線及頂部導線。
記憶體單元100A可包括設置在底部導線(金屬線648)上的底部電極140、設置在底部電極140上的相變層130、設置在相變層130上的阻擋電極144、設置在阻擋電極144上的選擇器層160、以及設置在選擇器層160上的頂部電極142。底部電極140可電連接到導線(金屬線648),且頂部電極可電連接到重疊的導線(金屬線658)。
在一些實施例中,介電層650可包括底部介電層650A、中間介電層650B及頂部介電層650C。介電層650A到650C可具有例如約5奈米到約350奈米範圍內的厚度,儘管更大或更小的厚度可位於本公開的設想範圍內。
在各種實施例中,底部介電層650A接觸底部電極140的側表面及底部導線(金屬線648)的頂表面。具體來說,底部電極140可設置在底部介電層650A中形成的通孔或穿孔H1中,並且可電連接導線(金屬線648)及相變層130。相變層130、阻擋電極144、選擇器層160及頂部電極142可設置在中間介電層650B內。舉例來說,可在形成頂部電極142之後沉積中間介電層650B。頂部介電層650C可包括穿孔H2,其中頂部導線(金屬線658)設置在所述穿孔H2中。儘管介電層650A、650B、650C在圖4A中被示為不同的層,但介電層650A、650B、650C可實質上彼此不可區分。
電極140、142、144可由例如TiN、TaN或TiAlN等導電阻擋材料形成。其他合適的材料也在本公開的設想範圍內。電極140、142、144可被配置成減少和/或防止金屬物質從底部導線(金屬線648)和/或頂部導線(金屬線658)擴散到相變層130和/或選擇器層160中。電極140、142、144的厚度可在約5奈米到約50奈米的範圍內。但更大或更小的厚度也可在本公開的設想範圍內。電極140、142、144中的一者或多者可被配置為向相變層130提供焦耳加熱(Joule heating)。舉例來說,至少底部電極140可被配置成加熱相變層130。電極140、142、144還可在淬火期間(在突然切斷施加到電極140、142、144的電流以將相變層130“凍結”在非晶相期間)充當散熱器(heat sink)。介電層650還可被配置為防止和/或減少相鄰記憶體單元100之間的熱傳遞,從而避免熱干擾,所述熱干擾可能禁止狀態保持或中斷讀取/寫入製程。
在一些實施例中,選擇器層160向PCRAM結構提供電流-電壓非線性(current-voltage non-linearity),並且此減少洩漏電流。在一些實施例中,選擇器層160可具有單層或多層式結構。選擇器層160可具有介於約0.5奈米到約50奈米範圍內的厚度。但更大或更小的厚度也可在本公開的設想範圍內。在一些實施例中,選擇器層160通過化學氣相沉積(CVD)、脈衝雷射沉積(pulsed laser deposition,PLD)、濺射、原子層沉積(ALD)或任何其他薄膜沉積方法而形成。
在一些實施例中,選擇器層160包含SiOx、TiOx、A1Ox、WOx、TixNOz、HfOx、TaOx、NbOx等或其合適的組合,其中x、y及z是非化學計量值。其他合適的材料也在本公開的設想範圍內。在一些實施例中,選擇器層160可以是含有Ge、Sb、S、Te或硫族化物中的一者或多者的固體電解質材料,所述硫族化物例如為摻雜有N、P、S、Si和/或Te的硫族化物,例如摻雜有N、P、S、Si和/或Te的AsGeSe(例如,AsGeSe(N、P、S、Si、Te))以及摻雜有N、P、S、Si和/或Te的AsGeSeSi(例如,AsGeSeSi(N、P、S、Si、Te))。其他合適的材料也在本公開的設想範圍內。
