TW202126259A - Intelligent blood oxygen monitoring method, device, system, and program product as well as method for evaluating cardiopulmonary function based on blood oxygen status - Google Patents

Intelligent blood oxygen monitoring method, device, system, and program product as well as method for evaluating cardiopulmonary function based on blood oxygen status Download PDF

Info

Publication number
TW202126259A
TW202126259A TW109100621A TW109100621A TW202126259A TW 202126259 A TW202126259 A TW 202126259A TW 109100621 A TW109100621 A TW 109100621A TW 109100621 A TW109100621 A TW 109100621A TW 202126259 A TW202126259 A TW 202126259A
Authority
TW
Taiwan
Prior art keywords
parameter
hemoglobin
monitoring
light wave
blood oxygen
Prior art date
Application number
TW109100621A
Other languages
Chinese (zh)
Other versions
TWI827781B (en
Inventor
周偉倪
林伯昰
Original Assignee
奇美醫療財團法人奇美醫院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奇美醫療財團法人奇美醫院 filed Critical 奇美醫療財團法人奇美醫院
Priority to TW109100621A priority Critical patent/TWI827781B/en
Publication of TW202126259A publication Critical patent/TW202126259A/en
Application granted granted Critical
Publication of TWI827781B publication Critical patent/TWI827781B/en

Links

Images

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

The present invention relates to an intelligent blood oxygen monitoring method, device, system, and program product as well as a method for evaluating cardiopulmonary function based on blood oxygen status. The method includes the following steps: obtaining a hemoglobin parameter in a brain tissue of the person to be monitored, wherein the hemoglobin parameter can be obtained through non-invasive optical detection; and calculating, according to the hemoglobin parameter, one or a combination of monitoring parameters I-IV, wherein the monitoring parameter I is the duration that the hemoglobin parameter rises from an initial value at the beginning of an incremental exercise to a peak value, the monitoring parameter II is the amount of change between the initial value and peak value of the hemoglobin parameter, the monitoring parameter III is the average rate of change between the initial value of the hemoglobin parameter at the beginning of the incremental exercise and the peak value of the hemoglobin parameter, and the monitoring parameter IV is the average rate of change between a value of the hemoglobin parameter at 60% of the incremental exercise and the peak value of the hemoglobin parameter. The above monitoring parameters can be introduced into a linear prediction system or a nonlinear prediction system, and the blood oxygen status of the person to be monitored can be evaluated based on a preset threshold. Further, the cardiopulmonary function of the person to be monitored can also be evaluated according to the blood oxygen status.

Description

智能血氧監測方法、裝置、系統、程式產品及根據血氧狀態評估心肺功能之方法Intelligent blood oxygen monitoring method, device, system, program product and method for assessing cardiopulmonary function based on blood oxygen status

本發明係有關於一種智能血氧監測方法、裝置、系統、程式產品及根據血氧狀態評估心肺功能之方法,特別是指利用待監測者的腦組織中的血紅蛋白參數取得與血氧狀態有關的監測參數,再將監測參數輸入線性或非線性預測系統以人工智能式的評估及監測待監測者的腦組織的血氧狀態之發明。The present invention relates to an intelligent blood oxygen monitoring method, device, system, program product and a method for assessing cardiopulmonary function based on blood oxygen status, and in particular refers to the use of hemoglobin parameters in the brain tissue of a subject to be monitored to obtain information related to blood oxygen status The invention of monitoring parameters, and then inputting the monitoring parameters into the linear or non-linear prediction system to evaluate and monitor the blood oxygen status of the brain tissue of the person to be monitored.

目前臨床常用於評估心肺功能的檢測方法有心肺運動功能測試系統、心臟超音波和電腦斷層血管攝影術。心肺運動功能測試系統是在受人為控制的臨床條件下藉由運動來測量心肺功能,通過使用呼氣面罩、心電電極和血壓計等多種感測器,來為受測者的心肺功能進行診斷。例如中華民國新型專利第M327721號「監測血氧濃度及心跳之跑步機」;或是,中華民國專利公開第201909843號「血氧濃度動態隨身監測裝置及血氧動態管理警示系統」。At present, the testing methods commonly used in clinical assessment of cardiopulmonary function include cardiopulmonary exercise testing system, cardiac ultrasound and computer tomography angiography. The cardiopulmonary exercise test system measures cardiopulmonary function through exercise under artificially controlled clinical conditions, and diagnoses the subject’s cardiopulmonary function by using various sensors such as an exhalation mask, ECG electrodes, and blood pressure monitor. . For example, the Republic of China Patent No. M327721 "Treadmill for monitoring blood oxygen concentration and heartbeat"; or, the Republic of China Patent Publication No. 201909843 "Blood oxygen concentration dynamic monitoring device and blood oxygen dynamic management warning system".

然而,上述方法具有一些缺點,包括較大的系統體積、多種感測器的配置、測試前需由經驗豐富的醫護人員進行校準氣體交換系統、使用呼氣面罩時會使受測者在運動期間內呼吸不順暢導致運動量受到限制,以及心電電極會因為汗水導致滑動干擾。心臟超音波可以通過超音波檢測器非侵入性地評估心臟結構和功能,並通過都普勒效應估計血流速度,然而這種方法需要專業的醫護人員操作,因為檢測器容易受到骨頭影響,組織都普勒成像也與操作角度密切相關。電腦斷層血管攝影術是一種非侵入性的血管顯影技術,通過電子束斷層攝影來評估冠狀動脈的阻塞程度,然而由於其顯著的輻射和顯影劑的使用,一般無症狀的患者通常不建議做此項篩檢。However, the above method has some disadvantages, including a large system volume, a variety of sensor configurations, the need for experienced medical personnel to calibrate the gas exchange system before the test, and the use of an exhalation mask will cause the subject to exercise during exercise. Unsmooth internal breathing results in limited exercise volume, and the ECG electrodes will cause sliding interference due to sweat. Cardiac ultrasound can non-invasively evaluate the structure and function of the heart through the ultrasound detector, and estimate the blood flow velocity through the Doppler effect. However, this method requires professional medical personnel to operate, because the detector is easily affected by bones and tissues. Doppler imaging is also closely related to the operating angle. Computed tomography is a non-invasive vascular imaging technique that uses electron beam tomography to assess the degree of coronary artery obstruction. However, due to its significant use of radiation and contrast agents, it is usually not recommended for asymptomatic patients. Screening.