相變層130可通過執行電鍍製程、化學氣相沉積(CVD)製程、物理氣相沉積(PVD)製程、或原子層沉積(ALD)製程來形成。舉例來說,相變層130可由PVD在介於約175℃到約225℃範圍內(例如,約200℃)的溫度下形成。在沉積製程期間,沉積裝置可在介於約25 W到約200 W範圍內的瓦數下操作。
傳統上,記憶體單元包括由硫族化物Ge-Sb-Te(GST)相變材料形成的相變層,所述材料具有相對低的鍺(Ge)含量。舉例來說,通常使用Ge2 Sb2 Te5 (GST-225)作為相變材料。然而,例如GST-225等材料具有在100℃與650℃之間的結晶溫度(Tc)。因此,由於GTS-225的無意熔化,習知相變記憶體單元在工作溫度高於約100℃到650℃的裝置中遭受資料保持能力的損失。
在各種實施例中,相變層130可包含硫族化物GST材料,所述材料具有比習知相變層更高的Tc。舉例來說,相變層130可具有介於約175℃到約350℃範圍內(例如約200℃到約300℃、或者至少約250℃)的Tc。因此,相變層130可被配置為在一般操作溫度下提供改善的資料保持能力。
舉例來說,根據各種實施例,相變層130包含富含Ge(Ge-rich)的GST材料,所述材料可被摻雜有N、Si、Sc、Ga、C或其任意組合。具體來說,相變層130可包含經摻雜的GST材料,所述材料包含:約30原子百分比(at%)到約80原子%的Ge,例如約40原子%到約60原子%的Ge;約10原子%到約30原子%的Sb,例如約15原子%到約25原子%的Sb;約10原子%到約40原子%的Te,例如約15原子%到約35原子%的Te;以及約1原子%到約10原子%的摻雜劑,例如約2原子%到約8原子%的摻雜劑。在一些實施例中,相變層130可包含摻雜有約1原子%到約10原子%的摻雜劑的Ge6 Sb1 Te2 (GST-612)材料。
通過向相變層130提供Ge含量至少約為30原子%的富含Ge的GST材料,相變層130可表現出改善的資料保持特性。此外,通過提供摻雜劑含量約為10原子%或小於10原子%的相變層130,還提供了改善的資料保持能力,而不會降低沉積期間的膜品質。因此,在一些實施例中,相變層130可包含摻雜有少於約10原子%的N、Si、Sc、Ga、C或其任意組合的GST-612材料。
在一些實施例中,相變層130的組成可保持實質上恆定。然而,在其他實施例中,相變層130的Ge含量可根據梯度而變化。舉例來說,Ge含量可在橫向方向(例如,在電極140與142之間的方向)上變化約+/-10原子%到約+/-30原子%。舉例來說,相變層130的Ge含量可隨著距底部電極140的距離增加而減少,使得相變層的上部子層130A的Ge含量比相變層的下部子層130C的Ge含量少約15原子%到約25原子%,例如約20原子%。
圖4B是根據本公開的各種實施例,可包括在圖3的PCRAM裝置200中的相變記憶體單元100B的剖視圖。記憶體單元100B類似於記憶體單元100A,因此將僅詳細論述所述兩者之間的差異。
參照圖4B,記憶體單元100B可包括相變層130,相變層130包括至少兩個子層,所述至少兩個子層包含不同的經摻雜的富含Ge的GST材料。舉例來說,相變層130可包括三個子層,即上部子層130A、中部子層130B及下部子層130C,如圖4B所示。然而,相變層中的額外數量的層各自具有可隨著與底部電極140的距離增加而減少的相應Ge含量的其他實施例也在本公開的設想範圍內。
子層130A、130B、130C可包含具有不同Ge含量梯度的經摻雜的富含Ge的GST材料。舉例來說,上部子層130A的Ge含量可與下部子層130C的Ge含量相差約+/-30原子%到約+/-10原子%,例如約+/-25原子%到約+/-15原子%、或約+/-20原子%。子層130B的Ge含量可與上部子層130A和/或下部子層130C的Ge含量相差約+/-15原子%到約+/-5原子%,例如約+/-10原子%。