另外,有採用光學的方式檢測血氧濃度的相關發明,例如中華民國發明專利第I637727號「用於進行經腹胎兒血氧飽和度及/或經腹胎兒脈搏血氧飽和度監測之系統、裝置及方法」,該案利用反射螢光來偵測胎兒的血氧飽和度。In addition, there are related inventions that use optical methods to detect blood oxygen concentration, such as the Republic of China Invention Patent No. I637727 "Systems and devices for monitoring transabdominal fetal blood oxygen saturation and/or transabdominal fetal pulse blood oxygen saturation. And method", the case uses reflected fluorescence to detect the blood oxygen saturation of the fetus.

本發明除了採用光學方式偵測待監測者的血氧濃度之外,進一步根據設定的監測參數來評估待監測者的血氧狀態。In addition to optically detecting the blood oxygen concentration of the person to be monitored, the present invention further evaluates the blood oxygen state of the person to be monitored according to the set monitoring parameters.

本發明為一種智能血氧監測方法,包括有:The present invention is an intelligent blood oxygen monitoring method, including:

獲得一待監測者的一腦組織中的一血紅蛋白參數,並根據該血紅蛋白參數計算以下監測參數之一或組合:監測參數I:該血紅蛋白參數從增量運動開始到峰值的持續時間;監測參數II:該血紅蛋白參數初始值和峰值之間的變化量;監測參數III:該血紅蛋白參數從增量運動開始到峰值的平均變化率;監測參數IV:該血紅蛋白參數從整段增量運動的60%到峰值的平均變化率。將上述各監測參數帶入線性預測系統或非線性預測系統,並根據一預設閥值評估該待監測者的血氧狀態。Obtain a hemoglobin parameter in a brain tissue of a subject to be monitored, and calculate one or a combination of the following monitoring parameters based on the hemoglobin parameter: monitoring parameter I: the duration of the hemoglobin parameter from the start of the incremental movement to the peak; monitoring parameter II : The amount of change between the initial value and the peak value of the hemoglobin parameter; monitoring parameter III: the average change rate of the hemoglobin parameter from the start of the incremental movement to the peak; monitoring parameter IV: the hemoglobin parameter from 60% of the entire incremental movement to the peak value Average rate of change. Bring the above-mentioned monitoring parameters into the linear prediction system or the non-linear prediction system, and evaluate the blood oxygen status of the person to be monitored according to a preset threshold.

本發明再提出一種根據血氧狀態評估心肺功能之方法,係當上述監測參數超出該預設閥值時,判別該待監測者的心肺功能佳,反之,判別該待監測者的心肺功能不佳。The present invention further proposes a method for assessing cardiopulmonary function based on blood oxygen status. When the above-mentioned monitoring parameters exceed the preset threshold, it is determined that the cardiopulmonary function of the person to be monitored is good, and vice versa, the cardiopulmonary function of the person to be monitored is determined to be poor .

進一步,該血紅蛋白參數包括一血紅蛋白濃度或一組織含氧率之一或組合。更進一步,該血紅蛋白濃度包括一含氧血紅蛋白濃度、一脫氧血紅蛋白濃度及一總血紅蛋白濃度;使波長介於600nm至800nm的第一光波及波長介於800nm至950nm的第二光波入射該待監測者的組織,並接收該第一光波及該第二光波的一第一反射光波及一第二反射光波,並根據該第一反射光波及該第二反射光波求得該腦組織中的一含氧血紅蛋白濃度及一脫氧血紅蛋白濃度,並據以求得該總血紅蛋白濃度及該組織含氧率。而較佳的,係根據該總血紅蛋白濃度及該組織含氧率計算上述監測參數。Further, the hemoglobin parameter includes one or a combination of a hemoglobin concentration or a tissue oxygen rate. Furthermore, the hemoglobin concentration includes an oxygenated hemoglobin concentration, a deoxyhemoglobin concentration, and a total hemoglobin concentration; the first light wave having a wavelength between 600nm and 800nm and a second light wave having a wavelength between 800nm and 950nm are incident on the subject to be monitored And receive a first reflected light wave and a second reflected light wave of the first light wave and the second light wave, and obtain an oxygen in the brain tissue based on the first reflected light wave and the second reflected light wave The hemoglobin concentration and a deoxyhemoglobin concentration are used to obtain the total hemoglobin concentration and the oxygen content of the tissue. Preferably, the monitoring parameters are calculated based on the total hemoglobin concentration and the tissue oxygen rate.

進一步,該待監測者的組織係為該待監測者的腦組織。Further, the tissue of the person to be monitored is the brain tissue of the person to be monitored.

進一步,該線性預測系統或非線性預測系統係使用類神經網絡、模糊理論系統或混沌理論系統之一。Further, the linear prediction system or the nonlinear prediction system uses one of a neural network, a fuzzy theory system, or a chaos theory system.

本發明再提出一種智能血氧監測裝置,用以取得一待監測者的一組織中的一血紅蛋白參數,包括有:The present invention further provides an intelligent blood oxygen monitoring device for obtaining a hemoglobin parameter in a tissue of a person to be monitored, including:

一光發射器,用以發出波長介於600nm至800nm的第一光波及波長介於800nm至950nm的第二光波至該待監測者的組織。一光接收器,接收該第一光波及該第二光波的一第一反射光波及一第二反射光波。一微處理單元,電性連接該光發射器及該光接收器,該微處理單元控制該光發射器發出該第一光波及該第二光波,並接收該第一反射光波及該第二反射光波,據以獲得該血紅蛋白參數,該血紅蛋白參數包括一含氧血紅蛋白濃度及一脫氧血紅蛋白濃度。A light emitter for emitting a first light wave with a wavelength between 600 nm and 800 nm and a second light wave with a wavelength between 800 nm and 950 nm to the tissue of the subject to be monitored. A light receiver receives a first reflected light wave and a second reflected light wave of the first light wave and the second light wave. A micro-processing unit electrically connected to the light transmitter and the light receiver, the micro-processing unit controls the light transmitter to emit the first light wave and the second light wave, and receives the first reflected light wave and the second reflection The light wave is used to obtain the hemoglobin parameter, and the hemoglobin parameter includes an oxygenated hemoglobin concentration and a deoxygenated hemoglobin concentration.

本發明再提出一種智能血氧監測系統,用以偵測一待監測者的一組織中的一血紅蛋白參數,據以獲得該待監測者的血氧狀態,包括有上述智能血氧監測裝置及一處理器,該處理器訊號連接該智能血氧監測裝置。The present invention further provides an intelligent blood oxygen monitoring system for detecting a hemoglobin parameter in a tissue of a person to be monitored to obtain the blood oxygen state of the person to be monitored, including the above-mentioned intelligent blood oxygen monitoring device and a A processor, the processor signal is connected to the intelligent blood oxygen monitoring device.

該處理器接收該血紅蛋白參數,並根據該血紅蛋白參數計算以下監測參數之一或組合:監測參數I:該血紅蛋白參數從增量運動開始到峰值的持續時間;監測參數II:該血紅蛋白參數初始值和峰值之間的變化量;監測參數III:該血紅蛋白參數從增量運動開始到峰值的平均變化率;監測參數IV:該血紅蛋白參數從整段增量運動的60%到峰值的平均變化率。將上述各監測參數帶入線性預測系統或非線性預測系統,並根據一預設閥值評估該待監測者的血氧狀態。The processor receives the hemoglobin parameter, and calculates one or a combination of the following monitoring parameters based on the hemoglobin parameter: monitoring parameter I: the duration of the hemoglobin parameter from the start of the incremental movement to the peak; monitoring parameter II: the initial value of the hemoglobin parameter and The amount of change between peaks; monitoring parameter III: the average rate of change of the hemoglobin parameter from the beginning of the incremental movement to the peak; monitoring parameter IV: the average rate of change of the hemoglobin parameter from 60% of the entire incremental movement to the peak. Bring the above-mentioned monitoring parameters into the linear prediction system or the non-linear prediction system, and evaluate the blood oxygen status of the person to be monitored according to a preset threshold.

本發明再提出一種程式產品,用以儲存一應用程式,該應用程式被安裝後係執行前述智能血氧監測方法。The present invention further provides a program product for storing an application program, and the application program is installed to execute the aforementioned intelligent blood oxygen monitoring method.

根據上述技術特徵可達成以下功效:According to the above technical features, the following effects can be achieved:

1.本發明可採用光學方式偵測待監測者的血氧濃度,並進一步根據設定的監測參數來評估待監測者的血氧狀態。再配合例如類神經網絡、模糊理論系統或混沌理論系統等線性預測系統或非線性預測系統根據預設閥值來有效地劃分不同的心肺功能組,使醫護人員能為心血管疾病患者建議不同的運動訓練和康復程序。1. The present invention can use an optical method to detect the blood oxygen concentration of the person to be monitored, and further evaluate the blood oxygen state of the person to be monitored according to the set monitoring parameters. Coupled with linear prediction systems such as neural networks, fuzzy theory systems, or chaotic theory systems, or nonlinear prediction systems to effectively divide different cardiopulmonary function groups based on preset thresholds, so that medical staff can suggest different groups for patients with cardiovascular diseases. Sports training and rehabilitation procedures.

2.本發明所設定的監測參數能夠使線性預測系統或非線性預測系統精準的判別待監測者的血氧狀態,根據實驗結果,預測的正確度高達90%。2. The monitoring parameters set by the present invention can enable the linear prediction system or the nonlinear prediction system to accurately determine the blood oxygen state of the person to be monitored, and the accuracy of the prediction is as high as 90% according to the experimental results.

綜合上述技術特徵,本發明智能血氧監測方法、裝置、系統及根據血氧狀態評估心肺功能之方法的主要功效將可於下述實施例清楚呈現。Based on the above technical features, the main effects of the intelligent blood oxygen monitoring method, device, system and method for assessing cardiopulmonary function based on blood oxygen status of the present invention will be clearly presented in the following embodiments.