舉例來說,在一些實施例中,上部子層130A可包含:約35原子%到約45原子%的Ge,例如約40原子%的Ge;約25原子%到約15原子%的Sb,例如約20原子%的Sb;約35原子%到約45原子%的Te,例如約40原子%的Te;以及約1原子%到約10原子%的摻雜劑。中部子層130B可包含:約45原子%到約55原子%的Ge,例如約50原子%的Ge;約12原子%到約23原子%的Sb,例如約18原子%的Sb;約27原子%到約37原子%的Te,例如約32原子%的Te;以及約1原子%到約10原子%的摻雜劑。下部子層130C可包含約50原子%到約70原子%的Ge,例如約60原子%的Ge;約11原子%到約21原子%的Sb,例如約16原子%的Sb;約19原子%到約29原子%的Te,例如約24原子%的Te;以及約1原子%到約10原子%的摻雜劑。
圖4C是根據本公開的各種實施例,可包括在圖3的PCRAM裝置200中的相變記憶體單元100C的剖視圖。記憶體單元100C類似於記憶體單元100B,因此將僅詳細論述所述兩者之間的差異。
參照圖4C,記憶體單元100C省略了記憶體單元100B的阻擋電極144及選擇器層160。因此,頂部電極142直接接觸上部子層130A及導線(金屬線658)。如同圖4B所示的實施例記憶體單元100B,子層130A到130C中的每一者中的富含Ge的GST材料可具有不同Ge含量梯度,使得可隨著與底部電極140的距離增加而降低的各Ge含量位於本公開的設想範圍內。
圖4D是根據本公開的各種實施例,可包括在圖3的PCRAM裝置200中的相變記憶體單元100D的剖視圖。記憶體單元100D類似於記憶體單元100A,因此將僅詳細論述所述兩者之間的差異。
參照圖4D,記憶體單元100D省略了記憶體單元100A的阻擋電極144及選擇器層160。因此,頂部電極142直接接觸相變層130及導線(金屬線658)。Ge的濃度在整個相變層130中可以是恆定的。
圖5A是根據本公開的各種實施例,示出在加熱到200℃時包括相變層的示例性相變記憶體單元的電阻隨時間變化的曲線圖,所述相變層包含摻雜有氮的GST-612。圖5B是示出在加熱到200℃時包括習知相變層的比較性相變記憶體單元的電阻隨時間變化的曲線圖,所述習知相變層包含摻雜有氮的Ge2 Sb2 Te5 (GST-225)。
參照圖5A及圖5B可看出,當在200℃的溫度下加熱時,根據在圖4A到4D中示出並在以上描述的各種實施例記憶體單元100A到100D具有增強的Ge濃度的示例性記憶體單元將指示穩定記憶體存儲的電阻水準(resistance level)保持超過10,000秒。因此,圖5A例示出各種實施例記憶體單元100A到100D的經摻雜的GST-612相變層具有高於200℃的Tc,且因此,各種實施例記憶體單元100A到100D可能能夠在至少200℃的溫度下實現穩定的記憶體存儲。
相比來說,當在200℃下加熱時,具有包含摻雜有N的GST-225材料的相變層的比較性記憶體單元的電阻在約100秒後顯著降低。因此,圖5B例示出比較性記憶體單元的經摻雜的GST-225相變層具有小於200℃的Tc,且因此,比較性記憶體單元在至少200℃的溫度下不能實現穩定的記憶體存儲。
圖6是根據本公開的各種實施例,示出形成包括相變記憶體單元的記憶體裝置的方法的流程圖。雖然所述方法是相對於形成單個記憶體單元而描述的,但在各種實施例中,所述方法可包括形成多個記憶體單元。
參照圖6,在步驟800中,所述方法可包括在半導體基底上形成至少一個電晶體。舉例來說,可在基底30上形成FET 700。對於將包括在記憶體裝置200中的每個記憶體單元100來說,還可在基底30上形成附加的FET 700。