參閱第一圖至第三圖所示,本實施例之智能血氧監測系統包括有一智能血氧監測裝置(1)及一處理器(2)。該智能血氧監測裝置(1)包括有:Referring to Figures 1 to 3, the smart blood oxygen monitoring system of this embodiment includes a smart blood oxygen monitoring device (1) and a processor (2). The intelligent blood oxygen monitoring device (1) includes:

一光發射器(11),有一驅動電路(111)及一發光件(112),由該發光件(112)發出波長介於600nm至800nm的第一光波及波長介於800nm至950nm的第二光波至一待監測者的組織(A),本實施例為該待監測者的腦組織。一光接收器(12),有一接收件(121)及一訊號放大電路(122),由該接收件(121)接收該第一光波及該第二光波的一第一反射光波及一第二反射光波。一微處理單元(13),電性連接該光發射器(11)及該光接收器(12),該微處理單元(13)控制該光發射器(11)發出該第一光波及該第二光波,並接收該第一反射光波及該第二反射光波,據以獲得一血紅蛋白參數,該血紅蛋白參數包括一含氧血紅蛋白濃度及一脫氧血紅蛋白濃度。一無線傳輸單元(14),電性連接該微處理單元(13),用以輸出該血紅蛋白參數至該處理器(2)。A light emitter (11), a driving circuit (111) and a light-emitting element (112). The light-emitting element (112) emits a first light wave with a wavelength between 600nm and 800nm and a second light wave with a wavelength between 800nm and 950nm. The light wave reaches the tissue (A) of a person to be monitored, which is the brain tissue of the person to be monitored in this embodiment. A light receiver (12), a receiving element (121) and a signal amplifying circuit (122), the receiving element (121) receives a first reflected light wave and a second light wave of the first light wave and the second light wave Reflected light waves. A micro-processing unit (13) is electrically connected to the light transmitter (11) and the light receiver (12), and the micro-processing unit (13) controls the light transmitter (11) to emit the first light wave and the first light wave. Two light waves are received, and the first reflected light wave and the second reflected light wave are received to obtain a hemoglobin parameter. The hemoglobin parameter includes an oxygenated hemoglobin concentration and a deoxyhemoglobin concentration. A wireless transmission unit (14) is electrically connected to the micro-processing unit (13) for outputting the hemoglobin parameter to the processor (2).

本實施例採用之光學方式偵測待監測者的血氧濃度方式是修正後比爾朗伯定律(Modified Beer-Lambert law,MBLL),它是描述不同波段的光穿透不同濃度溶液時,由於物質的多種吸收與散射特性而造成光衰減變化的一種計算物質濃度公式,光衰減會與物質摩爾消光係數、物質濃度、光路徑呈線性關係。由於修正後比爾朗伯定律(Modified Beer-Lambert law,MBLL)是習知定律,在此不贅述其計算方式。本實施例藉由等吸光點前後波長對於不同吸收物質的吸收差異特性來得到不同的吸收數值,其中,近紅外光區段主要分布於700至1400nm波長之間,此區段的光線對於人體的穿透度較深,可以進行較深層組織的量測,且能有效地降低量測時光致組織的衰減,而含氧血紅蛋白與缺氧血紅蛋白在600至1000nm近紅外波段中的等吸光點約在800nm,因此本實施例取其前後波長700nm和910nm作為光源。The optical method used in this embodiment to detect the blood oxygen concentration of the person to be monitored is Modified Beer-Lambert law (MBLL), which describes that when light of different wavelengths penetrates solutions of different concentrations, due to substances A formula for calculating the concentration of a substance that changes the light attenuation caused by its various absorption and scattering characteristics. The light attenuation will have a linear relationship with the molar extinction coefficient of the substance, the concentration of the substance, and the light path. Since the modified Beer-Lambert law (Modified Beer-Lambert law, MBLL) is a well-known law, its calculation method will not be repeated here. In this embodiment, different absorption values are obtained based on the absorption difference characteristics of different absorbing substances at the wavelengths before and after the isosbestic point. Among them, the near-infrared light section is mainly distributed between the wavelengths of 700 to 1400 nm. The penetrability is deep, it can measure deeper tissues, and can effectively reduce the attenuation of the tissue caused by the measurement. The isosbestic point of oxygenated hemoglobin and hypoxic hemoglobin in the near-infrared band of 600 to 1000 nm is about 800 nm, therefore, in this embodiment, the front and back wavelengths of 700 nm and 910 nm are used as the light source.

參閱第一圖、第三圖及第四圖所示,該處理器(2)接收該含氧血紅蛋白濃度及該脫氧血紅蛋白濃度,並據以求得一總血紅蛋白濃度及一組織含氧率,並根據該總血紅蛋白濃度及該組織含氧率計算以下監測參數之一或組合:監測參數I:該血紅蛋白參數從增量運動開始到峰值的持續時間(T3);監測參數II:該血紅蛋白參數初始值和峰值之間的變化量(Vmax-Vinit);監測參數III:該血紅蛋白參數從增量運動開始到峰值的平均變化率((Av1 +Av2 +Av3 )/T3);監測參數IV:該血紅蛋白參數從整段增量運動的60%到峰值的平均變化率(Av3 /(T3-T2))。Referring to the first, third and fourth diagrams, the processor (2) receives the oxygenated hemoglobin concentration and the deoxygenated hemoglobin concentration, and obtains a total hemoglobin concentration and a tissue oxygen rate based on it, and Calculate one or a combination of the following monitoring parameters based on the total hemoglobin concentration and the tissue oxygen rate: monitoring parameter I: the duration of the hemoglobin parameter from the start of the incremental movement to the peak (T3); monitoring parameter II: the initial value of the hemoglobin parameter The amount of change between the peak value and the peak value (Vmax-Vinit); monitoring parameter III: the average rate of change of the hemoglobin parameter from the beginning of the incremental movement to the peak value ((A v1 +A v2 +A v3 )/T3); monitoring parameter IV: The average rate of change of the hemoglobin parameter from 60% of the entire incremental movement to the peak value (A v3 /(T3-T2)).

參閱第一圖、第三圖及第五圖所示,將上述各監測參數帶入例如類神經網絡、模糊理論系統或混沌理論系統等線性預測系統或非線性預測系統,並根據一預設閥值評估該待監測者的血氧狀態。進一步可再根據血氧狀態評估待監測者的心肺功能,係當上述監測參數超出該預設閥值時,判別該待監測者的心肺功能佳,反之,判別該待監測者的心肺功能不佳,藉此即可有效地劃分不同的心肺功能組,使醫護人員能為心血管疾病患者建議不同的運動訓練和康復程序。Refer to the first, third, and fifth diagrams, bring the above-mentioned monitoring parameters into a linear prediction system or a nonlinear prediction system such as neural network, fuzzy theory system or chaos theory system, and according to a preset valve Value to evaluate the blood oxygen status of the person to be monitored. The cardiopulmonary function of the person to be monitored can be further evaluated according to the blood oxygen status. When the above-mentioned monitoring parameters exceed the preset threshold, the cardiopulmonary function of the person to be monitored can be judged to be good, otherwise, the cardiopulmonary function of the person to be monitored can be judged to be poor In this way, different cardiopulmonary function groups can be effectively divided, so that medical staff can suggest different exercise training and rehabilitation procedures for patients with cardiovascular diseases.

以輻射基底類神經網絡為例,輻射基底類神經網絡之結構分成三個層級,分別為輸入層、隱藏層、輸出層,其中,

Figure 02_image001
Figure 02_image003
分別表示輸入層和隱藏層的神經元個數。透過k平均群聚演算法及正歸化最小方均演算法的訓練後,與預設閥值比對,而獲得該待監測者的血氧狀態。而輻射基底類神經網絡實際運算方式為習知技術,在此不贅述。Take the radiation-based neural network as an example. The structure of the radiation-based neural network is divided into three levels, namely the input layer, the hidden layer, and the output layer. Among them,
Figure 02_image001
,
Figure 02_image003
Indicates the number of neurons in the input layer and hidden layer, respectively. After training by the k-means clustering algorithm and the normalized least squares algorithm, compare with the preset threshold to obtain the blood oxygen status of the person to be monitored. The actual operation method of the radiating basal neural network is a conventional technology, which will not be repeated here.

而本發明以峰值代謝當量5為預設閥值將心血管疾病患者區分為心肺功能恢復較好與較差兩組。代謝當量用於量化活動消耗的能量,也可以表示為個人的有氧運動能力,一個代謝當量的定義是靜止坐在椅子上休息時的攝氧量,通常通過體重歸一化,其數值大約為3.5 ml/kg/min。其中攝氧量與心臟動脈和混合靜脈血氧輸出含量有關。在運動達最大量時,最大攝氧量是心肺運動功能測試系統中最重要的參數,因為它被認為是定義心肺系統極限的指標,它反映了受測者最大程度的吸收、運輸和使用氧氣的能力。在健康的人中,接近最大運動量時會出現攝氧量的平穩期,這說明運動達最大量時會不斷出現攝氧量的最大值。但是,無法進行劇烈運動的患者在測試期間攝氧量可能無法達到明顯的平穩期。因此,峰值攝氧量常被用於估計最大攝氧量。先前的研究表明,使用最大運動量測試可以作為風險分層的主要方法,其中急性心肌梗塞(Acute Myocardial Infarction)被認為是高風險族群,他們的峰值代謝當量是小於5的。據此,即可評估待監測者的心肺功能。However, the present invention uses the peak metabolic equivalent of 5 as the preset threshold value to classify patients with cardiovascular diseases into two groups with good and poor recovery of cardiopulmonary function. Metabolic equivalent is used to quantify the energy consumed by activities, and it can also be expressed as an individual’s aerobic exercise capacity. A metabolic equivalent is defined as the oxygen uptake when sitting still on a chair and resting, usually normalized by body weight, and its value is approximately 3.5 ml/kg/min. The oxygen uptake is related to the oxygen output of the heart arteries and mixed venous blood. When the maximum amount of exercise is reached, the maximum oxygen uptake is the most important parameter in the cardiopulmonary exercise testing system, because it is considered to define the limit of the cardiopulmonary system, and it reflects the maximum absorption, transportation and use of oxygen by the subject Ability. In healthy people, there will be a plateau of oxygen uptake when the maximum amount of exercise is approaching, which means that the maximum amount of oxygen uptake will continue to appear when the maximum amount of exercise is reached. However, patients who are unable to exercise vigorously may not achieve a significant plateau in their oxygen intake during the test. Therefore, peak oxygen uptake is often used to estimate maximum oxygen uptake. Previous studies have shown that the use of the maximum exercise test can be used as the main method of risk stratification, in which acute myocardial infarction (Acute Myocardial Infarction) is considered a high-risk group, and their peak metabolic equivalent is less than 5. Based on this, the cardiopulmonary function of the person to be monitored can be evaluated.

本發明實際使用時,根據實驗結果,將上述監測參數輸入輻射基底類神經網絡進行運算後,對該監測者的心肺功能分類正確度高達90%。When the present invention is actually used, according to the experimental results, after the above-mentioned monitoring parameters are input into the radiation basal neural network for calculation, the accuracy of the cardiopulmonary function classification of the monitor is as high as 90%.