在步驟802中,可在基底30上形成多個導線680。具體來說,可在基底30上形成一層或多層平行導線680,其中每層導線680由介電層(即601、610、620、630、640、650)隔開,相鄰層的導線680以網格或閘格圖案彼此交叉。導線及介電層(即601、610、620、630、640、650)可通過任何合適的沉積製程形成,所述沉積製程可包括圖案化蝕刻和/或平坦化製程。導線可包括記憶體單元的底部導線。
在步驟804中,可在導線(金屬線648)上形成底部介電層650。在步驟806中,可使用圖案化蝕刻製程在底部介電層650中形成穿孔。穿孔可暴露出記憶體單元的底部導線(金屬線648)。
在步驟808中,可使用沉積製程及平坦化製程在穿孔中形成記憶體單元100的底部電極140。
在步驟810中,可在底部電極140上形成記憶體單元100的各層(例如,130、電極144、選擇器層160、電極142)。舉例來說,可在底部電極140上形成至少相變層130及頂部電極142。相變層130可通過在底部電極140上方沉積經摻雜的富含Ge的GST材料來形成。在一些實施例中,相變層130可通過在基底30上沉積經摻雜的富含Ge的GST材料的多個子層(例如,130A到130C)來形成,其中子層130A到130C具有分級的Ge含量。
在一些實施例中,步驟810可包括:在相變層130上形成阻擋電極144,在阻擋電極144上形成選擇器層160,且然後在選擇器層160上形成頂部電極142。在步驟810中形成的層(電極144、選擇器層160、電極142)可通過使用沉積及平坦化製程來沉積及平坦化各層來形成。
在步驟812中,可在基底上形成一個或多個介電層650A到650C。舉例來說,可形成包圍在步驟810中形成的層(電極144、選擇器層160、電極142)的中間介電層650B。中間介電層650B可在沉積後被平坦化。可在中間介電層650B及頂部電極142上形成頂部介電層650C。
在步驟814中,可在頂部介電層650C中形成穿孔。舉例來說,可通過圖案化蝕刻製程形成穿孔。在步驟816中,可使用沉積製程及平坦化製程在穿孔中形成頂部導線(金屬線658)。
在各種實施例中,可使用步驟806到816來形成多個記憶體單元100A到100D。舉例來說,步驟806及步驟814可包括形成多個穿孔,步驟808可包括形成多個記憶體單元的底部電極140,步驟810可包括形成多個記憶體單元的記憶體單元層(子層130A到130C),並且步驟816可包括形成多個頂部導線。
在本文中公開的各種實施例提供了形成具有改善的記憶體特性的PCRAM裝置的結構及方法。通過使相變層130富含鍺(Ge),相變層130的電阻保持特性可被改善以保持基本上恆定超過10,000秒。相比來說,包含摻雜有N的GST225的習知相變層已顯示出在10秒後顯著失去其電阻值。附加實施例通過提供相變層130的多個子層而提供增強的電阻保持特性,其中隨著各個子層增加其與底部電極140的距離,Ge的相應濃度降低。
根據本公開的方面,提供一種包括基底30的記憶體裝置結構。可在基底30上方設置底部電極140。可在底部電極140上方設置頂部電極142。所述記憶體裝置結構可包括設置在頂部電極142與底部電極140之間的相變層130,相變層130可包含硫族化物Ge-Sb-Te(GST)材料,所述Ge-Sb-Te材料包含至少30原子%的Ge,並且摻雜有包含N、Si、Sc、Ga、C或其任意組合的摻雜劑。