綜合上述實施例之說明,當可充分瞭解本發明之操作、使用及本發明產生之功效,惟以上所述實施例僅係為本發明之較佳實施例,當不能以此限定本發明實施之範圍,即依本發明申請專利範圍及發明說明內容所作簡單的等效變化與修飾,皆屬本發明涵蓋之範圍內。Based on the description of the above embodiments, when one can fully understand the operation and use of the present invention and the effects of the present invention, but the above embodiments are only the preferred embodiments of the present invention, and the implementation of the present invention cannot be limited by this. The scope, that is, simple equivalent changes and modifications made according to the scope of the patent application of the present invention and the content of the description of the invention, are all within the scope of the present invention.

(1):智能血氧監測裝置 (11):光發射器 (111):驅動電路 (112):發光件 (12):光接收器 (121):接收件 (122):訊號放大電路 (13):微處理單元 (14):無線傳輸單元 (2):處理器(1): Intelligent blood oxygen monitoring device (11): Optical transmitter (111): Drive circuit (112): Light-emitting parts (12): Optical receiver (121): Receipt (122): Signal amplifier circuit (13): Micro-processing unit (14): Wireless transmission unit (2): Processor

[第一圖]係為本發明之智能血氧監測系統的示意圖。[The first figure] is a schematic diagram of the intelligent blood oxygen monitoring system of the present invention.

[第二圖]係為本發明本發明之智能血氧監測系統的使用狀態示意圖。[The second figure] is a schematic diagram of the use state of the intelligent blood oxygen monitoring system of the present invention.

[第三圖]係為本發明之智能血氧監測方法的流程圖。[The third figure] is a flowchart of the intelligent blood oxygen monitoring method of the present invention.

[第四圖]係為本發明實施時,在增量運動下,各監測參數之物理定義示意圖。[Fourth Figure] is a schematic diagram of the physical definition of each monitoring parameter under incremental motion when the present invention is implemented.

[第五圖]係為本發明實施例將監測參數輸入類神經網絡進行運算的示意圖。[Fifth Figure] is a schematic diagram of inputting monitoring parameters into a neural network for calculation in an embodiment of the present invention.

Claims (10)

一種智能血氧監測方法,包括有: 獲得一待監測者的一組織中的一血紅蛋白參數; 根據該血紅蛋白參數計算以下監測參數之一或組合: 監測參數I:該血紅蛋白參數從一增量運動開始到峰值的持續時間; 監測參數II:該血紅蛋白參數初始值和峰值之間的變化量; 監測參數III:該血紅蛋白參數從該增量運動開始到峰值的平均變化率; 監測參數IV:該血紅蛋白參數從整段增量運動的60%到峰值的平均變化率; 將上述各監測參數帶入線性預測系統或非線性預測系統,並根據一預設閥值評估該待監測者的血氧狀態。An intelligent blood oxygen monitoring method, including: Obtain a hemoglobin parameter in a tissue of a subject to be monitored; Calculate one or a combination of the following monitoring parameters based on the hemoglobin parameter: Monitoring parameter I: the duration of the hemoglobin parameter from the beginning of an incremental movement to the peak value; Monitoring parameter II: the amount of change between the initial value and the peak value of the hemoglobin parameter; Monitoring parameter III: the average rate of change of the hemoglobin parameter from the start of the incremental movement to the peak value; Monitoring parameter IV: The average rate of change of the hemoglobin parameter from 60% of the entire incremental movement to the peak value; Bring the above-mentioned monitoring parameters into the linear prediction system or the non-linear prediction system, and evaluate the blood oxygen status of the person to be monitored according to a preset threshold. 如申請專利範圍第1項所述之智能血氧監測方法,其中,該血紅蛋白參數包括一血紅蛋白濃度或一組織含氧率之一或組合。According to the intelligent blood oxygen monitoring method described in claim 1, wherein the hemoglobin parameter includes one or a combination of a hemoglobin concentration or a tissue oxygen rate. 如申請專利範圍第2項所述之智能血氧監測方法,其中,該血紅蛋白濃度包括一含氧血紅蛋白濃度、一脫氧血紅蛋白濃度及一總血紅蛋白濃度;使波長介於600nm至800nm的第一光波及波長介於800nm至950nm的第二光波入射該待監測者的組織,並接收該第一光波及該第二光波的一第一反射光波及一第二反射光波,並根據該第一反射光波及該第二反射光波求得該組織中的一含氧血紅蛋白濃度及一脫氧血紅蛋白濃度,並據以求得該總血紅蛋白濃度及該組織含氧率。The intelligent blood oxygen monitoring method described in item 2 of the scope of patent application, wherein the hemoglobin concentration includes an oxygenated hemoglobin concentration, a deoxyhemoglobin concentration and a total hemoglobin concentration; the first light wave with a wavelength between 600nm and 800nm A second light wave with a wavelength between 800nm and 950nm is incident on the tissue of the subject to be monitored, and receives a first reflected light wave and a second reflected light wave of the first light wave and the second light wave, and according to the first reflected light wave The second reflected light wave obtains an oxygenated hemoglobin concentration and a deoxygenated hemoglobin concentration in the tissue, and obtains the total hemoglobin concentration and the oxygen content of the tissue accordingly. 如申請專利範圍第3項所述之智能血氧監測方法,其中,係根據該總血紅蛋白濃度及該組織含氧率計算上述監測參數。The intelligent blood oxygen monitoring method described in item 3 of the scope of patent application, wherein the monitoring parameters are calculated based on the total hemoglobin concentration and the oxygen content of the tissue. 如申請專利範圍第1項所述之智能血氧監測方法,其中,該線性預測系統或非線性預測系統係使用類神經網絡、模糊理論系統或混沌理論系統之一。The intelligent blood oxygen monitoring method described in item 1 of the scope of patent application, wherein the linear prediction system or the non-linear prediction system uses one of a neural network, a fuzzy theory system, or a chaos theory system. 一種智能血氧監測裝置,用以取得一待監測者的一組織中的一血紅蛋白參數,包括有: 一光發射器,用以發出波長介於600nm至800nm的第一光波及波長介於800nm至950nm的第二光波至該待監測者的組織; 一光接收器,接收該第一光波及該第二光波的一第一反射光波及一第二反射光波; 一微處理單元,電性連接該光發射器及該光接收器,該微處理單元控制該光發射器發出該第一光波及該第二光波,並接收該第一反射光波及該第二反射光波,據以獲得該血紅蛋白參數,該血紅蛋白參數包括一含氧血紅蛋白濃度及一脫氧血紅蛋白濃度。An intelligent blood oxygen monitoring device used to obtain a hemoglobin parameter in a tissue of a person to be monitored, including: A light emitter for emitting a first light wave with a wavelength between 600nm and 800nm and a second light wave with a wavelength between 800nm and 950nm to the tissue of the subject to be monitored; A light receiver for receiving a first reflected light wave and a second reflected light wave of the first light wave and the second light wave; A micro-processing unit electrically connected to the light transmitter and the light receiver, the micro-processing unit controls the light transmitter to emit the first light wave and the second light wave, and receives the first reflected light wave and the second reflection The light wave is used to obtain the hemoglobin parameter, and the hemoglobin parameter includes an oxygenated hemoglobin concentration and a deoxygenated hemoglobin concentration. 一種智能血氧監測系統,用以偵測一待監測者的一組織中的一血紅蛋白參數,據以獲得該待監測者的血氧狀態,包括有: 一智能血氧監測裝置,包括: 一光發射器,用以發出波長介於600nm至800nm的第一光波及波長介於800nm至950nm的第二光波至該待監測者的組織; 一光接收器,接收該第一光波及該第二光波的一第一反射光波及一第二反射光波; 一微處理單元,電性連接該光發射器及該光接收器,該微處理單元控制該光發射器發出該第一光波及該第二光波,並接收該第一反射光波及該第二反射光波,據以獲得該血紅蛋白參數,該血紅蛋白參數包括一含氧血紅蛋白濃度及一脫氧血紅蛋白濃度; 一處理器,訊號連接該智能血氧監測裝置,該處理器接收該血紅蛋白參數,並根據該血紅蛋白參數計算以下監測參數之一或組合: 監測參數I:該血紅蛋白參數從一增量運動開始到峰值的持續時間; 監測參數II:該血紅蛋白參數初始值和峰值之間的變化量; 監測參數III:該血紅蛋白參數從該增量運動開始到峰值的平均變化率; 監測參數IV:該血紅蛋白參數從整段增量運動的60%到峰值的平均變化率; 將上述各監測參數帶入線性預測系統或非線性預測系統,並根據一預設閥值評估該待監測者的血氧狀態。An intelligent blood oxygen monitoring system for detecting a hemoglobin parameter in a tissue of a person to be monitored to obtain the blood oxygen status of the person to be monitored includes: An intelligent blood oxygen monitoring device, including: A light emitter for emitting a first light wave with a wavelength between 600nm and 800nm and a second light wave with a wavelength between 800nm and 950nm to the tissue of the subject to be monitored; A light receiver for receiving a first reflected light wave and a second reflected light wave of the first light wave and the second light wave; A micro-processing unit electrically connected to the light transmitter and the light receiver, the micro-processing unit controls the light transmitter to emit the first light wave and the second light wave, and receives the first reflected light wave and the second reflection Light waves to obtain the hemoglobin parameter, where the hemoglobin parameter includes an oxygenated hemoglobin concentration and a deoxygenated hemoglobin concentration; A processor, a signal connected to the intelligent blood oxygen monitoring device, the processor receives the hemoglobin parameter, and calculates one or a combination of the following monitoring parameters according to the hemoglobin parameter: Monitoring parameter I: the duration of the hemoglobin parameter from the beginning of an incremental movement to the peak value; Monitoring parameter II: the amount of change between the initial value and the peak value of the hemoglobin parameter; Monitoring parameter III: the average rate of change of the hemoglobin parameter from the start of the incremental movement to the peak value; Monitoring parameter IV: The average rate of change of the hemoglobin parameter from 60% of the entire incremental movement to the peak value; Bring the above-mentioned monitoring parameters into the linear prediction system or the non-linear prediction system, and evaluate the blood oxygen status of the person to be monitored according to a preset threshold. 如申請專利範圍第7項所述之智能血氧監測系統,其中,該血紅蛋白參數包括由該含氧血紅蛋白濃度及該脫氧血紅蛋白濃度獲得之一總血紅蛋白濃度及一組織含氧率,並且該處理器係根據該總血紅蛋白濃度及該組織含氧率計算上述監測參數。The intelligent blood oxygen monitoring system described in item 7 of the scope of patent application, wherein the hemoglobin parameters include a total hemoglobin concentration and a tissue oxygen rate obtained from the oxygenated hemoglobin concentration and the deoxygenated hemoglobin concentration, and the processor The above monitoring parameters are calculated based on the total hemoglobin concentration and the oxygen content of the tissue. 一種根據血氧狀態評估心肺功能之方法,包括有: 獲得一待監測者的一組織中的一血紅蛋白參數,該血紅蛋白參數包括一血紅蛋白濃度及一組織含氧率; 根據該血紅蛋白參數計算以下監測參數之一或組合: 監測參數I:該血紅蛋白參數從一增量運動開始到峰值的持續時間; 監測參數II:該血紅蛋白參數初始值和峰值之間的變化量; 監測參數III:該血紅蛋白參數從該增量運動開始到峰值的平均變化率; 監測參數IV:該血紅蛋白參數從整段增量運動的60%到峰值的平均變化率; 將上述各監測參數帶入線性預測系統或非線性預測系統,並根據一預設閥值評估該待監測者的血氧狀態,當上述監測參數超出該預設閥值時,判別該待監測者的心肺功能佳,反之,判別該待監測者的心肺功能不佳。A method for assessing cardiopulmonary function based on blood oxygen status, including: Obtain a hemoglobin parameter in a tissue of a subject to be monitored, and the hemoglobin parameter includes a hemoglobin concentration and a tissue oxygen rate; Calculate one or a combination of the following monitoring parameters based on the hemoglobin parameter: Monitoring parameter I: the duration of the hemoglobin parameter from the beginning of an incremental movement to the peak value; Monitoring parameter II: the amount of change between the initial value and the peak value of the hemoglobin parameter; Monitoring parameter III: the average rate of change of the hemoglobin parameter from the start of the incremental movement to the peak value; Monitoring parameter IV: The average rate of change of the hemoglobin parameter from 60% of the entire incremental movement to the peak value; Bring the above-mentioned monitoring parameters into the linear prediction system or the non-linear prediction system, and evaluate the blood oxygen status of the person to be monitored according to a preset threshold value. When the above-mentioned monitoring parameters exceed the preset threshold value, determine the person to be monitored The cardiopulmonary function of the patient is good. On the contrary, the cardiopulmonary function of the person to be monitored is judged to be poor. 一種程式產品,用以儲存一應用程式,該應用程式被安裝後係執行如申請專利範圍第1項至第5項任一項所述之智能血氧監測方法。A program product used to store an application program. After the application program is installed, it executes the intelligent blood oxygen monitoring method described in any one of items 1 to 5 of the scope of patent application.
TW109100621A 2020-01-08 2020-01-08 Imethod for evaluating cardiopulmonary function based on bloodoxygen status,system,and program product TWI827781B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109100621A TWI827781B (en) 2020-01-08 2020-01-08 Imethod for evaluating cardiopulmonary function based on bloodoxygen status,system,and program product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109100621A TWI827781B (en) 2020-01-08 2020-01-08 Imethod for evaluating cardiopulmonary function based on bloodoxygen status,system,and program product