在一個實施例中,所述相變層具有至少為200℃的結晶溫度。在一個實施例中,所述Ge-Sb-Te材料摻雜有約1原子%到約10原子%的所述摻雜劑。在一個實施例中,所述Ge-Sb-Te材料包含:約30原子%到約80原子%的Ge;約10原子%到約30原子%的Sb;以及約10原子%到約40原子%的Te。在一個實施例中,所述Ge-Sb-Te材料包括摻雜有約1原子%到約10原子%的所述摻雜劑的Ge6 Sb1 Te2 。在一個實施例中,更包括:第一導線,電連接到所述底部電極;以及第二導線,電連接到所述頂部電極,其中所述第一導線及所述第二導線是字元線及位元線中的不同者。在一個實施例中,所述頂部電極及所述底部電極包含TiN;且所述第一導線及所述第二導線包含Cu。在一個實施例中,所述相變層的Ge含量在所述頂部電極與所述底部電極之間延伸的厚度方向上變化約10原子%到約30原子%。在一個實施例中,更包括:阻擋電極,設置在所述相變層上;以及選擇器層,設置在所述阻擋電極與所述頂部電極之間。在一個實施例中,更包括包含穿孔的介電層,其中,所述底部電極設置在所述穿孔中,且所述基底包括場效應電晶體,所述場效應電晶體電連接到所述底部電極。在一個實施例中,更包括互連件,所述互連件包含圍繞所述頂部電極、所述底部電極及所述相變層的介電材料,其中所述頂部電極及所述底部電極直接接觸所述相變層。在一個實施例中,所述摻雜劑包含N、Si或Sc;且所述Ge-Sb-Te材料包含至少50原子%的Ge。
在一個實施例中,相變層可由多個子層製成。第一子層130C可設置在頂部電極與底部電極之間且包含GST材料。第二子層130A可設置在頂部電極與底部電極之間且包含GST材料,所述材料包含至少30原子%的Ge並且摻雜有包含N、Si、Sc、Ga、C或其任意組合的摻雜劑,其中第一電極與第二電極的Ge含量相差約10原子%到約30原子%。在另一實施例中,第三子層130B可設置在所述第一子層與所述第二子層之間且包含GST材料,所述材料包含至少30原子%的Ge,並且摻雜有包含N、Si、Sc、Ga、C或其任意組合的摻雜劑,其中第三子層的Ge含量大於第一子層的Ge含量,並且小於第二子層的Ge含量。
在一個實施例中,所述相變層更包括第三子層,所述第三子層設置在所述第一子層與所述第二子層之間且包含Ge-Sb-Te材料,所述Ge-Sb-Te材料包含至少30原子%的Ge,並且摻雜有包含N、Si、Sc、Ga、C或其任意組合的摻雜劑,其中所述第三子層的Ge含量大於所述第一子層的所述Ge含量,並且小於所述第二子層的所述Ge含量。在一個實施例中,所述第一子層包含:約35原子%到約45原子%的Ge;約15原子%到約25原子%的Sb;以及約35原子%到約45原子%的Te;所述第三子層包含:約45原子%到約45原子%的Ge;約13原子%到約23原子%的Sb;以及約27原子%到約37原子%的Te;且所述第二子層包含:約55原子%到約65原子%的Ge;約11原子%到約21原子%的Sb;以及約19原子%到約29原子%的Te。在一個實施例中,所述第二子層直接接觸所述底部電極。在一個實施例中,更包括:阻擋電極,設置在所述相變層上;以及選擇器層,設置在所述阻擋電極與所述頂部電極之間。
根據本公開的另一方面,提供了一種形成相變記憶體裝置的方法。所述方法包括在基底30上形成電晶體700的操作。所述方法更包括在基底30上形成底部導線(金屬線648)的操作。所述方法更包括在底部導線(金屬線648)上形成底部電極140且在底部電極140上形成相變層130的操作。所述方法更包括在相變層130上形成頂部電極142的操作,其中相變層130包含硫族化物Ge-Sb-Te(GST)材料,所述材料包含至少30原子%的Ge,並且摻雜有包含N、Si、Sc、Ga、C或其任意組合的摻雜劑。
在一個實施例中,所述在所述底部電極上形成相變層包括:在所述底部電極上形成包含Ge-Sb-Te材料的第一子層,所述Ge-Sb-Te材料包含至少30原子%的Ge並且摻雜有包含N、Si、Sc、Ga、C或其任意組合的摻雜劑;以及在所述第一子層上形成包含Ge-Sb-Te材料的第二子層,所述Ge-Sb-Te材料包含至少30原子%的Ge,並且摻雜有包含N、Si、Sc、Ga、C或其任意組合的摻雜劑,其中所述第一子層與所述第二子層的Ge含量相差約10原子%到約30原子%。在一個實施例中,所述在所述底部電極上形成相變層包括在所述第一子層與所述第二子層之間形成包含Ge-Sb-Te的第三子層,所述Ge-Sb-Te材料包含至少30原子%的Ge,並且摻雜有包含N、Si、Sc、Ga、C或其任意組合的摻雜劑;且所述第三子層的Ge含量大於所述第一子層的所述Ge含量並且小於所述第二子層的所述Ge含量。
以上概述了若干實施例的特徵,以使熟習此項技術者可更好地理解本公開的各個方面。所屬領域中的技術人員應理解,他們可容易地使用本公開作為設計或修改其他製程及結構的基礎來施行與本文中所介紹的實施例相同的目的和/或達成與本文中所介紹的實施例相同的優點。所屬領域中的技術人員還應認識到,這些等效構造並不背離本公開的精神及範圍,而且他們可在不背離本公開的精神及範圍的條件下對其作出各種改變、代替及變更。
10:PCRAM結構 20:記憶體結構 24:字元線 26:位元線 28:源極線 30:基底 100、100A、100B、100C、100D:記憶體單元 130:相變層 130A、130B、130C:子層 140:底部電極 142:頂部電極 144:阻擋電極 160:選擇器層 200:記憶體裝置 601:介電層 610:介電層 612:通孔結構 618:第一金屬線 620:介電層 622:通孔結構 628:第二金屬線 630:介電層 632:通孔結構 638:第三金屬線 640:介電層 642:通孔結構 648:金屬線 650、650A、650B、650C:介電層 652:通孔結構 658:金屬線 660:介電材料層 680:金屬互連結構 700:場效應電晶體(FET) 720:隔離結構 732:源極區 735:通道區 738:汲極區 742:源極側金屬半導體合金區 748:汲極側金屬半導體合金區 750:閘極結構 752:閘極介電質 754:閘極電極 756:介電閘極間隔件 758:閘極帽介電質 800、802、804、806、808、810、812、814、816:步驟 B:主體 D:汲極 H1、H2:穿孔 Id:電流 G:閘極 S:源極 Vb、Vd、Vg、Vp、Vs:電壓
結合附圖閱讀以下詳細說明,會最好地理解本公開的各個方面。應注意,根據本產業中的標準慣例,各種特徵並非按比例繪製。事實上,為使論述清晰起見,可任意增大或減小各種特徵的尺寸。 圖1是根據本公開的各種實施例,包括相變記憶體單元及場效應電晶體的相變隨機存取記憶體(PCRAM)結構的示意圖。 圖2是根據本公開的各種實施例,包括多個相變記憶體單元的PCRAM結構的示意圖。 圖3是根據本公開的各種實施例,包括相變記憶體裝置及場效應電晶體的記憶體裝置的垂直截面圖。 圖4A到圖4D是根據本公開的各種實施例,可包括在圖3的記憶體裝置中的相變記憶體單元的垂直剖視圖。 圖5A是根據本公開的各種實施例,示出在加熱到200℃時包括相變層的示例性相變記憶體單元的電阻隨時間變化的曲線圖,所述相變層包含摻雜有氮的GST-612。 圖5B是示出在加熱到200℃時包括習知相變層的比較性相變記憶體單元的電阻隨時間變化的曲線圖,所述習知相變層包含摻雜有氮的Ge2 Sb2 Te5 (GST-225)。 圖6是根據本公開的各種實施例,示出形成包括相變記憶體單元的記憶體裝置的方法的流程圖。
100A:記憶體單元
130:相變層
140:底部電極
142:頂部電極
144:阻擋電極
160:選擇器層
648:金屬線
650、650A、650B、650C:介電層
658:金屬線
H1、H2:穿孔