Publications (2)

Publication Number Publication Date
TW202126259A true TW202126259A (en) 2021-07-16
TWI827781B TWI827781B (en) 2024-01-01

Family

ID=77908311

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109100621A TWI827781B (en) 2020-01-08 2020-01-08 Imethod for evaluating cardiopulmonary function based on bloodoxygen status,system,and program product

Country Status (1)

Country Link
TW (1) TWI827781B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116168842A (en) * 2022-12-05 2023-05-26 之江实验室 Automatic generation method and device for training data set of oximetry model

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5244988B1 (en) * 2012-02-20 2013-07-24 浜松ホトニクス株式会社 Concentration measuring device and concentration measuring method
CN105078445B (en) * 2015-08-24 2018-11-02 华南理工大学 Senior health and fitness's service system based on health service robot
TWI622380B (en) * 2017-01-17 2018-05-01 正崴精密工業股份有限公司 Physiological Signal Measuring Device and Blood Oxygen Calculation Method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116168842A (en) * 2022-12-05 2023-05-26 之江实验室 Automatic generation method and device for training data set of oximetry model
CN116168842B (en) * 2022-12-05 2023-08-08 之江实验室 Automatic generation method and device for training data set of oximetry model

Also Published As

Publication number Publication date
TWI827781B (en) 2024-01-01

Similar Documents

Publication Publication Date Title
US11445930B2 (en) System and method for determining stroke volume of a patient
US11058303B2 (en) System and method for determining stability of cardiac output
US9402573B2 (en) System and method for detecting fluid responsiveness of a patient
US10092200B2 (en) Plethysmograph variability processor
JP6636410B2 (en) Non-invasive measurement of blood oxygen saturation
US7828739B2 (en) Apnea detection system
US6869402B2 (en) Method and apparatus for measuring pulsus paradoxus
US20080183232A1 (en) Method and system for determining cardiac function
US8977348B2 (en) Systems and methods for determining cardiac output
US20190343406A1 (en) System and Method for Noninvasively Measuring Ventricular Stroke Volume and Cardiac Output
US9357937B2 (en) System and method for determining stroke volume of an individual
WO2014036214A1 (en) System and method for determining cardiac output
EP3928689A1 (en) Apparatus and method for compensating assessment of peripheral arterial tone
Shadgan et al. Near-infrared spectroscopy of the bladder: a new technique for studying lower urinary tract function in health and disease
CN115988984A (en) Method and apparatus for assessing peripheral arterial tension
Kavya et al. Photoplethysmography—A modern approach and applications
US10660530B2 (en) Determining changes to autoregulation
TW202126259A (en) Intelligent blood oxygen monitoring method, device, system, and program product as well as method for evaluating cardiopulmonary function based on blood oxygen status
US20210259596A1 (en) Smart oximetry method, system thereof and method for assessing cardiovascular function based on blood oxygen state
TW201206397A (en) Pulse detector
Tan et al. Towards Simultaneous Noninvasive Arterial and Venous Oxygenation Monitoring with Wearable E-Tattoo
CN114271805B (en) Cardiac output measurement method
Zhang et al. Detection Method and Research on Oxygen Saturation of Human Blood Based on Finger Vein Image
Vijeya Kaveri et al. Investigation on Optical Sensors for Heart Rate Monitoring
Wang Application and Development of Photoelectric Sensor in Smart Wearable Devices