Claims (1)

  1. 一種記憶體裝置,包括: 基底; 底部電極,設置在所述基底上方; 頂部電極,設置在所述底部電極上方;以及 相變層,設置在所述頂部電極與所述底部電極之間,所述相變層包含硫族化物Ge-Sb-Te材料,所述Ge-Sb-Te材料包含至少30原子%的Ge,並且摻雜有包含N、Si、Sc、Ga、C或其任意組合的摻雜劑。
TW109121529A 2020-02-07 2020-06-24 記憶體裝置 TW202131511A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/785,023 2020-02-07
US16/785,023 US11349070B2 (en) 2020-02-07 2020-02-07 Phase-change random access memory device with doped Ge—Sb—Te layers and method of making the same

Publications (1)

Publication Number Publication Date
TW202131511A true TW202131511A (zh) 2021-08-16

Family

ID=77177897

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109121529A TW202131511A (zh) 2020-02-07 2020-06-24 記憶體裝置

Country Status (3)

Country Link
US (3) US11349070B2 (zh)
CN (1) CN113257998A (zh)
TW (1) TW202131511A (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11349070B2 (en) * 2020-02-07 2022-05-31 Taiwan Semiconductor Manufacturing Company Limited Phase-change random access memory device with doped Ge—Sb—Te layers and method of making the same
EP4002471A1 (en) * 2020-11-12 2022-05-25 Commissariat à l'Energie Atomique et aux Energies Alternatives Hybrid resistive memory
US20220181275A1 (en) * 2020-12-08 2022-06-09 International Business Machines Corporation Integrated circuit security using programmable switches

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7115927B2 (en) * 2003-02-24 2006-10-03 Samsung Electronics Co., Ltd. Phase changeable memory devices
US7425735B2 (en) * 2003-02-24 2008-09-16 Samsung Electronics Co., Ltd. Multi-layer phase-changeable memory devices
US7893419B2 (en) * 2003-08-04 2011-02-22 Intel Corporation Processing phase change material to improve programming speed
KR100807223B1 (ko) * 2006-07-12 2008-02-28 삼성전자주식회사 상변화 물질층, 상변화 물질층 형성 방법 및 이를 이용한상변화 메모리 장치의 제조 방법
US7888165B2 (en) * 2008-08-14 2011-02-15 Micron Technology, Inc. Methods of forming a phase change material
US8866121B2 (en) * 2011-07-29 2014-10-21 Sandisk 3D Llc Current-limiting layer and a current-reducing layer in a memory device
US10454025B1 (en) * 2018-06-13 2019-10-22 International Business Machines Corporation Phase change memory with gradual resistance change
US11349070B2 (en) * 2020-02-07 2022-05-31 Taiwan Semiconductor Manufacturing Company Limited Phase-change random access memory device with doped Ge—Sb—Te layers and method of making the same

Also Published As

Publication number Publication date
US20240206351A1 (en) 2024-06-20
US11349070B2 (en) 2022-05-31
CN113257998A (zh) 2021-08-13
US20210249592A1 (en) 2021-08-12
US20220285613A1 (en) 2022-09-08
US11950518B2 (en) 2024-04-02

Similar Documents

Publication Publication Date Title
US9659998B1 (en) Memory having an interlayer insulating structure with different thermal resistance
US7875493B2 (en) Memory structure with reduced-size memory element between memory material portions
US7993962B2 (en) I-shaped phase change memory cell
US7728319B2 (en) Vertical phase change memory cell and methods for manufacturing thereof
US8129706B2 (en) Structures and methods of a bistable resistive random access memory
US7956358B2 (en) I-shaped phase change memory cell with thermal isolation
US7642539B2 (en) Thin film fuse phase change cell with thermal isolation pad and manufacturing method
US7569844B2 (en) Memory cell sidewall contacting side electrode
US7964468B2 (en) Multi-level memory cell having phase change element and asymmetrical thermal boundary
US8933536B2 (en) Polysilicon pillar bipolar transistor with self-aligned memory element
US20090140230A1 (en) Memory Cell Device With Circumferentially-Extending Memory Element
US11950518B2 (en) Phase-change random access memory device and method of making the same
US7879643B2 (en) Memory cell with memory element contacting an inverted T-shaped bottom electrode
US8916845B2 (en) Low operational current phase change memory structures
US11476418B2 (en) Phase change memory cell with a projection liner
KR100795908B1 (ko) 발열 구조체를 구비하는 반도체 장치 및 그 형성 방법
US11545624B2 (en) Phase change memory cell resistive liner
US20240074337A1 (en) Memory device and method of making the same
US20230263079A1 (en) In-situ formation of a spacer layer for protecting sidewalls of a phase change memory element and methods for forming the same
US20230210026A1 (en) Composite material phase change memory cell
US11903334B2 (en) Memory devices and methods of forming the same
US20240074334A1 (en) Phase-change memory device and method for fabricating the same
US20230403956A1 (en) Phase-change random access memory device and method of forming the same